Chapter 6
Synchronization of Chaotic Systems

The synchronization of stable oscillations is a well-known non-linear phenomenon
frequently found in nature and widely used in technology [1-5]. Under synchro-
nization, one usually understands the ability of coupled oscillators to switch from
an independent oscillation regime, characterized by beats, to a stable coupled
oscillation regime with identical or rational frequencies, when the coupling constant
increases.

The statement of the problem of chaotic oscillation synchronization may appear
paradoxical in contrast to stable oscillations. Two identical autonomous chaotic
systems with almost the same initial conditions diverge exponentially quickly in
the phase space. This is the main difficulty, at first sight making it impossible to
create synchronized chaotic systems which will function in reality. Nevertheless,
there are several reasons which make the realization of chaotic synchronization a
very promising goal.

The noise-like behavior of chaotic systems suggests that they can be useful
for secure communications. Even a fleeting glance at the Fourier spectrum of a
chaotic system confirms this: no dominating peaks, no dominating frequencies, a
normal broadband spectrum. Any attempt to use a chaotic signal for communication
purposes makes it necessary for the recipient to have a duplicate of the signal used in
the transmitter (i.e., the synchronized signal). In practice, synchronization is needed
for many communication systems, not necessarily just chaotic ones. Unfortunately,
existing synchronization methods are not suitable for chaotic systems, and therefore
this purpose requires the development of new ones.

Chaos is widely used in cybernetic, synergetic, and biological applications [5—
7]. If we have a system composed of several chaotic subsystems, then it is clear that
their efficient joint functioning is possible only after the synchronization problem is
solved.

In spatially extended systems, we often face the transition from homogeneous
spatial motion to one changing in space (including also chaotic changes). For
example, in the Belousoff-Zhabotinski reaction, dynamics can be chaotic but
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112 6 Synchronization of Chaotic Systems

spatially homogeneous. This means that different spatial parts are synchronized
with each other, i.e., they perform the same motions in the same moment of time,
even if those motions are chaotic. But under other conditions the homogeneity loses
stability and the system becomes inhomogeneous. Such spatial homogeneity <
inhomogeneity transitions are typical for extended systems, and synchronization
must play a key role there.

The interest in the chaotic synchronization problem goes far beyond the limits
of the natural sciences. It seems natural that the efficiency of an advertisement is
determined by ability of the advertising objects to synchronize. The same can also
be said about the unified perception of the mass culture.

6.1 Statement of Problem

The first works on synchronization of coupled chaotic systems were written by
Yamada and Fujisaka [8]. They used local analysis (special Lyapunov exponents) to
investigate changes in the dynamical systems when the coupling constant increased.
Afraimovich et al. [9] introduced the basic notions now used in the description of the
chaotic synchronization process. A principally important role in the development
of the chaotic synchronization theory was played by the paper [10], where a new
geometrical point of view on the synchronization phenomenon was developed.

Let us formulate the synchronization problem for a dynamical system described
by a system of ordinary differential equations [10]. A generalization for the case
of mappings requires only minimal changes. Consider an n-dimensional dynamical
system

u=f(u). (6.1)
Let us divide the system arbitrarily into two subsystems u = (v, w)
v=g(.w,
w = h(v,w), (6.2)
where

V= (U ) W= (U1 .. Up)

g= (i) ... fu): h=(fur1()...fu(w)) . (6.3)
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Now we create a new subsystem w’, identical to w, and we make the change v — v
in the function A, attaching to (6.2) the equation for the new subsystem

v =g(v,w),
w = h(v,w),
W = h(v,w). (6.4)

The coordinates v = (v; ... v,) are called forcing variables, and w' = (W}, w})
are the forced variables. Consider the difference Aw = w' — w. The subsystem
components w and w’ will be considered synchronized if Aw — 0 att — oo. In the
limit Aw — 0 the equation for variations Aw = & reads the following:

& = [Dwh(v(2), w(D)]; ;. (6.5)

where D,/ is the Jacobian for the w subsystem with respect to variable w only. It is
clear that if £(f) — 0 at t — oo, then the trajectories of one of the subsystems
converge to the same values of the other one. In other words, the subsystems
are synchronized. The necessary condition of this subsystem synchronization is
the negativity of the Lyapunov exponents of the equation system (6.5). It can
be shown [11] that these Lyapunov exponents are negative when the Lyapunov
exponents of subsystem w are negative. This condition is necessary but insufficient
for synchronization. One should separately consider the question of the initial set of
conditions w', which can be synchronized with w.

6.2 Geometry and Dynamics of the Synchronization Process

Let us begin the description of the synchronization process with the example of
one well-known dynamical Lorenz system. We will also consider general cases
and types of synchronization below. Assuming that we have two identical chaotic
Lorenz systems, already considered in the previous chapter, can we synchronize
these two chaotic systems by transmitting some signal from the first system to the
second one? Let this signal be x component of the first Lorenz system. Throughout
the second system, we replace x component with the signal from the first system.
Such an operation is commonly called a complete replacement [12]. Thus, we get a
system of five connected equations:

X =—o(y1 —x1),
Vi = —x121 + X1 —y1, Yo = —XiZ2 +1x1 — Y2,

Zi=xiy1—bzi, L =xy2—bz. (6.6)
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Fig. 6.1 Time dependence of the z() coordinate for the driving (dashed line) and the driven (solid
line) Lorenz systems [13]

The variable x; can be considered the driving force for the second system. If we start
in (6.6) with arbitrary initial conditions, then, analyzing the numerical solution of
the system, we will see that y, converges to y;, and z; to zj, after several oscillations
and in the long-time asymptotic y, = y;, 2z = 2z (see Fig.6.1). Hence we
have two synchronized chaotic systems. Usually, this situation is called identical
synchronization since both subsystems are identical and have equal components.

The equations y; = y, and z; = z, determine a hyperplane in the original five-
dimensional phase space (x; — x1). The limitation of motion by the hyperplane is
the geometrical image of the identical synchronization. Therefore, this hyperplane
is sometimes [12] called the synchronization manifold.

In the example of two synchronized Lorenz systems considered above, we saw
that the differences |y; — y»| — 0 and |z; — 22| — 0 at — oo. This is possible only
if the synchronization manifold is stable. In order to make sure of this, we transform
to the new coordinates

X1 = X1,

YL=Y1—Y2s Y| =y1+»,

L= -2 z=2a+2. (6.7)

In the new variables the three coordinates (x1 Y z”) belong to the synchronization
manifold, and the two others (vi,z1) to the transversal. The synchronization
condition is satisfied by the tending to zero of the variables y; and z; att — oo. In
other words, the point (0, 0) in the transversal manifold must be stable. The system



6.2 Geometry and Dynamics of the Synchronization Process 115

dynamics in the vicinity of that point is described by the equation

G-
i1 x1 —b ) \zL

The general condition of stability is to have negative Lyapunov exponents for
Eq. (6.8). This condition is equivalent to the negativity of Lyapunov exponents for
the variables y-, z, for the system (6.6) since the Jacobi matrices for this subsystems
are identical. Therefore, we can consider the driven system (y,, z2) to be a separate
dynamical system, driven by the driving signal x; and we can calculate the Lyapunov
exponents for that subsystem in the usual way. Those Lyapunov exponents will
depend on x; and therefore they will be called conditional Lyapunov exponents [13].
The values for the conditional Lyapunov exponents for a given dynamical system
will depend on the choice of driving coordinate.

This complete replacement scheme can be slightly modernized [14]. The mod-
ernization procedure entails introducing the driving coordinate only in some, but not
in all, driven system equations. The choice of the equations, where the replacement
is performed, is dictated by two factors. First, whether the replacement leads to
stable synchronization. Second, whether it is possible to realize the corresponding
replacement in a real physical device which we want to construct. Let us consider
the following example of partial replacement, based on the Lorenz system

X1 =001—x1), X =0(y1—x),

VI =TX1—y1— X121, Y2 =TX =Y — X,

21 = xiy1 — bz, 2 =Xy — bz (6.9)
In (6.9) the replacement was made only in the second equation. This replacement

will lead to a new Jacobi matrix defining the stability condition. Now itisa 3 x 3
matrix with zeroes in the positions of the partial replacement

X1 -0 0 0 X1
)}J_ ~ r—2o -1 X2 yi . (610)
71 Y2 x2 —b 71

Generally speaking, in such cases the stability conditions differ from complete
replacements. Sometimes they can appear to be more preferable.

In some cases, it may be useful to send the driving signal only at random
moments of time. In this synchronization version (which is called “random synchro-
nization” [15]), the driven system is subject to influence only in random moments,
and in the intervals between them, it evolves freely. It is interesting to note that in
this approach it is sometimes possible to achieve the stability of the synchronized
state even in cases when continuous driving does not work.
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From a more general point of view, the synchronization of chaotic systems can
be considered in terms of negative feedback, which we used earlier in the example
of continuous control. Introducing a damped term into the equations for the driving
system, we get the following:

% =F(x). %=Fx)+aEXx —x). (6.11)
where matrix £ determines the linear combinations of the x-components, which

form the feedback loop, « is the coupling constant. For example, for the Rossler
system

X1 =—(n+z1), X=—(+z)+abx—x),
Yyi=xi+ay,, Y»=x2+ay,

Zi=b+z(x1—c¢); ZL=b+2—0c). (6.12)
In this case
100
E=1000]. (6.13)
000

(Equations of motion for the transversal manifold coordinates)
This gives us a new equation of motion for the transversal manifold coordinates

X1 —o —1 —1 X1
yol=11« 0 v |- (6.14)
Z1 z 0 x—c 70

By calculating the conditional Lyapunov exponents for the matrix in (6.14), we
can see whether the transversal perturbations are damped and therefore if the
synchronization manifold is stable. In practice, it is sufficient to find only the
maximal transversal Lyapunov exponent )Lrﬁax. Its negativity guarantees the stability
of the synchronization process. Figure 6.2 shows the dependence of the maximal
transversal Lyapunov exponent on the coupling constant « for the Rossler system.
Introduction of feedback initially leads to a decrease in the Lyapunov exponent.
Therefore, in some intermediate region of the coupling constant values, the two
Rossler systems can be synchronized. However, with further increases of the
coupling constant, Aéax becomes positive and synchronization is impossible. It
is easy to see that for extremely large values of « x, — x; and the feedback
introduced in (6.12) becomes equivalent to the full replacement considered above.
Then the sign of quantity )Lrﬁax (¢ — o0) determines the possibility of system
synchronization in the case of full replacement.
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Fig. 6.2 The maximal Lyapunov exponent A
Rossler system [12]

as function of the coupling constant « in the

6.3 General Definition of Dynamical System Synchronization

In the last decade many new types of chaotic synchronization appeared: apart
from those mentioned in the preceding sections, there are phase synchronization,
delayed synchronization, generalized synchronization, and others. As almost always
happens in the first stages of investigation of any newly discovered phenomenon,
there are no strict universal definitions. Such definitions are replaced by a “list™:
when the researches face a new effect in a discovered phenomenon, they just extend
the list. This situation is clearly unsatisfactory and at some stage this list must be
replaced by a strict definition, encompassing all known effects connected with the
phenomenon, as well as those to be discovered in future.

In the present section, following [16], we will make an attempt to give such a
definition for finite-dimensional systems. Although we discuss explicitly the case
of synchronization for two time-continuous dynamical systems, the results can be
generalized for N systems, both continuous and discrete in time.

In order to construct the definition, let us assume that some large stationary
dynamical system can be divided into two subsystems

x =f(x,y;1),
y=Hh(Xxy;1). (6.15)
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The vectors x and y can have different dimensions. The phase space and the vector
field of the big system are direct products of the phase spaces and vector fields of
the subsystems. The list of phenomena described by (6.15) is inexhaustible.

Generally speaking, under synchronization we understand the time-correlated
behavior of two different processes. The Oxford English Dictionary defines syn-
chronization as “to agree in time” and “to happen at the same time.” This intuitive
definition means that there are ways of measuring the characteristics of subsystems
as well as the criterion of concordance in time of these measured data. If these
conditions are satisfied, we can say that the systems are synchronized. Further
on, we will attempt to formalize each of these intuitive concepts. Let ¢(zy) be a
trajectory of the original system, given by (6.15) with the initial condition zg =
[X0. Yo]. Respectively, the curves ¢.(z9) and ¢,(zy) are obtained by inclusion of
y and X components, e.g., by projecting. The functions ¢,(zy) and ¢,(zy) may be
considered as the trajectories of the first and of the second subsystem, respectively.
The set of trajectories of each subsystem can be used to construct subsystems
characteristics g(x) or g (y). The measurable characteristic can either depend on
time explicitly [for example, the first subsystem coordinate at time moment ¢,
x(1) = g(x)], or represent a time average [for example, the Lyapunov exponent
A=gX]

Let us now give the following definition of synchronization: two subsys-
tems (6.15) are synchronized on the trajectory ¢ (zy) with respect to properties g,
and gy, if there is a time independent comparison function h, for which

Ihgx).gWIl =0. (6.16)

We would like to emphasize that this definition must be satisfied for all trajectories.
The given definition is convenient because it a priori does not depend on the
measured characteristics, nor on comparison function.

The most frequently used types of comparison functions are

hig(x).g()]=gx —g(),
hig(x).g(y)] = lim [g(x) —g¥)],

+T

hig® g = tm 1 [ B&E)-g06lds. 617
—oo T J;

This definition is quite useful because the most important characteristic of finite

motion is the frequency spectrum. The measured frequencies w, = g (X) and v, =

g (y) represent peaks in the power spectrum. To study frequency synchronization

we usually take the comparison function in the form:

hlg (x).g ()] = nw, —nyw, = 0. (6.18)

In case of identical synchronization the second equation (6.17) is necessary to
compare the trajectory of one system with another one, i.e., g (x) = x(7), g(y) =

y ().
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This definition also covers the so-called delayed synchronization, when some
measured characteristics are delayed with respect to others during the same time
period 7. In that case, we can take g (x) = x (r) and g (y) = y (¢ + ©), up to use the
first relation in (6.17) as the comparison function.

Therefore, the definition (6.16) includes all the examples of finite-dimensional
dynamical system synchronization listed above.

6.4 Chaotic Synchronization of Hamiltonian Systems

Up to now we considered chaotic synchronization only for dissipative systems. In
the present section we show [17] that using the same approach as for dissipative
systems, we can synchronize two Hamiltonian systems. At first glance, it seems that
any attempt to synchronize two chaotic Hamiltonian systems is doomed to failure.
Indeed, as was shown above, the necessary condition of any synchronization is the
local synchronization, provided by the negativity of all Lyapunov exponents for a
driven subsystem (recall that we called them the conditional Lyapunov exponents,
because they depend also on the driving subsystem coordinates). However, if the
system preserves the phase volume, as we have seen in Chap. 3 and it would seem
that the synchronization is impossible. However, it does not follow that is the sum of
the Lyapunov exponents is equal to zero, for a subsystem the sum of the conditional
Lyapunov exponents also equals zero; a subsystem of a phase volume preserving
system does not necessarily preserve the phase volume, and therefore a Hamiltonian
system can be synchronized.

Let us consider as an example the so-called standard mapping, which we dealt
with in the previous chapter, in the following form:

In+l = In +kSil’19n,
Opt1 = 6, + I, + ksin6,, mod2w; k>0. (6.19)

We will further drop mod2z. On the variable / the mapping has period 2,
therefore it is sufficient to study it in the square [0, 27] x [0, 27| with identifying
the opposite sides. The mapping has a well-known physical interpretation [18]—
the frictionless pendulum driven by periodic pulses. In this interpretation I, 6,
represents the angular momentum and angular coordinate immediately before nth
pulse.

Following the standard synchronization procedure, we make a duplicate of the
original system

Jo1 = + ksinq&n s
Gnt1 = P+ Jy + ksing, . (6.20)
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Let us chose the angular momentum of the first system / as the driving variable.
Then the full system will be described by the system of the connected equations

Liv1 =1, + ksin6,,

0p+1 =6, + 1, + ksinb,,

Jot1 =1, + ksing, ,

Gnt1 = Pn + I, + ksing, . (6.21)

The subsystems will be synchronized provided the condition
Tim |6, — ¢l = 0. (6.22)
Difference between the driving and the driven angular variables is
Ont1 = nt1 = Op — ¢u + k(sin 0, —singy,) . (6.23)

Linearization of (6.23) at small deviations of ¢, from the driving angular variable
0, gives

Apt1 = Ap(1 + kcosb,), (6.24)

where A, = 0, — ¢,,. Equation (6.24) has a solution

n—1
Ay =[]0+ cos6)) A (6.25)
j=0

Local synchronization takes place if this product at n — oo tends to zero. It is
equivalent to the requirement that the conditional Lyapunov exponent on the angular
variable

n—1
1
Ao = lim — 2 0: In|1 + kcos 6| (6.26)
=

is negative. The sum entering (6.26) represents the time average of the function
g(0) = 1In|1 + kcos @|. This time averaging can be formally represented as a mean
value of that function with respect to the invariant measure p(6) (see Chap. 3). The
latter determines the iteration density for the mapping 6,1 = f(6,) and is defined
in the following way:

n—1

. 1 i
p(0) = lim ~ ;aw —f(60)]. (6.27)
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It allows us to replace the time average g(f) by the average over the invariant
measure

. . 1 n—1 ' 1 n—1 i
B0) = Jlim 32 ¢(6) = Jim 3 el @) = [ aoperee). o029

Let us use this expression to transform the relation (6.26). In a rough approximation
for chaotic orbits in the standard mapping (6.19) the invariant measure can be
considered homogeneous on the interval [0, 27], i.e., p(f) = 1/27 and for Ay we
obtain

1 2
)\9:—/ In|l1 + kcosf|db. (6.29)
2 0

The integral (6.29) can be calculated analytically,

In(H4E), 0<k<1

ho = In (% k>1
n(z)’ =

(6.30)

Figure 6.3 presents the conditional Lyapunov exponent Ay as function of k. Quantity
Ag is negative for k < 2. As is well known, the Chirikov criterion of non-linear
resonance overlap determines the start of the transition to global stochasticity in the
standard mapping at k ~ 1. From there it follows that in the global stochasticity
region 1 < k < 2 it is possible to synchronize the Hamiltonian system (6.19), if
we choose the angular momentum / as the driving variable. It is interesting to note
that the minimal value of the conditional Lyapunov exponent (Ag);, = —In2 is

0.0

-0.5

I I I I I
0.0 0.5 1.0 1.5 2.0 25 k

Fig. 6.3 Conditional Lyapunov exponent for the standard mapping as function of k [17]
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Fig. 6.4 (a) A chaotic trajectory for the driving system (standard mapping). Arrows point to the
initial conditions for the two subsystems; (b) difference of angular coordinates for the driving and
the driven subsystems as function of time (or iteration number) [17]

achieved at k = 1. It means that this value of k corresponds to the minimal time
needed to achieve synchronization.

Figure 6.4a presents a chaotic trajectory of the driving system (/, ) and shows
the initial conditions for the two subsystems. In Fig.6.4b the difference of the
angular coordinates A, is plotted as a function of the iteration number n. Complete
synchronization is achieved at n ~ 100. If we take the angular coordinate 6 as
the driving variable, then it can be shown that the conditional Lyapunov exponent
equals to zero in that case. It means that synchronization is impossible, because each
subsystem preserves the phase volume separately.
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6.5 Realization of Chaotic Synchronization Using Control
Methods

In this section, taking after [19], we will try to answer the following problem.
Suppose that we have two almost identical chaotic systems. So, can we, using
the OGY parametric control method considered in the previous chapter, achieve
synchronization of chaotic trajectories? In other words, if the original OGY method
was used to stabilize unstable periodic orbits, can we modify it in order to stabilize a
chaotic trajectory of one system in a relatively small vicinity of the chaotic trajectory
of another system? A positive answer to this question was already obtained by using
of continuous control methods. Now we consider this question as applied to discrete
parametric OGY control.

Suppose we have two chaotic systems A and B, and let some system parameter
(say, of system B) is available for alteration. Let us also assume that some system
variables of both systems can be measured. Based on those measurements we can
change a moment of time when the measured variables are close to each other.
Having calculated the required parameter perturbation using the OGY method we
can synchronize the systems in a short time period. Due to the inevitable presence
of noise there is a finite probability of losing the synchronization. However, because
of ergodicity, after some time the system’s trajectories will again appear close in the
phase space, and we will be able to synchronize them anew.

Let us realize this scheme for the case of two almost identical chaotic systems,
which can be described by the following two-dimensional mappings:

Xp+1 = F(anpo) [A] P
Ynt1 = F(yur1,p) [B], (6.31)

where X,,,y, € R%, Fis an analytic function of its variables, py is a fixed parameter
for the system A, and p is an externally fitted parameter of the system B. As
in the OGY control case, we require a small variation region of the parameter
p |[p —po| < 8. Suppose that the systems start from different initial conditions.
Generally speaking, the chaotic trajectories describing the evolution of each system
are absolutely uncorrelated. However, due to ergodicity of motion, with unit
probability they will appear arbitrary close to each other at some later moment #,.
Without control, the trajectories begin to diverge exponentially for n > n.. Our goal
is to program the parameter p variation in such way that |y, — x,| — 0 forn = n,.
Linearized dynamics in vicinity of the target trajectory {x,}

Yot1 = Xnt1(Po) = A [yn — Xu(po)] + Bdp, (6.32)

(see definitions in Sect.5.3 of Chap.5). As we have already pointed out in
consideration of chaos control in Hamiltonian systems, due to the conservation of
phase volume, the Jacobi matrix can have complex eigenvalues in this case. That
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is why it is convenient for the description of linearized dynamics to transit from
eigenvectors to stable and unstable directions at every point of the chaotic orbit. Let
€,(») and e, be unit vectors in those directions, and {fs(n), fu(,,)} is the corresponding
“orthogonal” basis, defined by the relations (5.15) in Chap. 5. Then, in this basis the
condition under which the vector y,+; gets onto the stable direction of the point
X,+1( o), which is required to realize synchronization, reads as the following:

[¥Yrr1 —Xnt1(P0)] - fugnry = 0. (6.33)

Using (6.32) and (6.33), we get the parameter perturbation dp,, = p, — po, necessary
to satisfy that condition:

{A yn — Xn(pO)]} Kunr1)

-B- fu(n+ 1)

8pn = (6.34)

If (Ap),, calculated according to (6.34) appears greater than 8, we set dp, = 0.

Let us check the efficiency of the functioning of this scheme in a Hénon
mapping ((5.15), Chap.5). Let us fix the value of p = py = 1.4 for one of the
systems, and for the other, we will consider it as a fitting parameter, changing
according to (6.34) in a small interval [1.39,1.41]. Let the two systems start
in the moment 1 = 0 from different initial conditions: (x;,y;) = (0.5,—0.8)
and (xz,y2) = (0.001,0.001). Then the two systems move along completely
uncorrelated chaotic trajectories. At some moment, the systems appear sufficiently
close one to another. The required proximity of the trajectories is determined by the
magnitude of the parameter §. When that happens, we switch on the synchronization
mechanism, i.e., the perturbation of the parameter p according to (6.34). Figure
6.5a shows time sequences for the two chaotic trajectories (crosses and squares)
before and after the synchronization mechanism is switched on. It is clear that after
the control is switched on (approximately the 2500th iteration) the crosses and the
squares overlap, though the trajectories remain chaotic. Figure 6.5b presents the
time dependence of Ax(f) = x,(r) — x1(¢), tending to zero after the synchronization
mechanism is switched on. The time needed to achieve the synchronization, as well
as the control setup time, dramatically grows with the decrease of §. Unfortunately,
a direct application of the targeting methods considered in the previous chapter,
allowing us to shorten the control setup time considerably, is impossible: in the
case of control the target unstable periodic orbit is fixed, and in the case of
synchronization the target is not only unfixed, but it also moves chaotically, which
is why the problem becomes extremely complicated.

The following problem [20] is very close in formulation to the problems of
periodic control, where stabilization is achieved due to the purposeful alteration
of its parameters. Suppose

x =f(x,p) (6.35)
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Fig. 6.5 Synchronization of two Hénon mappings: (a) two chaotic trajectories before and after the
control switch on; (b) time dependence of Ax = x, — x;, corresponding to (a) [19]

is an experimental realization of a dynamical system, whose parameters p € R™ are
known. Let us consider that we know the time dependence of some scalar observable
quantity s = h(x) and function f, describing the model dynamics. Suppose, then,
that we can construct the system

y=2g(y.q, (6.36)
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which will be synchronized with the first one (y — X, t — 00), if ¢ = p. If the
functional form of the vector field f is known, then for the construction of the
required subsystem we can use the decomposition methods considered in Sect. 6.1.
The answer that we are interested in is the following: can we construct an ordinary
differential equations system for parameters q,

q=u(sy,q) (6.37)

such that (y,q) — (x,p) if t — oo. Let us show on a concrete example that,
generally speaking, there is a positive answer to that question. To that end, we again
address the Lorentz system

)51 = 0(x2—x1) y

Xy = p1X1 —paXo —X1x3 + 3,

)53 = X1Xp2 — bX3 s (638)
with p; = 28, p, = 1, p3 = 0, b = 8/3. We will assume that the observable
variable is s = h (x) = x,. We will use it as the driving variable,

yi=0(s—y1).

Y2 = q1y1 — q2y2 — Y13 + g3,

Y3 = y1y2 — bys. (6.39)
Suppose that the parameters g variation process is described by the following system
of equations:

g1 =ur(s,y.q) = [s—h(]y = G2—y2) .
@ =u(sy.q =[s—h@]y=—(2—y2) 2.
G =u3(s,y, Q) = [s—h(¥)]=2—x). (6.40)
In order to show that (y,q) = (x, p) are the stable solutions of (6.39), (6.40), it is
necessary to study dynamics of the differences e = y — x and f = q — p. Those
differences obey the following system of equations:
él = —oey,
€ = q1y1 — P1X1 — @2y2 + paxa — y1y3 + xix3 + f3,
€3 = y1y2 —x1x2 — bes

fi=—eyi, Hh=ey, fr=-—e. (6.41)
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where the parameters p are assumed to be constant. From the first equation it follows
that e; — 0, i.e., y; — x. In the limit # — oo the system (6.41) can be

e = fiy1 —foy2 —prea —yiez + f3,

e3 = yie; — bes,
fi=—ey, H=em fr=—e. (6.42)

In order to study the global stability of the system we will use the Lyapunov
functions method [21], whose main principle is the following. Suppose that on a
plane (the method works in a space of any dimension, but we restrict ourselves
to the plane) there is a vector field with a fixed point (x,y), and we want to know
whether it is stable. In accordance with obvious ideas about stability, it will suffice to
find some vicinity U of the fixed point, such that the trajectory starting in U remains
inside it at all the consecutive time moments. This condition can be satisfied if the
vector field on the boundary of U is directed either inside the region towards (x, y),
or is tangential to the boundary (see Fig. 6.6a). The Lyapunov functions method
allows us to answer the question of whether the considered vector field has such a
geometry.

Fig. 6.6 (a) Vector field on U
the boundary of U. (b)
Gradient of V in different f'
points of the boundary

vV AY
\AY,

V = const

A%
\AY

VA%
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Suppose that the considered vector field is defined by the equations

d

d—’t‘ =f(xy),

d

= = g, (6.43)

Let V(x,y) be some scalar function on R?, at least once differentiable. As well,
V(x,y) = 0 and the set of points, satisfying the condition V(x,y) = C, form closed
curves, surrounding the point (x, y) for different values of C, while V (x,y) > 0 (see
Fig. 6.6b). It is easy to understand that if the vector field has the above geometry,
then

VV(x,y) - (dx/dt,dy/df) = V <0. (6.44)

Thus, if it is possible to construct a function with given properties (the Lyapunov
function), satisfying the condition (6.44), then the considered fixed point is globally
stable.

Let us now return to considering the stability of the system (6.42). For the
Lyapunov function we choose the following:

V=4 +72+2+1. (6.45)

Using Eq. (6.42), we get

V = =2 (pse3 + be3) . (6.46)

For p, > 0 (b = 8/3) that derivative is negative, and, therefore, according to (6.44),
the driven system parameters q on large time scales tend to values of the initial
system parameters p. Figure 6.7a illustrates this process. For initial conditions we
have chosen the followingx = (0.1,0.1,0.1), y = (—0.1,0.1,0), q = (10, 10, 10).
The points on the figure denote the values of the parameters p; /10 = 2.8, p, = 1,
p3 = 0 (the first coefficient is divided by ten for convenience). In this case, we
assume that all other coefficients coincide exactly. On the figure, one can see quite
rapid (q — p) convergence. Figure 6.7b shows the same process, but for a case
when the driving system parameter 0 = 10 is replaced by the value o = 10.1 for
the driven system. In this case, there is no exact convergence, but oscillations of the
parameters q around the exact values are observed.

6.6 Synchronization Induced by Noise

In this section we will consider one more example of the constructive role of
chaos—the synchronization of chaotic systems with help of additive noise [22]. The
effect that we intend to study consists of the fact that the introduction of noise (with
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Fig. 6.7 (a) Process of g — p convergence for coinciding values of other parameters. (b) The
same process for values 0 = 10 (driving system) and o = 10.1 (driven system) [20]

sufficiently high intensity) in independent copies of systems makes them collapse
in the same trajectory, independently of the initial conditions of each copy. This
synchronization of chaotic systems represents one more example that contradicts
intuitive ideas of the destructive role of noise. We want to clarify the essence of the
effect and to analyze the structural stability of the phenomenon.

Noise-induced synchronization has a short but interesting history. The ordering
effects of noise in chaotic systems were first considered in the paper [23], the authors
of which came to the conclusion that noise can make a system less chaotic. Later, in
[24] the noise-induced chaos-regularity transition was demonstrated. Noise-induced
synchronization was considered for the first time in [25]. The authors showed that
particles in external potential, subject to random forces, tend to collapse on the same
trajectory. Among the further papers written on that topic we would emphasize the
one [26] which evoked violent polemics. The authors of the paper analyzed the
logistic mapping

Xnp1 = dx,(1 —x,) + &, (6.47)

where £, is the noise term with homogeneous distribution on the interval [-W, W].

They showed that if W is sufficiently large (i.e., for high noise intensities), two
different trajectories starting from distinct initial conditions but subject to identical
noise (the same sequences of random numbers) will at last end at the same trajectory.
The authors showed that the same situation also takes place for the Lorenz system.
This result provoked a harsh criticism [27], connected with the fact that the two
systems can be synchronized only in the case when the maximal Lyapunov exponent
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is negative. For the logistic mapping in presence of noise, the maximal Lyapunov
exponent is positive and therefore the observed synchronization is the result of
a loss in calculation accuracy. It was also noted [28] that the noise used for the
simulation (6.47) is not symmetrical in reality. A non-zero mean value (§,) appears
because the requirement x,, € [0, 1] forces us to exclude those random numbers that
induce any violation of that condition. The introduction of noise with a non-zero
mean value implies that the authors of [26] essentially changed properties of the
original deterministic mapping. As a result of a whole row of works it was, however,
shown that some chaotic mappings can nevertheless be synchronized by additive
noise with zero mean. The mechanism leading to synchronization was explained in
[29]; its essence is the following. As we have already mentioned, synchronization
can be achieved only in the case of negative Lyapunov exponents. In presence of
noise, due to the reconstruction of the distribution function, the system appears
to spend more time in the regions of stability, where the Lyapunov exponents are
negative, and it provides the global negativity of the Lyapunov exponents. Let us
analyze this reasoning in more detail.
Let us consider the mapping

Xn+1 = F(xn) :f(xn) + sgn s (6.48)

where {£,} is the set of uncorrelated Gaussian variables with zero mean value and
unit dispersion. For an example of a concrete realization of (6.48) we choose the
following:

x—0.5)\2
fx) =exp|— ( ) . (6.49)

w

The investigation of the relative behavior of the trajectories, described by (6.48) and
starting from different initial conditions, is equivalent to an analysis of such behavior
in two identical systems of the form (6.48) subject to the same noise, under which
we understand using the same sequence of random numbers {£,}. Figure 6.8 shows
the bifurcation diagram for that mapping in absence of noise. The chaoticity regions
are well visible on the diagram. In those regions the maximal Lyapunov exponent is
positive. So, for example, for = 0.3 (this case will be analyzed further) A ~ 0.53.
In Fig. 6.9 one can see that at a sufficient noise level &, for most values of w this
Lyapunov exponent becomes negative. So for ® = 0.3 and ¢ = 0.2 we find that
A =-0.17.

The positivity of the Lyapunov exponent in a noiseless case means that the
trajectories starting from different initial conditions are excited by the determined
part f(x,), and by the same random sequence of numbers {&,}, will not coincide at
any arbitrarily large n. In this case, the synchronization diagram (x® as a function of
xM) represents a wide and almost uniform distribution (Fig. 6.10a). However, at & >
0.2, when the maximal Lyapunov exponent becomes negative, we observe almost
complete synchronization (Fig.6.10b). The noise intensity is not high enough to
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Fig. 6.9 Lyapunov exponent for the mapping (6.49): ¢ = 0 (solid line), ¢ = 0.1 (dashed line),
& = 0.2 (dash-dot line) [22]

neglect the deterministic term in (6.48). Therefore, the synchronization mechanism
that we want to understand is far from trivial.

The Lyapunov exponent determining the synchronization condition for the
mapping (6.48) can be represented in the form

= lim —Zln|F’(x,)’ (6.50)

i=1

This expression represents the mean value of the logarithm of the absolute value
of the derivative F’ (slope), calculated along the trajectory {x;}. The slopes in the
interval [—1, 1] give negative contribution in A, leading to the synchronization.
Larger or smaller slopes give positive contribution in A and generate a divergence



132 6 Synchronization of Chaotic Systems

Fig. 6.10 The
synchronization diagram (x®
as a function of x() for the
case w = 0.3. (a) ¢ = 0, (b)
e =0.2[22]

|
05 00 05 1.0 x®

of the trajectories. At first sight it seems, as F’ = f’, that the presence of noise does
not modify the Lyapunov exponent. However, this is not so. The modification of the
Lyapunov exponent due to noise is connected with noise-induced modification of
the trajectory, along which the averaging (6.50) takes place. In order to understand
this, we will use the expression for the Lyapunov exponent in terms of the stationary
distribution function Pg(x),

% = {log |F'(9)]) = {log | F @) = / Pu@) log |f/()] dx. (6.51)

We see that with the inclusion of any perturbation there are two mechanisms
leading to the modification of the Lyapunov exponent: the change of | f/(x)| and the
reconstruction of the distribution function. At the inclusion of the additive noise, the
latter mechanism works. In Fig. 6.11, one can see the reconstruction of the stationary
distribution function for the mapping (6.48). We can conclude that synchronization
will be a common feature of those mappings [for example, (6.48)], for which, with
the inclusion of noise, the regions with | f'(x)| < 1 have sufficient statistical weight.
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Fig. 6.11 Distribution function for the mapping (6.48) inthe case w = 0.3. (a)e = 0, (b) e = 0.2
(22]

Let us consider one more example—noise-induced synchronization in the Lorenz
system with additive noise, introduced into the equation for the coordinate y,

Xx=p(y—x,
y=—xz+rm—y+ ek,
i=xy—bz. (6.52)

Here &(r)—the white noise—is the Gaussian random process with zero mean:
(@) = 0; (E@E()) = 8(t — 1'). As we have already seen in the previous
chapter, for the parameter values p = 0, b = 8/3, r = 28 and in the absence
of noise (¢ = 0), the system (6.52) is chaotic (the maximal Lyapunov exponent is
A & 0.9 > 0). Therefore, the trajectories starting from different initial conditions
are absolutely uncorrelated (see Fig. 6.12a). The same situation also takes place at
low noise intensities. However, at a noise intensity that provides a negative maximal
Lyapunov exponent (for ¢ = 40, A ~ —0.2), almost complete synchronization of
all three coordinates is observed (see Fig. 6.12b for the coordinate z). We stress that,
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Fig. 6.12 Noise-induced synchronization for the Lorenz system [22]. (a) e = 0, (b) ¢ = 40

although the noise intensity is relatively high, the structure of the strange attractor
preserves the “butterfly” topology, characteristic for the deterministic case. This
fact stresses again that in the considered examples we are not dealing with trivial
synchronization, which takes place in the case when the deterministic terms in the
mapping (or equations of motion) can be neglected.

A natural question arises about the structural stability of the considered phe-
nomenon. Unlike the two identical Lorenz systems (with the same coefficients p, b,
r) two real systems never have identical sets of parameters. Therefore, if we intend
to use noise-induced synchronization, for communication purposes, for example, we
should preliminarily estimate the permissible difference between the parameters of
the transmitter and the receiver. In order to solve this problem, we will numerically
analyze the dynamics of two Lorenz systems with slightly different parameters (p;,
b1, r1) and (p2, by, r2), but subject to the same noise factor €. In order to estimate the
effects of variation on each of the parameters, we will vary them independently. The
result of the procedure is presented in Fig. 6.13. On that figure we plot the part of the
full observation time (in percent), during which the systems were synchronized with
an accuracy up to 10 %. This means that the trajectories of the two systems were
considered synchronized if the relative difference of their coordinates was less than
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Fig. 6.13 The synchronization time for the Lorenz system (in percents with respect to the total
observation time) as a function of the parameters [22]: (a) b, (b) r, (¢) p

10 %. From Fig. 6.13 one can conclude that, with a parameter variation of an order
of 1 %, during 85 % of total observation time, the systems remained synchronized.

6.7 Synchronization of Space-Temporal Chaos

Most physical phenomena in domains where we deal with extended physical objects
(hydrodynamics, electromagnetism, plasma physics, chemical dynamics, biological
physics, and many others) can be described only with the help of partial derivative
equations. Only with some simplifying assumptions do those equations reduce to
a system of connected ordinary differential equations or connected grid mappings.
All of the examples of chaotic systems synchronization that we have considered
belong to finite-dimensional (moreover, low-dimensional) systems. The behavior
of spatially extended non-linear systems is considerably complicated by space-
temporal chaos (turbulence), which is characteristic for most of them. In these cases,
chaotic behavior is observed both in time and in space. A natural question arises:
how efficient will the above low-dimensional systems synchronization methods be
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for space-temporal chaos? We will not dwell on this question in detail, instead
redirecting the reader to the reviews [12, 30]. We will only consider the possibility
of space-temporal chaos synchronization [31] on an example of an autocatalytic
model, demonstrating chaos [32],

9

% = —uv? + a(l —uy) + D,Vu,

81}1 2 )

. = vl = @+ by + D,V (6.53)

where u; and v; are reactive and activator concentrations, respectively, a, b are
reaction parameters, and D,, D, are diffusion constants. We will consider the
system (6.53) as driving in relation to the analogous system

0

% = —uzv% +a(l —up) + D, Vu,,

v 2 2

FTie uv; — (@ + b)va + D, Vv, + f(x, 1) . (6.54)

Suppose v, (t — 0) is value of v, immediately before time moment #,. The driving
function f(x,) acts on the system in the following way. Let L be the linear
dimension of the chemical reactor, L = NX,t = kT, T > 0, X > 0, N,k
are integer numbers. In every moment of time + = k7T in N spatial points x =
0,X,2X,...,(N — 1)X the driving function transits simultaneously

Uz(kT — 0) — Uz(kT) = Uz(kT - 0) + ¢ [Ul(kT) - Uz(kT - 0)] . (655)

In the time moments ¢ # kT the systems (6.53) and (6.54) are not connected
and evolve independently. We note that for X = T = 0, ¢ = 1 such driving
reduces to the full replacement considered above. Motivation to select driving in
the form (6.55) is determined by two reasons. On one hand we intend to achieve
synchronization by controlling only a finite number N of spatial points, and on the
other hand, we want to use time-discrete perturbation to do this.

The results of numerical simulation of evolution described by (6.53), (6.54) are
presented in Fig.6.14. For integration, the Euler scheme was implemented with
M = 256 spatial nodes and time step equal to Az = 0.05. The following parameter
values were chosen:

a=0.028, b=0.053, D, =1.0%x 10", D, =2D,, L=25.

Figure 6.14a demonstrates the space-temporal evolution u;(x,?), described
by (6.53), with initial conditions u(x) = 1, v(x) = 0.

To simulate the partial derivative equation systems (6.53), (6.54) with the
condition (6.55) the following parameters values were taken: ¢ = 0.2, T = 20A¢,
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Fig. 6.14 The results of numerical simulation of evolution described by the systems (6.53), (6.54):
(a) space-temporal dependence u, (x, £); (b) difference |u; — uy|; (¢) global synchronization error

e(1)(6.56) [30]
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X = (8/256) L. In other words, the perturbation acted on 32 of 256 spatial nodes. It
appeared that there is a critical value X, such that for all X < X, the systems (6.53)
and (6.54) can be synchronized. For the chosen parameter set X, = (14/256) L, and
this number does not change with an increase of M. This important example shows
that an infinite-dimensional system can be synchronized by the perturbation of a
finite number of points, i.e., synchronization is achieved with help of the driving
signal in the form of N-dimensional vector.

Suppose the driving function is turned on at ¢+ = 5000. Figure 6.14b presents
the difference |u; — uy| (the turn-on moment is denoted by the dashed line). Those
regions of (x,f) space, where that function is large, i.e., the desynchronization
regions, are painted in black. One can see that such regions are present only before
the moment the driving signal is turned on, ¢ < 5000. In order to make the effect
clearer, we introduce the global synchronization error e(),

L
e= \/%/0 [(ul —u)” + (vy — Uz)z] dx. (6.56)

As one can see from Fig. 6.14c, that error tends to zero after the synchronization
mechanism is turned on (6.55).

6.8 Additive Noise and Non-identity Systems Influence on
Synchronization Effects

In the present section we intend to make a quantitative investigation of the transition
of the initial idealized problem formulation (identical system synchronization in
absence of noise) to a realistic one, accounting for the obligatory presence of
internal noise and deviation in the system parameters [33]. The latter implies that
the free dynamics of the driving and of the driven systems will differ for the same
initial conditions. In the transition from idealization to reality we face the problem
of the experimentally measurable time series synchronization. Under the driving
system we will understand an experimentally observable system, whose dynamics
are known only in the sense that the time series of the system’s characteristics
measurements are given. The driven system represents a model that can be
constructed based on the temporal measurements made with the driving system.
Suppose that the unknown dynamics of the driving system in some “work phase
space” is represented by the equation

x = G(x) (6.57)
and the model dynamics in the same space is

% =F(x). (6.58)
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We assume that the corresponding embedding theorems (see Chap.4) provide
existence of (6.57) in the work phase space. Figure 6.15 represents an example of
synchronization in the model (6.58) with the time series obtained from (6.57). Let
x(7) be some trajectory, measured with help of some “experimental setup” (6.57).
We now use that trajectory and the model (6.58) in order to generate two new
trajectories. The trajectory w(z) is obtained by forward time integration of (6.58)
using the first point of the trajectory x(7) as the initial condition. The trajectory
y(?) results from the synchronization process: the substitution of the measured time
series for one coordinate into the model equation (6.58). The lower curve in Fig. 6.15
represents the square of the distance between the driving and the driven trajectories
|z> = |x —y|*. The upper curve is the distance between the driving trajectory
and the free one in the model system |z|> = |x — w|?. The degree of smallness
of the lower curve with respect to the upper one determines the quality of the
synchronization.

In the total absence of noise and model errors (i.e., for F = G) we expect
exact synchronization |z|2 = 0. For physical devices and model equations, this
will never happen, as in the driving signal there is always a noise component
and model errors are inevitable. Therefore, a physical device and a model can be
synchronized only approximately. As there are no two exactly identical devices,
this also concerns the synchronization of two experimental setups. It is natural to
expect that with an increase of the noise level or of the magnitude of model errors,
the lower curve amplitude in Fig. 6.15 will grow. It is the character of that growth
which determines the quantitative measure of the influence of noise and model errors
on the synchronization process.

2
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Fig. 6.15 An example of synchronization for the model (6.58). Lower curve: squared difference
between the driving and the driven trajectories |z|> = |x — y|?; upper curve: distance between the
driving and the free trajectory of the model system [z|*> = [x — w|? [33]



140 6 Synchronization of Chaotic Systems

Let us now use the following quantity as the driving signal:
X+ ou. (6.59)

Here x is the time series (6.57), ou is the additive noise term, associated with errors
in the driving signal measurements, o is the noise level, and u is a random Gaussian
vector with unit dispersion of the components and zero mean value. Errors may
be induced by random deviations of the device parameters from nominal values
and by background noise, measured together with the signal. To synchronize the
device (6.57) and the model (6.58) we use negative feedback (6.59)

y = F(y) — Ely — (x + ou)]. (6.60)

The matrix £ determines the connection between y and the experimentally measured
time series. Further, we assume that the matrix has a unique non-zero element lying
on the diagonal and let this element be E; = ¢, if the ith component of X + ou is
used as the driving signal. Inside some region of values ¢, determining the negativity
of the maximal conditional Lyapunov exponent, the feedback (6.60) must lead to
synchronization between x and y, and all deviations are connected either to model
errors or to the presence of noise. Assuming the smallness of |z|—the deviation of
the model dynamics from the device dynamics—the linearized time evolution z is
described by the equation

i= [DF(x) — E]z +oEu+ AG(x). 6.61)

where AG = F -G, (DF); = %—Q The quantity AG has two potential sources. The
first source generating AG is the error arising from the modeling of an unknown
vector field G. In any real situation F and G never coincide. The second source
is connected to the fact that the driving signal dynamics differ from the dynamics
reproduced by the time series used to construct the model. In order to separate these
two sources we assume that the time series used to construct the model comes from
vector field G, while the driving signal is generated by the field G’. We will consider
that distinction of those two fields is connected to the variation of some parameter
set p of the driving system, i.e.,

G = G’ + (0G’/dp) - 6p (6.62)
then
AG (x) = AG’ (x) + (3/9p (AG’ (x))) - 8p., (6.63)

where AG’ = F — G’. Equation (6.61) [accounting for (6.63)] is an evolutionary
equation for the connected device-model system in the vicinity of synchronized
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motion. In the absence of noise (o = 0) and for ideal model dynamics (AG = 0)
7= [DF (x) — E]z. (6.64)

The formal solution of that homogeneous linear equation reads

2(1) = exp [ / r [DF(r) - E] dt} (1) = 01, 10)2(to) , (6.65)

fo

where DF(t) = DF [x(7)]. The evolution operator U (¢, tp) maps the initial condition
z(1p) forward in time accounting for the connection, but in the absence of noise and
modeling errors. In order to obtain the general solution of Eq. (6.61) one should add
its particular solution to the general solution of the homogeneous equation (6.65).
To obtain the particular solution we make the variables transformation z(f) =
U (,to)w(t). Substitution in (6.61) gives

d

jv: = U™ (t,10) [AG(t) + 0E - u(1)] . (6.66)
Solving this equation taking into account (6.65), we obtain the general solution of
Eq. (6.61) in the form

2(1) = U(t, 10) - 2(t0) + / B [AG(I) n aE-u(r)] dr. (6.67)

fo

This equation describes the time evolution of the difference between the trajectory
given by Eq.(6.58) and the ‘“exact” system trajectory. Such a solution has a
place only under conditions close to the synchronization regime. Because of the
stability of synchronized motion, we can neglect the first term in (6.67), as it
tends exponentially quickly to zero with increasing time. The second term in (6.67)
describes complicated non-local dependence of z(f) on model errors and noise:
the degree of synchronization at moment ¢ is determined by model and noise
fluctuations in all preceding moments.

Returning to Fig.6.15 we note that, although the time dependence of |z|2 is
very complex, its mean value is practically constant. This mean can be used to
characterize the degree of synchronization between the exact driving signal and the
one generated by the model. We define that characteristic by the following time
average:

1/2

[<|z|2>]1/2= lim — lz(0)Pde | . (6.68)
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This expression can be represented in the form

[<|z|2>]1/2 - [A2 n (03)2]1/2 , (6.69)

where A is some complicated function of the model errors, and the quantity B is
determined by the statistical properties of the noise. We stress that neither A nor
B depend on the noise level o. The dependence (6.69) is confirmed by numerical
experiments [33].

We finish this section by discussing the connection between the obtained results
and their possible applications. On of them is the identification of chaotic sources.
Suppose that the only available information about some non-linear system is the
preliminarily measured time dependence x(¢). At some later time moment we get
a new time dependence X'(f), and we want to know whether both signals come
from the same system. In order to answer this question we should construct a
model approximately reproducing the series x(f) and try to synchronize it with
an analogous model for x'(¢). If synchronization is possible, then there is a high
probability that x(¢) and x'(¢) have a common source. Noise and errors in model
construction will obviously affect the synchronization quality. Therefore, if we want
to use synchronization as a system identification method we must know to how
estimate the influence of noise and model errors.

An interesting application of the obtained results is connected with the realization
of the so-called non-destructive control methods. Let us consider some device
to be placed in a difficult-to-access work space (for example, a sensor in a
nuclear reactor). Before use, the device is subjected to a calibrating signal and
the corresponding time dependence is recorded. After that, a device model is
constructed and one determines the degree of synchronization between the model
and the recorded time dependence. After some time we again act on the device with
a calibrating signal and record the new time series. Then we try to synchronize
that series with the old model. As the device was under the strong influence of the
environment, its dynamics changed. This will lead in turn to changes in the degree
of synchronization. Observing these changes, we can make conclusions about the
need to repair or replace the device. In order to make correct conclusions one
needs the above quantitative estimates of the influence of dynamics changes on
synchronization.

6.9 Synchronization of Chaotic Systems and Transmission
of Information

The possibility of synchronizing chaotic systems opens wide possibilities for the
application of chaos for information transmission purposes. Any new information
transmission scheme must satisfy some fairly evident requirements:
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* Competitiveness (realization simplicity and at least partial superiority over
existing analogues).

* High performance.

» Reliability and stability with respect to noise of different types: self-noise and
external noise.

* Guarantee of a given security level.

* Simultaneous access to multiple users.

Of course, originally every new scheme is oriented to achieve success in one
of the above points, but then one should show that the proposed scheme to some
extent satisfies all other requirements. We will choose for the central requirement
the achievement of a security level which exceeds available analogues. Our choice
is dictated by the fact that it is connected with the use of new physics—the
synchronization of chaotic systems.

Codes appeared in antiquity. Caesar had his own secret alphabet. In Middle Ages
Bacon, Viet, and Cardano worked at inventing secret ciphers. Edgar Allen Poe and
Sir Arthur Conan Doyle did a great deal to popularize the deciphering process.
During the Second World War, the unraveling of the enemy’s ciphers played an
important role in the outcome of particular episodes. Finally, Shannon demonstrated
that it is possible to construct a cryptogram which cannot be deciphered if the
method of its composition is unknown.

Random variables have many advantages in the transmission of secure informa-
tion. First, a random signal can be unrecognizable on a background of natural noise.
Second, even if the signal could be detected, the unpredictability of its variation will
not furnish any direct clues to the information contained in it. Also, a broadband
chaotic signal is harder to jam. However, the legal recipient should be able to decode
the information. In principle, a secret communication system of this type could use
two identical chaotic oscillators: one as a transmitter and another as a receiver. The
chaotic oscillations of the transmitter would be used for coding and those of the
receiver for decoding. The idea is simple but difficult to realize, because any small
difference in the initial conditions and parameters of the chaotic system will lead to
totally different output signals.

Different ways to overcome this principal difficulty were investigated. At the last
it appeared that the most likely direction was the chaotic synchronization which
has been considered in the present chapter. Using synchronized chaos for secret
communications was the topic of a series of papers published in the 1990s (see
[34-36]).

The principal scheme for the transmission of coded information based on the
chaos synchronization effect is presented in Fig. 6.16. The transmitter adds to the
informational (for example, sound) signal i the chaotic x-component, generated
by the driving system. The addition should be understood in a broad sense. This
includes: (1) the transmission of the proper sum of chaotic x(¢) and informational
i(7) signals; (2) the transmission of the product x(¢)i(z) ; and (3) the transmission
of the combination x(7)[1 + i(#)]. The sum signal is detected by the receiver. The
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Fig. 6.16 Principal scheme of the coded information transmission, based on the chaos synchro-
nization effect

R iN

Fig. 6.17 Analog realization of the Van der Pol-Duffing oscillator model

synchronized signal, generated in the receiver, is subtracted from the received
message. The difference approximately equals to the coded informative signal.

It is evident that the principal ability of such a scheme to work is based on
roughness of the synchronization process: addition of a weak informative signal
to a chaotic one does not affect its ability to synchronize the receiver and the
transmitter. Let us analyze in more detail the function of this scheme [36] on the
example of a physically interesting model—the Van der Pol-Duffing oscillator. Its
analog realization is presented in Fig. 6.17. Recall that under an analog setup we
understand a system where every instantaneous value of the quantity entering into
the input relations corresponds to an instantaneous value of another quantity, often
different from the original one in its physical nature. Every elementary mathematical
operation on the machine’s quantities corresponds to some physical law. This law
establishes the dependence between the physical quantities on the input and output
of the deciding setup: for example, Ohm’s law—to division, Kirchhoff’s law—to
addition, and the Lorenz force—to vector product.
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We introduce a cubically non-linear element N into the chain (Fig. 6.17), which
gives the following relation:

I(V)=aV+0bV* a<0,b>0 (6.70)

between the current / and applied voltage V. Applying Kirchhoft’s laws to different
parts of the chain and rescaling the the variables, we obtain the following set of
dynamical equations:
X=—y(¥ —ax—y),
y=x-y-z,
7= By. (6.71)
Here x, y, z are rescaled voltage on C;, C, and current through L, respectively; «, 8,
y are rescaled chain parameters. Numerical simulation of Eqs. (6.71) with fixed o,
y demonstrates the transition to chaos by the scenario of period doubling with the
decrease of . In particular, for y = 100, « = 0.35, B = 300 a chaotic attractor is
observed in the phase space. We will consider the system (6.71) as the driving one,
and the coordinate x as the full replacement variable. Then, the equations of motion
for the driven system (its coordinates are stroked)
X =x,
);/ = x— y/ -7 .
7 =py. (6.72)
Let us now show that the subsystem (6.72), which we have chosen for the driven

one, is globally stable. For this we use the Lyapunov function method. Denoting
y—y =y*,z—7 =¥ from (6.71), (6.72) we get

= . 6.73
(2)-(5 o) ©7
For the Lyapunov function we take the following:
1
L=z [B+2) +87+1+p7)]. (6.74)
Using the equations of motion (6.73), we find

L= (By* +2*) (By* + %) + By*y* + (1 + B) **
=B +?) <0, (B>0). (6.75)
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Therefore the subsystem (6.72) is globally stable, i.e., for t — oo
|y—y/‘—>0, |z—z’|—>0. (6.76)

There is an interesting possibility to obtain a cascade of the driven subsystems [37].
Suppose that the driving system is represented by (6.72), and the first driven system
is represented in terms of variables y’, 7/, excited by x(¢). In addition, we can imagine
that we have a system containing the variable x”, excited by the variable y'. The total
cascade of the systems looks like the following.

The driving system

x:—y(x3—ozx—y),
y=x—-y-—-z,

7= By. (6.77)
The first driven system

)EIZX—)/—Z/,

7 =By. (6.78)

The second driven system
==y [ = (@) -v] (6.79)

If all the systems are synchronized, the signal x” (¢) is identical to the driving signal
x(1).

Let us now focus our attention on using the constructed cascade system for the
transmission of secret information. In accordance with the above principal scheme
we use the x(7) signal as the one of mask noise, and s(¢) as the information medium.
Let the receiver detect the transmitted signal r(f) = x(f) + s(f). As an analysis
of the system of equations (6.77) shows (6.78), (6.79) [36], if the power level of
the informative signal is considerably lower than the noise medium power level
|x(8)| >> |s(¢)|, then |x(f) — x”(¢)] << |s(r)]. This, in turn, means that the signal
s obtained as the result of the operation

s = r(t) — X" (1) = x(1) + s(t) —x" (1) ~ s(r) (6.80)

will be close to the initial informative signal s(). Authors of [36] numerically solved
the system of equations (6.77), ((6.78), (6.79) with parameters ¢ = 0.35, 8 = 300,
y = 100). The information medium signal s(f) was chosen in the three following
forms:
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Fig. 6.18 Power spectra for the informative signal s(f), transmitted signal r(¢), and reconstructed
signal s (f) for monochromatic (a), amplitude-modulated (b), and frequency-modulated (c)
signals s(r) [36].

Monochromatic signal: ~ s(f) = F'sin(wt), F = 0.02, ® = 1.

Amplitude-modulated signal:  s(z) = Fsin(w?)[1 + fsin(£21)], F = 0.02, v = 1,
f=1,2=0.2

Frequency-modulated signal:  s(f) = Fsinfwt 4 fsin (£21)], F = 0.02, v = 1,
f=02,02=0.2

The informative signal s((f) was reconstructed from numerical calculation
results according to (6.80). Figure 6.18 presents power spectra for the informational
signal s(¢), transmitted signal () = x(f) + s(¢), and reconstructed signal sV (¢) for
all three listed cases. If the informational signal power level is considerably lower
than for the chaotic medium, the frequency components of the informational signal
in the transmission are not detectable, at least visually. The spectrum quality of the
reconstructed signal is comparable to the received one.
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