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Preface

Our intention, at the beginning, was to write a short paper resolving some technical
issues in the theory of topological persistence. Specifically, we wished to present a
clean easy-to-use framework for continuous-parameter persistence, building on the
well-studied case of discrete-parameter persistence. Over a number of years, we
gradually abandoned the idea of a short paper. It apparently takes us about a
hundred pages to explain things in a simple way. We take the time to develop the
concepts that make everything flow: decorated reals, quiver calculus, r-measures,
q-tameness. Our main concern has been to make the mathematics lucid. We hope
the reader will find the ideas useful and the presentation clarifying.

Palaiseau, France Frédéric Chazal
Claremont, CA, USA Vin de Silva
Palaiseau, France Marc Glisse
Palaiseau, France Steve Oudot
May 2016
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Chapter 1
Introduction

We intend this monograph to be a self-contained presentation of the theory of
persistence modules over the real line. We give the best proofs we know of the
most important results. Each theorem is located at an appropriate level of abstraction
(we believe).

• Newcomers will find this to be an accessible introduction to the algebraic founda-
tions of persistence. They will learn what persistence modules are, how to access
their internal structure, their different degrees of ‘tameness’, how to construct
their persistence diagrams mathematically, and how to show that those diagrams
are stable.

• Experts will find that our methods add precision and power to what they already
know. We construct persistence modules in great generality and show that they
can be manipulated just as easily as the traditional examples. We give evidence
that this greater generality occurs naturally ‘in the wild’.

Persistence modules are the mathematical object at the heart of the young, rapidly
growing field of topological data analysis. This field—a blend of computer science,
algebraic topology and statistics—is founded on the assumption that scientific data
sets carry information in their internal structure and that sometimes this internal
structure is topological. Persistence modules were designed to carry topological
information about a data set atmanydifferent scales simultaneously. This information
can be extracted in the form of an invariant—the persistence diagram or barcode—
that can be computed effectively and is statistically robust.

New researchers in the field have to come to terms with multiple aspects of
persistence. They must learn how data can be turned into geometric objects (usually
a nested family of simplicial complexes). Theymust learn toworkwith the algorithms
that turn these geometric objects into barcodes or persistence diagrams. They need
algebraic topology to know how to interpret these barcodes. And, increasingly often
nowadays, they must know enough statistical theory to draw valid inferences from
the results of these calculations. There is by now a great deal of literature covering

© The Author(s) 2016
F. Chazal et al., The Structure and Stability of Persistence Modules,
SpringerBriefs in Mathematics, DOI 10.1007/978-3-319-42545-0_1
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2 1 Introduction

these different facets, written by and intended for researchers across a large range of
disciplines.

Our focus is narrower. In this monograph, we are concerned almost exclusively
with the mathematical properties of persistence modules. We have several reasons
for doing this:

• The existing literature is largely built around particular instances of topological
persistence, such as the sublevelset persistent homology of a Morse function on a
compact manifold. While this can be useful for developing intuition, it does create
bias in how the subject is understood. We wish to correct this bias.

• Several components of the theory are algebraic in nature. The fact that most of
the usual examples come from topology sometimes creates a different impression.
Here we give a purely algebraic presentation of the main ingredients: the persis-
tence diagram, tameness, stability. Topological arguments are used when studying
the properties of persistence modules obtained from topological data, but are not
needed otherwise.

• Variations such as image and kernel persistence can be treated equally.

More specifically, we are interested in persistence modules indexed by a single
real parameter. Much of our work goes to show that a continuous parameter can be
handled just as effectively as a discrete parameter; this fills a gap in the literature.
On the other hand, we make no attempt to discuss multiparameter persistence. It is
a complicated subject and at some point will be ready for its own book.

Within its scope, the monograph is almost entirely self-contained. We do appeal
to two off-the-shelf technical results from module theory (Theorems 2.7 and 2.8).
When discussing persistent homology, we assume that the reader is familiar with
the standard properties of simplicial complexes and homology functors. Since it is
important to remain connected to the larger world of topological data analysis, we
briefly present two applications in Sects. 1.3 and 1.4, and a themed reading list in
Sect. 1.5.

1.1 A Brief History of Persistence

The early history of persistence is concerned with the quantity

rs
t = rank(H(Xs) → H(Xt ))

for an object X represented at two different scales s, t , and where H is homology.
This appeared in the early 1990s in the work of Frosini [34], with different notation
and under the name ‘size function’. Independently, a few years later, Robins [46]
introduced the term ‘persistent Betti numbers’ for quantities of the form rεε+ρ , and
noted their stability with respect to Hausdorff distance.

http://dx.doi.org/10.1007/978-3-319-42545-0_2
http://dx.doi.org/10.1007/978-3-319-42545-0_2


1.1 A Brief History of Persistence 3

The modern theory of persistence is built on three pillars:

• The persistence diagram, and an algorithm for computing it, were introduced by
Edelsbrunner, Letscher and Zomorodian [30]. This gives a compact representation
of the size function and an effective way to compute it.

• Zomorodian andCarlsson [50] defined persistencemodules in the abstract, indexed
by the natural numbers and viewed as graded modules over the polynomial
ring k[t]. This introduced tools from commutative algebra.

• Cohen-Steiner, Edelsbrunner and Harer [19] formulated and proved the stability
theorem, which guarantees that the persistence diagram is robust to changes in the
input data. Robustness is measured in terms of a ‘bottleneck distance’ between
persistence diagrams.

All three papers make the assumption that the data is essentially finite. This is under-
standable from the perspective of computer science: a finite machine can only handle
a finite amount of data. And mathematically it is the natural place to begin. In the
realm of continuous topology it is common to make finiteness assumptions: a con-
tinuous function on a smooth manifold may be approximated by a Morse function,
and on a polyhedron may be approximated by a piecewise-linear map.

The finiteness restrictions were lifted in [15] (and its published conference ver-
sion [14]), which generalises the main results to persistence modules indexed over
the real line, under the relatively mild assumption that rs

t < ∞ for s < t . In the
present work, we call these modules ‘q-tame’. It turns out that this is a natural condi-
tion; large classes of examples are q-tame. Moreover, the formulation of the stability
theorem in [15] is purely algebraic, and not tied to any particular geometric situation.
The only drawback is that some of the arguments are rather complicated.

In this monograph, we carry out the program of [15] with new arguments. The
proofs are now very clean and the methods are versatile. Let us say a few words
about whywe think it worth the effort to workwith continuous-parameter persistence
modules. Here are our two main reasons:

• Real-world data sets are always finite, but they may be statistical samples from
an underlying continuous object or process. Ideally the persistent homology of
a sample will be an approximation to the persistent homology of the continuous
model. Formulating this requires a theory of continuous-parameter persistence.

• Continuous-parameter persistence extends the applicability of the theory from
finite data sets to more general objects such as compact metric spaces. This widens
the applicability of persistence within pure mathematics.

In support of this last point, we observe that in recent years the discrete form of
persistence has seen application in various branches of pure mathematics. For exam-
ple, Ellis and King [33] use persistence to study p-groups; and Pakianathan and
Winfree [45] have reformulated a number of famous problems in number theory,
including the Riemann Hypothesis, in terms of the persistent homology of certain
filtered simplicial complexes.

We draw attention to three recent papers which share our goal of understanding
continuous-parameter persistence modules:



4 1 Introduction

• Lesnick [42] gives an extensive algebraic treatment of modules over one or more
real parameters. The converse stability inequality, and hence the isometry theorem,
appears for the first time in his work. Our present work was carried out largely
independently, with one salient exception: it was from Lesnick [42] we learned of
results of Webb [48] that resolved a sticking-point for us.

• Bubenik and Scott [5] develop the category-theoretical view of persistence mod-
ules. This allows them to formulate and prove stability theorems in great generality.
Categories and functors surface occasionally in the present monograph, and can
be used to streamline some of the work very effectively and non-trivially.

• Bauer and Lesnick [3] give a completely original proof of the stability theorem
for q-tame continuous-parameter persistence modules, making no use of the inter-
polation lemma that is so crucial to our approach (which is based on the original
proof of Cohen-Steiner, Edelsbrunner and Harer [19]). Their work depends on
strong results on the decomposition of persistence modules.

All of these works appeared during the writing of this monograph.

1.2 Main Contributions

Many authors have studied persistence modules in recent years, and many of the
theorems presented here are not original in themselves. The originality lies in the
methods that we use. Our main innovations are these:

• We construct persistence diagrams using measure theory. The existence of a dia-
gram is equivalent to the existence of a certain kind of measure on rectangles in
the plane.

• We introduce ‘decorated’ real numbers for two related purposes: to remove the
ambiguity about the endpoints of persistence intervals, and to get the measure
theory to work.

• We introduce a special notation for calculations on quiver representations. This
considerably simplifies the linear algebra (for instance, in proving the ‘box
lemma’).

• We define several kinds of ‘tameness’ for a persistence module. These occur nat-
urally in practice. The most restrictive of these, finite type, is what is normally
seen in the literature. We show how to work effectively with the less restrictive
hypotheses.

• We give a clean proof of the algebraic interpolation theorem of [15].
• We rewrite the algebraic stability theorem of [15] as a theorem about measures.
Among other consequences, this leads to diagram stability results for even quite
badly behaved persistence modules.

Our goal in introducing these ideas is to enable our readers to define persis-
tence diagrams cleanly and effectively in a wide variety of situations. In the earlier
work [15], continuous-parameter persistence diagrams are constructedusing a careful
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limiting process through ever-finer discretisations of the parameter. Unfortunately
the limiting arguments turn out to be quite complicated, and the resulting diagrams
are difficult to work with. Our approach in the present monograph gives the best of
both worlds; we are able to work with broader classes of persistence modules, and
we can reason about their diagrams in a clean way using arguments of a finite nature.

1.3 Application: Stable Descriptors for Metric Spaces

In this section and the next, we illustrate the usefulness of the persistence diagram for
problems in data analysis and machine learning. The key point is that the persistence
diagram is a robust invariant of the underlying geometric situation.

It often happens in classification tasks that the objects to be classified cannot be
compared against one another directly but only through descriptors or ‘signatures’.
Consider the problem of organizing a database of 3-dimensional objects into mean-
ingful classes, as illustrated in Fig. 1.1. Each object—or ‘3d shape’—is represented as
some part of the bounding surface of a 3-dimensional region, and it can be abstracted
mathematically as a compact metric space (P, dP) where the set P is the surface
itself and the metric is the geodesic distance along the surface. Comparing two 3d
shapes amounts to comparing the corresponding metric spaces.

The natural distance on the space of compact metric spaces is the so-called
Gromov–Hausdorff distance dGH, a generalisation of the classical Hausdorff dis-
tance defined as follows:

dGH(P, Q) = inf
S, f,g

dH( f (P), g(Q))

where (P, dP) and (Q, dQ) are the two given compact metric spaces, where (S, dS)
ranges over all metric spaces, where f : P → S and g : Q → S range over
all isometric embeddings of P and Q into S, and where dH denotes the Hausdorff
distance in (S, dS).

The issue with this distance is that its direct computation leads to a quadratic
assignment problem that is hard to solve in practice. Upper bounds can be obtained
easily, but lower bounds are more difficult. A workaround is to map the metric spaces
P, Q to some space of signatures in which distances are easier to compute. Ideally,
one would like the distance between signatures to be the same as the Gromov–
Hausdorff distance between the initial metric spaces, but this is usually too much
to ask. We can at least require that the distance between signatures provide a lower
bound on the distance between the metric spaces, so in particular the signatures are
provably stable under small perturbations of the spaces.

The general stability theorem stated in the present monograph (Theorem 5.25)
makes it possible to derive such a stability guarantee, when the signature of a compact

http://dx.doi.org/10.1007/978-3-319-42545-0_5
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Fig. 1.1 (From [13]) An unsupervised classification task using persistence-based signatures. Top:
The collection of 60 shapes to be classified into 6 classes (labels unknown).Bottom-left:The distance
matrix in signature space, with color-coded values (each row and column corresponds to a single
shape in the collection). Bottom-right: The signatures are embedded into the Euclidean plane using
multidimensional scaling. The objects are then classified by a simple k-means clustering procedure
applied to this embedding. Label names can be extrapolated to classes if some of the individual
objects have known labels

metric space is taken to be the persistence diagram of the homology of its Vietoris–
Rips complexes1:

Theorem 1.1 ([13, 16]) For any compact metric spaces (P, dP) and (Q, dQ),

db(dgm(H∗(Rips(P))), dgm(H∗(Rips(Q)))) ≤ dGH(P, Q).

1We do not give the details of this construction here; see [13, 16] for instance. What matters is
that the signature dgm(H∗(Rips(P))) is easily computed, the distance between two signatures is
easily computed, the distance is robust in the sense of Theorem 1.1, and that the lower bound in the
theorem is sufficiently tight to solve the learning problem under consideration.
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As desired, this result provides a lower bound on the Gromov–Hausdorff distance
between the metric spaces in terms of the bottleneck distance db between their
signatures.

It turns out that signatures of this type are rich enough to be used effectively in
machine learning applications such as the one depicted in Fig. 1.1. In such applica-
tions, the continuous shapes themselves are replaced by finite samples for practical
purposes. One can exploit Theorem 1.1 to prove minimax-optimal upper bounds on
the convergence rate of the sample signatures to the signatures of the underlying
continuous objects [17]. It is also possible to define local versions of the signa-
tures, with similar stability guarantees, for use in partial comparison and matching
applications [11].

1.4 Application: Stable Clustering Using Persistence

Unsupervised learning or clustering is an important tool for understanding and inter-
preting data. Among the wealth of existing approaches, mode seeking is the one
most closely related to Morse theory and persistence. The approach assumes that
the data points have been drawn from some unknown probability distribution with
density f . The idea is to detect the local peaks of f and use them as cluster centers,
grouping each data point with the local peak that it eventually reaches by following
the gradient vector field of f uphill—assuming f has a well-behaved gradient flow.

A common issue faced by these techniques is that the gradient and extremal
points of a density function are notoriously unstable, so their approximation from a
density estimator can lead to unpredictable results (Fig. 1.2, top-right). One possible
workaround is to smoothe the estimator before launching the hill-climbing procedure;
this raises the difficult question of howmuch smoothing is needed to remove the noise
without affecting the signal and still obtain the correct number of clusters. A different
workaround, proposed in [18], is to do the hill-climbing anyway and afterwards detect
and merge the unstable clusters to regain some stability. This is where persistence
comes into play.

The persistence diagram of the density estimator f̂ provides a measure of promi-
nence for the peaks of f̂ , through the distances of their corresponding diagram points
to the diagonal. Whenever the diagram satisfies a ‘sufficient separation’ condition, it
is easy to pick a prominence threshold that will separate the relevant peaks of f̂ from
the irrelevant ones. The clusters associated to the irrelevant peaks can then bemerged
into the clusters of the relevant peaks, using the hierarchy built by the persistence
algorithm. In this way one obtains the correct number of clusters: see Fig. 1.2.

Theorem 1.2 ([18]) Let c be the Lipschitz constant of the true density f , let η be
the approximation error (in the supremum norm) of the estimator f̂ , and let δ be the
neighborhood size parameter used in the hill-climbing procedure. Assume that the
peaks of the true density f have prominences at least d. Then, for any prominence
threshold within the range (2(cδ + η), d − 3(cδ + η)), the number of clusters
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Fig. 1.2 (From [18]) Persistence-based clustering in a nutshell. Top-left: The underlying density
function f is estimated at the data points. Top-right: The hill-climbing procedure applied to the
estimated density f̂ leads to a large number of unreliable clusters. Bottom-left: The persistence
diagram of f̂ shows 2 points far off the diagonal corresponding to the 2 peaks of the true density f .
Bottom-right: The final result is obtained by merging the clusters of the other peaks of f̂

computed by the above procedure, on an input of n random sample points drawn
i.i.d. according to f , is equal to the number of peaks of f with probability at least
1−e−Ω((cδ+η)n), where the constant in the big-Ω notation depends only on geometric
quantities (e.g. volumes of balls) associated with the ambient space.

The proof of this result relies on a partial notion of interleaving and a version of
the stability theorem for such partial interleavings (Theorem 6.1). Both follow easily
from the framework developed in this monograph.

http://dx.doi.org/10.1007/978-3-319-42545-0_6
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1.5 Recommended Reading

There is by now a substantial literature on topological persistence, launched by the
work of Edelsbrunner, Letscher and Zomorodian [30], with antecedents in papers
of Frosini [34] and Robins [46]. Beyond these historical documents, we have some
themed suggested readings for the reader seeking orientation in the larger field of
topological data analysis.

Applied Algebraic Topology

A substantial grounding in the broad field of applied algebraic topology may be
found in the following books, each reflecting the particular tastes of its author(s).

• Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek. Computational
Homology, volume 157 of Applied Mathematical Sciences. Springer, 2004.

• AfraZomorodian.Topology for Computing, volume 16 ofCambridge Monographs
on Applied and Computational Mathematics. Cambridge University Press, 2005.

• Herbert Edelsbrunner and JohnL.Harer.Computational topology: an introduction.
American Mathematical Society, 2010.

• RobertGhrist.Elementary Applied Topology. CreateSpace Independent Publishing
Platform, September 2014.

• Steve Y. Oudot. Persistence Theory: from quiver representations to data analysis,
volume 209 of Mathematical Surveys and Monographs. American Mathematical
Society, 2015.

Topological Data Analysis

The following survey articles provide different perspectives on the application of
topological persistence to data analysis. These articles provide a good introduction
for readers new to the field. In particular, they explain how persistence diagrams (or,
equivalently, barcodes) are used in practice.

• Robert Ghrist. Barcodes: the persistent topology of data. Bulletin of the American
Mathematical Society, 45(1):61–75, 2008.

• Gunnar Carlsson. Topology and data.Bulletin of the American Mathematical Soci-
ety, 46(2):255–308, 2009.

• Herbert Edelsbrunner and Dmitriy Morozov. Persistent homology: theory and
practice. In European Congress of Mathematics, pages 31–50. European Mathe-
matical Society, 2012.

The Persistence Algorithm

The following articles deal specifically with the details of the persistence algorithm,
an aspect that is not covered in the present book.

• Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persis-
tence and simplification.Discrete & Computational Geometry, 28:511–533, 2002.
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• Afra Zomorodian andGunnar Carlsson. Computing persistent homology.Discrete
& Computational Geometry, 33(2):249–274, 2005.

• Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Dualities in
persistent (co)homology. Inverse Problems, 27:124003, 2011.

Stability Theorems

The following articles present various versions of the proof of stability for persistence
diagrams. We are omitting [15], which served as a basis for the present work.

• David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persis-
tence diagrams. Discrete & Computational Geometry, 37(1):103–120, 2007.

• David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy Mileyko.
Lipschitz functions have Lp-stable persistence. Foundations of Computational
Mathematics, 10(2):127–139, 2010.

• Ulrich Bauer and Michael Lesnick. Induced matchings of barcodes and the alge-
braic stability of persistence. In Proceedings of the 30th Annual Symposium on

Computational Geometry (SoCG), pages 355–364, Kyoto, Japan, June 2014.

Geometric Complexes on Compact Metric Spaces

The following paper uses the tools introduced in the present book to derive stable
topological signatures for compact metric spaces.

• Frédéric Chazal, Vin de Silva, and Steve Oudot. Persistence stability of geometric
complexes. Geometriae Dedicata, 173:193–214, 2014.

It follows previous work in the non-persistent context:

• Jean-ClaudeHausmann.On theVietoris-Rips complexes and a cohomology theory
formetric spaces. InProspects in Topology, volume 138 ofAnnals of Mathematical
Studies, pages 175–188. Princeton University Press, Princeton, New Jersey, 1995.

• Janko Latschev. Vietoris-Rips complexes of metric spaces near a closed
Riemannian manifold. Archiv der Mathematik, 77:522–528, 2001.

Variations on Persistence

The following articles introduce several variations of 1-dimensional persistence:
vineyards, extended persistence, image persistence, zigzag persistence. The tools
introduced in the present book can be used to simplify some parts of their analysis.

• David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and
vineyards byupdating persistence in linear time. InProceedings of the 22nd Annual
Symposium on Computational Geometry (SoCG), pages 119–126, 2006.

• David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persis-
tence using Poincaré and Lefschetz duality. Foundations of Computational Math-
ematics, 9:79–103, 2008.
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• David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Dmitriy Morozov.
Persistent homology for kernels, images, and cokernels. In Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1011–
1020, 2009.

• Gunnar Carlsson and Vin de Silva. Zigzag persistence. Foundations of Computa-
tional Mathematics, 10(4):367–405, 2010.

Multidimensional Persistence

The following articles extend the theory to persistence modules indexed over
multidimensional index sets. There the situation is much less clear than for 1-
dimensional index sets.

• Gunnar Carlsson and Afra Zomorodian. The theory of multidimensional persis-
tence. In Proceedings of the 23rd Annual Symposium on Computational Geometry
(SoCG), Gyeongju, South Korea, June 2007.

• Gunnar Carlsson, Gurjeet Singh, and Afra Zomorodian. Computing multidimen-
sional persistence. Journal of Computational Geometry, 1(1):72–100, 2010.

• Michael Lesnick. The theory of the interleaving distance on multidimensional
persistencemodules.Foundations of Computational Mathematics, 15(3):613–650,
2015.

Categorified Persistence

Finally, the following articles build more abstract versions of the theory using the
language of category theory. They complement the ideas developed in the present
book, providing an abstract framework that some readers may find congenial.

• Peter Bubenik and Jonathan A. Scott. Categorification of persistent homology.
Discrete & Computational Geometry, 51:600–627, 2013.

• Peter Bubenik, Vin de Silva, and Jonathan Scott. Metrics for generalized persis-
tence modules. Foundations of Computational Mathematics, 15(6):1501–1531,
2015.

1.6 Organisation

The remaining chapters of the monograph are organised as follows.
Chapter 2 introduces the basic properties of persistence modules. These can be

defined over any partially ordered set; we are primarily interested in persistence
modules over the real line. In the best case a persistence module can be expressed as
a direct sum of ‘interval modules’, which can be thought of as the atomic building
blocks of the theory. Decorated real numbers are introduced here. Not all persis-
tence modules decompose into interval modules, so we spend much of the mono-
graph developing techniques that work without this assumption. These techniques
depend on a thorough understanding of finitely-indexed persistence modules known

http://dx.doi.org/10.1007/978-3-319-42545-0_2
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as ‘An-quiver representations’ [35, 27]. We introduce a special notation for per-
forming calculations on these quiver representations. This ‘quiver calculus’ is used
throughout.2

Chapter 3 addresses the question of how to define the diagram of a persistence
module. This is easy for modules which decompose into intervals. To handle the
general case, we establish an equivalence between diagrams and a certain kind of
measure definedon rectangles in the plane.Whenever a persistence diagram is sought,
therefore, it suffices to construct the corresponding persistence measure. Theorems
about a diagram can be replaced by simpler-to-prove theorems about itsmeasure. The
diagramexistswherever themeasure takes finite values. This leads to several different
notions of ‘tameness’. There are large classes of examples of naturally occurring per-
sistence modules which are tame enough for their diagrams to be defined everywhere
or almost everywhere. Some elementary ‘vanishing lemmas’ facilitate the explicit
calculation of persistence modules. We finish by showing how our abstractly defined
diagrams agree with the diagrams that are produced by the standard algorithms
[30, 50] when working in finite situations derived from real data.

Chapter 4 is concerned with interleavings. An interleaving is an approximate
isomorphism between two persistence modules. They occur naturally in applications
when the input data are known only up to some bounded error. After presenting the
basic properties, we give a clean proof of the technical lemma (from [15]) that two
interleaved modules can be interpolated by a 1-parameter family.

Chapter 5 is devoted to the isometry theorem, which asserts that the interleaving
distance between two persistencemodules is equal to the bottleneck distance between
their persistence diagrams. The two inequalities that comprise this result are treated
separately. One direction is the celebrated stability theorem of [19]. The more recent
converse inequality appears in [42].We formulate the stability theorem as a statement
about measures and their diagrams. The proof of this more abstract result closely
follows the original proof in [19]. Our version of the isometry theorem supposes that
the persistence modules are q-tame. We also provide a more general version of the
stability theorem which allows us to compare diagrams of persistence modules with
no assumptions on their tameness: wherever the two diagrams are defined, they must
be close to each other.

Chapter 6, finally, contains two worked examples. We show how the theory devel-
oped in this monograph can be used in practice to define various forms of persistence
and prove the needed theorems and lemmas. We hope these examples illustrate the
strength and flexibility of our approach.

2Readers who wish to adopt our notation are invited to contact us for the LATEX macros.

http://dx.doi.org/10.1007/978-3-319-42545-0_3
http://dx.doi.org/10.1007/978-3-319-42545-0_4
http://dx.doi.org/10.1007/978-3-319-42545-0_5
http://dx.doi.org/10.1007/978-3-319-42545-0_6
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1.7 Multisets

Persistence diagrams are multisets rather than sets. For our purposes, a multiset is a
pair A = (S,m) where S is a set and

m : S → {1, 2, 3, . . . } ∪ {∞}

is the multiplicity function, which tells us how many times each element of S occurs
in A. Here are our conventions regarding multisets:

• The cardinality of A = (S,m) is defined to be

card A =
∑

s∈S

m(s)

which takes values in {0, 1, 2, . . . }∪{∞}. We do not distinguish between different
infinite cardinals.

• We never form the intersection of two multisets, but we will sometimes restrict a
multiset A to a set B:

A|B = (S ∩ B,m|S∩B)

We may write this as A ∩ B when A|B is typographically inconvenient.
• A pair (B,m) where

m : B → {0, 1, 2, . . . } ∪ {∞}

is implicitly regarded as defining a multiset A = (S,m|S) where S = B −m−1(0)
is the support of m.

• If A = (S,m) is a multiset and f : S → B where B is a set, then the notation

{ f (a) | a ∈ A}

is interpreted as the multiset in B with multiplicity function

m′(b) =
∑

s∈ f −1(b)

m(s)

Except in definitions like these, we seldom refer explicitly to S.



Chapter 2
Persistence Modules

All vector spaces are taken to be over an arbitrary field k, fixed throughout.

2.1 Persistence Modules Over a Real Parameter

A persistence module V over the real numbers R is defined to be an indexed family
of vector spaces

(Vt | t ∈ R),

and a doubly-indexed family of linear maps

(vst : Vs → Vt | s ≤ t)

which satisfy the composition law

vst ◦ vrs = vrt

whenever r ≤ s ≤ t , and where vtt is the identity map on Vt .

Remark 2.1 Equivalently, a persistence module is a functor [43] from the real line
(viewed as a categorywith a uniquemorphism s → t whenever s ≤ t) to the category
of vector spaces. The uniqueness of the morphism s → t corresponds to the fact that
all possible compositions

vsn−1
t ◦ vsn−2

sn−1
◦ · · · ◦ vs1s2 ◦ vss1

from Vs to Vt are equal to each other, and in particular to vst .

Here is the standard class of examples from topological data analysis. Let X be
a topological space and let f : X → R be a function (not necessarily continuous).
Consider the sublevelsets:

© The Author(s) 2016
F. Chazal et al., The Structure and Stability of Persistence Modules,
SpringerBriefs in Mathematics, DOI 10.1007/978-3-319-42545-0_2
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Xt = (X, f )t = {x ∈ X | f (x) ≤ t}

The inclusion maps (i st : Xs → Xt | s ≤ t) trivially satisfy the composition law and
the identity map condition. Collectively this information is called the sublevelset
filtration of (X, f ) and we call it Xsub or X

f
sub.

Remark 2.2 Here we are using closed sublevelsets {x ∈ X | f (x) ≤ t}, but one
might instead choose to work with open sublevelsets {x ∈ X | f (x) < t}.

We can obtain a persistence module by applying to this filtration any functor from
topological spaces to vector spaces. For example, let H = Hk(−;k) be the functor
‘k-dimensional singular homology with coefficients in k’. We define a persistence
module V by setting

Vt = H(Xt ) and vst = H(i st ) : Vs → Vt

using the fact that functors operate on maps as well as objects. We can express this
definition concisely by writing V = H(Xsub).

In the applied topology literature, there are many examples (X, f ) whose persis-
tent homology is of interest. Very often X is a finite simplicial complex and each Xt

is a subcomplex. It follows that the vector spaces H(Xt ) are finite-dimensional; and
as t increases there are finitely many ‘critical values’ at which the complex changes,
growing by one or more new cells. Suppose these critical values are

a1 < a2 < · · · < an.

Then all the information in the persistence module is contained in the finite diagram

H(Xa1) −→ H(Xa2) −→ . . . −→ H(Xan )

of finite-dimensional vector spaces and linear maps. In this situation,

• the isomorphism type of H(Xsub) admits a compact description [30, 50];
• there is a fast algorithm for computing this description [30, 50];
• the description is continuous (indeed 1-Lipschitz) with respect to f [19].

This description is the famous persistence diagram, or barcode. It encodes the
structure of the diagram as a list of intervals of the form [b, d) = [ai , a j ) or [ai ,+∞).
Each such interval represents a ‘feature’ that is ‘born’ at b and ‘dies’ at d.

There are good grounds for extending the results of [30, 50, 19] beyond the case
of finite diagrams. For example, theoretical guarantees are commonly formulated in
terms of an idealised model; for instance the sampled data may be an approximation
to an underlying continuous space. Finiteness becomes unnatural and difficult to
enforce in these ideal models, but one still wants the main results to be true.
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Here is (what we believe to be) a good notion of tameness: a persistence module
V is q-tame if

rst = rank(vst ) < ∞ whenever s < t.

The definition is taken from [15], where such modules are simply called ‘tame’.
Since that word is overloaded with too many different meanings in the persistence
literature, we say ‘q-tame’ instead (see Sect. 3.8 for the etymology).

It is shown in [15] that persistence diagrams can be constructed for q-tame per-
sistence modules, and that these diagrams are stable with respect to certain natural
metrics. We reproduce these results here, using different methods for many of the
arguments. We complete the picture by showing that the map from q-tame persis-
tence modules to persistence diagrams is an isometry. This isometry theorem is due
to Lesnick [42].

We believe that q-tame persistence modules are a good class of objects for two
complementary reasons: (i) we can prove almost everything we want to prove about
q-tame modules and their persistence diagrams; and (ii) they occur in practice. For
example, a continuous function on a finite simplicial complex has q-tame sublevelset
persistent homology (Theorem 3.33). See [16] for many other examples.

2.2 Index Posets

We can define a persistence module over any partially ordered set, or poset, T, in the
same way as for R, by specifying indexed families

(Vt | t ∈ T) and (vst | s, t ∈ T, s ≤ t)

of vector spaces and linear maps, for which vst ◦ vrs = vrt whenever r ≤ s ≤ t , and
where vtt is the identity onVt . The resulting collection of data is called aT-persistence
module or a persistence module over T.

If V is a T-persistence module and S ⊂ T, then we get an S-persistence module
by considering only those spaces and maps with indices in S. This is the restriction
ofV to S, andmay be writtenVS orV|S. Most commonly, wework with finite subsets
T ⊂ R. We collect information about an R-persistence module by considering its
restriction to different finite subsets. This works well because persistence modules
over {1, 2, . . . , n} are well understood.

In Chap.4, we make use of certain posets that are subsets of R2.

http://dx.doi.org/10.1007/978-3-319-42545-0_3
http://dx.doi.org/10.1007/978-3-319-42545-0_3
http://dx.doi.org/10.1007/978-3-319-42545-0_4
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2.3 Module Categories

A homomorphism Φ between two T-persistence modules U,V is a collection of
linear maps (φt : Ut → Vt | t ∈ T) such that the diagram

Us

φs

��

ust �� Ut

φt

��

Vs
vst �� Vt

commutes for all s ≤ t . Composition is defined in the obvious way, as are identity
homomorphisms. This makes the collection of persistence modules into a category.
The category contains kernel, image, and cokernel objects for every map Φ, and
there is a zero object. Write

Hom(U,V) = {homomorphisms U → V},
End(V) = {homomorphisms V → V}.

Note that End(V) is a k-algebra. Later we consider homomorphisms that shift the
index, in order to define the interleaving relation between persistence modules.

2.4 Interval Modules

The building blocks of persistence are the interval modules. One seeks to understand
a persistence module by decomposing it into intervals. This is not always possible,
but it is sufficiently possible for our purposes.

An interval in a totally ordered set T is a subset J ⊆ T such that if r ∈ J and
t ∈ J and r < s < t then s ∈ J . For any nonempty interval J ⊆ T, the interval
module I = kJ is defined to be the T-persistence module with vector spaces

It =
{
k if t ∈ J
0 otherwise

and linear maps

i st =
{
1 if s, t ∈ J
0 otherwise

In informal language, the module kJ represents a ‘feature’ which ‘persists’ over
exactly the interval J and nowhere else. We write kJ

T when we wish to name the
index set explicitly.



2.4 Interval Modules 19

Intervals in a finite set T = {a0 < a1 < · · · < an} are usually written as closed
intervals [ai , a j ], and sometimes as half-open intervals [ai , a j+1)with the convention
that an+1 = +∞. We often lower the superscript when naming the corresponding
modules, writing k[ai , a j ] rather than k[ai ,a j ] for ease of reading.

Intervals in the real line R merit a special notation of their own. Each non-empty
real interval has endpoints (possibly ±∞) defined by its infimum and supremum,
and it may or may not attain its finite endpoints. To distinguish the various cases,
we introduce decorated reals, written as ordinary real numbers with a superscript +
(plus) or − (minus). For finite intervals we adopt the following dictionary:

(p−, q−) means [p, q)

(p−, q+) means [p, q]
(p+, q−) means (p, q)

(p+, q+) means (p, q]

We require p < q except for the special case (r−, r+) which represents the 1-point
interval [r, r ]. For infinite intervals we use the symbols −∞+ and +∞−:

(−∞+, q−) means (−∞, q)

(−∞+, q+) means (−∞, q]
(p−,+∞−) means [p,+∞)

(p+,+∞−) means (p,+∞)

(−∞+,+∞−) means (−∞,+∞)

When we wish to refer to a decorated number but don’t know what the decoration
is, we use an asterisk. Thus p∗ means p+ or p−.

The collection of decorated and undecorated numbers is totally ordered by setting

p− < p < p+ < q− < q < q+ (2.1)

for all p < q. One advantage of doing this is that nonempty real intervals now
correspond exactly to pairs (p∗, q∗) such that −∞ < p∗ < q∗ < +∞, with the
single statement

(p∗, q∗) means {t ∈ R | p∗ < t < q∗} (2.2)

uniformly replacing the nine dictionary definitions given above. Sometimes it is
helpful to extend membership of a real interval to decorated real numbers. We adopt
the convention that

t∗ ∈ (p∗, q∗) means p∗ < t∗ < q∗ (2.3)
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321 4
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1

0

Fig. 2.1 The interval (left), rank function (middle), and decorated point (right) representations of
the interval module k[1, 3) = k(1−, 3−)

for any t∗ and (p∗, q∗). The interval itself continues to be a set of undecorated real
numbers; we are simply overloading the symbol ‘∈’ with an additional meaning.

We finish with some visual conventions for interval modules over R. Let

H = {(p, q) | p ≤ q}

be the half-plane of points in R2 which lie on or above the diagonal. A finite interval
module k(p∗, q∗) may be represented in several different ways (see Fig. 2.1):

• as an interval in the real line;
• as a function H → {0, 1}, defined by (s, t) 
→ rank(i st );
• as a point (p, q) inH, with a tick to specify the decoration.

Here are the four tick directions explicitly:

(p−,q+) = (p+,q+) =

(p−,q−) = (p+,q−) =

The convention is that the tick points into the quadrant suggested by the decorations.
We can represent infinite intervals by working in the extended half-plane

H = H ∪ {−∞} × R ∪ R × {+∞} ∪ {(−∞,+∞)}.

This can be drawn schematically as a triangle; see Fig. 2.2.

Remark 2.3 Persistence diagrams have traditionally been drawn without ticks. This
is adequate for most purposes, and indeed in most traditional examples the intervals
that occur are half-open intervals [p, q) = (p−, q−) and there is no need to consider
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Fig. 2.2 The extended half-plane H with examples of each interval type drawn as points with
ticks. Points on the left and top edges correspond to intervals that are unbounded below and above,
respectively. Points on the diagonal correspond to singleton intervals (r−, r+) = [r, r ] = {r}

other possibilities. In the present work, the extra precision provided by decorations
is essential to the correspondence between diagrams and measures.

2.5 Interval Decomposition

The direct sumW = U⊕V of two persistence modules U,V is defined as follows:

Wt = Ut ⊕ Vt , ws
t = ust ⊕ vst

This generalises immediately to arbitrary (finite or infinite) direct sums.
A persistence module W is indecomposable if the only decompositions W =

U ⊕ V are the trivial decompositions W ⊕ 0 and 0 ⊕ W.
Direct sums play both a synthetic role and an analytic role in our theory. On

the one hand, given an indexed family of intervals (J� | � ∈ L) we can synthesise a
persistence module

V =
⊕

�∈L
kJ�

whose isomorphism type depends only on the multiset {J� | � ∈ L}. In light of the
direct-sum decomposition, we can think of V as having an independent feature for
each � ∈ L , supported over the interval J�. On the other hand, we can attempt to
analyse a given persistencemoduleV by decomposing it into submodules isomorphic
to interval modules.

Remark 2.4 The decomposition of a persistence module is frequently described
in metaphorical terms. The index t ∈ R is interpreted as ‘time’. Each interval
summand kJ represents a ‘feature’ of the module which is ‘born’ at time inf(J )

and ‘dies’ at time sup(J ).
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We now present the necessary theory. A ‘building block’ in a module category
can be characterised by having a comparatively simple endomorphism ring. Interval
modules have the simplest possible:

Proposition 2.5 Let I = kJ
T be an interval module over T ⊆ R; then End(I) = k.

Proof Any endomorphism of I acts on each nonzero It = k by scalar multiplication.
By the commutative square for morphisms, it is the same scalar for each t . �

Proposition 2.6 Interval modules are indecomposable.

Proof Given a decomposition I = U ⊕ V, the projection maps onto U and V are
idempotent endomorphisms.1 The only idempotents in End(I) = k are 0 and 1. �

Theorem 2.7 (Krull–Remak–Schmidt–Azumaya) Suppose a persistence module
over T ⊆ R can be expressed as a direct sum of interval modules in two different
ways:

V ∼=
⊕

�∈L
kJ� ∼=

⊕

m∈M
kKm

Then there is a bijection σ : L → M such that J� = Kσ(�) for all �.

Proof This is from Azumaya [2] (Theorem 1), along with the trivial observation
that kJ ∼= kK implies J = K . The theorem requires a ‘locality’ condition on the
endomorphism ring of each possible interval module: if α, β ∈ End(I) are non-
isomorphisms then α + β is a non-isomorphism. Since each End(I) = k, the only
non-isomorphism is the zero map and the condition is satisfied. �

In other words, provided we can decompose a given persistence module V as
a direct sum of interval modules, then the multiset of intervals is an isomorphism
invariant of V. But when does such a decomposition exist?

Theorem 2.8 (Gabriel,Auslander,Ringel–Tachikawa,Webb,Crawley-Boevey) Let
V be a persistence module over T ⊆ R. Then V can be decomposed as a direct sum
of interval modules in either of the following situations:

(1) T is a finite set; or
(2) each Vt is finite-dimensional.

On the other hand, (3) there exists a persistence module over Z (indeed, over the
nonpositive integers) which does not admit an interval decomposition.

Proof (1) The decomposition of a diagram

V1 −→ V2 −→ . . . −→ Vn

into interval summands, when each dim(Vi ) is finite, is one of the simpler instances
of Gabriel’s theorem [35]; see [50] or [8] for a concrete explanation. The extension to

1An endomorphism e is idempotent if it satisfies ee = e.
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infinite-dimensionalmodules follows abstractly froma theoremofAuslander [1] and,
independently, Ringel and Tachikawa [47]. Alternatively, observe that the argument
given in [8] does not require finite-dimensionality (although it is presented as such).

(2) The result for T = Z, and therefore for any locally finite T ⊂ R, follows from
Propositions 2 and 3 and Theorem 3 of Webb [48]. This was generalised to T = R,
and therefore to any T ⊆ R, more recently by Crawley-Boevey [25].

(3) Webb [48] gives this example, indexed over the nonpositive integers −N:

W0 = {sequences (x1, x2, x3, . . . ) of scalars}
W−n = {such sequences with x1 = · · · = xn = 0} (n ≥ 1)

The w−m
−n are taken to be the canonical inclusion maps. We can succinctly describe

this module as an infinite product W = ∏
n≥0 k[−n, 0].

SupposeW has an interval decomposition. Since each map w−n−1
−n is injective, all

of the intervals must be of the form [−n, 0] or (−∞, 0]. The multiplicity of [−n, 0]
may then be calculated as dim(W−n/W−n−1) = 1. The multiplicity of (−∞, 0]
is zero, because any summand of that type requires a nonzero element of W0 that
is in the image of w−n

0 for all n ≥ 0, but
⋂

n≥0 W−n = {0} so such an element
doesn’t exist. All of this implies that W ∼= ⊕

n≥0 k[−n, 0]. This contradicts the
fact that dim(W0) is uncountable2 so W does not admit an interval decomposition
after all. �

In Examples 3.31 and 3.40, we show what we can do with the Webb module.

Remark 2.9 Here are other examples of persistence modules that lack an interval
decomposition. Crawley-Boevey [24] proposed the infinite product

∏
n≥1 k[0, 1/n].

A dimension count implies that any interval decompositionmust include uncountably
many copies of k[0, 0], but this contradicts the fact that⋂t>0 ker(v

0
t ) is trivial. Nor is

uncountable dimensionality a necessary feature. Lesnick [41] proposed the following
example that has countable dimension at every index in −N:

L0 = k

L−1 = {eventually-zero sequences (x1, x2, x3, . . . ) of scalars}
L−n = {such sequences with x1 = · · · = xn−1 = 0} (n ≥ 2)

The �−m
−n are taken to be the canonical inclusion maps when n ≥ 1, while �−m

0 is the
‘augmentation map’ which takes the sum of the entries of the sequence. Given an
interval decomposition, consider the unique summand that meets L0 nontrivially.We
can rule out k(−∞, 0] since⋂

n≥1 L−n = {0}, so it is isomorphic to some k[−m, 0].
No other summands reach L0, so �−m−1

0 must be the zero map; but it isn’t.

2No countable sequence of vectors w1,w2,w3, . . . can span W0. Consider a vector x = (x1, x2,
x3, . . . ) where for all k ≥ 1 the k + 1 terms xk2 , xk2+1, . . . , xk2+k have been chosen to guarantee
that x is not a linear combination of w1, . . . ,wk . Then x /∈ span(w1,w2,w3, . . . ).

http://dx.doi.org/10.1007/978-3-319-42545-0_3
http://dx.doi.org/10.1007/978-3-319-42545-0_3
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For a persistencemodule which decomposes into intervals, the way is now clear to
define its persistence diagram: it is simply the list of intervals, with multiplicity, that
occur in the decomposition. Theorem2.7 tells us that this multiset is an isomorphism
invariant.

Given that an arbitrary persistence module over R is not guaranteed an interval
decomposition, here are three possible ways to proceed:

• Work in restricted settings to ensure that the structure ofV depends only on finitely
many index values t ∈ R. For example, if X is a compact manifold and f is a
Morse function, then H(Xsub) is determined by the finite sequence

H(Xa1) −→ H(Xa2) −→ . . . −→ H(Xan )

where a1, a2, . . . , an are the critical values of f . This is the traditional approach.
In this setting, the word ‘tame’ typically refers to pairs (X, f ) for which H(Xsub)

is determined by a finite diagram of finite-dimensional vector spaces.
• Sample the persistence module V over a finite grid. Consider limits as the grid
converges to the whole real line. This is the strategy adopted in [15], where it is
shown that the q-tamehypothesis is sufficient to guarantee good limiting behaviour.

• Show that the persistence intervals (in the decomposable case) can be inferred
from the behaviour of V on finite index sets.3 Apply this indirect definition to
define the persistence diagram in the non-decomposable case. This is the method
of ‘rectangle measures’ developed in this monograph.

The first method is adequate for computational applications, at least on a first pass.
The second and third methods both entail a certain amount of analytic work. The
advantage of the third method is that this work is black-boxed as a technical result
(Theorem 3.12) that allows one to move freely between rectangle measures and their
corresponding persistence diagrams. The end-user is protected from the analytic
details.

2.6 The Decomposition Persistence Diagram

If a persistence module V indexed over R can be decomposed

V ∼=
⊕

�∈L
k(p∗

� , q
∗
� )

then we define the decorated persistence diagram to be the multiset

Dgm(V) = Int(V) = {(p∗
� , q

∗
� ) | � ∈ L}

3We consider index sets of length 4 to define the persistence measure, length 5 to show that it is
additive, and length 8 to prove the stability theorem.

http://dx.doi.org/10.1007/978-3-319-42545-0_3
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and the undecorated persistence diagram to be the multiset

dgm(V) = int(V) = {(p�, q�) | � ∈ L} − Δ

where Δ = {(r, r) | r ∈ R} is the diagonal in the plane.
These are the decomposition persistence diagrams. In Sect. 3.7 we give a dif-

ferent definition of persistence diagrams based on the persistence measure. Often
they coincide, but occasionally we need to distinguish them. In that case we use the
alternate names Int, int for the diagrams defined here.

Theorem 2.7 implies that Dgm(V) and dgm(V) are independent of the choice of
decomposition ofV. Notice that Dgm is a multiset of decorated points inH, whereas
dgm is a multiset of undecorated points in the interior of H. Here ‘interior’ means
that we exclude the diagonal but keep the points at infinity. The information retained
by dgm is the information we care about later when we discuss bottleneck distances.
See Chap.5.

Example 2.10 Consider the curve in R2 shown in Fig. 2.3, filtered by the height
function. The topology (that is, the homotopy type) of the sublevelsets of f is empty
over (−∞, a) and constant over the intervals [a, b), [b, c), [c, d), [d, e), [e, f ) and
[ f,+∞), so it is enough to consider the 6-term persistence modules obtained by
restricting H∗(Xsub) to the six critical values.

H0 : k �� k2 �� k �� k2 �� k �� k

H1 : 0 �� 0 �� 0 �� 0 �� 0 �� k

To decompose the H0 diagram we need knowledge of the maps. Let [a], [b],
[d] denote the 0-homology classes associated to the connected components born
at times a, b, d respectively. When two components merge at index c we get the

a

b

c

d

e

f

a

b

c

d

e

f

∞0

0

0

1

Fig. 2.3 A traditional example. Left: X is a smoothly embedded curve in the plane, and f is its
y-coordinate or ‘height’ function. Right: The decorated persistence diagram of H(Xsub): there are
three intervals in H0 (blue dots, marked 0) and one interval in H1 (red dot, marked 1)

http://dx.doi.org/10.1007/978-3-319-42545-0_3
http://dx.doi.org/10.1007/978-3-319-42545-0_5
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relation [a] = [b]. This becomes [a] = [b] = [d] at index e. It follows that H0(Xsub)

decomposes as follows.

[a] : k �� k �� k �� k �� k �� k

[b] − [a] : 0 �� k �� 0 �� 0 �� 0 �� 0

[d] − [a] : 0 �� 0 �� 0 �� k �� 0 �� 0

The generator of each summand is shown on the left. Each generator has precisely
the lifetime indicated by its interval module, and at each index the existing surviving
generators form a basis for the homology at that index.

The 1-homology is already an interval module with no further decomposition
necessary. It is generated by the 1-cycle [ f ] which appears at index f :

[ f ] : 0 �� 0 �� 0 �� 0 �� 0 �� k

It follows that the full persistent homology of Xsub looks like this:

H0(Xsub) ∼= k[a,+∞) ⊕ k[b, c) ⊕ k[d, e)

H1(Xsub) ∼= k[ f,+∞)

The decorated persistence diagram is drawn in Fig. 2.3.

Remark 2.11 For a Morse function on a compact manifold with critical values (ai ),
the intervals are always half-open, of type [ai , a j ) = (a−

i , a−
j ), since the homotopy

type of the sublevelsets is constant over the intervals [ai , ai+1). Compare Sect. 3.12.
The persistence algorithm of Edelsbrunner, Letscher and Zomorodian [30], later
presented in general form by Zomorodian and Carlsson [50], computes the interval
decomposition and therefore persistence diagram for any example of this type.

Remark 2.12 Becauseof torsionphenomena inhomology, different choices offieldk
can lead to different persistence diagrams for a given geometric object.

2.7 Quiver Calculations

We now set up the notation and algebraic tools for handling persistence modules
over a finite index set.

A persistence module V indexed over a finite subset

T : a1 < a2 < · · · < an

of the real line can be thought of as a diagram of n vector spaces and n − 1 linear
maps:

http://dx.doi.org/10.1007/978-3-319-42545-0_3
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V : Va1 −→ Va2 −→ · · · −→ Van

Such a diagram is a representation of the following quiver:

• −→ • −→ · · · −→ •

Wehave seen (Theorem2.8) thatV decomposes as a finite sumof intervalmodules
k[ai , a j ]. When n is small, we can represent these interval modules pictorially. The
following example illustrates how.

Example 2.13 Let a < b < c. There are six interval modules over {a, b, c}, namely:

k[a, a] = •a—◦b—◦c k[a, b] = •a—•b—◦c k[a, c] = •a—•b—•c
k[b, b] = ◦a—•b—◦c k[b, c] = ◦a—•b—•c
k[c, c] = ◦a—◦b—•c

A filled circle • indicates a copy of the 1-dimensional vector space k; an empty
circle ◦ indicates the zero vector space. A map between two filled circles is always
the identity; all other maps are by necessity zero.

Now let V be a persistence module indexed over R. For any finite set of indices

T : a1 < a2 < · · · < an

and any interval [ai , a j ] ⊆ T, we define the multiplicity of [ai , a j ] in VT to be the
number of copies of k[ai , a j ] to occur in the interval decomposition ofVT. This takes
values in the set {0, 1, 2, . . . ,∞}. (We do not distinguish different infinite cardinals.)

It is useful to have notation for these multiplicities. Again, we define by example.

Example 2.14 We write

〈[b, c] | Va,b,c〉 or 〈 ◦a—•b—•c | V 〉

for the multiplicity of ◦a—•b—•c in the following 3-term module:

Va,b,c : Va −→ Vb −→ Vc

When V is clear from the context, we may simply write

〈 ◦a—•b—•c 〉.

The abbreviation 〈[b, c]〉 is not permitted since it is ambiguous. For example, 〈[b, c] |
Vb,c〉 and 〈[b, c] | Va,b,c〉 are not generally the same. See Proposition 2.17 and
Example 2.18.
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Example 2.15 The invariants of a single linear map Va
v−→ Vb are:

rank(v) = 〈•a—•b | V〉
nullity(v) = 〈•a—◦b | V〉

conullity(v) = 〈◦a—•b | V〉

To see this when Va, Vb are finite dimensional, observe that by elementary linear
algebra we can find bases

e1, . . . , er , f1, . . . , fn and e′
1, . . . , e

′
r , g1, . . . , gc

for Va and Vb respectively, such that v(ei ) = e′
i and v( f j ) = 0 for all i, j . The basis

elements define a decomposition of the module (Va
v−→ Vb) into interval summands

of the three types

(
span(ei ) −→ span(e′

i )
)

and
(
span( f j ) −→ 0

)
and (0 −→ span(gk))

which are respectively isomorphic to •a—•b and •a—◦b and ◦a—•b .
Proposition 2.16 (direct sums) Suppose a persistence module V can be written as
a direct sum

V =
⊕

�∈L
V

�

Then
〈[ai , a j ] | VT〉 =

∑

�∈L
〈[ai , a j ] | V�

T〉

for any index set T = {a1, a2, . . . , an} and interval [ai , a j ] ⊆ T.

Proof Each summand V
�
T can be decomposed separately into interval modules.

Putting these together we get an interval decomposition of VT. The number of sum-
mands of a given type in VT is then equal to the total number of summands of that
type in all of the V�

T. �
Often we wish to compare multiplicities of intervals in different finite restrictions

of V. The principle is very simple:

Proposition 2.17 (restriction principle) Let S,T be finite index sets with S ⊂ T.
Then

〈I | VS〉 =
∑

J

〈J | VT〉

where the sum is over those intervals J ⊆ T which restrict over S to I.

Proof Take an arbitrary interval decomposition of VT. This induces an interval
decomposition ofVS. Summands ofVS of type I arise precisely from those summands
of VT of types J as above. �
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Example 2.18 Suppose a < p < b < q < c. Then we have

〈◦a———•b———•c〉 = 〈◦a———•b—•q—•c〉
〈◦a———•b———•c〉 = 〈◦a—◦p—•b———•c〉 + 〈◦a—•p—•b———•c〉

and

〈◦a———◦b———•c〉 = 〈◦a—◦p—◦b———•c〉
〈◦a———◦b———•c〉 = 〈◦a———◦b—◦q—•c〉 + 〈◦a———◦b—•q—•c〉

for instance. The extra term occurs when the inserted new index occurs between a
clear node and a filled node, because then there are two possible intervals which
restrict to the original interval.

Example 2.19 For any finite list of indices in which a, b and later c, d occur as
adjacent pairs, the restriction principle gives

〈. . .— ◦ —◦a—•b— • — . . .— • —•c—◦d— ◦ — . . . 〉 = 〈◦a—•b—•c—◦d〉.

When rank(Vb → Vc) < ∞, this observation combines with Proposition 3.6 to give
an easy expression for any interval multiplicity.

Wewill make frequent use of the restriction principle. Here is a simple illustration,
to serve as a template for similar arguments that we will encounter later on.

Example 2.20 Consider the elementary fact that rank(Vb → Vc) ≥ rank(Va → Vd)

when a ≤ b ≤ c ≤ d. The proof using quiver notation runs as follows:

rank(Vb → Vc) = 〈——•b—•c——〉
= 〈•a—•b—•c—•d〉 + three other terms

≥ 〈•a—•b—•c—•d〉
= 〈•a—————•d〉
= rank(Va → Vd)

The ‘three other terms’ are

〈◦a—•b—•c—•d〉, 〈•a—•b—•c—◦d〉, 〈◦a—•b—•c—◦d〉

as indicated by the restriction principle.

http://dx.doi.org/10.1007/978-3-319-42545-0_3


Chapter 3
Rectangle Measures

For a decomposable R-persistence module

V ∼=
⊕

�∈L
k(p∗

� , q
∗
� ),

we have defined the decorated persistence diagram to be the multiset

Dgm(V) = Int(V) = {(p∗
� , q

∗
� ) | � ∈ L},

and the undecorated persistence diagram to be the multiset

dgm(V) = int(V) = {(p�, q�) | � ∈ L}.

If we don’t know thatV is decomposable then we have to proceed differently. We
are guided by the following heuristic: if we know howmany points of Dgm belong to
each rectangle in the half-space, then we know Dgm itself. For persistence modules,
counting points in rectangles turns out to be easy.

The language of measure theory is well suited to this argument. We will see
that a persistence module defines an integer-valued measure on rectangles. If the
module is tame then this measure is finite-valued, and therefore (Theorem 3.12) it is
concentrated at a discrete set of points. These points, taken with their multiplicities,
constitute the persistence diagram. In the case where the module is decomposable,
the persistence diagram constructed this way agrees with the persistence diagram
defined earlier. When the module is not known to be decomposable, we can proceed
regardless.

Remark 3.1 The persistence measures that we construct are not true measures on
subsets of R2: they are additive in the sense of tiling rather than in the usual sense of
disjoint set union. The discrepancy arises when we split a rectangle into two: what

© The Author(s) 2016
F. Chazal et al., The Structure and Stability of Persistence Modules,
SpringerBriefs in Mathematics, DOI 10.1007/978-3-319-42545-0_3
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happens to the points on the common edge? To which rectangle do they belong?
Decorated points resolve this question, and moreover the formalism fits perfectly
with our use of decorations to distinguish open and closed ends of intervals.

3.1 The Persistence Measure

Let V be a persistence module. The persistence measure of V is the function

μV(R) = 〈◦a—•b—•c—◦d | V〉

defined on rectangles R = [a, b] × [c, d] in the plane with a < b ≤ c < d.
For a decomposable persistence module, there is a clear relationship between μV

and the interval summands of V. Let us first consider the case of an interval module.

Proposition 3.2 Let V = kJ where J = (p∗, q∗) is a real interval. Let R =
[a, b] × [c, d] where a < b ≤ c < d. Then

μV (R) =
{
1 if [b, c] ⊆ J ⊆ (a, d)

0 otherwise

Proof It is clear that kJ restricted to {a, b, c, d} is an interval or is zero. Thus,
μV(R) ≤ 1. Moreover μV(R) = 1 precisely when

kJ
{a,b,c,d} = ◦a—•b—•c—◦d ,

which happens if and only if b, c ∈ J and a, d /∈ J . This is equivalent to the condition
[b, c] ⊆ J ⊆ (a, d). �

Proposition 3.2 has a graphical interpretation. Represent the interval J ⊆ R as a
decorated point in the extended plane. The following picture indicates exactly which
decorated points (p∗, q∗) are detected by μV(R):

If (p, q) is in the interior of R then (p∗, q∗) is always detected regardless of the
decoration. If (p, q) is on the boundary, then (p∗, q∗) is detected if the tick is directed
inwards.

We formalise this by defining a membership relation between decorated points
and rectangles.
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Definition 3.3 Let R = [a, b] × [c, d] where a < b ≤ c < d, and consider
a decorated point (p∗, q∗) with p∗ < q∗. We write (p∗, q∗) ∈ R if any of the
following equivalent statements is true:

• We have p∗ ∈ [a, b] and q∗ ∈ [c, d] in the notation of Eq. (2.3).
• We have a < p∗ < b and c < q∗ < d in the total order of Eq. (2.1).
• We have a+ ≤ p∗ ≤ b− and c+ ≤ q∗ ≤ d− in the total order of Eq. (2.1).
• The real interval (p∗, q∗) is sandwiched [b, c] ⊆ (p∗, q∗) ⊆ (a, d).
• The point-with-tick (p∗, q∗) lies in the closed rectangle R.

The set R× = {(p∗, q∗) | (p∗, q∗) ∈ R} is called the r-interior of R. We also
make use of its undecorated counterpart, R◦ = (a, b) × (c, d), the interior in the
standard sense of the finite rectangle R = [a, b] × [c, d].
Remark 3.4 The expressions (p∗, q∗) ∈ R and (p∗, q∗) ∈ R×mean the same thing
but we will tend to prefer the former. In the same spirit, we write |R to indicate the
restriction of a multiset of decorated points to (the r-interior of) the rectangle R.

Corollary 3.5 Suppose V is a decomposable persistence module over R:

V =
⊕

�∈L
k(p∗

� , q
∗
� )

Then
μV(R) = card (Dgm(V)|R) (3.1)

for every rectangle R = [a, b] × [c, d] with a < b ≤ c < d.

Proof This follows from Propositions 3.2 and 2.16 (direct sums). �

We now have a strategy for defining the persistence diagram without assuming a
decomposition: having constructed μV, we look for a multiset of decorated points
Dgm(V)which satisfies Eq. (3.1) for all rectangles. For this to work, we need to know
that such amultiset exists and is unique. Theorem 3.12 will take care of this under the
hypothesis thatμV is finite and additive; it is a sort of ‘Riesz representation theorem’
for measures on rectangles. By Corollary 3.5, the new and old definitions agree in
the case where V is decomposable.

3.2 The Persistence Measure (Continued)

We call μV a measure because it is additive with respect to splitting a rectangle into
two rectangles.We prove this shortly. First we consider the ‘alternating sum’ formula
for μV(R) that appears in [19]:

http://dx.doi.org/10.1007/978-3-319-42545-0_2
http://dx.doi.org/10.1007/978-3-319-42545-0_2
http://dx.doi.org/10.1007/978-3-319-42545-0_2
http://dx.doi.org/10.1007/978-3-319-42545-0_2
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Proposition 3.6 Let V be a persistence module, and let a < b ≤ c < d. If the
vector spaces Va, Vb, Vc, Vd are finite-dimensional, or less stringently if rbc < ∞,
then

〈◦a—•b—•c—◦d | V〉 = rbc − rac − rbd + rad .

(Here as before rst = rank(vst : Vs → Vt ).)

Proof Decompose the 4-term module V{a,b,c,d} into intervals. The left-hand side
counts intervals of type [b, c]. By the restriction principle, the four terms on the
right-hand side evaluate as follows:

rbc = 〈◦a– •b– •c– ◦d〉+〈•a– •b– •c– ◦d〉+〈◦a– •b– •c– •d〉+〈•a– •b– •c– •d〉
rac = 〈•a– •b– •c– ◦d〉 +〈•a– •b– •c– •d〉
rbd = 〈◦a– •b– •c– •d〉+〈•a– •b– •c– •d〉
rad = 〈•a– •b– •c– •d〉

These expressions are all finite: the hypothesis rbc < ∞ implies that the other three
ranks are finite too (Example 2.20). We can legitimately take the alternating sum,
and all terms on the right-hand side cancel except for the 〈◦a—•b—•c—◦d〉. �

We give three proofs of additivity. The first is completely general, whereas the
other two work under restricted settings but are illuminating in their own way.

Proposition 3.7 μV is additive under vertical and horizontal splitting, meaning that

μV([a, b] × [c, d]) = μV([a, p] × [c, d]) + μV([p, b] × [c, d])
μV([a, b] × [c, d]) = μV([a, b] × [c, q]) + μV([a, b] × [q, d])

whenever a < p < b ≤ c < q < d.

This additivity property is illustrated by the following figure

S

pa
c

b

d
R

a
c

b

d
U

V

a

q

b
c

d
T

where the claim is that μV(R) = μV(S) + μV(T ) = μV(U ) + μV(V ).

Proof (first version) Let a < p < b ≤ c < q < d. Then we calculate

μV([a, b] × [c, d]) = 〈◦a———•b—•c—◦d〉
= 〈◦a—•p—•b—•c—◦d〉 + 〈◦a—◦p—•b—•c—◦d〉
= 〈◦a—•p———•c—◦d〉 + 〈——◦p—•b—•c—◦d〉
= μV([a, p] × [c, d]) + μV([p, b] × [c, d])

http://dx.doi.org/10.1007/978-3-319-42545-0_2
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for additivity with respect to a horizontal split, and

μV([a, b] × [c, d]) = 〈◦a—•b—•c———◦d〉
= 〈◦a—•b—•c—◦q—◦d〉 + 〈◦a—•b—•c—•q—◦d〉
= 〈◦a—•b—•c—◦q——〉 + 〈◦a—•b———•q—◦d〉
= μV([a, b] × [c, q]) + μV([a, b] × [q, d])

for additivity with respect to a vertical split. �

Proof (second version, assuming rbc < ∞) The alternating sum formula (Proposi-
tion 3.6) gives

rbc − rac − rbd + rad = (r pc − rac − r pd + rad ) + (rbc − r pc − rbd + r pd )

and
rbc − rac − rbd + rad = (rbc − rac − rbq + raq ) + (rbq − raq − rbd + rad )

as required. Note that rbc < ∞ implies r pc < ∞ and rbq < ∞, so the formula is valid
for all the rectangles in question. �

This second proof is particularly transparent when drawn geometrically in the
plane: the + and − signs at the corners of the rectangles cancel in a pleasant way:

pa
c

b

d

a
c

b

d

a

q

b
c

d

= =

Proof (third version, assuming V is decomposable) By Corollary 3.5, the measure
of a rectangle counts the interval summands whose corresponding decorated points
lie in the rectangle. Additivity follows from the observation that a decorated point
in R belongs to exactly one of its subrectangles S and T , and to exactly one of its
subrectangles U and V . �

Here are two further descriptions of μV([a, b] × [c, d]).
Proposition 3.8 We have the following formulae:

〈◦a—•b—•c—◦d | V〉 = dim

[
im(vbc ) ∩ ker(vcd)

im(vac ) ∩ ker(vcd)

]

= dim

[
ker(vbd)

ker(vbc ) + im(vab) ∩ ker(vbd)

]



36 3 Rectangle Measures

Proof This is covered, for instance, in the localisation discussion in Sect. 5.1 of [8].
The two formulae are obtained by localising at c and b, respectively. �

Proposition 3.8 expresses the measure of a rectangle as the dimension of a vector
space constructed functorially from V. (Ostensibly there are two vector spaces, one
for each formula, but the map vbc induces a natural isomorphism between them.)
Functoriality has its advantages, but in other regards this characterisation is harder
to use. For instance, additivity is not as obvious in this formulation.

3.3 Abstract r-Measures

We now consider rectangle measures more abstractly. Persistence measures are of
course our primary example, but the general formulation allows for many other
situations. For ease of exposition, we initially work in the plane R2 rather than the
extended plane R2. The picture is completed in Sect. 3.6 when we discuss the points
at infinity.

Definition 3.9 Let D be a subset of R2. Define

Rect(D) = {[a, b] × [c, d] ⊂ D | a < b and c < d}

(the set of closed rectangles contained in D). A rectangle measure or r-measure
on D is a function

μ : Rect(D) → {0, 1, 2, . . . } ∪ {∞}

which is additive under vertical and horizontal splitting (as in Proposition 3.7).

Proposition 3.10 Let μ be an r-measure on D ⊆ R2. Then:

• If R ∈ Rect(D) can be written as a union R = R1 ∪ · · · ∪ Rk of rectangles with
disjoint interiors, then μ(R) = μ(R1) + · · · + μ(Rk).

• If R ⊆ S then μ(R) ≤ μ(S).

In other words, μ is finitely additive and monotone.

Proof (Finitely additive) Let R = [a, b] × [c, d]. By induction and the vertical
splitting property, it follows that finite additivity holds for decompositions of the
form

R =
⋃

i

Ri

where Ri = [ai , ai+1] × [c, d] with a = a1 < a2 < · · · < am = b. By induction
and the horizontal splitting property, it then follows that finite additivity holds for
‘product’ decompositions
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R = [a, b] × [c, d] =
⋃

i, j

Ri j

where Ri j = [ai , ai+1] × [c j , c j+1] with a = a1 < a2 < · · · < am = b and
c = c1 < c2 < · · · < cn = d. For an arbitrary decomposition R = R1 ∪ · · · ∪ Rk ,
finally, the result follows by considering a product decomposition of R by which
each Ri is itself product-decomposed.

(Monotone) Decompose S into a collection of rectangles R and R1, . . . , Rk−1

which are interior-disjoint. (This can be done with at most 9 rectangles using a
product decomposition.) Then

μ(S) = μ(R) + μ(R1) + · · · + μ(Rk−1)

≥ μ(R)

by finite additivity and the fact that μ ≥ 0. �

Here is one more plausible-and-also-true statement about abstract r-measures.

Proposition 3.11 (Subadditivity) Let μ be an r-measure onD ⊆ R2. If a rectangle
R ∈ Rect(D) is contained in a finite union

R ⊆ R1 ∪ · · · ∪ Rk

of rectangles Ri ∈ Rect(D), then

μ(R) ≤ μ(R1) + · · · + μ(Rk).

Proof Let
a1 < a2 < · · · < am

include all the x-coordinates of the corners of all the rectangles, and let

c1 < c2 < · · · < cn

include all the y-coordinates. Each rectangle is then tiled as a union of pieces

[ai , ai+1] × [c j , c j+1]

with disjoint interiors, and the measure of the rectangle is the sum of the measures
of its tiles, by additivity. Since each tile belonging to R must also belong to one or
more of the Ri , the inequality follows. �
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3.4 Equivalence of Measures and Diagrams

We wish to establish a correspondence between r-measures and decorated diagrams.
The task of defining a continuous persistence diagram can then be replaced by the
simpler task of defining an r-measure. This works best when the measure is finite; in
Sect. 3.5 we consider measures that are not finite.

The r-interior of a region D ⊆ R2 is defined as follows:

D×= {
(p∗, q∗) | ∃R ∈ Rect(D) such that (p∗, q∗) ∈ R

}
.

This is the set of decorated points that can be ‘accessed’ by some rectangle in D.
The decorated diagram will be a multiset in D×. Clearly, an r-measure in D cannot
tell us what happens outside D×. The interior of D in the classical sense is written
D◦. In terms of rectangles, we have

D◦ = {
(p, q) | ∃R ∈ Rect(D) such that (p, q) ∈ R◦}

,

where we recall that R◦ = (a, b)× (c, d) denotes the interior of the closed rectangle
R = [a, b] × [c, d]. The undecorated diagram will be a multiset in D◦.
Theorem 3.12 (The equivalence theorem) Let D ⊆ R2. There is a bijective corre-
spondence between:

• Finite r-measuresμ onD. ‘Finite’ means thatμ(R) < ∞ for every R ∈ Rect(D).
• Locally finite multisets A in D×. ‘Locally finite’ means that card(A|R) < ∞ for
every R ∈ Rect(D).

The measure μ corresponding to a multiset A is related to it by the formula

μ(R) = card(A|R) (3.2)

for every R ∈ Rect(D).

Remark 3.13 We can write Eq. (3.2) equivalently as

μ(R) =
∑

(p∗,q∗)∈R

m(p∗, q∗), (3.3)

where
m : D×→ {0, 1, 2, . . . }

is the multiplicity function for A.

Assuming the theorem, we define the persistence diagrams of a measure.

Definition 3.14 Let μ be a finite r-measure on a region D ⊆ R2.
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• The decorated diagram of μ is the unique locally finite multiset Dgm(μ) in D×
such that

μ(R) = card(Dgm(μ)|R)

for every R ∈ Rect(D).
• The undecorated diagram of μ is the locally finite multiset inD◦

dgm(μ) = {
(p, q) | (p∗, q∗) ∈ Dgm(μ)

} ∩ D◦

obtained by forgetting the decorations on the points and restricting to the interior.

Remark 3.15 Note that dgm is locally finite inD◦, but not necessarily locally finite
in R2—it may have accumulation points on the boundary of D.

Proof (Theorem 3.12) One direction of the correspondence is easy. If A is a multiset
on D× then the function μ(R) on rectangles defined by Eq. (3.2) is indeed an r-
measure. It is finite if A is locally finite. To verify additivity, suppose that a rectangle
R is split vertically or horizontally into two rectangles R1, R2. Notice that every
decorated point (p∗, q∗) ∈ R belongs to exactly one of R1, R2. It follows that

μ(R) = card(A|R) = card(A|R1) + card(A|R2) = μ(R1) + μ(R2),

as required.
The reverse direction takesmorework. Given an r-measureμwewill (1) construct

a multiset A inD×, (2) show thatμ and A are related by Eq. (3.2), and (3) show that A
is unique. In practice, we construct themultiplicity functionm and establish Eq. (3.3),
rather than referring to A directly.

Step 1. (Multiplicity formula.) Let μ be a finite r-measure on D. Define

m(p∗, q∗) = min
{
μ(R) | R ∈ Rect(D), (p∗, q∗) ∈ R

}
(3.4)

for (p∗, q∗) in D×. Note that the minimum is attained because the set is nonempty
and μ takes values in the natural numbers.

Here is an alternative characterisation. Instead of minimising over all rectangles,
we take the limit through a decreasing sequence of rectangles:

Lemma 3.16 Let (ξi ) and (ηi ) be non-increasing sequences of positive real numbers
which tend to zero as i → ∞. Then

m(p+, q+) = lim
i→∞ μ([p, p + ξi ] × [q, q + ηi ]),

and similarly
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m(p+, q−) = lim
i→∞ μ([p, p + ξi ] × [q − ηi , q]),

m(p−, q+) = lim
i→∞ μ([p − ξi , p] × [q, q + ηi ]),

m(p−, q−) = lim
i→∞ μ([p − ξi , p] × [q − ηi , q]).

Proof The key observation is that the sequence of rectangles Ri = [p, p + ξi ] ×
[q, q + ηi ] is cofinal in the set of rectangles R containing (p+, q+). In other words,
for any such R we have Ri ⊆ R for all sufficiently large i .

By monotonicity, the sequence of nonnegative integers μ(Ri ) is non-increasing,
and hence eventually stabilises to a limit. Then

m(p+, q+) ≤ min
i

μ(Ri ) = lim
i→∞ μ(Ri ) ≤ μ(R)

for any R containing (p+, q+). Taking the minimum over all R, the right-hand side
becomes m(p+, q+) and hence by squeezing

m(p+, q+) = lim
i→∞ μ(Ri ).

The other three cases of the lemma are similar. �

We return to the main proof.
Step 2. Having definedm(p∗, q∗), we nowshow that this is the ‘correct’ definition,

meaning that Eq. (3.3) is satisfied. We have seen already that m corresponds to an
r-measure

ν(R) =
∑

(p∗,q∗)∈R

m(p∗, q∗), (3.5)

and it remains to show (for this step) that ν = μ. We prove this by induction on
k = μ(R).

Base case. μ(R) = 0. Then for every (p∗, q∗) ∈ R we have

0 ≤ m(p∗, q∗) ≤ μ(R) = 0

so ν(R) = 0.
Inductive step. Suppose μ(R) = ν(R) for every rectangle R with μ(R) < k.

Consider a rectangle R0 with μ(R0) = k. We must show that ν(R0) = k.
Split the rectangle into four equal quadrants S1, S2, S3, S4. Certainly

μ(R0) = μ(S1) + μ(S2) + μ(S3) + μ(S4)

ν(R0) = ν(S1) + ν(S2) + ν(S3) + ν(S4)

by finite additivity (Proposition 3.10). If every quadrant satisfies μ(Si ) < k, then
by induction we deduce that μ(R0) = ν(R0). Otherwise, one of the quadrants has
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μ = k and the other three quadrants satisfy μ = 0 (and hence ν = 0). Let R1 be the
distinguished quadrant, so μ(R1) = k. It is now enough to show that ν(R1) = k.

We repeat the argument. Subdivide Ri into four equal quadrants. Either all four
quadrants satisfy the inductive hypothesis μ < k, in which case we are done. Oth-
erwise we find a quadrant Ri+1 with μ(Ri+1) = k, and we are reduced to showing
that ν(Ri+1) = k.

In the worst case—the remaining unresolved case—this iteration never terminates
and we obtain a sequence of closed rectangles

R0 ⊃ R1 ⊃ R2 ⊃ · · ·

each being a quadrant of the previous one, with μ(Ri ) = k. Since the diameters of
the rectangles tend to zero, their intersection

⋂
i Ri contains a single point (r, s).

We are now in a position to show that ν(R0) = k, by evaluating the sum explicitly
over all decorated points in R0.

First of all, consider decorated points that eventually leave the sequence (Ri ).
Specifically, suppose that (p∗, q∗) ∈ R0 but (p∗, q∗) ∈ Ri−1 − Ri for some i . This
means that (p∗, q∗) belongs to one of the three quadrants of Ri−1 for which μ = 0.
It follows immediately that m(p∗, q∗) = 0.

Thus, the only contribution to ν(R0) comes from decorated points (p∗, q∗)which
belong to every rectangle in the sequence (Ri ). Clearly these must be decorated
versions (r∗, s∗) of the intersection point (r, s). There are 4, 2 or 1 of them depending
on how the nested sequence of rectangles converges to its limit. Here we illustrate
the three cases:

Suppose first that (r, s) lies in the interior of every rectangle Ri , so that all four
decorated points (r+, s+), (r+, s−), (r−, s+), (r−, s−) belong to every Ri . Divide
each Ri into 4 subrectangles R++

i , R+−
i , R−+

i , R−−
i , which share a common corner

at (r, s) so that each of the four decorated points (r∗, s∗) belongs to one of the
subrectangles in the obvious notation. By Lemma 3.16,

m(r+, s+) = lim
i→∞ μ(R++

i ), m(r+, s−) = lim
i→∞ μ(R+−

i ),

m(r−, s+) = lim
i→∞ μ(R−+

i ), m(r−, s−) = lim
i→∞ μ(R−−

i ),

and moreover each of these decreasing integer sequences eventually stabilises at its
limiting value. Thus, for sufficiently large i ,
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ν(R0) = m(r+, s+) + m(r+, s−) + m(r−, s+) + m(r−, s−)

= μ(R++
i ) + μ(R+−

i ) + μ(R−+
i ) + μ(R−−

i ) = μ(Ri ) = k

as required.
A similar argument (with fewer terms) can be made in the cases where only 2 or

1 of the decorated points (r∗, s∗) belong to every Ri . For instance, if (r, s) lies on
the interior of the right-hand edge of the rectangles (Ri ) for all sufficiently large i ,
we split each rectangle into two parts R−+

i and R−−
i and obtain

ν(R0) = m(r−, s+) + m(r−, s−) = μ(R−+
i ) + μ(R−−

i ) = μ(Ri ) = k

in the same way. In this case (r+, s+) and (r+, s−) eventually leave (or were never
in) the sequence (Ri ) and therefore do not contribute to ν(R0). We omit the details
of the remaining cases, which are equally straightforward.

This completes the inductive step. Thus μ(R) = ν(R) for every R ∈ Rect(D).

Step 3. Suppose m′(p∗, q∗) is some other multiplicity function on D× whose
associated r-measure

ν ′(R) =
∑

(p∗,q∗)∈R

m′(p∗, q∗)

satisfies μ = ν ′. We must show that m = m′.
Consider an arbitrary decorated point (p∗, q∗) ∈ D×. Let R be a rectangle which

contains (p∗, q∗) at its corner. Since

ν(R) = ν ′(R) = μ(R) < ∞,

there are only finitely many other decorated points (r∗, s∗) ∈ R with positive mul-
tiplicity in m or m′. By making R smaller, we can therefore assume that (p∗, q∗) is
the only decorated point in R with positive multiplicity in either measure. Then

m(p∗, q∗) = ν(R) = μ(R) = ν ′(R) = m′(p∗, q∗).

Since (p∗, q∗) was arbitrary it follows that m = m′.

This completes the proof of Theorem 3.12. �

3.5 Non-finite Measures

If an r-measure is not everywhere finite, we restrict our attention to the parts of the
plane where it is finite. Define the finite r-interior of an r-measure μ to be the set
of decorated points

F×(μ) = {
(p∗, q∗) | ∃R ∈ Rect(D) such that (p∗, q∗) ∈ R andμ(R) < ∞}

.
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The finite interior is the set of undecorated points

F◦(μ) = {
(p, q) | ∃R ∈ Rect(D) such that (p, q) ∈ R◦ andμ(R) < ∞}

.

This is an open subset of the plane, being a union of open rectangles. It is easy to see
that (p, q) ∈ F◦(μ) if and only if (p∗, q∗) ∈ F×(μ) for all possible decorations. A
(decorated) point that is not in the finite (r-)interior may be called singular.

Although these interiors are defined in a pointwise sense, the next two propositions
show that the finiteness extends to any rectangle contained in them.

Proposition 3.17 Let R ∈ Rect(D). If R×⊆ F×(μ) then μ(R) < ∞.

Proof We show that each (p, q) ∈ R is contained in the interior relative to R of a
rectangle S ⊆ R of finite measure. If (p, q) lies in the interior of R, then each of the
four decorated points (p∗, q∗) belongs to F×(μ) so we can find four finite-measure
rectangles containing them. The union of these rectangles contains a neighbourhood
of (p, q), and we can take S ⊆ R to be a rectangle contained in this union with (p, q)

in its interior. It has finite measure, by subadditivity (Proposition 3.11). The other
cases are similar: if (p, q) lies on the interior of an edge, we take two finite-measure
rectangles containing a relative neighbourhood of (p, q); and if (p, q) is a corner
point we take just one rectangle.

To finish, we note that R, being compact, is the union of finitely many of these
rectangles; therefore by subadditivity it has finite measure. �

The undecorated version is an immediate consequence.

Proposition 3.18 Let R ∈ Rect(D). If R ⊆ F◦(μ) then μ(R) < ∞. �

Theorem 3.19 Let μ be an r-measure onD ⊆ R2. Then there is a uniquely defined
locally finite multiset Dgm(μ) in F×(μ) such that

μ(R) = card(Dgm(μ)|R) (3.6)

for every R ∈ Rect(D) with R×⊆ F×(μ).

Proof Within each rectangle S of finite measure, Theorem 3.12 provides a multiset
in S×such that Eq. (3.6) holds for all subrectangles R ⊆ S. Uniqueness implies that
the multisets for overlapping rectangles agree on the common intersection. Thus we
obtain a multiset defined in the union of these S×, which by definition is equal to
F×(μ), with the property that Eq. (3.6) holds for all rectangles R of finite measure.
By Proposition 3.17, this means all rectangles with R×⊆ F×(μ). �

Now we can define the persistence diagrams of a general r-measure.

Definition 3.20 Let μ be an r-measure on a region D ⊆ R2.

• The decorated diagram of an r-measure μ is the pair (Dgm(μ),F×(μ)), where
Dgm(μ) is the multiset in F×(μ) described in Theorem 3.19.



44 3 Rectangle Measures

• The undecorated diagram is the pair (dgm(μ),F◦(μ)), where

dgm(μ) = {
(p, q) | (p∗, q∗) ∈ Dgm(μ)

} ∩ F◦(μ)

is the locally finite1 multiset in F◦(μ) obtained by forgetting the decorations in
Dgm(μ) and restricting to the finite interior.

Remark 3.21 To make this backwards-compatible with the previously defined per-
sistence diagrams of a finite r-measure on a region D, we can regard Dgm(μ) and
dgm(μ) as abbreviations for (Dgm(μ),D×) and (dgm(μ),D◦).

Remark 3.22 It is sometimes useful to adopt the region extension convention: an
r-measure defined on a subset D ⊂ R2 can be interpreted as an r-measure on the
whole plane R2, by agreeing that μ(R) = ∞ for any rectangle that meets R2 − D.
The extension has the same diagram as the original r-measure.

3.6 Measures and Diagrams in the Extended Plane

We now consider r-measures in the extended plane R2. In Sect. 3.7, we will use
this to define the decorated and undecorated diagrams of an arbitrary persistence
module. The points at infinity take account of possible infinite interval summands of
the module. The development proceeds almost exactly as with the standard plane.
What is new is that we use infinite rectangles and we admit −∞+ and +∞− as
possible coordinates of decorated points.

A rectangle in the extended plane is a set of the form

R = [a, b] × [c, d]

where now −∞ ≤ a < b ≤ +∞ and −∞ ≤ c < d ≤ +∞. Thus there are various
types of infinite rectangle. The r-interior of a rectangle R = [a, b] × [c, d] is the set
of decorated points

R×= {(p∗, q∗) | p∗ ∈ [a, b] and q∗ ∈ [c, d]}

exactly as before, with the understanding that−∞+ and+∞− are permissible values
of p∗, q∗. The interior of R requires a little care:

R◦ = relative interior of R as a subspace ofR2

For instance, if R = [−∞, b]×[c, d]where b, c, d are finite, then R◦ = [−∞, b)×
(c, d). We adopt this convention because we do not wish to lose the points at infinity
when we pass from a decorated diagram to its undecorated counterpart.

1As before, this does not rule out accumulation points on the boundary of F◦(μ).
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For D ⊆ R2, let Rect(D) denote the set of rectangles R ⊆ D. The r-interior and
interior of D are formally the same as before (with R◦ as above):

D×= {
(p∗, q∗) | ∃R ∈ Rect(D) such that (p∗, q∗) ∈ R

}
,

D◦ = {
(p, q) | ∃R ∈ Rect(D) such that (p, q) ∈ R◦}

.

An r-measure on D is a function

μ : Rect(D) → {0, 1, 2, . . . } ∪ {∞}

which is additive with respect to the vertical or horizontal splitting of a rectangle into
two rectangles. Propositions 3.10 and 3.11 (finite additivity, monotonicity, subaddi-
tivity) follow as before. The finite r-interior and finite interior are

F×(μ) = {
(p∗, q∗) | ∃R ∈ Rect(D) such that (p∗, q∗) ∈ R andμ(R) < ∞}

,

F◦(μ) = {
(p, q) | ∃R ∈ Rect(D) such that (p, q) ∈ R◦ andμ(R) < ∞} ;

if μ is finite, then F×(μ) = D×and F◦(μ) = D◦.
Claim Theorems 3.12 and 3.19 are valid, verbatim, for r-measures onD ⊆ R2. The
multiplicity of a point in Dgm(μ) may be computed using Eq. (3.4).

Proof The statements (and indeed the proofs) of Theorems 3.12, 3.19, and Eq. (3.4)
are invariant under reparametrisations of the plane of the form

x ′ = f (x), y′ = g(y),

where f, g are homeomorphic embeddings. We can view R2 as a rectangle in R2 via
a transformation of this type; for instance

x ′ = arctan(x), y′ = arctan(y)

identifies R2 with the rectangle [−π/2, π/2] × [−π/2, π/2] in R2. Through this
hack, the original theorems are transferred to the extended plane. �

Definition 3.23 The decorated and undecorated diagrams of an r-measure μ are
the ordered pairs (Dgm(μ),F×(μ)) and (dgm(μ),F◦(μ)), where Dgm(μ) is given by
Theorem 3.19, and dgm(μ) is obtained from Dgm(μ) by forgetting the decorations
and restricting to F◦(μ).

So far we have treated the extended plane almost exactly like the standard plane.
When we come to prove the stability theorem for persistence diagrams (Sects. 5.6–
5.8), where metric properties become relevant, we end up considering the points at
infinity separately from the points in the standard plane. For this, we make use of
certain ‘measures at infinity’ that we derive now.

http://dx.doi.org/10.1007/978-3-319-42545-0_5
http://dx.doi.org/10.1007/978-3-319-42545-0_5
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Consider an r-measure μ on R2. (If μ is given on a proper sub-region D ⊂ R2,
extend it to R2 using the region extension convention of Remark 3.22.) The extended
plane has 4 lines at infinity

(−∞, R), (+∞, R), (R,−∞), (R,+∞),

and 4 points at infinity

(−∞,−∞), (+∞,−∞), (−∞,+∞), (+∞,+∞).

There are measures defined on each of these. On the four lines at infinity, they are
‘interval measures’ (the 1-dimensional analogue of r-measures, defined on closed
intervals and additive with respect to splitting an interval into two). At the four
points at infinity, each measure is simply a number. We write out the three cases of
direct relevance to persistence modules. The other five cases are analogous.

• the line (−∞, R):

μ(−∞, [c, d]) = lim
b→−∞ μ([−∞, b] × [c, d]) = min

b
μ([−∞, b] × [c, d])

for any interval [c, d] ⊆ R.

• the line (R,+∞):

μ([a, b],+∞) = lim
c→+∞ μ([a, b] × [c,+∞]) = min

c
μ([a, b] × [c,+∞])

for any interval [a, b] ⊆ R.

• the point (−∞,+∞):

μ(−∞,+∞) = lim
e→+∞ μ([−∞,−e]×[e,+∞]) = min

e
μ([−∞,−e]×[e,+∞])

Monotonicity of μ guarantees that each limit exists. Each measure has a straightfor-
ward interpretation in terms of Dgm(μ). We give two sample propositions.

Proposition 3.24 (1) If μ(−∞, [c, d]) is finite, then it counts the decorated points
of Dgm(μ) of the form (−∞+, q∗) where q∗ ∈ [c, d].
(2) If μ(−∞, [c, d]) is infinite, then (−∞+, q∗) /∈ F×(μ) for some q∗ ∈ [c, d].
Proof (1) If the limit is finite, then for some finite b0 the rectangle [−∞, b0]×[c, d]
has finite measure and therefore contains finitely many points of Dgm(μ). For all
sufficiently small b, then, the rectangle [−∞, b] × [c, d] contains exactly those
points with first coordinate −∞+.
(2) Suppose the conclusion failed. Then, arguing as in Proposition 3.17, there would
be a finite collection of rectangles [−∞, bi ]×[ci , di ] of finitemeasurewhich together
cover {−∞} × [c, d]. Then the rectangle [−∞,min(bi )] × [c, d] would have finite
measure, contradicting the hypothesis. �
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Proposition 3.25 (1) If μ(−∞,+∞) is finite, then it counts the multiplicity of
(−∞+,+∞−) in Dgm(μ).
(2) If μ(−∞,+∞) is infinite, then (−∞+,+∞−) /∈ F×(μ).

Proof Similar, but easier (especially (2)). �

3.7 The Measure Persistence Diagram

We obtain the measure persistence diagrams of a persistence module V by defining
its persistence measure μV on the extended half-plane H.

Definition 3.26 (persistence measure in extended plane) Let V be a persistence
module, and let −∞ ≤ a < b ≤ c < d ≤ +∞. We define

μV([a, b] × [c, d]) = 〈◦a—•b—•c—◦d | V〉

where for infinite rectangles we take V−∞ = 0 and V+∞ = 0 as needed.

It is easy to see (directly, or by using the arctan trick) that this extended version
of μV satisfies the same properties as before: additivity, monotonicity, and so on. In
particular, the alternating sum formula of Proposition 3.6 becomes:

μV ( [−∞, b] × [c,+∞] ) = 〈 •b—•c | V 〉 = rbc
μV ( [a, b] × [c,+∞] ) = 〈 ◦a—•b—•c | V 〉 = rbc − rac (if rac < ∞ )
μV ( [−∞, b] × [c, d] ) = 〈 •b—•c—◦d | V 〉 = rbc − rbd (if rbd < ∞ )

The first of these corresponds to the ‘k-triangle lemma’ of [19].
In this way μV becomes an r-measure on the extended half-plane

H = {(p, q) | −∞ ≤ p ≤ q ≤ +∞}

with its diagram Dgm(μV) defined on the subset of the r-interior

H×= {(p∗, q∗) | −∞+ ≤ p∗ < q∗ ≤ +∞−}

over which μV is finite. Proposition 3.2 and Corollary 3.5 extend straightforwardly
to infinite rectangles:

Corollary 3.27 IfV is decomposable into intervalmodules, then themeasureμV(R)

of any rectangle R in the extended half-plane precisely counts the interval summands
corresponding to decorated points which lie in R. �

Definition 3.28 Let V be a persistence module. Its measure persistence diagrams
are the decorated diagram
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Dgm(V) = (Dgm(μV),F×(μV)),

and the undecorated diagram

dgm(V) = (dgm(μV),F◦(μV)).

We work in the extended half-plane, so that the finite r-interior and finite interior
F×(μV), F◦(μV) are subsets of H×, H◦, respectively. When F×(μV), F◦(μV) are
clear from the context, we may allow ourselves to abuse notation and omit them.

The relationship between the measure and decomposition diagrams is explained
in the following proposition:

Proposition 3.29 If V is decomposable into intervals, then Int(V) agrees with
Dgm(μV) where the latter is defined, that is, on F×(μV).

Proof By Corollary 3.27 we have

card(Int(V)|R) = μV(R)

for all rectangles. On the other hand, we have

card(Dgm(μV)|R) = μV(R)

for all rectangles with μV(R) < ∞. By uniqueness, it follows that Int(V) and
Dgm(μV) must be the same multiset when restricted to F×(μV). �

Neither definition strictly outperforms the other, as the following examples show.

Example 3.30 (decomposition ≥ measure) Let

V =
⊕

�∈L
k(p∗

� , q
∗
� )

where the undecorated pairs (p�, q�) form a dense subset of the half-planeH. Then
Int(V) is defined; but μV(R) = ∞ for every rectangle, so F×(μV) is the empty set
and Dgm(μV) is nowhere defined.

Example 3.31 (measure ≥ decomposition) We adapt the example of Webb [48],
from our Theorem 2.8, to be indexed over R. LetW be the persistence module with
vector spaces

Wt = 0 for t > 0
W0 = {sequences (x1, x2, x3, . . . ) of scalars}
Wt = {sequences with xn = 0 for all n ≤ |t |} for t < 0

http://dx.doi.org/10.1007/978-3-319-42545-0_2
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and maps ws
t taken to be the canonical inclusion Ws ⊆ Wt when t ≤ 0 and zero

otherwise. This is not decomposable into intervals because its restriction to −N is
not decomposable into intervals (Theorem 2.8(3)). On the other hand, we have

〈◦a—•b | W〉 = conullity(Wa → Wb) < ∞

except when a = −∞, and

〈•c—◦d | W〉 = nullity(Wc → Wd) < ∞

except when c ≤ 0 < d. Each of these terms dominates

〈◦a—•b—•c—◦d | W〉

which is therefore finite for all rectangles that do not contain (−∞+, 0+). Thus,
the measure persistence diagram Dgm(μW) is defined everywhere except at that
decorated point. We will complete the calculation of Dgm(μW) in Sect. 3.10.

3.8 Tameness

We now describe several different levels of ‘tameness’ for a persistence module,
beginning with the most docile.

• A persistence module is of finite type if it is a direct sum of finitely many interval
modules. This is the notion of tameness most commonly used in the persistence
literature, either explicitly or by implication. Traditionally these modules have
simply been called ‘tame’.

• A persistence module is locally finite if it is a direct sum of interval modules,
and satisfies the condition that any bounded subset of R meets only finitely many
of the intervals. By a compactness argument, it is sufficient to require that every
t ∈ R has a neighbourhood which meets at most finitely many of the intervals.

• ApersistencemoduleV ispointwise finite-dimensional (pfd) if each vector space
Vt is finite dimensional. As indicated in Theorem 2.8, all such modules have been
shown to admit an interval decomposition by Crawley-Boevey [25]. This class of
modules is favoured in the work of Lesnick and Bauer [3, 42].

For a module V that is of finite type, locally finite, or pfd, it is easy to see that
F×(μV) = H. The measure and decomposition diagrams agree and are defined
everywhere onH, including on the diagonal and at infinity. Any diagonal points are
decorated (p−, p+), since only these belong to rectangles in H.

We introduce four more kinds of tameness. The assumptions here concern the
finiteness ofμV over different types of rectangle: quadrants, horizontal strips, vertical
strips, and bounded rectangles (Fig. 3.1). Each condition guarantees the existence of
the persistence diagram over a certain subset of the extended half-plane. The finite

http://dx.doi.org/10.1007/978-3-319-42545-0_2
http://dx.doi.org/10.1007/978-3-319-42545-0_2
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V

H R

Q

Fig. 3.1 A quadrant, horizontal strip, vertical strip, and finite rectangle in H

part of the plane (except the diagonal) is always included; it is at infinity that the four
conditions differ.

• We say that V is q-tame, if μV(Q) < ∞ for every quadrant Q not touching the
diagonal. In other words

〈•b—•c | V〉 < ∞

(that is, rbc < ∞) for all b < c. The persistence diagram Dgm(μV) is defined over
the set:

{(p∗,q∗) | −∞ ≤ p< q ≤ +∞} =

• We say that V is h-tame, if μV(H) < ∞ for every horizontally infinite strip H
not touching the diagonal. In other words,

〈•b—•c—◦d | V〉 < ∞

for all b < c < d. The persistence diagram Dgm(μV) is defined over the set:

{(p∗,q∗) | −∞ ≤ p< q<+∞} =

• We say that V is v-tame, if μV(V ) < ∞ for every vertically infinite strip V not
touching the diagonal. In other words,

〈◦a—•b—•c | V〉 < ∞

for all a < b < c. The persistence diagram Dgm(μV) is defined over the set:

{(p∗,q∗) | −∞ < p< q ≤ +∞} =
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• We say that V is r-tame, if μV(R) < ∞ for every finite rectangle R not touching
the diagonal. In other words,

〈◦a—•b—•c—◦d | V〉 < ∞

for all a < b < c < d. The persistence diagram Dgm(μV) is defined over the set:

{(p∗,q∗) | −∞ < p< q<+∞} =

Here is the diagram of implications between the different conditions:

finite type ⇒ locally finite ⇒ pfd ⇒ q-tame ⇒ v-tame
⇓ ⇓

h-tame ⇒ r-tame

One can show that all of the implications are ‘strict’, in the sense that they cannot be
reversed; examples are easily found. The consequent implications

q-tame ⇒ (h-tame and v-tame) , (h-tame or v-tame) ⇒ r-tame

are also both strict; examples are suggested by the diagrams in Fig. 3.2. The second
of these examples is no surprise, and a better question is this: does every r-tame
module decompose as the direct sum of an h-tame module and a v-tame module?
This is certainly true if the module is decomposable into intervals, but the general
situation seems more subtle and we do not know the answer.

0

. . .

0

. . .

. . .

Fig. 3.2 Diagrams of persistence modules which are: (left) h-tame and v-tame but not q-tame;
(right) r-tame but not h-tame or v-tame
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Remark 3.32 Later we show that the class of ‘q-tame’ modules may be interpreted
as the closure of the class of ‘locally finite’ modules: a persistence module is q-tame
if and only if it can be approximated arbitrarily well by locally finite modules. See
Theorem 5.21.

3.9 Tameness (Continued)

Many naturally occurring persistence modules are q-tame, particularly those aris-
ing from persistent homology constructions on compact spaces. We consider some
typical examples in this section, using algebraic topology arguments.

A general result of the following kind was published by Cagliari and Landi [6]:

Theorem 3.33 Let X be a compact polyhedron,2 and let f : X → R be a continuous
function. Then the persistent homologyH(Xsub) of the sublevelset filtration of (X, f )
is q-tame.

Proof For any b < c we must show that

H(Xb) −→ H(Xc)

has finite rank. Begin with any triangulation of X , and subdivide it repeatedly until
no simplex meets both f −1(b) and f −1(c). If we define Y to be the union of the
closed simplices which meet Xb, then we have

Xb ⊆ Y ⊆ Xc

and hence the factorisation

H(Xb) −→ H(Y ) −→ H(Xc).

SinceY is a compact polyhedron, H(Y ) is finite dimensional and soH(Xb) → H(Xc)

has finite rank. �

Corollary 3.34 Let X be a locally compact polyhedron, and let f : X → R be a
proper3 continuous function which is bounded below. Then H(Xsub) is q-tame.

Proof To show that H(Xb) → H(Xc) has finite rank, it is enough to find a compact
subpolyhedron of X that contains Xc, becausewe can then apply Theorem3.33 in this
subpolyhedron. Accordingly, choose a locally finite triangulation of X and consider
the closed simplices that meet Xc. There are only finitely many of them because

2By ‘polyhedron’ wemean the realisation of a simplicial complex as a topological space. A compact
(resp. locally compact) polyhedron is the realisation of a finite (resp. locally finite) complex.
3By ‘proper’ we mean that the preimage f −1(K ) of every compact set K ⊂ R is compact.

http://dx.doi.org/10.1007/978-3-319-42545-0_5
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Xc = f −1[min( f ), c] is compact. The union of these simplices is the required
subpolyhedron. �

Corollary 3.35 (persistent homology of offsets) Let A be a nonempty compact
subset of X = Rn and let f be the ‘distance from A’ in some norm, so f (x) =
mina∈A ‖x − a‖. It follows from Corollary 3.34 that H(Xsub) is q-tame. �

Sublevelsets of the ‘distance from A’ function are generally known as offsets of
the compact set A in the given norm, and written Aε = f −1(−∞, ε]. There is a rich
body of results in the computational geometry literaturewhich govern the topology of
these offsets, usually for small ε. These results generally assume that A is ‘sufficiently
regular’, and indeed an important part of that work is to formulate effective regularity
conditions that guarantee that offsets are well-behaved. In contrast, Corollary 3.35
tells us that no regularity conditions are needed to guarantee that the persistent
homology be q-tame.

Remark 3.36 Under some circumstances, we can obtain stronger tameness results
for offsets. If A is a polyconvex set—that is, a finite union of compact convex sets—
then H(Xsub) is of finite type. Indeed, the topology of the offsets can be modelled by
a finite filtered simplicial complex, specifically the nerve of the family of offsets of
the original convex sets. This works in any norm. On the other hand, the result does
not extend to submanifolds. One can manufacture a smooth embedding of the circle
in R2 such that the distance function has infinitely many critical points.

We can drop ‘bounded below’ in Corollary 3.34 without losing too much:

Theorem 3.37 Let X be a locally compact polyhedron, and let f : X → R be a
proper continuous function. Then the persistent homologyH(Xsub) of the sublevelset
filtration of (X, f ) is h-tame and v-tame.

This means that H(Xsub) can behave badly only at (−∞,+∞). It is easy to
construct examples which are definitely not q-tame. The simplest example is X =
Z (the integers), with f (n) = n. The 0-homology of any sublevelset is infinite
dimensional, and all inclusions have infinite rank.

Proof (h-tameness) Let b < c < d. We must show that

〈•b—•c—◦d | H(Xsub)〉 < ∞. (h-∗)

Begin with a triangulation of X . Only finitely many simplices meet the compact set
f −1(b), so again after a finite number of subdivisions no simplex meets both f −1(b)
and f −1(c).

Now let Y be the union of the closed simplices which meet Xb, and let Z be the
union of the closed simplices which meet Xd . This gives a diagram of inclusions

Xb ⊆ Y ⊆ Xc ⊆ Xd ⊆ Z .
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Note that the polyhedron Z differs from its subpolyhedron Y by the addition of
only finitely many simplices, since each such simplex must meet the compact set
f −1[b, d]. Thus the relative homology H(Z ,Y ) is finite-dimensional.
We now work with the induced homology diagram

H(Xb) −→ H(Y ) −→ H(Xc) −→ H(Xd) −→ H(Z).

In the obvious notation,

〈•b———•c—◦d——〉 = 〈•b—•y—•c—◦d—◦z 〉
≤ 〈——•y—————◦z 〉
= dim[ker(H(Y ) → H(Z))].

By the homology long exact sequence for the pair (Z ,Y ), we have

ker(H(Y ) −→ H(Z)) = im(H(Z ,Y ) −→ H(Y ))

which is finite-dimensional. This confirms (h-*).
v-tameness. Let a < b < c. We must show that

〈◦a—•b—•c | H(Xsub)〉 < ∞ (v-∗)

Using a similar argument to the above, we construct a diagram of inclusions

Y ⊆ Xa ⊆ Xb ⊆ Z ⊆ Xc

where Y, Z are polyhedra with H(Z ,Y ) finite-dimensional.Workingwith the homol-
ogy diagram

H(Y ) −→ H(Xa) −→ H(Xb) −→ H(Z) −→ H(Xc),

we estimate

〈——◦a—•b———•c〉 = 〈◦y—◦a—•b—•z—•c〉
≤ 〈◦y—————•z——〉
= dim[coker(H(Y ) → H(Z))]

By the homology long exact sequence of the pair (Z ,Y ), we have

coker(H(Y ) → H(Z)) ∼= im(H(Z) → H(Z ,Y ))

which is finite-dimensional. This confirms (v-*). �

There aremany other examples of naturally occurring q-tamemodules. It is shown
in [16] that the Vietoris–Rips and Čech complexes of a compact metric space have
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q-tame persistent homology. This is a situationwhere persistence ismanifestly neces-
sary, because such complexes can behave very badly at individual parameter values.
For instance, J.-M.Droz [28] has constructed a compactmetric spacewhoseVietoris–
Rips complex has homology of uncountable dimension at uncountablymany parame-
ter values (indeed, over an entire interval). The construction is not at all pathological
in appearance; see [16] for additional examples.

3.10 Vanishing Lemmas

Here are some easy lemmas that guarantee the vanishing of the persistence diagram
in certain parts of the plane. These lemmas simplify the task of computing Dgm,
often reducing it to a few specific quiver calculations.

Lemma 3.38 Let V be a persistence module, and let s < t .

(1) The map vst is surjective iff Dgm(V) is empty in the rectangle [s, t] × [t,+∞].
(2) The map vst is injective iff Dgm(V) is empty in the rectangle [−∞, s] × [s, t].
‘Empty’ means that the r-interior of the rectangle contains no points or singular
points of Dgm(V). See Fig.3.3.

Metaphorically, the surjectivity of vst tells us that every feature that survives to
time t already existed at time s. Injectivity tells us that every feature that survives
to time s remains alive time t . The small triangle between the two rectangles is the
‘wiggle-room’: new features may appear in the time interval (s, t) but must also
disappear in the same time interval, and vice versa. The lemma makes these claims
precise in terms of the persistence diagram.

t

s

t

s

Fig. 3.3 The shaded green rectangle indicates the region where the persistence diagram is guar-
anteed to be empty: (left) when vst is surjective; (right) when vst is injective
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Proof Indeed,

μV([s, t] × [t,+∞]) = 〈◦s—•t | V〉 = conullity(vst ),

the right-hand side of which is zero iff vst is surjective; and

μV([−∞, s] × [s, t]) = 〈•s—◦t | V〉 = nullity(vst ),

the right-hand side of which is zero iff vst is injective. �

In many situations the maps vst are surjective or injective everywhere in some
interval. The following lemma is stated carefully to give a sharp statement for all
possible interval types (open, closed, half-open, infinite).

Lemma 3.39 Let V be a persistence module and let J = (p∗, q∗) be an interval.

(1) The maps (vst | s, t ∈ J with s < t) are all surjective iff Dgm(V) is empty in the
vertical band

{(x∗, y∗) ∈ H | x∗ ∈ J }.

(2) The maps (vst | s, t ∈ J with s < t) are all injective iff Dgm(V) is empty in the
horizontal band

{(x∗, y∗) ∈ H | y∗ ∈ J }.

(We recall from Eq. (2.3) that x∗ ∈ J means p∗ < x∗ < q∗.) See Fig.3.4.

Proof This follows from Lemma 3.38, since the vertical (resp. horizontal) band is
the union, over s, t ∈ J with s < t , of the r-interiors of the vertical (resp. horizontal)
rectangles of the lemma. �

We now calculate the persistence diagram for the example of Webb given earlier.

J J

Fig. 3.4 The shaded green band indicates the region where the persistence diagram is guaranteed
to be emptywhen themaps (vst ) over the interval J are: (left) surjective; (right) injective. Along each
of the parallel boundary edges, vanishing of the diagram for points with inward ticks is guaranteed
if J contains its corresponding endpoint

http://dx.doi.org/10.1007/978-3-319-42545-0_2
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Example 3.40 (Continuation of Example 3.31) Recall thatWwas defined by setting

Wt = 0 for t > 0
W0 = {sequences (x1, x2, x3, . . . ) of real numbers}
Wt = {sequences with xn = 0 for all n ≤ |t |} for t < 0

and taking (ws
t ) to be the canonical inclusion maps or zero maps. We also take

W−∞ = W+∞ = 0 to allow uniform treatment of finite and infinite rectangles. Then
the maps (ws

t ) are surjective over the intervals

(−1,+∞] and (−2,−1], (−3,−2], . . . , (−n − 1,−n], . . .

and injective over the intervals

[−∞, 0] and (0,+∞]

so Lemma 3.39 allows only the possibilities

x∗ ∈ {−1+,−2+,−3+, . . . ,−∞+},

for (x∗, y∗) that are points or singular points of Dgm(W). We can determine the mul-
tiplicity of (−n+, 0+) by enclosing it in a rectangle that contains no other candidate
points: say [−n,−n + 1] × [0,+∞]. Let Ŵ be the restriction

W−n −→ W−n+1 −→ W0

of W to the index set {−n,−n + 1, 0}. Then

mW((−n+, 0+)) = μW([−n,−n + 1] × [0,+∞])
= 〈 ◦ — • — • | Ŵ〉
= 〈 ◦ — • —— | Ŵ〉 − 〈 ◦ — • — ◦ | Ŵ〉
= 〈 ◦ — • —— | Ŵ〉
= conullity(W−n → W−n+1) = 1.

The fourth equality follows from the injectivity ofW−n+1 → W0, which implies that
〈 ◦ — • — ◦ | Ŵ〉 vanishes.

The conclusion is that each (−n+, 0+) occurs exactly once in the persistence
diagram. Finally, we have already seen that (−∞+, 0+) is a singular point of μW.4

All decorated points in H have been accounted for. See Fig. 3.5.

4In retrospect it’s even clearer: any rectangle containing (−∞+, 0+) must also contain infinitely
many of the points (−n+, 0+) that we have calculated to have multiplicity 1, and therefore must
have infinite measure.
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0
. . .

Fig. 3.5 The persistence diagram Dgm(W) = Dgm(μW) for the example of Webb. This is defined
everywhere in the extended half-plane except at the singular point (−∞+, 0+)

3.11 Vanishing Lemmas (Continued)

In this optional section, we provide a set of four infinitesimal vanishing lemmas to
accompany the results of the previous section. These lemmas are expressed in terms
of direct limits and inverse limits. The reader unfamiliar with these concepts from
category theory may wish to consult a standard textbook, such as [43], for additional
details and context.

We begin with the observation that any persistence module over the real line has
a canonical extension to the totally ordered set

R ∪ R∗ = {t, t−, t+ | t ∈ R}

defined using direct limits and inverse limits in the category of vector spaces. Here
are the constructions.

Definition 3.41 (extension to t−) Let V be a persistence module and let t ∈ R. We
define

Vt− = lim−→ (Va | a < t).

This direct limit can be defined explicitly as the quotient of the direct sum vector
space ⊕

a<t

Va (3.7)

by the subspace generated by all vectors of the form xa ⊕ −vab(xa) ∈ Va ⊕ Vb where
a < b < t .

Definition 3.42 (extension to t+) Let V be a persistence module and let t ∈ R. We
define

Vt+ = lim←− (Va | a > t).
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This inverse limit can be defined explicitly as the subspace of the product vector
space ∏

a>t

Va (3.8)

that comprises those product vectors (xa | a > t) satisfying the constraint xb =
vab(xa) whenever t < a < b.

Note that for a < t < b there are canonical maps

Va

va
t− �� Vt− and Vt+

vt
+
b �� Vb

induced, respectively, from the inclusion of Va into the direct sum of (3.7) and from
the projection of the product of (3.8) onto Vb. We observe that

Vt− =
⋃

a<t

im(vat−) and 0 =
⋂

b>t

ker(vt
+
b ) (3.9)

where the union is a nested union and the intersection is a nested intersection. In the
other direction, there are canonical maps

Vt−
vt

−
t �� Vt

vt
t+ �� Vt+ (3.10)

resulting from the universal properties of direct and inverse limits stated below. It is
not difficult to check that these maps, and their various composites with each other
and with the maps vst , define an extension of the persistence module V to the index
set R ∪ R∗. The details are left to the reader.

Here are the universal properties that characterise these direct and inverse limits:

Proposition 3.43 (universal property of Vt− ) Given a vector space W and a family
of linear maps ( f a : Va → W | a < t) such that f a = f bvab whenever a < b < t ,
there is a unique linear map f : Vt− → W such that fa = f vat− whenever a < t . �

Proposition 3.44 (universal property of Vt+ ) Given a vector space U and a family
of linear maps ( fa : U → Va | a > t) such that fb = vab fa whenever t < a < b,
there is a unique linear map f : U → Vt+ such that fa = vt

+
a f whenever a > t . �

These universal properties are easily verified from the explicit definitions above.
The following diagrams represent these properties schematically:

(Va)
��
��

����
��

��
��

��

( f a)
����

��
��

��
��

Vt−

∃! f
��

W

and

Vt+
��
�� (Va)

U

∃! f

�� ������������ ( fa)

������������
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Double arrows indicate a system of maps that commute with the (vab).
Here is the main result of this section, stated in terms of the maps in (3.10).

Theorem 3.45 (infinitesimal vanishing lemmas) Let V be a q-tame persistence
module, and let t ∈ R. In the following, restrict to p < t < q.

(1) If vt
−
t is surjective then Dgm(V) contains no points of the form (t−, q∗).

(2) If vt
−
t is injective then Dgm(V) contains no points of the form (p∗, t−).

(3) If vtt+ is surjective then Dgm(V) contains no points of the form (t+, q∗).
(4) If vtt+ is injective then Dgm(V) contains no points of the form (p∗, t+).

The q-tameness assumption is needed for elementary numerical reasons in all four
cases, and also for deeper structural reasons in the case of (3).

Proof (1) Suppose t < c < q. We will find a < t such that the rectangle [a, t] ×
[c,+∞] has measure zero. This will imply that Dgm(V) does not contain (t−, q∗).

Using the sequence

Va
�� Vt− �� Vt

�� Vc

and the surjectivity hypothesis, 〈◦t−—•t 〉 = 0, we calculate

μV([a, t] × [c,+∞]) = 〈◦a—–––——•t— •c〉
= 〈◦a— •t−—•t— •c〉 + 〈◦a— ◦t−—•t— •c〉
= 〈◦a— •t−—•t— •c〉
= 〈◦a— •t−——— •c〉
= dim

[
im(Vt− −→ Vc)

im(Va −→ Vc)

]
.

It follows from the first assertion of (3.9) that

im(Vt− −→ Vc) =
⋃

a<t

im(Va −→ Vc) (3.11)

where the right-hand side is a nested union. Since the left-hand side is finite-
dimensional, V being q-tame, it follows that there exists a < t such that

im(Vt− −→ Vc) = im(Va −→ Vc)

and for this a we have μV([a, t] × [c,+∞]) = 0 as required.
(2) Suppose p < b < t . We will find c with b < c < t such that the rectangle

[−∞, b] × [c, t] has measure zero. This will imply that Dgm(V) does not contain
(p∗, t−). We use the sequence

Vb
�� Vc

�� Vt− �� Vt



3.11 Vanishing Lemmas (Continued) 61

and the injectivity hypothesis, 〈•t− —◦t 〉 = 0, to calculate

μV([−∞, b] × [c, t]) = 〈•b—•c——–––—◦t 〉
= 〈•b—•c— ◦t− ——〉 = dim

[
ker(Vb −→ Vt−)

ker(Vb −→ Vc)

]

analogously to the computation in (1). Note that this quantity is finite, since it is
bounded by 〈•b—•c〉 = rbc . This time we use

ker(Vb −→ Vt−) =
⋃

c<t

ker(Vb −→ Vc) (3.12)

which follows from the fact that any element of Vc that maps to zero in Vt− must map
to zero in some Vc′ with c < c′ < t . Now the right-hand side is a nested increasing
union of subspaces of finite codimension in the left-hand side. It follows that there
exists c < t such that

ker(Vb −→ Vt−) = ker(Vb −→ Vc)

therefore for this c we have μV([−∞, b] × [c, t]) as required.
(3) Suppose t < c < q. We will find b with t < b < c such that the rectangle

[t, b] × [c,+∞] has measure zero. This will imply that Dgm(V) does not contain
(t+, q∗). We use the sequence

Vt
�� Vt+ �� Vb

�� Vc

and the surjectivity hypothesis 〈◦t— •t+〉 to calculate

μV([t, b] × [c,+∞]) = 〈◦t——–––—•b—•c〉
= 〈—— ◦t+ —•b—•c〉 = dim

[
im(Vb −→ Vc)

im(Vt+ −→ Vc)

]

in the usual way. We now proceed to deduce

im(Vt+ −→ Vc) =
⋂

b>t

im(Vb −→ Vc) (3.13)

from the q-tameness of V. Certainly the left-hand side is contained in the right-hand
side. Conversely, suppose that xc ∈ Vc lies in the image of every Vb. We have to find
a consistent family (xb | t < b ≤ c) of vectors xb ∈ Vb which map to xc. It suffices
to consider an arbitrary decreasing sequence (bi ) that converges to t , and define a
consistent family (xbi ). We begin with b0 = c, and then recursively select xbi ∈ Vbi
so that xbi maps to xbi−1 and is contained in the intersection of the subspaces im(vbbi )
where t < b < bi . The crucial property is that each such nested decreasing family of
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images is eventually constant; this is theMittag-Leffler condition, which is satisfied
by q-tame modules because each image has finite dimension. Using this property,
we set xbi = vbbi (xb) for some xb mapping to xbi−1 where b is sufficiently small that
the nested images in Vbi have stabilised.

With (3.13) established, the eventual constancy of the images on the right-hand
side implies that there exists b > t such that

im(Vt+ −→ Vc) = im(Vb −→ Vc)

and for this b we have μV([t, b] × [c,+∞]) = 0 as required.
(4) Suppose p < b < t .Wewill find d > t such that the rectangle [−∞, b]×[t, d]

has measure zero. This will imply that Dgm(V) does not contain the point (p∗, t+).
We use the sequence

Vb
�� Vt

�� Vt+ �� Vd

and the injectivity hypothesis, 〈•t— ◦t+〉 = 0, to calculate

μV([−∞, b] × [t, d]) = 〈•b—•t——–––— ◦d〉
= 〈•b——— •t+ — ◦d〉 = dim

[
ker(Vb −→ Vd)

ker(Vb −→ Vt+)

]

as usual. This quantity is finite, being bounded by 〈•b—•t 〉 = rbt . Now we use

ker(Vb −→ Vt+) =
⋂

d>t

ker(Vb −→ Vd) (3.14)

which follows from the second assertion of (3.9). Since the codimension of the left-
hand side is finite in any of the kernels on the right-hand side, this nested decreased
family of kernels must eventually be constant. Thus there exists d > t such that

ker(Vb −→ Vt+) = ker(Vb −→ Vd)

and for this d we have μV([−∞, b] × [t, d]) = 0 as required. �

Remark 3.46 In the language of abelian categories, identities (3.11)–(3.14) result
from the exactness properties of direct and inverse limits of vector spaces. Indeed,
(3.11) and (3.12) follow from the right- and left-exactness of the direct-limit functor,
and (3.14) follows from the left-exactness of the inverse-limit functor. The difficulty
with (3.13) is that the inverse-limit functor is not right-exact. When V satisfies the
Mittag-Leffler condition, however, the derived functor lim←−1 evaluates to zero on
V|(t,+∞) and restores right-exactness precisely where we need it.
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We finish this section with two corollaries. The first of these originally appeared
in Cerri et al. [12] as the assertion that certain ‘size functions’ are right-continuous.

Corollary 3.47 ([12] Proposition 2.9) LetXsub be the sublevelset filtration of a pair
(X, f )where X is a compact polyhedron, and let Ȟ = Ȟk(−; k) be a Čech homology
functor.5 Then the only points of Dgm(Ȟ(Xsub)) away from the diagonal are of the
form (p−, q−).

Proof The q-tameness of Ȟ(Xsub) follows the proof of Theorem 3.33, since Čech
homology agrees with simplicial homology on the intermediate polyhedron Y .

Chapter X, Theorem 3.1 of [32] implies that the natural map

vtt+ : Ȟ(Xt ) −→ lim←− (Ȟ(Xa) | a > t)

is an isomorphism for every t . Parts (3) and (4) of Theorem 3.45 now constrain the
off-diagonal points in the persistence diagram to negative decorations only. �

Remark 3.48 In the compact ‘Morselike’ situations of Example 3.51, a stronger
conclusion holds for simpler reasons and in any homology theory.

Corollary 3.49 LetX◦
sub be the open sublevelset filtration

6 of a pair (X, f )where X
is a compact polyhedron, and letH = Hk(−, k) be a singular homology functor. Then
the only points of Dgm(Ȟ(Xsub)) away from the diagonal are of the form (p+, q+).

Proof The q-tameness of H(X◦
sub) follows the proof of Theorem 3.33, with the com-

pact polyhedron Y equally well serving as an intermediate space between open
sublevelsets.

Since singular simplices are compactly supported, the natural map

vt
−
t : lim−→ (H(Xa

◦) | a < t) −→ H(Xt
◦)

is an isomorphism for every t . Parts (1) and (2) of Theorem 3.45 now constrain the
off-diagonal points in the persistence diagram to positive decorations only. �

3.12 Finite Approximations

We finish this chapter by relating our measure-theoretic persistence diagrams to the
diagrams constructed more traditionally, perhaps by computer, in situations of finite
information.

5The theory of Čech homology is described in detail by Eilenberg and Steenrod [32].
6The spaces are the open sublevelsets Xt◦ = f −1(−∞, t) and the maps are their inclusions.
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We begin by noting that, away from its finite r-interior, a persistence measure
gives only a limited view of the structure of its persistence module. For example:

• It is not possible to distinguish between the many non-isomorphic persistence
modules V for which μV is infinite on every rectangle.

• If the persistence diagram of V contains a sequence of points (p∗
n, q

∗
n ) with pn

converging to r from below and qn converging to r from above, then there is no
way to determine the multiplicity of (r−, r+) from the measure alone.

On the other hand, fromμV we do recover all information obtainable by restricting
V to finite subsets T ⊂ R. We may call this the ‘finitely observable’ part of V.
Specifically, for any finite index set

T : a1 < a2 < · · · < an

we can determine the interval decomposition of VT (the restriction of V to the index
set T) in terms of the measure μV. There are four plausible naming conventions for
intervals in T:

{ai , ai+1, . . . , a j } = [ai , a j ] = [ai , a j+1) = (ai−1, a j ] = (ai−1, a j+1)

Here a0, an+1 are to be interpreted as −∞,+∞ respectively. It is conventional in
this setting, for reasons that we will come to shortly, to agree to adopt the second
convention. Then we have

〈 [ai , a j+1) | VT〉 = 〈◦a1— . . .— ◦ai−1— •ai— . . .— •a j— ◦a j+1— . . .— ◦an | V〉
= 〈 ◦ai−1— •ai— •a j— ◦a j+1| V〉
= μV([ai−1, ai ] × [a j , a j+1]).

Ifwenowdraw the interval decomposition ofVT as a persistence diagram, identifying
the half-open intervals [ai , a j+1) with decorated points (a−

i , a−
j+1) in the usual way,

we find that Dgm(VT) is obtained by ‘snapping’ each decorated point of Dgm(V)

upwards and rightwards to the grid determined by T. Figure3.6 illustrates this for
the case n = 3. This is the ‘snapping principle’ of [14, 15].

There are some well known situations where the entire structure of V determined
by its behaviour on a particular finite index set.

Definition 3.50 We say that V is Morselike if there exists a finite set of indices
T = {a1, . . . , an} such that vst is an isomorphism whenever s < t belong to an
interval [ai , ai+1) for some 1 ≤ i ≤ n, and also Vt = 0 for t < a1.

When V is Morselike, it follows from Lemma 3.39 that if (x∗, y∗) is a point or
singular point of Dgm(V) then

x∗, y∗ ∈ {−∞+, a−
1 , a−

2 , . . . , a−
n ,+∞−}.
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a

c

b

snap−→

b

c

a

Fig. 3.6 A persistence module V discretised at T = {a, b, c}. The persistence diagram Dgm(VT)

is localised at six grid vertices, corresponding to the six possible interval summands of a 3-index
persistence module. The multiplicity of each vertex of Dgm(VT) is equal to the number of decorated
points of Dgm(V) in the rectangle immediately below and to the left of it, and may be computed
by evaluating μV on that rectangle. The tick directions indicate lower-closed half-open intervals.
Decorated points of Dgm(V) in the remaining triangular regions do not show up in Dgm(VT)

The possibility that x∗ = −∞+ is ruled out by the vanishing of V below a1. The
remaining candidates are the points (a−

i , a−
j+1) with 1 ≤ i ≤ j ≤ n. Similarly to

Example 3.40, we compute the multiplicity of each candidate by finding a rectangle
that contains that candidate alone:

mV(a−
i , a−

j+1) = μV([ai−1, ai ] × [a j , a j+1]).

Thus Dgm(V) = Dgm(VT) exactly, provided we use the half-open convention for
intervals in T that we agreed on earlier.

Example 3.51 The sublevelset persistent homology H(Xsub) of a pair (X, f ) is
Morselike if

• X is a compact manifold and f is a Morse function; or
• X is a compact polyhedron and f is piecewise linear.

Indeed, let T be the set of critical points of the Morse function, or the set of vertex-
values of the piecewise-linear function. Then the inclusion Xai ⊆ Xt is a homotopy
equivalence whenever t ∈ [ai , ai+1), so H(Xs) → H(Xt ) is an isomorphism when-
ever s < t belong to the same half-open interval [ai , ai+1).

Remark 3.52 Compare Example 3.51 with Corollary 3.47.

Example 3.53 Let S be a finite simplicial complex, and let f : S → R be a function
on its simplices such that f (σ ) ≤ f (τ ) whenever σ ≤ τ . This defines a nested
family S of simplicial complexes

St := {σ ∈ S | f (σ ) ≤ t}
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and their inclusions. Then H(S) is Morselike with respect to the index set T = f (S),
since St is constant over each half-open interval [ai , ai+1). This class of examples
occurs frequently in topological data analysis; the Vietoris–Rips filtration of a finite
metric space is perhaps the most commonly used. The classical algorithms [30, 50]
take (S, f ) as their input and return the summands of H(S) as a list of half-open
intervals.



Chapter 4
Interleaving

Interleaving is a way of comparing two persistence modules. As with any category,
two persistence modules U,V are said to be isomorphic if there are maps

Φ ∈ Hom(U,V), Ψ ∈ Hom(V,U),

such that
Ψ Φ = 1U, ΦΨ = 1V.

This relation is too strong in situations where the persistence modules have been
constructed fromnoisy or uncertain data. The natural response is to consider aweaker
relation, δ-interleaving, where δ ≥ 0 quantifies the uncertainty.

In this section, we define the interleaving relation and study its elementary prop-
erties. We prove the nontrivial result (from [14]) that if two persistence modules are
δ-interleaved, then they are connected in the space of persistence modules by a path
of length δ. This ‘interpolation lemma’ is a crucial step in the proof of the stability
theorem in Chap.5.

4.1 Shifted Homomorphisms

The first step is to consider homomorphisms which shift the value of the persistence
index. Let U,V be persistence modules over R, and let δ be any real number. A
homomorphism of degree δ is a collection Φ of linear maps

φt : Ut → Vt+δ

for all t ∈ R, such that the diagram
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Us
ust ��

φs

��

Ut

φt

��

Vs+δ

vs+δ
t+δ

�� Vt+δ

commutes whenever s ≤ t .
We write

Homδ(U,V) = {homomorphisms U → V of degree δ},
Endδ(V) = {homomorphisms V → V tof degree δ}.

Composition gives a map

Homδ2(V,W) × Homδ1(U,V) → Homδ1+δ2(U,W).

For δ ≥ 0, the most important degree-δ endomorphism is the shift map

1δ
V

∈ Endδ(V),

which is the collection of maps (vtt+δ) from the persistence structure on V. If Φ is a
homomorphismU → V of any degree, then by definition Φ1δ

U
= 1δ

V
Φ for all δ ≥ 0.

Remark 4.1 Here is another way to think of morphisms of non-zero degree. For any
persistence module V, and δ ∈ R, we let V[δ] denote the shifted module

(V [δ])t = Vt+δ, (v[δ])st = vs+δ
t+δ .

In other words, V[δ] is obtained from V by shifting all the information downwards
by δ. Then there are obvious identifications

Homδ(U,V) = Hom(U,V[δ]) = Hom(U[a],V[a + δ])

for all a ∈ R. To avoid excessive notation, we will use the same symbol for

Φ = (φt ) : U → V[δ]

as for its shifted equivalent

Φ = (φt+a) : U[a] → V[a + δ]

since the constituent maps are the same.
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4.2 Interleaving

Let δ ≥ 0. Two persistence modules U,V are said to be δ -interleaved if there are
maps

Φ ∈ Homδ(U,V), Ψ ∈ Homδ(V,U)

such that
Ψ Φ = 12δ

U
, ΦΨ = 12δ

V
.

More expansively (with many more indices written out), there are maps

φt : Ut → Vt+δ and ψt : Vt → Ut+δ

defined for all t , such that the following diagrams

Us
ust ��

φs

��

Ut

φt

��

Vs+δ

vs+δ
t+δ

�� Vt+δ

Us−δ

us−δ
s+δ

��

φs−δ
����

��
��

��
Us+δ

Vs

ψs

����������

Vs
vst ��

ψs

��

Vt

ψt

��

Us+δ

us+δ
t+δ

�� Ut+δ

Vs−δ

vs−δ
s+δ

��

ψs−δ
����

��
��

��
Vs+δ

Us

φs

����������

(4.1)

commute for all eligible parameter values; that is, for all s ≤ t .

Remark 4.2 Where possible, we will be concise rather than expansive.

Example 4.3 Let X be a topological space and let f, g : X → R. Suppose ‖ f −
g‖∞ < δ. Then the persistence modules H(X

f
sub), H(X

g
sub) are δ-interleaved. Indeed,

there are inclusions

(X, f )t ⊆ (X, g)t+δ

(X, g)t ⊆ (X, f )t+δ

for all t , which induce maps

Φ : H(X
f
sub) → H(X

g
sub)

Ψ : H(X
g
sub) → H(X

f
sub)
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of degree δ. Since all the maps are induced functorially from inclusion maps, the
interleaving relations are automatically satisfied.

This is the situation for which the stability theorem of Cohen-Steiner,
Edelsbrunner and Harer [19] was originally stated: if two functions f, g are close
then the diagrams for their sublevelset persistent homology are close. Subsequently,
stability has been formulated as a theorem about the diagrams of interleaved per-
sistence modules [14, 15]. In the present work, we will come to view stability as a
theorem about r-measures.

4.3 Interleaving (Continued)

An interleaving between two persistence modules can be thought of as a persistence
module over a certain partially ordered set (poset). We develop this idea next.

Consider the standard partial order on the plane:

(p1, q1) ≤ (p2, q2) ⇔ p1 ≤ p2 and q1 ≤ q2.

For any real number x , define the corresponding shifted diagonal in the plane:

Δx = {(p, q) | q − p = 2x} = {(t − x, t + x) | t ∈ R}

As a poset, this is isomorphic to the real line.Wewill use the specific isomorphism by
which t ∈ R corresponds to (t − x, t + x) ∈ Δx . This gives a canonical identification
between persistence modules over R and persistence modules over Δx .

Proposition 4.4 Let x, y be real numbers. Persistence modules U,V are |y − x |-
interleaved if and only if there is a persistence module W over Δx ∪ Δy such that
W|Δx = U and W|Δy = V. Here Δx ∪ Δy is regarded as a subposet of R2.

Proof Assume x < y without loss of generality. We claim that (i) the extra infor-
mation carried by (y − x)-interleaving maps Φ,Ψ is equivalent to (ii) the extra
information carried by W. Let us describe both, more carefully:

(i) In addition to U,V we have a system of maps Φ = (φt ), where

φt : Ut → Vt+y−x ,

and a system of maps Ψ = (ψt ), where

ψt : Vt → Ut+y−x .
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These are constrained by the relations (for all η ≥ 0).

Φ1η

U
= 1η

V
Φ, Ψ 1η

V
= 1η

U
Ψ, Ψ Φ = 12y−2x

U
, ΦΨ = 12y−2x

V
. (4.2)

There are no other constraints.
(ii) In addition toU,V the persistence moduleW carries maps between the two

components Δx ,Δy . These maps are constrained by the composition law

wR
T = wS

T ◦ wR
S

for all R, S, T ∈ Δx ∪ Δy with R ≤ S ≤ T .
First, observe that we recover the maps φt , ψt as vertical maps from Δx to Δy ,

and horizontal maps from Δy to Δx , respectively (see Fig. 4.1):

Ut = W(t−x,t+x) → W(t−x,t+2y−x) = Vt+y−x

Vt = W(t−y,t+y) → W(t+y−2x,t+y) = Ut+y−x

Next, observe that the composition law implies all of the relations (4.2).
Finally, there is no additional information in W, beyond the interleaving maps

and relations. Indeed, all remaining maps wS
T , where S ≤ T , can all be factored in

the form:
wS
T = vs+y−x

t ◦ φs if S ∈ Δx and T ∈ Δy,

wS
T = us+y−x

t ◦ ψs if S ∈ Δy and T ∈ Δx .

Thus each map inW is an instance of one of

1η

U
from Δx to Δx ,

1η

V
from Δy to Δy,

1η

V
Φ from Δx to Δy,

1η

U
Ψ from Δy to Δx .

Φ

x

Δ y

Δ

Ψ

x

Δ y

Δ

Fig. 4.1 The maps Φ,Ψ recovered from the module W over Δx ∪ Δy
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It is a simplematter to verify that the composition law is satisfied for each composable
pair of maps. For instance:

(1η

V
Φ)(1ζ

U
Ψ ) = 1η

V
Φ1ζ

U
Ψ = 1η

V
1ζ

V
ΦΨ = 1η+ζ

V
12y−2x
V

= 1η+ζ+2y−2x
V

This can be done using only the known relations, so there are no further constraints
on the wS

T . �
Remark 4.5 This characterisation makes it clear (or, in another view, depends on the
fact) that all composable combinations of themaps u, v, φ, ψ from a given domain to
a given codomain must be equal: indeed, they must agree with the appropriate map
wS
T of W.

4.4 The Interpolation Lemma

In this section we prove a crucial result from [14]:

Lemma 4.6 (interpolation lemma) Suppose U, V are a δ-interleaved pair of per-
sistence modules. Then there exists a 1-parameter family of persistence modules
(Ux | x ∈ [0, δ]) such that U0,Uδ are equal to U,V respectively, and Ux ,Uy are
|y − x |-interleaved for all x, y ∈ [0, δ]. Moreover, if U,V are q-tame then the (Ux )

may be assumed q-tame also.

We prove something sharper: given a specific pair of interleaving maps

Φ ∈ Homδ(U,V) Ψ ∈ Homδ(V,U)

we explicitly provide, for each x < y in [0, δ], a pair of interleaving maps

Φx
y ∈ Homy−x (Ux ,Uy) Ψ y

x ∈ Homy−x (Uy,Ux )

such that Φ0
δ = Φ and Ψ δ

0 = Ψ , and moreover

Φ y
z Φ

x
y = Φx

z Φ y
x Φ

z
y = Φ z

x

for all x < y < z. In view of Proposition 4.4, this sharp form of the interpolation
lemma can be restated as follows.

Theorem 4.7 (interpolation lemma, version 2) Any persistence module W over
Δ0 ∪ Δδ extends to a persistence module W over the diagonal strip

Δ[0,δ] = {(p, q) | 0 ≤ q − p ≤ 2δ} ⊂ R2.

If W|Δ0 ,W|Δδ
are q-tame, then the extension may be chosen so that each W|Δx is

q-tame.
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Remark 4.8 The extension is by no means unique.

Let us clarify how Theorem 4.7 implies Lemma 4.6. If U, V are δ-interleaved,
then there exists a persistence module W over Δ0 ∪ Δδ such that W|Δ0 = U and
W|Δδ

= V. By Theorem 4.7, this extends to W over the strip Δ[0,δ]. If we define a
1-parameter family Ux = W|Δx , then Ux ,Uy are |x − y|-interleaved for all x, y ∈
[0, δ].

For readers familiar with Kan extensions in category theory [43], here is a very
short proof of the theorem. Let us regard the posets Δ0 ∪ Δδ and Δ[0,δ] as categories
(see Remark 2.1); then persistencemodules over these posets are the same as functors
to the category of vector spaces. The theorem asserts the existence of an extensionW

Δ[x0,x1]

W

��
Δx0 ∪ Δx1

��

W �� Vect

for any functor W. Peter Bubenik has pointed out to us that the Kan extension
theorem immediately provides two such extensions, since the category Vect is both
complete (which yields the ‘right-extension’) and co-complete (which yields the
‘left-extension’).

We proceed now to a detailed proof, for those who would still like one.

Proof (Theorem 4.7) In order to express the proof more symmetrically, it is con-
venient to replace the interval [0, δ] by the interval [−1, 1]. This can be done by
rescaling and translating the plane. Accordingly, suppose we are given a persistence
module W over Δ−1 ∪ Δ1.

Our strategy is to construct two persistence modules over the strip Δ[−1,1] and a
module map between them. The image (or coimage) of this map is itself a persistence
module over the strip, and will be the required extension.

By Proposition 4.4, W provides U = W|Δ−1 and V = W|Δ1 , which we can view
as persistence modules over R using the canonical parametrisation:

Ut = W(t+1,t−1) and Vt = W(t−1,t+1)

and corresponding linearmaps ust , v
s
t . ThemoduleW also provides interleavingmaps

Φ ∈ Hom2(U,V) and Ψ ∈ Hom2(V,U) of degree 2:

φt = w(t+1,t−1)
(t+1,t+3) : Ut → Vt+2, ψt = w(t−1,t+1)

(t+3,t+1) : Vt → Ut+2,

http://dx.doi.org/10.1007/978-3-319-42545-0_2
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From U,V we construct four persistence modules over R2:

A defined by A(p,q) = Up−1 and a(p,q)

(r,s) = u p−1
r−1

B defined by B(p,q) = Vq−1 and b(p,q)

(r,s) = vq−1
s−1

C defined by C(p,q) = Uq+1 and c(p,q)

(r,s) = uq+1
s+1

D defined by D(p,q) = Vp+1 and d(p,q)

(r,s) = vp+1
r+1

Note thatA,B,C,D are the vertical and horizontal extensions of the modulesW|Δ±1

to the whole plane. In particular, we have

A|Δ−1 = U, B|Δ1 = V, C|Δ−1 = U, D|Δ1 = V,

with respect to our canonical parametrisations of each diagonal. Restricting each
module to its ‘other’ diagonal, on the other hand, we have

A|Δ1 = U[−2], B|Δ−1 = V[−2], C|Δ1 = U[2], D|Δ−1 = V[2],

using the ‘shifted module’ notation of Remark 4.1.
Next, we construct four module maps:

1U : A → C defined at (p, q) to be u p−1
q+1 : Up−1 → Uq+1

Φ : A → D defined at (p, q) to be φp−1 : Up−1 → Vp+1

Ψ : B → C defined at (p, q) to be ψq−1 : Vq−1 → Uq+1

1V : B → D defined at (p, q) to be vq−1
p+1 : Vq−1 → Vp+1

The maps Φ,Ψ are defined over the whole plane, whereas 1U is defined only where
p − 1 ≤ q + 1, and 1V is defined only where q − 1 ≤ p + 1. To verify that the four
definitions give module maps, it is enough to observe that the required commutation
relations involve composable combinations of the maps u, v, φ, ψ , which always
agree by Remark 4.5.

Note that the intersection of the regions of definition, where all four maps are
defined, is precisely the stripΔ[−1,1]. Henceforth, we restrictA,B,C,D and the four
maps to that strip.

Define Ω ∈ Hom(A ⊕ B,C ⊕ D) by the 2-by-2 matrix

[
1U Ψ

Φ 1V

]
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of module maps. Our claim is that W = im(Ω) is the required extension. We may
equivalently claim that W = coim(Ω) = (A ⊕ B)/ker(Ω) is the required
extension.1

Step 1. W|Δ−1 is isomorphic to U.

Proof On the diagonal Δ−1 we have

(A ⊕ B)|Δ−1 = U ⊕ V[−2], (C ⊕ D)|Δ−1 = U ⊕ V[2],

and the homomorphism Ω|Δ−1 takes the matrix form

[
1U Ψ

Φ 14
V

]
.

Since 14
V

= ΦΨ , this factorises as

U ⊕ V[−2] Ω1 ��
U

Ω2 �� U ⊕ V[2]

where

Ω1 = [ 1U Ψ ] and Ω2 =
[
1U
Φ

]

in matrix form. Thanks to the 1U entries, we see that Ω1 is surjective and Ω2 is
injective. This implies that Ω1,Ω2 induce isomorphisms

coim(Ω|Δ−1)
∼= ��

U
∼= �� im(Ω|Δ−1)

as required. �

Step 2. W|Δ1 is isomorphic to V.

Proof On the diagonal Δ1 we have

(A ⊕ B)Δ1 = U[−2] ⊕ V, (C ⊕ D)Δ1 = U[2] ⊕ V,

and the homomorphism Ω|Δ1 takes the matrix form

[
14
U

Ψ

Φ 1V

]
.

1The image and the coimage are naturally isomorphic; the difference is whether we wish to think
of W as a submodule of C ⊕ D or as a quotient module of A ⊕ B. In the following pages, we will
treat the two points of view with equal emphasis.
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Since 14
U

= Ψ Φ, this factorises as

U[−2] ⊕ V
Ω3 ��

V
Ω4 �� U[2] ⊕ V

where

Ω3 = [
Φ 1V

]
and Ω4 =

[
Ψ

1V

]

in matrix form. Thanks to the 1V entries, we see that Ω3 is surjective and Ω4 is
injective. This implies that Ω3,Ω4 induce isomorphisms

coim(Ω|Δ1)
∼= ��

V
∼= �� im(Ω|Δ1)

as required. �

Step 3. The cross-maps ofW between Δ−1 and Δ1 correspond to Φ and Ψ under
the isomorphisms of Steps 1 and 2.

Proof The cross maps forW are induced by the cross maps forA ⊕ B (if we viewW

as a coimage) and equally by the cross maps for C ⊕ D (if we viewW as an image).
The vertical cross-map for A ⊕ B is a map

(A ⊕ B)|Δ−1
�� (A ⊕ B)|Δ1

of degree 2 which we can identify as

U ⊕ V[−2] 1U⊕14
V �� U ⊕ V[2].

Alternatively, the vertical cross-map for C ⊕ D is a map

(C ⊕ D)|Δ−1
�� (C ⊕ D)|Δ1

of degree 2 which we can identify as

U ⊕ V[2] 14
U
⊕1V

�� U[4] ⊕ V[2].

The following diagram shows the vertical cross-maps for A ⊕ B (on the left) and
C ⊕ D (on the right), the factorisations of Steps 1 and 2, and the map Φ.
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U ⊕ V[−2] Ω1 ��

1U ⊕ 14
V

��

U
Ω2 ��

Φ

��

U ⊕ V[2]
14
U

⊕ 1V

��

U ⊕ V[2] Ω3 �� V[2] Ω4 �� U[4] ⊕ V[2]

It is enough to show that either square commutes. And indeed

Ω3(1U ⊕ 14
V
) = [

Φ 1V
] [

1U 0
0 14

V

]
= [Φ 14

V
] = [Φ][ 1U Ψ ] = ΦΩ1

for the left square, and

(14
U

⊕ 1V)Ω2 =
[
14
U

0
0 1V

] [
1U
Φ

]
=

[
14
U

Φ

]
=

[
Ψ

1V

]
[Φ] = Ω4Φ

for the right square. Thus the induced vertical cross-map corresponds to Φ.
A similar argument using the diagram

U[2] ⊕ V
Ω3 ��

14
U

⊕ 1V

��

V
Ω4 ��

Ψ

��

U[2] ⊕ V

1U ⊕ 14
V

��

U[2] ⊕ V
Ω1 �� U[2] Ω2 �� U[2] ⊕ V[4]

shows that the induced horizontal cross-map corresponds to Ψ . �

This completes the construction of the extension W. Now we verify the last
assertion of theorem. Suppose that U,V are q-tame, meaning that their non-identity
structure maps have finite rank. On any diagonal Δx , the restricted modules A|Δx ,
B|Δx are shifted copies of U,V so they are q-tame. It follows that the direct sum
A ⊕ B|Δx and its homomorphic image Ux = Ω(A ⊕ B)|Δx are q-tame.

This completes the proof of Theorem 4.7. �
We point out that Step 3 isn’t necessary to deduce the interpolation Lemma 4.6.

It is sufficient to show that U = U−1 and V = U1 for some 1-parameter family of
persistence modules such that each pair Ux ,Uy admits an |x − y|-interleaving. This
already follows from Steps 1 and 2. We do not need to know that the 2-interleaving
of U,V induced fromW is equal to the original 2-interleaving.
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4.5 The Interpolation Lemma (Continued)

In this optional section,we study the interpolation lemma in greater depth. The results
are not used elsewhere. Given two modulesU,V and a δ-interleaving between them,
there are at least three natural ways to construct an interpolation. We describe these
constructions and some relationships between them.

As in the proof of Theorem 4.7, we may suppose that δ = 2 and that U,V and
their interleaving are represented as a module over Δ−1 ∪ Δ1 in the plane, which we
wish to extend to a module over Δ[−1,1].

It will be helpful to introduce some temporary notation. Let V be a persistence
module over R. Then V

p, Vq are the persistence modules over R2 defined by

(V p)(p,q) = Vp, (V q)(p,q) = Vq ,

and the canonical linear maps.
Now consider the sequence

U[−3]q
⊕

V[−3]p
Ω ′

��

U[−1]p
⊕

V[−1]q
Ω ��

U[1]q
⊕

V[1]p
Ω ′′

��

U[3]p
⊕

V[3]q
(4.3)

of modules over Δ[−1,1] with maps

Ω ′ =
[

1U −Ψ

−Φ 1V

]
, Ω =

[
1U Ψ

Φ 1V

]
, Ω ′′ =

[
1U −Ψ

−Φ 1V

]

defined analogously to Ω from the proof of Theorem 4.7.
Notice that Ω , Ω ′ and Ω ′′ are essentially the same map. Certainly Ω ′,Ω ′′ are

formally identical, up to a translation τ of the strip. In fact, each of the modules in
the sequence is related to the next by an isomorphism σ which changes the sign of
the V-term and transforms indices by (p, q) �→ (q + 2, p + 2). We have τ = σ 2,
and conjugacies Ω = σΩ ′σ−1 and Ω ′′ = σΩσ−1.

Proposition 4.9 Each of the three modules

coker(Ω ′), coim(Ω) = im(Ω), ker(Ω ′′)

over Δ[−1,1] defines an interpolating family between U,V.

Proof We already know this for coim(Ω) = im(Ω) from the proof of Theorem 4.7.
Now we outline the proof that coker(Ω ′) and ker(Ω ′′) restrict on Δ−1 to modules
isomorphic to U.
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On the diagonal Δ−1 the sequence (4.3) restricts to:

U[−4]
⊕

V[−2]
Ω ′

��

U

⊕
V[−2]

Ω ��

U

⊕
V[2]

Ω ′′
��

U[4]
⊕

V[2]

and we have factorisations

Ω ′ or Ω ′′ =
[

14
U

−Ψ

−Φ 1V

]
=

[−Ψ

1V

] [−Φ 1V
] = Ω ′

1Ω
′
2 or Ω ′′

1Ω ′′
2 .

These reveal that im(Ω ′) = im(Ω ′
1) is a complementary submodule to U ⊕ 0 in

U ⊕ V[t − 2], and that ker(Ω ′′) = ker(Ω ′′
2 ) is a complementary submodule to 0 ⊕

V[t + 2] inU ⊕ V[t + 2]. It follows that coker(Ω ′) and ker(Ω ′′) are each isomorphic
to U.

By a symmetric argument, the restriction of each module to Δ1 is isomorphic
to V. This completes the proof that coker(Ω ′) and ker(Ω ′′) interpolate between U

and V. �

Which of the three constructions should we prefer? It turns out that coker(Ω ′) and
ker(Ω ′′) are respectively isomorphic to the Kan left- and right-extensions, so these
are natural from the category theoretic point of view. Now observe thatΩΩ ′ = 0 and
Ω ′′Ω = 0, meaning that (4.3) is a chain complex. It follows that there is a natural
projection and a natural inclusion

coker(Ω ′) � coim(Ω) = im(Ω) ↪→ ker(Ω ′′)

bywhich we see that coim(Ω) = im(Ω) is isomorphic to the image of the composite
map coker(Ω ′) → ker(Ω ′′). In this sense, it is intermediate between the left- and
right-extensions; and structurally it is the ‘smallest’ of the three, being a quotient of
one and a subobject of the other.

The surplus information carried by the two Kan extensions may be measured as
the kernel of the projection and the cokernel of the inclusion. These are precisely
the homology at the second and third terms of (4.3). It follows from the conjugacies
described above that the two homology modules are isomorphic upon translating the
strip by 2 and interchanging p and q (i.e. reversing the interpolation parameter).

We can use the ‘vineyard’ technique of [23] to visualise the 1-parameter family
of persistence modules produced by each of the three constructions. We obtained
the vineyards by sketching the supports of the eight module summands in (4.3) and
using the sketches to partition the interpolation parameter range [−1, 1] into suitable
intervals for case splitting. It is perhaps easier done than described, so we invite
readers to conduct their own calculations and confirm that our vineyards are correct.
As further corroboration, one verifies that the homology modules are isomorphic in
the sense described above.
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Fig. 4.2 Vineyards of the cokernel (left), image (middle), and kernel (right) interpolations for the
2-interleaving between k[0, 4) and k[1, 6)
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Fig. 4.3 Vineyards of the cokernel (left), image (middle), and kernel (right) interpolations for the
3-interleaving between k[0, 4) and k[1, 6)

In Fig. 4.2, we consider the canonical 2-interleaving between interval modules
k[0, 4) and k[1, 6). The thick black lines show how the points of the persistence
diagram travel in the plane as we proceed along the interpolating family, for each
of the three constructions. Each point travels with speed 1 and traverses a path of
length 2 (in the d∞-metric). The cokernel interpolation has an extra ‘ghost’ summand
which emerges from the diagonal at (3, 3) at the beginning of the interpolation, and
is reabsorbed by the diagonal at (2, 2) at the end.

In Fig. 4.3 we repeat the exercise using the canonical 3-interleaving between
k[0, 4) and k[1, 6). The thick black paths now have length three, and the kernel and
cokernel interpolations both produce ‘ghosts’ at the diagonal.



Chapter 5
The Isometry Theorem

In this section we discuss the metric relationship between persistence modules and
their persistence diagrams. As in Chap.4, all persistence modules are indexed by R
unless explicitly stated otherwise.

Theprincipal result is the famous stability theoremofCohen-Steiner, Edelsbrunner
and Harer [19], in the generality established by [15]. The main difference is that we
emphasise persistence measures, deriving the standard theorem from a more general
statement about measures. The structure of the proof remains the same as in [19].

The secondary result is the converse inequality, which together with the stability
theorem implies that the space of q-tame persistence modules is isometric with
the space of locally finite persistence diagrams. This isometry theorem appeared
originally in the work of Lesnick [42] for modules which satisfy dim(Vt ) < ∞ for
all t , and independently in the work of Bubenik and Scott [5] for modules of finite
type.

5.1 The Interleaving Distance

In this section we define the interleaving distance between persistence modules. This
was introduced in [15].

The first observation is that if U and V are δ-interleaved, then they are (δ + ε)-
interleaved for every ε > 0. Indeed, the maps

Φ ′ = Φ1ε
U

= 1ε
V
Φ

Ψ ′ = Ψ 1ε
V

= 1ε
U
Ψ

provide the required interleaving.

© The Author(s) 2016
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The challenge, then, if two persistence modules are interleaved, is to make the
interleaving parameter as small as possible. Theminimum is not necessarily attained,
so we introduce some additional terminology: we say that two persistence modules
U,V are δ+-interleaved if they are (δ + ε)-interleaved for all ε > 0. This does not
imply that U,V are δ-interleaved, as we see now:

Example 5.1 Two persistence modules are 0-interleaved if and only if they are iso-
morphic.

Example 5.2 A persistence module V is ephemeral if vst = 0 for all s < t . An
ephemeral module may be constructed by selecting an arbitrary family of spaces (Vt )

and setting every vst to be zero. Let U and V be a pair of non-isomorphic ephemeral
modules. Then U,V are 0+-interleaved but not 0-interleaved. Indeed, 12ε

U
= 0 and

12ε
V

= 0 for all ε > 0, so the zero maps

Φ = 0 ∈ Homε(U,V)

Ψ = 0 ∈ Homε(V,U)

constitute an ε-interleaving.

The interleaving distance between two persistence modules is defined:

di(U,V) = inf{δ | U,V are δ -interleaved}
= min{δ | U,V are δ+ -interleaved}

If there is no δ-interleaving between U,V for any value of δ, then di(U,V) = ∞.

Proposition 5.3 The interleaving distance satisfies the triangle inequality:

di(U,W) ≤ di(U,V) + di(V,W)

for any three persistence modules U,V,W.

Proof Given a δ1-interleaving between U,V and a δ2-interleaving between V,W

one can construct a δ = (δ1 + δ2)-interleaving between U,W by composing the
interleaving maps:

U
Φ1−→ V

Φ2−→ W

U
Ψ1←− V

Ψ2←− W

One easily verifies thatΦ = Φ2Φ1 andΨ = Ψ1Ψ2 are interleaving maps. Explicitly:

Ψ Φ = Ψ1Ψ2Φ2Φ1 = Ψ11
2δ2
V

Φ1 = Ψ1Φ11
2δ2
U

= 12δ1
U

12δ2
U

= 12δ
U

ΦΨ = Φ2Φ1Ψ1Ψ2 = Φ21
2δ1
V

Ψ2 = Φ2Ψ21
2δ1
W

= 12δ2
W

12δ2
W

= 12δ
W

Now take the infimum over δ1, δ2. �
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The proposition tells us that di is an extended pseudometric. It is not a true metric
because di(U,V) = 0 does not imply U ∼= V, as we saw above. In fact, two q-tame
persistence modules have interleaving distance 0 if and only if their undecorated
persistence diagrams are the same. This is a consequence of the isometry theorem.

Here is the simplest instance. The straightforward proof is left to the reader (or
see Proposition5.6).

Example 5.4 The four interval modules

k[p, q], k[p, q), k(p, q], k(p, q)

are 0+-interleaved but not isomorphic.

The following property of interleaving distance will be useful later.

Proposition 5.5 Let U1,U2,V1,V2 be persistence modules. Then

di(U1 ⊕ U2,V1 ⊕ V2) ≤ max (di(U1,V1), di(U2,V2))

More generally, let (U� | � ∈ L) and (V� | � ∈ L) be families of persistence modules
indexed by the same set L, and let

U =
⊕

�∈L
U�, V =

⊕

�∈L
V�.

Then
di(U,V) ≤ sup (di(U�,V�) | � ∈ L) .

Proof Given δ-interleavings Φ�,Ψ� for each pair U�,V�, the direct sum maps Φ =⊕
Φ�, Ψ = ⊕

Ψ� constitute a δ-interleaving of U,V. Thus any upper bound on the
di(U�,V�) is an upper bound for di(U,V). In particular, this is true for the least upper
bound, or sup. �

5.2 The Bottleneck Distance

Now we define the metric on the other side of the isometry theorem, namely the
bottleneck distance between undecorated persistence diagrams. For a q-tame persis-
tence module V, every rectangle not touching the diagonal has finite μV-measure.
This implies that the undecorated diagram

dgm(V) = dgm(μV)
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is a multiset in the extended open half-plane

H◦ = {(p, q) | −∞ ≤ p < q ≤ +∞}.

In order to define the bottleneck distance, we need to specify the distance between
any pair of points inH◦, as well as the distance between any point and the diagonal
(the boundary of the half-plane). These distance functions are not arbitrary; they are
defined as they are because of the interleaving properties of interval modules.

(point to point): The first idea is that two undecorated diagrams are close if
there is a bijection between them which doesn’t move any point too far. We use the
�∞-metric in the plane:

d∞((p, q), (r, s)) = max (|p − r |, |q − s|)

Points at infinity are compared in the expected way:

d∞((−∞, q), (−∞, s)) = |q − s|,
d∞((p,+∞), (r,+∞)) = |p − r |,

and
d∞((−∞,+∞), (−∞,+∞)) = 0.

Distances between points in different strata (e.g. between (p, q) and (−∞, s)) are
infinite.

The next result gives a relationship between the �∞-metric and the interleaving
of interval modules.

Proposition 5.6 Let (p∗, q∗) and (r∗, s∗) be intervals (possibly infinite), and let

U = k(p∗, q∗) and V = k(r∗, s∗)

be the corresponding interval modules. Then

di(U,V) ≤ d∞((p, q), (r, s)).

The proof is postponed to the end of the section. We remark that equality holds
provided that the intervals overlap sufficiently (the closure of each interval must meet
the midpoint of the other), so the proposition is tight in that sense.

(point to diagonal): The next idea is that points which are close to the diagonal
are allowed to be swallowed up by the diagonal. Again we use the �∞-metric:

d∞((p, q),Δ) = 1
2 (q − p)

Again this is related to the behaviour of interval modules.
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Proposition 5.7 Let (p∗, q∗) be an interval, let

U = k(p∗, q∗),

be the corresponding interval module, and let 0 denote the zero persistence module.
Then

di(U, 0) = 1
2 (q − p).

(This is infinite if the interval is infinite.)

Proof Let δ ≥ 0. When is there a δ-interleaving? The interleaving maps must be
zero (no other maps exist to or from the module 0), so the only condition that needs
checking is Ψ Φ = 12δ

U
, which is really 0 = 12δ

U
. This holds when δ > 1

2 (q − p) and
fails when δ < 1

2 (q − p). �

We now use these two concepts to define the bottleneck distance between two
multisets A,B in the extended half-plane.

It is easier to work with sets rather than multisets. One way to do this is to attach
labels to distinguish multiple instances of each repeated point. For instance, α with
multiplicity k becomes α1, . . . ,αk . Henceforth we will do this implicitly, without
comment.

A partial matching between A and B is a collection of pairs

M ⊂ A × B

such that:

• for every α ∈ A there is at most one β ∈ B such that (α,β) ∈ M;
• for every β ∈ B there is at most one α ∈ A such that (α,β) ∈ M.

We say that a partial matching M is a δ -matching if all of the following are true:

• if (α,β) ∈ M then d∞(α,β) ≤ δ;
• if α ∈ A is unmatched then d∞(α,Δ) ≤ δ;
• if β ∈ B is unmatched then d∞(β,Δ) ≤ δ.

The bottleneck distance between two multisets A,B in the extended half-plane is

db(A,B) = inf (δ | there exists a δ-matching between A and B) .

In Sect. 5.3, we will show that ‘inf’ can be replaced by ‘min’ if A,B are locally finite.

Remark 5.8 In order for db(A,B) < ∞, it is necessary that the cardinalities of A,B
agree over each of the three strata at infinity:

card(A|{−∞}×R) = card(B|{−∞}×R)

card(A|R×{+∞}) = card(B|R×{+∞})
card(A|{−∞}×{+∞}) = card(B|{−∞}×{+∞})
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Indeed, these points have infinite distance from the diagonal and from points in the
other strata, and therefore they must be bijectively matched within each stratum.

Proposition 5.9 The bottleneck distance satisfies the triangle inequality:

db(A,C) ≤ db(A,B) + db(B,C)

for any three multisets A,B,C.

Proof Suppose M1 is a δ1-matching between A,B, and M2 is a δ2-matching between
B,C. Let δ = δ1 + δ2. We must show that there is a δ-matching between A,C.

Define the composition of M1,M2 to be

M = ((α, γ) | there existsβ ∈ B such that (α,β) ∈ M1 and (β, γ) ∈ M2) .

It is a partial matching because M1,M2 are partial matchings. We verify that M is the
required δ-matching:

• If (α, γ) ∈ M then

d∞(α, γ) ≤ d∞(α,β) + d∞(β, γ) ≤ δ1 + δ2 = δ

where β ∈ B is the point linking α to γ.

• If α is unmatched in M then there are two possibilities. Either α is unmatched in
M1, in which case

d∞(α,Δ) ≤ δ1 ≤ δ.

Or α is matched in M1, let’s say (α,β) ∈ M1. Then β must be unmatched in M2, so

d∞(α,Δ) ≤ d∞(α,β) + d∞(β,Δ) ≤ δ1 + δ2 = δ.

• If γ is unmatched in M, then a similar argument shows that

d∞(γ,Δ) ≤ δ.

This completes the proof. �

Remark 5.10 Because A,B,C are in truth multisets rather than sets, the composi-
tion operation between matchings is not uniquely defined, but depends on how the
matchings are realised when labels are added. Figure5.1 illustrates what can happen
when B has points of multiplicity greater than 1. Since we are concerned only with
the existence of the composite matching, this ambiguity does not trouble us.

Here is the first substantial-looking result comparing the interleaving and bottle-
neck distances.
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2

CA B

gives

CA

or

CA

Fig. 5.1 The partial matchings between A,B and B,C (left) compose to give a partial matching
between A,C in two different ways (middle, right). The non-uniqueness arises from the point of
multiplicity 2 in B

Theorem 5.11 Let U,V be decomposable persistence modules (i.e. direct sums of
interval modules). Then

di(U,V) ≤ db(dgm(U), dgm(V)).

(We remind the reader that tameness is not required to define Dgm and dgm in this
case: see Sect. 2.6.)

Proof We show that whenever there exists a δ-matching between dgm(U) and
dgm(V), we have di(U,V) ≤ δ. The result follows by taking the infimum over all
such δ.

LetM be a δ-matching between the two diagrams. Since the points in each diagram
correspond to the interval summands of themodule, we can construct fromM a partial
matching between the interval summands of U and V.

Rewrite U and V in the form

U =
⊕

�∈L
U�, V =

⊕

�∈L
V�

so that each pair (U�,V�) is one of the following:

• a pair of matched intervals;
• U� is an unmatched interval, V� = 0;
• V� is an unmatched interval, U� = 0.

In each case, by Propositions5.6 and 5.7, we have di(U�,V�) ≤ δ. It follows from
Proposition5.5 that di(U,V) ≤ δ. �

We complete this section with the postponed proof.

Proof (Proposition 5.6) We treat the case where p, q, r, s are all finite. We must
show that if

δ > max (|p − r |, |q − s|)

http://dx.doi.org/10.1007/978-3-319-42545-0_2


88 5 The Isometry Theorem

then U,V are δ-interleaved. We define systems of linear maps

Φ = (φt : Ut → Vt+δ)

Ψ = (ψt : Vt → Ut+δ)

and then show that the interleaving relations

Φ1η
U

= 1η
V
Φ, Ψ 1η

V
= 1η

U
Ψ, Ψ Φ = 12δ

U
, ΦΨ = 12δ

V

hold.
The definition of the maps φt ,ψt is straightforward. Each vector space in U,V is

equal to zero or to the field k. If the domain and codomain equal k, then the map is
defined to be the identity 1 = 1k. Otherwise, the map is necessarily 0.

The first step is to show that the systems of mapsΦ = (φt),Ψ = (ψt ) are module
homomorphisms. For Φ this entails verifying that the diagram

Ut
��

�������� Ut+η

��������

Vt+δ
�� Vt+η+δ

commutes for all t and for all η > 0. Because of the special form of the vector spaces
and maps, it is enough to show that the situation is not one of the following:

• ��

��
��

��
•

��
��

��

◦ �� •

or • ��

��
��

��
◦

��
��

��

• �� •
Here a filled circle • indicates that the vector space is k, and an open circle ◦ denotes
that it is zero. For the first situation to occur, one must have

p ≤ t and t + δ ≤ r

which would imply δ ≤ r − t ≤ r − p. This contradicts the hypothesis δ > r − p.
For the second situation to occur, one must have

q ≤ t + η and t + η + δ ≤ s

which would imply δ ≤ s − t − η ≤ s − q. This contradicts the hypothesis δ > s −
q. It follows that Φ is a module homomorphism. By symmetry, so is Ψ .

The second step is to show that Ψ Φ = 12δ
U
and ΦΨ = 12δ

V
. For the first of these,

we must verify that the diagram
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Ut
��

�����
���

� Ut+2δ

Vt+δ

��������

commutes for all t . This time the unique forbidden configuration is

• ��

��
��

��
•

◦
������

and if this occurs then the top row implies

p ≤ t and t + 2δ ≤ q.

Since δ > r − p and δ > q − s we infer that

r < p + δ ≤ t + δ ≤ q − δ < s

which implies that the circle on the bottom row is filled after all. It follows that
Ψ Φ = 12δ

U
. By symmetry, ΦΨ = 12δ

V
.

This finishes the proof when p, q, r, s are finite. The infinite cases are
similar. �

5.3 The Bottleneck Distance (Continued)

If A,B are locally finite, it turns out that the ‘inf’ is attained in the definition

db(A,B) = inf (δ | there exists a δ -matching between A and B) ,

and can be replaced by ‘min’. This will allow us to make a tighter statement of the
stability theorem (5.14′) for q-tame modules. See Theorem5.23.

Theorem 5.12 Let A,B be locally finite multisets in the extended open half-plane
H◦. Suppose for every η > δ there exists an η-matching between A,B. Then there
exists a δ-matching between A,B.

The assertion is obvious if A,B are finite. The general case is proved using a
compactness argument, as follows.

Proof As usual we treat A,B as sets rather than multisets.
For every integer n ≥ 1, let Mn be a (δ + 1

n )-matching between A,B. The plan is
to construct a δ-matching M from the sequence (Mn). In practice, we work with the
indicator functions
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χ : A × B → {0, 1}
χn : A × B → {0, 1}

of the partial matchings M,Mn .
The first step is to construct χ as a limit of the sequence (χn). Take a fixed

enumeration
((α�,β�) | � ≥ 1)

of the countable set A × B. We will inductively construct a descending sequence

N = N0 ⊇ N1 ⊇ · · · ⊇ N� ⊇ · · ·

of infinite subsets of the natural numbers, with the property that χn(α�,β�) takes the
same value for all n ∈ N�. Having done so, we define χ(α�,β�) to be this common
value.

The construction of N� is straightforward: once N�−1 is defined, at least one of
the two sets

{n ∈ N�−1 | χn(α�,β�) = 0} and {n ∈ N�−1 | χn(α�,β�) = 1}

has infinite cardinality, and that will be our N�. (If both, then either will do.) Repeat.

Lemma 5.13 If F is any finite subset of A × B, then there exists � ≥ 1 such that

χ(α,β) = χn(α,β)

for all (α,β) ∈ F and for all n ∈ N�.

Proof Indeed, select � such that (α1,β1), . . . , (α�,β�) include all of F. �

The second step is to verify that χ is the indicator function of a δ-matching. There
are several items to check.

• For α ∈ A there is at most one β ∈ B such that χ(α,β) = 1.
Proof Suppose χ(α,β) = χ(α,β′) = 1 for distinct elements β,β′ ∈ B. By the
lemma, there exists n such that χn(α,β) = χn(α,β′) = 1, which contradicts the
fact that Mn is a partial matching. �

• For α ∈ A with d∞(α,Δ) > δ, there is at least one β ∈ B such that χ(α,β) = 1.

Proof Select N such that d∞(α,Δ) > δ + 1
N . Then the set

Fα = {
β ∈ B | d∞(α,β) ≤ δ + 1

N

}

is finite, since B is locally finite and these points lie in a square bounded away from
the diagonal. By Lemma5.13, there exists � such that
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χ(α,β) = χn(α,β)

for all β ∈ Fα and for all n ∈ N�. On the other hand, if n ≥ N , then Mn matches α
with some β ∈ Fα. Combining these observations,

χ(α,β) = χn(α,β) = 1

for sufficiently large n ∈ N� and for some β ∈ Fα. �
By symmetry we have:

• For β ∈ B there is at most one α ∈ A such that χ(α,β) = 1.
• For β ∈ B with d∞(β,Δ) > δ, there is at least one α ∈ A such that χ(α,β) = 1.

Finally:

• If χ(α,β) = 1 then d∞(α,β) ≤ δ.

Proof By Lemma5.13, there are infinitely many n for which χn(α,β) = 1. Then

d∞(α,β) ≤ δ + 1
n

for these n. Since n may be arbitrarily large, the result follows. �

These five bullet points confirm that M, defined by its indicator function χ, is a
δ-matching between A,B. �

Althoughwe have chosen to spell out a direct argument, in fact Theorem5.12 is an
instance of the compactness theorem in first-order logic. The set of constraints that
must be satisfied by an η-matching can be formulated as a theory Tη on a collection of
binary-valued variables xαβ . An η-matching is precisely a model for that theory. The
theory Tδ is seen to be logically equivalent to the union of the theories (Tη | η > δ).
If each Tη has a model, then any finite subtheory of this union has a model, therefore
by compactness Tδ has a model. The details are left to the interested reader.

5.4 The Isometry Theorem

Having defined the interleaving distance and the bottleneck distance, we can now
state the main theorem.

Theorem 5.14 Let U,V be q-tame persistence modules. Then

di(U,V) = db(dgm(U), dgm(V))

(Recall that dgm denotes the undecorated persistence diagram).
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The result naturally falls into two parts: the ‘stability theorem’ [19], [14]

di(U,V) ≥ db(dgm(U), dgm(V)), (5.14′)

and the ‘converse stability theorem’ [42]

di(U,V) ≤ db(dgm(U), dgm(V)). (5.14′′)

The proof of the converse stability theorem (5.14′′) occupies Sect. 5.5. We have
already seen the result for decomposable modules, in Theorem5.11, so it is a matter
of extending the result to q-tame modules that are not known to be decomposable.
The proof of the stability theorem (5.14′) is given in Sects. 5.6 and 5.7.

5.5 The Converse Stability Theorem

In this sectionwe deduce the converse stability inequality (5.14′′) for q-tamemodules
from Theorem5.11. A similar argument was given by Lesnick [42], to whom the
theorem is due. The key idea is that persistence modules can be approximated by
better-behaved persistence modules, using a procedure we call ‘smoothing’.

Definition 5.15 Let V be a persistence module, and let ε > 0. The ε -smoothing
of V is the persistence module Vε defined to be the image of the map

12ε
V

: V[−ε] → V[ε]

(using the ‘shift’ notation from Remark4.1). Thus (V ε)t is the image of the map

vt−ε
t+ε : Vt−ε → Vt+ε,

and (vε)st is the restriction of v
s+ε
t+ε .

Then we have a factorisation of 12ε
V

V[−ε] ��
V

ε �� V[ε] (5.1)

where the first map is surjective and the second map is injective. At a given index t
this is the sequence:

Vt−ε

vt+ε
t−ε

�� V ε
t

1 �� Vt+ε

Proposition 5.16 Let V be a persistence module. Then di(V,Vε) ≤ ε.

Proof One checks that the maps in (5.1) constitute an ε-interleaving. �

http://dx.doi.org/10.1007/978-3-319-42545-0_4
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Smoothing changes the persistence diagram in a predictable way. Here is the
atomic example (which the reader can easily verify):

Example 5.17 Let V = k(p∗, q∗). Then:

V
ε =

{
k((p + ε)∗, (q − ε)∗) if (p + ε)∗ < (q − ε)∗

0 otherwise

In other words, ε-smoothing shrinks the interval by ε at both ends. �

Proposition 5.18 The persistence diagram of Vε is obtained from the persistence
diagram of V by applying the translation Tε : (p, q) �→ (p + ε, q − ε) to the part
of the extended half-plane that lies above the line Δε = {(t − ε, t + ε) | t ∈ R}.

In otherwords, the entire diagram is pushed towards the diagonal by the translation
vector (ε,−ε). Information in Dgm(V) that lies below the line Δε is lost and cannot
be retrieved from Dgm(Vε).

In the case where Dgm is not everywhere defined, the proposition is understood to
include the assertion that the finite r-interior of the persistence measure, and hence
the region where Dgm is defined, is shifted by Tε.

Proof We consider three different cases. Case (ii) is subsumed by case (iii), but we
include it because it makes the proof easier to digest.

(i) V is decomposable. The image of a direct sum of maps is the direct sum of
the images of the maps; therefore ε-smoothing commutes with direct sums:

[ ⊕

�∈L
V�

]ε =
⊕

�∈L
V

ε
�

By Example5.17, the proposition is true for interval modules. It is therefore true for
direct sums of interval modules.

(ii) V is q-tame. It is enough to show that the rank function of Vε is equal to the
rank function of V shifted by Tε, since this determines the persistence measure and
hence the persistence diagram. Specifically, for all b < c we require:

rank[(V ε)b → (V ε)c] = rank[Vb−ε → Vc+ε]

In fact, these maps are related by the sequence

Vb−ε
�� (V ε)b �� (V ε)c �� Vc+ε

where the first map is surjective and the third map is injective. Since the rank of a
linear map is unchanged by pre-composing with a surjective map, or post-composing
with an injective map, it follows that the rank of the middle map is equal to the rank
of the composite. This is what we wished to prove.
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(iii) general case. We show that the persistence measure of Vε is equal to the
persistence measure of V shifted by Tε. Writing

A = a − ε, B = b − ε, C = c + ε, D = d + ε

this means showing that

〈◦A— •B— •C — ◦D | V〉 = 〈◦a— •b— •c—◦d | Vε〉

for all a < b ≤ c < d.
The proof is based on the following commutative diagram

(V ε)a �� (V ε)b �� (V ε)c ��

�����
���

� (V ε)d

�����
���

�

VA ��

									
VB ��

									
VC �� VD

in which the maps ↗ are surjective and the maps ↘ are injective. The diagram can
be thought of as a persistence module over an 8-element poset, the partial order being
implied by the arrows. We will carry out quiver calculations by restricting to various
totally-ordered subsets of this poset.

To begin with, surjectivity of the maps ↗ means that

〈◦A— •a〉 = 0 and 〈◦B — •b 〉 = 0,

and injectivity of the maps ↘ means that

〈 •c— ◦C 〉 = 0 and 〈 •d— ◦D〉 = 0.

Moreover, by the restriction principle, interval types containing any of these ‘forbid-
den’ configurations occur with multiplicity zero.

Then

〈◦A—–––— •b— •c—–––— ◦D〉 = 〈◦A—•B— •b— •c— •C— ◦D〉
+ three other terms

= 〈◦A—•B— •b— •c— •C— ◦D〉
= 〈◦A—•B—–––—–––— •C— ◦D〉
= 〈◦A—•B— •C— ◦D | V〉

and at the same time
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〈◦A—–––— •b— •c—–––— ◦D〉 = 〈◦A—◦a— •b— •c—◦d— ◦D〉
+ three other terms

= 〈◦A—◦a— •b— •c—◦d— ◦D〉
= 〈–––—◦a— •b— •c—◦d—–––〉
= 〈◦a— •b— •c—◦d | Vε〉

sowe get the required equality. The six ‘other terms’ are all zero because they contain
forbidden configurations. �

Corollary 5.19 Let V be q-tame. Then db(dgm(V), dgm(Vε)) ≤ ε.

Proof Indeed, an ε-matching is defined as follows:

(p, q) ∈ dgm(Vε) ↔ (p − ε, q + ε) ∈ dgm(V)

This is bijective except for the unmatched points of dgm(V), which lie on or below
the line Δε, and therefore have distance at most ε from the diagonal. �

Proposition 5.20 If V is q-tame then V
ε is locally finite.

Proof Since dim((V ε)t ) = rank[Vt−ε → Vt+ε] < ∞, it follows from Theorem 2.8
(2) that Vε is decomposable into interval modules. We claim that the collection of
intervals is locally finite. Specifically, for any t ∈ R, we estimate

#{intervals which meet [t − 1
2ε, t + 1

2ε]}
= #{points of Dgm(Vε) in the upper-left quadrant at (t + 1

2ε, t − 1
2ε)}

≤ #{points of Dgm(V) in the upper-left quadrant at (t − 1
2ε, t + 1

2ε)}
= rank[Vt− 1

2 ε → Vt+ 1
2 ε]

which is finite. The ‘≤’ in the third line is a consequence of Proposition5.18. �

We are now ready to prove the converse stability theorem for q-tame persistence
modules, using the triangle inequalities for di, db and our results on ε-smoothing.

Proof (5.14′′) Let U,V be q-tame persistence modules. For any ε > 0, the ε-
smoothings Uε,Vε are decomposable, so the converse stability theorem applies to
them. Then:

di(U,V) ≤ di(Uε,Vε) + 2ε by Proposition 5.16
≤ db(dgm(Uε), dgm(Vε)) + 2ε by Theorem 5.11
≤ db(dgm(U), dgm(V)) + 4ε by Corollary 5.19

http://dx.doi.org/10.1007/978-3-319-42545-0_2
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Since this is true for all ε > 0, we deduce that

di(U,V) ≤ db(dgm(U), dgm(V)).

The converse stability theorem for q-tame modules is proved. �

We finish this section with a characterisation of q-tame modules.

Theorem 5.21 A persistence module V is q-tame if and only if it can be approxi-
mated, in the interleaving distance, by locally finite modules.

Proof If V is q-tame then it is approximated by the modules Vε, which are locally
finite by Proposition5.20. Conversely, suppose V is approximated by locally finite
modules. Suppose b < c is given. Let W be a locally finite module which is ε-
interleaved with V, for some ε < (c − b)/2. Then

rcb = rank[Vb → Vc] = rank[Vb → Wb+ε → Wc−ε → Vc] ≤ dim(Wb+ε)

which is finite. It follows that V is q-tame. �

Example 5.22 It is easy to see that there are q-tame modules which are not locally
finite. For instance: ∞⊕

n=1

k[0, 1
n ] and

∞∏

n=1

k[0, 1
n ]

The latter is the example of Crawley–Boevey [24] with no interval decomposition
discussed in Remark 2.9. Incidentally, one can verify directly that the two modules
are 0-interleaved; and also that their persistencemeasures, and hence their persistence
diagrams, are equal away from the unique singular point (0−, 0+).

5.6 The Stability Theorem

The inequality (5.14′) can be expressed in the following form:

Theorem 5.23 Let U,V be q-tame persistence modules which are δ+-interleaved.
Then there exists a δ-matching between the multisets dgm(U), dgm(V).

It is easier to prove the following. (Notice the missing +.)

Theorem 5.24 Let U,V be q-tame persistence modules which are δ-interleaved.
Then there exists a δ-matching between the multisets dgm(U), dgm(V).

Theorem5.12 allows us to deduce Theorem5.23 from Theorem5.24: if U,V are
δ+-interleaved then there is an η-matching between their diagrams for every η >

δ, hence there is a δ-matching. The proof of Theorem5.24 depends on two main
ingredients:

http://dx.doi.org/10.1007/978-3-319-42545-0_2
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• The interpolation Lemma4.6, which embeds U,V within a 1-parameter family.
• The box inequalities 5.26, which relate the persistence measures of U,V locally.

Once these ingredients are in place, the theorem can be proved using the continuity
method of [19]. Our persistence diagrams may have infinite cardinality, so we will
need an additional compactness argument to finish off the proof.

Definition 5.25 Let R = [a, b] × [c, d] be a rectangle inR2. The δ-thickening of R
is the rectangle

Rδ = [a − δ, b + δ] × [c − δ, d + δ].

For convenience we will write

A = a − δ, B = b + δ, C = c − δ, D = d + δ

in this situation.

For infinite rectangles, we use−∞ − δ = −∞ and+∞ + δ = +∞.We can also
thicken an individual point: if α = (p, q) then

αδ = [p − δ, p + δ] × [q − δ, q + δ]

for δ > 0.

Lemma 5.26 (Box inequalities [19]) LetU,V be a δ-interleaved pair of persistence
modules. Let R be a rectangle whose δ-thickening Rδ lies above the diagonal. Then
μU(R) ≤ μV(Rδ) and μV(R) ≤ μU(Rδ).

If we use the region extension convention (Remark 3.22) we can state the lemma
without the requirement that Rδ lies above the diagonal, since the convention gives
μ(Rδ) = ∞ if it doesn’t.

Proof Write R = [a, b] × [c, d] and Rδ = [A, B] × [C, D] as above. Thanks to the
interleaving, the finite modules

Ua,b,c,d : Ua → Ub → Uc → Ud

and
VA,B,C,D : VA → VB → VC → VD

are restrictions of the following 8-term module

W : VA
Ψ−→ Ua −→ Ub

Φ−→ VB −→ VC
Ψ−→ Uc −→ Ud

Φ−→ VD

where Φ,Ψ are the interleaving maps.

http://dx.doi.org/10.1007/978-3-319-42545-0_4
http://dx.doi.org/10.1007/978-3-319-42545-0_3
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Using the restriction principle, we calculate:

μV([A, B] × [C, D]) = 〈 ◦A—————— •B— •C—————— ◦D | V 〉
= 〈 ◦A—————— •B— •C—————— ◦D | W 〉
= 〈 ◦A— ◦a— •b— •B— •C— •c— ◦d— ◦D | W 〉

+ eight other terms

≥ 〈 ◦A— ◦a— •b— •B— •C— •c— ◦d— ◦D | W 〉
= 〈–––— ◦a— •b—–––—–––—— •c— ◦d—––– | W 〉
= 〈–––— ◦a— •b—–––—–––—— •c— ◦d—––– | U 〉
= μU([a, b] × [c, d])

This proves μU(R) ≤ μV(Rδ). Then μV(R) ≤ μU(Rδ) follows by symmetry. �

Recall the measures at infinity defined in Sect. 3.6. By considering the appropriate
limits, we immediately have:

Proposition 5.27 (Box inequalities at infinity) Let μ, ν be r-measures onR2 which
satisfy a one-sided box inequality with parameter δ

μ(R) ≤ ν(Rδ)

for all rectangles R ∈ Rect(R2). Then

μ([a, b],−∞) ≤ ν([A, B],−∞), μ(−∞, [c, d]) ≤ ν(−∞, [C, D]),
μ([a, b],+∞) ≤ ν([A, B],+∞), μ(+∞, [c, d]) ≤ ν(+∞, [C, D]),

for all a < b and c < d; and

μ(−∞,−∞) ≤ ν(−∞,−∞), μ(+∞,−∞) ≤ ν(+∞,−∞),

μ(−∞,+∞) ≤ ν(−∞,+∞), μ(+∞,+∞) ≤ ν(+∞,+∞).

Here A = a − δ, B = b + δ, C = c − δ, D = d + δ. �

Consequently, if U,V are δ-interleaved persistence modules then μU,μV sat-
isfy (two-sided) box inequalities on (−∞,R) and (R,+∞) as well as the equality
μU(−∞,+∞) = μV(−∞,+∞).

http://dx.doi.org/10.1007/978-3-319-42545-0_3
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5.7 The Measure Stability Theorem

We now embed Theorem5.24 as a special case of a stability theorem for the diagrams
of abstract r-measures. The more general statement is no more difficult1 to prove,
and seems to be the natural home for the result.

Let D be an open subset of R2. For α ∈ D, define the exit distance of α to be

ex∞(α,D) = d∞(α,R2 − D) = min
(
d∞(α, x) | x ∈ R2 − D

)
. (5.2)

For instance, for the extended half-plane we have ex∞(α,H) = d∞(α,Δ).
Let A,B be multisets in D. A δ-matching between A,B is a partial matching

M ⊂ A × B such that

d∞(α,β) ≤ δ if α,β are matched,

ex∞(α,D) ≤ δ if α ∈ A is unmatched,

ex∞(β,D) ≤ δ if β ∈ B is unmatched.

If D is not clear from the context, we refer to M as a ‘δ-matching between (A,D)

and (B,D)’.
With the same proof as Proposition5.9, we have:

Proposition 5.28 (triangle inequality) If A,B,C are multisets in D and there exist
a δ1-matching between (A,D), (B,D) and a δ2-matching between (B,D), (C,D),
then there exists a (δ1 + δ2)-matching between (A,D), (C,D). �

Now for the main theorem.

Theorem 5.29 (stability for finite measures) Suppose (μx | x ∈ [0, δ]) is a 1-
parameter family of finite r-measures on an open set D ⊆ R2. Suppose for all
x, y ∈ [0, δ] the box inequality

μx (R) ≤ μy(R
|y−x |)

holds for all rectangles R whose |y − x |-thickening R|y−x | belongs to Rect(D).
Then there exists a δ-matching between the undecorated diagrams (dgm(μ0),D)

and (dgm(μδ),D).

In view of the interpolation Lemma4.6, this implies Theorem5.24 (take μx =
μ(Ux ) andD = H◦) and therefore the stability theorem (5.14′) for q-tame modules.

Example 5.30 The existence of a 1-parameter family interpolating between μ0

and μδ may seem unnecessarily strong. It is natural to hope that two measures μ, ν
which satisfy the (two-sided) box inequality with parameter δ will have diagrams

1In fact it’s a little easier to prove, because the compactness argument for diagrams with infinitely
many points can be made more cleanly in this generality.

http://dx.doi.org/10.1007/978-3-319-42545-0_4
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Fig. 5.2 The box inequalities do not control the bottleneck distance. The two diagrams (5 dark
blue squares; 5 light pink circles) have box distance 1 and bottleneck distance 3. Generalising this
example, one can exhibit a pair of diagrams with 4k + 1 points each, whose box distance is 1 and
whose bottleneck distance is 2k + 1. By ‘box distance 1’ we mean that every rectangle R covers at
most as many pink points as its 1-thickening R1 covers blue points, and vice versa

dgm(μ), dgm(ν)which are δ-matched. This is not true, and in fact there is no universal
bound on the bottleneck distance between the two diagrams. See Fig. 5.2.

Our goal for the rest of this section is to prove Theorem5.29. Parts 1 and 2 closely
follow the method of Cohen-Steiner, Edelsbrunner and Harer [19]. Afterwards, in
Sect. 5.8, we generalise the theorem to r-measures that are not finite.

Initial remark. Because the metric d∞ separatesR2 into nine strata (the standard
plane, the four lines at infinity, and the four points at infinity), we seek separate
δ-matchings for each stratum that meetsD. We begin with the points in the standard
plane.

Temporary hypothesis. Suppose initially that D ⊆ R2.

Part 1. The Hausdorff distance between (dgm(μx ),D), and (dgm(μy),D) is at
most |y − x |.

Write A = dgm(μx ), B = dgm(μy), and η = |y − x |. The assertion is understood
to mean:

• If α ∈ A and ex∞(α,D) > η, then there exists β ∈ B with d∞(α,β) ≤ η.
• If β ∈ B and ex∞(β,D) > η, then there exists α ∈ A with d∞(α,β) ≤ η.

Proof By symmetry, it is enough to prove the first statement. Given α, let ε > 0 be
small enough that η + ε < ex∞(α,D). Then the box inequality gives

1 ≤ μx (α
ε) ≤ μy(α

η+ε)

so there is at least one point of B in the square αη+ε. This is true for all sufficiently
small ε > 0, and moreover B is locally finite. Therefore there is at least one point
of B in αη. �
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Henceforth, we will write Ax = dgm(μx ) for all x .

Part 2. The theorem is true if Ax has finite cardinality for all x .

Proof (i) The triangle inequality for matchings includes the implication

A0,Ax are x-matched
Ax ,Ay are (y − x)-matched

}
⇒ A0,Ay are y-matched

whenever 0 < x < y.

(ii) We claim that for every x ∈ [0, δ] there exists ρ(x) > 0 such that Ax ,Ay are
|y − x |-matched whenever y ∈ [0, δ] with |y − x | < ρ(x).

Suppose α1, . . . ,αk is an enumeration of the distinct points of Ax , with respective
multiplicities n1, . . . , nk . Let ρ(x) be chosen to satisfy the following finite set of
constraints:

0 < ρ(x) ≤
{

1
2 ex

∞(αi ,D) all i
1
2d

∞(αi ,α j ) all i,j distinct

We must show that if |y − x | < ρ(x) then Ax ,Ay are |y − x |-matched. Write η =
|y − x | and let

(R2 − D)η = {
α ∈ D | ex∞(α,D) ≤ η

}
.

It follows from Part 1 that Ay is contained entirely in the closed set

(R2 − D)η ∪ α
η
1 ∪ · · · ∪ α

η
k

and it follows from the definition of ρ(x) that the terms in the union are disjoint. It
is easy to count the points of Ay in each square α

η
i . Let ε > 0 be small enough that

2η + ε < 2ρ(x). Then the box inequality gives

ni = μx (α
ε
i ) ≤ μy(α

η+ε
i ) ≤ μx (α

2η+ε
i ) = ni .

Thus μy(α
η+ε
i ) = ni for all small ε > 0. We conclude that the square α

η
i contains

precisely ni points of Ay .
This completes the proof of (ii), because we can match the ni copies of αi with

the ni points of Ay in the square α
η
i , for each i , to define an η-matching between

(Ax ,D), (Ay,D). All points of Ax are matched, and the only unmatched points of Ay

lie in R2 − D and do not need to be matched.

Items (i) and (ii) formally imply that A0,Aδ are δ-matched, using a standard
Heine–Borel argument. Indeed, let

m = sup(x ∈ [0, δ] | A0 and Ax are x-matched).

First,m is positive; specificallym ≥ ρ(0). Applying (i) to 0 < m ′ < m, whereA0,Am ′

arem ′-matched andm − m ′ < ρ(m), we deduce that A0,Am arem-matched. Suppose
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m < δ. Applying (i) to 0 < m < m ′′, wherem ′′ − m < ρ(m), we deduce that A0,Am ′′

are m ′′-matched. This contradicts the definition of m. Therefore m = δ, and A0,Aδ

are δ-matched. �

Part 3. The theorem is true without assuming finite cardinality.

Proof Let (Dn)be an increasing sequence of open subsets ofDwhoseunion equalsD
and such that each Dn has compact closure. Because Ax is locally finite, it follows
that Ax ∩ Dn is finite for all x, n. We can therefore restrict the family of measures
to each Dn in turn, and apply Part 2 to get a δ-matching Mn between (A0 ∩ Dn,Dn)

and (Aδ ∩ Dn,Dn).
We now take a limit M of the partial matchings Mn , using the construction in the

proof of Theorem5.12. This works because A0,Aδ are locally finite and therefore
countable. Let χ,χn denote the indicator functions of M,Mn . Recall Lemma5.13:
for any finite subset F ⊂ A0 × Aδ , there are infinitely many n ∈ N for which

χ(α,β) = χn(α,β)

for all (α,β) ∈ F.
Wemust show thatM is a δ-matching between (A0,D) and (Aδ,D). It is immediate

that each matched pair is separated by at most δ, since this is true for every Mn . The
argument that each α is matched with at most one β, and vice versa, is the same as
in Lemma5.13.

Finally, suppose α ∈ A0 with ex∞(α,D) > δ. The square αδ is contained in D

and is compact, and therefore is contained inDn for sufficiently large n. This means
that ex∞(α,Dn) > δ and hence α is matched in Mn for sufficiently large n. Now
α has only finitely many δ-neighbours β1, . . . ,βk in the locally finite set Aδ , so by
Lemma5.13 there are infinitely many n such that χ(α,βi ) = χn(α,βi ) for all i . By
taking a sufficiently large such n, we conclude that

χ(α,βi ) = χn(α,βi ) = 1

for some i . Thus α is matched.
By symmetry, any β ∈ Aδ with ex∞(β,Δ) > δ is matched in M to some α ∈ A0.

It follows that M is the required δ-matching. �

The theorem at infinity.Now supposeD ⊆ R2 meets any of the strata at infinity.
For each of the four lines at infinity, the 3-part proof given above works almost
verbatim, if we replace D with its intersection with the chosen line, and each r-
measureμx with the correspondingmeasure at infinity. The other change is to replace
the word ‘square’ with the word ‘interval’. The necessary box inequality at infinity
is found in Proposition5.27.

For the four corners (±∞,±∞), it is easier still: the box inequality at each corner
implies that μ0,μδ have the same multiplicity there. The interpolating measures are
not needed. �
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This completes the proof of the stability theorem for finite measures on an open
regionD, and hence the stability theorem for q-tame persistence modules, and hence
the isometry theorem for q-tame persistence modules.

5.8 The Measure Stability Theorem (Continued)

The stability theorem generalises to measures that are not necessarily finite. By
the region extension convention (Remark3.22), we may suppose that the measures
are defined on R2 (rather than just a subset of R2). Given a 1-parameter family
(μx | x ∈ [0, δ]), the finite interiors

Fx = F◦(μx )

now depend on x ; whereas previously we had Fx = D for all x .
For F ⊂ R2 an open set and δ ≥ 0, the ‘reverse offset’ is the open set

F−δ = {
α ∈ F | ex∞(α,F) > δ

} = {
α ∈ F | αδ ⊂ F

}
.

Intuitively, this shrinks F by δ at the boundary. Clearly F ⊇ G implies F−δ ⊇ G−δ ,
and (F−δ1)−δ2 = F−(δ1+δ2). Note also that (F ∩ G)−δ = F−δ ∩ G−δ . This is easiest to
see from the second characterisation.

Remark 5.31 The operation [·]−δ has no effect on the corners at infinity, and acts
independently on the standard plane and on the four lines at infinity.

We define δ-matchings for multisets in unequal regions. Let F,G be open subsets
of R2, let A,B be multisets in F,G respectively, and let δ > 0. A δ -matching
between (A,F), (B,G) is a partial matching M between A,B such that the following
four conditions hold:

• F ⊇ G−δ and G ⊇ F−δ ,
• if (α,β) ∈ M then d∞(α,β) ≤ δ,
• every α ∈ A ∩ G−δ is matched with some β ∈ B,
• every β ∈ B ∩ F−δ is matched with some α ∈ A.

The first of these is a compatibility condition between the regions: they cannot be too
unequal. This is automatic if F = G, which is why we haven’t seen it before. Notice
the cross-over in the last two conditions: a point in A is allowed to be unmatched
only if it is close to the boundary of B’s region G, and vice versa.

Proposition 5.32 (triangle inequality) If A,B,C are multisets in F,G,H respec-
tively, and there exist a δ1-matching between (A,F), (B,G) and a δ2-matching
between (B,G), (C,H), then there exists a (δ1 + δ2)-matching between (A,F),

(C,H).

http://dx.doi.org/10.1007/978-3-319-42545-0_3
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Proof As usual, compose the two partial matchings to get a partial matching M
between A,C. Writing δ = δ1 + δ2, we must check that this is a δ-matching between
(A,F), (C,H). For the first condition we see that

F ⊇ G−δ1 ⊇ (H−δ2)−δ1 = H−δ and H ⊇ G−δ2 ⊇ (F−δ1)−δ2 = F−δ.

The second condition follows from the triangle inequality for d∞. For the third
condition, if α ∈ A lies inH−δ then by the inclusion above it lies in G−δ1 . Therefore
α is matched with β ∈ B. Moreover β must then lie in H−(δ−δ1) = H−δ2 and so is
matched with γ ∈ C. The fourth condition follows by symmetry. �

Remark 5.33 There is no triangle inequality if the compatibility condition between
the regions is dropped in the definition of δ-matching.

Here is the main theorem of this section and the last new theorem of the mono-
graph. Again we use the abbreviation Fx = F◦(μx ) for the finite interiors.

Theorem 5.34 (stability for measures) Suppose (μx | x ∈ [0, δ]) is a 1-parameter
family of r-measures on R2. Suppose for all x, y ∈ [0, δ] the box inequality

μx (R) ≤ μy(R
|y−x |)

holds for all rectangles R ∈ Rect(R2). Then there exists a δ-matching between the
undecorated diagrams (dgm(μ0),F0) and (dgm(μδ),Fδ).

Remark 5.35 This version of measure stability allows us to dispense with the final
assertion in Theorem4.7 when deducing stability (5.14′) for q-tame modules: we no
longer need to assume that the interpolating modules are themselves q-tame. The
reader may wish to consider why this works. It results from careful management of
the boundary.

An easy first step is to verify the condition on the regions F0,Fδ:

Proposition 5.36 Under the hypotheses of Theorem5.34, we have inclusions

Fx ⊇ F−|y−x |
y

for all x, y ∈ [0, δ].
Proof Suppose α ∈ F

−|y−x |
y , then equivalently α|y−x | ⊂ Fy . Since the square α|y−x |

is compact and Fy is open, there exists ε > 0 such that α|y−x |+ε ⊂ Fy . The box
inequality gives

μx (α
ε) ≤ μy(α

|y−x |+ε)

and the right-hand side is finite by Proposition 3.18. Thus α ∈ F◦(μx ) = Fx . �

http://dx.doi.org/10.1007/978-3-319-42545-0_4
http://dx.doi.org/10.1007/978-3-319-42545-0_3
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Proof (Theorem 5.34) The argument closely follows the proof of the stability the-
orem for finite measure, so we will confine ourselves to indicating the necessary
modifications. We use the abbreviation Ax = dgm(μx ).

Initial remark. Recall that the proof is carried out separately for each of the nine
strata. The four corners at infinity are handled easily (each corner belongs to both F0

and Fδ , or to neither; in the former case the μ0,μδ multiplicities agree). The proof is
described for the points in the standard plane. The same proof applies to each of the
four lines at infinity, replacing each μx with the corresponding measure at infinity.

Part 1. The Hausdorff distance between (Ax ,Fx ), and (Ay,Fy) is at most η =
|y − x |.

The assertion is understood to mean:

• If α ∈ Ax and ex∞(α,Fy) > η, then there exists β ∈ Ay with d∞(α,β) ≤ η.
• If β ∈ Ay and ex∞(β,Fx ) > η, then there exists α ∈ Ax with d∞(α,β) ≤ η.

Proof By symmetry it is enough to prove the first statement. Letα ∈ Ax . For all ε > 0
with η + ε < ex∞(α,Fy), we have 1 ≤ μx (α

ε) ≤ μy(α
η+ε) so there is at least one

point of Ay in αη. �

Part 2. The theorem is true if Ax has finite cardinality for all x .

Proof Item (i) is given by the triangle inequality (Proposition5.32).
Item (ii) uses the same strategy as before. Let (αi ) be a finite enumeration of

the distinct points of Ax , with respective multiplicities (ni ). Then ρ(x) is chosen to
satisfy

0 < ρ(x) ≤
{

1
2 ex

∞(αi ,Fx ) all i
1
2d

∞(αi ,α j ) all i, j distinct.

If η = |y − x | < ρ(x), then Part 1 implies that Ay is contained in the disjoint union

(R2 − Fx )
η ∪ α

η
1 ∪ · · · ∪ α

η
k .

The box inequality is then used to count precisely ni points of Ay in the square α
η
i .

This defines a partial matching where all points of Ax are matched and all points of
Ay ∩ F

−η
x are matched.

The formal deduction of Part 2 from (i) and (ii) is unchanged, since it is a formal
deduction.

Part 3. The theorem is true without assuming finite cardinality.

Proof The idea is to restrict each measure μx to a relatively compact open subset
F̂x ⊂ Fx = F◦(μx ). The subsets satisfy the compatibility condition

F̂x ⊇ F̂−|y−x |
y
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for all x, y ∈ [0, δ].
Specifically, for ε > 0 and r > δ, let

F̂x = F−ε
x ∩ Qr

where Qr = (−r, r) × (−r, r) is the open d∞-disk of radius r . Define a function on
rectangles as follows:

μ̂x (R) =
{

μx (R) if R ⊂ F̂x

∞ otherwise

It is easy to check that μ̂x is an r-measure (additivity still holds), that F◦(μ̂x ) = F̂x ,
and that dgm(μ̂x ) = dgm(μx ) ∩ F̂x .

Lemma 5.37 The family (μ̂x ) satisfies the box inequality μ̂x (R) ≤ μ̂y(R|y−x |) for
all x, y ∈ [0, δ].
Proof Since the box inequality is assumed to hold for (μx ), it will automatically hold
for (μ̂x ); except possibly for rectangles R where the left-hand side of the inequality
has become infinite while the right-hand side hasn’t. This happens when R �⊂ F̂x

while R|y−x | ⊂ F̂y , andwe can prevent it by ensuring that F̂x ⊇ F̂
−|y−x |
y . And, indeed,

F̂−|y−x |
y = (F−ε

y ∩ Qr )−|y−x | = F−(ε+|y−x |)
y ∩ Qr−|y−x | ⊆ F−ε

x ∩ Qr = F̂x

as required. �

We resume the proof of Part 3. Since F̂x has compact closure in Fx , and Ax is
locally finite, it follows that Âx = dgm(μ̂x ) = Ax ∩ F̂x has finite cardinality. We can
therefore apply Part 2 to the family (μ̂x ) to get a δ-matching between (Â0, F̂0) and
(Âδ, F̂δ). This can be interpreted as a partial δ-matching between A0,Aδ where:

• α ∈ A0 is matched whenever α ∈ (F−ε
δ ∩ Qr )−δ = F

−(δ+ε)
δ ∩ Qr−δ

• β ∈ Aδ is matched whenever β ∈ (F−ε
0 ∩ Qr )−δ = F

−(δ+ε)
0 ∩ Qr−δ

Repeat this argument for a sequence (εn, rn) where εn → 0 and rn → +∞. This
gives a sequence of δ-matchings Mn , and we can form a limit M as before.

If α ∈ A0 ∩ F−δ
δ then eventually α ∈ F

−(δ+εn)
δ ∩ Qrn−δ and so α is matched by Mn

for all sufficiently large n. The same is true for β ∈ Aδ ∩ F−δ
0 . With this information,

we can complete the usual proof thatM is a δ-matching between (A0,F0) and (Aδ,Fδ).
This completes the proof of Part 3, and hence of Theorem5.34. �

Here is a sample consequence.

Example 5.38 (Stability of the Webb module) Let V be a persistence module which
is δ-interleaved with the moduleW of Example 3.31. By interpolation (Lemma 4.6)
and the box inequalities (Lemma5.26), we can apply the measure stability theo-
rem (Theorem5.34): there exists a δ-matching between the undecorated diagrams
(dgm(μV),F◦(μV)) and (dgm(μW),F◦(μW)). This amounts to the following.

http://dx.doi.org/10.1007/978-3-319-42545-0_3
http://dx.doi.org/10.1007/978-3-319-42545-0_4
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• In the finite part H of the half-plane: Any singular points of μV are confined
to the diagonal strip Δ[0,δ]. Each point of dgm(μV) outside this strip is matched
with some point (−n, 0) ∈ dgm(μW). Conversely, the only unmatched points of
dgm(μW) must lie within distance δ of the diagonal or a singular point of μV. In
particular, if δ < 1

4 then all points of dgm(μW) are matched.

• On the line (−∞,R): All points and singular points of μV are contained in the
interval (−∞, [−δ,+δ]). There is at least one singular point.

• On (R,+∞) and at (−∞,+∞): ThemeasureμV has no points or singular points.



Chapter 6
Variations

6.1 Partial Interleavings

In some practical data analysis situations, one considers persistence modules which
are only partially interleaved. One such scenario is presented by Chazal et al. in the
context of clustering bymode-seeking [18]. A filtered simplicial complex on an input
point cloud is compared with the sublevelset filtration of the density function it was
sampled from. In low-density regions, the sample is too sparse to expect there to be
an interleaving. Nevertheless, there is interleaving when the density is sufficiently
high.

This leads to the following notion of partial interleaving, adapted from [18]. Two
persistence modules U and V are said to be δ-interleaved up to time t0 if there
are maps φt : Ut → Vt+δ and ψt : Vt → Ut+δ defined for all t ≤ t0, such that the
diagrams (4.1) commute for all values s < t ≤ t0; that is, for all values where the
maps are defined.

We can prove a modified version of the stability theorem; see Fig. 6.1 (left).

Theorem 6.1 (from [18]) Let U and V be two q-tame persistence modules that are
δ-interleaved up to time t0. Then, there is a partial matchingM ⊂ dgm(U) × dgm(V)

with the following properties:

• Points (p, q) in either diagram for which 1
2 |p − q| ≤ δ are not required to be

matched.
• Points (p, q) in either diagram for which p ≥ t0 − δ are not required to be
matched.

All other points must be matched. Then:

• If α, β are matched, then the p-coordinates of α, β differ by at most δ.
• If α, β are matched and one of α, β lies below the line q = t0, then we have
d∞(α, β) ≤ δ.

© The Author(s) 2016
F. Chazal et al., The Structure and Stability of Persistence Modules,
SpringerBriefs in Mathematics, DOI 10.1007/978-3-319-42545-0_6
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t0 + δ

t0 + δ

2

t0

t0 δ

Fig. 6.1 Left: The partial matching of Theorem 6.1 between dgm(U) (•) and dgm(V) (◦). Right:
The projection from dgm(U) (• and •) to dgm(Ũ) (◦). The grey dots are the points that disappear

For the proof, we introduce two new persistence modules Ũ, Ṽ.

Ũt = Ut if t ≤ t0 + δ and Ũt = 0 otherwise
Ṽt = Vt if t ≤ t0 + δ and Ṽt = 0 otherwise

with maps
ũst = ust if t ≤ t0 + δ and ũst = 0 otherwise
ṽst = vst if t ≤ t0 + δ and ṽst = 0 otherwise

for all s ≤ t . We may call Û, V̂ the truncations of U,V to (−∞, T ], where T =
t0 + δ.

Proof There are three steps.

Step1. The decorated diagramof a persistencemoduleUdetermines the decorated
diagram of its truncation Ũ, in a straightforward way. Specifically, transform each
point (p∗, q∗) ∈ Dgm(U) as follows:

(p∗, q∗) 
→

⎧
⎪⎨

⎪⎩

(p∗, q∗) if q∗ < T+

(p∗, T+) if p∗ < T+ ≤ q∗

disappears if T+ ≤ p∗
(6.1)

Then Dgm(Ũ) is the result of this transformation. The consequent relationship
between the undecorated diagrams is illustrated in Fig. 6.1 (right).

Step 2. If U,V are δ-interleaved up to time t0, then Ũ, Ṽ are δ-interleaved.
Combining the first two steps we get the third.
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Step 3. The stability theorem gives a δ-matching between dgm(Ũ), dgm(Ṽ). This
lifts to a matching between dgm(U), dgm(V) which has the properties stated in the
theorem.

The second and third steps are straightforward. Only the (intuitively plausible)
first step requires any technical input. The framework developed in [14] leads to a
2-page argument, presented in the appendix of [18]. Here is a shorter proof. Write
μ = μU and μ̃ = μ

Ũ
. Let A denote the multiset obtained from Dgm(U) by applying

the transformation in Eq. (6.1). Consider an arbitrary rectangle [a, b] × [c, d] ∈
Rect(H). We easily see:

card(A|[a,b]×[c,d]) =

⎧
⎪⎨

⎪⎩

μ([a, b] × [c, d]) if d ≤ T

μ([a, b] × [c,+∞]) if c ≤ T < d

0 if T < c

To show that we have correctly determined Dgm(Ũ), it suffices to show that
card(A|[a,b]×[c,d]) = μ̃([a, b] × [c, d]) for all rectangles. And indeed:

• If d ≤ T , then:

μ̃([a, b] × [c, d]) = 〈◦a—•b—•c—◦d | Ũ〉
= 〈◦a—•b—•c—◦d | U〉 = μ([a, b] × [c, d])

• If c ≤ T < d, then:

μ̃([a, b] × [c, d]) = 〈◦a—•b—•c—◦d | Ũ〉
= 〈◦a—•b—•c—— | Ũ〉
= 〈◦a—•b—•c—— | U〉 = μ([a, b] × [c,+∞])

since Ũd = 0.
• If T < c, then:

μ̃([a, b] × [c, d]) = 〈◦a—•b—•c—◦d | Ũ〉 = 0

since Ũc = 0.

It follows that Dgm(Ũ) = A as claimed. �

6.2 Extended Persistence

Cohen-Steiner, Edelsbrunner and Harer [20] introduced extended persistence to cap-
ture the homological information carried by a pair (X, f ). Some but not all of this
information is recovered by the sublevelset persistence H(Xsub). The idea is to grow
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the space from the bottom up, through sublevelsets; and then to relativise the space
from the top down, with superlevelsets. Extended persistence is the persistent homol-
ogy of this sequence of spaces and pairs.

It is usually assumed that (X, f ) has finitelymany homological critical points (ai ).
One applies a homology functor to the finite sequence1

Xa0 → Xa1 → · · · → Xan−1 → X → (X, Xan ) → · · · → (X, Xa2) → (X, Xa1)

to get a quiver representation. The indecomposable summands of this representation
are interpreted as features, and are drawn as points in the ‘extended persistence
diagram’. There are three kinds of feature:

• ordinary features (which are born and die before the central X );
• relative features (which are born and die after the central X );
• extended features (which are born before the X and die after it).

We refer to [20] for the interpretation of these three types of features. The finiteness
assumption is satisfied when (X, f ) is a compact manifold with a Morse function,
or a compact polyhedron with a piecewise-linear map. In the former situation, there
are extra symmetries (Poincaré, Lefschetz) which are explored in [20].

In practice, it is straightforward to define the extended persistence diagram under
a weaker hypothesis. Suppose X is a compact polyhedron and f is a continuous
real-valued function on X . Then:

• rank
(
H(Xs) → H(Xt )

)
< ∞ whenever s < t ; and

• rank (H(X, Xs) → H(X, Xt )) < ∞ whenever s > t .

The first of these facts is Theorem 3.33. The second fact is proved similarly, by
factorising the map H(X, Xs) → H(X, Xt ) through some H(X,Y ), where Y is a
subpolyhedron of X nested between Xs, Xt . Since H(X,Y ) is finite-dimensional the
result follows.

Define the ordered set

R= {t | t ∈ R} ordered by s ≤ t ⇔ s ≥ t,

thought of as a ‘backwards’ copy of the real line, with bars under numbers to remind
us. For extended persistence we may work with the set

Rep = R ∪ {+∞} ∪ R

with the ordering s < +∞ < t for all s, t .

1We write Xt = (X, f )t = f −1(−∞, t] and Xt = (X, f )t = f −1[t,+∞) for sublevelsets and
superlevelsets.

http://dx.doi.org/10.1007/978-3-319-42545-0_3
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The extended persistence module Xep = X
f
ep for (X, f ) is defined as follows:

Vt = H(Xt ) for t ∈ R
V+∞ = H(X)

Vt = H(X, Xt ) for t ∈ R

Note that H(X+∞) = H(X) ∼= H(X,∅) = H(X, X+∞).
Since Rep is order-isomorphic to the real line, we may interpret Xep it as a per-

sistence module over R. The two facts cited above imply that it is q-tame, so the
decorated diagram is defined away from the diagonal.

Alternatively, we can define the extended persistence diagram in three pieces:

μord([a, b] × [c, d]) = 〈◦a—•b—•c—◦d〉 when a < b ≤ c < d

μrel([a, b] × [c, d]) = 〈◦a—•b—•c—◦d〉 when a > b ≥ c > d

μext([a, b] × [c, d]) = 〈◦a—•b—•c—◦d〉 when a < b and c > d

taking V−∞ = 0 and V−∞ = 0 whenever needed.
The measuresμord, μrel are defined over the half-planeH, whereasμext is defined

over R2.
Stability for dgmord, dgmrel and dgmext may be proved individually for each dia-

gram. Given two functions f, g which are δ-close in the supremum norm, there are
inclusions

(X, f )t ⊆ (X, g)t+δ (X, f )t ⊆ (X, g)t−δ

(X, g)t ⊆ (X, f )t+δ (X, g)t ⊆ (X, f )t−δ

which imply the box lemma (Lemma 5.26) for each measure. Since linear combina-
tions of continuous functions are continuous, we can interpolate between f and g to
satisfy the hypotheses required by the measure stability theorem (Theorem 5.29).

Remark 6.1 In the spirit of Theorem 3.37, one may treat the case where X is a
locally compact polyhedron and f is proper. The exercise of locating the possible
singularities of the three measures is left to the persistent reader.

http://dx.doi.org/10.1007/978-3-319-42545-0_5
http://dx.doi.org/10.1007/978-3-319-42545-0_5
http://dx.doi.org/10.1007/978-3-319-42545-0_3
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B
Bottleneck distance, see partial matching
Box inequalities, 97

at infinity, 98
failure to control bottleneckdistance, 100

C
Converse stability, see isometry theorem

D
Decorated pair

as point with tick, 20
rectangle membership, 33
representing a real interval, 19

Decorated reals, 19
interval membership, 19
total order, 19

E
Equivalence theorem, 38, 43

F
Finite type, see tameness conditions

H
Half-plane, 20

extended, 20
h-tame, see tameness conditions

I
Indecomposable module

example of Crawley–Boevey, 23, 96
example of Lesnick, 23
example of Webb, 23, 48, 57, 106

Interiors
finite (r-)interior of an r-measure, 42–43
(r-)interior of a rectangle, 33
(r-)interior of a region, 38
(r-)interiors in the extended plane, 44–45

Interleaving
as module over a larger poset, 70
δ-interleaving, 69
δ+-interleaving, 82
interleaving distance, 82
interpolation lemma, 72–73
partial interleaving, 109

Interpolation lemma, see interleaving
Interval decomposition, 21–22

existence, 22
failure, see indecomposable module
uniqueness, 22

Interval module, 18
Isometry theorem, 91

converse stability, 92
stability, 92
stability for measures, 99, 104

L
Locally finite, see tameness conditions

M
Multiplicity formula, see r-measure
Multisets, 13
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P
Partial matching, 85

bottleneck distance, 85
compactness argument, 89–91
composition, 86
composition, non-uniqueness, 86

Persistence diagram
decomposition diagrams, 24
decomposition vs measure, 48–49
measure diagrams, 47
snapping principle, 64
vanishing lemmas, 55–57, 60

Persistence measure, 32
additivity, three proofs, 34
alternating sum formula, 34, 47
infinite rectangles, 47

Persistence module, 15
as a functor, 15
ephemeral, 82
extension to decorated reals, 58–59
finite approximation, 64
homomorphism, 18
homomorphism, shifted, 67–68
interleaving, see interleaving
Morselike, 64–66
over a poset, 17
shifted module, 68
smoothing, see smoothing
tameness, see tameness conditions

Persistent Betti numbers, 2
pfd, see tameness conditions

Q
q-tame, see tameness conditions
Quiver calculus, 26–29

circle notation, 27
restriction principle, 28

R
Rectangle, 32

in the extended plane, 44
thickening, 97

Region extension convention, 44
Restriction principle, see quiver calculus
r-measure (rectangle measure), 36–38

derived measures at infinity, 46
diagram, decorated, 39, 43, 45
diagram, undecorated, 39, 44, 45
finite (r-)interior, see interiors
in the extended plane, 44–47
multiplicity formula, 39
non-finite case, 42–44
singular point, 43

r-tame, see tameness conditions

S
Size function, 2
Smoothing, 92

effect on persistence diagram, 93
Stability, see isometry theorem
Sublevelset filtration, 16

extended persistence, 111–113
offset homology is q-tame, 53

T
Tameness conditions, 49–51

finite type, locally finite, pfd, 49
h-tame, v-tame, r-tame, 50–51
q-tame, 17, 50, 52–53
q-tame as limit of locally finite, 96

V
v-tame, see tameness conditions
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