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Preface

The study of physics has changed in character, mainly due to the trend from analysis
of linear systems to analysis of nonlinear systems. Needless to say, this trend began
a long time ago, but a qualitative change took place and began to evolve in a more
pronounced way only after physicists began to understand the nature of chaos in
nonlinear systems. The importance of these systems comes from the fact that most of
physical reality is in fact nonlinear. Linearity appears as a result of the simplification
of real systems and is often difficult to achieve in experimental studies. In this
book, we focus our attention on some general phenomena, naturally linked with
nonlinearity, in which chaos plays a constructive role.

The first chapter is a general introduction. The second discusses the concept
of chaos. It attempts to describe the meaning of chaos according to our current
understanding in physics and mathematics. The content of this chapter is essential to
understand the nature of chaos and its appearance in deterministic physical systems.
Using the Turing machine, we formulate the concept of complexity according to
Kolmogorov. Further, we state the algorithmic theory of Kolmogorov’s Martin-
Löf randomness, which gives a deep understanding of the nature of deterministic
chaos. Readers will not need any advanced knowledge to understand it, and all the
necessary facts and definitions will be explained. The third chapter describes the
main properties of chaos and its numerous qualitative features. Those presented in
this chapter are widely used for the investigation of various nonlinear processes and
objects, as well as for theoretical and experimental research. In this regard, it deals
with the main tools used to study chaos, such as the Poincaré section, the Lyapunov
index, etc. In the fourth chapter, we briefly consider the problem of the restoration
of a dynamical system with an attractor, based on the observation of temporal data
for some generalized coordinates. We discuss the attractor fractional dimension and
the fundamental Takens theorem.

Chapter 5 deals with one of the key fields in nonlinear dynamics, namely, the
control of chaos, which was discovered in the pioneering work of Ott, Grebogi, and
Yorke “Controlling Chaos” Phys. Rev. Lett. 64: 1196 (1990). If a system is chaotic,
then small perturbations increase exponentially in time and completely change the
behavior of the system. On the one hand, this feature complicates working with a
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vi Preface

chaotic system, but on the other hand, it allows purposeful control of the system’s
behavior using these small perturbations. In the same chapter, we consider different
methods for transforming chaos into periodic motion (both discrete and continuous),
based on the key concept of reconstructing a global system at the expense of a small
perturbation. We describe algorithms for dissipative, reversible, and Hamiltonian
systems, as well as for scattering problems. The methods developed are applied to
control chaos, both in abstract models and in real operational systems. At the end
of this chapter, we discuss the possibility of quantum dynamical control. Chapter 6
is about the synchronization of chaotic systems. Two identical chaotic systems with
almost the same initial conditions can diverge exponentially in phase space. This is
the main difficulty to be overcome if we wish to solve this problem. We outline
the methods for its solution, for both dissipative and Hamiltonian systems. We
demonstrate the possibility of solving the synchronization problem using the control
methods explained in the previous chapter. We are also interested in the influence of
noise on the process of synchronization. Further, we briefly examine the principles
of the transfer of coded information based on the effects of chaos synchronization.

In the seventh chapter, we investigate in detail the stochastic resonance effect.
This effect makes it possible to set up a stochastic system for maximum amplifi-
cation of the modulation signal by means of noise intensity variations. Stochastic
resonance can be realized in any nonlinear system which has some characteristic
time scale, and one scale can be controlled with the help of the noise. We examine
various generalizations of the initial-value problem, such as stochastic resonance in
chaotic systems. The possible relation of this effect to global changes in the Earth’s
climate is also discussed in this chapter. The main topic of Chap. 8 is transport
phenomena in spatially periodic systems without macroscopic forces (gradients).
We discuss in detail the necessary conditions for the existence of a macroscopic
current in such a situation. At the same time, we provide a classification of
systems (ratchets) in which currents without gradient are possible. As one possible
realization of the effect, we consider the generation of regular motion in media
with nonlinear friction. In this chapter, we also expound the theory of biological
motors (molecular motors), which is a very important application of ratchet theory.
The concluding Chaps. 9 and 10 are devoted to the problem of quantum chaos or,
more precisely, to quantum manifestations of classical stochasticity. There is no
doubt that nonlinear systems manifest chaotic regimes in certain ranges of their
parameters. On the other hand, a fundamental description of the dynamics requires
the use of quantum mechanics, rather than classical physics. What are the particular
features of quantum systems if their classical analogues show chaotic behavior?
The answer to this question is far from trivial. The problem is that, on the one hand,
the energy spectrum of any quantum system with finite motion is discrete, so its
evolution will be quasiperiodic, but, on the other hand, the correspondence principle
requires a transition to classical mechanics that involves not only regular modes but
also chaotic ones. However, a correct formulation of the quantum chaos problem
allows us to avoid any contradictions. Signatures of classical chaos are identified
in the statistical properties of the energy spectra, the wave function structure, and
the dynamics of the wave packets. The main methods used here are the Gutzwiller
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trace formula for the density of the quantum spectrum, the spectral method, and
the Riemann zeta function. Moreover, as we show in Chap. 9, although tunneling is
absent in classical physics, it is the structure of the classical phase space that defines
a purely quantum effect for tunneling. The paradigm of chaos-assisted tunneling
(CAT) is annular billiards. This theory is the main topic of Chap. 10, which also
deals with the presence of chaos in nuclear dynamics.

We wish to express our deepest gratitude to Hermann Haken for his interest in
our work and his support of this book. We are very grateful to Christian Caron
and Gabriele Hakuba for their invaluable help in editing the book. We would like to
thank the Institut de Recherche en Astrophysique et Planétologie (CNRS, Université
Paul Sabatier) and particularly Philippe Louarn for his support of our project. We
thank Tatiana Tour for her assistance in the preparation of this book.

Kharkov, Ukraine Yurii Bolotin
Toulouse, France Anatoli Tur
Kharkov, Ukraine Vladimir Yanovsky
May 2016
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Chapter 1
Introduction

The notion of chaos is so deeply integrated into all fields of science, culture, and
other human activities, that it has become fundamental. It is quite probable that each
person has his or her own intuitive concept of what is chaos. The first cosmogonical
views which explained the origin of the world contained the notion of chaos. For
example, the ancient Greeks believed that chaos appeared before everything and
then only afterwards the world appeared.

For example, Hesiod says: “In the beginning there was only chaos. Then out of
the void appeared Erebus, the unknowable place where death dwells, and Night. All
else was empty, silent, endless, darkness. Then somehow Love was born bringing a
start of order. From Love came Light and Day. Once there was Light and Day, Gaea,
the earth appeared.”

The origin of the word chaos itself, �˛o& , comes from ancient Greek �˛��!,
which means to open wide.

We can find a similar concept concerning the origins of the world in ancient
Chinese myth: “In the beginning, the heavens and earth were still one and all was
chaos. . . ”

In ancient Indian literature the origins of the world are also associated with chaos:
“A time is envisioned when the world was not, only a watery chaos (the dark,
“indistinguishable sea”) and a warm cosmic breath, which could give an impetus
of life.” [1]

An ancient Egyptian origin myth holds that in the beginning, the universe was
filled with the primeval waters of chaos, which was the god Nun.

Such unanimity of such distant civilizations (in space as well as in time) on the
idea of the origination of the world from chaos is quite striking. It seems that this
notion is one of the most important to come from ancient times. What is also striking
is the fact that the problem of chaos is still topical after some hundreds of years of
its study in mathematics and physics. Even a simple list of fields where chaos plays
a fundamental part in modern science would take up most of this book. However, a

© Springer International Publishing Switzerland 2017
Y. Bolotin et al., Chaos: Concepts, Control and Constructive Use,
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2 1 Introduction

new understanding of the origins of chaos was reached quite recently in connection
with the discovery of deterministic chaos.

Before the discovery of this phenomenon, all studies of random processes and
of chaos were usually conducted within the frame of classical theory of probability,
which requires one to define a set of random events or a set of random process
realizations or a set of other statistical ensembles. After that, probability itself is
assigned and studied as a measure on this set, which satisfies Kolmogorov’s axioms
[2]. The discovery of deterministic chaos radically changed this situation.

Chaos was found in dynamical systems, which do not contain elements of
randomness at all, i.e., they do not have any statistical ensembles. On the contrary,
the dynamic of such systems is completely predictable, the trajectory, assigned
precisely by its initial conditions, reproduces itself precisely, but nevertheless its
behavior is chaotic.

At first sight, this situation does not correspond to our intuitive understanding,
according to which chaotic behavior by its very nature cannot be reproduced. A
simplified and pragmatic explanation is frequently used to explain this phenomenon.
Dynamical chaos appears in non-linear systems with trajectories utterly sensible
to minor modifications of initial conditions. In that case any person calculating a
trajectory using a computer observes that the small uncertainty of initial conditions
engenders chaotic behavior.

This answer does leave some feeling of dissatisfaction. In fact, we know that,
for instance, the number

p
2 exists accurately, without any uncertainty. What would

happen if the trajectory began precisely from
p
2? The usual answer to this question

is that the behavior of trajectory will become more and more complex, because the
number

p
2 is irrational and ultimately will be practically indistinguishable from

the chaotic, although remaining determined.
However, two questions persist: what do we mean by “complex” and what does

“practically indistinguishable from the chaotic” mean? For example, genetic code
is complex but not chaotic, while a coin toss is a simple, but chaotic process. Even
from the above we can see that the phenomenon of deterministic chaos requires
a deeper understanding of randomness, not based on the notion of a statistical
ensemble.

Such a theory was developed by Kolmogorov and his disciples even before
the discovery of the phenomenon of deterministic chaos. The main principle of
this theory will be stated in the next chapter, where we will introduce all its
necessary components: algorithms, Turing machine, Kolmogorov’s complexity, etc.
It is significant that Kolmogorov came to his theory when discussing in articles [3, 4]
the limited nature of Shannon’s theory of information [5].

As an example, let us question how to understand what is the genetic information,
for example, of a tiger or of Mr. Smith. It seems that, since the notion of information
is based on the introduction of probabilities, we have to examine a set of tigers
with assigned probability. Only after that, one can calculate Shannon information
in the tiger’s genes. It is clear that something in these considerations provokes
anxiety. Above all, the dissatisfaction is caused by the introduction of the set of
Smiths, let’s say. Obviously, it is more pleasant to consider that Mr. Smith is unique
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and has individual genetic information like a particular tiger. The limited nature of
probabilistic approach becomes even clearer if you consider how much information
is contained in the book “War and Peace” by Leo Tolstoy. Then the problem with
the introduction of the set “War and Peace” becomes perfectly evident.

The problem is that we are interested in information for the object that is
individual. In other words, we have only one specimen of the object and it is
impossible to create another one even mentally. Therefore, the theory of probability
and the theory of information must be restated in such a way that the individual
object get the character of random one. Kolmogorov states [4]: “1) The main
concepts of the theory of information must be and can be founded without using
the theory of probability and in such a way that notions of “entropy” and “quantity
of information” become applicable for individual objects. 2) Notions of the theory of
information introduced in this way can underlie the new concept of random, which
corresponds to natural thought, that randomness is the absence of laws.”

The algorithmic theory of randomness developed by Kolmogorov and his disci-
ples is a natural mathematical basis for understanding the theory of deterministic
chaos; we will examine it in the next chapter. This theory gives natural answers to
the questions that were put earlier: when complexity turns into randomness and how
algorithmic randomness obeys the theory of probability. From the physical point of
view, this means that the distinction between dynamical and statistical laws gets
erased.

Note that the reader is not obliged to begin the study of the theory of chaos and its
applications with Kolmogorov’s algorithmic theory of randomness. In other words,
the chapter Paradigm for Chaos is to a great extent independent from the other
chapters in this book. However, experience has shown that the study of deterministic
chaos can feel unfinished and unsatisfying. Therefore, if at any time the reader feels
a desire for a deeper understanding of the nature of deterministic chaos, they can
turn to “Paradigm for Chaos.”
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Chapter 2
Paradigm for Chaos

One of the major concepts central to the deeper understanding of contemporary
physics is the concept of chaos. It would not be an exaggeration to say that chaos
is everywhere in physics. The chaotic behavior of physical systems was considered
until lately as the result of unknown factors which influence the system. In other
words, chaos was supposed to appear in physical systems because of the interactions
with other systems. Earlier, as a rule, it was considered that these actions were
complicated and uncontrolled and usually random. Random parameters and fields
arose in dynamical systems due to these phenomena. As a result, the variables,
which describe the dynamical systems, are random. The development of non-linear
physics and the discovery of deterministic chaos led to an important change of point
of view on both the apparition of chaos in physical systems and the nature of chaos.

Currently, there are many good books and reviews dealing with the theory and
applications of deterministic chaos. In most descriptions of deterministic chaos
a pragmatic point of view prevails: chaos appears in dynamical systems with
trajectories utterly sensible to minor changes in initial conditions. At that, the
individual trajectory is, as a rule, so complex that it is practically impossible to
distinguish it from a chaotic one. At the same time, this trajectory is completely
determined. This point of view, which is sufficient enough for practical work
with non-linear dynamical systems, is the one most commonly used. However, the
question of the deeper origins of deterministic chaos is rarely discussed. When and
why is the behavior of a determined trajectory not only complex and “similar to
random,” but really random? In other words, can we apply probability laws to it,
despite the fact that at the same time, it is quite determined and unique with the
same initial conditions? It is clear that answers to these questions are of fundamental
importance even if they will not contribute to perfecting techniques of practical
calculations of chaos characteristics.

In this chapter we will state the foundations of the algorithmic theory of
randomness of Kolmogorov–Martin-Löf which can provide a deeper understanding
of the origins of deterministic chaos. The algorithmic theory of randomness does not
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deal directly with dynamical systems. Instead, this theory examines the work of the
universal Turing machine. A Turing machine works according to some determined
program and a prints finite or infinite sequence of symbols from a finite alphabet
(for example, 0 or 1). We can consider the Turing machine an abstract model for a
determined dynamical system or as a model of a computer programmed to solve a
motion equation for a dynamical system. We can think of the sequence printed by
this Turing machine as the trajectory of the dynamical system.

Now we can examine the same question again but this time within the frame of
the mathematical theory of Turing machine: supposing that the sequence (trajectory)
is complex, would it be in any sense random? The theory of Kolmogorov–
Martin-Löf gives the answer to this question. Kolmogorov formalized the concept
of complexity when analyzing the length of programs for the Turing machine.
He introduced the concept of complexity, now called Kolmogorov’s complexity.
Kolmogorov’s disciple, Martin-Löf, proved the remarkable theorem. Complex
sequences, according to Kolmogorov, are random to the extent that they obey all the
theorems of the theory of probability with an accuracy up to set of zero measure.
This theorem is astonishing, because its proof concerns not only already-known
theorems of probability theory, but also theorems which are not yet proven.

Thus, it was strictly proven that the complexity of determined sequences
(trajectories), which is understood as the absence of laws, actually turns into true
randomness. As a result, the theory of Kolmogorov–Martin-Löf, whose importance
is probably not yet fully appreciated in physics, gives a new understanding of the
origins of randomness and of deterministic chaos. This is applicable to individual
objects without using statistical ensembles.

2.1 Order and Disorder

In order to discuss these concepts, it is natural to start with the most obvious ones.
It seems normal that order is simpler than disorder. Let us imagine an experimenter
who works with an instrument and who measures the value of some variables. If
his instruments record the value 7; 7; 7; 7; 7; : : : ; 7 multiple times, a rule becomes
obvious and simple, under the condition that the experimenter is sure that it would
continue in the same way. Other results can also appear, like 7; 2; 7; 2; : : : ; 7; 2
or 7; 2; 3; 5; 7; 2; 3; 5; : : :, so the rule can be seen without any difficulty if the
experimenter is sure to repeat the same results as before. However, there are
situations when the rule is more complicated and its finding requires efforts which
go beyond the scope of these simple observations. The reasoning above suggests that
as a definition of ordered behavior or, in this case, ordered sequences of numbers,
one can propose a seemingly simple definition. This naive definition means that
we can predict all the terms of the sequences using its limited part only. But this
definition is not very useful since it is practically impossible to guess the rules of
construction for a complex sequence. For instance, if we took the sequence of the
first thousand decimal digits belonging to the fractional part of number � , it would
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seem random. However, when we investigate the simple rule of its construction (a
short program for a computer), we can no longer consider this sequence as being
random. Actually, if we have a limited part of the sequence, we can imagine an
endless number of rules which give different sequences where the limited part of
the beginning is present. All this shows that this attempt to define the concept of
order is not at all sufficient for understanding the concept of chaos. Therefore some
strict mathematical methods are needed to distinguish well-ordered sequences from
chaotic.

Let us now consider a different way of introducing these concepts of order and
disorder. For the sake of simplicity, we will consider sequences containing only
0 and 1. Then the main question appears: how to distinguish ordered sequences
of 0 and 1 from disordered ones. It goes without saying that the origins of these
sequences are not important.

The first attempt to define random consequences using the frequency approach
was made by Mises [1] who tried to formulate the essential logical principles of the
probability theory. To begin with let us examine the Mises’s scheme.

Let us suppose an infinite sequence x1; x2; x3; : : : made of zeros and ones.
According to Misses, above all, the necessary condition of randomness is to be
fulfilled, i.e., the limit must exist:

P D lim
N!1

1

N

X

i�N

xi : (2.1)

It is clear that this condition is not sufficient, as, for example, the sequence
0; 1; 0; 1; 0; 1 : : : obeys condition (2.1), but can in no way be considered random.
Therefore, Mises believed that there is another condition for randomness. Let us
choose from the infinite sequence of numbers 1; 2; 3; : : : a subset of numbers and
let us designate it as n1; n2; n3; : : : ; nk; : : : ;. Following this choice let us consider
variables Mises’ second idea was that the initial sequence of variables xi is random
if for the chosen subsequence xn1 ; xn2 ; : : : ; xnk ; : : : the limit (2.1) remains the same,
i.e.,

P D lim
M!1

1

M

X

k�M

xnk : (2.2)

It is clear that the choice of the subsequence is not arbitrary. For instance, it is
impossible to choose all the variables xi as zeros or ones. That is the reason why
the rules of the choice of subsequence are most important in Mises’ theory. Mises
gave only the general characteristic of these rules and restricted himself to some
examples: in particular, prime numbers can be chosen as variable numbers, etc.
But Mises could not formulate the mathematical scheme of choice or rules, since
the concept of rules and laws of choice were not formulated mathematically in his
time. In other words, the concepts of algorithm, recursive functions, and Turing
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Machine, which formalized his intuitive ideas of laws and rules of choice were not
yet developed.

The next studies of the foundation of the theory of randomness were stopped
for a long time because of Kolmogorov’s proposition to consider the probability
theory as an applied measure theory [2]. The elegance of the axioms of Kolmogorov
as well as its great possibilities led to the fact that the main efforts of scientists
were concentrated on the development of the probability theory in this direction.
The question of foundation was forgotten until the appearance of Kolmogorov’s
new work where he started to study this problem again. The starting point of his
work was his introduction of the new concept of complexity as a measure of chaos.
The complexity of finite sequences of 0 and 1, according to Kolmogorov, can be
measured by the minimum length of its “description”: the rules used to construct this
sequence. A good example of sequence description is given in the book “The Good
Soldier Švejk” by Jaroslav Hašek [3] when Švejk explains a method to remember
the number of the railway engine 4268 which the track supervisor recommends to
the engine-driver. “On track no. 16, is engine no. 4268. I know you have a bad
memory for figures and if I write any figures down on paper you will lose the paper.
Now listen carefully and as you’re not good at figures I’ll show you that it’s very
easy to remember any number you like. Look: the engine that you are to take to the
depot in Lysa nad Labem is no. 4268. Now pay careful attention. The first figure is
four, the second is two, which means that you have to remember 42. That’s twice
two. That means that in the order of the figures 4 comes first. 4 divided by 2 makes
2 and so again you’ve got next to each other 4 and 2. Now don’t be afraid! What are
twice 4? 8, isn’t it? Well, then get it into your head that 8 is the last in the series of
figures in 4268. And now when you’ve already got in your head that the first figure
is 4, the second 2, and the fourth 8, all that’s to be done is to be clever and remember
the 6 which comes before 8. And that’s frightfully simple. The first figure is 4, the
second 2 and 4 and 2 are 6. So now you’ve got it: the second from the end is 6 and
now we shall never forget the order of figures. You now have indelibly fixed in your
mind the number 4268. But of course you can also reach the same result by an even
simpler method. So he then began to explain to him the simpler method of how to
remember the number of the engine 4268. 8 minus 2 is 6. And so now he already
knew 68. 6 minus 2 is 4. So now he knew 4 and 68, and only the two had to be
inserted, which made 4 � 2 � 6 � 8. And it isn’t too difficult either to do it still
another way by means of multiplication and division. In this way the result will be
the same.”

As we can see, there are plenty of ways to describe a sequence. This is the reason
why the main problem consists of how to find a method which would contain all
the ways to describe the 0; 1 sequence, from which we need to pick the smallest
one. The theory of algorithms by Turing and Post [4, 5] gives the foundations of the
formal description of the construction rules for sequences. Their works laid the basis
for many mathematical branches, such as mathematical logic, the theory of recursive
functions, cybernetics, and the theory of information. Let us consider these works
in more detail.
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2.2 Algorithms and Turing Machine

In mathematics, an algorithm is the rule which permits one to find a solution to a
mathematical problem (if a solution exists), using only regular procedures, without
additional heuristic methods. The classical example is the Euclidian algorithm
of division. The word algorithm comes from the name of the great Arabian
mathematician Mohamed al-Horezmi, whose treaty in Latin begins with the words
“Dixit algorizmi” which means “al-Horezmi said.” Turing’s reflections on the
concept of algorithms led him to introduce a new mathematical concept, which is
currently called the Turing machine. Nowadays, by definition, the Turing machine
is the set:

M D �
˙; S;P; q0; qf ; a0

�
; (2.3)

where ˙ is an external alphabet, with which you can write down the input and
output words (sets of letters which are contained in the external alphabet). S is an
internal alphabet which describes the internal states of the Turing machine, q0 is the
initial state, qf is the final state, a0 is the empty cell, P is the machine program, i.e.,
the list of commands. As regarding the commands there are three kinds of words:

1.

qa ! rb

The meaning of this expression is the following. The Turing machine in the
state of q and watching the letter a must pass to the state r and write down letter
b on the band.

2.

qa ! rbR

This expression means that the machine in the state of q and watching the letter
a must pass in state r, and write down the letter b and move to the right.

3.

qa ! rbL

This means that the machine in the state of q and watching the letter a must pass
in the state of r, and write down the letter b and move to the left.

R, L, and ! are not part of the alphabet ˙ and S. By definition the program is
a finite sequence of these commands. It is convenient to see the Turing machine as
an endless band which is divided into separate cells, on one of which the Turing
machine is fixed (see Fig. 2.1). On the band on each cell only one letter can be
written from the alphabet˙ . As an example in Fig. 2.2, we present three commands
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... ...
0 1 2 3 n

q

a a a a a a10 2 3 n n+1

Fig. 2.1 Turing machine. The band of symbols, empty cells, and the reading head of the Turing
machine are shown

rq

ac d c b d

qa        rb>_

q r

ac d c b d

qa        rbR>_

rq

ac d c b d

qa        rbL>_

Fig. 2.2 Examples of the execution of commands by the Turing machine

performed by the Turing machine that were described earlier. The state of the Turing
machine at any cycle is denoted as A.q; a/B. This means, that in the state of q, the
machine is fixed on the letter a, on the band on the left of the letter a is the word A
and on the right is written the word B.

Let us see now how the Turing machine works. We suppose that there is a
machine word or a configuration of a word on the band. The Turing machine’s work
starts with the initial configuration .q0; a0/B. After the realization of program P the
machine will stop at the final configuration C.qf ; a0/D. The transition between the
initial and the final configuration is performed by the command of the P program.
Functions, which are calculated by the Turing machine, are called particular
recursive functions (the word “particular” refers to the fact that the function is not
defined at initial configuration). If the particular recursive function can be defined at
any initial configuration it is called recursive. In the case of recursive functions the
Turing machine starts to work with any input of integer numbers and always finishes
its work giving the value of calculated functions.
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The machine can be defined in the initial configuration if it performs its program
and stops with the final result C.qf ; a0/D. However, the initial configuration can be
undefined for two reasons. First of all, in the process of program realization, the
machine can find a configuration to which no commands of this program can be
applied. The second reason is that the process of the execution of the program can
be endless and the machine might not stop.

The Turing machine that is described gives an algorithm definition in a mathe-
matical sense. It implies that there is an algorithm for a calculation or a process. The
machine that is described has modest possibilities. However, it is possible to build a
complex Turing machine thanks to the unification of simple ones. At the same time,
the calculation possibilities of this machine will grow.

It is important to say that it has been demonstrated that a universal Turing
machine can be built. This kind of machine can do whatever any Turing machine
M does with an initial configuration. As an input for the universal Turing machine
we give the initial configuration and description of Turing machine M. As a result,
the initial configuration of treatment will be the same as for the machine M. We
have to notice that this machine has impressive capacities. In principle, any modern
computer can be coded on a band, and as a result, the universal Turing machine can
do anything a modern computer does. The last question that interests us is whether
all algorithms, from an intuitive point of view, coincide with the formal definition
of the Turing machine. Generally speaking this question is not a mathematical one
because there cannot be an algorithm definition in an intuitive sense. Church [6, 7]
first answered this question when he proposed a thesis in which he said that every
alphabetical, discreet, massive, determined, and closed algorithm can be defined
by the Turing machine. We can say that any algorithm in an intuitive sense is
given by the Turing machine. We have to emphasize that Church’s thesis is not a
mathematical assertion, it is more like a statement about energy conservation in
physics. However, mathematical experience supports this thesis.

2.3 Complexity and Randomness

Now we have a universal method to describe finite sequences thanks to the Turing
machine. Actually, any sequence can be associated with a program P of the Turing
machine, thanks to which the Turing machine can write it down. It is clear that for
every chosen sequence there are an endless number of programs that can perform
it. This is why, according to Kolmogorov, we can define the concept of complexity
[8] as related to the Turing machine M. Let us say that the machine M writes down
n-value sequences of 0 and 1. By definition, the complexity KM coincides with the
length of the shortest program (in bytes) after the realization of which the machine
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will write down the given sequence X D .x1; x2; : : : ; xn/:

KM D
(

min ` .P/ ; M .P/ D X;

1; M.P/ ¤ X
:

This concept of complexity clearly depends on the machine M. However
Kolmogorov managed to prove that there is a universal Turing machine for which:

K .X/ � KM .X/C CM :

The constant CM does not depend on the sequence and this is why it can be chosen
identically for all the sequences. So the complexity K will be minimal and K.X/will
be called the complexity of the sequence X according to Kolmogorov. It is possible
to prove that there are sequencesX (with a n length) for whichK.x/ � n. This means
that there are no simpler algorithms or ways to describe them than this sequence.
Such sequences correspond to our intuitive understanding of random sequences
because they do not contain any rules which could simplify them. Nevertheless,
for the time being, we do not have any reason to think that probability laws are
applicable to these sequences. Thus we have defined the concept of complex finite
sequences or a random sequence. In a certain sense this definition can be considered
as final. However, it is necessary to extend our definition to infinite sequences. It
seems natural to define random infinite sequences of 0 and 1 X D .x1; x2; x3; : : :/
so that

K .Xn/ � n C const : (2.4)

for any final segment Xn D .x1; x2; x3; : : : ; xn/.
Here the constant depends on the sequence X. However, this definition is not

satisfactory. One can prove that sequences for which conditions (2.4) are fulfilled for
every n do not exist. We can intuitively understand the reason for these phenomena.
Experience shows that in every random sequence, for example, the one you obtain
after a coin toss, there are ordered parts of sequence numbers (for example,
1; 1; 1; : : : ; 1). This means that in every random infinite sequence there is an endless
number of ordered segments. Thus complexity behaves like an oscillation function
with a growth of n (see Fig. 2.3). In other words, there are many values of n for
which:

K .Xn/ < n : (2.5)

This means that definition (2.4) is not appropriate for random infinite sequences. In
order to avoid these difficulties we chose another definition.

The sequence X D .x1; x2; x3; : : :/ is called random according to Kolmogorov if
there is a constant C such that for each number n the following condition is satisfied:

jK .Xn/� nj � C : (2.6)
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n0

K(n)

Fig. 2.3 The behavior of complexity with the growth of the number of sequence members. The
features of the decrease of complexity on ordered segments of sequences are shown symbolically

From a physical point of view, this means that the decrease of complexity does not
go over a certain level and with the growth of n the relative contribution of this
decrease to complexity is small.

We will understand random infinite sequences as sequences that fulfill the
conditions (2.6). According to Kolmogorov this is a final definition of individual
random sequences. Another way to define random sequence is to use monotonous
complexity or monotonous entropy (see, for example, [9]) instead of the simple
Kolmogorov’s complexity. The introduction of monotonous entropy permits us to
avoid the difficulty of oscillation in the simple Kolmogorov’s complexity.

It seems very natural to think that these sequences are chaotic. However, one
question remains: will these sequences be random in the sense that they will obey
all theorems of the probability theory? Martin-Löf obtained a positive answer to
this question when developing Kolmogorov’s ideas [10, 11]. It is not our aim to
present the Martin-Löf theory, which is quite complex. However, because of the
importance of his results, we are going to explain the main ideas of this theory.
Let us consider a set ˝ of infinite sequences of 0 and 1. It is clear that the power
of set of all sequences has the capacity of a continuum. Let P be a measure for
this set. How does the observer exclude all the sequences which have all possible
laws from this set? The observer can treat the initial segments of the sequences, find
some laws in them as, for example, repetitions, calculate how many bits of regularity
he finds, and then exclude these sequences from the admissible set. As a result, the
measure of admissible candidates for random sequences will fall. Since these actions
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are recursive, the observer can charge the Turing machine with these actions. This
idea is the base of the “universal test of randomness” or universal sequential test
of Martin-Löf. Martin-Löf’s test P for randomness is a recursive function F (or the
Turing machine) which treats finite sequences of 0 and 1 with a length of m and
find how many bytes of regularity there are in it (roughly speaking the common
segment). Then for every byte of regularity, recursive function F decreases by at
least twice the set of admissible sequences ! and its measure P. The sequences
which remain in the admissible set for any length m are considered a sequence
which goes through the test P. The union of all P-tests gives a universal sequential
test which is a limiting concept. The sifting of the sequences through the Martin-
Löf test eliminates all the sequences which have any laws. As the number of regular
sequences is much smaller than that of complex ones, as a result we have only
complex sequences in the admissible set after sifting. Martin-Löf demonstrated that
the complex sequences after Kolmogorov go through the universal test. We have
to explain how the random sequences after Martin-Löf satisfy all the theorems of
probability theory which can be tested effectively. Let us suppose that we have the
sequence ! which does not satisfy one of the theorems of probability. In this case
this theorem can be reformulated and added in the new P-test. Now this sequence
does not go through the new P-test, i.e., does not go through the universal test and
must be rejected as not random.

So it has been proved that random sequences exist. The power of the set of
random sequences is continuum. Let us emphasize that now the Martin-Löf random
sequences are random in the classical sense. These sequences obey the theorems of
the probability theory.

We have managed to establish a relationship between Kolmogorov and Martin-
Löf random sequences. These two sets coincide. Now we can affirm that complex
sequences or random in the sense of Kolmogorov are random from the probability
theory point of view. Let us present another important theorem. Random sequences
cannot be calculated with the Turing machine. There are no algorithms for the
calculation of random sequences. This is a very important property. In conclusion,
let us note that Church formulated the intuitive ideas of Mises using the theory
of algorithms [12]. The final theory which developed the frequency approach of
the probability of Mises was proposed by Kolmogorov and Loveland [13–15].
Kolmogorov considered the frequency approach very important, as it explains why
the abstract probability theory is applicable in the real world, where the number
of trials is always finite[4]. Unfortunately the algorithmic notion of randomness
according to Mises–Kolmogorov–Loveland does not correspond in full to our
intuitive understanding [16]. The random sequence according to Martin-Löf is
random according to Mises–Kolmogorov–Loveland. However there are sequences
which are random according to Mises–Kolmogorov–Loveland, but are not random
according to Martin-Löf.
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2.4 Chaos in a Simple Dynamical System

Now let us look at the source of the appearance of chaos in determined systems.
Before introducing the motion equation or system evolution we shall discuss its
phase space. For the sake of simplicity, let us limit ourselves to one-dimensional
models which evolve in the bounded area of the real R1 line. Then, as a phase space,
without the loss of commonness, we can choose the segment Œ0; 1�. All the points
of this segment can be used as values of our system positions during evolution
and also as its initial conditions. Now we are reminded of some of simple facts
of the number theory. The segment Œ0; 1� is filled up with real numbers which are
separated as rational numbers and irrational ones. The power of the set of rational
numbers coincides with the power of integer ones, i.e., a countable set. The power
of the set of irrational numbers is a continuum. For the description of numbers in
the calculus system with the radix b (integer number) one uses their single valued
representability like a series:

x D a1
b

C a2
b2

C a3
b3

C � � � D
1X

iD1

ai
bi

x 2 Œ0; 1� :

where ai D 0; 1; 2; : : : ; b � 1. Another expression to write down the numbers in the
selected calculus system:

x D 0; a1; a2; a3; : : :

is named the b form of number presentation. This form is well known by everyone
through the decimal form of writing rational numbers. One often uses binary
calculus system in which the radix b D 2. For instance, in Babylon, the calculus
system with the radix D 60 was used because ancient mathematicians did not like
fractions. From this point of view, the relatively small number 60 with the big
number divisor 12 was a very convenient foundation for the calculus system. As
a result, we inherited the division of 60 min in an hour and 60 s in a minute from
that Babylonian calculus system. Rational numbers written down in the b form can
be easily distinguished from the irrational ones. Actually, any rational number is
represented as:

p

q
D 0; a1; a2 � � � ama1a2 � � � ama1a2 � � � am � � � (2.7)

In other words, after m figures in the writing of any rational numbers the e is a
block of figures fully repeated periodically. Irrational numbers do not have such
periodicity. Obviously it does not help too much to recognize numbers. For example,
it is hard to use this fact even to prove the irrationality of

p
2. To do this, one would

have to have the infinite recording of this number but that is impossible. That is why
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the well-known proof of the irrationality of
p
2 obtained by the ancient Greeks was

based on another principle.
In some cases the demonstration of rationality or irrationality of some concrete

numbers can be very difficult. For example, we currently do not know if the Euler
constant c � 0:6 is a rational or irrational number. By definition the Euler constant
is given by the following expression:

c D lim
n!1

 
nX

iD2

1

i
� ln n

!
:

What is important for us is that rational or irrational numbers are dense everywhere
on a segment Œ0; 1� (see, for example, [17]) and that between two different real
numbers there is an infinite number of rational and irrational numbers. Let us note
that it is not important if these two numbers are rational or not. The theorem is
always true. Hence in the small neighborhood of any number there is an infinite
number of rational and irrational numbers. The fact that rational numbers are dense
everywhere permits us to have a good approximation of irrational numbers by the
rational ones. It has been proven that any irrational number x can be approximated
by rational numbers p=q with precision so that:

ˇ̌
ˇ̌ x � p

q

ˇ̌
ˇ̌ < 1

q2
:

As an example we give an approximation of the irrational number � , � � 355=113.
It is easy to verify that:

ˇ̌
ˇ̌� � 355

113

ˇ̌
ˇ̌ D 2; 66 � 10�7 :

This means that this fraction coincides with the number � up to the sixth order and
corresponds to the inequality that was given before.

Let us transfer some properties of chaotic sequences onto the points of our phase
space. It is easy to understand that if we attach 0 with comma (0;) to any sequence,
we obtain one-to-one correspondence between the sequences and the point of our
phase space. At the same time, the coordinates of our phase space are written down
in the calculus system on radix 2. Since the continuum of points exists and there
is no algorithm to calculate their coordinates, the coordinates of these points are
random.

One might think that these points correspond to all irrational numbers. However,
this is not true. For example, the number e is irrational but is not complex according
to Kolmogorov, since there is a simple algorithm to calculate it with the expression:

e D lim
n!1

�
1C 1

n

�n

:
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This example shows that not all the sequences which at first sight are complex or
chaotic are such in reality, because they can contain some hidden algorithms which
were used for their construction. Now let us consider the non-linear dynamical
system in discrete time:

xnC1 D 2 xn mod 1 : (2.8)

Here x mod 1 is a fractional part of the number x. If we know the coordinates xn at
the moment n, it is easy to have its coordinates xnC1 at the moment n C 1. If we
substitute xnC1 in the right part, we find the same way the coordinates of the system
at the moment n C 2. It is hard to imagine a simpler and more determined system.
The exact solution of this equation:

xn D 2 nx0 mod 1 (2.9)

gives a guarantee of the existence and uniqueness of the solution. Thus, the
mapping (2.9) has all the features of a strictly determined system. Let us consider
one of the trajectories of the system with initial conditions X which belong to the
set of “random” points. The dynamic of the system (2.8) means in reality the shift
of the comma of one position to the right and the rejection of the integer part of the
number at each step. This is why the whole trajectory is actually number x, which
is random, hence the trajectory of the motion of the system can be shown to be
random.

This example shows that determination is not in contradiction with randomness.
Mapping (2.8) is determined and does not contain any random parameters. More-
over, it has an exact solution (2.9). The trajectories with the same initial conditions
repeat exactly. However, the behavior of the system, or of the trajectory, is random.
In this sense we can speak about a deterministic chaos.

There is a simple way to test it. Let us divide the segment Œ0; 1� into two segments
Œ0; 1=2� and Œ1=2; 1�. Now the question is to know in which segment the solution is.
The answer to this question depends on whether 0 or 1 is in the corresponding place
in the presentation of number x. At the same time, an expert to whom we can present
the data about particle position in the first or second segment will not be able to find
any difference between this data and the data of a coin toss when 0 or 1 is associated
with heads and the other figure is associated with tails. In both cases, he will find
that the probability to find the particle in the left segment will be 1=2—the same as
for the right segment. In this regard, we can say that the dynamic system (2.8) is the
model of coin toss and describes the classical example of the probability process.

Such indeed is the meaning implied when one speaks of continuous phase space
as the reason for the chaotic behavior of the system. One might think that this
result appeared after a too simple partition of the phase space in cells. However,
this is not true. It is possible to partition the segment Œ0; 1� into more cells and
study the transition between them (here we enter into another mathematical branch,
the so-called symbolic dynamics [18–20]). The transitions between these cells
are described by the Markov process, which are classical examples of probability
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processes [21, 22]. We can even work with infinitely small cells but if we do not
take into account some mathematical difficulties we will not yield anything more
than randomness x which has already been proven.

Let us go back to the reasons for chaotic behavior of the trajectory of dynamic
systems. First of all it is the continuality of phase space. However, if the chaotic
behavior of the system is related to the uncalculated initial data, then why do
we observe chaotic behavior in one system but not in others? We can try to
answer this question. As a matter of fact if we look attentively at the system (2.8)
we can remark that the behavior of this system in time depends more and
more on the distant figures of the development of the number x0. So if we
know only a finite number of symbols in the development of the initial data
x0, for example, m, we can describe our system only on a finite interval m. As
a result, the dynamical system is sensitive in an exponential way with respect
to the uncertainty of the initial data. In such dynamical systems, the potential
randomness which is contained in the phase space continuity transforms itself into
an actual randomness. At the same time we obtain the first criterion of stochastic
behavior of a determined system: stochastic behavior of the trajectory is possible
in systems which have an exponential sensitivity to the uncertainty of initial data.
This criterion can be presented differently. Chaotic behavior is achieved in non-
linear systems with an exponential divergence in neighboring trajectories. We can
easily understand this if we consider uncertainty as a module of the difference
between the two possible initial conditions. For our system, the distance j�x0j
between trajectories which are close at the initial time will grow with the time as
j�x0j en ln 2.

Another important observation can be made from the study of this simple
dynamical system, concerning periodical trajectories or orbits. Let us consider the
positions of the periodical trajectories in the phase space. Taking into account
the fact that all rational numbers have the form (2.7) it is easy to see that all
trajectories with initial conditions x0, which coincide with the rational numbers,
will be periodical. Hence, the periodical orbits are a countable set and are dense
everywhere in the phase space. Obviously, the trajectories which were initially close
to the periodical orbits will go far away exponentially fast. This is why we call these
periodical orbits unstable. Thus, periodical orbits are everywhere dense in the phase
space of the dynamical system (2.8). As we will see later, this feature will always
be observed in the dynamical systems with chaotic behavior.

Let us pay attention to one important property. If we choose a small neighbor-
hood of initial conditions ! and launch the trajectories out of their neighborhood
so, at the moment n, ! will occupy a certain neighborhood !n. Our system has the
following property, which is easy to test: for any neighborhood ! one can find the
time n when we have !n \ ! ¤ ¿. Dynamic systems which have this property are
called transitive.

Our simplest system which shows the chaotic behavior is transitive. Let us
note that the choice of a one-dimensional system is not important. All these
properties are exactly applicable in multidimensional systems. For example, a bi-
dimensional system .x1; : : : ; xn; : : :/ and .y1; : : : ; yn; : : :/ can be easily reduced to
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a one-dimensional case if we write down these sequences in the form of one
sequence .x1; y1; x2; y2; : : : ; xn; yn; : : :/. All these qualitative features are similar in
the multidimensional case.
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Chapter 3
Main Features of Chaotic Systems

When investigating non-linear dynamical systems it is important to determine their
character of motion: whether the behavior of the system is regular or chaotic.
Methods of determining the type of motion and introducing quantitative charac-
teristics of the chaoticity measure are based on different fundamental features of
chaotic regimes. The following will discuss the basic signatures, or manifestations,
of chaotic regimes in non-linear systems.

3.1 Poincaré Sections

Researchers of dynamic chaos quite often use the method proposed by Jules Henri
Poincaré (1854–1912), now known as the Poincaré section. Poincaré used it to
analyze the evolution of trajectories in a multi-body problem in the presence of
gravitational interaction [1–4]. This method is important because it allows one
to establish a connection between continuous dynamical systems and discrete
mappings. In many cases it is possible to transfer the well-established facts obtained
by the analysis of mappings onto continuous systems. The Poincaré section is also
one of the ways to illustrate the behavior of dynamical systems with a phase space
which has a dimensionality of D > 2. This method permits the detection of phase
space regions with both the regular behavior of trajectories and those with chaotic
behavior. The principle of the method is very simple.

Let us imagine the trajectories of a continuous dynamical system in three-
dimensional phase space (see Fig. 3.1). We place a plane there in such way that
the trajectories of the system intersect it transversally, i.e., not touching it. Now we
will follow the intersection points of a chosen trajectory with the plane. Usually
one accounts only for those intersection points that pass in a particular direction:
for example, from the bottom up, as in Fig. 3.1. Thus, the temporal evolution of the
trajectory uniquely determines the occurrence of the intersection points in discrete
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Fig. 3.1 Poincaré sections. Circles show the intersections with the chosen plane
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Fig. 3.2 An example of Poincaré section of Hamiltonian system with the Hénon–Heiles
Hamiltonian for two different energy levels. On the left—H D 1=24, on the right—H D 1=8.
Quasi-periodic orbits are well visible. On the right one can see a region with chaotic trajectory
behavior

time and also determines the Poincaré self-mapping of the two-dimensional plane.
Periodic cycles of the Poincaré mapping also correspond to periodic orbits. Chaotic
orbits will “fill” whole regions of the chosen plane or in the Poincaré mapping.

Example 3.1 Figure 3.2 presents the Poincaré sections for the well-known
Hamiltonian system with the Hénon–Heiles Hamiltonian [5]

H D p21
2

C p22
2

C q21
2

C q22
2

C q21q2 � q32
3
:

At a fixed energy level three-dimensional manifold of constant energy is
achieved. The intersections of the trajectories on the manifold with the plane .q2; p2/
give the desired Poincaré section. These two Poincaré sections differ in the selection
of different energy levels in the system. It is evident that at energy value H D 1=24

the Poincaré section corresponds to regular motion. The entire plane is occupied by
invariant “curves,” which correspond to quasi-periodic, or to periodic with a long
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period trajectories of the original system. Periodic trajectories with a short period
correspond to cycles in the Poincaré section that consist of small number of points.
These are usually not presented because of their low illustrative potential. However,
such trajectories are always present. The word “curves” is not to be taken literally,
because they consist of finite number of points and therefore are not real curves in
that sense.

At H D 1=8 in the phase space there is a region of chaotic motion. In Fig. 3.2 on
the right one can see two invariant curves. Other points, filling whole region of the
plane, are generated by one trajectory, which can be called chaotic.

Of course, in spite of its apparent simplicity, the construction of an explicit
Poincaré mapping for a concrete dynamical system is actually a very complicated
and analytically unsolvable problem [6]. Usually this method is efficiently used only
in the numerical analysis of dynamical systems, where the choice of a Poincaré
section is relatively easy to make. Nevertheless, the very possibility of establishing
a connection between continuous dynamical systems and discrete mappings is itself
of vital importance.

3.2 Spectral Density and Correlation Functions

The visual characteristic which permits the evaluation of the character of motion
in dynamical systems is spectral density or spectrum. This characteristic is often
measured and used in experimental research. There are important reasons for this,
related to its simplicity of measurement. Moreover, its origin has its roots in
optics and radio-physics. Spectral density allows for easy differentiation between
periodic, quasi-periodic, and chaotic regimes. Let us introduce the spectral density
S.!/ for an arbitrary dynamical system. A trajectory of the system is defined
as x.t/ D .x1.t/; : : : ; xn.t//. We will choose one of the components xi.t/ and
meanwhile disregard the indices.

The concept of spectrum or spectral density is based on the idea that periodic
functions are designed simply while chaotic functions are complicated. However,
this requires clarification. In what sense are the periodic functions simple and how
can this simplicity be characterized? This is an important distinction because within
a period, a function can become very complicated. In order to understand the relative
simplicity of periodic functions let us discuss their Fourier transformation. Let x .t/
be a periodic function with period T. Such functions are decomposed in the Fourier
series

x .t/ D
C1X

nD�1
X .!n/ e

i!nt ; (3.1)
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where !n D 2�n=T, and the coefficients X .!n/ are determined, provided
TR

0

jx.t/jdt < 0, by integrals

X .!n/ D 1

T

T=2Z

�T=2

x .t/ e�i!ntdt : (3.2)

The coefficients of the decomposition X.!n/, of course, contain all information
about the function x.t/. Quantity x.t/ is a real function, and X.!n/, in general case,
complex. Therefore one should separate the information about the amplitude of the
oscillations from the information about the phases of those oscillations. It is easy
to do introducing the amplitude spectrum and the phase spectrum. To that end, we
represent the complex function X.!n/ in the form

X .!n/ D jX .!n/j ei�.!n/ :

Here jX .!n/j denotes the module of the complex function X .!n/, which is
equal by definition jX .!n/j D .X .!n/ � X� .!n//

1=2. Asterisk � denotes complex
conjugation. Function � .!n/ is the phase of the function X .!n/. Now the decom-
position (3.1) can be written as

x .t/ D
C1X

nD�1
jX .!n/j ei.!nC�.!n// : (3.3)

Function jX .!n/j is called the amplitude spectrum, and � .!n/ the phase spectrum.
For periodic functions, the amplitude spectrum has line structure. In other words,
the amplitude spectrum for periodic functions is non-zero only at discrete frequency
values ! D !n. It is essentially the property that characterizes the simplicity
of periodic functions structure. Let us generalize these considerations on generic
functions; this can be done in multiple ways, such as a method often used in physics,
the tendency T ! 1. Its meaning is easily understood if one considers the example
of oscillatory motions in a box with periodic boundary conditions, and the tendency
of its dimensions to infinity. Returning to definition (3.1), (3.2), let us note that

2�

T
D !nC1 � !n � �! :

At tendency T ! 1, �! ! 0. For arbitrary function x .t/ let us rewrite the
expression (3.1) in slightly modified form

x .t/ D
C1X

nD�1

1

2�

T=2Z

�T=2

x
�
t0
�
e�i!nt0dt0ei!nt�! (3.4)
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Defining

XT .!/ D 1

2�

T=2Z

�T=2

x .t/ e�i!ntdt ;

it is easy to understand that the sum at T ! 1 and, therefore,�! ! 0 transforms
to an integral and the expression (3.4) can be rewritten as

x .t/ D
C1Z

�1
X .!/ ei!td! : (3.5)

where X .!/ D lim
T!1 XT .!/. Therefore, a periodic function can be represented as a

Fourier integral under the condition
C1R
�1

jx .t/j dt < 1. Now we introduce amplitude

spectral density essentially repeating the proceeding considerations

x .t/ D
C1Z

�1
jX .!/j ei.!tC�.!//d! :

Hence it is easy to see that the quantity jX.!/jd! characterizes the amplitude of
oscillations on the interval Œ!; ! C d!�, which forms the quantity x.t/. Therefore
jX.!/j can be called amplitude spectral density. Of course, if the magnitude x.t/
is neither periodic nor quasi-periodic, then its spectral density is the continuous
function of frequency and, as is customary to say, has continuous spectrum. Instead,
physicists often use the square of the spectral density

S .!/ D jX .!/j2 :

This quantity also makes simple physical sense. Its elegant interpretation is based
on state filling numbers from quantum mechanics or quantum field theory. Avoiding
a digression into that field, a different explanation will follow. Beforehand, however,
it is necessary to discuss another characteristic, which distinguishes chaotic trajec-
tories (or signals) from regular ones. This characteristic is used in statistical physics
as a measure of statistical independence of two quantities in different temporal or
spatial points. It is a correlation function. In the simplest variations, the correlation
function is defined as

Bij.	/ D hxi.t C 	/xj.t/i � hxiihxji :
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Angle brackets denote time averaging, which is defined in the usual way as

Bij.	/ D lim
T!1

1

T

T
2Z

� T
2

xi.t C 	/xj.t/dt :

Henceforth we will assume for simplicity that the averaged values hxii D 0. Strictly
speaking, the quantitiesBij.	/ form a correlation tensor, with indexes i; j D 1; : : : ; n.
As points move one away from another, it is expected for chaotic signals that the
statistical connections between them decrease. In terms of the correlation function it
means that the average hxi.tC 	/xj.t/i for very distant and statistically unconnected
points tends to hxiihxji. In physics, this is termed the decay of correlations. In other
words, the correlation function for statistically unconnected time points turns to
zero. It allows chaotic trajectories to be determined by the drop of the correlation
function with growth of 	 . Essentially, this reflects the intuitively clear property of
chaos as the loss of the dependence of quantity values x.t C 	/ on their values x.t/
in the preceding moment in time. Now we calculate the correlation function for the
periodic xi.t C T/ D xi.t/. Omitting simple transformations, we give the result

Bij.	/ D
1X

nD�1
Xi.!n/X

�
j .!n/e

.i!n	/ :

Analogous to the examples above, for aperiodic functions, sum transforms into
integral

Bij.	/ D
1Z

�1
Xi.!/X

�
j .!/e

.i!	/d!:

For i D j the correlation functions are also called autocorrelation functions. Taking
a Fourier transform of the autocorrelation function on 	 it is easy to obtain that

Bii.	/ D
1Z

�1
jXi.!/j2ei!	d! : (3.6)

This can be understood recalling that the Fourier transform of a convolution
coincides with the product of their Fourier transforms. Now it is clear that the
autocorrelation functions are closely connected with the spectral density S .!/.

S.!/ D 1

�

1Z

�1
B.	/e�i!	d	 :
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This connection also determines the physical sense of spectral density S .!/. Indeed,
if quantity x.t/ is the velocity of motion, then Bii.0/ is proportional to kinetic
energy and, as follows from the relation (3.6), quantity jXi.!/j2 represents the
energy density contained in oscillations with the frequencies that belong to the
interval Œ!; ! C d!�. Therefore, such spectral density is called the energy spectrum
and it characterizes the quantity of energy concentrated in oscillations with the
frequency !. Thus, we can use spectral densities and correlation functions as
criteria for chaoticity. Spectral densities for chaotic trajectories or signals have
continuous spectra, and for periodic or quasi-periodic—linear ones (see Figs. 3.3
and 3.4). Generally speaking, correlation functions for chaotic signals fall down
exponentially with growth of 	 .
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Fig. 3.3 An example of typical line spectrum
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Fig. 3.4 A typical example of the continuous spectrum of chaotic signal
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3.3 Lyapunov Exponent

One of the commonly used methods of determining the degree of chaoticity is based
on the properties of exponential divergence in chaotic trajectories. This essential
quality has already been discussed. The exponential sensibility of dynamical sys-
tems with chaotic behavior found realization in the determination of the Lyapunov
exponent. This is one of the most popular characteristics or criteria of dynamical
chaos. For one-dimensional systems with discrete time, or cascades, the Lyapunov
exponent was actually introduced before as a characteristic of the divergence of two
trajectories close at t D 0. For continuous one-dimensional systems it is analogously
defined. Let the initial points of two trajectories at t D 0 be situated in distance
jıx .0/j one from another. If the distance between these points jıx .t/j changes with
time (at t 	 1) as

jıx .t/j 
 jıx .0/j e
t ;

then 
 is called the Lyapunov exponent. It is clear that in order to find 
 we can use
the relation


 D 1

t
ln

jıx .t/j
jıx .0/j ; t ! 1 : (3.7)

In accordance with above discussed sensitivity of dynamical systems, at 
 > 0

errors in determination of initial conditions will lead to the impossibility of
predicting system behavior. For generic one-dimensional mappings

xnC1 D f .xn/ ; (3.8)

the Lyapunov exponent can also be easily introduced. Let the distance between two
points equal ıxn on the nth time step, i.e., let the points correspond to positions xn
and xn C ıxn. It is easy to calculate the distance between them in the moment nC 1.
Indeed,

xnC1 C ıxnC1 D f .xn C ıxn/ : (3.9)

Assuming them close in the moment of time n, we decompose the right-hand side
in the Taylor series over ıxn

xnC1 C ıxnC1 D f .xn/C ıxn � f 0 .xn/C � � � :

Taking into account the mapping (3.8), and neglecting the non-linear corrections,
we obtain

ıxnC1 D ıxn � f 0 .xn/ : (3.10)
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This linear relation clearly states that variation of distance in one iteration step is
determined by the derivative value in the preceding point. Using this simple relation
it is possible to express the distance ıx0 and values of f 0 .x/ along the trajectory

ıxnC1 D ıx0

nY

kD0
f 0 .xk/ : (3.11)

Then the Lyapunov exponent, which characterizes the divergence of the trajectories
jıxnj D jıx0j e
n, is defined as


 D lim
n!1

1

n

n�1X

kDo

ln
ˇ̌
f 0 .xk/

ˇ̌
: (3.12)

There are several modifications of this simple formula as well as numerical methods
for determining 
 [6, 7]. However, we will discuss below how one can use the
Lyapunov exponent for dynamical systems in multidimensional phase space. Here
the situation is less inconsequential than in one-dimensional cases. If we are
interested in the deviation of trajectories from a chosen one in two-dimensional
space, we consider a neighborhood in the phase space which contains a point of that
trajectory. All other points in the neighborhood correspond to other trajectories,
which are close to the chosen one. Let the neighborhood be a circle of radius
". It is clear that if all the points in the neighborhood are shifted according to
dynamical law, then after the time period �t the neighborhood will be shifted in
the phase space and most importantly, it will change its shape. In other words, some
trajectories will approach the chosen one while others will move away from it. These
changes in distance during the time period�t will depend on the trajectory selected
(see Fig. 3.5). We will demonstrate how to determine the Lyapunov exponent for
mappings in two-dimensional phase space. Generally, such mappings have the
following form:

xnC1 D f .xn; yn/
ynC1 D g .xn; yn/

: (3.13)

e (n)

e (n)

1

2

e (1)
1

e (1)
2

Fig. 3.5 Here the trajectory, eigenvectors and the initial neighborhood surrounding it are shown.
The positions of the neighborhood and the eigenvectors at the moment of time n qualitatively
demonstrate their temporal behavior
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The position of trajectory in the moment n is conveniently characterized by the
vector or the column

zn D
�
xn
yn

�
:

Let us now consider a vector connecting two close trajectories zn and znCızn, where

ızn D
�
ıxn
ıyn

�
:

Using the dynamical law (3.13) and the smallness of ıxn and ıyn, we can establish,
as in the one-dimensional example, how ızn is changed in one time step. It is easy
to obtain that

ıznC1 D An � ızn ; (3.14)

where An is the square 2 � 2 matrix of the following form:

An D
 

@f .xnyn/
@xn

@f .xnyn/
@yn

@g.xnyn/
@xn

@g.xnyn/
@yn

!
: (3.15)

This is usually called the Jacobian matrix. From Eq. (3.14) it is easy to determine
the deviation for n steps

ızn D An�1An�2 � � � A0 � ız0 � Qnız0 : (3.16)

Thus the deviation for n time steps is determined by the initial deviation multiplied
by the matrix Qn, depending on n and on the derivatives along the trajectory of
the system. As a natural basis convenient for the decomposition of any vector,
eigenvectors of the matrix Qn are usually used:

Qn ei .n/ D �i .n/ ei .n/ ; (3.17)

where index i labels the eigenvectors, and in two-dimensional cases i D 1; 2. The
eigenvectors depend on n and can be chosen to be orthonormal, i.e., e1 �e2 D 0 ; e1 �
e1 D e2 � e2 D 1. Quantities �i .n/ are called the eigen-numbers of the matrix Qn and
they also depend on time n. The conditions of solvability for the system of linear
equations (3.17) lead to the characteristic equation for eigenvalues

det jQn � � .n/ Ij D 0 : (3.18)
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Here for convenience we introduce the unity matrix

I D
�
1 0

0 1

�
:

Solutions of Eq. (3.18) determine the eigenvalues of the matrix Qn. Any vector or
deviation can be now conveniently written in the basis of eigenvectors ei .n/. Initial
deviation in that basis takes the form

ız0 D
X

i

ai ei .n/ ; (3.19)

where ai are coordinates of the initial deviation in the basis .e1; e2/. Then the
deviation on the nth time step is easily obtained from (3.16) in the new basis

ızn D Qn

X

i

ai ei .n/ D
X

ai �i .n/ ei .n/ : (3.20)

Thus, �i .n/ characterize the variation of the deviation coordinates (in the new basis)
along ith direction, determined by the eigenvector ei .n/.

Let us now introduce the Lyapunov exponents along those directions, i.e.,

�i .n/ 
 e
in

at sufficiently large n. Then they are found to be


i D lim
n!1

ln �i .n/

n
:

As in two-dimensional cases, there are two directions determined by ei, and two
Lyapunov exponents appear; these can be positive as well as negative. Let us discuss
the limitations on these exponents that arise in dynamical systems. For that purpose
we consider a small rectangular neighborhood with sides that coincide with the
vectors a1e1 and a2e2 [see (3.19)]. The initial area of the rectangle is !0 D a1a2.
Now let us consider how its area changes after n iterations according to dynamical
law (3.13) or (3.14). Using (3.20), we obtain

!n D a1�1 � a2�2 D en.
1C
2/!0 :

It is easy to see that for conservative mappings, which preserve the phase volume,

1 C 
2 D 0. In such systems, one of the Lyapunov exponents is positive and
the other is negative: 
2 D �
1. Thus, the presence of chaos in such systems is
determined by the maximum positive Lyapunov exponent. We should note that there
is a divergence of close trajectories in one direction and a convergence in the other.
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Fig. 3.6 Graph view of tent
mapping
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For dissipative dynamical mappings 
1 C 
2 < 0. Therefore, at least one
Lyapunov exponent is negative.

In phase spaces of higher dimensions the situation is analogous to the two-
dimensional phase space example. It is likewise possible to determine the Lyapunov
exponents (their number coincides with the phase space dimensionality), and the
maximum positive Lyapunov exponent will also give a quantitative characteristic of
the chaoticity measure in multidimensional cases.

Example 3.2 Calculating the Lyapunov exponent for the tent mapping

xnC1 D
(
2r xn; if 0 � xn � 1

2

2r .1� xn/ ; if 1
2
< xn � 1

: (3.21)

This is a continuous non-linear mapping with the phase space Œ0; 1�. A graph view
is presented in Fig. 3.6.

It is easy to see that j f 0 .x/j D 2r and it does not depend on the position of xn.
Accordingly, using the definition (3.12), we obtain


 D lim
n!1

1

n

n�1X

kD0
ln 2r D lim

n!1
n ln 2r

n
D ln 2r :

Thus the Lyapunov exponent for that mapping is 
 D ln 2r. Therefore, chaotic
behavior in that mapping will be observed at 
 > 0 or at 2r > 1. The transition to a
chaotic regime bears a resemblance to the characteristic features of phase transitions
(see Fig. 3.7). So at r < rc � 1

2
the chaotic phase is absent, while at r > rc it appears.
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λ

rrc
0

Fig. 3.7 Dependence of the order parameter for the tent mapping on the mapping parameter

If we consider the positive Lyapunov exponent as a parameter of order, then near
the phase transition r>� rc it changes according to the power law


 
 .r � rc/
ˇ

the same way as in phase transitions. The critical index is ˇ D 1.

It should be noted that value of the Lyapunov exponent is conserved at variable
transformations in dynamical systems. This can be ascertained if one considers the
mapping

xnC1 D f .xn/ (3.22)

and the mapping

ynC1 D g .yn/ ; (3.23)

which are obtained by the transition to new variables yn D h .xn/ with function
h0 .x/ ¤ 0 in the phase space of the mapping (3.22). The Lyapunov exponent for the
mapping (3.22) is determined by the following:


f D 1

n

n�1X

iD0
ln
ˇ̌
f 0 .xi/

ˇ̌
: (3.24)
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For the mapping (3.23)


g D 1

n

n�1X

iD0
ln
ˇ̌
g0 .yi/

ˇ̌
: (3.25)

Let us make a transformation of variables yi D h .xi/ in the relation (3.25). We
account that

dynC1
dyn

D g0 .yn/

dxnC1
dxn

D f 0 .xn/ ;

and dyn D h0 .xn/ dxn. Using these relations we obtain

g0 .yn/ D h0 .xnC1/
h0 .xn/

f 0 .xn/ :

Then the Lyapunov exponent (3.25) is transformed to the form


g D 1

n

n�1X

iD0

�
ln
ˇ̌
f 0 .xi/

ˇ̌C ln

ˇ̌
ˇ̌h

0 .xiC1/
h0 .xi/

ˇ̌
ˇ̌
�
:

Now it follows that


g D 
f C 1

n
ln

ˇ̌
ˇ̌h

0 .xn/
h0 .x0/

ˇ̌
ˇ̌ :

At n ! 1 the latter contribution disappears. Thus, the value of the Lyapunov
exponent is conserved at geometrical transformations of variables.

In conclusion, let us cite without proof several useful properties of the Lyapunov
exponent. First of all, considering all the Lyapunov exponents (and not only
the maximum positive one), it is possible to analyze the global spectrum of the
Lyapunov exponents. In systems with n degrees of freedom their number is exactly
n. Values of the exponents can be ordered


1 > 
2 > � � � > 
n :

Naturally, among these there is an exponent that characterizes the deviation along
the trajectory. This exponent is always equal to zero if the trajectory does not
terminate in a singular point. For Hamiltonian systems with even-dimensional
phase space the Lyapunov exponents have additional symmetry. For any Lyapunov
exponent 
i there always exists an exponent 
j D �
i. Therefore, in Hamiltonian
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systems at least two Lyapunov exponents turn to zero. Of course for integrable
Hamiltonian systems all Lyapunov exponents are zeros.

For any dynamical system, the sum of all the Lyapunov exponents coincides
with the divergence of the vector field averaged along the trajectory. This can be
understood from the very meaning of the Lyapunov exponents, which characterize
the divergence of trajectories along some directions, and therefore, the volume
variation

hdivVi D
nX

iD1

i :

This means that for dissipative systems their sum is negative, and for conservative
ones, it equals zero.

The Lyapunov exponents are important not only as a chaoticity criterion for the
systems, but they can also serve as a useful tool to analyze the types of limit regimes
or attractors. Omitting the one-dimensional case, let us consider as an example the
attractors of two-dimensional systems. In such systems there exist only stable points
and limit cycles. The Lyapunov exponents in the former case .
1
2/ D .�;�/ are
both negative, and in the latter case .
1
2/ D .�; 0/. In three-dimensional systems
there are many more types of attractors.

• Stable node, or focus: .
1; 
2; 
3/ D .�;�;�/
• Stable limit cycles: .
1; 
2; 
3/ D .�;�; 0/
• Stable torus: .
1; 
2; 
3/ D .�; 0; 0/
• Strange attractor: .
1; 
2; 
3/ D .�; 0;C/
The latter limit regime will be discussed in the following: sections.

3.4 Invariant Measure

In dynamical systems with chaotic behavior one can try to develop a statistical
theory, an important element of which is the notion of invariant density. Let us
introduce a function which characterizes the density of initial conditions, or more
exactly, probability density of initial conditions P0 .x/. The probability dw of an
initial condition to fall in the interval Œx0; x0 C dx0� is by definition dw D P0 .x0/ dx0.
If dynamics of our system is defined by the mapping

xnC1 D f .xn/ ; (3.26)

then it is possible to determine the time transformation law for the above density. In
order to do that, one should use conservation probability during the evolution of our
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system. Then in one time step the probability transformation is determined by the
equation

P1 .x/ D
Z

˝

P0 . y/ ı .x � f . y// dy : (3.27)

It is clear that this equation will preserve its form for any time stage of the evolution.
Therefore let us formulate this in a more general form

PnC1 .x/ D
Z

˝

Pn . y/ ı .x � f . y// dy ; (3.28)

where ˝ is the phase space of the dynamical system or of the mapping (3.26),
and Pn .x/ is the probability density on the nth time step. Equation (3.28), which
describes the temporal evolution of the probability density, is called the Frobenius–
Perron equation. This equation can be written in another form. Using the well-
known property of ı-function

ı .x � f .g// D
X

i

ı .y � yi/

j f 0 .yi/j ; (3.29)

where yi is the solution of the equation x � f .yi/ D 0. The summation is performed
over all the roots. Using the relation (3.29), we integrate in Eq. (3.28)

PnC1 .x/ D
X

i

Pn .yi .x//

j f 0 .yi .x//j : (3.30)

In fact, Eq. (3.28) is transformed into a functional equation. Another useful form
of the Frobenius–Perron equation is obtained with the help of Fourier transform of
ı-function and has the following form:

PnC1 .x/ D
X

i

Pn .yi/ e�
i.yi/ ; (3.31)

where 
 .yi/ D ln j f 0 .yi/j is the characteristic quantity, or local Lyapunov expo-
nent. This equation demonstrates the role of chaoticity in the probability density
evolution.

In the evolutionary process the distribution function Pn .x/ can come to a
stationary state, the role of which is similar to equilibrium states in statistical
physics. Then the dependence on time n disappears and Pn .x/ D P .x/. This
stationary probability density is called invariant and it determined by the equation

P .x/ D
Z

˝

P . y/ ı .x � f . y// dy : (3.32)
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In other words, the invariant distribution function does not change at phase space
transformations by the phase flow (or by the mapping) (3.26). Naturally, it satisfies
(as well as Pn.x/ ) the normalization condition

Z

˝

P .x/ dx D 1 :

It should be stressed that the introduction of the invariant density is based on
the relaxation of the initial density in relation to the invariant one. There arises
an important question: in what systems, or more precisely, in systems with what
properties will such relaxation take place? Discussion of this question requires that
we touch on the question of the foundations of statistical mechanics, ergodicity,
and measure theory [8]. We will return to them in another section. Besides this,
introduction of the distribution density is not justified for all dynamical laws. There
are situations when it is impossible to extract the density from the measure, and in
such dynamical systems singular or multi-fractal measures appear. The examples
will be considered further.

Example 3.3 Let us now consider a simple example of invariant density calculation
for tent mapping. The functional Frobenius–Perron equation (3.30) in that case takes
the form

P .x/ D 1

2r

�
P
� x

2r

	
C P

�
1 � x

2r

		
:

It is easy to find a particular solution of that equation P .x/ D 1. This solution is
realized at r D 1 and it corresponds to uniform distribution. At other values of
r > 1 the situation, as well as the invariant density form, is less insignificant.

For dynamical systems under conditions of ergodicity the Lyapunov exponent
can be calculated from the invariant density distribution in the following way:


 D
Z

˝

� .x/ ln
ˇ̌
f 0 .x/

ˇ̌
dx � ˝

ln
ˇ̌
f 0ˇ̌˛ :

The invariant density permits us to calculate also the mean-square fluctuations 


�
2 '
D�

ln
ˇ̌
f 0 ˇ̌� ˝

ln
ˇ̌
f 0 ˇ̌˛�2E :

In some cases this is sufficiently efficient.
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3.5 Entropy of Dynamic Systems

At first glance, the relation of entropy to chaos does not require discussion.
However, several different definitions in physics are associated with entropy. In
fact, Kolmogorov introduced a new value called entropy of dynamical systems
[9, 10]. For many reasons, this characteristic of dynamical systems is very important.
However, first we have to define the entropy of a dynamical system. Let us clarify
what is understood by a dynamical system in ergodic theory [5] since the definition
of the entropy first appeared there. The dynamic system .M; �;Ut/ includes the
phase space M, which is measurable and has the measure�, invariant with respect to
the mapping (or one-parameter family of mappingsUt) U W M ! M. The invariance
of the measure means that �.A/ D �.UtA/ for all the measurable subsets A of the
space M. It is generally considered that �.M/ D 1. Strictly speaking, the definition
is much more general, but this simplified variant will suffice for understanding. Let
us now define the conditional entropy of partitions. Partition ˛ of phase space M
should be understood as a finite or countable set of the non-intersecting subsetsAi,
with M D S

i Ai and Ai
T

Aj D ; at i ¤ j. It is clear that other partitions M can
exist, e.g., ˇ D fBig. In the set of partitions, one can introduce natural ordering. We
understand ˛ � ˇ so that for every B � ˇ, there is A � ˛ with B � A. In addition,
we introduce the product of partitions ˛ _ ˇ. This is a new partition with various
sets Ai

T
Bj as its elements.

Now let us introduce the conditional entropy of the partition ˛ with respect to the
other partition ˇ as

H.˛jˇ/ D �
X

i

�.Bi/
X

j

�.AjjBi/ ln
�
�.AjjBi/

�

where �.AjjBi/ D �.Aj
T

Bi/=�.Bi/. The entropy is a positive number, which
follows from positive definiteness of the measure and from the properties of the
function �x ln x (see Fig. 3.8).

Fig. 3.8 The plot of the
function �x ln x in the domain
Œ0; 1�. It should be noted that
this function in zero is by
definition zero (0 ln 0 D 0)

0
x 10

x ln(x)
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If as a partition ˇ we choose a partition which consists of one element M, then
we obtain the entropy definition for the partition ˛

H.˛/ D �
X

j

�.Aj/ ln
�
�.Aj/

�
:

Conditional entropy and partition entropy have a number of properties which can
be checked.

• H .˛jˇ/ � 0 H.˛/ � 0

• H .˛_ ˇjˇ/ D H.˛jˇ/
• H.˛jˇ/ D 0 if ˛ � ˇ and only in this case
• H.˛ _ ˇ/ D H.˛jˇ/C H.ˇ/
• If ˛ � ˇ, then H.˛/ � H.ˇ/
• If ˛ �  , then H.˛jˇ/ � H. jˇ/
• H.˛ _  jˇ/ � H.˛jˇ/C H. jˇ/
• If ˇ �  , then H.˛j/ � H.˛jˇ/
• H.˛ _  jˇ/ � H.˛jˇ/C H. _ ˇ/
• H.˛ _ ˇ_ /C H./ � H.˛_ /C H.ˇ_ /
Example 3.4 We consider the entropy of the partition ˛ into a finite number of sets
N of the same measure �.Aj/ D 1=N. We obtain that H.˛/ D lnN. In the general
case, when measures Aj do not coincide, H.˛/ � lnN.

Next we use the presence of mapping and define the entropy for one step over time:

h.˛;U/ D lim
n!1

1

n
H.˛_U˛_U2˛_ : : :_Un˛/

D lim
n!1

1

n
H.Un˛j˛ _U˛_U2˛_ : : :_Un�1˛/:

Then the entropy of the dynamic system .M; �;U/ is the value

h.U/ D sup
˛

h.˛;U/;

where the upper boundary is taken for all partitions ˛ of the phase space M. Though
this definition is rigorous, it is complicated to use it to calculate the entropy of
concrete dynamical systems. The properties discovered by Kolmogorov are often
applied to calculate entropy. To formulate them, one needs the concept of the
generating partition of the phase space with respect to mapping U. In a sense, that

is the completeness property of the partitions
1_�1Ui˛. The exact definition of the

generating partition for the mapping U is the measurable, countable partition ˛, so

that partition
1_�1Ui˛ built on it generates all the � algebra of mappings M. For the

generating partitions ˛ of the mapping U it is proved (e.g., see [5]) that

h.U/ D h.˛;U/:
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From this we can understand the physical meaning of the entropy of dynamical
systems. Let us recall that in statistical physics entropy means the logarithm of state
numbers with the degree of freedom tending to infinity. From this viewpoint, the
entropy of dynamical systems can be understood as logarithm of system trajectory
type numbers with time tending to infinity. From the geometric point of view entropy
can be interpreted in a different way. Let us consider a dynamical system with
two-dimensional phase space and with the invariant measure coinciding with the
area. We choose some element A of the partitions ˛, bounded with, for example,
a circle. It is clear that the mapping U will transform it into UA of partition U˛.
Due to the invariance of the measure, �.A/ D �.UA/, but the form of the boundary
changes. For mappings with positive entropy, the boundary becomes complicated
and sinuous. Now, if we roughen the boundary, then the area of the roughened region
increases (see Fig. 3.9).

In discrete, as well as in continuous time, this change is described with the
function

S
eh�t

If entropy is equal to zero, then growth can be absent or take place not in an
exponential way. Taking into account Bouen’s results [11], we can use another
definition of topological entropy of dynamical systems. Let the phase space be a
compact metric space with the metric �, and the mappingU W M ! M is continuous.
The subset K � M is called .n; "/ separated, provided that for any x; y 2 K, x ¤ y
one can find i 0 � i � n, so that �.Uix;Uiy/ > ". Let us denote with Nn."/ the
largest number of elements in .n; "/ separated set M. Then we define the topological
entropy as follows:

h.U/ D lim
"!0

lim
n!1

1

n
lnNn."/

U

ε

Fig. 3.9 This figure symbolically shows the evolution of the circle under the influence of mapping.
The area is covered by the grid of " scale. It is easy to note the increase of the area while
roughening, if by the roughened area, we mean the area of the cells containing the points of the
circle image
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This definition clearly reflects the fact that the topological entropy coincides with the
asymptotic of the number of various trajectories of mapping U, which differ from
the given arbitrary accuracy. Roughly speaking, the fewer there are different types
of trajectories, the smaller the entropy of the dynamical system, and the simpler
the system. One can conclude from this geometric meaning that a relation can exist
between the entropy of dynamic systems and the positive Lyapunov indexes

h D
X

i


i

here the summation is made over i, for which 
i > 0. For some systems it is proved.
Entropy of dynamical systems is important for two main reasons. First, dynam-

ical systems with positive entropy have strong statistical properties. Second, the
same dynamical systems (or, to be more precise, isomorphic systems) have the
same topological entropy. This means that all dynamical systems can be divided
into classes with the same entropy. However, one should remember that entropy is
not the only topological invariant of the dynamical systems.

Theorem 3.5 Entropy is an invariant of the dynamical system.

To calculate the entropy of concrete dynamical systems is a rather complicated
problem. There is a set of examples of dynamical systems, for which topological
entropy is found.

Example 3.6 The entropy for mapping of torus into torus is known. The simplest
way to specify the mapping of two-dimensional torus is using an integer numbers
matrix.

�
a11 a12
a21 a22

�

Its determinant is equal to 1. It is proven that if 
 is the eigenvalue of this matrix
in modulus less than one, then

h D � ln
:

Actually, this example shows the existence of the dynamical systems with the posi-
tive entropy. To calculate the topological entropy, one can use invariant kneading.

3.6 Kneading Invariants

The theory of kneading invariants was established by a remarkable mathematician
Milnor [12]. For simplicity, let us consider it for the case of one-dimensional
mappings. Let the dynamics of our system be defined by the mapping of

xnC1 D f .xn/:
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Mapping f is piecewise monotonous. Let us introduce the position function of the
initial point x, taking two values depending on the behavior of the function f k in the
point k of the orbit.

�k.x/ D
(

C1; if f k increasing at x;

�1; if f k decreasing at x:
(3.33)

Here we use the designation for k multiple composition of functions f k D f k.x/ D
f ı f ı � � � ı f„ ƒ‚ …

k

, where f ıf � f . f .x//, we consider f 0.x/ D x by definition. Obviously,

we can define this function in extremum points x D xext, as, for instance, zero.
Using this function of every trajectory of the mapping, one can put one-to-one
corresponding sequence:

�f .x/ D .�0.x/;�1.x/;�2.x/; : : : ; /:

In fact, this sequence describes the change of orientation when the motion is along
the trajectory. At first, such a sequence ˙1 seems quite trivial. However, recall that
every real number can be written as a sequence in a two-symbol alphabet. We have
already made use of this when studying chaos in simple dynamic systems. The
comparison of each trajectory of such a sequence allows us to transfer the properties
of the sequences on the trajectories. For example, it is possible to introduce a
lexicographical ordering of the trajectories. The sequences written in the alphabet
A D .a1; a2; : : : ; am/ satisfy the lexicographical ordering � < �0, if �i D �0

i with
i < n and the symbol �n appears in the alphabet A earlier than �0

n. It turns out that
one can prove that the natural order of real numbers and the lexicographical order
of the sequences are related.

Theorem 3.7 Mapping x ! �f .x/ is monotonous.

The character of the monotonicity depends on the types of extrema of the
function f . Let us now introduce a kneading series. For every point x, it compares
the function

Q.x/ D �0.x/C�1.x/t C � � � C�k.x/t
k C � � �

The property of the monotonicity of the sequences�f is applied to these functions.
So the kneading series are the monotonous functions of x. The type of monotonicity
(increase or decrease) depends on the type of the extremum. In the extremum points
the kneading series can have discontinuities. Due to their monotonicity, the kneading
series possess natural ordering, which allows us to consider them as a kind of
natural universal coordinates. Their universality manifests itself in invariance (or
independence) at any continuous coordinate changes. This means that their nature
is purely topological. Even more important is that the dynamics of the mapping is
defined by a finite number of values of the kneading series. Indeed, if the mapping
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f has one extremum at x D xext, then we can introduce:

Q� D lim
x!xext�0

Q.x/

QC D lim
x!xextC0

Q.x/:

These are invariants of the continuous mappings: QC D �Q�. For two mappings
f , g one can prove that if Q�. f / D Q�.g/, then there is such h that hf D gh. So,
there is an isomorphism between the mappings. The series Q� have an important
property, which distinguishes them from an arbitrary series. This property is called
� permissibility. The formal power series is called � permissible if for every n � 0,
j�n.�/j � � or �n.�/ D 0. Here the designation � is introduced for the shift
along the sequence, and jaj D a0 � a, where the point � designates the term by
term multiplication of the sequence a D a0; a1; a2; : : : by a number. Naturally, the
permissibility property is also defined for the sequences. For instance, the sequence
a D a0; a1; a2; : : : is permissible if a0 D 1, ai D ˙1 and for any i and n � 0,
j�naj � a is true. The importance of this class of sequences becomes obvious if
we remember that periodic trajectories generate periodic sequences�f .x/ (can also
prove the converse assertion). So, if we know the classification of the permissible
periodic sequences, then we can understand much in the organization of the periodic
trajectories of mapping f . These periodic sequences have been studied in several
works. Let us set a periodic sequence:

� D �1; �2; : : : ; �k; �1; �2; : : : ; �k;

with the minimum period k. For every sequence like this we can define an
antiperiodic sequence:

�.1/ D �1; �2; : : : ; �k;��1;��2; : : : ;��k; �1; �2; : : : ; �k;��1;��2; : : : ;��k;

with the period k. Note that the period of this sequence is 2k, but in the definition
of antiperiodic sequence there is just one k. This is done to facilitate further formu-
lation. The operation of antisymmetrization of the sequences can be applied many
times, and then it is convenient to introduce n-multiple to the antisymmetrization
as a.n/ D .a.n�1//.1/. The value n D 0 is defined as a.0/ D a. It is proven that the
sequence � is permissible if �.1/ is permissible but only in this case. The period of
sequence �.n/ is equal to k2n.

Theorem 3.8 If the mapping f has a cycle with the period k, then some point x
exists so that one of the series �f .x/, Q�.x/, or �C.x/ is permissible periodic or
antiperiodic with the period k. If for some point x one of the series �f .x/, Q�.x/, or
�C.x/ is permissible periodic or antiperiodic with the period k, then the mapping f
has a cycle with the period k.
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All the permissible periodic series are ordered, so the cycles of the mapping are
ordered too. It is proven that if a mapping with one maximum has a cycle with the
period n, then there are cycles with periods Gn, located in the following order:

1 G 2 G 22 G 23 G � � � G 2 � 7 G 2 � 5 G 2 � 3 G � � � G 7 G 5 G 3:

This surprising result was proved by the remarkable mathematician Sharkovsky
[13–15] and this series is therefore called the Sharkovsky series.

Another remarkable property of a kneading series is the possibility of defining
topological entropy htop. It appears that the closest to the origin of the coordinate
positive root t� of kneading series QC.t/ � Q�.t/ D 0 is related to the topological
entropy by a simple equation:

htop D � ln.t�/:

The algorithm of the topological entropy computation with the use of kneading
series proves to be quite efficient and easily realized by computer. We should note
that similar relations are also known for the mappings which have several extrema
and discontinuities points; only the piecewise monotonicity of such mappings is
important.
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Chapter 4
Reconstruction of Dynamical Systems

The concept of attractors plays an important role in physical research. This is
because of their prevalence. Aside from that, when investigating properties of
dynamical systems, we are actually studying attractors. In a certain sense, attractors
realize the dynamical variant of the statistical principle of shortened description.
Indeed, it is not necessary to study the behavior of a system in detail, starting
from initial conditions, if after a time the system will reach a stationary regime
corresponding to the motion on the attractor. It is these limit regimes which must first
of all be investigated. The existence and prevalence of such regimes is also important
to reconstruct or restore the properties of dynamical systems from experimental
data. Modern progress in that direction is to a great extent connected with the
conception of attractors. In fact, one of the central problems in physics is the creation
of models for the description of real physical phenomena. In many cases, those
phenomena are so complicated that it is not always clear what physical principles
lie at their root. This is especially clearly seen in attempts to describe various
phenomena in biological systems. On the other hand, experimental investigations do
not and cannot give exhaustive or complete information on real systems. Therefore
it becomes important to study the following problem.

4.1 What Is Reconstruction?

Let us consider a classical physical system about which we know very little or
nothing at all. Usually, it is called a black-box in order to stress our ignorance
about the system. The temporal behavior of this black-box is determined by the
variation of its generalized coordinates, which are all the parameters that determine
the black-box state. There can be many such parameters—the exact number is
also unknown. It is evident that experimental monitoring of all those generalized
coordinates is a hopeless task. It was earlier believed that only in such hopeless
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Fig. 4.1 Phase portrait with
limit cycle
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cases could reliable information on the classical (non-quantum) system be obtained.
A more realistic task is the experimental measurement of the evolution of one
parameter over time. A question arises: what can we know about the properties of
the black-box from such incomplete experimental information? Of course, we must
nevertheless rely on some assumptions. Thus, we will assume that the system is
non-linear and dissipative—this will be the most complex and interesting example.
We can therefore expect that the black-box is in a stationary regime corresponding
to some attractor. Our measurements can confirm or refute this, if, for example,
our black-box explodes. The very presence of an attractor is already an important
fact that allows us to advance further. Let us begin with a simple and well-known
example: a very simple attractor known as the limit cycle (see Fig. 4.1).

Example 4.1 In this example we will try to understand a basic idea that can also
be applied in more complicated cases. Let the limit cycle be determined by the
parametric equations

x D a sin.!t/
y D a cos.!t/ :

(4.1)

This means that it coincides with a circle of the radius a centered in the origin. From
the gedanken experiment we extract only the temporal variation of the coordinate
x D x.t/ D a sin.!t/. However, in the process of evolution the system visited all
the attractor points. Therefore, this coordinate contains information about the entire
attractor. The question is only how to extract it. Let us construct a vector x according
to the following rule:

x D .x1.t/; x2.t// D .x.t/; x.t C 	// : (4.2)
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Let us assume now that 	 is small and transform the vector to the following form:

x D
�
x.t/;

@x.t/

@t
	

�
: (4.3)

Using the explicit form of x D x.t/, it is easy to rewrite it in the form

x D .x1.t/; x2.t// D .x.t/; y.t/	 � !/ :

After the choice 	 D 1
!

we obtain the vector exactly running through the original
limit cycle.

In some sense, we reconstructed the whole attractor from only one known coor-
dinate. In the above procedure only the choice of 	 required some additional
information about the attractor. All the other steps were executed using only
the assumed experimental data on the temporal variation of the first coordinate.
The choice of 	 could be grounded independently by the following “principle.”
Characteristic scales on both axes of the attractor coincide or are very close.
This concept is also very often used in more complex cases. Of course we knew
in advance the dimension of the space where the limit cycle was situated, and
limited ourselves to the two-dimensional vector. The presented considerations are
qualitative. At first sight they appeared to be efficient because of the specific form of
the attractor, but this not quite so. To illustrate, let us consider a system of non-linear
equations.

dx1
dt

D A.x1; x2; x3/

dx2
dt

D B.x1; x2; x3/

dx3
dt

D C.x1; x2; x3/ :

Time-differentiating the first equation and using the two other equations to eliminate
the derivatives dx2

dt and dx3
dt , we obtain the following equations:

dx1
dt

D A.x1; x2; x3/

d2x1
dt2

D D

�
x1; x2; x3;

dx1
dt

�
:
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Let us assume that we able to solve that system of equations with respect to x2
and x3.

x2 D G

�
x1;

dx1
dt
;
d2x1
dt2

�

x3 D R

�
x1;

dx1
dt
;
d2x1
dt2

�
:

From those relations, it follows that in principle, it is possible to determine the
temporal variation of the coordinates x2 and x3 for given the variation x1.t/,

dx1.t/
dt ,

and d2x1
dt2

. In other words, from data for x1.t/ and, accordingly, x1.tC	/, x1.tC2	/, we
can reconstruct the coordinates x2 and x3. Therefore, the possibility of reconstructing
the attractor from information on the temporal variation of one coordinate exists in
more complex cases as well.

The idea of reconstructing the phase portrait in multidimensional dynamical
systems from the temporal dependence of one coordinate was first expressed in
[1]. The method of introducing a vector to determine the system’s position in n-
dimensional phase space is absolutely analogous

� D .x.t/; x.t C 	/; : : : ; x.t C .n � 1/ � 	// ; (4.4)

where 	; 2	; : : : ; .n � 1/ 	 are called time delays. This vector evolves in time
and draws the trajectory in n-dimensional phase space. Then, the problem is in
determining the dimension n of the phase space.

4.2 Embedding Dimension

Before discussing embedding dimension let us recall what is understood as manifold
embedding in space. Let the space dimension or X manifold be smaller than the
space dimension Y. If the map f W X ! Y gives one-to-one correspondence
between points X and f .X/, then the Jacobian rank @f

@x is everywhere equal to the
manifold dimension X dimX, and is called the embedding of X in Y. For instance,
the embedding of a circle into two-dimensional space is shown in Fig. 4.2 at the
left. Mapping f W X ! Y which does not need one-to-one correspondence is called
immersion. To put this another way, immersion is an embedding but is only local.
Figure 4.2 at right shows an example of the immersion of a circle into R2

In the previous example the dimension of the space where the attractor was
embedded was known. There were two important topological characteristics: the
dimension of the attractor and the dimension of the space (manifold) to which the
attractor belongs. Of course, these characteristics cannot take arbitrary values inde-
pendently. For instance, the attractor’s dimensions cannot exceed the dimensions of
the embedding space. The dimensions of the space where the attractor is embedded
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Fig. 4.2 At left is the embedding of the circle S1 ! R2. At the right is only its immersion into R2.
In this last case each vector of velocity on the circle corresponds to the unique velocity vector on
the figure-eight. But there is no one-to-one correspondence between the points of the image and of
the prototype

are important since they determine the minimum number of non-linear equations
which describe the attractor in this phase space. Let us assume that the attractor
belongs to a D-dimensional manifold. Then we can use Whitney’s theorem (see, for
example, [2–5]), providing that any D-dimensional manifold can be embedded into
Euclidean space R2DC1.

There is a simple way to understand Whitney’s theorem. To obtain the one-to-
one correspondence of image and prototype we need to set D coordinates. In order
to have the same correspondence between the tangent vectors we also have to set
another coordinate D. And finally, we have to add another coordinate to avoid self-
intersection as shown in Fig. 4.2. Thus D-dimensional manifold can be embedded
into space with the dimension n D 2D C 1. Now, we have to be sure that there
are non-intersection points. Let us consider the condition providing the absence of
intersection points of two hypersurfaces in space Rn. Let us define the hypersurface
of D dimension by the equations

fi .x1; x2; : : : ; xn/ D 0 :

The number of these equations is n�D. Therefore i D 1; 2; : : : n�D. Let us define
the second hypersurface of D dimension by the equations

gi .x1; x2; : : : ; xn/ D 0 :

Where i D 1; 2; : : : n � D. The choice of the same dimension of hypersurfaces is
suitable for the analysis of intersection points as well. The total number of equations
is 2n � 2D, while the number of unknown coordinates is n. It is clear that if 2D D
n, then the number of equations is equal to the number of unknown coordinates.
That means that in general cases, these equations have a finite number of solutions
which determine the coordinates of a finite number of intersection points for these
hypersurfaces. If 2D < n � 1, then the number of equations is bigger than the
number of unknown coordinates. Hence there is no solution of this kind of equation
in general cases. It means that if

n > 2D C 1 ;
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Fig. 4.3 This figure shows
one side surface of the Klein
bottle

there are no intersection of these hypersurfaces. Now it is evident that this dimension
limitation corresponds with Whitney’s theorem.

Whitney also proved the enhanced version of the embedding theorem [2].
According to this theorem every paracompact D, or dimensional Hausdorff man-
ifold, is embedded into R2Dspace.

Example 4.2 Notice that there are some bidimensional manifolds which cannot
be embedded into three-dimensional Euclidean space, R3. This follows from
Whitney’s theorem. The best-known example of such a manifold is the Klein bottle.
Figure 4.3 shows its model in R3 with self-intersections. However, without self-
intersections Klein bottle can be embedded into four-dimensional Euclidean space.
This corresponds fully to Whitney enhanced theorem.

Theoretical progress followed this direction. In 1981, Takens [6] was able to
prove the theorem, which immediately attracted much attention. Its content can be
explained in the following way. Let a system of equations, in phase space of which
an attractor exists, be the following:

dxi
dt

D Fi.x/ ;

where i D 1; : : : ; n. Then in 2D C 1-dimensional space

� D .x.t/; x.t C 	/; : : : ; x.t C 2D � 	// ; (4.5)

there is another attractor, all the metric properties of which coincide with the ones of
the original attractor. The dimension of that space is DE > .2DC 1/ and it is called
the embedding dimension (see also [7]). The sign of inequality means that if the
attractor can be embedded into a space of some dimension, then it can be embedded
into spaces of higher dimensions.
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Generalization of Whitney’s theorem for a case with a fractal image which is
consequently not a manifold is done in [7]. In this example it was proved that the
manifold A can be embedded into dimension space n providing

n > 2Dk C 1 :

Where Dk is the capacity of compact set A. Farther on we discuss this and other
dimensions in detail. In fact, instead of x.t/ we can take any coordinate from the
original system. In spite of the limitations and idealized character of that theorem,
it was immediately utilized in the reconstruction of attractors and their properties
in many physical systems. First, we suppose that temporal series are measured
with absolute precision on the infinite time interval. In addition, we suppose that
there are no noises at all which can influence the system. In spite of this extreme
idealization Takens’ theorem is broadly used to restitute attractors in phase space as
well to find its dimension, Lyapunov Index, topological entropy, and other important
characteristics of dynamical systems. A generalization of this theorem for systems
with external forces, including stochastic ones, was also obtained in [8]. However,
in order to really utilize that theorem or its generalizations one needs to learn to
determine either the attractor dimension or the embedding space dimension from
one-dimensional signal data.

4.3 Attractor Dimension

Let us turn now to a discussion of the dimension of attractors. In the case of an
attractor like the one in the example above, there is no difficulty in determining
its dimension. The limit cycle itself represents a manifold which is topologically
equivalent to a circle S1. However, it is well known that attractors can be of different
natures, and they can also be non-manifold. This is one of the impressive discoveries
at the heart of modern theory on dynamical systems. In other words, there are
stationary regimes distinct from constants (where the attractor is a stable fixed
point) and from periodic ones (where the attractor is a limit cycle or a limit torus).
The appearance of such new stationary regimes strongly affected views on many
physical processes. A widely known Ruel and Takens scenario [9] of turbulence
origination is also based on the concept of strange attractors. They are called strange
due to their unusual geometrical properties. Stationary regimes of dynamical system
motion on strange attractors are chaotic. The strange attractors are already not
manifolds and they are arranged in quite a complicated way. In modern terms, we
can say that in some directions they appear to be fractals like the Cantor set. It is
clear that the dimensions of such objects deserve more detailed discussion.
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Fig. 4.4 Shows symbolically
the dependence of the
Hausdorff measure mp on
value p

mp

The Hausdorff dimension is named after the man who invented one of the
main ways of determining dimensions for fractal sets [10]. First, to introduce the
Hausdorff measure. Let us cover our object X in spheres Ai of radius ı.Ai/ that do
not exceed radius ", so that every point of X will belong to one of the coverage
spheres. Now we consider the sum

m"p D inf
1X

iD1
ı .Ai/

p ;

where inf is the lower boundary over all coverages and p 2 R is arbitrary real
parameter. Then the following:

mp .X/ D sup
">0

m"p .X/ ;

is called the p-dimensional Hausdorff measure. This measure as the function of p
has a remarkable property. It looks like a special step: at small p it goes to infinity,
and at large ones it is 0 (see Fig. 4.4).

Number D, for which mp .X/ D 0 for p > D and mp .X/ D 1 for p < D, is
called the Hausdorff dimension of the set X. It means:

dimHX D D :

It is important to note that the Hausdorff dimension is not necessarily an integer and
therefore it is a very useful tool for the analysis of the structure and complexity of
different sets.

If we introduce N ."/ as the minimum number of p-dimensional cubes of side "
needed to cover the set, then their capacity can be defined as,

dimKX D lim
"!0

�
� logN ."/

log "

�
; (4.6)
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Fig. 4.5 Coverage of a
square by square
neighborhoods of size ", the
number of which is
N ."/ D "�2

ε

ε

where " tends to zero. The capacity of a set was originally defined by Kolmogorov
[11] (also called the box-counting dimensional). The Hausdorff dimension and
the capacity require only a metric (i.e., a concept of distance) for their definition,
and consequently we refer to them as “metric dimensions.” The value of capacity
coincides with fractal dimension.

Let us consider some examples of sets which have different dimensions. We start
from an ordinary square Q. It is evident that its usual (topological) dimension equals
2. Let us now determine its Hausdorff dimension. First of all we cover the square Q
with the same quadratic neighborhood of dimensionless size ". In this case it is easy
to calculate the sum mp

"

m"q .Q/ D
X

"p D N ."/ "p :

Where N ."/ is the number of square neighborhoods of size ", covering the square
Q (see Fig. 4.5). The number of such squares (see Fig. 4.5) is

N ."/ D "�2 :

After substitution into the previous equation we obtain

m"q .Q/ D "p�2 :

To estimate the Hausdorff measure we need to use the limit " ! 0. It is clear
that when p > 2 the sum mp

" is proportional to the positive power of " and
correspondingly this sum limit is equal to zero. Hence the Hausdorff measure with
p > 2 is equal to zero. When p < 2 the sum mp

" .Q/ is proportional to negative
power of " and the limit mp

" .Q/ is going to infinity. Thus we obtain by definition

dimHQ D 2 :

It is easy to see that in this case (as well as for other “normal” sets) the Hausdorff
dimension coincides with the usual (topological) dimension. Let us now consider a
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Fig. 4.6 Iterative method for
Cantor set construction

more exotic example in a Cantor set K. This set is built by the iterative procedure,
which implies dividing the interval, obtained in the preceding step of the iteration,
by 3 and consecutively removing the central part. Several steps of this process are
shown in Fig. 4.6. We can see that after n steps of construction the set consists of
Nn D 2n intervals whose length is "n D 3�n. For the limit case the Cantor set
consists of points with the coordinates

x D a1
3

C a2
32

C � � � � an
3n

C � � � ;

where an coincides either with 0 or with 2. Let us now determine its Hausdorff
measure. For that we cover it on n-step of construction with intervals of "n D 3�n

length and we calculate the sum mp
" .K/. For a set like this, it is easy to find m"p .K/

at each iteration step

m"np .K/ D ˙"pn D Nn"
p
n :

The number of segments which covers it on n-step is also easy to calculate as
Nn ."n/ D 2n. Now we can write Nn ."n/ as a function of "n using some simple
transformations

Nn ."n/ D 2n D e�n ln 2 D e�n ln 2
ln 3 ln 3 D �

e�n ln 3� ln 2
ln 3 D ."n/

ln 2
ln 3

and we obtain

Nn ."n/ D ."n/
ln 2
ln 3 :

As a result, for the sum mp
" .K/ we have

mn
p .K/ D Nn"

p
n D ."n/

p� ln 2
ln 3 :

When analyzing the limit of this sum with "n ! 0 in the same way as we do it for
the square Q we can find the Hausdorff dimension

dimHK D ln 2

ln 3
:
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The main result of these simple calculations is that we have a real example of
a set (formerly such sets were called perfect), which has non-integer Hausdorff
dimensions. Aside from this, because points in the set can be separated from one
another (by the empty set), its usual dimension (topological) is DimK D 0. The
appearance of such sets in mathematics was formerly seen as exotic. However,
research has moved on, and we now consider square sets exotic. Reasons for this are
mathematical and physical in nature. A simple example of objects with fractional
dimension is represented by plots of everywhere non-differentiable functions. The
first example of a function like this was presented by Weierstrass. A natural
question arises: among continuous functions, are the smooth (i.e., those that have
derivatives) or the everywhere non-differentiable functions more frequent? Banach
proved [12], using the category approach [13], that in terms of categories almost
all continuous functions are everywhere non-differentiable, i.e., the differentiable
functions have measure zero. In that sense, the differentiable continuous functions
are exotic. Taking into account the evident connection between plots of functions
and observations of natural phenomena and processes, we should expect wider
prevalence of the objects and processes which are characterized by non-integer
Hausdorff dimensions.

Mathematical researches on dimensionality theory lay outside of the interests
of physics for a long time. One of the first works in that domain which remained
long unnoticed was Richardson’s paper, devoted to the investigation of coastline
length in Britain (see [14]). Interest in perfect sets in physics appeared and arose
to a great extent due to the works of Mandelbrot [14]. His main idea was tied to
the extraction of objects (sets), which have self-similarity, i.e., those in which a part
of the set in some sense is similar to the whole set. In other words, such sets are
scale-invariant. This means that when we extract a part of the set and change the
scale in the appropriate manner, we get a new set that either coincides exactly with
the original whole set or coincides statistically with the given probability measure.
Such self-similarity can appear as a result of an iterative construction procedure, as
well as due to other, physical reasons. In particular, the self-similarity of the Cantor
set (discussed above) is evident and is the result of the simple iterative scheme used
in its construction. In some sense, self-similar sets are analogous to auto-model
solutions of different equations, which are also connected to the presence of higher
symmetries compared to all other solutions.

The importance of the self-similarity concept is manifested by the appearance of
simpler and more efficient methods for the description of self-similar set properties.
Indeed, returning to expression (4.6) for self-similar sets, one can see that if a part is
similar to the whole, then the expression (4.6) is satisfied not only in the limit, and
also in finite, but sufficiently small coverage scales. Then it can be simplified and
rewritten in the following form:

N ."/ 
 "�DF ; (4.7)

where N ."/ is the number of neighborhoods with characteristic size ", containing
points of the considered, and DF coincides with the capacity and the Hausdorff
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dimension for such sets. Mandelbrot proposed naming DF the fractal dimension
or cellular dimension of the set. From the definition (4.7) it clearly follows that
DF gives a quantitative characteristic of the self-similarity, i.e., it points out how
to change the scale so that the chosen part will coincide with the whole set. While
using (4.7) as a definition of the fractal dimension, it was seen that it is quite easy to
determine it from physical experiments and a huge number of physical objects and
processes have now been discovered which have non-integer fractal dimensions.
Thereby fractal objects and processes have become an essential part of physical
objects and processes.

The next step in the generalization of scaling led to the so-called self-affine
fractals and, respectively, to other characteristics of these objects. When talking
about the scale invariance of sets, we tend to assume that the space where the
considered set is embedded is similar to a Euclidean space, where all the coordinates
are equivalent and that the scaling acts on all coordinates in the same way. However,
this is far from being always true from both physical and mathematical points of
view. For example, in space-time, scalings on spatial and temporal coordinates can
be independent. For objects like trajectories in space-time, the similarity coefficients
on the time and space coordinates are not necessarily the same.

Another possibility for generalization comes from physical concepts about the
beginnings and growth of fractal clusters. Indeed, in this case there is a minimum
scale—the size of particles. Therefore the tending of coverage size to zero is
insignificant. However, the cluster size in the process of growth does not have an
upper limit, and we can increase the size of the cell or coverage up to 1. This allows
us to introduce the global cluster dimension at " ! 1. Then the usual definition
can be understood as the determination of a local cellular dimension.

Entropic or informational dimension is introduced using approaches originating
from information theory or statistical physics. By covering the fractal set with
neighborhoods of size ` we can introduce probability to find the points of the set
in any ith neighborhood. This probability equals pi.`/ D Ni=N, where Ni is the
number of points in the fractal set that fell into the ith neighborhood, and N is the
total number of points in the set. Having introduced those probabilities we can define
the entropy of the fractal set

I.`/ D �
X

i

pi ln pi :

It is clear that the entropy value depends on the scale of the neighborhood. Let us
now define the informational dimension as the velocity of entropy or information
variation at scale alteration

DI D � lim
`!0

I.`/

ln `
:

With the uniform filling of space on all scales, the probabilities pi are proportional to
the volume of the neighborhood `d, where d is the space dimension. Let us calculate
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the value of the informational dimension for such a case

DI D lim
`!0

N.`/d`d ln `

ln `
D lim

`!0

`�dd`d ln `

ln `
D d :

Thus, for non-fractal sets the informational dimension coincides with the topolog-
ical dimension of the set. For fractal sets, however, the informational dimension
will have a different value this will generally be different even from the fractal
dimension.

Using the probability approach, we can introduce one more dimension called
the correlational dimension. The idea behind its introduction is connected to the
behavior of correlations during a decrease in the distance between points. Let us
define the correlation integral as

C.`/ D lim
N!1

X

i;j

Nij.`/

N2
;

where Nij.`/ is the number of pairs of points, which lie in distance less than `. Then
the correlational dimension is defined by the following relation:

Dc D lim
`!0

lnC.`/

ln `
:

The value of this dimension for objects studied in physics can also differ from both
fractal and informational dimensions. These characteristics are important due to the
distinctions in their definitions as well as to the fact that they characterize the degree
of scale inhomogeneity for the objects under consideration.

We can now return to the determination of the attractor dimension. Strictly
speaking, we should treat its dimension as a Hausdorff. However, its determination
contains limit procedures that do not allow us to reconstruct it from a finite (even if
it is a very large) data set. Therefore, in order to determine the attractor dimension,
one usually uses the correlational dimension Dc, which gives the lower boundary of
the attractor dimension DA

DA > Dc :

Here, under the attractor dimension, we shall understand the Hausdorff dimension
of the attractor. However, in this way we can define the attractor dimension in its
proper phase space. Our task is more complex because of the uncertainty in the very
phase space of the system. Therefore, the determination of the attractor dimension
is also connected with finding the embedding dimension.
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4.4 Finding Embedding Dimension

One can determine the embedding and attractor dimensions simultaneously using
the following strategy. Let us find the correlational dimension of the reconstructed
attractor in the space (4.4) at small values of n D n0. For that we construct the
dependence of a correlation integral on resolution " in logarithmic scales. Figure 4.7
represents the typical plot. Saturation at " > "max is due to the fact that when "
attains the attractor dimension, all point pairs fall within this neighborhood and
consequently C ! 1 (see Fig. 4.7). On the other end of the linearity interval
" 6 "min, the neighborhoods " become so small that the attractor structure is
indistinguishable. In this domain the dependence correlation integral C on scale "
becomes complicated and non-linear (see Fig. 4.7). Values "min and "max depend on
experimental data and on the physical system, as well. The correlation dimension at
chosen value n0 is determined by the tangent of the slope angle on the linear part
of this plot. Let us note that experimental data does not always give such a clear
picture. Sometimes it is more complicated due to the particularities of the physical
system, measuring instruments, etc.

Then we increase the value of n by one and again we determine the correlation
dimension of the attractor in a space of higher dimension. A typical example of the
dependence of lnC on ln " at different values n is shown in Fig. 4.8. Repeating
this procedure, we can construct from the obtained data the dependence of the
correlation dimension on the phase space dimension number n. It is clear that after
the quantity n reaches valueDE the attractor dimension stops changing (see Fig. 4.8).
In other words, such dependence reaches saturation at n D DE and the correlation
dimension value at that point determines attractor dimension (see Fig. 4.9). Thus,
analyzing how the curve tends to saturation we determine both the embedding
dimension and the attractor dimension. Knowing the embedding dimension, we can,
using the given temporal dependence of one coordinate, reconstruct the attractor

Fig. 4.7 The dependence of
the correlation integral
logarithm on scale logarithm
". Typical deviations from
linearity are shown
symbolically for large and
small ". The correlation
dimension is defined by the
slope of the linear part only

ln C

min maxln ε ln ε ln ε 
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Fig. 4.8 The plot shows logC vs log " for different values of the embedding dimension in the
Rayleigh–Benard experiment [15, 16]. It is clear that when n increases from 3 to 8 the linear part
slope stabilizes
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Fig. 4.9 The typical stabilization of the correlation dimension at Dc � 2:8 with the increasing of
the embedding dimension. The data corresponds to Fig. 4.8

from that data and we can study its properties in the phase space of dimension DE.
Of course, there is a whole range of difficulties in performing such a strategic task
which are discussed in details in the literature. Most of them are connected with
the choice of the delay time 	 , scale intervals ", and the number of “experimental”
points N.

Generally speaking, the reconstruction of systems using experimental data
requires an enormous quantity of experimental points. Let us return to the question
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of the reconstruction of attractor dimension with the help of correlation dimension.
Let the number of experimental points be Nexp. The dimension of neighborhoods
changes from 0 to the attractor dimension L when calculating the correlation
interval. Let designate the number of point pairs within the neighborhood with

radius " as N ."/. It is a priori clear that this number changes from 0 to
N2exp

2
. All

the points are in the neighborhood of L dimension, while at smaller neighborhood
dimensions, the number of point pairs is proportional to the neighborhood volume

N ."/ � N2exp

2
"D :

It is obvious that to achieve good statistical results this number must be big enough,
i.e., N ."/ 	 1. Hence the following condition has to be satisfied:

N2exp

2
"D 	 1 :

It is easy to write this inequality as

Nexp > "
�D
2 :

This inequality shows how much experimental data Nexp is needed to reconstruct the
D-dimension attractor with resolution ". With increases in dimension and accuracy
resolution we need more experimental data. This inequality can be presented as

D <
2 lnNexp

ln
�
1
"

� :

For instance, if Nexp D 104 and " D 0:1, then the reconstructed attractor dimension
is D < 2 � 4

1
D 8.

The choice of time delay is not easy. Obviously we do not have to choose
an excessive time delay since the correlation between consecutive values of
measurements disappears. This naturally leads to inaccurate reconstruction. The
value 	 cannot be too small, either, since in this case the differences in observed
values are practically absent for some steps of observations. Hence x .t/ �
x .t C 	/ � x .t C 2	/ � � � � � x .t C .n � 1/ 	/ and data are concentrated near
the hyperdiagonal of phase space. That gives a strong anisotropy of reconstructed
attractor. There are some formal ways to choose 	 [17, 18]. The trial-and-error
method seems to be more appropriate to choose 	 , since small values of 	 give strong
compression toward the phase space diagonal, while at large 	 the thin attractor
structure spreads. In practical situations 	 is optimal if n	 has the same order as the
characteristic period of a dynamical system.
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There are also numerous modifications of methods proposed for attractor recon-
struction (see, for example, the review [19]), the development and perfection of
which is ongoing.

4.5 Global Reconstruction of Dynamical Systems

Lately, a more general problem has arisen and developed, which can be called the
global reconstruction of non-linear dynamical systems. Its goal is to reconstruct
the form of the dynamical system (i.e., the system of non-linear equations), which
generates the known temporal dependence of one of the generalized coordinates.
Such a task is mathematically incorrect, as many different dynamical systems can
generate the same attractor. Nevertheless, interest in this attractive problem is fairly
active. There are several methods of such global reconstruction, and all of them
are based on essential assumptions and hypotheses about the expected form of
dynamical systems. For the moment, they are applied to test examples of well-
studied dynamical systems. In the simplest cases, the reconstruction can be divided
into several stages. The first is the local attractor reconstruction in the phase space.
This stage has already been discussed. At the second stage, one makes assumptions
about the form of the non-linear system. It is essential that such assumptions must
restrict the infinite-dimensional space of right-hand sides in first order systems to
a finite-dimensional space. Usually, this is achieved by assuming that the right-
hand sides are polynomials of phase space coordinates. Of course this is also
complemented by restrictions on the order of these polynomials. Then, the problem
is reduced to determining the finite set of unknown parameters (the coefficients
of the polynomials) for the system using the initial data. The third stage namely
consists of the selection of these coefficients. The simplest way to do it is to
compare the obtained solution of the system of equations with the “experimental”
data and to fit the coefficients by the method of least squares [20, 21]. Various
more sophisticated variants of the global reconstruction of dynamical systems can
be found in the works referenced [22–25].
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Chapter 5
Controlling Chaos

Chaotic dynamics is one of the most general ways of non-linear systems evolution.
Chaotic regimes are abundantly present in nature as well as in devices created by
human hands. However, it is difficult to unambiguously answer whether chaos is
useful or harmful. Chaos is beneficial when it increases the chemical reaction rate
by intensifying mixing, providing a powerful mechanism for heat and mass transfer.
However, in many situations chaos is an undesirable phenomenon which can, for
example, lead to additional mechanical fatigue of the elements of construction due
to their irregular vibrations. The possibility of non-resonant energy absorption in
a chaotic regime can lead the system parameters beyond safe levels. Therefore,
it is clear that the ability to control chaos, i.e., to enforce or suppress it, has
great practical importance. Earlier, when chaos was still unusual, the problem
of its amplification was at the center of attention. However, at the beginning of
the 1990s, the pendulum swung in the other direction. Considerable theoretical
and experimental efforts were made to convert chaos into periodic motion. A
new and intensely developing domain of non-linear dynamics—controlled chaos—
originated from the pioneering work [1] of the same name. From this point on the
term “controlled chaos” entered into the vocabulary of physicists which deal with
non-linear dynamical systems.

5.1 Statement of the Problem

All of the numerous definitions of chaos are based on the extreme sensitivity of
chaotic dynamics to initial conditions. In the real world any system is disturbed
by external noise, and in computer simulations a small perturbation appears due
to numerical round-off. If a system is chaotic, then a small perturbation grows
exponentially in time, drastically changing the behavior of the system. This pecu-
liarity of chaotic systems considerably complicates analysis, driving experimenters
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to despair. However, the reason for despair may become the origin of hope. After
all, if the system is so sensitive to small perturbations, can we use them to control
it? This idea is the basis for the Ott–Grebogy–Yorke (OGY) control method [1].

It is interesting to note that in the pioneering work [1] there was already a deep
understanding of the prospective aim of chaos control. “One may want a system to
be used for different purposes or under different conditions at different times. Thus,
depending on the use, different requirements are made of the system. If the system
is chaotic, this type of multiple-use situation might be accommodated without
alteration of the gross system configuration. In contrast, in the absence of chaos,
completely separate systems might be required for each use. Such multipurpose
flexibility is essential to higher life forms, and we, therefore, speculate that chaos
may be a necessary ingredient in their regulation by the brain.”

The OGY method and its numerous variations are based on the fundamental
concept of global reconstruction of the system due to small perturbation. They are
used for chaos control both in abstract models and in different concrete systems
beginning with the simplest pendulum [2] and ending with the such complex
biological systems as the heart [3] and brain [4].

Practically any dynamical system can be an object for control. At the present time
the best results are achieved in the domain of control for systems with dynamics
which are chaotic over time. They are described by systems of ordinary differential
equations and are finite-dimensional inherently. The dynamics of such a system can
also be described using mappings in terms of discrete time. Such transitions can
be performed using the well-known technique of Poincaré sections (see Sect. 3.1).
Systems with spatially chaotic dynamics are also described by systems of ordinary
differential equations. The realization of control in such systems requires only minor
modification of the methods used for systems chaotic in time. Infinite-dimensional
systems with dynamics which are chaotic both in time and in space are described by
equations in partial derivatives. It is the control of such systems that now presents the
main difficulty, though even in this domain considerable progress has been achieved.

One of the most attractive features of the developed control methods is that it
is not necessary to have any analytical model of the controlled system. For input
information describing the system dynamics we can use masses of experimental data
of any dimension. This feature of the control methods opens up the possibility for its
application to practically any system if its dynamics contain a chaotic component.

5.2 Discrete Parametric Control and Its Strategy

In any chaos control method the principal role is played by the immediate objects
of stabilization, which are the unstable periodic orbits. One of the fundamental
properties of chaos is the simultaneous coexistence of many different motions in
the system. In particular, chaotic motion on the strange attractor coexists with an
infinite number of unstable periodic orbits. The motion of the system along a chaotic
orbit can be understood as the continuous switching between neighboring unstable
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periodic orbits [5]. One can imagine the periodic orbits as forming the skeleton of
the chaotic attractor, supporting dynamics in the phase space. The same fundamental
role is played by periodic orbits in quantum mechanics as well. We will cite just
the famous trace formula [6], which allows the quantum spectrum to be linked in
semiclassical approach with a sum over classical periodic orbits.

Although the existence of unstable periodic orbits does not apparently manifest
in free chaotic evolution, these objects play a principal role from the point of view
of chaos control. In order to demonstrate this, we shall discuss the strategy first
realized in the OGY chaos control method. Let us consider a set of unstable periodic
orbits embedded in the chaotic attractor of a dynamical system. For each of such
orbits we shall ask the question: does motion on that trajectory optimize some
system characteristic? Then we choose one of the optimal trajectories. Assuming
that motion on the attractor is ergodic, we can always wait until the moment of time
when the chaotic trajectory during its random walks approaches the chosen unstable
periodic orbit. When it happens, we apply a small programmed perturbation in order
to direct the trajectory towards the target orbit. If there is noise present in the system,
we shall repeat that procedure in order to keep the periodic orbit.

To realize that strategy we need to do the following:

• to identify the unstable periodic orbits on the attractor;
• to study the attractor structure in the neighborhood of such orbits;
• to choose the system parameters appropriate for realization of control and to

study the system response on their perturbation.

Perhaps the most difficult step in this strategy is the localization of the unstable
periodic orbits. A whole row of papers [7–10] is devoted to this problem. However,
the method which is the most closely related with the main idea of chaos control
is the one based on the transformation of unstable objects into stable ones [11].
The essence of the method is in utilizing the universal set of linear transformations,
which allow the transformation of unstable periodic orbits into the stable ones,
localized in the same points of the phase space as the required unstable orbits.
Stable periodic orbits obtained as the result of such transformation can be found
with the help of standard iterative procedures. Analysis of the attractor structure
in the neighborhood of unstable fixed points or unstable periodic orbits (which
can be considered as the combinations of unstable fixed points) does not present
any problem. To do this, one should observe the motion of the point representing
the current state of the system in the Poincaré section surface. From time to time
this point will approach the unstable fixed point along the direction which is
called the stable one, and then it will move off along the unstable direction. These
two directions form a geometric structure which is called the saddle. Knowledge
of those directions (the eigenvectors of the Jacobi matrix) and the velocities of
approaching and moving off along those directions (the eigenvalues of the Jacobi
matrix) represent all the necessary information about the local structure of the
attractor in the neighborhood of the fixed point, which is needed for the realization
of the discrete parametric control method.
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The identification of optimal system parameters is a relatively difficult task. We
note that a number of modifications of the OGY method [12] permit this difficulty
to be avoided. But as soon as the choice is made, there remains only to determine
the positions of the unstable periodic orbits for a few parameter values close to the
nominal one. This is all the necessary information needed for the realization of the
discrete parametric control of chaos by the OGY method.

For a better understanding of the fundamental ideas lying at the core of this
method, disregarding the difficulties connected with multidimensionality, let us
perform chaos control [13] in one-dimensional logistic mapping

XnC1 D f .Xn; p/ D pXn.1 � Xn/ ; (5.1)

whereX is limited in the interval Œ0; 1�, and p is the unique parameter of the mapping.
It is well known [14] that one of the mechanisms of transition to chaos in that
mapping is period doubling. As p grows, a sequence of period doubling bifurcations
takes place at which the orbits with consecutive period doubling became stable.
Period doubling bifurcations cascade ends at p D p1 � 3:57, after which chaos
begins.

Let us assume that we want to avoid chaos at p D 3:8. More specifically, we want
the trajectory with randomly chosen initial conditions to be as close as possible
to some unstable periodic orbit, assuming that this orbit optimizes some system
characteristic. Thus we will consider that we can only fine tune p near the value
p0 D 3:8, i.e., let us limit the range of variation for the parameter p by the interval
. p0 � ı; p0 C ıI ı  1/.

In view of the fact that the motion is ergodic, a trajectory with arbitrary initial
condition X0 with unit probability will sooner or later appear in a neighborhood
of the chosen periodic orbit. However, because of its chaotic nature (exponential
divergence) the trajectory will quickly deviate from the periodic orbit. Our task is to
program the parameter variation so that the trajectory will stay in the neighborhood
of the periodic orbit during the control time. We stress that according to the very
formulation of the problem we can use only a small perturbation of the parameter.
Otherwise, chaos itself can be excluded, for example, changing the parameter p from
3:8 to 2.

Let us consider the orbit with period i:

X0.1/ ! X0.2/ ! � � �X0.i/ ! X0.i C 1/ D X0.1/ :

If in the moment of time n the chaotic trajectory appeared in the neighborhood
of the mth component of the periodic orbit, then the linearized dynamics in the
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neighborhood of that component reads as the following:

XnC1 � X0.m C 1/ D @f .X; p/

@X

ˇ̌
ˇ̌
XDX0.m/;pDp0

ıXn

C @f .X; p/

@p

ˇ̌
ˇ̌
XDX0.m/;pDp0

ıpn

D p0Œ1 � 2X0.m/�ıXn C X0.m/Œ1 � X0.m/�ıpn ;

here ıXn � Xn�X0.m/; ıpn D pn�p0. Requiring that XnC1 D X0.mC1/, we obtain
the parameter perturbation, needed for n C 1 iteration to get on the periodic orbit

ıpn D p0
Œ2X0.m/� 1� ıXn

X0.m/ Œ1 � X0.m/�
: (5.2)

Relation (5.2) takes place if only the trajectory Xn appears in a small neighborhood
of the chosen periodic orbit, i.e., when ıXn  1 and, therefore, the perturbation ıpn
is small. Otherwise the system evolves according to the initial parameter value p0.

The procedure described above is convenient because it allows us to stabilize
different periodic orbits in different times. Let us assume that we stabilized a
chaotic trajectory in the neighborhood of some periodic orbit, for example, one of
period 2. Then we decided to stabilize the period-1 orbit, i.e., an unstable fixed
point, assuming that it is the orbit that optimizes some system characteristic in the
present time. Let us switch off the control. After that, the trajectory starts to deviate
exponentially quickly from the period-2 orbit. Due to ergodicity, after some time
the trajectory will appear in the small neighborhood of the chosen fixed point. In
that moment of time, we shall switch on the control, but for the unstable fixed point
[calculated according to (5.2)], and we will stabilize the chaotic trajectory in its
neighborhood. The result is described in Fig. 5.1a.

In the presence of external noise the controlled trajectory can be accidentally
kicked out from the periodic orbit neighborhood. If this happens, we should switch
off the control and let the system evolve freely until the chaotic trajectory returns
to the neighborhood of the target periodic orbit, and the control can be resumed
within the given range of parameter variation. For additive Gaussian noise it is easy
to check that the average length of the controlled phase grows with the decreasing
of noise amplitude. This situation is illustrated in Fig. 5.1b. The noise is modeled by
additive term in the logistic mapping of the form �� , where � is the noise amplitude,
and � is the Gaussian distributed random variable with zero average value and unit
dispersion.



68 5 Controlling Chaos

0 2000 4000
time

0 2000 4000
time

Xn Xn

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

a b

Fig. 5.1 (a) Control of unstable periodic orbit with period 2 in the logistic mapping in absence of
noise; (b) control of the same orbit in presence of additive Gaussian noise

�
� D 2:6 � 10�4

�
[13]

5.3 Main Equations for Chaos Control

Having illustrated the general strategy of the parametric control in the
one-dimensional example, we now turn to multidimensional system control. For
simplicity, we will consider the case of control for an unstable fixed point in
two-dimensional phase space. This example contains all the basic features of
multidimensionality.

We consider a three-dimensional continuous system with a two-dimensional
Poincaré section, dynamics of which are described by the following mapping:

ZnC1 D F .Zn; p/ ; (5.3)

where p is some parameter tunable in a small interval ı  1,

jp � p0j < ı ; (5.4)

around some initial value p0.
The key difference between one-dimensional and two-dimensional (multidimen-

sional) cases is the fact that in the latter, any unstable fixed point is connected with
some geometrical structure, namely for each fixed point (or for every component
of periodic orbit) there exist stable and unstable directions, which we mentioned
before. The control strategy, accounting for the complication of geometry, consists
of the following. Any time when the point Zn of intersection of the orbit with the
Poincaré section surface appears sufficiently close to the fixed point ZF. p0/ D
F.ZF. p0/; p0/, the controlling parameter p acquires the new value pn, such that after
consecutive iteration, the point ZnC1 D F.Zn; pn/ gets on the local stable manifold
of the fixed point ZF. pn/.
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Fig. 5.2 (a) Shift of the unstable fixed point with variation of the parameters; (b) eigenvectors
of the Jacobi matrix .eu; es/ for the fixed point ZF; (c) auxiliary basis .fu; fs/; (d) iteration of the
mapping in the neighborhood of the fixed point necessary to realize the control [15]

Let us realize this strategy [1, 15]. Shift of the fixed point due to variation of the
parameter . p0 ! pn D p0 C ıpn/ equals

ZF. pn/ D ZF. p0/C g ıpn ; (5.5)

where the shift vector of the fixed point is g D dZF. p/
dp

ˇ̌
ˇ
pDp0

(see Fig. 5.2a).

Linearized dynamics in the neighborhood of the fixed point ZF. p0/ looks like
the following:

ZnC1 � ZF. pn/ Š OA. p0/ .Zn � ZF. pn// ; (5.6)

where Aij D @Fi
@Zj

ˇ̌
ˇ
ZDZF. p0/;pDp0

is the Jacobi matrix.

The Jacobi matrix OA is characterized by its eigenvectors eu; es and eigenvalues

u; 
s,

OAeu D 
ueu

OAes D 
ses ;

where the indices u and s correspond, respectively, to unstable and stable directions
of ZF. p0/ (see Fig. 5.2b): j
sj < 1 < j
uj. These eigenvectors are normalized, but
they are not orthogonal:

e T
s es D e T

u eu D 1; e T
s eu ¤ 0 ; (5.7)
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where the symbol T denotes the transposition operation. The Jacobi matrix can be
presented in the form:

OA D Œeues�
�

u 0

0 
s

�
Œeues�

�1 :

Because of non-orthogonality of the vectors eu and es it is convenient for formulation
of the control to introduce a new “orthogonal” basis ffu; fsg (see Fig. 5.2c):

f T
s es D f T

u eu D 1I f T
u es D f T

s eu D 0 : (5.8)

Those are connected to bases by the simple relation

�
fu1 fu2
fs1 fs2

�
D
�
eu1 es1
eu2 es2

��1
:

From the latter we obtain components for the new basis:

fu1 D es2=�; fu2 D �es1=�;

fs1 D �eu2=�; fs2 D eu1=�I
� � eu1es2 � es1eu2 :

The Jacobi matrix can be expressed also in the mixed e; f -basis:

OA D 
ueu � f T
u C 
sesf T

s :

Projecting this relation on the direction fu, we obtain a useful result

f T
u

OA D 
uf T
u : (5.9)

We can now formulate the control condition—getting ZnC1 on the local stable
manifold (see Fig. 5.2d) ZF. p0/—in the following form:

f T
u ıZnC1 D 0I ıZnC1 D ZnC1 � ZF. p0/ : (5.10)

Substituting (5.5) into (5.6) and using (5.9) together with the control condi-
tion (5.10), we get the following:

ıpn D 
u


u � 1

f T
u ıZn

f T
u g

: (5.11)

Relation (5.11) is the basic formula of the discrete parametric OGY control.
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This result can also be represented in an alternative form. Simultaneously
accounting the transition Zn ! ZnC1 and variation of the parameter p0 ! p0Cıpn,
we can present the dynamics in the neighborhood of the fixed point ZF. p0/ in the
following form:

ıZnC1 ' OA. p0/ıZn C BıpnI B D @F
@p

ˇ̌
ˇ̌
ZDZF. p0/;pDp0

: (5.12)

Projecting (5.12) on the direction fu and utilizing the control condition (5.10), we
get

ıpn D �
u f T
u ıZn

f T
u B

: (5.13)

Vectors B and g are connected with the relation

B D
�
1 � OA

	
g :

The main result of the OGY control method can be presented in the form

ıpn D Cf T
u ıZn ; (5.14)

which we can interpret in the following way. Deviation of the parameter from its
initial value ıpn, necessary to perform the control, is proportional to the projection
of the vector ıZn onto the stable direction fu. The proportionality coefficient C is
calculated from the fixed point shift g projection onto the same direction and from
the unstable eigenvalue 
u.

Let us now turn to the geometrical interpretation of the obtained result. Figure 5.3
represents the point Zn, approaching the unstable fixed point ZF. p0/ along the stable
direction es. In absence of control in the consecutive moments of time, the point will
move off the ZF. p0/ along the unstable direction eu. Let us now introduce into the
system such parameter perturbation ıpn, that the point Zn, determining the system
position, will appear to lie between the new and old stable directions (Fig. 5.3b).
Motion along the new stable direction e0

s with consecutive moving off the new
unstable fixed point ZF. p0Cıpn/ along the unstable direction e0

u will be at the same
time a motion towards the old stable fixed point ZF. p0/. Therefore, if we properly
choose ıpn [according to the OGY formula (5.11)], we can then make it so that the
point ZnC1 will get precisely onto the stable manifold ZF. p0/. After that we return
the parameter to its initial value p0, and the point describing the system position,
remaining on the stable manifold, will approach ZF. p0/ (Fig. 5.3c). A schematic
three-dimensional analogue of the two-dimensional geometry of the OGY control
is presented in Fig. 5.3d.
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a b c

d

zn zn zn+1

zF (p0) zF (p0)zF (p0+δp)

Fig. 5.3 (a) Point Zn in the neighborhood of unstable fixed point ZF .p0/; (b) shift of the fixed
point with variation of the parameter p0 ! p0 C ıp0; (c) final stage of the OGY control; (d)
schematic three-dimensional analogue of two-dimensional control geometry [1, 16]

As an example we consider the result of stabilization for the period-1 orbit in the
Hénon mapping [17]

XnC1 D p � X2n C 0:3Yn

YnC1 D Xn : (5.15)

Starting from some randomly chosen initial condition on the attractor, the image
point undergoes chaotic walks until at n 
 75 it appears in the given neighborhood
of the chosen unstable fixed point (it is marked by a cross in Fig. 5.4a). In that
moment we turn on the control algorithm. The result of the control is presented in
Fig. 5.4b. Figure 5.4c shows deviations of the parameter p from its nominal value
.p0 D 1/, necessary to realize the control. In the absence of noise, the parameter
deviations are non-zero only on the initial stage of control. Figure 5.4c presents
deviation of the orbit ırn from the unstable fixed point in logarithmic scale. After
the control is turned off at .n 
 150/ the chaotic motion restores sufficiently quickly.
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Fig. 5.4 OGY control for the Hénon mapping (without noise)

A logarithmic scale used in Fig. 5.4c sharply marks out all the characteristic stages
of the control procedure:

1. chaotic motion up to the control turning on,
2. exponentially fast approach of the controlled trajectory to the unstable fixed

point,
3. keeping in the neighborhood of the unstable fixed point with accuracy determined

by numerical calculation errors,
4. exponential divergence of trajectories after the control is turned off,
5. restitution of free chaotic motion.

Let us consider in the same example the influence of noise on the described
control mechanism. For that purpose, we add in the right-hand sides of the Hénon
mapping (5.15) the terms "ıXn and "ıYn. Independent random variables ıXn and
ıYn are Gaussian-distributed with zero mean values and unit dispersion. Figure 5.5
presents the result of stabilization for the unstable fixed point of the Hénon mapping
for " D 0:014. Even with the presence of noise, the OGY algorithm realizes the
stabilization, but with a shortened control interval. In that case, the quantity ıpn is
non-zero for whole duration of the control.

In conclusion, let us formulate the main advantages of the OGY discrete
parametric control method:

The method requires minimum computational effort.
Realization of the control needs only small variations of the system parameters.
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Fig. 5.5 OGY control for the Hénon mapping (with noise)

The control does not change the structure of the unperturbed system phase space.
Different unstable periodic orbits can be stabilized in common region of the

parameter space.
The method can be applied to any non-linear system if its evolution allows

description in terms of mappings.
The method does not require a priori model description of the dynamics. (The

latter remark requires an explanation which will be given in the next section.)

5.4 Control of Chaos Without Motion Equations

The OGY method is based on a chaos control strategy that does not require a
priori knowledge of equations of motion for the controlled object. As we have seen,
realization of the method only requires knowledge of the local structure of the phase
space in neighborhood of the target periodic orbit (or fixed point), i.e., the Jacobi
matrix OA and vector g.B/, which enter into the relation (5.11) and (5.13). It can be
shown [1, 18–20] that quantities can be reconstructed without an exact model (or
equations of motion) of the controlled system.



5.4 Control of Chaos Without Motion Equations 75

This feature makes the OGY method particularly attractive for chaos control in
real experiments. Indeed, with rare exceptions, experimentors do not have adequate
models of the phenomena under investigation. To begin with, we will make an
optimistic assumption that we know a sufficiently long segment of the dynamical
system trajectory on the attractor (further on, we will weaken this assumption) and
then we show how to reconstruct the information that interests us. Let the trajectory
be given in the form of sufficiently long series of intersections Z1;Z2 : : :Zn with
the Poincaré section surface. If two consecutive intersections, for example, Zi and
ZiC1, appear sufficiently close to each other (.ZiC1 � Zi/

2  l2, where l is the
characteristic size of the region of finite motion), then, generally speaking, the
fixed point must be somewhere nearby. Having fixed the first pair, we will discover
other analogous pairs in small neighborhood of the first “almost return.” Because
of ergodicity of motion on the strange attractor, there will be relatively many such
pairs, if the trajectory is known for a sufficiently long time interval. We can try to
reproduce the sequence of intersections with the help of linear mapping:

ZnC1 D OAZn C C : (5.16)

As noise is always present in the record of a real trajectory, in order to reproduce
the matrix OA and vector C we should use as many pairs as possible, adjusting
the data with the method of least squares. Matrix OA, thus obtained, serves as
an approximation of the Jacobi matrix, eigenvectors, and eigenvalues of which
are required for the OGY control realization. The corresponding fixed point is
approximated by the relation

ZF D .1� OA/�1C : (5.17)

In order to find the approximate expression for the vector g one should change the
parameter p ! p C�p, reproduce the time series (trajectory) with that new value,
redefine the fixed point ZF. p C�p/, and find g as

g D ZF. p C�p/� ZF. p/

�p
: (5.18)

To determine the quantities necessary for the stabilization of the period-2 orbit, one
should perform an analogous procedure, but for closely intersecting pairs Zn and
ZnC2, and likewise for higher period orbits.

Let us illustrate the above-described procedure in the example of a non-linear
pendulum subject to simplest periodic perturbation [2]. The non-linear pendulum,
which for centuries represented the paradigm of periodic motion, is now often used
to demonstrate the features of chaotic dynamics. The equation of motion for this
system reads

d2�

dt2
C k

d�

dt
C sin � D f cos˝t ; (5.19)
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Fig. 5.6 Bifurcation diagram for forced oscillations of a non-linear pendulum [2]
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Fig. 5.7 Stroboscopic section for the non-linear pendulum; the dark square marks the unstable
fixed point [2]

where � is the angle of deviation from the vertical line, k is the friction coefficient,
f and ˝ are, respectively, the amplitude and the frequency of the driving force.
Depending on the parameter values .k; f ;˝/ the pendulum demonstrates different
types of dynamical behavior. The bifurcation diagram (Fig. 5.6), which shows the
angular velocity ! D d�=dt as a function of the parameter q D 1=k, reflects the
graduate transition to chaos as the friction coefficient decreases. Further on, we will
use the parameters set (q D 3:9, f D 1:5, ˝ D 2=3), at which the pendulum
dynamic is chaotic.

For now, let us assume that the equation of motion for the pendulum is unknown
to us, but, observing the system experimentally, we can determine the quantities
.�n; !n/ in some discrete moments of time tn D nT .T D 2�=˝/. Laying these
points on a plane .�; !/, we get the so-called stroboscopic section—an analogue
of the Poincaré section. This section is presented in Fig. 5.7. For the realization
of the OGY control we must extract from the stroboscopic section the following
information: the coordinates of the unstable fixed point .�F; !F/; the dependence
of the position of that point on the controlling parameter (if that parameter is �q),
.@�F=@q; @!F=@q/; the Jacobi matrix in the neighborhood of the fixed point, its
eigenvectors e and eigenvalues 
, the orthogonal basis f. Using the relations (5.16)
and (5.17) for the set of points in the neighborhood .1:5; 0:4/ (the dark square on
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Fig. 5.7), we find for the fixed point that

ZF D
�
�F

!F

�
D
�
1:523

�0:415
�

and for the Jacobi matrix

OA D
��3:42 �5:79

�1:52 �2:48
�
:

Eigenvalues and normalized eigenvectors for that matrix read


u D �5:85; eu D .eu1; eu2/ D .0:92; 0:40/ ;


s D C0:050; es D .es1; es2/ D .0:86;�0:52/ :

Using the relations (5.8) we can also find the orthogonal basis components necessary
for control realization,

fu D . fu1; fu2/ D .0:63; 1:04/ ;

fs D . fs1; fs2/ D .0:49;�1:12/ :

At last, we can determine how the variation of the friction coefficient affects the
position of the fixed point. For small changes of the parameter q

�
� 0
F

!0
F

�
�
�
�F

!F

�
C ıq

 
@�F
@q
@!F
@q

!
D ZF C gıq :

To determine vector g we shall follow the variation of the fixed point position with
changes of parameter q. Having constructed the graphical dependencies �.q/ and
!.q/, we can determine the components of the vector g. We should note that the
OGY control mechanism is not very sensitive to that parameter, therefore, in order
to determine the vector g we can restrict ourself with a small number of dimensions.
Now we have all the components necessary for the realization of the OGY control
with the help of relation (5.11).

We should stress that we got all the necessary information only from the
experimentally observable quantities �.t/, !.t/. The result of control for the period-
1 unstable orbit (fixed point) is presented in Fig. 5.8. The control was turned on
in the vicinity of the 1000th period of the external perturbation and was turned off
near the 3000th period. About ten cycles were required to get the control. Only small
variations of the controlling parameter jıqj < 0:1 were allowed during the control
process. Large parameter changes could transfer the system into another dynamical
regime (see the bifurcation diagram in Fig. 5.6). As we can see, during the control
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Fig. 5.8 Control of unstable fixed point for non-linear pendulum [2]

time, we were able to keep the chaotic trajectory in the vicinity of the target periodic
orbit.

We should, however, note that it is difficult to measure experimentally the full N-
dimensional vector of the system state in a given moment of time, but it is exactly
this information which is required for the above procedure. As a limiting case,
consider the situation where only one scalar system characteristic f .t/ is available
for measurement. As Chap. 4 showed, it is possible to reconstruct the full dynamics
of N-dimensional system from a single scalar characteristic.

5.5 Targeting Procedure in Dissipative Systems

In the control scheme considered above, with a limited interval of the controlling
parameter variation .jpn � p0j 6 ı/ the control is turned on only after the trajectory
being stabilized gets into "-neighborhood ." 
 ı/ of some component of the target
periodic orbit. The efficiency of this control scheme is determined to a great extent
by the time it takes to get into the required region or, as we shall say, control setup
time.

Average time h	i required to get in the "-vicinity of some point during chaotic
motion on the strange attractor [1]

h	i 
 "�D; (5.20)

where D is the fractal dimension of the attractor (see [21, 22]). Therefore, if we do
not make special efforts, the decrease of the allowed region of parameter variation
will result in power-law growth of the control setup time. However, right after
the appearance of the OGY control method, a procedure was proposed [23, 24],
named “targeting” by its authors, which by special small change of the controlling
parameter permitted the transformation of the control setup time growth law from
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the power one to the essentially slower law—a logarithmic one. The procedure uses
the exponential sensitivity of the chaotic trajectory to the initial conditions.

Let us discuss the targeting procedure in the simplest setup, when the attractor
dimension is close to one [23, 24]. Generalizations on cases of higher dimension can
be found in [25]. Suppose we have a time-continuous dynamical system, described
by the equations of motion Px D F.x/. According to the usual scheme with the help
of Poincaré sections we transit from the continuous equations of motions to the
time-discrete reversible mapping

ZnC1 D F.Zn; p/ : (5.21)

Let us remember that if the equations of motion are not given, the Poincaré section
can be reconstructed from experimental data. Suppose we want, starting from the
point Zs, to get a small vicinity (with linear dimensions "t) of the point Zt. From
now on, we will call this point the target. As usual, we assume that the system
parameter p is subject only to small tuning on each iteration step:

pn D p0 C ıpnI �ı < ıpn < ıI jıj << p0 :

On the first iteration we include a small variation of the parameter �ı1 < ıp1 < ı1.
Iterating (5.21) with values of p from the interval Œp0 � ı1, p0 C ı1�, we get some
segment �, passing through the point F.Zs; p0/. Let us denote length of that segment
as ı�. After that, we return back to the initial value of the parameter p0. As the
system is chaotic, the segment length will exponentially grow with each consecutive
iteration. At long last, say, after �1 iterations, it will reach size of the system. Without
restricting the generalization, we can consider the linear dimensions of the attractor
to be of the order of one. Then

�1 
 
�1
1 ln ı��1 : (5.22)

Here 
1 is the positive Lyapunov exponent of the mapping F. Similarly, if we will
iterate vicinity of the target "t back in time, we find that the number of iterations
required for that region to stretch up to the attractor dimensions equals

�2 
 j
2j�1 ln "�1
t ; (5.23)

where 
2 is the negative Lyapunov exponent of the mapping F�1. As both objects
(the segment and the target vicinity) are stretched up to the attractor dimensions, we
can find their intersection point. Iterating it �1 times back in time, we find the point
on the segment ı�, which after �1 C �2 iterations maps into the target vicinity with
linear dimensions "t. The total time required for this is

	 D 
�1
1 ln ı��1 C j
2j�1 ln "�1

t : (5.24)
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Setting ı� 
 "t, we obtain

	 
 ln "�1
t ; (5.25)

contrary to the power-law growth without the targeting procedure.
The logarithmic behavior of the control setup time was confirmed in the

following numerical experiment [23]. The source and the target were randomly
chosen on the attractor of the Hénon mapping of the following form:

XnC1 D p � X2n C 0:3Yn

YnC1 D Xn :

Then the target size was fixed at "t, and the above targeting algorithm was applied
for each source-target pair using p as the controlling parameter . p0 D 1:4/. The
calculated time required to get the target was averaged over an ensemble of the
source-target pairs at fixed target size "t. The results of the numerical experiment
are presented in Fig. 5.9. The solid line with slope 
�1

1 Cj
2j�1, predicted by (5.24),
agrees with the obtained data. The dashed line corresponds to the power law (5.20)
with D Š 1:26 (the fractal dimension of the Hénon attractor). The variation of the
parameter in realizing the targeting procedure did not exceed 0:1% of its initial
value.

Peculiarities of the targeting procedure in Hamiltonian systems will be consid-
ered in the next section.
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Fig. 5.9 Average time required to get the target of definite size .�t/; solid line shows the time
defined by the relation (5.6), dotted line is the time in the absence of targeting [power law (5.1)]
[23]
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5.6 Chaos Control in Hamiltonian Systems

In this section we will consider an OGY method generalization that allows the
realization of chaos control in Hamiltonian systems [26]. There are several reasons
that make this generalization a non-trivial task.

Because of the phase volume conservation in Hamiltonian systems, some unsta-
ble periodic orbit components have the Jacobi matrix with complex eigenvalues. It
makes it impossible to use the formulae (5.11), (5.13), expressed in terms of real
eigenvalues immediately for control. We can utilize the unmodified OGY algorithm
if we apply the controlling perturbation only over the period, i.e., on each mth step,
if the periodic orbit has period m. However, the stabilized chaotic orbit, affected by
noise, can deviate from the target orbit before the next perturbation will be applied,
and control over the trajectory will be lost. Therefore, for a real system, where noise
is always present, an efficient control algorithm must allow control on each time
step. The initial control algorithm needs to be slightly modified. Let us do it for
the two-dimensional mapping ZnC1 D F.Zn; p/ with the usual limitation, imposed
on the smallness of the parameter p perturbation. The linearized dynamics in the
vicinity of the period-m orbit (Z01 ! Z02 ! : : : Z0m ! Z0.mC1/ D Z01) reads:

ZnC1 � Z0.nC1/. p0/ D OA.Zn � Z0n. p0//C Bıpn : (5.26)

Here we will not, as we did before, express the matrix OA in terms of its eigenvectors
and eigenvalues, as they can be complex in some points of the periodic orbit. Instead,
we shall use stable and unstable directions, connected with each periodic orbit
component. If m ¤ 1, then these directions do not necessarily coincide with the
eigenvectors of the Jacobi matrix at the same point. The algorithm for determining
the stable and unstable directions for periodic orbit components in two-dimensional
mappings can be found in [26].

Suppose es.n/ and eu.n/ are, respectively, stable and unstable directions in the point
of the periodic orbit Z0n , and fs.n/, fu.n/ are two vectors satisfying the conditions

f T
u.n/eu.n/ D f T

s.n/es.n/ D 1

f T
u.n/es.n/ D f T

s.n/eu.n/ D 0 : (5.27)

For the stabilization of an unstable periodic orbit we require that the point, which, as
the result of evolution appeared in small vicinity of some periodic orbit component
Z0n, will, on the next .n C 1/ iteration, get on the stable direction of the component
Z0.nC1/. It means that

f T
u.nC1/

�
ZnC1 � Z0.nC1/. p0/

� D 0 : (5.28)
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Projecting the relation (5.26) on the direction fTu.nC1/ and using the condition (5.28),
we get [26]:

ıpn D �
f T
u.nC1/

h OAıZn. p0/
i

f T
u.nC1/B

I ıZn. p0/ D Zn � Z0n. p0/ : (5.29)

This formula represents an analogue of the relation (5.11) for the OGY chaos
control method in Hamiltonian systems. So for the case of the unstable fixed
point stabilization f T

u.nC1/ D f T
u ; f T

u
OA D 
uf T

u the relation (5.29) also transforms
into (5.11). It is important to note that the parameter perturbation (5.29) is applied
to the system on each time step, which minimizes the influence of external noise.

The obtained algorithm was applied in [27] for chaos control in a version of the
already considered standard mapping

XnC1 D .Xn C Yn/ mod 2� � �

YnC1 D Yn C p sin.Xn C Yn/ ; (5.30)

using p as the controlling parameter. Figure 5.10 shows the results of control for the
period-10 unstable periodic orbit. Anomalously long control setup times—about
104 iterations—are striking. This is one more difficulty in the realization of OGY
control in Hamiltonian systems. In dissipative chaotic systems the average control
setup time h	i is always finite. It is connected with the exponential decay of the
distribution function P.	/ on long times [28]

P.	/ 
 exp Œ�	= h	i� : (5.31)
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Fig. 5.10 OGY control for the period-10 unstable periodic orbit in the standard mapping (5.30).
Only some of the lines corresponding to the periodic orbit are shown. Other lines, when projected
on the corresponding planes, have coordinates that coincide with the plotted ones [26]
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In Hamiltonian systems, the corresponding distribution function decays consider-
ably slower on long times [29]

P.	/ 
 	�˛I 1 < ˛ < 2 : (5.32)

This leads to the fact that the average control setup time in Hamiltonian systems

h	i 

Z
	1�˛d	 ; (5.33)

tends to infinity. The physical reason for such distribution function behavior is the
sticking effect of the trajectory to the invariant tori surviving in the phase space.
Therefore, efficient control in Hamiltonian systems can be realized only under
conditions of considerable abridgement of the control setup time.

Let us briefly cite one of ways to solve that problem, proposed in the paper [27].
For explanation of the method the authors used the following analogy. Suppose in
some mountainous country you must get from one valley to another. If you are not
acquainted with the landscape and try to achieve the goal by the random walking,
then the march will take a considerable time. The required time can be remarkably
shortened if you use the passes connecting the neighboring valleys. Therefore, the
authors named their method the pass targeting method.

Let us explain it using the example of two-dimensional Hamiltonian mapping.
The phase space structure of a system corresponding to such a mapping in the
region of transition from absolute regularity to complete chaos represents a chain
of resonance overlaps [30]. This picture is schematically illustrated in Fig. 5.11,
where two overlapping resonances are shown. Each resonance is associated with an
orbit of a certain period. For example, the unstable fixed point (the saddle point P) is
associated with the period-1 resonance (lower hatched region in Fig. 5.11), and the
unstable period-2 orbit (the saddle points P1 and P2)—with the period-2 resonance
(upper hatched region in Fig. 5.11). To transition from one resonance to another, it is
necessary to intersect the region of neighboring resonance overlap. This is the pass

Fig. 5.11 Targeting
procedure in a Hamiltonian
system [standard
mapping (5.30)] in the case of
two overlapping resonances
[27]

control

P1 P2

contro

PP

ntrol

control
source

tontro
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used in the above analogy. Thus, the targeting procedure in Hamiltonian systems
must have a multistage character. As the intermediate target on each stage one
can choose the neighboring resonance overlap region. The authors of the method
checked its efficiency on the standard mapping (5.30). The average time to reach
the target, separated from the source by seven resonances for 50 sets of initial
conditions, chosen in the chaotic region using the targeting procedure, was within
the limit of 125�132 iterations. The uncontrolled transport time for the same source-
target combination was from 1119 to 3:77 million iterations.

As a realistic example of the targeting procedure realization in Hamiltonian
systems we shall briefly mention the so-called restricted three-body problem [31]:
the description of the motion of a light body in the gravitational field of two
other bodies, significantly exceeding it in mass. The heavier bodies turn around the
common center of gravity under action of mutual attractive forces. Such a model can
be used to describe spaceship dynamics in the Earth–Moon gravitational field. The
solution obtained in framework of such a model is used for the zero approximation.
Subsequent approximations account for the influence of the Sun and other planets.

Let our goal be to transfer the spaceship from a near-earth orbit to a circumlunar
one. The straightforward way to achieve that goal is to accelerate the spaceship in
order to let it leave the near-earth orbit and then to slow it down for the capture by
the Moon’s gravity field.

A very different approach [32] is based on the existence of a chaotic sea between
the Earth and the Moon (due to the stochasticity of the reduced three-body problem).
In that case, a small quantity of rocket fuel can be used to transfer the spaceship from
the near-earth orbit into the chaotic sea. Then the spaceship can reach the vicinity of
the circumlunar orbit without any fuel losses. However it will take very long time—
about 27 years. Using the above targeting procedure in a Hamiltonian system, this
time can be shortened to 293 days with multiplied fuel savings [27].

5.7 Stabilization of the Chaotic Scattering

In the present section we will, following [33], consider one more example of
controlled Hamiltonian dynamics, but now for cases of infinite motion—chaotic
scattering. This represents a type of scattering at which arbitrarily small changes of
input variables can result in considerable output changes. In other words, as in any
chaotic process, chaotic scattering is characterized by an anomalous sensitivity to
initial conditions.

We begin by formulating the problem. An arbitrary particle impacting the
scatterer will, generally speaking, stay only a finite time in the scattering region.
However, in many important applications (chemical and nuclear reactions, chan-
neling relativistic particles in crystals) it is necessary to keep the particle in the
scattering region for longer. Therefore, we naturally come to the following: how
can we keep a particle inside the scattering region as long as needed, using only
small variations in the system parameters? This task is equivalent to the problem of
unstable periodic orbit stabilization inside the scattering region.
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Below we will briefly discuss this problem in application to the non-hyperbolic
chaotic scattering in Hamiltonian systems. The term “hyperbolic scattering” means
scattering in a case when all the periodic orbits are unstable and the invariant tori are
absent in the scattering region. At the same time the term “non-hyperbolic chaotic
scattering” describes the situation when the surviving invariant tori coexist with the
chaotic invariant sets.

Control of non-hyperbolic chaotic scattering has two characteristic features. First
let us remember that for strange attractors, the probability of finding a particle in
a small vicinity of the target periodic orbit equals unity. However, in the case of
chaotic scattering the invariant chaotic set is not an attractor. Therefore, in order to
get a finite probability of finding a particle in the vicinity of the target orbit, we
should prepare the ensemble of initial conditions, corresponding to motion towards
the chaotic set.

Another peculiarity is immediately connected to the non-hyperbolic character
of the scattering. If the target unstable periodic orbit is situated far from the
invariant tori present in the scattering region, the latter will only slightly affect
the average control setup time. However, if the orbits situated near the surviving
tori are stabilized, the sticking effect mentioned in the previous section may appear
significantly stronger than in the first case.

Let us study the possibility of controlling the chaotic scattering in a simple
model, describing the one-dimensional dynamics of a particle driven by ı-like
pulses [34]. As the controlling parameters in this model we can use the intensity
of the pulses and the time interval between two consecutive collisions. The
Hamiltonian of the model reads

H.x; p; t/ D p2

2m
C T0G.x/

1X

iD�1
ı.t � Ti/ ; (5.34)

where T0 is a constant, The sequence fTig determines the moments of the pulses,
and T0G.x/ is the pulse amplitude at point x. Suppose fxn; png are the dynamical
variables of the particle before the nth pulse. Then, immediately before the .nC1/th
pulse, those dynamical variables are defined by the following Hamiltonian (area-
preserving) mapping:

pnC1 D pn � T0
dG.xn/

dxn

xnC1 D xn C TnPnC1 ; (5.35)

where Tn is the time interval between nth and n C 1th pulse.
In order to make the model (5.34) describe the scattering dynamics, we should

take the function G.x/ such that the derivative dG.x/=dx turns to zero over long
distances. Let us choose G.x/ in the form

G.x/ D D.1 � e�˛x/2 ; (5.36)
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where D; ˛ are free parameters. After the following scaling transformation:

pn ! pn=.˛T0/; xn ! xn=a

the mapping (5.35) takes the form

pnC1 D pn � d
�
e�xn � e�2xn�

xnC1 D xn C Tn
T0

pnC1 ; (5.37)

where d D 2˛2T20D.
As was shown in [33], the mapping (5.37) demonstrates different types of

dynamical behavior depending on the values of the parameters d and Tn. In
particular, for Tn D T0 the mapping reproduces both hyperbolic and non-hyperbolic
scattering at different values of d. In the case 0 < d < dc � 4:58 the scattering
is non-hyperbolic, because the phase space contains the invariant tori. Figure 5.12
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Fig. 5.12 Two examples of the OGY control for the chaotic scattering [33] in the model (5.37).
(a), (b): X0 D 8; P0 D �4:398I (c), (d): X0 D 8; P0 D �9:072
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presents the results of control for period-5 unstable periodic orbit .d D 1:8/ with
the algorithm (5.29) for two sets of initial conditions. The relatively longer period
of control setup in the second case is connected with influence of the surviving
invariant tori, mentioned above.

5.8 Control of High-Periodic Orbits in Reversible Mapping

In the present section we will demonstrate the efficiency of the discrete parametric
control method for the stabilization of high-period orbits in reversible mappings,
which we introduced in Chap. 4. As was mentioned above, the specific feature of
these systems is that the basic elements of Hamiltonian systems (e.g., resonances)
and those of the dissipative systems (e.g., attractors) can coexist in their phase
space [35, 36]. The coexistence of those elements broadens the circle of physical
phenomena which can be realized in reversible systems compared with Hamiltonian
or dissipative ones.

Let us consider a simple reversible system—two-dimensional two-parametric
.a; "/ mapping, describing the discrete dynamics of a linear oscillator subject to
ı-like pulses with the stiffness coefficient proportional to the velocity:

rnC1 D
�
xnC1
ynC1

�
D F.rn/ D

�
xn C ynC1 mod 2
yn � ".a � yn/xn

�
: (5.38)

The phase space for this mapping is the cylinder x 2 .�1; 1/, y 2 R; the values
x D �1 and x D 1 are identified. The variable xn plays the role of the angular
coordinate. The mapping (5.38) has fixed points Ps

k D �
xsk; y

s
k

�
, where xsk D 0 and

ysk D 2k .k D ˙1;˙2; : : : I a ¤ 2k/. For fixed values of " and a the solutions of the
characteristic equation


2 C 
SpA C detA D 0 ; (5.39)

determine the type of the fixed points. Here A.rk/ D .@F=@r/rDrk is the Jacobi
matrix of the mapping (5.38). The characteristic equation (5.39) is obtained as the
result of linearization of (5.38) in vicinity of the fixed point. It easy to see that

detA D 1; SpA D 2 � " �a � ysk
�
: (5.40)

A compact classification of fixed points depending on the SpA and detA values
is presented in Fig. 5.13. The condition detA D 1 means that there are only
hyperbolic (saddles) or elliptic (centers) fixed points, that is, precisely those
phase space elements which exist in Hamiltonian systems. The phase portrait of
the mapping (5.38) contains one more important element absent in Hamiltonian
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Fig. 5.13 Compact classification of fixed points depending on the SpA and detA values

systems—the invariant set consisting of the family of singular solutions

yn D a; xnC1 D .xn C a/ mod 2 : (5.41)

For the fixed value of a each one of the solutions (5.41) (they differ one from
another in the choice of the initial condition x0) represents a periodic or quasi-
periodic trajectory for rational and irrational values of a, respectively. For " < 1

the invariant set (5.41) attracts nearby trajectories with the increment  Š "2

6
and

therefore it can be considered an attractor [36]. The region of attraction to the
attractor has a complicated fractal structure. Along with the regular component, the
phase space of the mapping (5.38) also contains a chaotic one. The scenario of the
transition to chaos in reversible systems is distinct from those that are observed
both in dissipative and Hamiltonian systems. On the one hand, it is connected
to the absence of a strange attractor, and on the other hand, to the fact that the
trajectories are attracted by the attractor at yn D a for any arbitrarily small " value,
that does not allow to realize in full measure the resonance overlapping scenario
[37], characteristic for Hamiltonian systems. Interaction of the attractor with the
periodic trajectories, surrounding the elliptic fixed point, determines the specifics of
transition to chaos in the considered mapping. Figure 5.14a shows a fragment of the
considered mapping with a stability island in vicinity of the point .x; y/ D .0; 0/. As
the island and the attractor come together, i.e., at the decreasing of the parameter a
(Fig. 5.14b), the destruction of high-order resonance separatrices and the formation
of the stochastic layer takes place (Fig. 5.14c). Numerical calculations [38] show
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Fig. 5.14 (a) A fragment of
phase space of the
mapping (5.38) with a
stability island in vicinity of
the point .x; y/ D .0; 0/; (b)
deformation of the stability
island at its approach to the
attractor; (c) destruction of
high-order resonances
separatrices and formation of
the stochastic layer for the
unstable periodic orbits with
k D 34 [a fragment of the
phase space corresponding to
the white square on (b)]
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that at k 
 30 (k is the order of resonance or of the orbit) for a D 0:05 widths of
the resonances and distances between them become of the same order. According
to Chirikov’s criterion of non-linear resonances, this means that in the region of
higher k values the transition to global stochasticity must be observed. However,
unlike Hamiltonian systems, where the resonance width is determined only by the
non-integrable perturbation amplitude, in reversible mapping (5.38) the reason of
the transition to chaos is the approach (interaction) of Hamiltonian and dissipative
phase space elements: namely of the stability island and of the attractor.

Even this simple analysis allows the dynamical system (5.38) to be related to
the class of the so-called complex systems [39], which are characterized by the
following main features:

1. a complex system is structurally inhomogeneous;
2. individual components of a complex system can be both regular and chaotic;
3. a complex system has a space-time scale hierarchy.

Because of this structural complexity, we can expect that even a weak perturbation
applied to the system results in transitions between the different components.
Therefore, it seems natural to use the parametric control method to stabilize chaotic
regimes in reversible mappings like (5.38) [38, 40].

Before discussing the control problem, we need to find an adequate method for
localizing the unstable high-period orbits that interest us. The traditional methods
based on the Newton–Rafson procedure are not efficient in cases of unstable orbits
because they require highly precise initial conditions needed to perform the iteration
procedure. An alternative method [11], which was already mentioned above, implies
the preliminary linear transformation of coordinates, which transforms the unstable
periodic orbits into stable ones, preserving their position in space. After that, the
position of the stable periodic orbits (in new coordinates) can be determined with the
help of simple iteration procedures. For the considered two-dimensional mapping,
the coordinate transformation has the following form:

rnC1 D rn C�i


F k.rn/� rn

�
;

where k is the period of the considered orbit .r ! r2 ! : : : rk ! rkC1 D
r1/, �i is one of ˛2 D 8 .i D 1; 2; : : : ; 8/ reversible 2 � 2 matrices. In D-
dimensional space ˛D D DŠ2D. The concrete form of �i is determined by type of
the corresponding unstable point. The inset in Fig. 5.14b demonstrates an example
of the transformation that transfers the saddle point into a stable focus. As a control
object we take the unstable periodic orbit of the mapping (5.38) with k D 34, lying
at a D 0:05 in the global stochasticity region (see Fig. 5.14c). For stabilization we
will use the main formula of the discrete parametric control (5.11), taking as p one
of the parameters a or ". Figure 5.15 shows in action the basic mechanism of the
used control method. We took four trial points (black squares) in the vicinity of
a randomly chosen saddle point, belonging to the period-34 unstable orbit. The
trajectories of the four trial points are shown after three consecutive iterations.
After the third iteration all four trial points are already lined up along the stable
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Fig. 5.15 OGY control mechanism: temporal evolution of four trial points

direction. After consecutive iterations they stay on the stable direction approaching
the saddle point after each iteration. Figure 5.16 shows the behavior of the deviationˇ̌
rn � r�

n

ˇ̌
of the system position rn from the periodic orbit r�

n . We use a logarithmic
scale in order to follow all the control stages: the chaotic oscillations preceding the
control setup, the exponentially fast approach to the target period orbit, the stable
motion along the periodic orbit

ˇ̌
rn � r�

n

ˇ̌ 
 10�15, the exponentially fast deviation
from the target orbit after turning off the control, and the restitution of the chaotic
oscillations. As in the previously considered cases of the OGY control of dissipative
and Hamiltonian systems, the analogous reversible system control method appears
to be relatively steady with respect to external noise. Figure 5.16b gives the result
of the control with the inclusion of the term s�n on the right-hand side of the
mapping (5.38). The components �x;yIn represent independent Gaussian random
variables with zero mean and unit dispersion. The action of noise considerably
lowers the control efficiency, but even in this case the method allows us to keep
the chaotic trajectory in the vicinity of the unstable periodic orbit during the time
period of almost the same order of magnitude as in the absence of noise. At first
glance it seems that the results of the high-period orbits control in the reversible
mapping are quite similar to the corresponding results for the Hamiltonian systems.
However, more careful consideration [40] shows that the coexistence of attractor and
stability islands, which is a characteristic feature of reversible systems, substantially
complicates the situation. As it was mentioned many times previously, the control
is turned on only when the trajectory rn gets into a region sufficiently close to the
target periodic orbit. Let us call it the capture region. The capture region size and its
shape are determined by the maximum admissible value of the controlling parameter
deviation ıpmax from its nominal value and by local characteristics of the periodic
orbit. The basic formula of OGY control (5.11) can be presented in the form

ıpn D Miıxn C NiıynI i D .n/ mod k :
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Fig. 5.16 Result of the OGY control of the mapping (5.38): (a) without noise; (b) with Gaussian
noise

The coefficients Mi and Ni can be obtained from (5.11) in explicit form. The capture
region for any ith point of the periodic orbit is determined by the condition

jMiıx C Niıyj < ıpmax :

It is evident that the capture region size determines both the control setup time and
the critical amplitude of noise destructing the control. As numerical calculations
show, areas of the capture regions of the considered period-34 unstable orbit differ
in several orders of magnitude. Such situation is typical for generic periodic orbits
in complex (in the sense of the above definition of complexity) dynamical systems.
Accounting for this, for orbits with considerably different capture regions it may be
convenient to introduce the concept of local and global control [40]. In the case of
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local control, the condition jıpnj < ıpmax is satisfied only for some points of the
periodic orbit, whereas in the case of global control, it is satisfied for all points. It
is evident that there is no difference between local and global controls for the fixed
points and for the periodic orbits with capture regions approximately equal for all
points of the orbit. On the contrary, for unstable periodic orbits with substantially
different capture regions, global control takes place only in cases when the local
control condition is satisfied for the points with the minimal capture area. From the
point of view of control realization, those points can be called the dangerous ones.
For the considered period-34 orbit the dangerous points constitute less than 30%
of the total number of points forming the periodic orbit. The strategy relying on
the local control setup for the dangerous points will automatically lead to a global
control setup as well, and it will allow to substantially lower computational efforts.

5.9 Controlling Chaos in Time Dependant Irregular
Environment

The above considered schemes of the chaos control are immediately applicable
to the systems where the noise is relatively small, i.e., it does not interfere with
the structure of the initial phase space. Let us now turn to a principally different
situation, when the system is in contact with a time dependent environment (a
medium). As the environment we shall understand some large dynamical system,
whose evolution does not depend on the controlled system, but strongly affects the
latter.

Our goal is to adapt the OGY control technique for cases where the medium
changes irregularly and short-term predictions of the evolution of the medium are
possible. The effectiveness of the modified technique [41] will be demonstrated on
the following problem: to control and prevent ship upset due to a beam sea (waves
running at right angles to the boat’s course). Here the ocean waves can be understood
as the medium. The control algorithm should admit considerable irregular variations
in wave amplitudes and phases.

For a description of the ship driven by a beam sea we shall use the non-linear
oscillator model

Rx C � Px C !2.x � ˛x3/ D W.t/ ; (5.42)

where x is the angle of deviation of the ship mast from the vertical, � is the friction
coefficient, ! is the frequency of small oscillations near the potential minimum,
˛ is the non-linearity parameter, and W.t/ is the term describing the action of the
ocean waves on the ship. In the absence of waves .W.t/ D 0/ at small shifts x the
oscillations dampen and the ship returns to the vertical position. For large shifts,
the gravitational force exceeds the hydrostatic extrusion and x has a tendency to the
attractor situated at jxj D 1. When this happens, we can say that the ship upsets.
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Suppose that the irregular wave term W.t/ has the form

W.t/ D f .t/ Œ1C "ag.t/� sin �.t/ � F.t/ sin �.t/ ; (5.43)

where F.t/ is the wave amplitude, f .t/ is its slowly varying component, g.t/ is the
fast irregular component, and '.t/ is the phase whose evolution is determined by the
relation

�.t/ D ˝ C "ph.t/ ; (5.44)

where h.t/ is also an irregular function of time. As the irregular functions g.t/, h.t/
we will use the solutions for well-known chaotic systems: the Duffing oscillator [42]
and the Rössler system [43]. Under the normalization condition for the functions
g.t/, h.t/ the quantities "a; "p serve as the relative measures of amplitude and phase
irregularity. The use of low-dimensional chaotic systems to generate the random
functions g.t/, h.t/ is dictated only by considerations of convenience and it does
not lead to essential differences from the uses of other random functions or chaotic
systems of higher dimensions. For numerical calculations in the model (5.37) we
will use the following parameters: � D 0:5, ˛ D 1, ! D ˝ D 1.

In the case of purely sinusoidal waves ("a D "p D 0, f .t/ D f0) for 0 < f0 < 0:7
the ship dynamics is strictly regular: it has periodic oscillations with the period T D
2�=˝ . At a further increase of the wave amplitude, the period doubling bifurcations
cascade takes place, resulting in the chaotic dynamics of the ship. At f0 � 0:726 the
boundary of the chaotic attractor is destroyed and almost all the initial conditions
get on the attractor jxj D 1, i.e., in the absence of control the ship capsizes at
f > f0. As was shown in the paper [41] the use of a slightly modified OGY control
procedure allows us to avoid the upset both for purely sinusoidal waves with the
amplitude considerably exceeding critical levels and in the case of relatively strong
amplitude and phase irregularity

�
"a ¤ 0; "p ¤ 0

�

The equation of motion for the variable x after turning on the controlling
perturbation C.t/ has the form

Rx C � Px C !2.x � ˛x3/ D W.t/C C.t/ : (5.45)

To realize the discrete control in a standard way we transition from the ordinary
differential equation (5.45) to a mapping in the Poincaré section plane, defining the
latter by the conditions W.tn/ D 0; dW=dt > 0. We will assume that C.t/ does
not change between two consecutive intersections of the Poincaré section. In the
considered problem the perturbation C.t/ can be realized, for example, due to a
shift of the ballast with respect to the ship’s axis in the moment t D tn. As always,
we assume the smallness of the perturbation to be C.t/  W.t/. To that end, we
limit the perturbation by the condition �C0 6 C 6 C0.
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Fig. 5.17 Schematic
representation of control in
random environment [41]
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Z      (C   ) n+1   n
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Let Zn .Z D .x; Px// be an unstable fixed point of the Poincaré mapping (see
Fig. 5.17) in the moment t D tn at "a D "p D 0; f .t/ D f .tn/. Setting "a ¤
0; "p ¤ 0, we introduce irregularity into the wave. Suppose now, that as a result of
observations, we can make sufficiently accurate predictions about the behavior of
W.t/ on the interval tn 6 t 6 tnC1. Integrating the equation of motion (5.45) with
the predicted value W.t/ and different values of OC from the interval Œ�C0;C0�, we
obtain the system’s position in the phase space at the moment t D tnC1. To make a
decision (on the ballast shift) we will use that value OC D Cn, at which the point Z at
the moment tnC1 gets on the stable direction of the unstable fixed point.

Figure 5.18 presents the control results in the presence of both amplitude ."a D
0:15/ and phase ."p D 0:1/ irregularities for systems where f .t/ is the function of
time linearly growing from the value f .0/ D 0:7 to the value f .300/ D 1: The use of
the considered control scheme allows the ship’s stability to improve considerably.

5.10 Continuous Control with Feedback

Having devoted sufficient attention to the numerous merits of the OGY method, we
will now point out its limitations. The OGY chaos control method is immediately
applicable to dynamics described by mappings. By controlling the chaos observable
in experimentation, the method reduces the real dynamics to the mapping generated
by the Poincaré section, which also determines the discrete character of the
controlling parameter variation. Suppose 	 is the time interval between consecutive
changes to the parameter and 
 is the maximal Lyapunov exponent for the target
unstable periodic orbit. Then evidently the OGY method is efficient only for those
orbits that satisfy the condition


  1=	 : (5.46)

The discrete character of the controlling parameter variation also worsens the
stability of the OGY method with respect to noise. For relatively rare parameter
changes there is a high probability of control failure. Those native disadvantages of
discrete control make continuous control realization more attractive. As before, we
require the smallness of the controlling perturbation variation because we intend to
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Fig. 5.18 An example of
control realization in random
environment: (a) the
perturbation W.t/ with
parameters
"a D 0:15; "p D 0:1; (b)
controlled and uncontrolled
orbits; (c) more extensive
segment of the controlled
orbit [41]
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stabilize the chaotic trajectory in the vicinity of a periodic orbit of the unperturbed
system. This goal can be achieved only with a feedback control scheme. The
two first continuous control feedback schemes were proposed and realized in the
work [44]. Both schemes were based on special constructions of time-continuous
perturbation which, without changing the target unstable periodic orbits, under
certain conditions stabilize them. The combination of the feedback and the periodic
external force lies at the core of the first scheme. The second one does not require
any external force, but uses the self-controlled feedback.

We begin with the first scheme: continuous control with external force. Sup-
pose we have a dissipative dynamical system described by some set of ordinary
differential equations. Suppose also that the input of the system is available for
external force application and we can measure some scalar characteristic on the
output. Those assumptions are satisfied by the following model:

dx=dt D Q.x; y/

dy=dt D P.x; y/C F.t/ : (5.47)

Here y is the variable registered on the output, and x are all other dynamical variables
of the system, that are either unavailable for measurement or do not make interest for
the observer. We assume for simplicity that the input signal F.t/ perturbs only that
equation which corresponds to the variable registered on the output. We will also
consider that the dynamical system (5.47) in absence of the external force .F.t/ D
0/ has a strange attractor. When working with a real system, exact knowledge of
the model (5.47) is not necessary. Using the time delay method described in Chap. 4
we can reconstruct full system dynamics from the observable scalar characteristics.
Using this method we can reconstruct various periodic orbits y D yi.t/, yi.tC Ti/ D
yi.t/, where Ti is the period of ith unstable periodic orbit. Let us choose from these
obtained orbits one which we want to stabilize. Later, we will need an additional
oscillator generating a signal proportional to yi.t/. The difference D.t/ between yi.t/
and the output signal y.t/ will be used as the controlling perturbation

F.t/ D K Œyi.t/ � y.t/� D KD.t/ : (5.48)

Here K is the experimentally tunable weight of the perturbation. The perturbation i
applied on the system input as the negative feedback .K > 0/. The flow-chart of the
continuous control with external force is represented in Fig. 5.19. For many physical

Fig. 5.19 Block-diagram of
the continuous control with
external force

system

external
oscillator

output input
y(t)

Ky(t)

Ky (t)i

K{y (t)i  - y(t)}
-
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systems, its experimental realization does not present any difficulty. An important
feature of the perturbation choice in the form (5.48) consists of the fact that the
perturbed system preserves the initial periodic orbits: y.t/ D yi.t/ is a solution
of (5.47) with F.t/ D 0.

The stabilization of the unstable periodic orbit by this control method is achieved
by varying the weight factor K. When stabilization is achieved, the output signal y.t/
is very close to yi.t/ and therefore, as in the OGY method, only small perturbation
is used on the control time interval.

The experimental realization of the considered continuous control version can
be divided into two stages. At the first, preliminary, stage we shall study the signal
at the unperturbed system output and construct the oscillator generating the signal
proportional to yi.t/. At the second stage, the control is carried out by the scheme
presented in Fig. 5.19.

Let us demonstrate the efficiency of the continuous control with external force
using an example of the Rössler system [43]

dx

dt
D y � z

dy

dt
D x C 0:2y C F.t/

dz

dt
D 0:2C z.x � 5:7/ : (5.49)

We have chosen y.t/ as the scalar signal measured on the system output. The result
of control does not depend on the choice of perturbed variable. Figure 5.20 presents
the results of the stabilization of the period-5 unstable orbit. The beginning of the
curve F corresponds to the moment perturbation is turned on. As expected, after
a small transition period, the perturbation becomes small and the system comes to
the periodic regime corresponding to the target orbit. The same figure presents the
results of the stabilization of the period-2 unstable orbit for the Lorenz system [45]

dx

dt
D 10.x � y/

dy

dt
D �xz C 28x � y C F.t/

dz

dt
D xy � 8

3
z : (5.50)

The perturbation amplitude in the control regime depends on two factors: the
precision of the unstable periodic orbit yi.t/ reconstruction and the noise intensity.
In an ideal case of the system moving along the orbit at zero noise level, stabilization
can be achieved with a negligibly small level of the external oscillator signal (see
Fig. 5.20).
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Fig. 5.20 Results of the continuous control with external force: (a) output signal y.t/ and external
force F.t/ for the Rössler system (5.49) at K D 0:4; (b) the same quantities for the Lorenz
system (5.50) [44]

Let us now dwell on the influence of noise determining the perturbation
amplitude in the control regime. We will again use the Rössler system and introduce
on the right-hand sides of equations (5.49) the additional terms "�x.t/, "�y.t/, "�z.t/.
Random functions �x, �y, �z are independent from one another and they have zero
mean values and unit dispersions. Figure 5.21 presents the results of control for the
period-1 orbit in the Rössler system for two different noise levels: " D 0:1, " D 0:5.
Because the control is continuous, even for high noise levels on sufficiently long
time segments there is no stabilization failure, as can be observed in the discrete
control. Increase in noise levels leads only to growth in the controlling perturbation
amplitude and to some “smearing” of the periodic orbit.
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Fig. 5.21 Results of continuous control for the period-1 orbit in the Rössler system (5.49) for two
different noise levels at K D 0:4: (a) " D 0:1, (b) " D 0:5 [44]

We should note one more important distinction between continuous and discrete
control. The former starts to work only if the system is close to the target orbit, as
it is based on the linearization of the deviation from it. In the continuous control
method there is no need to wait for the approach of the system to the target orbit.
The perturbation can be turned on at any time. Thus the Rössler system is efficiently
synchronized with the external oscillator even if the initial conditions are far from
the periodic orbit. Although, in that case, the initial perturbations increase. However,
we should not expect an analogous situation for more complex systems where the
stabilized orbits belong to different basins of initial conditions. Such multi-stability
substantially complicates the achievement of the goal. A large initial perturbation
can also be undesirable for the experiment, the control of which is planned. In
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many cases, both problems can be solved by forced limitation of the perturbation.
Introducing some non-linear element in the feedback chain allows F.t/ to reach
saturation for large deviation values D.t/:

8
<

:

�F0; KD.t/ < �F0;
KD.t/; �F0 < KD.t/ < F0;

F0; KD.t/ > F0:
: (5.51)

Here F0 > 0 is the saturating perturbation value. Although the perturbations (5.48)
and (5.51) work identically in the vicinity of the stabilized unstable periodic orbit,
they lead to distinct transition processes. In the case of (5.51) the perturbation is
always small (at small F0), including the transition process; however, the latter
considerably increases in average. The system “waits” until the chaotic trajectory
approaches the target orbit sufficiently closely, and only after that synchronizes it
with the external oscillator. As in the discrete control method the average duration
of the transition process grows quickly with decrease of F0.

In order to analyze the local stability of the system in the control regime it is
useful to calculate the maximal Lyapunov exponent. To do that we use the example
of the Rössler system (5.49), linearized in small deviations from the target periodic
orbit. The dependence of the maximal Lyapunov exponent 
 on the parameter K
for period-1 and period-2 orbits is presented in Fig. 5.22. Negative values of the
Lyapunov exponent 
.K/ determine the interval K, corresponding to the stabilized
unstable periodic orbits. For the Rössler system the period-1 orbit is stabilized on
the finite interval ŒKmin;Kmax�. Values of Kmin and Kmax determine the stabilization
threshold: 
.Kmin/ D 
.Kmax/ D 0. The period-2 orbit has infinite stabilization
interval. The Lyapunov exponent 
.K/ for both orbits has a minimum at some value
K D Kop, providing the optimal control. We should note that the control interval size
Kmax � Kmin depends on the choice of controlled variable. So, for example, for the
Rössler system, the control of the y variable is the most efficient, because this choice
leads to the maximal interval corresponding to stabilization. Some systems can have
several stabilization intervals for the same variable. Thus the Lorenz system in the
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Fig. 5.22 Dependence of the maximal Lyapunov exponent 
 on the parameter K for period-1 and
period-2 orbits in the Rössler system [44]
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case of z variable control has two isolated stabilization intervals. The presence of
the threshold Kmin is well understood: the perturbation must be sufficiently strong
in order to compensate for the divergence of trajectories close to the unstable orbit,
i.e., to invert the 
 sign. However, large values of K worsen the control. This is
connected with the fact that in the considered realization of continuous control the
perturbation acts immediately only on one of the system variables. For large K those
perturbations change so quickly in time that the other variables do not have time
to follow those changes. The analysis shows that in the multi-parametric control
version, when perturbation is introduced in each of the equations of motion, the
monotonous decrease of 
.K/ is observed and the second threshold for Kmax is
absent.

The latter observation leads to the following question (particularly important
for experimental realization of the continuous control): in what chaotic systems
is single-parametric control efficient? The answer is based on the assumption that
stabilization is possible only in cases where perturbation has a number of degrees of
freedom sufficient to suppress the exponential divergence in all available directions.
In other words, the minimal number of the controlled variables must be equal to the
number of the positive Lyapunov exponents in the controlled system. The chaotic
systems, where two or more Lyapunov exponents are positive, are called hyper-
chaotic. No version of single-parametric control makes possible the stabilization of
hyper-chaotic systems. At the same time, however, the multi-parametric control is
efficient for such systems.

The complexity of experimental realizations of the above control method is due
to the presence of the special external oscillator. An alternative continuous control
method—continuous control with delayed feedback—is free of that weak point. The
method replaces the external signal yi.t/ in (5.48) with the delayed output signal. In
other words, we will use the controlling perturbation in the form

F.t/ D K Œy.t � 	/ � y.t/� D KD.t/ ; (5.52)

where 	 is the delay time. If this time coincides with the period of ith periodic
orbit 	 D Ti, then the solution of the system (5.47) will also correspond to that
periodic orbit, i.e., y.t/ D yi.t/. It means that the perturbation of the form (5.52),
as well as (5.48), does not change the periodic orbits in the system. Choosing the
appropriate weightK of the feedback, we can achieve the stabilization of the system.
The block-diagram corresponding to this version of the continuous control method
is presented in Fig. 5.23.

The results of the period-3 orbit in the Rössler system and period-1 orbit in the
non-autonomous Duffing oscillator

dx

dt
D y;

dy

dt
D x � x3 � dy C f cos!t C F.t/ ; (5.53)

are presented in Fig. 5.24. The situation is very similar to the case considered
above of continuous control with external force. However, now the experimental
realization is much simpler, as it does not require any external periodic perturbation.



5.10 Continuous Control with Feedback 103

system

delay
line

inputoutput
y(t)

Ky(t)

K {y(  - t)-y(t)}

τKy(  - t)
τ τ 

Fig. 5.23 Block-diagram of the continuous control with delayed feedback
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Fig. 5.24 Stabilization of unstable periodic orbits using the continuous control with delayed
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0:4; 	 D 2�=!/ [44]
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The difference between the delayed output signal and the proper output signal is
used as the controlling perturbation. This feedback works as the self-control. Only
a simple delay chain is needed for its experimental realization. In order to achieve
the target unstable periodic orbit stabilization two parameters must be available for
tuning in the experiment process: the delay time 	 and the feedback weight K. The
feedback signal amplitude can be considered as a criterion of the unstable periodic
orbit stabilization. When the system is in the control regime the feedback amplitude
is extremely small (see Fig. 5.24).

We should note that at the core of both the systems considered there is the same
mechanism—the extension of the initial system’s dimensions. In the first case, the
dimensions increase due to the introduction of the external signal, and in the second
one, due to the delay. The perturbation does not change the projection of the periodic
orbit on the initial space of lower dimension. Additional degrees of freedom only
change the Lyapunov exponents of the controlled system. We will explain this
statement based on the example of the logistic mapping which we have already
addressed many times. The unperturbed .Fn D 0/ logistic mapping

XnC1 D 4Xn.1 � Xn/C Fn (5.54)

has an unstable fixed point Xn D 3=4 with eigenvalue 
 D �2. The perturbation in
the delay form

Fn D K.Xn�1 � Xn/ (5.55)

does not change the X coordinate of the fixed point, but increases the mapping
dimension up to two. Analysis of that mapping shows that modules of the two
eigenvalues of the Jacobi matrix for that point in the interval K D Œ�1;�05� are less
than unity. Therefore, for that value K the one-dimensional fixed point transforms
into a two-dimensional stable point.

This scheme also suffers from the multi-stability problem related to the existence
of two (or more) stable solutions with different basins of initial conditions. As in
the case of control with external force, the multi-stability problem can be solved
by introducing a limitation on the type (5.51) perturbation magnitude. Making use
of this limitation, the asymptotic behavior of the system becomes single-valued for
all K.

Figure 5.25 shows the dependence of the maximal Lyapunov exponent for
period-1 .	 D 5:9/ and period-2 .	 D 11:75/ unstable orbits of the Rössler system.
We can see that as in the case of the control with external force, each of the unstable
orbits can be stabilized on the finite interval of K. However, those intervals are
considerably narrower than in the former case. This means that the delayed control
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Fig. 5.25 Dependence of maximal Lyapunov exponent 
 on K for period-1 .	 D 5:9/ and period-
2 .	 D 11:75/ unstable orbits of the Rössler system in the case of continuous control with delayed
feedback [44]

is more sensitive to the agreement of parameters, because the controlling external
force always tries to attract the trajectory to the target periodic orbit. In the case of
the control with delay, the perturbation brings the trajectory together with delayed
one, which does not exactly coincide with the target orbit.

We now apply the continuous control scheme for stabilization of aperiodic
(chaotic) orbits [46]. The considered scheme, using only a small perturbation of
special form, allows us to synchronize the current behavior of the system with its
past, previously recorded. As a result, we obtain the ability to predict long time
segments of chaotic behavior. Essentially, the modern continuous control scheme is
the combination of two different approaches to the chaos control problem: the OGY
method, based on utilization for control of only a small perturbation with feedback,
and the synchronization method (to be considered below) for two strongly connected
chaotic systems. As the result of this synthesis we can synchronize aperiodic orbits
due to a small perturbation with feedback.

As before, we assume that the controlled object is described by the system of
the form (5.47) with all the above assumptions. The realization of the method splits
into two stages. At the first stage, some time segment yap.t/ must be extracted and
recorded. At the second stage, we apply to the system the feedback perturbation of
the form

F.t/ D K


yap.t/ � y.t/

�
: (5.56)

As well as above the perturbation represents a positive feedback, therefore K >

0. The block-diagram of experimental realization of the aperiodic orbits control
method is presented in Fig. 5.26. One of the important features of the perturbation is
the fact that it turns to zero when the output signal coincides with the one recorded
in the system memory: F.t/ D 0 for y.t/ D yap.t/. Therefore, the perturbation
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Fig. 5.26 Block-diagram of continuous control for aperiodic orbits

does not change the unperturbed system solution for the time interval corresponding
to the recorded signal yap.t/. The perturbation, as in the case of unstable periodic
orbits, works as the self-control because it always brings the current trajectory
y.t/ to the target aperiodic orbit yap.t/. The synchronization can be achieved for
a sufficiently large weight K. In the synchronization regime

�
yap.t/ � y.t/

�
the

perturbation becomes very small (to the degree of
�
yap.t/ � y.t/

�
quantity).

The results of this synchronization for the Rössler, Lorenz, and Duffing systems
are presented in Fig. 5.27. For all three systems, relatively soon after the perturbation
turning on the current trajectory synchronizes with yap, i.e.,�y � yap.t/� y.t/ ! 0

relative to the degree of noise, and of the constancy of the system characteristics.
Synchronization was achieved irrespective of the initial conditions (if they were
chosen from a common basin).

The non-autonomous system, considered above as a control object and repre-
sented in Fig. 5.26, can be transformed into a more complex autonomous system
containing two connected subsystems. Indeed, the memory unit used for the input
signal generation in the first case, can be replaced by an additional identical chaotic
system, which, starting from appropriate initial conditions, generates the aperiodic
signal identical to the one recorded in memory.

As a result, the two-stage experiment is replaced by the single-stage one pre-
sented in Fig. 5.28. The original problem is therefore reduced to the synchronization
of two connected identical chaotic systems, which will be considered later.
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Fig. 5.28 Autonomous
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aperiodic orbits control
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Chapter 6
Synchronization of Chaotic Systems

The synchronization of stable oscillations is a well-known non-linear phenomenon
frequently found in nature and widely used in technology [1–5]. Under synchro-
nization, one usually understands the ability of coupled oscillators to switch from
an independent oscillation regime, characterized by beats, to a stable coupled
oscillation regime with identical or rational frequencies, when the coupling constant
increases.

The statement of the problem of chaotic oscillation synchronization may appear
paradoxical in contrast to stable oscillations. Two identical autonomous chaotic
systems with almost the same initial conditions diverge exponentially quickly in
the phase space. This is the main difficulty, at first sight making it impossible to
create synchronized chaotic systems which will function in reality. Nevertheless,
there are several reasons which make the realization of chaotic synchronization a
very promising goal.

The noise-like behavior of chaotic systems suggests that they can be useful
for secure communications. Even a fleeting glance at the Fourier spectrum of a
chaotic system confirms this: no dominating peaks, no dominating frequencies, a
normal broadband spectrum. Any attempt to use a chaotic signal for communication
purposes makes it necessary for the recipient to have a duplicate of the signal used in
the transmitter (i.e., the synchronized signal). In practice, synchronization is needed
for many communication systems, not necessarily just chaotic ones. Unfortunately,
existing synchronization methods are not suitable for chaotic systems, and therefore
this purpose requires the development of new ones.

Chaos is widely used in cybernetic, synergetic, and biological applications [5–
7]. If we have a system composed of several chaotic subsystems, then it is clear that
their efficient joint functioning is possible only after the synchronization problem is
solved.

In spatially extended systems, we often face the transition from homogeneous
spatial motion to one changing in space (including also chaotic changes). For
example, in the Belousoff–Zhabotinski reaction, dynamics can be chaotic but
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spatially homogeneous. This means that different spatial parts are synchronized
with each other, i.e., they perform the same motions in the same moment of time,
even if those motions are chaotic. But under other conditions the homogeneity loses
stability and the system becomes inhomogeneous. Such spatial homogeneity $
inhomogeneity transitions are typical for extended systems, and synchronization
must play a key role there.

The interest in the chaotic synchronization problem goes far beyond the limits
of the natural sciences. It seems natural that the efficiency of an advertisement is
determined by ability of the advertising objects to synchronize. The same can also
be said about the unified perception of the mass culture.

6.1 Statement of Problem

The first works on synchronization of coupled chaotic systems were written by
Yamada and Fujisaka [8]. They used local analysis (special Lyapunov exponents) to
investigate changes in the dynamical systems when the coupling constant increased.
Afraimovich et al. [9] introduced the basic notions now used in the description of the
chaotic synchronization process. A principally important role in the development
of the chaotic synchronization theory was played by the paper [10], where a new
geometrical point of view on the synchronization phenomenon was developed.

Let us formulate the synchronization problem for a dynamical system described
by a system of ordinary differential equations [10]. A generalization for the case
of mappings requires only minimal changes. Consider an n-dimensional dynamical
system

Pu D f .u/ : (6.1)

Let us divide the system arbitrarily into two subsystems u D .v;w/

Pv D g.v;w/ ;

Pw D h.v;w/ ; (6.2)

where

v D .u1 : : : um/ I w D .umC1 : : : un/ ;

g D . f1.u/ : : : fm.u// I h D . fmC1.u/ : : : fn.u// : (6.3)
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Now we create a new subsystem w0, identical to w, and we make the change v0 ! v

in the function h, attaching to (6.2) the equation for the new subsystem

Pv D g.v;w/ ;

Pw D h.v;w/ ;

Pw0 D h.v;w0/ : (6.4)

The coordinates v D .v1 : : : vm/ are called forcing variables, and w0 D �
w0
mC1 w0

n

�

are the forced variables. Consider the difference �w D w0 � w. The subsystem
components w and w0 will be considered synchronized if �w ! 0 at t ! 1. In the
limit �w ! 0 the equation for variations�w � � reads the following:

P�i D ŒDwh.v.t/;w.t/�ij �j ; (6.5)

where Dwh is the Jacobian for the w subsystem with respect to variable w only. It is
clear that if �.t/ ! 0 at t ! 1, then the trajectories of one of the subsystems
converge to the same values of the other one. In other words, the subsystems
are synchronized. The necessary condition of this subsystem synchronization is
the negativity of the Lyapunov exponents of the equation system (6.5). It can
be shown [11] that these Lyapunov exponents are negative when the Lyapunov
exponents of subsystem w are negative. This condition is necessary but insufficient
for synchronization. One should separately consider the question of the initial set of
conditions w0, which can be synchronized with w.

6.2 Geometry and Dynamics of the Synchronization Process

Let us begin the description of the synchronization process with the example of
one well-known dynamical Lorenz system. We will also consider general cases
and types of synchronization below. Assuming that we have two identical chaotic
Lorenz systems, already considered in the previous chapter, can we synchronize
these two chaotic systems by transmitting some signal from the first system to the
second one? Let this signal be x component of the first Lorenz system. Throughout
the second system, we replace x component with the signal from the first system.
Such an operation is commonly called a complete replacement [12]. Thus, we get a
system of five connected equations:

Px1 D ��. y1 � x1/ ;

Py1 D �x1z1 C rx1 � y1; Py2 D �x1z2 C rx1 � y2 ;

Pz1 D x1y1 � bz1; Pz2 D x1y2 � bz2 : (6.6)
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Fig. 6.1 Time dependence of the z.t/ coordinate for the driving (dashed line) and the driven (solid
line) Lorenz systems [13]

The variable x1 can be considered the driving force for the second system. If we start
in (6.6) with arbitrary initial conditions, then, analyzing the numerical solution of
the system, we will see that y2 converges to y1, and z2 to z1, after several oscillations
and in the long-time asymptotic y2 D y1; z2 D z1 (see Fig. 6.1). Hence we
have two synchronized chaotic systems. Usually, this situation is called identical
synchronization since both subsystems are identical and have equal components.

The equations y1 D y2 and z1 D z2 determine a hyperplane in the original five-
dimensional phase space .x2 ! x1/. The limitation of motion by the hyperplane is
the geometrical image of the identical synchronization. Therefore, this hyperplane
is sometimes [12] called the synchronization manifold.

In the example of two synchronized Lorenz systems considered above, we saw
that the differences jy1 � y2j ! 0 and jz1 � z2j ! 0 at t ! 1. This is possible only
if the synchronization manifold is stable. In order to make sure of this, we transform
to the new coordinates

x1 D x1 ;

y? D y1 � y2I yk D y1 C y2 ;

z? D z1 � z2I zk D z1 C z2: (6.7)

In the new variables the three coordinates
�
x1; yk; zk

�
belong to the synchronization

manifold, and the two others .y?; z?/ to the transversal. The synchronization
condition is satisfied by the tending to zero of the variables y? and z? at t ! 1. In
other words, the point .0; 0/ in the transversal manifold must be stable. The system
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dynamics in the vicinity of that point is described by the equation

� Py?
Pz?

�
D
��1 �x1

x1 �b

��
y?
z?

�
: (6.8)

The general condition of stability is to have negative Lyapunov exponents for
Eq. (6.8). This condition is equivalent to the negativity of Lyapunov exponents for
the variables y2; z2 for the system (6.6) since the Jacobi matrices for this subsystems
are identical. Therefore, we can consider the driven system .y2; z2/ to be a separate
dynamical system, driven by the driving signal x1 and we can calculate the Lyapunov
exponents for that subsystem in the usual way. Those Lyapunov exponents will
depend on x1 and therefore they will be called conditional Lyapunov exponents [13].
The values for the conditional Lyapunov exponents for a given dynamical system
will depend on the choice of driving coordinate.

This complete replacement scheme can be slightly modernized [14]. The mod-
ernization procedure entails introducing the driving coordinate only in some, but not
in all, driven system equations. The choice of the equations, where the replacement
is performed, is dictated by two factors. First, whether the replacement leads to
stable synchronization. Second, whether it is possible to realize the corresponding
replacement in a real physical device which we want to construct. Let us consider
the following example of partial replacement, based on the Lorenz system

Px1 D � .y1 � x1/ ; Px2 D �. y1 � x2/ ;

Py1 D rx1 � y1 � x1z1; Py2 D rx2 � y2 � x2z2 ;

Pz1 D x1y1 � bz1; Pz2 D x2y2 � bz2 : (6.9)

In (6.9) the replacement was made only in the second equation. This replacement
will lead to a new Jacobi matrix defining the stability condition. Now it is a 3 � 3

matrix with zeroes in the positions of the partial replacement

0

@
Px?
Py?
Pz?

1

A �
0

@
�� 0 0

r � z2 �1 x2
y2 x2 �b

1

A

0

@
x?
y?
z?

1

A : (6.10)

Generally speaking, in such cases the stability conditions differ from complete
replacements. Sometimes they can appear to be more preferable.

In some cases, it may be useful to send the driving signal only at random
moments of time. In this synchronization version (which is called “random synchro-
nization” [15]), the driven system is subject to influence only in random moments,
and in the intervals between them, it evolves freely. It is interesting to note that in
this approach it is sometimes possible to achieve the stability of the synchronized
state even in cases when continuous driving does not work.
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From a more general point of view, the synchronization of chaotic systems can
be considered in terms of negative feedback, which we used earlier in the example
of continuous control. Introducing a damped term into the equations for the driving
system, we get the following:

Px1 D F.x1/; Px D F.x2/C ˛ OE.x1 � x2/ ; (6.11)

where matrix OE determines the linear combinations of the x-components, which
form the feedback loop, ˛ is the coupling constant. For example, for the Rössler
system

Px1 D �. y1 C z1/; Px2 D �. y2 C z2/C ˛.x1 � x2/ ;

Py1 D x1 C ay1; Py2 D x2 C ay2 ;

Pz1 D b C z1.x1 � c/I Pz2 D b C z2.x2 � c/ : (6.12)

In this case

OE D
0

@
1 0 0

0 0 0

0 0 0

1

A : (6.13)

(Equations of motion for the transversal manifold coordinates)
This gives us a new equation of motion for the transversal manifold coordinates

0

@
Px?
Py?
Pz?

1

A D
0

@
�˛ �1 �1
1 ˛ 0

z 0 x � c

1

A

0

@
x?
y?
z?

1

A : (6.14)

By calculating the conditional Lyapunov exponents for the matrix in (6.14), we
can see whether the transversal perturbations are damped and therefore if the
synchronization manifold is stable. In practice, it is sufficient to find only the
maximal transversal Lyapunov exponent 
?

max. Its negativity guarantees the stability
of the synchronization process. Figure 6.2 shows the dependence of the maximal
transversal Lyapunov exponent on the coupling constant ˛ for the Rössler system.
Introduction of feedback initially leads to a decrease in the Lyapunov exponent.
Therefore, in some intermediate region of the coupling constant values, the two
Rössler systems can be synchronized. However, with further increases of the
coupling constant, 
?

max becomes positive and synchronization is impossible. It
is easy to see that for extremely large values of ˛ x2 ! x1 and the feedback
introduced in (6.12) becomes equivalent to the full replacement considered above.
Then the sign of quantity 
?

max .˛ ! 1/ determines the possibility of system
synchronization in the case of full replacement.
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Fig. 6.2 The maximal Lyapunov exponent 
?

max as function of the coupling constant ˛ in the
Rössler system [12]

6.3 General Definition of Dynamical System Synchronization

In the last decade many new types of chaotic synchronization appeared: apart
from those mentioned in the preceding sections, there are phase synchronization,
delayed synchronization, generalized synchronization, and others. As almost always
happens in the first stages of investigation of any newly discovered phenomenon,
there are no strict universal definitions. Such definitions are replaced by a “list”:
when the researches face a new effect in a discovered phenomenon, they just extend
the list. This situation is clearly unsatisfactory and at some stage this list must be
replaced by a strict definition, encompassing all known effects connected with the
phenomenon, as well as those to be discovered in future.

In the present section, following [16], we will make an attempt to give such a
definition for finite-dimensional systems. Although we discuss explicitly the case
of synchronization for two time-continuous dynamical systems, the results can be
generalized for N systems, both continuous and discrete in time.

In order to construct the definition, let us assume that some large stationary
dynamical system can be divided into two subsystems

Px D f1.x; yI t/ ;
Py D f2.x; yI t/ : (6.15)
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The vectors x and y can have different dimensions. The phase space and the vector
field of the big system are direct products of the phase spaces and vector fields of
the subsystems. The list of phenomena described by (6.15) is inexhaustible.

Generally speaking, under synchronization we understand the time-correlated
behavior of two different processes. The Oxford English Dictionary defines syn-
chronization as “to agree in time” and “to happen at the same time.” This intuitive
definition means that there are ways of measuring the characteristics of subsystems
as well as the criterion of concordance in time of these measured data. If these
conditions are satisfied, we can say that the systems are synchronized. Further
on, we will attempt to formalize each of these intuitive concepts. Let '.z0/ be a
trajectory of the original system, given by (6.15) with the initial condition z0 D
Œx0; y0�. Respectively, the curves 'x.z0/ and 'y.z0/ are obtained by inclusion of
y and x components, e.g., by projecting. The functions 'x.z0/ and 'y.z0/ may be
considered as the trajectories of the first and of the second subsystem, respectively.
The set of trajectories of each subsystem can be used to construct subsystems
characteristics g.x/ or g .y/. The measurable characteristic can either depend on
time explicitly [for example, the first subsystem coordinate at time moment t,
x.t/ D g.x/], or represent a time average [for example, the Lyapunov exponent

 D g .x/].

Let us now give the following definition of synchronization: two subsys-
tems (6.15) are synchronized on the trajectory ' .z0/ with respect to properties gx
and gy, if there is a time independent comparison function h, for which

kh Œg .x/ ; g .y/�k D 0 : (6.16)

We would like to emphasize that this definition must be satisfied for all trajectories.
The given definition is convenient because it a priori does not depend on the
measured characteristics, nor on comparison function.

The most frequently used types of comparison functions are

h Œg .x/ ; g .y/� � g .x/ � g .y/ ;

h Œg .x/ ; g .y/� � lim
t!1 Œg .x/� g .y/� ;

h Œg .x/ ; g .y/� � lim
T!1

1

T

Z tCT

t
Œg .x.s// � g .y.s//� ds : (6.17)

This definition is quite useful because the most important characteristic of finite
motion is the frequency spectrum. The measured frequencies !x D g .x/ and !y D
g .y/ represent peaks in the power spectrum. To study frequency synchronization
we usually take the comparison function in the form:

h Œg .x/ ; g .y/� D nx!x � ny!y D 0 : (6.18)

In case of identical synchronization the second equation (6.17) is necessary to
compare the trajectory of one system with another one, i.e., g .x/ D x .t/ ; g .y/ D
y .t/.



6.4 Chaotic Synchronization of Hamiltonian Systems 119

This definition also covers the so-called delayed synchronization, when some
measured characteristics are delayed with respect to others during the same time
period 	 . In that case, we can take g .x/ D x .t/ and g .y/ D y .t C 	/, up to use the
first relation in (6.17) as the comparison function.

Therefore, the definition (6.16) includes all the examples of finite-dimensional
dynamical system synchronization listed above.

6.4 Chaotic Synchronization of Hamiltonian Systems

Up to now we considered chaotic synchronization only for dissipative systems. In
the present section we show [17] that using the same approach as for dissipative
systems, we can synchronize two Hamiltonian systems. At first glance, it seems that
any attempt to synchronize two chaotic Hamiltonian systems is doomed to failure.
Indeed, as was shown above, the necessary condition of any synchronization is the
local synchronization, provided by the negativity of all Lyapunov exponents for a
driven subsystem (recall that we called them the conditional Lyapunov exponents,
because they depend also on the driving subsystem coordinates). However, if the
system preserves the phase volume, as we have seen in Chap. 3 and it would seem
that the synchronization is impossible. However, it does not follow that is the sum of
the Lyapunov exponents is equal to zero, for a subsystem the sum of the conditional
Lyapunov exponents also equals zero; a subsystem of a phase volume preserving
system does not necessarily preserve the phase volume, and therefore a Hamiltonian
system can be synchronized.

Let us consider as an example the so-called standard mapping, which we dealt
with in the previous chapter, in the following form:

InC1 D In C k sin �n ;

�nC1 D �n C In C k sin �n; mod2�I k > 0 : (6.19)

We will further drop mod2� . On the variable I the mapping has period 2� ,
therefore it is sufficient to study it in the square Œ0; 2�� � Œ0; 2�� with identifying
the opposite sides. The mapping has a well-known physical interpretation [18]—
the frictionless pendulum driven by periodic pulses. In this interpretation In; �n
represents the angular momentum and angular coordinate immediately before nth
pulse.

Following the standard synchronization procedure, we make a duplicate of the
original system

JnC1 D Jn C k sin �n ;

�nC1 D �n C Jn C k sin�n : (6.20)



120 6 Synchronization of Chaotic Systems

Let us chose the angular momentum of the first system I as the driving variable.
Then the full system will be described by the system of the connected equations

InC1 D In C k sin �n ;

�nC1 D �n C In C k sin �n ;

JnC1 D In C k sin�n ;

�nC1 D �n C In C k sin �n : (6.21)

The subsystems will be synchronized provided the condition

lim
n!1 j�n � �nj D 0 : (6.22)

Difference between the driving and the driven angular variables is

�nC1 � �nC1 D �n � �n C k.sin �n � sin �n/ : (6.23)

Linearization of (6.23) at small deviations of 'n from the driving angular variable
�n gives

�nC1 D �n.1C k cos �n/ ; (6.24)

where�n D �n � 'n. Equation (6.24) has a solution

�n D
n�1Y

jD0
.1C cos �j/�0 : (6.25)

Local synchronization takes place if this product at n ! 1 tends to zero. It is
equivalent to the requirement that the conditional Lyapunov exponent on the angular
variable


� D lim
n!1

1

n

n�1X

jD0
ln
ˇ̌
1C k cos �j

ˇ̌
(6.26)

is negative. The sum entering (6.26) represents the time average of the function
g.�/ D ln j1C k cos � j. This time averaging can be formally represented as a mean
value of that function with respect to the invariant measure �.�/ (see Chap. 3). The
latter determines the iteration density for the mapping �nC1 D f .�n/ and is defined
in the following way:

�.�/ D lim
n!1

1

n

n�1X

iD0
ıŒ� � f i.�0/� : (6.27)
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It allows us to replace the time average Ng.�/ by the average over the invariant
measure

Ng.�/ D lim
n!1

1

n

n�1X

iD0
g.�i/ D lim

n!1
1

n

n�1X

iD0
g


f i.�0/

� D
Z

d��.�/g.�/ : (6.28)

Let us use this expression to transform the relation (6.26). In a rough approximation
for chaotic orbits in the standard mapping (6.19) the invariant measure can be
considered homogeneous on the interval Œ0; 2��, i.e., �.�/ D 1=2� and for 
� we
obtain


� D 1

2�

Z 2�

0

ln j1C k cos � j d� : (6.29)

The integral (6.29) can be calculated analytically,


� D
8
<

:
ln
�
1Cp

1�k2

2

	
; 0 � k � 1

ln
�
k
2

�
; k � 1

: (6.30)

Figure 6.3 presents the conditional Lyapunov exponent
� as function of k. Quantity

� is negative for k < 2. As is well known, the Chirikov criterion of non-linear
resonance overlap determines the start of the transition to global stochasticity in the
standard mapping at k � 1. From there it follows that in the global stochasticity
region 1 < k < 2 it is possible to synchronize the Hamiltonian system (6.19), if
we choose the angular momentum I as the driving variable. It is interesting to note
that the minimal value of the conditional Lyapunov exponent .
� /min D � ln 2 is

-0.5

0.0

0.0 0.5 1.0 1.5 2.0 2.5 k

λ
0

Fig. 6.3 Conditional Lyapunov exponent for the standard mapping as function of k [17]
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Fig. 6.4 (a) A chaotic trajectory for the driving system (standard mapping). Arrows point to the
initial conditions for the two subsystems; (b) difference of angular coordinates for the driving and
the driven subsystems as function of time (or iteration number) [17]

achieved at k D 1. It means that this value of k corresponds to the minimal time
needed to achieve synchronization.

Figure 6.4a presents a chaotic trajectory of the driving system .I; �/ and shows
the initial conditions for the two subsystems. In Fig. 6.4b the difference of the
angular coordinates�n is plotted as a function of the iteration number n. Complete
synchronization is achieved at n 
 100. If we take the angular coordinate � as
the driving variable, then it can be shown that the conditional Lyapunov exponent
equals to zero in that case. It means that synchronization is impossible, because each
subsystem preserves the phase volume separately.
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6.5 Realization of Chaotic Synchronization Using Control
Methods

In this section, taking after [19], we will try to answer the following problem.
Suppose that we have two almost identical chaotic systems. So, can we, using
the OGY parametric control method considered in the previous chapter, achieve
synchronization of chaotic trajectories? In other words, if the original OGY method
was used to stabilize unstable periodic orbits, can we modify it in order to stabilize a
chaotic trajectory of one system in a relatively small vicinity of the chaotic trajectory
of another system? A positive answer to this question was already obtained by using
of continuous control methods. Now we consider this question as applied to discrete
parametric OGY control.

Suppose we have two chaotic systems A and B, and let some system parameter
(say, of system B) is available for alteration. Let us also assume that some system
variables of both systems can be measured. Based on those measurements we can
change a moment of time when the measured variables are close to each other.
Having calculated the required parameter perturbation using the OGY method we
can synchronize the systems in a short time period. Due to the inevitable presence
of noise there is a finite probability of losing the synchronization. However, because
of ergodicity, after some time the system’s trajectories will again appear close in the
phase space, and we will be able to synchronize them anew.

Let us realize this scheme for the case of two almost identical chaotic systems,
which can be described by the following two-dimensional mappings:

xnC1 D F.xn; p0/ ŒA� ;

ynC1 D F.ynC1; p/ ŒB� ; (6.31)

where xn; yn 2 R2, F is an analytic function of its variables, p0 is a fixed parameter
for the system A, and p is an externally fitted parameter of the system B. As
in the OGY control case, we require a small variation region of the parameter
p jp � p0j < ı. Suppose that the systems start from different initial conditions.
Generally speaking, the chaotic trajectories describing the evolution of each system
are absolutely uncorrelated. However, due to ergodicity of motion, with unit
probability they will appear arbitrary close to each other at some later moment nc.
Without control, the trajectories begin to diverge exponentially for n > nc. Our goal
is to program the parameter p variation in such way that jyn � xnj ! 0 for n > nc.
Linearized dynamics in vicinity of the target trajectory fxng

ynC1 � xnC1. p0/ D OA Œyn � xn. p0/�C Bıpn (6.32)

(see definitions in Sect. 5.3 of Chap. 5). As we have already pointed out in
consideration of chaos control in Hamiltonian systems, due to the conservation of
phase volume, the Jacobi matrix can have complex eigenvalues in this case. That
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is why it is convenient for the description of linearized dynamics to transit from
eigenvectors to stable and unstable directions at every point of the chaotic orbit. Let
es.n/ and eu.n/ be unit vectors in those directions, and

˚
fs.n/; fu.n/

�
is the corresponding

“orthogonal” basis, defined by the relations (5.15) in Chap. 5. Then, in this basis the
condition under which the vector ynC1 gets onto the stable direction of the point
xnC1. p0/, which is required to realize synchronization, reads as the following:

ŒynC1 � xnC1. p0/� � fu.nC1/ D 0 : (6.33)

Using (6.32) and (6.33), we get the parameter perturbation ıpn D pn�p0, necessary
to satisfy that condition:

ıpn D
n OA � Œyn � xn. p0/�

o
� fu.nC1/

�B � fu.nC1/
: (6.34)

If .�p/n calculated according to (6.34) appears greater than ı, we set ıpn D 0.
Let us check the efficiency of the functioning of this scheme in a Hénon

mapping ((5.15), Chap. 5). Let us fix the value of p D p0 D 1:4 for one of the
systems, and for the other, we will consider it as a fitting parameter, changing
according to (6.34) in a small interval Œ1:39; 1:41�. Let the two systems start
in the moment t D 0 from different initial conditions: .x1; y1/ D .0:5;�0:8/
and .x2; y2/ D .0:001; 0:001/. Then the two systems move along completely
uncorrelated chaotic trajectories. At some moment, the systems appear sufficiently
close one to another. The required proximity of the trajectories is determined by the
magnitude of the parameter ı. When that happens, we switch on the synchronization
mechanism, i.e., the perturbation of the parameter p according to (6.34). Figure
6.5a shows time sequences for the two chaotic trajectories (crosses and squares)
before and after the synchronization mechanism is switched on. It is clear that after
the control is switched on (approximately the 2500th iteration) the crosses and the
squares overlap, though the trajectories remain chaotic. Figure 6.5b presents the
time dependence of�x.t/ D x2.t/� x1.t/, tending to zero after the synchronization
mechanism is switched on. The time needed to achieve the synchronization, as well
as the control setup time, dramatically grows with the decrease of ı. Unfortunately,
a direct application of the targeting methods considered in the previous chapter,
allowing us to shorten the control setup time considerably, is impossible: in the
case of control the target unstable periodic orbit is fixed, and in the case of
synchronization the target is not only unfixed, but it also moves chaotically, which
is why the problem becomes extremely complicated.

The following problem [20] is very close in formulation to the problems of
periodic control, where stabilization is achieved due to the purposeful alteration
of its parameters. Suppose

Px D f .x;p/ (6.35)
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Fig. 6.5 Synchronization of two Hénon mappings: (a) two chaotic trajectories before and after the
control switch on; (b) time dependence of �x D x2 � x1, corresponding to (a) [19]

is an experimental realization of a dynamical system, whose parameters p 2 Rm are
known. Let us consider that we know the time dependence of some scalar observable
quantity s D h.x/ and function f, describing the model dynamics. Suppose, then,
that we can construct the system

Py D g .s; y;q/ ; (6.36)
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which will be synchronized with the first one .y ! x; t ! 1/, if q D p. If the
functional form of the vector field f is known, then for the construction of the
required subsystem we can use the decomposition methods considered in Sect. 6.1.
The answer that we are interested in is the following: can we construct an ordinary
differential equations system for parameters q,

Pq D u .s; y;q/ (6.37)

such that .y;q/ ! .x;p/ if t ! 1. Let us show on a concrete example that,
generally speaking, there is a positive answer to that question. To that end, we again
address the Lorentz system

Px1 D � .x2 � x1/ ;

Px2 D p1x1 � p2x2 � x1x3 C p3 ;

Px3 D x1x2 � bx3 ; (6.38)

with p1 D 28, p2 D 1, p3 D 0, b D 8=3. We will assume that the observable
variable is s D h .x/ D x2. We will use it as the driving variable,

Py1 D � .s � y1/ ;

Py2 D q1y1 � q2y2 � y1y3 C q3 ;

Py3 D y1y2 � by3 : (6.39)

Suppose that the parameters q variation process is described by the following system
of equations:

Pq1 D u1 .s; y;q/ D Œs � h .y/� y1 D .x2 � y2/ y1 ;

Pq2 D u2 .s; y;q/ D Œs � h .y/� y2 D � .x2 � y2/ y2 ;

Pq3 D u3 .s; y;q/ D Œs � h .y/� D .x2 � y2/ : (6.40)

In order to show that .y;q/ D .x;p/ are the stable solutions of (6.39), (6.40), it is
necessary to study dynamics of the differences e � y � x and f D q � p. Those
differences obey the following system of equations:

Pe1 D ��e1 ;
Pe2 D q1y1 � p1x1 � q2y2 C p2x2 � y1y3 C x1x3 C f3 ;

Pe3 D y1y2 � x1x2 � be3

Pf1 D �e2y1; Pf2 D e2y2; Pf3 D �e2 : (6.41)
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where the parameters p are assumed to be constant. From the first equation it follows
that e1 ! 0, i.e., y1 ! x1. In the limit t ! 1 the system (6.41) can be

Pe2 D f1y1 � f2y2 � p2e2 � y1e3 C f3 ;

Pe3 D y1e2 � be3 ;

Pf1 D �e2y1; Pf2 D e2y2; Pf3 D �e2 : (6.42)

In order to study the global stability of the system we will use the Lyapunov
functions method [21], whose main principle is the following. Suppose that on a
plane (the method works in a space of any dimension, but we restrict ourselves
to the plane) there is a vector field with a fixed point .Nx; Ny/, and we want to know
whether it is stable. In accordance with obvious ideas about stability, it will suffice to
find some vicinity U of the fixed point, such that the trajectory starting in U remains
inside it at all the consecutive time moments. This condition can be satisfied if the
vector field on the boundary of U is directed either inside the region towards .Nx; Ny/,
or is tangential to the boundary (see Fig. 6.6a). The Lyapunov functions method
allows us to answer the question of whether the considered vector field has such a
geometry.

Fig. 6.6 (a) Vector field on
the boundary of U. (b)
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points of the boundary
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Suppose that the considered vector field is defined by the equations

dx

dt
D f .x; y/ ;

dy

dt
D g.x; y/ : (6.43)

Let V.x; y/ be some scalar function on R2, at least once differentiable. As well,
V.Nx; Ny/ D 0 and the set of points, satisfying the condition V.x; y/ D C, form closed
curves, surrounding the point .Nx; Ny/ for different values of C, while V .x; y/ > 0 (see
Fig. 6.6b). It is easy to understand that if the vector field has the above geometry,
then

rV.x; y/ � .dx=dt; dy=dt/ D PV 6 0 : (6.44)

Thus, if it is possible to construct a function with given properties (the Lyapunov
function), satisfying the condition (6.44), then the considered fixed point is globally
stable.

Let us now return to considering the stability of the system (6.42). For the
Lyapunov function we choose the following:

V D e22 C e23 C f 21 C f 22 C f 23 : (6.45)

Using Eq. (6.42), we get

PV D �2 �p2e22 C be23
�
: (6.46)

For p2 > 0 .b D 8=3/ that derivative is negative, and, therefore, according to (6.44),
the driven system parameters q on large time scales tend to values of the initial
system parameters p. Figure 6.7a illustrates this process. For initial conditions we
have chosen the following x D .0:1; 0:1; 0:1/ ; y D .�0:1; 0:1; 0/, q D .10; 10; 10/.
The points on the figure denote the values of the parameters p1=10 D 2:8, p2 D 1,
p3 D 0 (the first coefficient is divided by ten for convenience). In this case, we
assume that all other coefficients coincide exactly. On the figure, one can see quite
rapid .q ! p/ convergence. Figure 6.7b shows the same process, but for a case
when the driving system parameter � D 10 is replaced by the value � D 10:1 for
the driven system. In this case, there is no exact convergence, but oscillations of the
parameters q around the exact values are observed.

6.6 Synchronization Induced by Noise

In this section we will consider one more example of the constructive role of
chaos—the synchronization of chaotic systems with help of additive noise [22]. The
effect that we intend to study consists of the fact that the introduction of noise (with
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Fig. 6.7 (a) Process of q ! p convergence for coinciding values of other parameters. (b) The
same process for values � D 10 (driving system) and � D 10:1 (driven system) [20]

sufficiently high intensity) in independent copies of systems makes them collapse
in the same trajectory, independently of the initial conditions of each copy. This
synchronization of chaotic systems represents one more example that contradicts
intuitive ideas of the destructive role of noise. We want to clarify the essence of the
effect and to analyze the structural stability of the phenomenon.

Noise-induced synchronization has a short but interesting history. The ordering
effects of noise in chaotic systems were first considered in the paper [23], the authors
of which came to the conclusion that noise can make a system less chaotic. Later, in
[24] the noise-induced chaos-regularity transition was demonstrated. Noise-induced
synchronization was considered for the first time in [25]. The authors showed that
particles in external potential, subject to random forces, tend to collapse on the same
trajectory. Among the further papers written on that topic we would emphasize the
one [26] which evoked violent polemics. The authors of the paper analyzed the
logistic mapping

xnC1 D 4xn.1 � xn/C �n ; (6.47)

where �n is the noise term with homogeneous distribution on the interval Œ�W;W�.
They showed that if W is sufficiently large (i.e., for high noise intensities), two

different trajectories starting from distinct initial conditions but subject to identical
noise (the same sequences of random numbers) will at last end at the same trajectory.
The authors showed that the same situation also takes place for the Lorenz system.
This result provoked a harsh criticism [27], connected with the fact that the two
systems can be synchronized only in the case when the maximal Lyapunov exponent
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is negative. For the logistic mapping in presence of noise, the maximal Lyapunov
exponent is positive and therefore the observed synchronization is the result of
a loss in calculation accuracy. It was also noted [28] that the noise used for the
simulation (6.47) is not symmetrical in reality. A non-zero mean value h�ni appears
because the requirement xn 2 Œ0; 1� forces us to exclude those random numbers that
induce any violation of that condition. The introduction of noise with a non-zero
mean value implies that the authors of [26] essentially changed properties of the
original deterministic mapping. As a result of a whole row of works it was, however,
shown that some chaotic mappings can nevertheless be synchronized by additive
noise with zero mean. The mechanism leading to synchronization was explained in
[29]; its essence is the following. As we have already mentioned, synchronization
can be achieved only in the case of negative Lyapunov exponents. In presence of
noise, due to the reconstruction of the distribution function, the system appears
to spend more time in the regions of stability, where the Lyapunov exponents are
negative, and it provides the global negativity of the Lyapunov exponents. Let us
analyze this reasoning in more detail.

Let us consider the mapping

xnC1 D F.xn/ D f .xn/C "�n ; (6.48)

where f�ng is the set of uncorrelated Gaussian variables with zero mean value and
unit dispersion. For an example of a concrete realization of (6.48) we choose the
following:

f .x/ D exp

"
�
�
x � 0:5
!

�2#
: (6.49)

The investigation of the relative behavior of the trajectories, described by (6.48) and
starting from different initial conditions, is equivalent to an analysis of such behavior
in two identical systems of the form (6.48) subject to the same noise, under which
we understand using the same sequence of random numbers f�ng. Figure 6.8 shows
the bifurcation diagram for that mapping in absence of noise. The chaoticity regions
are well visible on the diagram. In those regions the maximal Lyapunov exponent is
positive. So, for example, for ! D 0:3 (this case will be analyzed further) 
 � 0:53.
In Fig. 6.9 one can see that at a sufficient noise level ", for most values of ! this
Lyapunov exponent becomes negative. So for ! D 0:3 and " D 0:2 we find that

 D �0:17.

The positivity of the Lyapunov exponent in a noiseless case means that the
trajectories starting from different initial conditions are excited by the determined
part f .xn/, and by the same random sequence of numbers f�ng, will not coincide at
any arbitrarily large n. In this case, the synchronization diagram (x.2/ as a function of
x.1/) represents a wide and almost uniform distribution (Fig. 6.10a). However, at " >
0:2, when the maximal Lyapunov exponent becomes negative, we observe almost
complete synchronization (Fig. 6.10b). The noise intensity is not high enough to
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Fig. 6.8 Bifurcation diagram for the mapping (6.48) in absence of noise [22]
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Fig. 6.9 Lyapunov exponent for the mapping (6.49): " D 0 (solid line), " D 0:1 (dashed line),
" D 0:2 (dash-dot line) [22]

neglect the deterministic term in (6.48). Therefore, the synchronization mechanism
that we want to understand is far from trivial.

The Lyapunov exponent determining the synchronization condition for the
mapping (6.48) can be represented in the form


 D lim
N!1

1

N

NX

iD1
ln
ˇ̌
F0.xi/

ˇ̌
: (6.50)

This expression represents the mean value of the logarithm of the absolute value
of the derivative F0 (slope), calculated along the trajectory fxig. The slopes in the
interval Œ�1; 1� give negative contribution in 
, leading to the synchronization.
Larger or smaller slopes give positive contribution in 
 and generate a divergence
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Fig. 6.10 The
synchronization diagram (x.2/

as a function of x.1/) for the
case ! D 0:3. (a) " D 0, (b)
" D 0:2 [22]
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of the trajectories. At first sight it seems, as F0 D f 0, that the presence of noise does
not modify the Lyapunov exponent. However, this is not so. The modification of the
Lyapunov exponent due to noise is connected with noise-induced modification of
the trajectory, along which the averaging (6.50) takes place. In order to understand
this, we will use the expression for the Lyapunov exponent in terms of the stationary
distribution function Pst.x/,


 D ˝
log

ˇ̌
F0.x/

ˇ̌˛ D ˝
log

ˇ̌
f 0.x/

ˇ̌˛ �
Z

Pst.x/ log
ˇ̌
f 0.x/

ˇ̌
dx : (6.51)

We see that with the inclusion of any perturbation there are two mechanisms
leading to the modification of the Lyapunov exponent: the change of j f 0.x/j and the
reconstruction of the distribution function. At the inclusion of the additive noise, the
latter mechanism works. In Fig. 6.11, one can see the reconstruction of the stationary
distribution function for the mapping (6.48). We can conclude that synchronization
will be a common feature of those mappings [for example, (6.48)], for which, with
the inclusion of noise, the regions with j f 0.x/j < 1 have sufficient statistical weight.
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Fig. 6.11 Distribution function for the mapping (6.48) in the case ! D 0:3. (a) " D 0, (b) " D 0:2

[22]

Let us consider one more example—noise-induced synchronization in the Lorenz
system with additive noise, introduced into the equation for the coordinate y,

Px D p. y � x/ ;

Py D �xz C rx � y C "� ;

Pz D xy � bz : (6.52)

Here �.t/—the white noise—is the Gaussian random process with zero mean:
h�.t/i D 0I h�.t/�.t0/i D ı.t � t0/. As we have already seen in the previous
chapter, for the parameter values p D 0; b D 8=3; r D 28 and in the absence
of noise ." D 0/, the system (6.52) is chaotic (the maximal Lyapunov exponent is

 � 0:9 > 0). Therefore, the trajectories starting from different initial conditions
are absolutely uncorrelated (see Fig. 6.12a). The same situation also takes place at
low noise intensities. However, at a noise intensity that provides a negative maximal
Lyapunov exponent (for " D 40, 
 � �0:2), almost complete synchronization of
all three coordinates is observed (see Fig. 6.12b for the coordinate z). We stress that,
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Fig. 6.12 Noise-induced synchronization for the Lorenz system [22]. (a) " D 0, (b) " D 40

although the noise intensity is relatively high, the structure of the strange attractor
preserves the “butterfly” topology, characteristic for the deterministic case. This
fact stresses again that in the considered examples we are not dealing with trivial
synchronization, which takes place in the case when the deterministic terms in the
mapping (or equations of motion) can be neglected.

A natural question arises about the structural stability of the considered phe-
nomenon. Unlike the two identical Lorenz systems (with the same coefficients p, b,
r) two real systems never have identical sets of parameters. Therefore, if we intend
to use noise-induced synchronization, for communication purposes, for example, we
should preliminarily estimate the permissible difference between the parameters of
the transmitter and the receiver. In order to solve this problem, we will numerically
analyze the dynamics of two Lorenz systems with slightly different parameters (p1,
b1, r1) and (p2, b2, r2), but subject to the same noise factor "�. In order to estimate the
effects of variation on each of the parameters, we will vary them independently. The
result of the procedure is presented in Fig. 6.13. On that figure we plot the part of the
full observation time (in percent), during which the systems were synchronized with
an accuracy up to 10%. This means that the trajectories of the two systems were
considered synchronized if the relative difference of their coordinates was less than
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Fig. 6.13 The synchronization time for the Lorenz system (in percents with respect to the total
observation time) as a function of the parameters [22]: (a) b, (b) r, (c) p

10%. From Fig. 6.13 one can conclude that, with a parameter variation of an order
of 1%, during 85% of total observation time, the systems remained synchronized.

6.7 Synchronization of Space-Temporal Chaos

Most physical phenomena in domains where we deal with extended physical objects
(hydrodynamics, electromagnetism, plasma physics, chemical dynamics, biological
physics, and many others) can be described only with the help of partial derivative
equations. Only with some simplifying assumptions do those equations reduce to
a system of connected ordinary differential equations or connected grid mappings.
All of the examples of chaotic systems synchronization that we have considered
belong to finite-dimensional (moreover, low-dimensional) systems. The behavior
of spatially extended non-linear systems is considerably complicated by space-
temporal chaos (turbulence), which is characteristic for most of them. In these cases,
chaotic behavior is observed both in time and in space. A natural question arises:
how efficient will the above low-dimensional systems synchronization methods be
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for space-temporal chaos? We will not dwell on this question in detail, instead
redirecting the reader to the reviews [12, 30]. We will only consider the possibility
of space-temporal chaos synchronization [31] on an example of an autocatalytic
model, demonstrating chaos [32],

@u1
@t

D �u1v
2
1 C a.1� u1/C Dur2u1 ;

@v1

@t
D u1v

2
1 � .a C b/v1 C Dvr2v1 ; (6.53)

where u1 and v1 are reactive and activator concentrations, respectively, a, b are
reaction parameters, and Du;Dv are diffusion constants. We will consider the
system (6.53) as driving in relation to the analogous system

@u2
@t

D �u2v
2
2 C a.1 � u2/C Dur2u2 ;

@v2

@t
D u2v

2
2 � .a C b/v2 C Dvr2v2 C f .x; t/ : (6.54)

Suppose v2.t � 0/ is value of v2 immediately before time moment t2. The driving
function f .x; t/ acts on the system in the following way. Let L be the linear
dimension of the chemical reactor, L D NX, t D kT, T > 0, X > 0, N; k
are integer numbers. In every moment of time t D kT in N spatial points x D
0;X; 2X; : : : ; .N � 1/X the driving function transits simultaneously

v2.kT � 0/ ! v2.kT/ D v2.kT � 0/C " Œv1.kT/ � v2.kT � 0/� : (6.55)

In the time moments t ¤ kT the systems (6.53) and (6.54) are not connected
and evolve independently. We note that for X D T D 0, " D 1 such driving
reduces to the full replacement considered above. Motivation to select driving in
the form (6.55) is determined by two reasons. On one hand we intend to achieve
synchronization by controlling only a finite number N of spatial points, and on the
other hand, we want to use time-discrete perturbation to do this.

The results of numerical simulation of evolution described by (6.53), (6.54) are
presented in Fig. 6.14. For integration, the Euler scheme was implemented with
M D 256 spatial nodes and time step equal to �t D 0:05. The following parameter
values were chosen:

a D 0:028; b D 0:053; Dv D 1:0 � 10�5; Du D 2Dv; L D 2:5 :

Figure 6.14a demonstrates the space-temporal evolution u1.x; t/, described
by (6.53), with initial conditions u.x/ D 1, v.x/ D 0.

To simulate the partial derivative equation systems (6.53), (6.54) with the
condition (6.55) the following parameters values were taken: " D 0:2, T D 20�t,
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Fig. 6.14 The results of numerical simulation of evolution described by the systems (6.53), (6.54):
(a) space-temporal dependence u1.x; t/; (b) difference ju1 � u2j; (c) global synchronization error
e.t/(6.56) [30]
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X D .8=256/ L. In other words, the perturbation acted on 32 of 256 spatial nodes. It
appeared that there is a critical value Xcr, such that for all X < Xcr the systems (6.53)
and (6.54) can be synchronized. For the chosen parameter set Xcr D .14=256/ L, and
this number does not change with an increase of M. This important example shows
that an infinite-dimensional system can be synchronized by the perturbation of a
finite number of points, i.e., synchronization is achieved with help of the driving
signal in the form of N-dimensional vector.

Suppose the driving function is turned on at t D 5000. Figure 6.14b presents
the difference ju1 � u2j (the turn-on moment is denoted by the dashed line). Those
regions of .x; t/ space, where that function is large, i.e., the desynchronization
regions, are painted in black. One can see that such regions are present only before
the moment the driving signal is turned on, t < 5000. In order to make the effect
clearer, we introduce the global synchronization error e.t/,

e D
s
1

L

Z L

0

h
.u1 � u2/

2 C .v1 � v2/
2
i
dx : (6.56)

As one can see from Fig. 6.14c, that error tends to zero after the synchronization
mechanism is turned on (6.55).

6.8 Additive Noise and Non-identity Systems Influence on
Synchronization Effects

In the present section we intend to make a quantitative investigation of the transition
of the initial idealized problem formulation (identical system synchronization in
absence of noise) to a realistic one, accounting for the obligatory presence of
internal noise and deviation in the system parameters [33]. The latter implies that
the free dynamics of the driving and of the driven systems will differ for the same
initial conditions. In the transition from idealization to reality we face the problem
of the experimentally measurable time series synchronization. Under the driving
system we will understand an experimentally observable system, whose dynamics
are known only in the sense that the time series of the system’s characteristics
measurements are given. The driven system represents a model that can be
constructed based on the temporal measurements made with the driving system.
Suppose that the unknown dynamics of the driving system in some “work phase
space” is represented by the equation

Px D G.x/ (6.57)

and the model dynamics in the same space is

Px D F.x/ : (6.58)



6.8 Additive Noise and Non-identity Systems Influence on Synchronization. . . 139

We assume that the corresponding embedding theorems (see Chap. 4) provide
existence of (6.57) in the work phase space. Figure 6.15 represents an example of
synchronization in the model (6.58) with the time series obtained from (6.57). Let
x.t/ be some trajectory, measured with help of some “experimental setup” (6.57).
We now use that trajectory and the model (6.58) in order to generate two new
trajectories. The trajectory w.t/ is obtained by forward time integration of (6.58)
using the first point of the trajectory x.t/ as the initial condition. The trajectory
y.t/ results from the synchronization process: the substitution of the measured time
series for one coordinate into the model equation (6.58). The lower curve in Fig. 6.15
represents the square of the distance between the driving and the driven trajectories
jzj2 D jx � yj2. The upper curve is the distance between the driving trajectory
and the free one in the model system jzj2 D jx � wj2. The degree of smallness
of the lower curve with respect to the upper one determines the quality of the
synchronization.

In the total absence of noise and model errors (i.e., for F D G) we expect
exact synchronization jzj2 D 0. For physical devices and model equations, this
will never happen, as in the driving signal there is always a noise component
and model errors are inevitable. Therefore, a physical device and a model can be
synchronized only approximately. As there are no two exactly identical devices,
this also concerns the synchronization of two experimental setups. It is natural to
expect that with an increase of the noise level or of the magnitude of model errors,
the lower curve amplitude in Fig. 6.15 will grow. It is the character of that growth
which determines the quantitative measure of the influence of noise and model errors
on the synchronization process.
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Fig. 6.15 An example of synchronization for the model (6.58). Lower curve: squared difference
between the driving and the driven trajectories jzj2 D jx � yj2; upper curve: distance between the
driving and the free trajectory of the model system jzj2 D jx � wj2 [33]
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Let us now use the following quantity as the driving signal:

x C �u : (6.59)

Here x is the time series (6.57), �u is the additive noise term, associated with errors
in the driving signal measurements, � is the noise level, and u is a random Gaussian
vector with unit dispersion of the components and zero mean value. Errors may
be induced by random deviations of the device parameters from nominal values
and by background noise, measured together with the signal. To synchronize the
device (6.57) and the model (6.58) we use negative feedback (6.59)

Py D F.y/ � OEŒy � .x C �u/� : (6.60)

The matrix OE determines the connection between y and the experimentally measured
time series. Further, we assume that the matrix has a unique non-zero element lying
on the diagonal and let this element be Eii D ", if the ith component of x C �u is
used as the driving signal. Inside some region of values ", determining the negativity
of the maximal conditional Lyapunov exponent, the feedback (6.60) must lead to
synchronization between x and y, and all deviations are connected either to model
errors or to the presence of noise. Assuming the smallness of jzj—the deviation of
the model dynamics from the device dynamics—the linearized time evolution z is
described by the equation

Pz D
h
DF.x/� OE

i
z C � OEu C�G .x/ ; (6.61)

where�G D F � G, .DF/ij D @Fi
@xj

. The quantity�G has two potential sources. The
first source generating �G is the error arising from the modeling of an unknown
vector field G. In any real situation F and G never coincide. The second source
is connected to the fact that the driving signal dynamics differ from the dynamics
reproduced by the time series used to construct the model. In order to separate these
two sources we assume that the time series used to construct the model comes from
vector field G, while the driving signal is generated by the field G0. We will consider
that distinction of those two fields is connected to the variation of some parameter
set p of the driving system, i.e.,

G Š G0 C �
@G0=@p

� � ıp (6.62)

then

�G .x/ Š �G0 .x/C �
@=@p

�
�G0 .x/

�� � ıp ; (6.63)

where �G0 � F � G0. Equation (6.61) [accounting for (6.63)] is an evolutionary
equation for the connected device-model system in the vicinity of synchronized
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motion. In the absence of noise .� D 0/ and for ideal model dynamics .�G D 0/

Pz D
h
DF .x/ � OE

i
z : (6.64)

The formal solution of that homogeneous linear equation reads

z.t/ D exp

�Z t

t0

h
DF.	/� OE

i
d	

�
z.t0/ � OU.t; t0/z.t0/ ; (6.65)

where DF.	/ D DF Œx.	/�. The evolution operator OU.t; t0/maps the initial condition
z.t0/ forward in time accounting for the connection, but in the absence of noise and
modeling errors. In order to obtain the general solution of Eq. (6.61) one should add
its particular solution to the general solution of the homogeneous equation (6.65).
To obtain the particular solution we make the variables transformation z.t/ D
OU.t; t0/w.t/. Substitution in (6.61) gives

dw

dt
D U�1.t; t0/ Œ�G.t/C �E � u.t/� : (6.66)

Solving this equation taking into account (6.65), we obtain the general solution of
Eq. (6.61) in the form

z.t/ D OU.t; t0/ � z.t0/C
Z t

t0

OU.t; 	/ �
h
�G.	/C � OE � u.	/

i
d	 : (6.67)

This equation describes the time evolution of the difference between the trajectory
given by Eq. (6.58) and the “exact” system trajectory. Such a solution has a
place only under conditions close to the synchronization regime. Because of the
stability of synchronized motion, we can neglect the first term in (6.67), as it
tends exponentially quickly to zero with increasing time. The second term in (6.67)
describes complicated non-local dependence of z.t/ on model errors and noise:
the degree of synchronization at moment t is determined by model and noise
fluctuations in all preceding moments.

Returning to Fig. 6.15 we note that, although the time dependence of jzj2 is
very complex, its mean value is practically constant. This mean can be used to
characterize the degree of synchronization between the exact driving signal and the
one generated by the model. We define that characteristic by the following time
average:

hD
jzj2

Ei1=2 D
2

4lim
1

t � t0

Z t

t0

jz.	/j2 d	
t!1

3

5
1=2

: (6.68)
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This expression can be represented in the form

hD
jzj2

Ei1=2 D
h
A2 C .�B/2

i1=2
; (6.69)

where A is some complicated function of the model errors, and the quantity B is
determined by the statistical properties of the noise. We stress that neither A nor
B depend on the noise level � . The dependence (6.69) is confirmed by numerical
experiments [33].

We finish this section by discussing the connection between the obtained results
and their possible applications. On of them is the identification of chaotic sources.
Suppose that the only available information about some non-linear system is the
preliminarily measured time dependence x.t/. At some later time moment we get
a new time dependence x0.t/, and we want to know whether both signals come
from the same system. In order to answer this question we should construct a
model approximately reproducing the series x.t/ and try to synchronize it with
an analogous model for x0.t/. If synchronization is possible, then there is a high
probability that x.t/ and x0.t/ have a common source. Noise and errors in model
construction will obviously affect the synchronization quality. Therefore, if we want
to use synchronization as a system identification method we must know to how
estimate the influence of noise and model errors.

An interesting application of the obtained results is connected with the realization
of the so-called non-destructive control methods. Let us consider some device
to be placed in a difficult-to-access work space (for example, a sensor in a
nuclear reactor). Before use, the device is subjected to a calibrating signal and
the corresponding time dependence is recorded. After that, a device model is
constructed and one determines the degree of synchronization between the model
and the recorded time dependence. After some time we again act on the device with
a calibrating signal and record the new time series. Then we try to synchronize
that series with the old model. As the device was under the strong influence of the
environment, its dynamics changed. This will lead in turn to changes in the degree
of synchronization. Observing these changes, we can make conclusions about the
need to repair or replace the device. In order to make correct conclusions one
needs the above quantitative estimates of the influence of dynamics changes on
synchronization.

6.9 Synchronization of Chaotic Systems and Transmission
of Information

The possibility of synchronizing chaotic systems opens wide possibilities for the
application of chaos for information transmission purposes. Any new information
transmission scheme must satisfy some fairly evident requirements:
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• Competitiveness (realization simplicity and at least partial superiority over
existing analogues).

• High performance.
• Reliability and stability with respect to noise of different types: self-noise and

external noise.
• Guarantee of a given security level.
• Simultaneous access to multiple users.

Of course, originally every new scheme is oriented to achieve success in one
of the above points, but then one should show that the proposed scheme to some
extent satisfies all other requirements. We will choose for the central requirement
the achievement of a security level which exceeds available analogues. Our choice
is dictated by the fact that it is connected with the use of new physics—the
synchronization of chaotic systems.

Codes appeared in antiquity. Caesar had his own secret alphabet. In Middle Ages
Bacon, Viet, and Cardano worked at inventing secret ciphers. Edgar Allen Poe and
Sir Arthur Conan Doyle did a great deal to popularize the deciphering process.
During the Second World War, the unraveling of the enemy’s ciphers played an
important role in the outcome of particular episodes. Finally, Shannon demonstrated
that it is possible to construct a cryptogram which cannot be deciphered if the
method of its composition is unknown.

Random variables have many advantages in the transmission of secure informa-
tion. First, a random signal can be unrecognizable on a background of natural noise.
Second, even if the signal could be detected, the unpredictability of its variation will
not furnish any direct clues to the information contained in it. Also, a broadband
chaotic signal is harder to jam. However, the legal recipient should be able to decode
the information. In principle, a secret communication system of this type could use
two identical chaotic oscillators: one as a transmitter and another as a receiver. The
chaotic oscillations of the transmitter would be used for coding and those of the
receiver for decoding. The idea is simple but difficult to realize, because any small
difference in the initial conditions and parameters of the chaotic system will lead to
totally different output signals.

Different ways to overcome this principal difficulty were investigated. At the last
it appeared that the most likely direction was the chaotic synchronization which
has been considered in the present chapter. Using synchronized chaos for secret
communications was the topic of a series of papers published in the 1990s (see
[34–36]).

The principal scheme for the transmission of coded information based on the
chaos synchronization effect is presented in Fig. 6.16. The transmitter adds to the
informational (for example, sound) signal i the chaotic x-component, generated
by the driving system. The addition should be understood in a broad sense. This
includes: (1) the transmission of the proper sum of chaotic x.t/ and informational
i.t/ signals; (2) the transmission of the product x.t/i.t/ ; and (3) the transmission
of the combination x.t/Œ1 C i.t/�. The sum signal is detected by the receiver. The
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Fig. 6.17 Analog realization of the Van der Pol–Duffing oscillator model

synchronized signal, generated in the receiver, is subtracted from the received
message. The difference approximately equals to the coded informative signal.

It is evident that the principal ability of such a scheme to work is based on
roughness of the synchronization process: addition of a weak informative signal
to a chaotic one does not affect its ability to synchronize the receiver and the
transmitter. Let us analyze in more detail the function of this scheme [36] on the
example of a physically interesting model—the Van der Pol–Duffing oscillator. Its
analog realization is presented in Fig. 6.17. Recall that under an analog setup we
understand a system where every instantaneous value of the quantity entering into
the input relations corresponds to an instantaneous value of another quantity, often
different from the original one in its physical nature. Every elementary mathematical
operation on the machine’s quantities corresponds to some physical law. This law
establishes the dependence between the physical quantities on the input and output
of the deciding setup: for example, Ohm’s law—to division, Kirchhoff’s law—to
addition, and the Lorenz force—to vector product.
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We introduce a cubically non-linear element N into the chain (Fig. 6.17), which
gives the following relation:

I .V/ D aV C bV3I a < 0; b > 0 (6.70)

between the current I and applied voltage V . Applying Kirchhoff’s laws to different
parts of the chain and rescaling the the variables, we obtain the following set of
dynamical equations:

Px D �.x3 � ˛x � y/ ;

Py D x � y � z ;

Pz D ˇy : (6.71)

Here x, y, z are rescaled voltage on C1, C2 and current through L, respectively; ˛, ˇ,
 are rescaled chain parameters. Numerical simulation of Eqs. (6.71) with fixed ˛,
 demonstrates the transition to chaos by the scenario of period doubling with the
decrease of ˇ. In particular, for  D 100, ˛ D 0:35, ˇ D 300 a chaotic attractor is
observed in the phase space. We will consider the system (6.71) as the driving one,
and the coordinate x as the full replacement variable. Then, the equations of motion
for the driven system (its coordinates are stroked)

x0 D x ;

Py0 D x � y0 � z0 ;

Pz0 D ˇy0 : (6.72)

Let us now show that the subsystem (6.72), which we have chosen for the driven
one, is globally stable. For this we use the Lyapunov function method. Denoting
y � y0 D y�, z � z0 D z�, from (6.71), (6.72) we get

� Py�
Pz�
�

D
��1 �1
ˇ 0

��
y�
z�
�
: (6.73)

For the Lyapunov function we take the following:

L D 1

2

h�
ˇy� C z��2 C ˇy�2 C .1C ˇ/z�2i : (6.74)

Using the equations of motion (6.73), we find

PL D �
ˇy� C z�� �ˇ Py� C Pz��C ˇy� Py� C .1C ˇ/ z� Pz�

D �ˇ �y�2 C z�2� 6 0; .ˇ > 0/ : (6.75)
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Therefore the subsystem (6.72) is globally stable, i.e., for t ! 1
ˇ̌
y � y0 ˇ̌ ! 0;

ˇ̌
z � z0 ˇ̌ ! 0 : (6.76)

There is an interesting possibility to obtain a cascade of the driven subsystems [37].
Suppose that the driving system is represented by (6.72), and the first driven system
is represented in terms of variables y0, z0, excited by x.t/. In addition, we can imagine
that we have a system containing the variable x00, excited by the variable y0. The total
cascade of the systems looks like the following.

The driving system

Px D �.x3 � ˛x � y/ ;

Py D x � y � z ;

Pz D ˇy : (6.77)

The first driven system

Py0 D x � y0 � z0 ;

Pz0 D ˇy0 : (6.78)

The second driven system

Px00 D �
h�
x00�3 � ˛ �x00� � y0i : (6.79)

If all the systems are synchronized, the signal x00.t/ is identical to the driving signal
x.t/.

Let us now focus our attention on using the constructed cascade system for the
transmission of secret information. In accordance with the above principal scheme
we use the x.t/ signal as the one of mask noise, and s.t/ as the information medium.
Let the receiver detect the transmitted signal r.t/ D x.t/ C s.t/. As an analysis
of the system of equations (6.77) shows (6.78), (6.79) [36], if the power level of
the informative signal is considerably lower than the noise medium power level
jx.t/j >> js.t/j, then jx.t/ � x00.t/j << js.t/j. This, in turn, means that the signal
s.1/ obtained as the result of the operation

s.1/ D r.t/ � x00.t/ D x.t/C s.t/ � x00.t/ � s.t/ (6.80)

will be close to the initial informative signal s.t/. Authors of [36] numerically solved
the system of equations (6.77), ((6.78), (6.79) with parameters ˛ D 0:35, ˇ D 300,
 D 100). The information medium signal s.t/ was chosen in the three following
forms:



References 147

0

-25

0

-25

0

-25

0

-25

0

-25

0

-25

0

-25

0

-25

(a) (1) s(t)

(a) (2) r(t)

s1(t) s1(t) s1(t)

s(t)

r(t)

s(t)

r(t)

(a) (3)

(b) (1)

(b) (2)

(b) (3)

(c) (1)

(c) (2)

(c) (3)

ω ω ω

ln
P(

ω
)

2π 2π 2π

Fig. 6.18 Power spectra for the informative signal s.t/, transmitted signal r.t/, and reconstructed
signal s.1/.t/ for monochromatic (a), amplitude-modulated (b), and frequency-modulated (c)
signals s.t/ [36].

Monochromatic signal: s.t/ D F sin.!t/, F D 0:02, ! D 1.
Amplitude-modulated signal: s.t/ D F sin.!t/Œ1 C f sin.˝t/�, F D 0:02, ! D 1,

f D 1, ˝ D 0:2.
Frequency-modulated signal: s.t/ D F sinŒ!t C f sin .˝t/�, F D 0:02, ! D 1,

f D 0:2, ˝ D 0:2.

The informative signal s.1/.t/ was reconstructed from numerical calculation
results according to (6.80). Figure 6.18 presents power spectra for the informational
signal s.t/, transmitted signal r.t/ D x.t/C s.t/, and reconstructed signal s.1/.t/ for
all three listed cases. If the informational signal power level is considerably lower
than for the chaotic medium, the frequency components of the informational signal
in the transmission are not detectable, at least visually. The spectrum quality of the
reconstructed signal is comparable to the received one.
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Chapter 7
Stochastic Resonance

There are well-known and strictly regulated algorithms for the solution of linear
problems. The physical meaning of the solution for any linear problem is clear on an
intuitive level. The particularity of the linear system does not play an essential role.
However, if we want to deal with real situations, we must take into account two new
elements—non-linearity and noise. Non-linearity leads to incredible complications
in solving technique. The combination of non-linearity with noise complicates
the situation even more. In attempts to predict the behavior of such systems, the
most refined intuition fails. The stochastic resonance effect represents an example
of the paradoxical behavior of non-linear systems under influence of noise. The
term “stochastic resonance” unites a group of phenomena for which the growth of
disorder (noise amplitude) upon input into a non-linear system leads under certain
conditions to an increase of order on the output. Quantitatively, the effect manifests
in the fact that such integral system characteristics as gain constant, noise-to-signal
ratio have a clearly marked maximum at some optimal noise level. At the same
time, the system entropy reaches a minimum, giving evidence of noise-induced
order growth.

7.1 Qualitative Description of the Effect

The concept of stochastic resonance was first proposed in papers [1, 2] and
independently in [3, 4]. The authors of the works studied the problem of the
alternation of ice ages on Earth. Analysis showed that ice ages alternate with the
period of an order of 100,000 years. This result seemed curious. The only quantity
of this time scale in the dynamics of the Earth is the period of the oscillations of
the Earth’s orbital eccentricity, connected to planetary gravitational perturbations.
However, changes in the flow of solar energy coming to the Earth, connected to
those oscillations, equals only about 0:1% of it. At first glance it seemed that this
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was absolutely insufficient for such radical climate changes, and one should seek
principally new mechanisms to amplify the weak periodic oscillations. One of the
possible solutions to the problem was found in accounting for the joint action of the
two mechanisms: the simultaneous action of periodic perturbation (oscillations of
the Earth’s orbital eccentricity) and noise (climatic oscillations) at certain conditions
(stochastic resonance) led to a qualitative explanation of the observed climatic
changes.

The first works on stochastic resonance necessarily included the following
fundamental elements: non-linearity, bistability, external periodic signal and noise.
Later, it became clear that the three latter elements are not necessary attributes of
the effect. So it appeared that there was no need to consider only bistable systems
and stochastic resonance can be presented as purely a threshold effect. It is also
possible to set up the problem in the absence of an external periodic signal. In
many non-linear systems coherent motion is stimulated by the internal dynamics
of the non-linear system rather than by external force. However paradoxical it
may be, it is also possible to set up the stochastic resonance problem without
external noise [5]. So for chaotic systems noise can be generated by their own
chaotic dynamics, and the role of noise intensity is played by the system parameters,
determining the measure of chaoticity. There are also less radical deviations from
the initial formulation of the problem. For example, the typical signals apprehended
by biological systems have a complex spectral composition, and the monochromatic
signal seems an excessive idealization for them. Colored noise, i.e. noise with a
finite correlation time and limited spectrum, can be more appropriate than white
noise for the reality being studied.

The physical mechanism of the stochastic resonance effect is demonstrated in the
simplest way on its canonical model: a Brownian particle in a symmetric bistable
potential

V.x/ D �a

2
x2 C b

4
x4I .a; b > 0/ ; (7.1)

subjected to a weak periodic signal F cos!t. The potential minima are situated
in the points xmin D ˙pa=b and separated by a potential barrier at x D 0 of
height �V D a2=4b. As is well known, the fluctuating forces cause rare (at low
temperature) random transitions over the potential barrier. The rate of the transitions
is determined by the famed Kramers formula [6]

Wk 
 e��V=D ; (7.2)

where D is the intensity of the fluctuations, and the pre-exponential factor depends
on the potential geometry. Now suppose that the particle is subjected to an additional
deterministic force—a weak periodic perturbation of frequency!. The term “weak”
means that the force itself cannot result in the barrier being overcome. In the
presence of periodic perturbation, the initial potential parity will be broken (see
Fig. 7.1), which will lead to dependence of the frequency of the transition rates Wk
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Fig. 7.1 Stochastic resonance in a bistable symmetric well with periodic perturbation

on time. Varying the intensity of the noise, it is possible to achieve a situation when
the Kramers rate will be close to the frequency of the potential barrier modulation.
This can be achieved provided the condition

W�1
k .D/ � tk.D/ � �

!
; (7.3)

is fulfilled. Analogous considerations can be made also for the more general case
of two meta-stable states 1, 2, where the height of the barrier between them
changes due to the periodic perturbation of frequency ! D 2�=T. Suppose that
the particle performs transitions between these states in average times TC.1 ! 2/

and T�.2 ! 1/. It is natural to assume that the system is optimally adjusted to
external perturbation under the condition

2�

!
� TC C T� : (7.4)

In the symmetric case TC D T� D tK we return to the relation (7.3).
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For negligibly low noise levels .D ! 0/ the Kramers transition rate practically
equals to zero and no coherence is present. For very high noise levels the coherence
is also absent as system response becomes practically random. Between these two
extreme cases there is an optimal intensity defined by the relation (7.3), which
optimizes coherence. For this situation it seems natural to use the term “resonance,”
although it is evident that this phenomenon differs considerably from familiar
deterministic resonances, but statistically the term has a well-defined meaning and
in the last few years it has become quite widely accepted. The effect consists of the
possibility of adjusting a stochastic system by variation in noise intensity to achieve
a regime of maximal amplification of the modulation signal. Stochastic resonance
can be realized in any non-linear system where several characteristic time scales
exist, one of which can be controlled with the help of noise [7, 8].

Systems demonstrating stochastic resonance are in some sense intermediate
between regular and irregular: they are described by a random process where jumps
do not obey a deterministic law, but nevertheless in a resonance regime they have
some degree of regularity. In particular, the coordinate correlation function does not
tend to zero over long times.

7.2 The Interaction Between the Particle and Its
Surrounding Environment: Langevin’s Equation

For a quantitative description of the stochastic resonance effect, it is necessary to
obtain a dynamical equation describing the interaction between a Brownian particle
and its environment [9–12]. The equation must contain only the coordinates of the
particle but to account for the interaction with the environment phenomenologically.

Suppose a Brownian particle of mass M moves in the potential V.R/ (for
example, in a bistable potential, considered in the previous section). The Lagrange
function L for such motion reads

L0.R; PR/ D 1

2
M PR2 � V.R/ : (7.5)

For the thermal reservoir (environment) we take the simplest model considering it to
be a set of a large number of non-interacting harmonic oscillators with coordinates
qi, masses mi, and frequencies !i

Lhb.qi; Pqi/ D
X

i

mi

2
.Pq2i � !2i q

2
i / : (7.6)
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The interaction between the particle and the thermal reservoir we assume to be
separable and linear on the oscillatory coordinates. As a result, we obtain for the
full Lagrangian

L.R; PRI qi; Pqi/ D L0.R; PR/C Lhb.qi; Pqi/C
X

i

fi.R/qi : (7.7)

Corresponding Euler–Lagrange equations take the form

M RR D �dV.R/

dR
C
X

i

qi
dfi.R/

dR
;

mi Rqi D �mi!
2
i qi C fi.R/ : (7.8)

In order to obtain the equation for the coordinates R it is necessary to exclude from
those equations the coordinates qi of the thermal reservoir. The latter equal to

qi.t/ D q0i .t/C
tZ

0

ds
fi.R.s//

mi!i
sin!i.t � s/ ; (7.9)

where q0i .t/ are the solutions of the free equation for the reservoir coordinates,

q0i .t/ D qi0 cos!i.t � t0/C . pi0=mi!i/ sin!i.t � t0/ ; (7.10)

where qi0 and pi0 are coordinates and momenta of the oscillators in the initial time
moment t0. Substituting (7.10) in the former of Eq. (7.8), we obtain the result

M RR D QF.R/C Ffrict.R; PR/C FL.R; t/ : (7.11)

Here we introduced the renormalized potential force QF.R/, the friction force
Ffrict.R; PR/, which depends on coordinates and velocities, and the random
(Langevin) force FL.R; t/. Those forces equal to

QF.R/ D �d QV.R/
dR

I QV.R/ D V.R/�
X

i

1

2mi!
2
i

Œ fi.R/�
2 ; (7.12)

Ffrict.R; PR/ D �
X

i

1

mi!
2
i

tZ

t0

ds
dfi.R.t//

dR
cos!i.t � s/

dfi.R.s//

dR
PR.S/ ; (7.13)

FL.R; t/ D
X

i

q0i .t/
dfi.R/

dR
: (7.14)
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The friction force (7.13) represents a delayed force of the form

Ffrict.R; PR/ D �
tZ

t0

ds.t; s/ PR.s/ ; (7.15)

where the integral kernel (assuming the equality of all masses mi D m and all form-
factors fi.R/ D f .R/) equals to

.t; s/ D df .R.t//

dR

df .R.s//

ds

X

i

1

m!2i
cos!i.t � s/ : (7.16)

The sum of the oscillating terms in (7.16) approximately equals to zero everywhere
except the region jt � sj 6 ". Therefore we can approximately write

X

i

1

m!2i
cos!i.t � s/ � 20ı".t � s/ ; (7.17)

where ı".t � s/ is the so-called smeared ı-function

ı".t � s/ D
(
1="; if �"=2 � .t � s/ � "=2;

0; otherwise
: (7.18)

Factor 2 is introduced in (7.17) for further convenience. From (7.17) it follows that

20 D
C1Z

�1
dt

1

m!2i
cos!it : (7.19)

Using (7.17) for the kernel .t; s/ we get the expression

.t; s/ D 2.R/ı".t � s/I .R/ D 0

�
df .R/

dR

�2
: (7.20)

We made the assumption that R.s/ D R.t/ for js � tj 6 ". Substituting (7.20)
into (7.15) we finally get that, given the above assumptions, the friction force is
a local function of the coordinates

Ffrict D �.R/ PR : (7.21)

Now we move on to the transformation of the expression (7.14) for random force.
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In assuming that the form factors are equal for all oscillators we get

FL.R; t/ D df .R/

dR
�.t/ ; (7.22)

where

�.t/ D
X

i

q0i .t/ : (7.23)

The initial conditions for the oscillators representing the thermal reservoir qi0, pi0
should be naturally considered as independent random variables with the following
statistical properties

hqi0i D 0I hpi0i D 0 ;
˝
qi0qj0

˛ D ıij
˝
q2i0
˛ I ˝pi0pj0

˛ D ıij
˝
p2i0
˛ I ˝qi0pj0

˛ D 0 : (7.24)

Using (7.10) and (7.24) for the random variable �.t/ determining the Langevin force,
we get

h�.t/i D 0I ˝
�.t/�.t0/

˛ �
X

i

h"i0i
m!2i

cos!i.t � t0/ ; (7.25)

where h"i0i is the average energy of the ith oscillator

h"i0i D p2i0
2mi

C 1

2
mi!

2
i

˝
q2i0
˛
: (7.26)

If the thermal reservoir is in thermal equilibrium at temperature T, then

h"i0i D 1

2
kBT (7.27)

and

˝
�.t/�.t0/

˛ � 1

2
kBT

X

i

1

m!2i
cos!i.t � t0/ : (7.28)

Taking into account (7.17), the sum in the right-hand side of (7.28) can be replaced
by 20ı".t � t0/ and for the correlation function of the quantity �.t/ we get

˝
�.t/�.t0/

˛ D 0kBTı".t � t0/ : (7.29)
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It is convenient to introduce the normalized random variable � .t/,

� .t/ D
�
1=
p
0kBT

	
�.t/ ; (7.30)

which, according to the central limit theorem, has a Gaussian distribution, and its
mean value and correlation function equal to:

h� .t/i D 0I ˝
� .t/� .t0/

˛ D ı".t � t0/ : (7.31)

Substituting (7.30) into (7.22) we get the resulting expression for the Langevin force

FL.R; t/ D p
D.R/� .t/I D.R/ D

�
df .R/

dR

�2
0kBT : (7.32)

Comparing (7.20) with (7.32) we find that the intensity of the Langevin force is
connected to the friction coefficient and the reservoir temperature by the relation
known as a particular case of the fluctuation-dissipation theorem [13–15]

D.R/ D .R/kBT : (7.33)

The origin of this connection is a consequence of the fact that both the friction
force and the Langevin force are generated by the same interaction of the Brownian
particle with the thermal reservoir. Thus, we have shown that Brownian particle
dynamics can be phenomenologically described by a stochastic differential equation
(equation with random force)

M RR D F.R/� .R/ PR C F cos!t C
p
D.R/� .t/ : (7.34)

In Eq. (7.34) we included the external periodic force, which is independent of
interaction with the thermal reservoir. An equation of the form (7.34) (as well as
the method of dynamics description by the direct probabilistic method) was first
proposed by Langevin [16] and is named after him. Let us consider the Langevin
equation (7.34) from a more general point of view. It represents a particular case of
a stochastic differential equation of the form

Px.t/ D G .x.t/; t; �.t// ; (7.35)

where the variable �.t/ describes some stochastic (random) process. It can be
presented as a family of functions �u.t/ depending on the results u of some
experiment S. Therefore, the stochastic differential equation (7.35) is a family of
ordinary differential equations, differing for every result (realization) of u

Pxu.t/ D G .xu.t/; t; �u.t// : (7.36)
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The family of solutions of those equations xu.t/ for different u represents the
stochastic process x.t/. We can say that each realization �u.t/ of the random process
�.t/ corresponds to a realization xu.t/ of the random process x.t/. Thus the solution
x.t/ becomes a functional of the process �.t/.

7.3 The Two-State Model

We now turn to an investigation of stochastic resonance in the simplest analyti-
cally solvable model—the two-state model [17]. This model represents a discrete
analogue of a continuous bistable system where the state variable takes only two
discrete values x˙ with probabilities n˙. The rates of transition from one state to
another W˙ are assumed to be known. It is obvious that they can be obtained only
from models accounting for the internal system dynamics, which itself determines
the rates of transitions between local minima. If the distribution function P.x/ of the
continuous analogue of the two-state model is known, then

n� D 1 � nC D
xmaxZ

�1
P.x/dx ; (7.37)

where xmax is the position of the maximum in the two-well potential. The master
equation can be written in the form

dnC
dt

D �dn�
dt

D W�.t/n��WC.t/nC D W�.t/�ŒW�.t/C WC.t/� nC : (7.38)

Transition probabilities depend on time due to the presence of periodic perturbation.
The master equation (7.38) is applicable only in the so-called adiabatic limit when
the perturbation period is much longer than the characteristic relaxation times. For
the two-well problem, under “relaxation time” we understand the time of thermal
equilibrium to be established in a separate well.

The solution of the linear differential equation with periodic coefficients (7.38)
has the form

nC.t/ D g.t/

�
nC.t0/C

Z t

t0

WC.	/g�1.	/d	
�
;

g.t/ D exp

�
�
Z t

t0

ŒWC.	/C W�.	/� d	
�
; (7.39)

where nC.t0/ is an as yet undefined initial condition.
Let us now assume that the transition rates have the form

W˙.t/ D f .�˙ �0 cos!t/ ; (7.40)



158 7 Stochastic Resonance

where �0 is the dimensionless parameter determining the perturbation intensity, and
f .�; �0 D 0/ turns into the Kramers rate (7.2) and no longer depends on time. In
other words, we assume that the effect of perturbation reduces to only modulations
of the height of the potential barrier determining the Kramers rate. In the case of
weak periodic perturbation we can decompose the transition rates (7.40) over the
small parameter �0 cos!t:

W˙.t/ D 1

2

�
˛0 � ˛1�0 cos!t C ˛2�

2
0 cos2 !t � � � �� ;

WC.t/C W�.t/ D ˛0 C ˛2�
2
0 cos2 !t ; (7.41)

where

1

2
˛0 D f .�/;

1

2
˛n D .�1/n

nŠ

dnf

d�n
: (7.42)

The expression (7.39) now can be integrated and in the first order in the small
parameter �0 cos!t we get

nC . tj x0; t0/ D 1

2

�
e�˛0.t�t0/

�
2ıx0c � 1 � ˛1�0 cos.!t0 � '/

.˛20 C !2/1=2

�

C1C ˛1�0 cos.!t � '/

.˛20 C !2/1=2

�
; (7.43)

where ' D arctan.!=˛0/. The Kronecker symbol ıx0c equals unity if in the moment
of time t0 the particle was in a state xC D c, and equals zero if it was in x� D
�c. The quantity nC . tj x0; t0/ is the conditional probability of the particle at time
moment t to be in the state c, if in the time moment t0 it was in the state x0 (c or �c).

The obtained probabilities allow us to calculate all the statistical characteristics
of the process. In particular, reduction to the “continuous” bistable system is done
with the help of the relations

P .x; tj x0; t0/ D nC . tj x0; t0/ ı.x � c/C n� . tj x0; t0/ ı.x C c/ : (7.44)

For example, for the average value of coordinate x we get

hx.t/j x0; t0i D
Z

xP .x; tj x0; t0/ dx D cnC . tj x0; t0/� cn� . tj x0; t0/ : (7.45)

In the absence of periodic modulation in the state of equilibrium nC D n� D 1=2

that average value equals zero.
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Analogously, we can find the autocorrelation function

hx.t C 	/x.t/j x0; t0i D
Z

xyP .x; t C 	 j y; t/P .y; tj x0; t0/ dxdy ; (7.46)

which we will further need to find the power spectrum. Using the expressions (7.44)
for conditional probabilities, we get

hx.t C 	/x.t/j x0; t0i
D c2nC . t C 	 j c; t/ nC . tj x0; t0/� c2nC . t C 	 j � c; t/ n� . tj x0; t0/

� c2n� . t C 	 j c; t/ nC . tj x0; t0/C c2n� . t C 	 j � c; t/ n� . tj x0; t0/
D c2f2ŒnC. t C 	 j c; t/C nC. t C 	 j � c; t/ � 1�nC. tj x0; t0/

� 2nC. t C 	 j � c; t/C 1g : (7.47)

The asymptotic limit of the autocorrelation function at t0 ! 1 presents us with
some interest. In that limit, using (7.43), we get

hx.t/x.t C 	/i D lim
t0!1hx.t/x.t C 	/jx0t0i

D c2e�˛0j	 j
�
1 � ˛21�

2
0 cos2.!t � '/

˛20 C !2

�

C c2˛21�
2
0 fcos!	 C cos Œ!.2t C 	/C 2'�g

2
�
˛20 C !2

� : (7.48)

Due to the presence of periodic perturbation, the autocorrelation function depends
not only on the time shift 	 , but also periodically on time. To calculate the
characteristics of stochastic resonance we should average over the perturbation
period. This procedure is equivalent to averaging over an ensemble of random initial
phases of perturbation and it corresponds to experimental methods of measuring the
statistical characteristics obtained from the correlation functions. Considering t as a
random variable, uniformly distributed in the interval Œ0; 2��, we get

hx.t/x.t C 	/it D !

2�

2�=!Z

0

hx.t/x.t C 	/idt

D c2e�˛0j	 j

"
1 � ˛21�

2
0

2
�
˛20 C !2

�
#

C c2˛21�
2
0 cos!	

2
�
˛20 C !2

� : (7.49)
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Let us recall that (see Sect. 3.2) the power spectrum (spectral density) is the Fourier
transform of the autocorrelation function [18], averaged over the perturbation period

hS.˝/it D
Z 1

�1
hhx.t/x.t C 	/iit e�i˝	d	

D
"
1 � ˛21�

2
0

2
�
˛20 C !2

�
# �

2c2˛0
˛20 C˝2

�

C �c2˛21�
2
0

2
�
˛20 C !2

� Œı .˝ � !/C ı .˝ C !/� : (7.50)

Further we will use the power spectrum S.˝/, defined only for positive˝ ,

S.˝/ D hS.˝/it C hS.�˝/it

D
"
1 � ˛21�

2
0

2
�
˛20 C !2

�
# �

4c2˛0
˛20 C˝2

�
C �c2˛21�

2
0�

˛20 C !2
�ı.˝ � !/

D SN.˝/C �c2˛21�
2
0�

˛20 C !2
�ı.˝ � !/ : (7.51)

The power spectrum naturally divides into two parts: the one describing the periodic
component of the output signal on the perturbation frequency (proportional to ı-
function) and the noise component SN.˝/. The noise spectrum represents a product
of only the Lorenz factor ˛0=.˛20 C ˝2/ and the correction factor, describing the
influence of the signal on noise. At low signal amplitudes the correction factor is
close to unity. This factor describes the energy pumping from the background of
noise to the periodic component. It is interesting to note that the total power on the
system output does not depend on the frequency nor on the amplitude of the signal:
contributions from the correction factor and from the periodic component exactly
compensate each other, as

Z 1

0

d˝
˛0

˛20 C˝2
D �

2
: (7.52)

This exact compensation represents a characteristic feature of the two-state model.
It comes from the Persival theorem: the time integral of the signal squared
equals the power spectrum integrated over all frequencies. The time integral in
the two-state model for any time interval T equals c2T and does not depend on
perturbation frequency or amplitude. Therefore, the power spectrum integrated over
all frequencies must also remain constant.
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Let us now return to the continuous analogue of the discrete two-state model—
the double symmetric well (7.1). In presence of periodic perturbation the potential
energy of the system takes the form

U.x; t/ D �a

2
x2 C b

4
x4 � Fx cos!t : (7.53)

For further convenience we present the potential energy in the form

V.x; t/ D V0

�2.x=c/2 C .x=c/4

� � V1.x=c/ cos!t ; (7.54)

here c D ˙pa=b are the positions of the potential minima at F D 0, V0 D a2=4b
is the potential barrier height, and V1 D Fc is the amplitude of the modulation of
barrier height.

As was shown in the previous section, the time evolution of the particle in a
potential field interacting with the equilibrium thermal reservoir can be described
by the Langevin equation (7.34). We will further consider the so-called over-
damped case—a case involving strong friction, when the inertia (mass) term in the
equation of motion can be neglected. In this approximation, assuming the coordinate
independence of the frequency coefficient (and therefore of the Langevin force
intensity), the Langevin equations can be presented in the form

Px D �@V.x; t/
@x

C p
D� .t/ : (7.55)

The statistical properties of the random force � .t/ are determined by the rela-
tion (7.31).

As we have already mentioned, in the absence of modulation .F D 0/ the average
rate of the over-barrier transitions—the Kramers rate—is determined by the relation

Wk D ŒjV 00.0/jV 00.c/�1=2

2�
e�V0=D D ap

2�
e�V0=D : (7.56)

As the Kramers rate depends only on the barrier height and the potential curvature
in its extremes, the exact form of the potential is irrelevant. Therefore, the results
obtained below are qualitatively applicable to a wide class of bistable systems.

Using the expression (7.40) for transition rates in the presence of periodic
perturbation, we obtain

W˙.t/ D ap
2�

exp Œ� .V0 ˙ V1 cos!t/ =D� : (7.57)
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We recall that the Kramers rate (7.56) is obtained under the assumption that
the particle is in equilibrium with the thermal reservoir. In order to satisfy that
condition in the presence of time-dependent perturbation, it is necessary that the
perturbation frequency be much smaller than the characteristic speed of the thermal
equilibrium setup in the well. The latter is determined by the quantity V 00.˙c/ D
2a. Therefore, the adiabatic approximation applicability condition is given by the
inequality !  2a.

As one of the main characteristics of stochastic resonance we will use the signal-
to-noise ratio .SNR/, under which we will understand the ratio of spectral densities
for signal and noise on the signal frequency, i.e.

SNR D
�

lim
�˝!0

Z !��˝

!C�˝
S.˝/d˝

�
=SN.!/ D S.!/

SN.!/
: (7.58)

From the relation (7.51), neglecting the influence of the signal on the background of
noise, we get

SNR D �

4

˛21
˛0
�20 : (7.59)

The coefficients ˛0 and ˛1 can be found with the help of the relations (7.42), in
which

f .�C �0 cos!t/ D ap
2�

e�.�C�0 cos!t/ ; (7.60)

where � D V0=D, a �0 D V1=D D Fc=D. As a result, in the considered
approximation for SNR we finally get

SNR � ap
2

�
Fc

D

�2
e�V0=D : (7.61)

For D  V0 the exponent tends to zero faster than the denominator and SNR ! 0.
For large D, the growth of the denominator again assures the tending of SNR to zero.
In the intermediate region at D 
 V0=2 the approximate expression for SNR (7.61)
has a unique maximum (see Fig. 7.2).

The two-state model also allows us to find contributions for higher approxima-
tions in parameter �0 D Fc=D, i.e. to calculate higher harmonics of stochastic
resonance. The power spectrum S .˝/, taking into account these contributions, can
be represented as a superimposition of the noise background SN.˝/ and ı-peaks,
centered at ˝ D .2n C 1/!. The generation of only odd harmonics of the input
signal frequency is a consequence of the symmetry of the considered non-linear



7.3 The Two-State Model 163

Fig. 7.2 Dependence of the
signal-to-noise ratio (SNR) on
the noise level D in the
two-state model

D

SNR

system [19]. We give the expressions for SNR on the third and fourth harmonics [20]:

SNR3 D �

72
!z

�
Fc

D

�6 z2 C 1=16

4z2 C 1
;

SNR5 D �

102 � 213 !z
�
Fc

D

�10 �64=3z2 � 1�2 C .14z/2

.4z2 C 1/ .4z2 C 9/
; (7.62)

where z � Wk=!. The maxima of these curves are placed in the points D D V0=2k
(k is the harmonic number).

Besides SNR, the average value of coordinate x (more precisely, the asymptotic
limit of that average at t0 ! �1), defined by the relation (7.45), also presents some
interest. Using (7.43), we get

hx.t/i D A.D/ cos Œ!t C �.D/� ; (7.63)

where the amplitude A.D/ and phase shift �.D/ are determined by the expressions

A.D/ D Fc2

D

2Wk
�
4W2

k C !2
�1=2 ; (7.64)

�.D/ D � arctan
!

2Wk
: (7.65)
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From the response amplitude on the system output we will determine the power
amplification coefficient �,

� D A2.D/

F2
D 4W2

k c
4

D2
�
4W2

k C !2
� : (7.66)

From (7.56) and (7.66) it follows that the amplification coefficient � as function of
the noise intensity D has a unique maximum.

7.4 Stochastic Resonance in Chaotic Systems

The coexistence of several attractors is typical for the phase space of chaotic
systems. Those attractors undergo an infinite number of bifurcations with variations
in the system parameters. As a result, such systems are very sensitive to external
perturbations. External perturbations in such systems may generate a row of
interesting effects connected to the interaction of the attractors, including noise-
induced transitions. Therefore, chaotic deterministic systems open new possibilities
to set up a stochastic resonance problem. In particular, one may consider the
problem of the interaction of two chaotic attractors subject to the influence of
external noise and/or some control parameter variation. This interaction is also
characterized by some switching frequency, depending on noise intensity and
parameter value. Therefore, we can expect the appearance of resonance effects, and
as a consequence the possibility of observing a peculiar stochastic resonance in the
presence of additional modulation.

Following [21], let us consider, as an example, the discrete system

xnC1 D .a � 1/xn � ax3n : (7.67)

For 0 < a < 2 there is a unique stable fixed point at x1 D 0. At a D 2 a bifurcation
takes place, as a result of which in the region 2 < a < 3 there are two stable fixed
points at x2;3 D ˙c, c D Œ.a � 2/ =a�1=2 and one unstable point in the origin. In the
region 3 6 a < 3:3 a period doubling bifurcations cascade takes place, after which
for a > 3:3 the mapping (7.67) demonstrates chaotic behavior.

If 3:3 < a 6 3:6, there are two disconnected symmetric attractors. Their
attraction basins are separated by the separatrix x D 0. The stationary probability
density P.x/ for this case is presented in Fig. 7.3a. At a Š a� D 3:598 the attractors
merge and a new chaotic attractor appears with the probability density shown in
Fig. 7.3b for a > a�. The bifurcation of the merging attractors is accompanied by the
alternation phenomenon of the chaos–chaos type [22]: the trajectory lives for a long
time in the basin of one of the attractors, and then makes a random transition into
the other attractor’s basin. The average residence time 	1 for each of the attractors
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Fig. 7.3 Stationary probability density P.x/ for the system (7.67) for two parameter a values: (a)
a < a�, (b) a > a� [21]

obeys the universal critical relation

	1 
 .a � a�/� I  D 0:5 : (7.68)

The alternation effect of the chaos–chaos type can be achieved also as a result of
the action of additive noise. In this case, the dependence (7.68) is preserved, but the
critical index  becomes a function of the noise intensity,  D .D/.

Let us introduce periodic modulation and additive noise into the mapping (7.67)

xnC1 D .a � 1/xn � ax3n C " sin.2�f0n/C �.n/ ; (7.69)

where " and f0 are amplitude and frequency of modulation, and the statistical
properties of the noise are the following

h�.n/i D 0; h�.n/�.n C k/i D 2Dı.k/ : (7.70)

Let us study the system (7.69) in the two-state approximation, replacing the x.n/
coordinate by C1, if x.n/ > 0 and by �1, if x.n/ < 0. In the approximation Px D
xnC1 � xn, we can transform the discrete model (7.67) into the differential equation

Px D .a � 2/x � ax3 (7.71)
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and introduce the potential U.x/:

U.x/ D �a � 2

2
x2 C a

4
x4 : (7.72)

This allows us to determine the Kramers rate

Wk D �a � 2
�

p
2

exp

�
� .a � 2/2

4aD

�
(7.73)

and to obtain the expression for SNR in an adiabatic approximation

SNR D � .a � 2/2"2

aD2
exp

�
� .a � 2/2

4aD

�
: (7.74)

Let us consider the dynamics of (7.69) at a D 3:4, which corresponds to the case
of the coexistence of two disconnected attractors. The addition of noise (at " D 0)
smoothes the probability density and induces transitions between the attractors. The
basic characteristics of the dynamics in the absence of modulation (probability
density P.x/, power spectrum S. f /, residence time distribution function for the
attractor p.n/ and average frequency of transitions between the attractors fs) as
functions of the noise amplitude D are presented in Fig. 7.4. They reflect the typical
features of the bistable system in presence of noise.

Figure 7.5 presents the results of the numerical analysis of the mapping (7.69)
with the inclusion of periodic perturbation with " D 0:05 and f0 D 0:125. A sharp
peak appears in the power spectrum at the frequency f0. Peaks also appear in the
function of the distribution of residence time on the background decay, and they are
centered on the times divisible by an even number of the perturbation semi-periods.
And finally, SNR.D/ demonstrates a clear maximum at a certain noise intensity. The
dependence SNR.D/ agrees with theoretical predictions (7.74). It may be said that
the replacement of potential wells with isolated attractors preserves all the features
of stochastic resonance.

Now we turn to a case of the absence of external noise .D D 0/. As we have
already said (see Fig. 7.3), at a > a� random transitions between the attractors
occur due to the internal deterministic dynamics of the system. We can assume
that in this case the synchronization between those transition and the periodic
perturbation frequency also leads to some analogue of the usual stochastic resonance
with external noise. A numerical calculation of the SNR.a/ dependence confirms
this assumption. Figure 7.6 shows the SNR.a/ dependencies in the two-state
approximation (Fig. 7.6a) and for full dynamics (Fig. 7.6b), described by (7.69).
Both in the first and second cases we observe clear maxima for the SNR curves at
parameter a values corresponding to a ratio of frequencies fsWf0 D 1W3; 1W1; 4W3.
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Fig. 7.4 Basic dynamical
characteristics (7.69) in
absence of modulation: (a)
probability density P.x/, (b)
power spectrum S. f /, (c) the
distribution function of the
residence times for the
attractor p.n/, (d) average
frequency of transitions
between the attractors f , as
functions of the noise
amplitude D; a D 3:4 [21]
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This result is understandable from the point of view of general stochastic
resonance philosophy. As we have already mentioned, stochastic resonance rep-
resents a generic phenomenon for non-linear systems with several time scales.
The dependence of one of the scales on external perturbation allows us to assure
certain resonance conditions. In the original setup of a bistable system perturbed
by periodic signal and noise, one utilizes the dependence of the Kramers rate of
transitions between the potential minima on the noise amplitude. In order to obtain
analogous results in the case of a chaotic system with several attractors in a chaos–
chaos alternation regime, one can use the dependence of the average frequency of
the transitions between the attractors on the controlling parameter a.
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Fig. 7.5 Results of numerical analysis of the mapping (7.69) with inclusion of periodic perturba-
tion with " D 0:05 and f0 D 0:125: (a) power spectrum, (b) residence time distribution function,
(c) signal-to-noise ratio [21]
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Fig. 7.6 Results of SNR.a/ calculation for the system (7.69) in absence of noise (" D 0:05,
f0 D 0:125, D D 0): (a) in the two-state approximation, (b) precise dynamics [21]
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7.5 Stochastic Resonance and Global Change in the Earth’s
Climate

Now we discuss in more detail how to use the stochastic resonance effect for a
qualitative explanation of the alternation of ice ages on Earth [1–4].

The chronology of ice ages (the global volume of ice on Earth) can be
reconstructed from the ratio of the isotopes 16O and 18O in organic sediments [23].
Almost all of the oxygen in water is made up of the 16O isotope and only fractions
of a percent belong to the heavier 18O. As the evaporation of heavier isotopes is less
probable, precipitations on land (they are mainly determined by the evaporation of
the oceans) are 18O isotope depleted. During ice ages, the continental glacial cover
increases at the cost of the ocean (in the last Ice Age 18,000 years ago, the ocean
level was almost 100m lower than in the present, and up to 5% of all total water
volume was on land in form of ice) and they are enriched in 18O isotope. The ratio
which interests us can be determined analyzing the isotope composition of calcium
carbonate CaCO3, which shells of sea animals are made of. These shells accumulate
on the ocean floor in form of the sedimentary layers. The more the ratio 18O=16O is
in those sediments, the larger the continental ice volume was at the moment of shell
formation.

The isotope composition time dependence [2], constructed based on these
measurements, clearly demonstrates the periodicity of the variation in global ice
quantity on the planet: the ice ages came every 100,000 years. Of course, the time
dependence presented in Fig. 7.7 is non-trivial: the dominating 100,000-year cycle
interferes with additional smaller oscillations. What external effects could result in
such periodic dependence? In the first half of the twentieth century, a Yugoslavian
astronomer, M. Milankovich, developed a theory connecting the global changes
of Earth climate to variations in insolation (the quantity of solar energy reaching
Earth). Even if we assume that solar radiation is constant, global insolation will
still depend on geometrical factors describing the Earth orbit. In order to consider
the dynamics of insolation, one should study the time dependence of the following
three parameters: the slope of the Earth’s axis in relation to the orbital plane,

Fig. 7.7 The power spectrum
of climatic changes for the
last 700,000 years [2]
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orbital eccentricity, and the precession of the Earth’s orbit. Gravitational interaction
with the Moon and other planets lead to the time dependence of those parameters.
Measurements and calculations showed that during the last million years these
dependencies have an almost periodic character. The slope of the Earth’s axis
changes between 22:1ı and 24:5ı in a period of about 40,000 years (at present, it is
23:5ı). The eccentricity of the Earth’s orbit oscillates between 0.005 and 0.06 (being
0:017 at present) with a period of 100,000 years (the very time scale that interests
us). And finally, the period of the precession of the Earth’s axis is 26,000 years. What
is the role of these factors in the Earth climate dynamics? An increase in the Earth’s
slope increases the amplitude of seasonal oscillations. The precession weakly
affects the insolation and mostly determines the perihelion passing time. The latter
smoothes the seasonal contrasts in one hemisphere and amplifies them in the other.
Therefore, the first two factors do not affect the total insolation, but just redistribute
it along latitudes and in seasons. Only the variation of eccentricity changes the total
annual insolation. However, the insolation oscillations connected with that effect do
not exceed 0:3%, which leads to average temperature changes of not more than a
few tenths of a degree, while during an ice age, the average annual temperature
decreases in the order of 10ıC. So how can variations in the parameters of the
Earth’s orbit cause global climate changes? The answer to the question is given
by the following statement: a simultaneous account of a small external periodic
force with a period of 105 years (modeling the oscillations of the eccentricity of
the Earth’s orbit) and random noise effects (modeling climate fluctuations at shorter
time scales, connected with random processes in the atmosphere and in oceanic
currents) in the dynamics of climate changes allows us to satisfactorily reproduce
the observed periodicity of ice ages.

In order to prove the above made statement we consider a simple model allowing
us to account for the influence of insolation variation on the average temperature
of the Earth T. The model represents the heat-balance equation for the radiation
coming to Earth Rin and emitted by it Rout

C
dT

dt
D Rin.T/ � Rout.T/ ; (7.75)

where C is the Earth’s thermal capacity. For the quantities Rin and Rout we use the
following parametrization

Rin.T/ D Q� ;

Rout.T/ D ˛.T/Q�C ".T/ : (7.76)

Here Q is the solar radiation reaching the earth, averaged over a long time period,
� is the dimensionless parameter allowing us to introduce explicit time variation
in the incident flow, ˛.T/ is the average albedo of the Earth surface (albedo is the
photometric quantity determining the ability of a matte surface to reflect the incident
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radiation, i.e. ratio of the radiation reflected by the surface to the incident), ".T/ is
the long-wave surface radiation of the heated Earth

�
".T/ 
 T4

�
.

Let us rewrite (7.75) in the form

dT

dt
D F.T/I F.T/ � .Rin.T/ � Rout.T// =C : (7.77)

Solutions of the equation F.T/ D 0 represent physically observable equilibrium
states of the considered model (7.75). They are usually called “climates” [2]. The
properties of climatic stability are determined by the pseudo-potential ˚ ,

˚ D �
Z

F.T/dT : (7.78)

It is evident that

F.T/ D �@˚
@T

(7.79)

and therefore the extrema of function ˚ correspond to the above notions of climate.
The climate will be stable if it corresponds to a minimum of ˚ . In this case it is
physically observable. The model (7.75) or (7.77) must reproduce the two following
basic observable facts of the Earth’s climate dynamics:

1. Local climatic changes are limited by a temperature scale in the order of a few
degrees.

2. At time scales of an order of 105 years, substantially larger average temperature
changes occur (in the order of 10ı), resulting in drastic changes in the planet’s
climate.

For a description of such dynamics, it is natural to use the pseudo-potential ˚
with two stable climates T1 and T3 (the minima), separated by the temperature
interval of an order of 10ı, and one unstable climate T2 (the maximum) between
them (see Fig. 7.8). One of the minima .T1/ corresponds to the ice age climate, the
second .T3/—to the present climate. The appearance of an unstable climate .T2/ in
the intermediate region is easily understood from simple physical considerations.
Let the unstable state correspond to some quantity of planetary ice cover. If, due
to local fluctuations, the temperature decreases, the ice surface will increase, which
will lead to an increase of the Earth’s local albedo and further temperature decrease.
An analogous situation also takes place with local temperature increases in the
vicinity of the same point.
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Fig. 7.8 Pseudo-potential ˚
with two stable .T1; T3/ and
one unstable T2 climates
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Let us now introduce into Eq. (7.75) the time dependent factor �.t/, accounting
for the variations of insolation, connected to the oscillations of the eccentricity of
the Earth’s orbit

�.t/ D 1C 0:0005 cos!tI ! D 2�

105 years
: (7.80)

The transition F.T/ ! F.T; t/ corresponds to the introduction of the time-
dependent potential ˚.T; t/. A time dependence (7.80) of such low amplitude leads
only to temperature oscillations in vicinity of the states (climates) T1 and T3, and it
cannot explain the alternation of ice ages.

Let us now take into account short time scale climate fluctuations, including into
Eq. (7.77) white noise, and transforming it into the stochastic differential equation

dT

dt
D F.T; t/C ��.t/ : (7.81)

In this formulation the problem of the Earth’s climate changes coincides exactly
with the above considered problem of particle dynamics in the symmetric double
well under the simultaneous influence of weak periodic perturbation and noise.
Figure 7.9 shows the numerical solution of Eq. (7.81) with parameters T3 � T1 D
10K and a white noise dispersion of 0:15K2=year. The figure clearly shows the
stochastic resonance effect, manifesting in the periodic transitions T1 $ T3,
accompanied by small oscillations around the stable states.
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Fig. 7.9 Results of numerical solving of the stochastic differential equation (7.81) [2]
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Chapter 8
The Appearance of Regular Fluxes Without
Gradients

The central topic of the present section is transport phenomena in spatially periodic
systems in the absence of displacing macroscopic forces (gradients). A complete
solution of the problem must include an understanding of the effect’s essence, the
establishment of the conditions at which a gradient-free current is possible, and a
quantitative investigation of the models and realistic systems where the effect can
be observed.

8.1 Introduction

Mass, energy, and charge transport is the basis of very diverse phenomena in nature.
On the macroscopic level one should distinguish between convective and diffusive
transport. The characteristic feature of the former is directed motion, generated
by gradients of different fields: force, temperature, concentration, etc. At the same
time, directed motion is absent in diffusive transport, which is generated by random
collisions. The ambitious task to obtain useful work (or directed motion) from
fluctuations, in spite of seemingly overwhelming difficulties, has long attracted the
attention of enthusiasts. According to statistics, for every proposal of a perpetuum
mobile of first kind there are eight projects of the second kind. The principal
difficulty is in the fact that useful work cannot be extracted from thermal equilibrium
fluctuations. Such a machine would violate the second law of thermodynamics.

There are several equivalent formulations of the second law. The very term
as well as the first formulation is credited to Clausius [1]: a process where heat
spontaneously transits from the colder bodies to the warmer ones is impossible. The
term “spontaneously” should be understood in the sense that the transition cannot
be realized with the help of any setups without some other changes in nature. In
other words, it is impossible to realize a process, the only outcome of which would
be heat transfer from a colder body to a warmer one. If, in violation of the Klausius
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formulation, such a process appeared to be possible, it would allow one to obtain
two reservoirs with different temperatures by the simple division of one reservoir in
two parts and the transferring of heat from one part to another. In its turn it would
allow one to perform the Carno cycle and to obtain mechanical work with the help
of a periodically acting machine at the cost of internal energy—in the end, at the
cost of one thermal reservoir. As this is impossible, in nature it is impossible to
realize a process, the only result of which would be load lifting (i.e., mechanical
work) executed due to the cooling of the thermal reservoir. The latter represents the
formulation of the second law of thermodynamics by W. Thomson. It is easy to see
that the two formulations are interrelated. The mechanical work obtained by cooling
of the colder reservoir could be used to heat the warmer one (e.g., by friction), which
would violate the Klausius principle.

Having come to terms with the fact that a perpetuum mobile of the second
kind is unrealizable, we can pose the problem of how to minimally violate the
functioning conditions of the second law in order to make gradient-free current
possible. To that end, let us look at the problem from a somewhat different point
of view. A perpetuum mobile of the second kind represents one of the many
idealized objects convenient for theorists to deal with but absolutely unavailable
to experimenters. Let’s divide the physicists interested in this problem on those
who gives priority to symmetry approach and those who “honestly” (analytically
or numerically) solve the equations of motion. In the 1950s, the physical elite (the
physicists who dealt with elementary particles) turned to symmetry. That transition
was to a great extent necessitated by the absence of corresponding equations of
motion. It is well known that symmetries are equivalent to the conservation laws.
Not calling into question the great progress achieved in this way, let us pose a
naive question: which is better, symmetries (conservation laws) or equations of
motion? The objective answer is: equations of motion are better, for two reasons.
First, equations of motion account for symmetry automatically, while symmetry
does not contain any dynamics. Second, a real physical situation always corresponds
to broken symmetry, and a breakdown in symmetry is more easily inserted into
equations of motion. We note that the computer revolution gave rise to the possibility
of substantially advancing solutions of realistic problems with broken symmetry.
In essence, the newest history of the considered problem began from the attempt
[2] to consider a realistic physical situation instead of an idealized Smoluchowski–
Feynman gedanken experiment. But we will start from the latter.

In the Feynman lectures [3] the problem is discussed with the help of a mechan-
ical ratchet model. The model was first invented and analyzed by Smoluchowski
[4] in the golden age of the Brownian motion theory. Smoluchowski showed that in
absence of a thinking creature (like the Maxwell demon) the intriguing possibility
to extract useful work from equilibrium fluctuations cannot be realized.

The device (see Fig. 8.1) is very simple: on one end of the axis there is a rotator,
on the other—a ratchet, which, due to the pawl, can rotate only in one direction. If
the rotator is surrounded with a gas, then the collisions of gas molecules with the
rotator blades will make it rock in random way. At the first sight it seems that, due to
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Fig. 8.1 A ratchet with a
pawl

T1 T2

presence of the ratchet and the pawl on the other end of the axis, sufficiently strong
unidirectional fluctuations will lift the pawl and the ratchet will rotate.

However, analysis shows that in order to obtain mechanical work, the rotator
must be inside a thermal reservoir at temperature T1 higher than that surrounding the
ratchet T2. Aside from that, calculations of the device’s efficiency made with some
simplifying assumptions show that it is equal to the efficiency of the Carno cycle.

Let us now consider how the setup works without a load and at equal temper-
atures of the two reservoirs. Let T be that temperature and " the energy required
to lift the pawl up the tooth, overcoming the action of the spring that pulls the
pawl down. At low temperatures, the speed of fluctuations providing the rotator
with sufficient energy in order to turn the ratchet on one tooth is proportional to the
factor exp.�"=kBT/. But the pawl is also placed into the reservoir with temperature
T and therefore it can also be lifted by the fluctuations of the reservoir. Moreover,
that inverse motion occurs with the same speed. Therefore, if both reservoirs are at
the same temperature, no directed ratchet motion appears.

Suppose further that the reservoirs have different temperatures T1 > T2, i.e. that
the pawl is colder than the rotator. Now the jump speeds are no longer equal and
their difference, generally speaking, can be used to lift the load attached by the
thread which is wound on the axis of our setup (see Fig. 8.1). Evidently, the value
of the load’s weight (it is more convenient to refer to its rotating moment L) is such
that both speeds are equal and the ratchet will not rotate directionally. This value is
easy to calculate [5].

If L� is the potential energy of the load acquired by it during the rotation
of the ratchet on one tooth, then " C L� is the total energy necessary for this
rotation. This energy mostly comes from the rotator, so the “forward” rotation speed
is proportional to exp Œ�."C L�/=kBT1�. For rotation in the inverse direction, it
is necessary to lift the pawl, and the energy needed for that equals ". Feynman
supposed that the energy is taken from the thermal reservoir where the ratchet is
placed, and therefore that speed is proportional to exp.�"=kBT2/. There exists a
moment L0 for which those speeds are equal

L0� C "

"
D T1

T2
: (8.1)



178 8 The Appearance of Regular Fluxes Without Gradients

Let us now turn to the calculation of the energy transferred between the reservoirs,
the ratchet, and the rotator. We have seen that after the “forward” jump the system
acquires the energy "CL� from the first reservoir. After the jump, the energy " will
dissipate. Feynman assumed that it is completely dissipated in the second reservoir.
At backward motion, energy " is taken from reservoir 2 and after the jump the energy
"C L� dissipates. A further assumption states that it dissipates in the reservoir 1.

Let us now take the L value a little less than L0, such that the wheel will slowly
move “forward,” lifting the load. With the above assumptions on energy transfer it
is not difficult to calculate the efficiency of our setup. If the ratchet makes NC steps
forward and N� steps back, then the total work equals .NC � N�/ L� , and the heat
quantity taken from the reservoir 1 is .NC � N�/ ."C L�/. Therefore the coefficient
of efficiency for the considered setup is

� D L�

L� C "
; (8.2)

and in the limit L ! L0 the setup efficiency is reduced to one of the Carno cycle �c,

� ! �c D 1 � T1
T2
: (8.3)

We note that, as was shown in [5], the Feynman analysis contains certain inexacti-
tude, which we will briefly discuss. As it is well known, efficiency (8.3) is achieved
when the Carno cycle works in a reversible way. If, at some time interval, the setup
received from reservoir 1 the heat quantity Q1 and transmitted to reservoir 2 the heat
quantity Q2, then the work executed is W D Q1 � Q2. Thus, the reservoir 1 entropy
decreased in quantity Q1=T1, and in the second reservoir it increased in quantity
Q2=T2. Reversibility implies the constancy of entropy, i.e.

�S D Q1
T1

� Q2
T2

D 0 : (8.4)

From there, the efficiency coefficient immediately follows

W

Q1
D �c D 1 � T1

T2
: (8.5)

Therefore the Feynman analysis assumes that the ratchet works reversibly. However,
this is not so [5]. In contrast to the Carno machine, the Feynman ratchet (at different
temperatures) always works in conditions of non-equilibrium. Different parts of the
system simultaneously contact the reservoirs with different temperatures. Therefore
the system can never be in thermodynamic equilibrium. We stress that we speak
not about the trivial irreversibility due to the heat flow along the setup axis (in an
idealized experiment it can be considered equal to zero due to a choice of material
with zero thermal conductivity). Of course, that inexactitude does not affect the
important statement about the absence of systematic rotation at T1 D T2.
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The above analysis of ratchet “dynamics” makes more clear the following
statement: if we exclude transfer processes, then directed transport in spatially
periodic systems contacting the unique source of dissipation and noise—a thermal
reservoir—is forbidden by the second law of thermodynamics. Therefore, to solve
the problem the system must be transferred into a state far from thermal equilibrium
with the help of deterministic or stochastic perturbation. We will mostly consider
the case of periodic perturbation and a limited set of stochastic processes. The case
of non-displacing perturbation, i.e. when the space, time, and ensemble averages
are zeros, presents the most interest. Those perturbations can be either externally
applied, or of internal origin, or due to a second thermal reservoir with another
temperature, or an additional non-thermal reservoir. We focus on small systems,
where one should not only account for thermal noise, but it even can play dominant
role. The physical source of thermal noise is the thermal environment of the system.
As an unavoidable consequence of this, there are dissipative effects.

Besides the breaking of thermal equilibrium, there is a second necessary
condition of the directed transport—the breaking of spatial reflective symmetry.
There are a number of different possibilities of doing this, and we will refer to the
ratchet or equivalently about the Brownian motor every time one of the conditions
or a combination of both is satisfied.

8.2 Dynamical Model of the Ratchet

Let us turn to a simple model [6], describing the one-dimensional dynamics of the
Brownian particle with coordinate x.t/ and mass m in the potential V.x/. We will
assume that the particle is in contact with a thermal equilibrium reservoir. As was
shown in the previous chapter, the dynamics of this particle can be described by the
Langevin equation

mRx.t/C V 0.x/ D � Px.t/C �.t/ : (8.6)

Here V.x/ is the periodic potential with period L,

V.x C L/ D V.x/ ; (8.7)

playing the role of ratchet in the Smoluchowski–Feynman model, and therefore it
has broken spatial symmetry. Under the latter we understand a potential property
where there is no �x, for which

V.�x/ D V.x C�x/ ; (8.8)

for all x. In other words, the potential cannot be made an even function of
coordinate by any choice of the origin. A typical example of ratchet potential
V.x/ D V0Œsin .2�x=L/C 0:25 sin.4�x=L/� is presented in Fig. 8.2.
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Fig. 8.2 The ratchet
potential
V.x/ D V0Œsin.2�x=L/ C
0:25 sin.4�x=L/ [6]
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The right-hand side of Eq. (8.6) accounts for the effects of interaction with the
thermal reservoir. We recall that both the friction force � Px.t/ and the random
fluctuating force �.t/, which we assume to be Gaussian, are due to the same
mechanism—the interaction of the Brownian particle with the degrees of freedom of
the thermal reservoir. The statistical properties of the random force are completely
determined by the setting of its mean value and correlation function

˝
�.t/�.t0/

˛ D 2kBTı.t � t0/ ; (8.9)

where the averaging h: : :i is made over the random process realizations �.t/.
It is important to note that in the Brownian world (where thermal fluctuations

are of the order of the potential barrier heights), the renormalized dimensionless
mass usually appears to be much less than unity, while all other dimensionless
parameters remain at unity. This means that the inertia term mRx can be neglected in
a good approximation. Such so-called over-damped dynamics will mostly interest
us further. In that limit the simplest version of the Smoluchowski–Feynman model
is described by the equation

 Px.t/ D �V 0Œx.t/�C �.t/ : (8.10)

The Smoluchowski–Feynman ratchet model, formulated with the help of the
Langevin equation (8.6) [or (8.10)] has a row of important advantages before
the original mechanic model. Dealing with the Langevin equation (or with the
equivalent Fokker–Planck equation ) we should not refer to the second law of
thermodynamics as to some a priori statement. Besides that, any modification of
the original model is treated using the Langevin equation in the standard way.

A natural further step is to consider the statistical ensemble of random variables
x.t/, representing the independent realizations of the Langevin equation (8.10). The
corresponding probability density P.x; t/,

P.x; t/ � hı.x � x.t/i ; (8.11)
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as is clearly seen (see, for example, [7]), obeys the Fokker–Planck equation which
in the particular case of over-damped motion is called the Smoluchowski equation

@

@t
P.x; t/ D @

@x


V 0.x/


P.x; t/

�
C kBT



@2

@x2
P.x; t/ : (8.12)

The quantity which interests us is the particle current, defined as the average over
the ensemble of the particle’s velocities

j.t/ � h Px.t/i : (8.13)

In the considered model, this quantity can be easily calculated. Averaging (8.10)
over the ensemble and accounting that h�.t/i D 0, we get j D � hV 0Œx.t/�i = . As
the ensemble average is by definition averaging with the probability density P.x; t/,
then

j D �
1Z

�1
dx

V 0.x/


P.x; t/ : (8.14)

The expression for the current j can be obtained independently from the model
dynamics using the continuity equation

@

@t
P.x; t/C @

@x
J.x; t/ D 0 ; (8.15)

where J.x; t/ is the probability current density,

J.x; t/ � h Px.t/ı.x � x.t//i : (8.16)

Integrating (8.16) over x, we find a connection between the particle current and the
probability current density

j D
1Z

�1
dxJ.x; t/ : (8.17)

Integrating (8.17) by parts and using the continuity equation (8.15), the latter
relation can be rewritten in the form

j D d

dt

1Z

�1
dxxP.x; t/ : (8.18)

This relation can be considered as an alternative definition of particle current.
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Fig. 8.3 Tilting ratchet
potential V.x/ D sin.2�x/C
0:25 sin.4�x/� Fx,
(F D �1) [6]
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Comparing the continuity equation (8.15) with the Fokker–Planck equation, we
get an explicit expression for J.x; t/ in the considered model

J.x; t/ D �

V 0.x/


C kBT



@

@x

�
P.x; t/ : (8.19)

Substituting (8.19) into (8.17) and taking into account that P.x; t/ ! 0 for x !
˙1, we return to (8.14).

Let us now obtain the expression for stationary particle current in the periodic
potential (8.7), making first some generalizations of the initial model (8.10). Let us
include into the model (8.10) a uniform stationary load F, equivalent to the plummet
in the mechanical Smoluchowski–Feynman model. On the potential level it implies
a transition to the sloping potential

NV.x/ D V.x/� Fx : (8.20)

Figure 8.3 gives an example of the sloping potential .F D �1/with broken reflective
symmetry

NV.x/ D sin.2�x/C sin.4�x/ � Fx : (8.21)

The Langevin equation in the presence of additional uniform static force F reads

 Px.t/ D �V 0Œx.t/�C F C �.t/ : (8.22)

The corresponding Smoluchowski equation is

@P.x; t/

@t
D 1



�
V 0.x/� F C kBT

@

@x

�
P.x; t/ D @J.x; t/

@x
: (8.23)



8.2 Dynamical Model of the Ratchet 183

The stationary solution (8.22), corresponding to the constant density of the proba-
bility current J, satisfies the equation

J D .F � V 0.x//P.x/� kBT
dP.x/

dt
: (8.24)

The solution of this equation can be presented in the following form [7]

P.x/ D e� NV.x/=kBT
2

4N � .J=kBT/
xZ

0

e NV.x0/=kBTdx0
3

5 ; (8.25)

where N is the integration constant. If we require that P.x/ is bounded for large
x, then we can prove that the function P.x/ is periodic. For that we calculate the
integral

nLCxZ

0

e NV.x0/=kBTdx0 D
LZ

0

e NV.x0/=kBTdx0

C � � �
nLZ

.n�1/L
e NV.x0/=kBTdx0 C

nLCxZ

nL

e NV.x0/=kBTdx0 ;

performing the integration and accounting that NV.x C nL/ D NV.x/� nLF, we get

nLCxZ

0

e NV.x0/=kBTdx0 D I
1 � e�nLF=kBT

e�LF=kBT
C e�nLF=kBT

xZ

0

e NV.x0/=kBTdx0 ; (8.26)

where I D
LR

0

e NV.x/=kBTdx. From (8.25) taking into account (8.26), we get

P.x C nL/ D e� NV.x/=kBT
�
N � JI

kBT.1 � e�LF=kBT/

�
enLF=kBT

Ce� NV.x/=kBT
2

4 JI

kBT
�
1 � e�LF=kBT

�� J

kbT

xZ

0

e NV.x0/=kBTdx0
3

5 : (8.27)

For F > 0 .F < 0/ that expression can be bounded in the limit n ! C1 .n !
�1/ only provided the first bracket (8.27) will be equal to zero, i.e.

JI D kBTN.1 � e�LF=kBT/ : (8.28)
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Then from (8.25) and (8.27) we get

P.x C L/ D P.x/ (8.29)

which proves the above statement about the periodicity of the distribution function
P.x/. We normalize the distribution function on the periodicity interval

LZ

0

P.x/dx D N

LZ

0

e NV.x/=kBTdx � 
J

kBT

LZ

0

e� NV.x/=kBT
0

@
xZ

0

e NV.x0/=kBT dx0
1

A dx :

(8.30)

Finally, the particle current j can be found by the Langevin equation averaging over
the ensemble of the random variable �.t/ realizations, i.e. by averaging with the
distribution function P.x/,

j D h Pxi D �1 ˝F � V 0.x/C �.t/
˛ D �1 ˝F � V 0.x/

˛

D �1
LZ

0



F � V 0.x/

�
P.x/dx D �1

LZ

0

.J C kBTdP=dx/ dx D LJ : (8.31)

Deriving (8.31) we used the relations (8.22), (8.24) and the periodicity condition
for the distribution function P.x/ (8.29). Finding from (8.28) the expression for the
probability current density J and substituting it into (8.31), for the particle current j
we finally get

j D LkBT



N

I

�
1 � e�LF=kBT

�
: (8.32)

The normalization constant N can be found by exclusion of J from the rela-
tions (8.28) and (8.30).

A principally important result immediately follows from the relation (8.32): the
particle current j for F D 0 is zero for any periodic potential. The reason for this is
that of the two necessary conditions for the appearance of current in the absence of
displacing macroscopic forces (gradients)—the thermal disequilibrium and spatial
reflective symmetry breaking—we satisfied only the latter. We note that this result
was obtained from solution of the Langevin equation without reference to the second
law of thermodynamics.

8.3 Ratchet Effect: An Example of Real Realization

In order to explain the ratchet effect—the appearance of gradient-free currents in
spatially periodic asymmetric systems far from thermodynamic equilibrium—
we use the so-called diffusive ratchet [8], which is a generalization of the
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Smoluchowski–Feynman model (8.22), where the temperature of Gaussian white
noise �.t/ is subject to time-dependent periodic perturbation with period 	 , i.e.

˝
�.t/�.t0/

˛ D 2kBT.t/ı.t � t0/

T.t C 	/ D T.t/ : (8.33)

Due to the time dependence, the noise �.t/ is no longer stationary. However,
stationariness can be restored if we rewrite (8.21) in the form

 Px.t/ D �V 0Œx.t/�C F C g.t/ O�.t/ ; (8.34)

where O�.t/ is Gaussian white noise

D O�.t/ O�.t0/
E

D 2ı.t � t0/I g.t/ � ŒkBT.t/�
1=2 : (8.35)

Such a model is commonly [6] called diffusive ratchet. For numerical calculations
we use the following time dependence

T.t/ D NT Œ1C A sign fsin .2�t=	/g� : (8.36)

Considering that the tending of the period of temperature oscillations to infinity
implies temperature constancy in any finite time interval, the equality to zero of the
particle current becomes evident in the light of the above results. In the transition to
an extremely small 	

�
	  �1�, i.e. fast temperature oscillations, it is reasonable

to assume that the system does not have time to follow the temperature changes and
behaves as in the presence of an average constant temperature

T D 1=	

	Z

0

dtT.	/ : (8.37)

What is the situation in the intermediate region? Because of temperature oscillations
Eq. (8.34) does not allow time-independent solutions. However, time dependence is
absent in the particle current asymptotes averaged over the oscillation period; this
is the quantity of interest in the case of periodically time-dependent perturbations.
Figure 8.4 shows the numerical solution of Eq. (8.34) for long times of the period
	 averaged particle current J as function of the force F. The ratchet potential was
taken in the form (8.21). The result is significantly different from the one expected
in the case of time-independent temperature. Indeed, as according to (8.32) at
F D 0 for constant temperature the current is absent, then at F ¤ 0, i.e. for the
sloping potential the particles in average should always (at any fixed T ) move in
the direction of the slope determined by the F sign. At first glance, it seems that
with periodic temperature variations the particles must still move on average in the
direction determined by the F sign. Despite expectations, we see in Fig. 8.4 that
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Fig. 8.4 Numerical solution
of Eq. (8.34) for long times of
the period 	 averaged particle
current J as function of the
force F [6]
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there is whole interval of negativeF values where the particles on average overcome
the static load, move up the potential slope, and execute work against the force F. It
is the transformation of the random fluctuation energy into useful work that is called
the “ratchet effect.” For the names of the experimental setups or theoretical models
where this effect is realized, the following synonyms are used: “thermal ratchet,”
“Brownian motor,” “Brownian rectifier,” “stochastic ratchet,” or simply “ratchet.”
For a qualitative detection of the ratchet effect it is sufficient to consider the case
F D 0. Then the ratchet effect is equivalent to appearing of finite particle current at
zero static load,

j ¤ 0 on F D 0 : (8.38)

We stress that the effect of the appearance of directed motion, obtained in the
diffusive ratchet model, does not contradict the second law of thermodynamics, as
we can consider the time depending temperature T.t/ as being generated by several
thermal reservoirs with different temperatures. The specific example of temperature
dependence (8.35) models a situation with two thermal equilibrium reservoirs with
different temperatures. The fact that such system executes a work is not a miracle
but it is also far from non-trivial.

In order to understand the physical mechanism leading to the appearance of the
particle current at F D 0 for a diffusive ratchet we use a version of dichotomic
temperature modulation (8.35). During the first time interval t 2 Œ	=2; 	� the
temperature is kept at constant value NT.1�A/, which (with the appropriate choice of
A) is much less than the potential barrier�V between the neighboring local minima.
Therefore, at the end of that time interval, the particles will mostly gather in the
vicinity of the local minimum, as it is shown in Fig. 8.5. Then the temperature jumps
to the value NT.1CA/, which is considerably higher than�V (with appropriate choice
of A ) and it will remain constant during the next half-period Œ	; 3=2	�. Because
at that time interval, the particles practically do not feel the potential, which is
small compared to the perturbing thermal noise, the distribution function will evolve
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Fig. 8.5 Mechanism of
diffusive ratchet function [6] P(x,t)

V(x)

x0 x0+ L

practically in the same way as at free diffusion (upper part of Fig. 8.5). Finally, the
temperature jumps again to the value NT.1 � A/ and the particles will roll down to
the nearest potential V.x/minimum. But due to the asymmetry of the potential V.x/
the initial population of one minimum will be redistributed asymmetrically and a
summary mean displacement will appear after one period 	 .

In the case when the potential has one minimum and one maximum on each
period L (see Fig. 8.5), and the local minimum is closer to the local maximum from
the right, then a positive particle current j > 0 will appear, otherwise a negative
current will appear. For potentials of more complex geometry, the current direction
determination can be no longer evident.

It is expected that the qualitatively analogous behavior will be observed also
for more complicated modulation T.t/ provided it is sufficiently slow. The effect is
relatively rough with respect to the potential shape and it conserves for random (non-
deterministic) variations of T.t/ [9, 10], i.e. for seldom random switches between
the two temperature values and for dynamics in discrete space of states [11]. The
ratchet effect also takes place in the case of finite inertia, and with colored (non-
white) noise.

Let us now look at the ratchet effect from a somewhat more general point of view.
At the first stage, we made sure that in thermal equilibrium there was no preferential
motion in the random dynamics regardless of the spatial symmetry breaking. This
result is a direct consequence of the second law of thermodynamics, though it
was obtained without direct reference to it. At the second stage we considered the
diffusive ratchet—a system with broken thermal equilibrium, for which the second
law of thermodynamics does not apply. In the absence of that and other restricting
reasons, and in the presence of broken spatial symmetry, the appearance of the
directed motion of particles does not seem so amazing. Moreover, it can be made
natural in light of the so-called Curie principle [6, 12]: if some phenomenon is
not forbidden by a symmetry, then it must take place. In other words, the Curie
principle postulates the absence of accidental symmetry in a common situation.
Accidental symmetry can appear as an exceptional coincidence but not as a typical
situation. Any accidental symmetry is structurally unstable and an arbitrarily small
perturbation destroys it, while broken symmetry is structurally stable.
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8.4 Principal Types of Ratchets

For the basis of ratchet classification we take [6] the minimal generalization of the
Smoluchowski–Feynman model (8.22)

 Px.t/ D �V 0 Œx.t/; f .t/�C y.t/C F C �.t/ : (8.39)

We will assume that

V Œx C L; f .t/� D V Œx; f .t/� (8.40)

for all time moments t. The functions y.t/; f .t/ are either periodic or random
functions of time (with zero mean). In cases when they represent a random process,
we consider it to be statistically independent from both thermal fluctuations �.t/ and
the system state x.t/. As before we will neglect the effects of inertia and model the
thermal fluctuations by uncorrelated white noise. Generalizing (8.8), we will call
the potential V Œx; f .t/� a spatially asymmetric one if there is no �x such that

VŒ�x; f .t/� D V Œx C�x; f .t/� : (8.41)

The ratchets described by the model (8.39) can be divided into two classes. The first
includes pulsating ratchets, for which y.t/ � 0, and the second tilting ratchets, for
which f .t/ � 0. A very important subclass of the pulsating ratchets is the so-called
fluctuating potential ratchet, for which

V Œx; f .t/� D V.x/ Œ1C f .t/� : (8.42)

This subclass contains an interesting particular case of on–off ratchets, for which
the function f .x/ takes only two values ˙1. The state �1 corresponds to the turned
off potential. Evidently, the potential in the right-hand side of (8.42) satisfies the
condition (8.41) only if the same condition is satisfied by the potential V.x/. For
the considered class of ratchets the current is exactly zero for spatially symmetric
potentials (independently of f .t/ properties), and for the spatially asymmetric
potentials, the current magnitude is determined by the spatial symmetry breaking
degree. We note that the term fluctuating includes both random and periodic
functions f .t/.

The second subclass of pulsing ratchets includes the traveling potential ratchets,
for which

V Œx; f .t/� D V Œx � f .t/� : (8.43)

Those ratchets are interesting because the potential (8.43) never satisfies the
symmetry condition (8.41), independently of the fact whether the potential V.x/ is
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spatially symmetric or not. Therefore even symmetric V.x/ can be used for current
generation.

The third subclass of the pulsing ratchets is described by the model (8.39) with
f .t/ � 0; y.t/ � 0, but with spatial or time dependence of temperature in the
relation

˝
�.t/�.t0/

˛ D 2T.t or x/ı.t � t0/ : (8.44)

Such ratchets are called diffusive. In cases of spatial dependence for the temperature,
T.x/ is assumed to be a periodic function with the same period L as in the potential
V.x/. In cases of time dependence, the function T.t/ is assumed to be either periodic
or random. In the strictest sense, diffusive ratchets are not pulsing ones, for which
f .t/ ¤ 0, but they are shown [6] to reduce to the latter.

From the point of view of Einstein relations, a change of the character of
the diffusion can be equally due to change in both the temperature and friction
coefficient. However, such modification of the Smoluchowski–Feynman model does
not break the detailed balance symmetry and therefore there is no ratchet effect in
that case [6].

We will briefly discuss the tilting ratchet . f .t/ D 0; y.t/ ¤ 0/. In this case
V Œx; f .t/� D V .x/. In the case of the potential V.x/ with broken spatial symmetry
we can restrict ourselves to the case of symmetric function y.t/. Under symmetric
function we will understand a periodic one y.t/, for which there is such �t, that

� y.t/ D y.t C�t/ (8.45)

for all t. If y.t/ represents a random process, then we will call it symmetric if the
statistical properties of the processes y.t/ and �y.t/ coincide. In the case when
the driving force y.t/ is a random process, the ratchet is called a fluctuating force
ratchet, and in the case of periodic driving, swinging [13]. If, in the case of periodic
excitement, we drop thermal noise into the Langevin equation, then we obtain a
so-called deterministic ratchet [14, 15].

In the case of symmetric potential V.x/ for the occurrence of the finite current,
generally speaking, is sufficient to break the symmetry of y.t/. The term asymmetric
tilting ratchet is usually applied in a case when y.t/ is a non-symmetric function,
regardless of the fact whether it is periodic or random, and whether the potential
V.x/ is symmetric or not.

Of course, the presented classification does not exhaust all conceivable ratchets.
Let us note in particular a curious class of ratchet not included in the considered
classification—the so-called supersymmetric ratchets [6, 16]. In such systems, the
ratchet effect is absent even at deviation from the thermal equilibrium and under
broken spatial (or time) symmetry. In particular, in such systems the average
stationary current is zero for any choice of friction coefficient and time dependencies
of temperature and of external forces f .t/; y.t/. The term “super-symmetry” is due
to the fact that the unperturbed system f .t/ D y.t/ D F D 0 (8.39) at a certain
choice of the potential V.x/ can be described in terms of supersymmetric quantum
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mechanics [17]. The usefulness of this connection lies in the possibility to transform
the Fokker–Planck equation into the Schrödinger equation in imaginary time, and
further to use the powerful arsenal of supersymmetric quantum mechanics.

To conclude this section, we will discuss what physical situations are covered by
the model (8.39) and the ratchet classification based on it. They are so diverse that
their systematic enumeration is senseless. Therefore we will limit ourselves to a few
remarks.

The stochastic process in (8.39) has the space of states in form of the real axis
and for simplicity is often called a Brownian particle. In some cases x.t/ actually
represents the position of a real physical particle, in other cases, very diverse
collective degrees of freedom or slow variable states. It can be a chemical reaction
coordinate, fission degree of freedom of a nucleus, ratchet position with respect
to the pawl, or a Josephson phase in super-conducting contacts. The conditions
of potential periodicity are critical and can be connected either with real spacial
periodicity or to be due to the phase origin of the corresponding variable. Neglecting
the inertia term is typical for mesoscopic systems. However, there are times when
it is important to take into account inertia in order to describe the experimental
situation correctly.

One more important feature of the model (8.39) is the method of description of
the interaction with the thermal environment. The version of such interaction used
with the help of local friction force and white Gaussian noise represents just the
simplest possibility. Its conformity to a concrete physical system must be checked
in every specific case. In particular, the memory-free friction mechanism and
uncorrelated fluctuations are consequences of the assumption about the possibility
of dividing into characteristic time scales the fast degrees of freedom of the thermal
reservoir and relatively slow system dynamics x.t/. The x-independent system-
reservoir coupling constant  is natural if the periodic potential and the thermal
environment have a different physical origin, but x-dependent friction models are
also considered.

Applied perturbation may either act immediately on the variable of state x or
change the periodic potential. In the former case, perturbation acts as a normal force,
i.e. the system receives (or loses) energy in displacement on one spatial period. The
experimental realization of such situation, according to the above classification, will
represent an asymmetric tilting ratchet. In the latter case, we are dealing with pulsing
ratchets. For example, the electric field can change the internal charge distribution
of a neutral Brownian particle or of the periodic substrate which it interacts with.

The ratchet effect has a rich history. Some of its aspects were already present
in the works of Archimedes, Maxwell, and Curie, but only after the generalization
of the Smoluchowski model by Feynman did the problem of thermal fluctuation
rectification appear at the center of physicists’ attention. The newest history of
the effect was initiated by attempts to solve the intracellular transport problem [2].
Between the “ancient” and “newest” epochs of the effect’s investigation there was
a very important and fruitful period. More than 30 years ago, the ratchet effect
was experimentally observed in the form of the so-called photo-galvanic effect
[18, 19]. After that the directed transport induced by non-displacing time dependent
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perturbations in periodic structures with broken symmetry was the subject of several
hundred experimental and theoretical works during the 1970s. The complete theory
was created by Sturman, and Fradkin [20] and Belinicher and Sturman [21]. In those
works the authors developed a theory of generation of current in crystals without the
symmetry center under the influence of homogeneous illumination, i.e. the ratchet
theory was built for a specific case.

Electrical current in a medium is usually generated either by applied fields
(electrical and magnetic) or by spatial inhomogeneities (temperature and illumina-
tion gradients). Along with that, in thermodynamically non-equilibrium conditions
currents of different natures are possible, connected to the absence of symmetry
center in the medium. One such effect is the photo-galvanic effect, the appearance
of direct electric current in homogeneous crystals without a symmetry center
under the influence of homogeneous illumination. In experiments performed on
the ferroelectric LiNbO3 and BaTiO3 crystals, the constant photocurrents j 

10�10 A=sm2 and photo-tension considerably exceeding the forbidden gap width
were observed. The influence of transition processes caused by the crystal heating
by light or by relaxation processes was excluded due to long observation of the
currents.

Later, it became clear that the photo-galvanic effect is possible without exception
in all media, which are not symmetric with respect to spatial inversion. Besides
crystals without a symmetry center, these also include isotropic media—gases and
liquids—containing molecules with natural optical activity. Non-equilibrium may
originate not only in light, but also sound, particle flows, etc. It also refers to non-
stationary phenomena not supported by external sources. Any process of relaxation
to the thermodynamic equilibrium in media without a symmetry center must be
accompanied by current.

Let us give a simple example of particle flow appearing in a medium without
a symmetry center in the presence of inhomogeneity. We consider a gas of non-
interacting particle scattering on randomly situated and identically oriented wedges.
Evidently, such a medium does not have a symmetry center. In the absence of
external actions, as the result of impacts the isotropic particle velocities distribution
sets up, because at elastic scattering from any convex body the spherically sym-
metric particle distribution remains spherically symmetric. Let the non-equilibrium
source be the alternating field eE cos!t. Its action supports the non-equilibrium
distribution of anisotropic particle velocities, because it increases the fraction of
particles along and against the field E. As it can be seen from Fig. 8.6, the scattering
of the particles moving vertically after the scattering on the wedge leads to a
collective flow directed to the left. Another simple mechanism of the diffusive flow
anisotropy appearing with fluctuations of the diffusion coefficient is discussed in the
paper [22].

It interesting to note that it is already more than half a century that an effect
is known which is related to the photo-galvanic effect in its nature. In 1956 Lee
and Yang [23] supposed that in weak interactions parity is not conserved, i.e. our
space, being isotropic, does have a symmetry center. As a result of that the electrons
appeared at ˇ-decay, n ! pC eC �, in the presence of magnetic field H must have
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Fig. 8.6 The simplest
example of particle flow
appearing in a medium
without a symmetry center in
the presence of
non-equilibrium

asymmetric distribution, i.e. in the direction �H (� is a pseudoscalar) a current must
appear. Current magnitude is determined by the degree of parity non-conservation
in weak interactions.

8.5 Nonlinear Friction as the Mechanism of Directed Motion
Generation

Let us consider one more example that is beyond the simple classification consid-
ered in the previous section: the motion of an object under the action of a random
force F.t/ with zero mean in a medium with friction [24]. We will assume that the
friction coefficient depends on the direction of the object’s motion. Such dependence
can be induced in the simplest case by the particle shape or its conformations.
Such conformation transitions in the considered model are not connected to the
presence of an internal “program” of transitions, but are induced by the influence
of the external medium. We will use the term “umbrella” for objects with this
peculiarity (see Fig. 8.7). For an umbrella under the action of forces with zero mean
one can pose a question about the existence of a non-zero current even in absence
of potential: the reflective symmetry is already broken on the level of the friction
coefficient. This model can be called a non-potential ratchet with nonlinear friction.

The umbrella’s equation of motion under action of the external random force F.t/
can be written in the form

mRx D F.t/ � ˛. Px/ Px ; (8.46)
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Fig. 8.7 Umbrella—an
object composed from an
axis, two movable blades and
stopper

where ˛ is the direction-dependent friction coefficient. The simplest model of
such dependence can be obtained if we consider that when moving in the positive
direction of the x axis the umbrella closes and the friction coefficient is ˛1. When
the umbrella moves in the opposite direction, it opens and the friction coefficient
grows up to ˛2. Such dependence can be described by the expression

˛ D 1

2
.˛1 C ˛2/C 1

2
.˛1 � ˛2/ Px

j Pxj (8.47)

Writing the original Eq. (8.46) in terms of velocity Px D v, we get

m Pv D F.t/� 1

2
..˛1 C ˛2/ v C .˛1 � ˛2/ jvj/ : (8.48)

The simplifying assumption in this model is that the umbrella opens and closes
instantly. Of course, that approximation is reasonable, if the characteristic time
scales of the random force T and of the umbrella 	 satisfy the inequality T 	 	 .
More detailed models can be built using the continuous velocity dependencies of
the friction coefficient, for example

˛.v/ D ˛1 C ˛2 � ˛1

1C exp.ˇv/
; (8.49)

where ˇ is the characteristic scale of transition between the two friction coefficient
values.

Let us now discuss the mechanism of the appearance of directed motion under the
action of a zero mean random force. Its nature is in the breakdown of the equations
of motion symmetry with respect to the replacement v ! �v. In order to estimate
the appearing directed velocity we use the following simple considerations. We
average Eq. (8.48) over the random force. The stationary state is determined by the
equality

hvi D ˛2 � ˛1
˛2 C ˛1

hjvji : (8.50)

The average value of the velocity module we estimate through its quadratic moment
as

hjvji ' ˝
v2
˛1=2

: (8.51)
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From the energy balance in the stationary state we estimate the pair correlator of the
velocity

hvFi D 1

2
.˛1 C ˛2/

˝
v2
˛
: (8.52)

Now we express the correlator in the left-hand side of (8.52) through the correlation
characteristics of the force. It can be easily done from the estimate

v ' 1

m

Z
F.	/d	 : (8.53)

Then

hvFi D 1

m

Z
hF.t/F.	/i d	 � 1

m

˝
F2
˛
	c : (8.54)

Using (8.50)–(8.53) we finally get

hvi ' .˛2 � ˛1/

.˛2 C ˛1/

 
2	c

˝
F2
˛

m .˛2 C ˛1/

!1=2
: (8.55)

Thus a directed motion under action of fluctuational random force with zero mean
appears. The magnitude and direction of the velocity are determined by the differ-
ence .˛2 � ˛1/. Of course such simple estimates demonstrate only the possibility
of the directed motion appearing and they require more accurate substantiation. In
order to do that we will now obtain the kinetic equation for the umbrella’s velocity
distribution function.

In order to derive the kinetic equation we take the usual definition of the
distribution function

f .V; t/ D hı .V � v.t/ /i : (8.56)

Here v.t/ is the solution of the dynamical equation with the random force and the
averaging is performed over all its realizations. Time differentiating f .V; t/ and
using the equations of motion, we get

@f

@t
D � 1

m

@

@V
.hF.t/ı .V � v.t//i � ˛.V/Vf / (8.57)

or in more convenient form

@f

@t
� @

@V

�
˛.V/

m
Vf

�
D � 1

m

@

@V
hF.t/ı .V � v.t//i : (8.58)
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Thus the problem is reduced to averaging of the term in the right-hand side and
its expression through the distribution function. Using standard methods (see, for
example, [7, 25–28]), it is easy to obtain the closed equation for the distribution
function in the case of Gaussian ı-correlated force. That equation reads

@f

@t
� @

@V

�
˛.V/

m
Vf

�
D
˝
F2
˛
	c

2m2
@2f

@V2
(8.59)

where we used the notion (8.53). The stationary solution of that equation corre-
sponding to absence of flow in the velocity space is easy to obtain for the two-level
model ˛.V/ (8.47)

f .V/ D C exp


� 2m

hF2i 	c
Z

V˛.V/dV

�

D C exp


� mV2

hF2i 	c .˛2 C .˛1 � ˛2/�.V//

�
: (8.60)

The constant C is determined from the normalization condition for the distribution
function

C D
�

m˛1˛2
� hF2i 	c

�1=2
1p

˛1 C p
˛2
: (8.61)

Using the found equilibrium distribution function we obtain the average velocity of
the umbrella motion in the form

hVi D
Z 1

�1
Vf .V/dV D

 ˝
F2
˛
	c

�m˛1˛2

!1=2
˛2 � ˛1p
˛2 C p

˛1
: (8.62)

The velocity value differs from the above estimate (8.55) by a more complicated
dependence on the two friction components.

Let us now estimate the efficiency of this method of generating the directed
motion with respect to its average energy

� � hVi2
hV2i D 2 .˛2 � ˛1/

2

�
�p
˛1 C p

˛2
� �
˛
3=2
1 C ˛

3=2
2

	 I for ˛2 	 ˛1 D 2

�
: (8.63)

The maximal efficiency coefficient achievable for the described motion is

� D hVi2
hV2i C hVi2 D �

1C �
I for ˛2 	 ˛1 D 2

� C 2
: (8.64)
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As we can see, the efficiency of the directed motion generation is relatively high.
One can make sure of this, having considered the umbrella’s motion in a constant
gravitational field. The constant gravity force acts in the negative direction of the
x axis. Then the kinetic equation describing the umbrella travel takes the following
form

@f

@t
� @

@V

�
gf C ˛.V/

m
Vf

�
D
˝
F2
˛
	c

2m2
@2

@V2
: (8.65)

The stationary solution of that equation like in the previous case is easily found

f .V/ D C exp


� 2m

hF2i 	c
Z
.gm C V˛.V// dV

�

D C exp


�2gm

2V

hF2i 	c � mV2

hF2i 	c .˛2 C .˛1 � ˛2/�.V//

�
: (8.66)

The normalization constant C is determined from the normalization condition for
the distribution function f ,

C

q
.I1 C I2/ D 1 : (8.67)

Here q D 2gm2=
˝
F2
˛
	c > 0, a Ii .i D 1; 2/ are defined as

Ii D p
�ˇie

ˇ2i erfc
�
.�1/iC1 ˇi

	
: (8.68)

The parameters ˇi .i D 1; 2/ are equal to

ˇi D m3=2gp
˛i hF2i 	c

: (8.69)

The criterion for the appearance of the directed motion in the positive direction of
the x axis can be written in the form

hVi D �2
q.I1 C I2/

�
ˇ21I1 C ˇ22I2 C ˇ22 � ˇ21

�
> 0 : (8.70)

It is easy to make sure that there is a region of the parameters where that condition
is satisfied. The condition can be qualitatively understood from a simple physical
interpretation. The Langevin equation (8.48), which is used to derive the kinetic
equation, is equivalent to the over-damped case of the usual Langevin equation.
One can easily make sure of that having made the replacement V ! x; m ! ˛.
Therefore we can describe the dynamics of the system under consideration using
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Fig. 8.8 The effective
potential
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the over-damped Langevin equation philosophy. In essence, in this interpretation
the particle performs finite motion in the effective potential

U.x/ D mgx C x2

2
.˛2 C .˛1 � ˛2/�.x// : (8.71)

Obviously, the global minimum of that potential is situated in the negative x region
(Fig. 8.8) and therefore the average value of the system’s position at low energies is
negative. Returning to the initial variables, we find that the umbrella has negative
average velocity, i.e. it falls under the action of the force of gravity. However, at high
energies the situation changes. The average position of the particle may become
positive due to the different asymptotic behavior of the potential .˛1 < ˛2/. It is
easy to show that if the energy level is

E > 4.mg/2 .˛1 C ˛2/

.˛1 � ˛2/
2

; (8.72)

then the average position is positive. In the over-damped case the energy level is
determined by the level of the pair correlator for the external random force. In our
case it would mean that provided the condition

˝
F2
˛
	c

2m
> 4.mg/2 .˛1 C ˛2/

.˛1 � ˛2/2
; (8.73)

the umbrella will move in the positive direction against the gravity force.
The obtained criterion is rather rough as it does not account for distinctions

in the characteristic times of motion in the regions x > 0 and x < 0. It is easy
to understand that accounting for that effect will lead to a motion regime against
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Fig. 8.9 Distinctions
between the exact and the
rough criteria
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gravity force at greater ˇ2, than the inequality (8.73) gives. This is confirmed by
the exact criterion which follows from the condition (8.70). Figure 8.9 shows the
distinctions between the exact and the rough criteria. Thus the efficiency of this
motion method is sufficient to overcome the counteraction of constant forces. In a
certain sense, such mechanisms for directed motion generation can be observed for
many biological objects both of micro and macro-sizes. In the macro case the role
of random forces is played by periodic forces due to the retraction and extrusion
of a medium (a liquid). This method is used by many inhabitants of an aquatic
environment, such as jellyfish. It should be stressed that there is no need to exceed
the forces on the liquid retraction stage over the extrusion stage. The period average
of those forces may be and must be zero. Molecules with special asymmetry can
travel in random external fields using analogous mechanisms.

8.6 Change of Current Direction in the Deterministic
Ratchet

The ratchet problem is closely related to the problem of deterministic particle
dynamics in a periodic spatially asymmetric potential (the ratchet potential).
According to the classification considered in Sect. 8.4, this system belongs to the
class of deterministic ratchets . f D 0; � D 0/. If the inertia term is taken into
account, then the particle dynamics in certain regions of parameter space can be
chaotic, and this leads in turn to the modification of the transport properties of the
system. In particular, it appears that there are strict correlations between the structure
of the system’s bifurcation diagram and the direction of the induced current [15].
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Let us consider the problem of motion of the particle of mass m under the
action of a periodic time-dependent force with zero mean in a spatially asymmetric
potential. The equation of motion in the simplest periodic time dependence takes
the form

mRx C  Px D �dV.x/

dx
C F0 cos˝ t ; (8.74)

where F0 and˝ are amplitude and frequency of the external force, respectively. We
choose the ratchet potential in the form

V.x/ D V1 � V0 sin

�
2�.x � x0/

L

�
� V0
4

sin

�
4�.x � x0/

L

�
; (8.75)

where L is the spatial period of the potential, V0;V1 are some constants. The shift
on x0 provides the minimum position in the origin.

Let us introduce the following dimensionless variables

x0 D x=L; t0 D !0t; ! D ˝=!0; a D F0=mL!
2
0 ; b D =m!0 : (8.76)

Here !0 D 4�2V0ı=mL2 is the frequency of linearized motion in the vicinity of the
potential minimum, ı D sin 2�

ˇ̌
x0
0

ˇ̌ C sin 4�
ˇ̌
x0
0

ˇ̌
. The equation of motion in the

dimensionless variable (we will further drop the primes) reads

Rx C b Px D �dV.x/

dx
C a cos!t ; (8.77)

where the dimensionless potential is

V.x/ D C � 1

4�2ı
Œsin 2�.x � x0/C 0:25 sin 4�.x � x0/� : (8.78)

The constant C is chosen from the condition V.0/ D 0. The parameter values that
satisfy the above conditions are the following:

x0 ' �0:19; ı ' 1:6; C ' 0:0173 :

Equation (8.77) contains three dimensionless parameters a; b; !, and each of them is
determined in terms of the initial physical parameters. This is a nonlinear differential
equation with explicit time dependence and thus it allows both regular and chaotic
regimes. In cases where the inertia term mRx is neglected, chaotic regimes are absent.

We now turn to the numerical investigation of current appearing in the sys-
tem (8.77), i.e. in the deterministic ratchet. We use the definition of current as the
time average of particle velocity averaged over the ensemble of initial conditions.
This definition includes two different averages. The first one is the averaging over
the M initial conditions that we will assume to be uniformly distributed on some
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interval around the origin with zero initial velocity. For the fixed time moment tj we
get for the average velocity vj the following expression

vj D 1

M

XM

jD1 Pxi.tj/ : (8.79)

Having time averaged that quantity [over the discrete time used for numerical
solving of Eq. (8.77)], we find for the current

j D 1

N

XN

jD1 vj : (8.80)

Here N is the finite set of different times tj.
For the fixed set of parameters the current j is uniquely determined by the

expression (8.80). We intend to follow how it changes with the variation of
parameters. In particular, let us consider a case when the parameter a changes at
fixed values of b and !. Using the definition of the parameter !0 we can present a
in the form

a D 1

4�2ı

F0
.V0=L/

: (8.81)

Up to a constant factor, parameter a represents the ratio of external force amplitude
to the average force due to the potential V.x/. As we have already mentioned,
the system’s (8.77) dynamics include both regular and chaotic regimes. One can
make sure of that having considered either the stroboscopic Poincaré section or the
bifurcation diagram. Figure 8.10a gives the bifurcation diagram for b D 0:1; ! D
0:67 and for the small interval a D Œ0:072; 0:086�. From the diagram one can
see that the transition to chaos takes place according to a somewhat modified
period doubling scenario. In particular, after the bifurcation at the critical value
ac ' 0:0809 a window appears with the period-4 periodic orbits. Figure 8.10b
presents the current j (8.80) as a function of the parameter a in the same region.
We see that value ac, at which the chaos-regularity bifurcation takes place, exactly
coincides with that a value at which the induced current direction change occurs.

Figure 8.10b shows only a small region of the parameter a variation where the
first change of the current direction takes place. With further variation a the current
direction changes multiple times [14].

In order to better understand the nature of the change in current direction
let us study the structure of individual orbits below and above the critical point
(point of bifurcation). Figure 8.11 presents the time dependencies of the particle
coordinate for the values a D 0:074 and a D 0:081, corresponding to the two
periodic windows on the bifurcation diagram (Fig. 8.10). The first trajectory (period-
2 orbit) corresponds to current in the positive direction of the x axis, the second one
(period-4 orbit) corresponds to current in the negative direction, in which the ratchet
potential slope is greater. In the latter case, the advancing mechanism is interesting:
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Fig. 8.10 (a) The bifurcation
diagram for Eq. (6.75)
solutions Px.a/ for the interval
a D Œ0:072; 0:086�, b D 0:1,
w D 0:67l. (b) Current j as
function of the parameter a
[15]
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in order to make one step to the left, the particle makes a step to the right and then
two steps to the left. As a result, current in the negative direction appears.

Let us now consider a typical trajectory in the region immediately below ac
(Fig. 8.12). The particle starting with zero velocity from one of minima of the ratchet
potential chaotically travels in another minimum to the left or to the right. For some
time, the particle is trapped by the potential minima and there undergoes oscillating
motion. Then there occurs a transfer to the running mode, corresponding to motion
in the negative direction. In terms of velocity, these running modes correspond to
the above periodic. The phenomenology of such dynamics can be described in the
following way. For values of a > ac the system attractor represents the period-4.
In the region of values of parameter a slightly lower than ac, the attractor becomes
chaotic. However, irregardless of that, there are relatively long time intervals during
which the trajectory is close to the periodic orbit from the region a > ac. Those
regular (almost periodic) intervals suddenly give way to the finite duration intervals
at which the system trajectory behaves chaotically. In other words, in this case we
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Fig. 8.11 The particle
trajectories realizing the
currents in different directions
(for the same parameter
values as in Fig. 8.10): (a)
a D 0:074 , current in the
positive direction; (b)
a D 0:081, current in the
negative direction [15]
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Fig. 8.12 The intermittency
effect for Eq. (8.77) solutions
in the immediate vicinity of
the regularity-chaos
bifurcation ac (b D 0:1,
w D 0:67) [15]
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are dealing with an intermittency picture typical for nonlinear dynamics [29]. As
a approaches to ac the regular motion intervals continuously grow and at last for
a > ac motion becomes purely regular.
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8.7 Bio or Molecular Motors

In the last section of this chapter we will discuss one of the applications of the “flux
without gradients” concept, explained above—-so-called biological motors [30, 31].
Technical terminology is distinctive for this branch of research that lies on the
boundary between physics and modern biology. For example, the terms “channels”
and “pumps” denote protein aggregates, that provide transport for correspondingly,
passive and active ions through biological membranes. The term “molecular motor”
or “bio-motor” refers to proteins or protein complexes that transform chemical
energy into mechanical work. More concretely, we will understand a molecular
motor as a macroscopic object that carries out directional motion along one-
dimensional periodic structures. Why do bio-motors play so important part in
maintenance of vital functions of living matter? The most primitive cells do not
have a nucleus. Their entrails consist of unstructured broth. Such cells are very
small and intracellular transport in them can be provided through thermal diffusion.
In contrast, cells that form any multicellular organisms are not only more organized,
but also larger. Due to this, passive diffusive transport becomes insufficient: when
cell scale grows by 20 times, diffusion slows down 400 times. The distinctive
feature of the structure of such cells is the existence of the nucleus, responsible
for the storage and duplication of genetic information, and a net of filaments that
connect the different parts of the cell. These filaments radially disperse from the
nucleus to the periphery of the cell. For our purposes, we need only to know
that filaments are periodic and fairly rigid structures with a period of the order
of 10 nm. They have moreover polarity, so that one can define a “positive” and
a “negative” extremity. Let us note that bio-motors of definite type always move
in the same direction, which is determined by motor type and filament polarity.
Apart from some additional aims that are beyond our scope, the filament system
realizes metabolic processes between different parts of the cell. Now we will try
to apply the concept of noise-induced transport considered earlier in this chapter
to explain the functioning of bio-motors. Let us consider an isothermal reaction in
the presence of a catalyst. In the simplest case, this reaction could be described
by one reaction coordinate that cyclically passes through a set of chemical states.
An adequate model is a Brownian particle under the action of thermal fluctuations
in periodic potential. The local minimum represents some chosen chemical state,
while passing through the chemical cycle is modeled as a displacement of the
reaction coordinate on one spatial period. The full cycle in one direction means
that all existing molecules were transformed into reaction products as a result of the
catalytic reaction. Passing through the cycle in reverse corresponds to the reverse
reaction. With reference to the case of interest, the situation looks as follows [31].
In the first step, the “filling” of bio-motor M is carried out, when the organic
complex adenosine triphosphate (ATP) joins it. In all living organisms this complex
acts the part of a universal accumulator of energy. Bio-motors obtain energy from
the degradation of ATP. The energy (about 12 kT) is stored in a phosphate bond
and is released when this bond is broken, to form adenosine diphosphate (ADP)
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and inorganic phosphate (P). The motor continuously breaks ATP in never-ending
cycle: M ! M � ATP ! M � ADP � P ! M � ADP ! M. Although this
cycle is most common, in general, different motors could function with the use
of different cycles. Biologists carry out careful experiments to clarify the details of
every cycle. Notice that we discussed only the problem of the fuel for the bio-motor,
but did not yet touch upon the main problem: by what mechanism is released energy
transformed into directional motion. At first glance, the solution to the problem
could be connected to the existence of a temperature gradient along the filament,
on which bio-motors move. However, all temperature heterogeneity in the cell on a
scale of a few tens of nanometers decay on time scales of microseconds. This tiny
scale is much smaller than the characteristic times of the chemical reactions that
carry out motor filling considered above. So, we are again faced with the problem
of the generation of directional motion without temperature or force field gradients.

Thus, let us consider [30] the molecular motor as a Brownian particle in local
thermal equilibrium with fixed temperature T. The action of the motor is generated
by generalized forces of two types. The first type fext is connected to the mechanical
interaction of the motor with the surrounding environment and, in particular,
involves the forces of viscous friction. The second type �� is generated by the
difference of chemical potential, which is equal to free-energy per consumed “fuel”
molecule. The chemical potential difference �� for the process ATP ! ADP C P
given by

�� D �.ATP/� �.ADP/� �.P/ : (8.82)

At chemical equilibrium �� D 0, whereas it is positive when ATP in excess and
negative when ADP is in excess.

The action of generalized forces leads to fuel consumption and the motion of
the motor. It is useful to introduce generalized currents to describe these effects:
the average rate of consumption of fuel molecules r (i.e., the average number of
ATP molecules hydrolyzed per unit time, per motor) and the average velocity of
the motor’s displacement v. The dependencies v. fext; ��/ and r. fext; ��/ are in
general nonlinear, since bio-motors often function far from thermal equilibrium
(�� ' 10 kT). First let us consider the linear regime.��  kT/. In this regime
linear response theory [30, 32] allows us to write:

v D 
11fext C 
12��

r D 
21fext C 
22�� : (8.83)

Here 
11 is the mobility coefficient, 
12 and 
21 are the coefficients of mechano-
chemical coupling coefficient, 
22 is a generalized mobility relating ATP consump-
tion and chemical potential difference. According to the Onsager principle of the
symmetry of kinetic coefficients 
12 D 
21. Whenever fextv < 0, some work is
performed by the motor; whenever r�� < 0, chemical energy is generated. A
given motor/filament system can work in eight different regimes. However, only
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four regimes are of interest: when mechanical work and chemical energy have
different signs. If both fextv and r�� are positive, there is no energy output from
the system; all work performed at the system is simply dissipated in the thermal
bath. Cases for which both fextv and r�� are negative are forbidden by the second
law of thermodynamics. We shall now discuss a concrete model for the motion
of bio-motors. We restrict ourselves to the consideration of the so-called two-state
model [33]. In this model, energy consumption by a bio-motor leads to coordinated
transitions between states 1 and 2. These transitions could be described in terms of
chemical kinetics. For each of the states the one-dimensional potential Vi.x/ .i D
1; 2/ is introduced (for systems with a variable number of particles it is more exact
to talk about free-energy), where x is a coordinate of the motor’s center of mass.
It is supposed that potential is periodic and spatially asymmetric (the symmetry of
the potential reflects the symmetry of the filament). Although the exact form of
the potential is unknown, experiments indicate that its period is about 10 nm [34].
According to the classification represented in Sect. 8.4, this is a pulsating ratchet.
The mechanism of current generation within it is quite simple. Let us consider a case
when V1.x/ has a saw-tooth potential with spatial asymmetry, and V2.x/ D const.
When kBT << �V (�V is high in potential), the dynamics of the motor splits into
two stages: diffusion in potential V1.x/, leading to the narrowing of the diffusion
bell, and transition to an exited state due to the breaking of the phosphate bond,
when dynamics of the diffusion bell are reduced to free symmetric broadening.
Due to the spatial asymmetry of the potential, the bio-motor could transit to the
neighboring right minimum with the probability proportional to the stroked area of
the probability density P. The value of the induced current depends on the relation
between times 	1 and 	2 of work of potentials V1 and V2. Optimal time could be
defined as a narrow diffusive peak formation time, which is approximately equal
to the time of the rolling down from the top of the inclined plane to the potential
minimum. This time is defined by parameters of the potential and mass of the bio-
motor. We can also evaluate the upper boundary of the time 	2: the diffusive bell has
not to become blurred so much that the reverse current appears. More complicated
models of molecular motors are discussed in reviews [6, 30] (Fig. 8.13).

Fig. 8.13 The basic working
mechanism of a pulsating
ratchet [30]

P

V

X

X

V1

V2



206 8 The Appearance of Regular Fluxes Without Gradients

References

1. Clausius, R.: Ann. Phys. 79, 368–397 (1850)
2. Magnasco, M.: Phys. Rev. Lett. 71, 1477–1481 (1993)
3. Feynman, R., Leighton, R., Sands, M.: The Feynman Lectures on Physics, vol. 1, Chap. 46.

Addison Wesley, Reading, MA (1963)
4. Smoluchowski, M.V.: Phys. Z. 13, 1069–1080 (1912)
5. Parrondo, J.M., Espanol, P.: Am. J. Phys. 64, 1125–1134 (1996)
6. Reimann, P.: Phys. Rep. 361, 57–271 (2002)
7. Risken, H.: The Fokker-Planck Equation. Springer, Berlin (1984)
8. Reimann, P., Bartussek, R., Haussler, R., Hänggi, P.: Phys. Lett. A 215, 26–31 (1996)
9. Luczka, J., Czernik, T., Hänggi, P.: Phys. Rev. E 56, 3968–3975 (1997)

10. Li, Y.-X.: Physica A 238, 245–251 (1997)
11. Sokolov, M.I., Blumen, A.: J. Phys. A 30, 3021–3027 (1997)
12. Curie, P.: J. Phys. (Paris) T.III, 393–402 (1894)
13. Bartussek, R., Hänggi, P., Kissner, J.G.: Europhys. Lett. 28, 459–463 (1994)
14. Jung, P., Kissner, J.G., Hänggi, P.: Phys. Rev. Lett. 76, 3436–3439 (1996)
15. Mateos, J.L.: Phys. Rev. Lett. 84, 258–261 (2000)
16. Bender, C.M., Coper, F., Freedman, B.: Nucl. Phys. B 219, 61–80 (1983)
17. Kane, G., Shifman, M.: The Supersymmetric World. World Scientific, Singapore (2000)
18. Chen, F.: J. Appl. Phys. 40, 3389–3401 (1969)
19. Volk, T.R., Grekov, A.A., Kosonogov, I.A., Fridkin, V.M.: FTT 14, 3216–3218 (1972)
20. Sturman, B.I., Fradkin, V.M.: The Photovoltaic and Photorefractive Effect in Noncentrosym-

metric Materials. Gordon and Breach, Philadelphia (1992)
21. Belinicher, V.I., Sturman, B.I.: UFN 130, 415–458 (1980)
22. Dubinko, V.I., Tur, A.V., Turkin, A.A., Yanovsky, V.V.: Radiat. Eff. Defects Solids 112, 233–

243 (1990)
23. Lee, T.D., Yang, C.N.: Phys. Rev. 104, 254–258 (1956)
24. Bolotin, Yu.L., Tur, A.V., Yanovsky, V.V.: JTP 72, 9–12 (2002)
25. Chandrasekhar, S.: Rev. Mod. Phys. 15(1), 1–90 (1943)
26. Haken, H.: Synergetics. Springer, Berlin/Heidelberg/New York (1978)
27. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North Holland, Amsterdam

(1981)
28. Klimontovich, Yu.L.: Statistical Theory of Open Systems, I. Kluwer Academic Publisher,

Dordrecht (1995)
29. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1992)
30. Julicher, F., Ajdari, A., Prost, J.: Rev. Mod. Phys. 69, 1269–1281 (1997)
31. Magnasco, M.: Phys. Rev. Lett. 72, 2656–2659 (1994)
32. Hill, T.L.: Prog. Biophys. Mol. Biol. 28, 267–340 (1974)
33. Prost, J., Chauwin, J., Peliti, L., Ajdari, A.: Phys. Rev. Lett. 72, 2652–2655 (1994)
34. Nishizaka, T., Miyata, H., Yoshikawa, H., Ishiwata, S., Kinosita, K.: Nature 377, 251–254

(1995)



Chapter 9
Quantum Manifestations of Classical
Stochasticity

After almost a hundred years of development, quantum mechanics has become a
universal picture of the world. All its predictions are correct for every observable
scale of energy. However, this does not mean that from time to time, quantum
mechanics does not face some new challenges. A serious conceptual problem,
defined in the second part of the last century, took the name of quantum chaos. The
point is that on the one hand, the energy spectrum of every quantum system with
finite motion is discrete, and thus its evolution is quasiperiodic; but on the other
hand, the correspondence principle requires the transition to classical mechanics
that demonstrates not only regular modes but also the chaotic ones. To solve this
problem, we have to answer first this question: how should we understand the
statement that one theory is a limiting case of another? [1].

9.1 Formulation of the Problem

As a rule, a more general theory G is associated with a special theory S with a
dimensionless parameter ı such as

G ! S if ı ! 0:

For example, if we understandG as the special theory of relativity, and S as classical
mechanics, then ı D v2=c2. In the simplest case, we can represent the general theory
as a Taylor series with the parameter ı.

Actually, such a simple situation is a very rare exception. In the most general
(and the most interesting) case, limG

ı!0
is singular, and the transition G ! S is far

from being trivial. So, for example, the transition from the Navier–Stokes equations
(viscous fluid) to the Euler equations (ideal fluid) is singular: dissipation does not
turn to zero smoothly at zero viscosity. Therefore the “no-man’s-land” between

© Springer International Publishing Switzerland 2017
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the two theories is difficult to study and contains new physics, such as turbulence
and critical behavior at phase transitions. In a similar area, we have to consider
the influence of classical stochasticity on semiclassical behavior. In our case, G
means quantum mechanics, S classical mechanics, and ı is some dimensionless
combination of physical values with Planck constant „ in the numerator. According
to Berry [1], the „ ! 0 limit swarms with nonanalyticities.

Let us now discuss another principal difficulty. Since in classical mechanics,
chaos is realized only on large time scales (required for complete mixing, i.e., to
realize the limiting tendency to zero of the correlation function), any meaningful
consideration of semiclassical limits must simultaneously take into account both
limit transitions t ! 1 and „ ! 0 [2]. A natural question arises as to whether
the two nontrivial limits t ! 1 and „ ! 0 commute? The answer is negative:
the long-time semiclassical evolution fundamentally differs from the long-time
classical evolution. In the common situation, the classical long-time evolution is
chaotic, while in semiclassics, the temporal asymptotics are not, so any chaos is
just a transition process. Therefore, in an attempt to construct the quantum theory
of dynamical chaos, we are immediately confronted by a number of evident and
very deep contradictions between the well-established principles of classical chaos
and the fundamental principles of quantum mechanics. What is the reason for those
contradictions?

As is known, the energy spectrum of any quantum system in finite motion is
always discrete. This is a consequence of the fundamental principles of quantum
mechanics: the discrete nature of the phase space, or more formally, the noncom-
mutativity of quantum phase space. Indeed, according to the uncertainty principle,
an individual quantum state cannot occupy the phase volume V1 � „N , where N is
the dimensionality of the configuration space. Therefore, a motion limited within
region V will contain V=V1 eigenstates. According to existing ergodic theory, such
motion is considered regular, unlike chaotic motion with a continuous spectrum
and exponential instability. The latter statement can be verified using the notion of
algorithmic complexity [3], which can be defined as

C D Nin

Nout
; (9.1)

where Nin and Nout are the input and output lengths of the program (in bits)
respectively. This quantity can be determined for any moment of time; however,
the distinction between regular and chaotic motion is manifested only in the limit
t ! 1. If the motion is chaotic, then C ! const > 0; if it is regular, then
C ! 0. To understand the reason for this, we should note that the output length
of the program gives information about the trajectory at an arbitrary moment of
time and increases proportionally to t. In addition, the input data sequence consists
of two main parts. The first is the algorithm for the solution of equations of motion,
its length not depending on t. The second is the definition of the initial conditions
with the precision needed to reproduce the required final result. For chaotic systems,
where errors grow exponentially, this part is proportional to t, and therefore, its
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contribution dominates in the input program length. Therefore, in that case, the
algorithmic complexity (9.1) will tend to a constant. For nonchaotic systems, the
input program part that is associated with the initial conditions grows more slowly
(for example as ln t when errors grow linearly), and the limiting value of the
algorithmic complexity is C D 0.

All the experiments carried out thus far show that this rule is strictly implemented
for classical chaotic systems. For quantum systems and for the classical analogues
that are chaotic, as well as for those that are regular, only zero algorithmic
complexity was observed. This result can be briefly formulated in accordance
with Bohr’s complementarity: that classical evolution is deterministic, but random;
quantum evolution is not deterministic and not random. In other words, the problem
is that the discrete nature of the spectrum never implies chaos in any quantum system
with finite motion. Meanwhile, the correspondence principle requires the presence
of chaos in the semiclassical limit.

If we assume that chaos never appears in quantum mechanics, then it would be
logical to give up the study of this question. However, this would mean that we avoid
the challenge presented by nature concerning the limit of small „ and large t, which
is equivalent to ignoring other singular phenomena, such as turbulence or phase
transitions. The alternative point of view is not to wait for the complete solution of
the problem (or rather for its correct formulation), but to study its limited option:
to examine the special features of quantum systems whose classical analogues
are chaotic, or in other words, to search for quantum manifestations of classical
stochasticity (QMCS). We will focus on this approach.

9.2 Semiclassical Quantization

Deterministic chaos is a common feature of Hamiltonian systems with the number of
integrals of motion less than the number of degrees of freedom. The absence of the
full set of integrals of motion (the full set includes a number of integrals that is equal
to the number of degrees of freedom for the quantized system) makes it impossible
to realize the traditional procedure of quantization of multidimensional systems. Let
us consider this statement in detail. As is known [4], in the one-dimensional case, it
is always possible to introduce canonically conjugate “action-angle” variables such
that the Hamiltonian becomes a function of the action variable only. The standard
definition of the action variable uses the integral along the periodic orbit

I D 1

2�

I
p.x/dx; (9.2)

where p.x/ is the particle’s momentum. In the context of the semiclassical approach,
we can construct an approximate solution of the Schrödinger equation in the terms
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of the integral along the classical trajectory [5]

 .x/ D 1p
p

exp

�
i

„
Z x

x0

p.x0/dx0
�
: (9.3)

This solution makes sense only in the case in which the phase grows in multiples of
2� along the periodic orbit. This limitation immediately leads to the semiclassical
quantization condition

I D 1

2�

I
pdx D

�
n C �

4

	
„; (9.4)

where n is a nonnegative integer and � is the so-called Maslov index, which is
equal to the number of points along the periodic orbit where the semiclassical
approximation is violated (in the one-dimensional case, this occurs at the turning
points and � D 2). The semiclassical energy eigenvalues En are obtained by the
computation of the Hamiltonian H.I/ for quantized values of the action variable

En D H
�
I D

�
n C �

4

	
„
	
: (9.5)

For multidimensional systems, such a procedure can be performed only if the
number of integrals of motion is equal to the number of degrees of freedom, i.e.,
for integrable systems [6]. In this case, the procedure is called Einstein–Brillouin–
Keller quantization. For simplicity, let us remain restricted to the two-dimensional
case. If the system is integrable, then there exist two pairs of canonically conjugate
action-angle variables .I1; �1/ and .I2; �2/ with the classical Hamiltonian depending
only on the action variables

H D H.I1; I2/: (9.6)

The classical finite motion is periodic in every angle variable with the frequencies

˝i D @H

@Ii
; .i D 1; 2/: (9.7)

In the general case, the frequencies˝i are incommensurable values, and the motion
in four-dimensional phase space is quasiperiodic. Phase trajectories lie on invariant
tori that are defined by integrals of the motion Ii. The semiclassical wave functions
can be constructed in a form that is analogous to (9.3), but the turning points must
be replaced by caustics. The uniqueness of the wave function requires the following
quantization conditions:

Ii D
�
ni C �i

4

	
„: (9.8)
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As in the one-dimensional case, the energy eigenvalues can be obtained by the
substitution of (9.8) into the Hamiltonian (9.6). Einstein understood already in
1917 that this method could be applied only to quantum integrable systems with
trajectories lying on tori. For nonintegrable (i.e., chaotic) systems, there were no
consistent quantization methods for half of the last century. But how can we perform
the quantization in a nonintegrable situation?

Progress on the problem of quantization of chaotic systems was made using
Feynman’s formulation of quantum mechanics [7]. The first indication of the
applicability of path integrals to chaotic systems was given by Selberg [8], who
constructed the dynamics of a particle on a Riemannian surface with negative
curvature in terms of path integrals. This is certainly a chaotic system, although
that term did not exist at the time.

Gutzwiller first applied successfully an analogous approach to the quantization
of chaotic systems. In 1982, he showed that a semiclassical quantization in the form
of path integrals allows us to obtain the spectrum of a chaotic system [9].

The periodic orbits play the main role in Gutzwiller’s method of quantization
of nonintegrable systems. The final purpose of the method is the evaluation of the
density of levels

�.E/ D
X

n

ı.E � En/

in terms of the solutions of the classical equations of motion.
Using the expression

ı.E � En/ D 1

�
Im lim

"!0C

1

En � E � i"
;

we obtain

�.E/ D � 1
�

Im Sp

�
1

E � OH
�
: (9.9)

The operator under the trace is the Green function,

G.qA; qB;E/ D
X

n

��
n .qA/�n.qB/

E � En
D
X

n

��
n .qA/

1

E � OH�n.qB/;

X

n

��
n .qA/�.qB/ D ı.qA � qB/ D

Z
ı.qA � q/ı.qB � q/dq; (9.10)

and therefore,

G.qA;qB;E/ D
�
qA

ˇ̌
ˇ̌ 1

E � OH

ˇ̌
ˇ̌ qB

�
: (9.11)



212 9 Quantum Manifestations of Classical Stochasticity

Thus (9.9) can be rewritten in the following form:

�.E/ D � 1

�
Im SpG: (9.12)

This further procedure implies the construction of the Green’s function of semi-
classical approximation (and then its Fourier transformation) and calculation of the
trace. Gutzwiller showed that this procedure results in the following expression for
the levels’ densities:

�.E/ ' N�.E/C
X

p

1X

kD1
Ap;k.E/ cos

h
k
�
Ip.E/� �

2
�p

	i
: (9.13)

Here N�.E/ is the smoothed density of levels that could be obtained using the
Thomas–Fermi approximation or Weyl’s formula for billiards. The sum marked by
the index p is evaluated over all “primitive” periodic orbits, and the sum of k over
k-reiteration of these orbits. The phase for every periodic orbit consists of the action
along this orbit Ip.E/ and the Maslov index �p. The amplitude Ap;k is determined by
the expression

Ap;k.E/ D Tp.E/

�k
q

det. OM � OI/
; (9.14)

where Tp.E/ D @I=@E is the orbital period and OM is the monodromy matrix, which
is well known from classical analysis of motion stability. Equation (9.13) is called
the Gutzwiller trace formula; it expresses the density of the quantum spectrum using
the values that are calculable in the context of classical mechanics (Feynman called
it one of the main achievements of theoretical physics of the twentieth century). At
the same time, this expression should be understood as a universal semiclassical
quantization condition that is correct both for integrable and nonintegrable systems:
highly excited (semiclassical) energy levels are the points where the right-hand side
of the trace formula has poles.

Although many important results were obtained with the trace formula, not all
its analytical features have been made clear until now. This is mostly due to the
difficulties in the corresponding classical calculations. First of all, we encounter
the problem of the periodic orbit evaluation: their number grows exponentially
with the growth of the period, and all of them are by definition unstable. At the
same time, there is a problem of adequate description of the orbits’ contributions
(i.e., the summation problem). Finally, the generalization of Gutzwiller’s formula
in the considered multiwell case is nontrivial. Thus, the problem of the numerical
integration of the Schrödinger equation remains relevant for calculation of the
semiclassical part of the spectrum of quantum systems that are chaotic in the
classical limit.
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9.3 Specifics of Classical Dynamics in Multiwell Potentials:
Mixed State

Before moving on to the analysis of the QMCS for the specific physical effects,
we will focus on the features of the statistical properties of the energy spectra,
the structure of stationary wave functions, and dynamics of wave packets for
quantum systems. As the main object of study, we will choose a simple system
that generates classical deterministic chaos: a two-dimensional time-independent
Hamiltonian system. We pay special attention to the Hamiltonian systems with
a potential energy surface having several local minima, i.e., multiwell potentials.
Despite the huge number of papers concerning chaotic dynamics, Hamiltonian
systems with multiwell potentials have been somewhat neglected. Nevertheless, a
Hamiltonian system with a multiwell potential energy surface represents a realistic
model, describing the dynamics of the transition between different equilibrium
states, including such important cases as chemical and nuclear reactions, nuclear
fission, phase transitions, string landscape, and many others. Being substantially
nonlinear, such systems represent a potentially important object, both for the study
of classic chaos and for QMCS.

Chaotic modes in Hamiltonian systems are usually realized only at certain
values of system parameters. We can define such regions of space using so-called
stochasticity criteria. If we understand stochastization as the process whereby
statistic properties appear in strictly deterministic systems due to local instability,
we have a tempting opportunity to identify the values of parameters at which local
instability occurs, with the boundary of transition to chaos. Unfortunately, the real
situation is much more complicated. The problem is that all the existing stochasticity
criteria based on the study of local instability have one fault. The loss of stability in
regular motion does not always lead to chaos. In spite of this fault, criteria of this
kind, together with the numerical experiment, significantly facilitate the analysis of
multidimensional motion, restricting the region of parameters in which the chaotic
modes are realized. In particular, for two-dimensional Hamiltonian systems, at
least in the one-well case, the so-called criterion of negative curvature [10, 11]
is convenient, and it connects the occurrence of local instability with the particle
coming into the region of negative Gaussian curvature of the potential energy
surface.

With this approach, the motion near the potential minimum is regular where the
curvature K.x; y/ is positive and separated from the line of zero curvature K.x:y/ D
0. In the case of energy increasing, the particle spends some time in the region of
negative curvature, where close trajectories initially diverge exponentially, which,
at length, after a long time, leads to the motion’s chaotization. According to this
scenario, the critical energy of the transition to chaos Ecr coincides with the minimal
energy on the zero-curvature line,

Ecr D Umin.K D 0/:
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Let us consider the characteristics of classical finite motion in multiwell potentials.
They are more complicated than in single-well potentials, and allow the existence
of several critical energies of transition to chaos, even for a fixed set of potential
parameters. This results in the so-called mixed state in such potentials [12]. At
the same energy there are different dynamical modes in different wells, either
regular or chaotic, in various local minima. It should be noted that the mixed
state is a general feature of Hamiltonians with nontrivial potential energy surface.
As a first example, let us demonstrate the existence of a mixed state for the
Hamiltonian of nuclear quadrupole oscillations [13]. It can be shown that using
only the transformation properties of the interaction, the deformation potential of
surface quadrupole oscillations of the nuclei takes the following form [14]:

U .a0; a2/ D
X

m;n

Cmn
�
a20 C 2a22

�m
an0
�
6a22 � a20

�n
; (9.15)

where a0 and a2 are internal coordinates of the nuclear surface during the quadrupole
oscillations:

R.�; �/ D R0f1C a0Y2;0.�; �/C a2ŒY2;2.�; �/C Y2;�2.�; �/�g: (9.16)

The constants Cmn can be considered phenomenological parameters, which within a
particular model or approximation can be directly related to the effective interaction
of the nucleons in the nucleus [15]. As in Eq. (9.16), only the transformation
properties of interaction were used. This expression describes the potential energy
of quadrupole oscillations of a liquid drop of any nature containing the specific
character of the interaction only in the coefficients Cmn.

Restricting ourselves to the terms of fourth order in the deformation, and
assuming the equality of masses for the two independent directions, we obtain the
following C3v-symmetric Hamiltonian:

H D p2x C p2y
2m

C UQO .x; yI a; b; c/ ; (9.17)

where

UQO .x; yI a; b; c/ D a

2

�
x2 C y2

�C b

�
x2y � 1

3
y3
�

C c
�
x2 C y2

�2
;

x D p
2a2; y D a0;

a

2
D C10; b D 3C01; c D C20:

(9.18)

The symmetry C3v of the potential surface becomes obvious in polar coordinates:

x D ˇ sin ; y D ˇ cos :
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In these coordinates,

U .ˇ;  I a; b; c/ D 1

2
aˇ2 � 1

3
bˇ3 cos 3 C cˇ4: (9.19)

Let us introduce the dimensionless variables
�Nx; NyI Npx; NpyI NE�,

.x; y/ D l0 .Nx; Ny/ ;
�
px; py

� D p0
�Npx; Npy

�
; E D "0 NE;

l0 D b

c
; p0 D

s

m
b4

c3
; "0 D b4

c3
: (9.20)

In the variables .Nx; Ny; Npx; NpyI NE/ (later we will drop the bar line), the Hamilto-
nian (9.17) has the form

H D p2x C p2y
2

C UQO .x; yIW/ ;

UQO .x; y;W/ D 1

2W

�
x2 C y2

�C
�
x2y � 1

3
y3
�

C �
x2 C y2

�2
: (9.21)

The Hamiltonian (9.21) and the corresponding equations of motion depend only on
W � b2=ac, which is the unique dimensionless parameter that can be constructed
from the parameters a, b, and c, such that it completely determines the potential
energy surface (Fig. 9.1).

Fig. 9.1 The level lines of the UQO.x; yIW/ potential for W D 13 (left) and W D 18 (right)
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Fig. 9.2 Poincaré sections for R-C-R transition in the quadrupole oscillation potential
UQO.x; yIW D 13/

The potential UQO .x; y;W/ is a generalization of the well-known Henon–Heiles
potential [16]

U.x; y/ D 1

2
.x2 C y2/C x2y � 1

3
y3;

which became a traditional object for examination of new ideas and methods in
investigations of stochasticity in Hamiltonian systems. It is essential that, in contrast
to the Henon–Heiles potential, the motion in (9.21) is finite for all energies, ensuring
the existence of stationary states in the quantum case.

The interval 0 < W < 16 includes potentials with a single extremum: the
minimum at the origin that corresponds to the spherically symmetric shape of
the nucleus. Numerical calculations [17] of equations of motion in this area (i.e.,
the area of single-well potentials) indicate the regularity–chaos–regularity (R-C-
R) transition: a gradual transition from regular to chaotic motion when energy
increases, followed by restoration of regular motion for high energies (Fig. 9.2). For
a stochastization scenario, based on the criterion of negative curvature, the R-C-R
transition is connected to the finitude of a region of negative Gaussian curvature of
the potential surface UQO.x; yIW D 13/.

For W > 16, the potential energy surface has seven critical points: four minima
(one central and three peripheral) and three saddles, separating the peripheral
minima from the central one (Fig. 9.1b). Let us consider in detail the case W D 18,
when the potential UQO .x; y;W/ has four minima with the same value Emin D 0. In
the area W > 16 (multiwell potentials), we encounter a much more complicated
situation than in the one-well case. In Fig. 9.3, Poincaré sections are presented
for different energies. They demonstrate the evolution of dynamics in central and
peripheral minima (W D 18). At low energies, the motion is clearly quasiperiodic
for both minima. Let us turn our attention to the difference in the topology of
the Poincaré sections. At the central minimum, the Poincaré section structure is
complicated and has fixed points of different types, while in peripheral minima, the
Poincaré sections have trivial structure with only one elliptical fixed point. When the
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Fig. 9.3 Poincaré section for multiwell quadrupole oscillation potential .W D 18/ at different
values of energy: E=ES D Œ0:5; 0:8:1; 2�

energy increases, a gradual transition to chaos is observed, but the changes in the
character of motion are totally different in different minima. In the central minimum
already at energy equal to half the saddle energyES, a sizeable part of the trajectories
is chaotic, and at the saddle energy there are almost no regular trajectories at
all. Under the same conditions, in the peripheral minimum, the motion remains
quasiperiodic. Moreover, even at energies higher than the saddle energy, there is a
substantial part of the phase space that is occupied by the quasiperiodic motion. This
type of dynamics, when chaoticity measured at fixed energy significantly differs in
different local minima, is the common-case situation in multiwell potentials and is
called the mixed state [12, 17].

The mixed state, shown above for the potential of quadrupole oscillations, is the
representative state for a wide class of two-dimensional potentials with several local
minima. According to catastrophe theory [18], a rather wide class of polynomial
potentials with several local minima is covered by the germs of the lowest umbilical
catastrophes of D�

4 ;D5;D7 types, subject to certain perturbations. We note that the
Henon–Heiles potential coincides with the elliptic umbilic D�

4 .
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Figure 9.4 represents the level lines and Poincaré sections at different energies
for multiwell potentials from a family of umbilical catastrophes D5 and D7:

UD5 D 2y2 � x2 C xy2 C 1

4
y4 C 1;

UD7 D p
2y2 C 3

8
x2 C xy2 � 1

2
x4 C 1

6
x6: (9.22)

The mixed state is observed for all the potentials considered here of umbilical
catastrophes in the interval of energies Ecr < E < ES (here, Ecr is the critical energy
of the transition to chaos at the local minimum, where chaos is observed at energies
smaller than the saddle energy).

9.4 The Spectral Method

Calculation of the semiclassical part of the spectrum for systems with a multi-
well potential energy surface requires appropriate numerical methods. The matrix
diagonalization method is effective in the one-well case. However, this numerical
procedure is not efficient at the transition to potential energy surface of complicated
topology (multiwell potentials). In particular, the diagonalization of the quadrupole
oscillations Hamiltonian (9.21) with W > 16 in the harmonic oscillator basis
requires too large a number of basis functions, which is beyond the limits of
today’s computing resources. In this case, the so-called spectral method for solution
of the Schrödinger equation represents an attractive alternative to diagonalization.
This method was originally proposed in [19] applied to one- and two-dimensional
potential systems, but it can be easily generalized to solve the stationary Schrödinger
equation in arbitrary dimensions:

"
�„2
2

DX

iD1
@2i C U.x1; : : : ; xD/

#
 n.x1; : : : ; xD/ D En n.x1; : : : ; xD/; (9.23)

where D is the dimension of the configuration space of the system. Let us assume
that the potential U.x1; : : : ; xD/ allows only finite motion for all energies (as is
the case for quadrupole oscillation potentials). Therefore, the task is to obtain the
discrete energy spectrum En and the stationary wave functions  n.x1; : : : ; xD/.

Let us consider the time-dependent solution  .x1; : : : ; xDI t/ of the correspond-
ing nonstationary Schrödinger equation

"
�„2
2

DX

iD1
@2i C U.x1; : : : ; xD/

#
 .x1; : : : ; xDI t/ D i„@t .x1; : : : ; xDI t/ (9.24)
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with some, generally speaking, arbitrary initial condition  0.x1; : : : ; xD/ D
 .x1; : : : ; xDI t D 0/. Using the decomposition

 0.x1; : : : ; xD/ D
1X

nD1
an n.x1; : : : ; xD/; (9.25)

we obtain

 .x1; : : : ; xDI t/ D
1X

nD1
an n.x1; : : : ; xD/e

�i Ent
„ : (9.26)

Here and below we assume that the wave functions  n.x1; : : : ; xD/ form an
orthonormal basis:

Z
dx1 : : : dxD N i.x1; : : : ; xD/ k.x1; : : : ; xD/ D ıik: (9.27)

Let us consider a correlator of the following form:

P.t/ D
Z

dx1 : : : dxD N 0.x1; : : : ; xD/ .x1; : : : ; xDI t/ D
1X

nD1
janj2 e�i Ent

„ : (9.28)

The wave function of the initial state  0.x1; : : : ; xD/ is also assumed to be
normalized:

Z
dx1 : : : dxD N 0.x1; : : : ; xD/ 0.x1; : : : ; xD/ D

1X

nD1
janj2 D 1: (9.29)

Thus P.0/ D 1. The Fourier transform of the correlator (9.28) contains information
about the energy spectrum En (see Fig. 9.5),

P.E/ D
Z C1

�1
dtei

Et
„ P.t/ D „

1X

nD1
janj2 ı.E � En/; (9.30)

while information about the stationary wave functions  n.x1; : : : ; xD/ can be
extracted in turn from the Fourier transform of the function  .x1; : : : ; xDI t/:

 .x1; : : : ; xDIE/ D
Z C1

�1
dtei

Et
„  .x1; : : : ; xDI t/

D „
1X

nD1
an n.x1; : : : ; xD/ı.E � En/: (9.31)
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Fig. 9.5 P.E/ correlator for
the Hamiltonian of the
quadrupole oscillations (9.21)
.W D 18/

Naturally, in practice, one never has to find all the En and  n.x1; : : : ; xD/. The
usual task is to obtain all energy levels En within some range E1 < E < E2
with some accuracy ıE and to calculate the corresponding stationary wave functions
 n.x1; : : : ; xD/ on some coordinate grid x.k/i D x.k/i0 C k�xi, k D 0; : : : ;Ni, with
finite accuracy as well.

We now show how this concept of the spectral method can be realized as an
efficient computational procedure. Evidently, in practical calculations, one always
deals with a finite number of values known with finite accuracy. In the case in
which we are interested, this means that the most fundamental value .x1; : : : ; xDI t/
will be calculated on a finite set of points both in time and in spatial coordinates.
Therefore, the correlator P.t/ will be known only at the points tk D k�t; k D
1; : : : ;M, and the Fourier transforms (9.30) and (9.31) will take the form

PT.E/ D 1

T

Z T

0

dtei
Et
„ P.t/ D

1X

nD1
janj2 ıT.E � En/ (9.32)

 T.x1; : : : ; xDIE/ D 1

T

Z T

0

dtei
Et
„  .x1; : : : ; xDI t/

D
1X

nD1
an n.x1; : : : ; xD/ıT.E � En/; (9.33)
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where T D M�t, and the finite analogue of the ı-function reads

ıT.E/ D 1

T

Z T

0

dtei
Et
„ D ei

ET
„ � 1

i ET„
D fT

�
ET

h

�
;

fT .x/ D sin�x

�x
ei�x: (9.34)

Unlike the usual ı-function, here ıT.0/ D 1. The plot for P.E/ .PT.E// in Fig. 9.5
displays a set of sharp local maxima at E D En, whereEn are the energy eigenvalues.
Once the eigenvalues are known, the corresponding eigenfunctions can be computed
by substituting E D En into Eq. (9.32):

 n.x1; : : : ; xD/ �  T.x1; : : : ; xDIEn/:

This procedure is very efficient when implemented using the fast Fourier transform
algorithm.

9.5 Statistical Properties of Energy Spectra

The energy spectra represent historically the first object for the investigation of
quantum signatures of chaos in Hamiltonian systems. Substantial progress in the
detection of QMCS in the 1980s was associated with this object. Up to that time, the
connection between spectral properties of complex systems and ensembles of ran-
dom matrices had been established, which created the background for understanding
the statistical properties of the energy spectra. This stimulated the transition from
the study of the behavior of separate levels to the statistical characteristics of the
energy spectrum as a whole. During research, it became clear that only the local
(not averaged) statistical properties of energy spectra are of interest from the point
of view of QMCS. Why should we take special interest in the local characteristics
of a spectrum? The fact is that global characteristics, such as the numbers of states
N.E/ or the smoothed density of levels �.E/, are too rough. At the same time, such
local characteristics as the distribution functionP.S/ of the nearest-neighbor spacing
S D EiC1 � Ei between levels are very sensitive to the properties of the potential or
to the shape of a billiards boundary.

In the 1960s, Wigner [20], Porter [21], and Dyson [22] built the statistical theory
of the complex systems spectra based on the following hypothesis: the distribution
of energy levels in complex systems is equivalent to the distribution of the set of
eigenvalues of random matrices of a certain symmetry. The ultimate result for P.S/
obtained in that theory has the following form:

P.S/ D aS˛e�bS2 ; (9.35)
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where a and b are slowly varying functions of energy, and the critical exponent ˛
defines the behavior of the distribution function in the limit S ! 0, depending on
the symmetry properties of the random matrices. In particular, ˛ D 1 for a Gaussian
orthogonal ensemble of a random matrix.

The predictions of the statistical theory of energy spectra (mainly for a Gaussian
orthogonal ensemble of random matrices) were carefully compared to all available
data on nuclear spectra. No considerable contradictions between the theory and
experiment were found. In particular, the random matrices ensembles perfectly
reproduced such an important spectral characteristic as spectral rigidity, describing
the small fluctuations of energy levels around the averaged values in a given interval.
A measure of rigidity is the statistic �3 of Dyson [22] and Mehta [23]:

�3.L; x/ D 1

L
min
A;B

Z xCL

x
Œn."/� A" � B� d"; (9.36)

where n.E/ is a staircase state number function,

n.E/ D
Z E

�1
dE�.E/; (9.37)

which determines the least-squares deviation of the staircase representing the
cumulative density n."/ from the best straight line fitting it in any interval Œx; x C L�.
An example of the maximum correlated spectrum is the equidistant spectrum of
the harmonic oscillator, for which �3 D 1=12. The opposite case is the Poisson
spectrum, for which �3 D L=15, reflecting the strong fluctuations near the mean
level density.

Analogous comparisons were made also for atomic spectra. Good agreement
with the theory was found for them as well, although for much weaker statistics.

A completely different approach to the problem of statistical properties of energy
spectra was developed on the basis of the nonlinear theory of dynamical systems. As
numerical simulations show [24–27]—and they are confirmed by serious theoretical
considerations [9, 28, 29]—the main universal property of systems that have a
regular type of dynamics in the classical limit is the level clustering phenomenon,
while for systems that are chaotic in the classical limit, level repulsion is observed.
Sometimes, this statement is called the hypothesis of the universal character of
energy spectra fluctuations [24].

In the case of regular motion, every classical trajectory lies on a surface
topologically equivalent to a torus. Each such torus corresponds to a certain set
of integrals of motions (or quantum numbers), with the total number equal to the
number of degrees of freedom. Different eigenfunctions of integrable quantum
systems correspond to different sets of quantum numbers, and therefore lie on
different tori. Their eigenvalues are not correlated (i.e., their wave functions do not
overlap), which leads to P.S/ of Poisson type:

PP.S/ / e�S: (9.38)
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This distribution corresponds to clustering levels (i.e., a large probability of small
spacings between neighboring levels).

In the transition to chaos, some tori are destroyed, leading to the formation of
chaotic areas in the phase space. The classical trajectories in such areas diffuse
between the different (already destroyed) tori. This means in quantum terms
the occurrence of overlap between the wave functions with different quantum
numbers, giving the interaction between levels. Every interaction, in turn, causes
repulsion between levels. We can explain this phenomenon [30] by considering
the Hamiltonian H, defined at some fixed basis with its matrix elements. We can
consider the repulsion of levels as a result of the fact that the subspace with a
degenerate spectrum has a smaller dimension than the overall space of the matrix
elements. In this way, the degeneration or a weaker effect of clustering has low
probability. In the limit of a completely chaotic system, (i.e., all tori are destroyed),
all modes of an initially integrable system mix with each other, so that repulsion
exists between every pair of levels, changing P.S/ from Poisson to Wigner:

PW.S/ D �

2
Se� �

4 S
2

: (9.39)

The situation becomes much more complicated for generic Hamiltonian systems,
where the phase space contains both regular and chaotic components. How is it
reflected in the energy spectra’s statistical properties?

Berry and Robnik [31], and independently, Bogomolny [32], based on semi-
classical arguments, showed that P.S/ in the case of the dynamics of mixed type
represents the superposition of Poisson and Wigner distributions with weights equal
to some relative measures of phase space occupied by regular and chaotic motion,
respectively:

PBRB.s/ / �2e��Serf

�p
�

2
.1 � �/S

�
C
h�
2
.1 � �/2S C 2�

i
.1��/e��S� �

4 .1��/2S2 ;
(9.40)

where � is the relative phase volume occupied by the regular trajectories in the
mixed system. The limit � ! 1 corresponds to a regular system, and � ! 0 to a
completely chaotic one.

Among the systems subject to detailed numerical analysis of the spectral
properties, two-dimensional billiards has the central place. A two-dimensional
billiard is a point particle freely moving in the plane inside some region of arbitrary
shape and elastically reflecting from the boundary. These systems have attracted the
active interest of researchers for the following reasons:

1. Simplicity of classical dynamics.
2. Stochasticity criteria for billiards can be formulated in geometrical terms.
3. Homogeneity of the phase space.
4. Availability of efficient methods for solving the Schrödinger equation for

billiards.



9.5 Statistical Properties of Energy Spectra 225

Fig. 9.6 Statistical characteristics of energy spectra for circular (a) and “stadium” (b) billiards

5. The smooth component of level density is well known due to the Weyl formula.
6. Billiard dynamics reflects the real situation in many physical systems (e.g.,

quantum dots, Josephson’s junctions, and nuclear billiards).
7. At present, there is efficient experimental realization both for classical and

quantum dynamics in microwave and optical two-dimensional billiards.

For billiards with a fixed boundary shape, one of two limiting cases is realized:
exact integrability and absolute chaos. Therefore, in circular billiards (Fig. 9.6a),
the angular momentum is the second (after energy) integral of motion, and this
system is integrable. Billiards of “stadium” type (Fig. 9.6b) is one of the simplest
stochastic systems. In Fig. 9.6, the statistical characteristics of energy spectra
(spacing distribution function P.S/ and rigidity�3) are presented for both systems.
In complete agreement with the hypothesis of the universal character of the spectral
fluctuations, the function P.S/ for a circular billiard is perfectly approximated by
the Poisson distribution, and the rigidity �3 is a linear function of the length of the
considered interval. In the nonintegrable case, the level repulsion effect is distinctly
manifested, leading to a Wigner distribution, and the dispersion grows much more
slowly because of the higher rigidity of the considered spectrum.

Now let us consider the possibility of realizing quantum dynamics in microwave
billiards [33, 34].
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By microwave billiards, we mean the electromagnetic field in a cavity of arbitrary
form. The electromagnetic radiation in the billiards cavity is described by the
Maxwell equations:

r � E D �@B
@t
;

r � H D @D
@t
;

rD D 0;

rB D 0; (9.41)

where the electric induction D and the magnetic induction B are linked by the
intensity of the electric E and magnetic H fields in the following correlations:

D D "0E;

B D �0H: (9.42)

Here "0 and �0 are the dielectric and magnetic permeability of a vacuum. Assuming
the periodic dependence of the electromagnetic fields with time, we can obtain
Helmholtz equations for the fields E and B, using standard procedures:

�
�C k2

�
E D 0;

�
�C k2

�
B D 0; (9.43)

where k D !=c is the wave vector and ! is the angular frequency of radiation.
Equation (9.43) should be amplified with the boundary conditions

n � E D 0; nB D 0; (9.44)

where n is a unit vector of a normal to the surface. If we consider only cavities,
limited by cylindrical surfaces (with various cross sections), then the boundary
conditions on the cylindrical surface S (the z-axis is chosen parallel to the cylinder
axis) take the form

EzjS D 0; r?BzjS D 0: (9.45)

Here r? designates the normal derivative. There are two possibilities for meeting
the boundary conditions (9.44). One of them represents the so-called transverse
magnetic modes

Ez.x; y; z/ D E.x; y/ cos
�n�z

d

	
; n D 0; 1; 2; : : : ;

Bz.x; y; z/ D 0; (9.46)
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where d is the height of the cylinder, and E.x; y/ satisfies the two-dimensional
Helmholtz equation

�
�C k2 �

�n�
d

	2�
E.x; y/ D 0; (9.47)

with boundary conditions of Dirichlet type on the cylinder’s surface:

E.x; y/jS D 0: (9.48)

For the transverse electric mode, we obtain, analogously,

Ez.x; y; z/ D 0;

Bz.x; y; z/ D B.x; y/ sin
�n�z

d

	
; n D 1; 2; 3; : : : ; (9.49)

where B.x; y/ is the solution of the two-dimensional Helmholtz equation

�
�C k2 �

�n�
d

	2�
B.x; y/ D 0; (9.50)

with a boundary condition of Neumann type

r?B.x; y/jS D 0: (9.51)

For wave vectors k < �=d, only the TM mode is realized with n D 0, and Eq. (9.49)
is reduced to

�
�C k2

�
E.x; y/ D 0: (9.52)

This equation is fully equivalent to the two-dimensional Schrödinger equation,
boundary conditions included, for the particle in the area S, bounded by infinitely
high potential walls. This means that from the formal point of view, the system
representing the resonator of cylindrical geometry with electromagnetic radiation
of transverse magnetic type is equivalent to the billiards in the area equal to the
base of the cylinder. In this analogy, the function E.x; y/ corresponds to the wave
function of the particle  .x; y/, and k2 corresponds to its energy. Now the difficult
problem to measure the wave function and to find the spectrum in two-dimensional
billiards of arbitrary form is substituted by a much simpler problem that consists in
finding the electric field intensity component and determining the spectrum of the
eigenmodes in the resonator.

Now let us discuss the efficiency of this way of studying the spectrum. In fact, it
is defined by the accuracy of the realization of the boundary conditions (9.44). The
latter hold only for ideally conductive walls. In real conditions, we always deal with
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finite conductivity of walls. As a result, the radiation penetrates into the walls of the
cavity to the depth

ı D
s

2

�0!�
; (9.53)

where � is the conductivity of the wall. For good conductors, � 
 107 ��1 m�1,
and at typical microwave frequencies ! 
 10GHz, the typical penetration depth
is ı 
 1mm. The dissipation of the radiation in the walls leads to exponential
electromagnetic energy attenuation,

W.t/ D W0e
�t=	 ; (9.54)

and so in the final width of the line,

�! D 1

	
: (9.55)

Attenuation at the frequency !0 is defined by the Q factor of the resonator Q D
!0=�!,

	 D Q

!0
: (9.56)

For typical conductors, Q 
 103 � 104. We can show that the maximum number of
solvable resonances is Nmax 
 1=3Q. This means that using the ordinary conductive
walls of the cavity, one can solve a number of resonances (levels) of order 1000.
The only possibility for increasing the resolution is using resonators having a
much higher value of Q. This possibility was realized in the resonators limited by
superconductive walls with Q up to 107 [34]. The super-sharp resonances allow the
resolution to be made several orders of magnitude higher.

Let us now turn to the statistical properties of the spectra of two-dimensional
Hamiltonian systems, using as an example potentials of the quadrupole oscillations
UQO.x; y/ and umbilical catastrophes UD5 .x; y/. As a first example, we consider
the transformation of the energy spectrum in the R-C-R transition for the one-
well case .W < 16/. At the fixed topology of the potential surface (W D const),
the unique free parameter of the Hamiltonian is the scaled Planck’s constant N„.
In the study of the concrete energetic interval (R1;C or R2), corresponding to a
definite type of classical motion, the choice of N„ is dictated by the possibility of
achieving the necessary statistical reliability (i.e., the required number of levels
in the considered energy interval) with conservation of the precision of spectrum
calculation (with respect to the limited possibility of the diagonalization for matrices
of large dimensions). The numerical results are presented in Fig. 9.7. Both the
distribution function P.S/ and rigidity �3 correspond well to the predictions of the
Gaussian orthogonal ensemble of random matrices for the chaotic (C) area. The
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Fig. 9.7 Correlation between the character of classical motion and the statistical properties of
energy spectra in R-C-R transition for the Hamiltonian of quadrupole oscillations (9.21) for W D
13. On the left: Poincaré sections, in the middle: distribution function P.S/, on the right: the �3-
statistics. From the bottom up: the first regular range R1, the chaotic range C, and the second regular
range R2

logarithmic scale for P.S/ is suitable for tracing this correspondence at large S. For
the regular areas (R1 and R2), the distribution function must be represented by a
straight line (the logarithm of the Poisson distribution).

The results demonstrate the agreement with the hypothesis of the universal
character of the fluctuations of energy spectra, though small-sized deviations are
observed for small distances between levels. The tendency of repulsion increasing
in the regular area, apparently, is associated with a small admixture of chaotic
components.
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Fig. 9.8 Spacing distribution P.S/ for the D5 potential E < Ecr (a) and E > Ecr (b). The points
represent the numerical data; solid lines are the Poisson and Wigner distributions; dashed line is
the best approximation by the Berry–Robnik–Bogomolny distribution

The spectral ranges of multiwell potentials realizing the mixed state open new
possibilities for the study of intermediate statistics. At those energies, the chaotic
and regular components are separated not only in phase space as in the usual
case of motion of mixed type, but even in configuration space. A priori, the form
of spacing distribution function in the mixed state is not necessarily reduced to
a definitely weighted superposition of Poisson and Wigner distributions. In that
case, we deal not with statistics of the admixture of two level series with different
spacing distributions, but with statistics of spectrum series, where each level cannot
be attributed to definite (Poisson or Wigner) statistics. The statistical properties
of these systems were little studied until recently, although they are the systems
corresponding to the most common situation.

Let us consider the simplest potential realizing the mixed state: the two-well
potential of lower umbilical catastrophe D5 (9.22). In order to describe the statistical
properties of the corresponding energy spectrum, let us try to use the Berry–Robnik–
Bogomolny distribution (9.39), where the parameter � equals the relative phase
volume occupied by regular trajectories. In the case of the D5 potential, � 
 1

for E < Ecr and � 
 1=3 for E > Ecr, which qualitatively (although very roughly)
agrees with the numerical data for energy level statistics (Fig. 9.8).

The Berry–Robnik–Bogomolny distribution function by its construction
describes the energy level fluctuations in the absence of interaction between the
regular and chaotic components. Therefore, the best agreement between the Berry–
Robnik–Bogomolny spectral fluctuation theory and experimental data should be
expected in the mixed-state spectra, where the interaction of chaotic and regular
states with each other is additionally suppressed by the energy barrier separating
the corresponding local minima. In practice, however, such an agreement is never
observed for several reasons.

The first reason is not related directly to the mixed state properties and consists
of technical difficulties of calculating long spectral series in potentials with several
local minima. In practice, one usually should content oneself with a series of
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several hundred levels at most, which is definitely insufficient for obtaining accurate
distribution functions for spectral fluctuations.

The second reason for disagreement between the Berry–Robnik–Bogomolny
distribution and actual numerical data is common to all potential systems and
consists in the fact that in smooth potential systems, the classical chaoticity
measure depends significantly on the energy. Indeed, the upper and lower levels in
sufficiently long spectral series will correspond to the different relations of regular
and chaotic components, while all known theoretical distribution functions assume
the relation to be constant. This forces us to consider spectral series that are narrow
in energy, which makes statistics levels even poorer.

Finally, the specific feature of the D5 potential, as for the D7 and Henon–Heiles
potentials, is that in all the aforementioned potentials, the discrete energy spectrum,
strictly speaking, is absent. The reason for this is that all these models allow the
infinite motion for all energies. Nevertheless, many workers have discussed spectral
fluctuations in such systems, implying the spectrum of quasistationary states, local-
ized in the corresponding potential well and extremely slowly decaying by tunneling
into the continuous spectrum. Every numerical calculation of such states practically
contains the implicit reformulation of the original model, in order to make it more
correct from the quantum-mechanical point of view. The quasistationarity of such
states becomes especially obvious near the saddle energies, which are the most
interesting energy regions for the consideration of the mixed state.

9.6 Quantum Chaos and the Riemann Zeta Function

Discussing the universal statistical properties of quantum spectra, let us turn to
a very useful and fruitful analogy between theoretical and numerical correlations
linking the nontrivial zeros of the Riemann zeta function and prime numbers, on
the one hand, with semiclassical correlations linking the quantum energy levels and
classical periodic orbits on the other hand. As we have seen above, the energetic
spectra in the semiclassical limit have unique distributions, depending only on
the general properties of classical dynamics. These distributions coincide with the
statistics of certain ensembles of random matrices. Therefore, the attempt to explain
this wonderful fact in terms of the periodic orbits, which, according to the Gutzwiller
trace formula, let us construct the semiclassical spectrum of an arbitrary system
(integrable as well as nonintegrable), seems natural. From this point of view, the
Riemann zeta function plays an important role because, as has been discovered [35],
its nontrivial zeros have a statistical distribution notably close to the distribution of
eigenvalues of Gaussian unitary ensembles of random matrices, and deviations from
these distributions coincide with the deviation from the universality in semiclassical
distributions. There is also quite pragmatic interest in the aforementioned analogy.
Formulas of number theory are precise and not approximate, and the transition from
the periodic orbits to prime numbers allows one to reduce computer calculations as
well as to make substantial analytic progress.
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The Riemann zeta function, a function of a complex variable s, can be defined
for Res > 1 using the Euler product:

&.s/ D
Y

p

�
1 � 1

ps

��1
; (9.57)

where p runs through the prime numbers.
The fundamental theorem of arithmetic states that every integer greater than 1

either is prime itself or is the product of prime numbers, and that this product
is unique. Using this theorem the Euler representation can be transformed into a
Dirichlet series.

&.s/ D
1X

nD1

1

ns
; (9.58)

which also converges for Res > 1.
Euler introduced the Riemann zeta function as a function of a real variable

in 1737 (as a sum). He also pointed out the possibility of its representation as a
product of prime numbers. In relation to the distribution of prime numbers, it was
considered by Dirichlet and by Chebyshev. However, the most profound properties
of the Riemann zeta function were discovered when it was considered as a function
of a complex variable. First, this was done by Riemann in 1876. Riemann showed
that there is a representation &.s/, converging everywhere in the complex plane
except for the point s D 1, where it has a simple pole.

The interest of mathematicians in the Riemann zeta function is due to the fact that
it is a useful tool for the study of prime numbers, which is indicated by Eq. (9.57).
This correlation allows us to construct the function �.x/ of the number of prime
numbers less than x. This function can be constructed in terms of the zeros of the
Riemann zeta function and thus shows that the distribution of prime numbers is
associated with the distribution of zeros &.s/. One hundred years ago, it was hard
to assume that physicists would be interested in the reverse problem: to find the
distribution of zeros of the Riemann zeta function knowing the distribution of prime
numbers.

The Riemann zeta function has an infinite number of zeros at the negative even
integers, known as the trivial zeros. They are not of much interest. There is also
an infinite number of complex, or nontrivial, zeros, and they are the object of our
study. It is known that the nontrivial zeros of the Riemann zeta function have real
part greater than zero and less than one. The last of the Riemann’s five hypotheses
about the zeta function is that the nontrivial zeros lie in the complex plane on the
line with real part 1=2, i.e., the nontrivial solutions of the equation

&

�
1

2
� iE

�
D 0 (9.59)

are real.
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A refutation or proof of the Riemann hypothesis is one of the central open
problems of pure mathematics. The “experimentalists” began their own studies
without waiting for any progress from the “theoreticians.” By 1987, an area of up
to E D 109 had already been studied. The Riemann hypothesis was proved to 10�8
accuracy. In the 1990s, a computational boom began due to physicists’ interest in
the problem [36]. Berry wrote about these works:

Odlyzko’s computations were of epic proportions: 1000 h of Gray X-MP time, generating
2000 Mb of data. By contrast, evaluation of the semiclassical formula takes only a few
seconds, illustrating the power and usefulness of asymptotics.

We should note that there is an old idea of Pólya that to prove the Riemann
hypothesis, it is desirable to show that the nontrivial zeros of the Riemann zeta
function are eigenvalues of some Hermitian operator. Physicists are trying to
consider (so far in vain) the even more powerful possibility that the nontrivial zeros
of the Riemann zeta function might be quantum levels of a real dynamical system.

Let us now proceed to the equation that represents the foundation of our analogy,
connecting the Riemann zeta function and semiclassical quantum spectra. To obtain
the equation, let us use a theorem. Let a function f .z/ be analytic everywhere in the
closed region F, except for a finite number of special isolated points zk, which lie
inside F and all are poles, and let f .z/ not vanish at any point of the boundary L of
the region F. Then the difference between the full number of zeros .N/ and the full
number of poles .P/ of rgw function f .z/ in the region F is defined by the following
expression:

N � P D 1

2�i

Z

L

f 0.z/
f .z/

dz: (9.60)

For the case in which we are interested, f D &.z/, the result can be represented as

NR.E/ D NNR.E/� 1

�
Im log &

�
1

2
� iE

�
; (9.61)

where

NNR.E/ D 1 � E

2�
log� � 1

�
Im log�

�
1

4
� i

E

2

�
: (9.62)

Here � is the gamma function.
Now let us take some liberty to substitute &

�
1
2

� iE
�

by the Euler product (9.57).
Strictly speaking, one should not do that, because the product converges only if
ImE > 1=2, but we are interested in the values of E on the real axis. After the
substitution, we have

NR.E/ D NNR.E/� 1

�

X

p

1X

kD1
exp

�
�1
2
k log p

�
1

k
sin .Ek log p/ : (9.63)
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Differentiating with respect to E and using in NNR.E/ Stirling’s asymptotic formula
for the � -function at high E, we obtain the main result, the formula for the density
of the “levels” (i.e., the nontrivial zeros of the Riemann zeta function):

dR.E/ �
X

n

ı .E � En/

dR.E/ D NdR.E/� 2
X

p

1X

kD1

log p

2�
exp

�
�1
2
k log p

�
cos .Ek log p/

NdR.E/ ' 1

2�
log

E

2�
: (9.64)

Let us now pay attention to the wonderful property of Eq. (9.63) with the
Gutzwiller trace formula (9.13). The similarity becomes obvious for systems scaled
so that „ D 1, and the orbits have the Maslov index �p D 0 and action Ip.E/ D
E log p, so the period is Tp D log p. Therefore, if there is a Hamiltonian system with
quantum levels coinciding with the nontrivial zeros of the Riemann zeta function,
then it should have periodic orbits with periods equal to the logarithms of prime
numbers. Therefore, this profound analogy allows us to associate the spectrum
structure of the Riemann zeta function’s nontrivial zeros with the quantum spectrum
of the hypothetical dynamical system.

The existence of such systems “prove” the Riemann hypothesis at once. This
is an interesting direction, but not the most promising for quantum chaos, which
tends to penetrate deeply into the spectral structure of the zeros of the Riemann
zeta function, for a better understanding of the direct analogue of the quantum
spectrum. The attractiveness of such an analogy is linked also to the possibility of
achieving significant statistics in the case of the Riemann zeta function, allowing us
to penetrate reliably into the “semiclassical region” (E ! 1). The distribution
shown in Fig. 9.9 includes 79 million zeros in a neighborhood of the zero with
ordinal number 1020, and ideally reproduces the Wigner distribution PW.S/ for the
chaotic system.

9.7 Signatures of Quantum Chaos in Wave Function
Structure

As we have seen in the previous section, the statistical properties of spectra strictly
correlate with the type of classical motion. It is natural to try to discover analogous
correlations in the structure of wave functions, i.e., to assume that the form of the
wave function for a semiclassical quantum state depends on whether it is associated
with classical regular or chaotic motion. It is important to note that in the analysis of
QMCS at the level of energy spectra, the principal role was played by the statistical
characteristics, i.e., quantum chaos was treated as a property of a group of states.
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Fig. 9.9 Distribution function of distances between the nontrivial zeros of the Riemann zeta
function [36] P.y/

The choice of a stationary wave function of the quantum system, which is chaotic
in the classical limit, as the basic object of study attributes the phenomenon of
quantum chaos to an individual state. The joint study of both possibilities is not
a contradiction, but it rather reflects the universality of the phenomenon.

Unlike the spectrum, the form of wave functions depends on the basis in which
they are determined. The following three representations are most often used for
QMCS studies:

1. The so-called H0 representation is the representation of eigenfunctions f�ng of
the integrable part H0 of the total Hamiltonian H D H0 C V . The main objects
of investigation in this case are the coefficients of the expansion Cmn of the
stationary wave functions m in the basis f�ng. The H0 representation is naturally
realized from numerical calculations, as the diagonalization of the Hamiltonian
H is realized most often in this representation.

2. The coordinate representation �.q/ is the most convenient from the visual
point of view, and it allows direct comparison with classical motion along the
trajectories in coordinate space. Indeed, according to Schnirelman’s theorem
[37], the mean probability density j�.q/j2 in the semiclassical limit coincides
with the projection of the microcanonical distribution on the coordinate space:

hj�.q/ji ! � .q/ D
R
dp0ı.E � H.p0; q//R

dp0dq0ı.E � H.p0; q0//
: (9.65)

In fact, this theorem interpolates the correspondence principle on wave functions.
What can we expect from the wave function structure on the basis of this
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theorem? This is the concentration of the probability density in the areas of
the coordinate space covered by (quasi)periodic trajectories for the regular wave
functions, in contrast to an almost uniformly blurred probability density for the
chaotic wave functions.

3. Representation by means of Wigner functions [38, 39], which have a set of
properties in common with the classical distribution function in the phase space,
which facilitates the search for QMCS.

As early as 1977, Berry [40] assumed that the form of the wave function for a
semiclassical regular quantum state (associated with the classical motion on an N-
dimensional torus in 2N-dimensional phase space) is very different from the form
of the wave function for an irregular state (associated with the stochastic classical
motion on all or part of the .2N � 1/-dimensional energy surface in all or part
of phase space). For regular wave functions, the average probability density in
configuration space is determined by the projection of the corresponding quantized
invariant tori onto the configuration space, which means the global order. The local
structure is implied by the fact that the wave function is locally a superposition
of a finite number of plane waves with the same wave number, as determined
by the classical momentum. In the opposite case for the average of chaotic wave
functions (over small intervals of energy and coordinates), the probability density
in the semiclassical limit „ ! 0 coincides with the projection of the classical
microcanonical distribution onto the coordinate space [see (9.65)]. Its local structure
is described by the superposition of an infinite number of plane waves with random
phases and the same wave numbers. The random phases might be justified by
classical ergodicity. This assumption leads immediately to the Gaussian distribution
for the amplitude of probability. This structure of the wave function is in good
agreement with the picture of the classical phase space. The classical trajectory
homogeneously fills the isoenergetic surface in the case of chaotic motion. In
contrast, from the consideration of the regular quantum state as an analogue of the
classical motion on a torus, a conclusion can be drawn about the singularity (in the
limit „ ! 0) of the wave function near the caustics (i.e., the boundaries of the region
of the classically allowed motion in a coordinate space).

Berry’s hypothesis was subjected to the most complete test for billiards of
different types and, in particular, for stadium-type billiards [41]. The results
have proved Berry’s hypothesis, but the probability density distribution appears
to be not as homogeneous as could have been expected because of the classical
motion ergodicity. Indeed, the observable inhomogeneities, called scars of the wave
functions, are the traces of the classical unstable periodic orbits [42].

The R-C-R transition considered in Sect. 9.3 represents an attractive possibility
to check Berry’s hypothesis for potential systems. Let us start from the H0
representation, or more exactly the representation of linear combinations of wave
functions jNLi of a two-dimensional harmonic oscillator with the equal frequencies

 k D
X

N;L

C.k/NLjjNLji; (9.66)
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Fig. 9.10 Distribution of coefficients C.k/NLj on the number i D fNLjg of the basis states

where

jNLji D PL;jp
2
.jNLi C jjN;�Li/ ; j D ˙1;

N D 0; 1; 2 : : : ; L D N;N � 2; : : : 1 or 0; PL;j D jMod.L;3/;

˝
NLj

ˇ̌
N0L0j0

˛ D 1p
2
2ıL0ıNN0ıLL0 : (9.67)

If we introduce the notion of distributivity of the wave function in this basis, then
the criterion of stochasticity formulated by Nordholm and Rice [43] states that the
average degree of distributivity of the wave functions increases with the degree of
stochastization in the system. It is clear that this criterion is a direct analogue of
Berry’s hypothesis for H0 representation if we interpret the number of the basis
state i D fNLjg as a discrete coordinate. Figure 9.10 confirms qualitatively this
criterion. It can be seen from this figure that the states that correspond to regular
motion (areas R1 and R2) are distributed in a relatively small number of the basis
states. At the same time, states corresponding to the chaotic motion (area C) are
distributed in a considerably larger number of basis states. In the latter case, the
contributions from a large number of basis states in the expansion (9.66) interfere;
this results in a complicated spatial structure of the wave function  k.x; y/.

The correlations between the structure of the wave function and the type of
classical motion are demonstrated also in Fig. 9.11, where the probability density
j k.x; y/j2 is represented for the states numbered 111, 160, and 210 [17]. The
squared module of the wave function reproduces rather well the transition from
the function with well-defined structure (area R1) to the irregular distribution (area
C), and further structure restoration in the second irregular area (R2).
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Fig. 9.11 Isolines of the probability density j k.x; y/j2

For the chosen technique, in which the transition is traced for the wave function
with fixed number k (due to the transformation of effective Planck constant N„), the
changes in the wave function are associated only with the R-C-R transition.

The specific nature of the stationary wave functions, corresponding to a certain
type of classical motion, appears also in the level lines structure, in particular in
the manifolds �.q/ D 0 structure. Depending on the dimensionality of the space
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Fig. 9.12 Structure of the nodal domains of the stationary wave functions of the rectangular
billiard  .x; y/ D sin 3�x cos 8�yC " sin 8�x cos 3�y for " D 0:01 (a), " D 0:1 (b), " D 0:6 (c),
and " D 0:99 (d)

configuration, these manifolds are called nodal points .N D 1/, nodal lines .N D 2/,
or nodal surfaces .N > 2/.

In 1979, Stratt et al. [44] proposed the criterion of quantum chaos, directly related
to the nodal geometry. For the regular states, the system of nodal lines is a grid
of quasiorthogonal curves (or is very close to them); but for chaotic spaces, this
representation is absent. For two-dimensional systems, it is convenient to describe
not the nodal lines themselves, but rather the constant sign areas of the wave
function, the so-called nodal domains, so that the boundaries between the domains
coincide with the nodal lines. Figure 9.12 shows the evolution of the nodal structure
of the wave functions of rectangular billiards, which confirms the proposed criterion.

The change in the nodal structure can be also traced during R-C-R transition in
the Hamiltonian of quadrupole oscillations (Fig. 9.13). This structure substantially
changes during the R-C-R transition. The spatial structure of the nodal curves for
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Fig. 9.13 Nodal curves of the wave functions  k.x; y/

states from areas R1 and R2 of the regular classical motion is much simpler than the
same structure for the states from the chaotic area C.

The new approach to QMCS study for the structure of the wave functions can be
realized in the potentials with two or more local minima [45]. The main advantage
of this approach is the possibility to detect QMCS in the different parts of the same
wave function, but not in different wave functions. The efficiency of this method
is shown in Fig. 9.14 for two potentials: surface quadrupole oscillations and the
umbilical catastrophe D5. Comparing the structure of eigenfunctions in the central
and peripheral minima of the potentials of quadrupole oscillations (Fig. 9.14c), or
in the left and right minima of the potential D5 (Fig. 9.14d), it becomes obvious
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Fig. 9.14 Mixed state in the potentials of quadrupole oscillations (a), (c) and D5 (b), (d): (a), (b)
are the Poincaré cross section, while (c), (d) are the nodal domains of eigenfunctions

that the nodal structures of the regular and chaotic parts of the eigenfunction clearly
differ:

1. Within the classically allowed domain, the nodal domains of the regular part
of the wave function form a clearly distinguishable checkerboard pattern [9];
nothing of the kind is observed in the chaotic part.

2. Nodal lines of the regular part show intersections or very narrow quasi-
intersections; in the chaotic part, there is a distinctive trend to avoid the
quasi-intersections.

3. While crossing the classical turning line U.x; y/ D En, the nodal line structure
of the regular part switches immediately to straight nodal lines, going to infinity,
which makes the turning point line itself easily localisable in the nodal domains’
structure; in the chaotic part, there exists an intermediate area around the turning
point line where some of the nodal lines pinch off, making the transition to the
classically forbidden domain more graduated and not so apparent in the nodal
structure.
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Chapter 10
Tunneling and Chaos

Since the early days of quantum mechanics, tunneling has been considered one of
its symbols: the ability of quantum particles to penetrate through energy barriers
is one of the most impressive applications of quantum theory. This phenomenon
has numerous applications in atomic, molecular, and nuclear physics as well as in
solid state physics. Almost a century has elapsed since its discovery, and the various
aspects of tunneling have been studied, but only in the last decades has it become
clear that despite its significantly quantum nature, tunneling is largely, if not entirely,
determined by the structure of the classical phase space of the system. The transition
of classical dynamics of integrability to chaos substantially modifies the tunneling
process. The purpose of this chapter is to make a clear, at first glance, paradoxical
statement: tunneling is absent in classical physics, but the structure of the classical
phase space defines a purely quantum effect of the tunneling!

10.1 Tunneling in One-Dimensional Systems

As is well known, a quantum system can be completely described by its wave
function j i, which represents a vector in Hilbert space in mathematical language.
In particular, an isolated spinless particle can be represented by a wave function
in the coordinate hxj i or momentum hpj i spaces. The same object in classical
mechanics is described in the phase space by the coordinates x, p. The question is
this: how can the classical time evolution described by Hamiltonian equations in
terms of x; p be reflected in the quantum reality using a single vector j i satisfying
the Schrödinger equation? It seems natural to associate the classical particle with
the quantum state j i, which is localized optimally in the vicinity of the particle’s
position in the classical phase space at any given time t. But quantum mechanics
imposes a fundamental restriction on the limit of the localization, expressed by the
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uncertainty relation

�x ��p � „=2:

Similar relations also exist for other canonically conjugate variables. Hence, the
maximum that we can hope for is to localize the particle in the domain of the
finite dimensions .�x; �p/ around the position of the particle .x; p/, with �x, �p
being significantly less than the scales characterizing the classical trajectory. This
should satisfy our desire to construct a quantum state that imitates the classical
motion, provided that j i follows the classical time evolution of x; p and �x; �p
remain small over time. Thus classical bodies are linked to the center of the gravity
trajectory even if they have finite dimensions. The quantum state, which possesses
such properties, at least in finite times, is called a wave packet (WP). Indeed, the
WP is the tunneling object. Let us consider [1] a quantum system with Hamiltonian
H, which performs one-dimensional finite motion. Its discrete spectrum Ei and
stationary wave functions  i are solutions of the equation

H i D Ei i:

The arbitrary WP �.t/, initially localized in a domain R, can be represented as a
superposition

�.t D 0/ D
X

i

ci i:

The property of the initial localization of the WP means that the integral of the
square modulus of the wave function at time t D 0 is close to the normalization of
the wave function

Z

R

j�.t D 0/j2dx ' 1:

The temporal evolution of the WP is determined by the time-dependent stationary
wave functions:

�.x; t/ D
X

i

ci exp .�iEit=„/  i.x/:

The probability pR.t/ of remaining in the domain R at later moments t is a linear
combination of periodic (trigonometric) functions with frequencies jEi � Ekj =„,
where the indices i; k comply with all the components entering the WP. The typical
time required for the WP to return to the initial state is of order the least common
multiple of the inverse frequencies. Since in the general case, the frequencies are
incommensurable, the WP will broaden with time to all available phase space.
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Fig. 10.1 Level splitting in
symmetric one-dimensional
potential double well
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Packet components corresponding to the high frequencies (bigjEi � Ekj) will expand
faster than the low-frequency components. The simplest WP is a packet consisting
of only two components of the wave functions  1 and  2 and energies E1 and
E2. This situation can adequately reflect the situation in the spectrum for which
jE1 � E2j  jEi � E1j 
 jEi � E2j for all other states  i. In this case,

pR.t/ D pR.0/� 4Asin2 .jE1 � E2j t=„/ ; (10.1)

where

A D c1c2

Z

R

 1 2dx

(c1;2 and  1;2 are assumed to be real). This approximation can be used to describe
the tunneling process in a one-dimensional symmetric double well, as shown in
Fig. 10.1.

If the potential barrier between the wells I and II is impenetrable for a particle,
then there are energy levels corresponding to the motion of particles in each well,
and the same for the two wells. Consideration of the tunneling (the possibility
of transition through the potential barrier) leads to the splitting of each of these
levels into two close levels. The wave functions corresponding to these almost
degenerate levels (due to the smallness of the interactions between the wells)
describe the motion of a particle simultaneously in both wells. Let  0.x/ be the
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semiclassical wave function describing the motion with energyE0 in an isolated well
I, that is, exponentially damped on both sides of the boundaries of this well. When
the tunneling is taken into account, the function  0.x/ ceases to be a stationary
wave function of the overall system, and the level E0 splits into the levels E1 and
E2. The correct wave functions corresponding to these levels are symmetric and
antisymmetric combinations of the functions  0.x/ and  0.�x/:

 1.x/ D 1p
2
Œ 0.x/C  0.�x/� ;

 2.x/ D 1p
2
Œ 0.x/�  0.�x/� : (10.2)

Using the semiclassical approximation for  0.x/ [2], one can show that

�E � E2 � E1 D !„
�

exp

0

@�1„

aZ

�a

jpj dx
1

A : (10.3)

Here ! is the cyclic frequency of the classical periodic motion in a well at the
energy E0, p D p

2m.E0 � U.x// is the imaginary subbarrier momentum of the
particle of mass m, and a is the turning point corresponding to the energy E0. Using
the functions  1.x/ and  2.x/, we can construct in a two-level approximation the
WPs  I.x/ D  0.x/ and  II.x/ D  0.�x/ localized at the initial time in wells I
and II respectively,

 I.x/ D 1p
2
Œ 1.x/C  2.x/� ;

 II.x/ D 1p
2
Œ 1.x/�  2.x/� : (10.4)

Each of the WPs tunnels from well to well with period T equal to

T D 2�„
�E

: (10.5)

Tunneling from well to well, without changing the shape (coherent tunneling), is a
feature of the symmetric potential. In the case of an arbitrary potential, the form of
WP changes in the tunneling process: the WP form is sensitive to the details of the
form of the potential barrier.
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10.2 Dynamical Tunneling

Now we generalize the problem of one-dimensional tunneling discussed above to
the case of higher dimensions. The degree of complexity of classical dynamics in
multiple dimensions is qualitatively greater than that in one dimension. This fact is
clearly manifested in the tunneling effect. This not only applies to the analysis of
the usual problem of penetration through the barrier but also leads to the emergence
of entirely new tunneling scenarios that have no analogues in one dimension. The
features of multidimensional tunneling that interest us can be demonstrated on
systems with one and a half and two degrees of freedom, and we restrict ourselves
to them.

The simplest example of the fundamentally multidimensional effect associated
with tunneling is dynamical tunneling [3]. The concept of dynamical tunneling
occurs in systems whose phase space contains domains, the transition between
which is prohibited at the level of classical mechanics, but the prohibition is not
caused by the potential barrier. Of course, this effect is possible only in systems
with more than one degree of freedom, where in addition to the energy, the integrals
of motion are sources of the corresponding prohibitions. The new type of tunneling
is more complex than traditional (potential barrier) tunneling. The complication is
due to the fact that a simple consideration of the potential surface does not detect
the prohibition conditions. Instead of static potential surfaces, we have to consider
the behavior (dynamics) of the trajectories. Let us return to the above semiclassical
solution of the problem of a one-dimensional symmetric double well in order to
understand the nature of dynamical tunneling. In this case, when we quantize
the system, considering each well separately, we obtain a spectrum consisting of
the strictly degenerate doublets. Taking into account only the interaction between
the wells due to the overlapping of the exponentially small tails of the wave
functions, we get the right result: almost degenerate pairs of levels with the known
splitting (10.3).

A situation similar to a one-dimensional symmetric double well may exist in
multidimensional potential without the energy barrier. Let us examine [3–5] a
dynamical system with reflective symmetry of the phase space T. Suppose that there
are two unconnected areas in the phase space, A1 and A2, each of which is invariant
with respect to the classical dynamics, with mapping to each other by the symmetry
operations A2 D TA1. Consider for concreteness the case that the classical motion
in A1;2 is regular, that is, when these areas represent islands of stability immersed
in a chaotic sea. The additional assumption is made that in the classical limit, there
is a set of states  .q/ that are mainly localized in these areas. Using the standard
procedure of quantization of integrable systems, we can independently quantize the
motion in each of the areas and construct the degenerate wave functions (sometimes
called quasimodes)  .1/.q/ and  .2/.q/ D  .1/.Tq/. In taking into account the
interaction between the quasimodes,  .1;2/ should be replaced by their symmetric
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and antisymmetric combinations

 .˙/ D 1p
2

�
 .1/.q/˙  .2/.q/

�
: (10.6)

The energy degeneracy between these functions is removed by tunneling processes.
But in contrast to the one-dimensional case, the invariant tori in A1;2 are not
necessarily separated by an energy barrier in the configuration space. The transitions
A1 $ A2 may be prohibited at the classical level of preservation of the integrals
of motion other than energy. An example of this type of quantum doublet was
first demonstrated in [3]. The authors of that work studied the spectrum and wave
functions of the Hamiltonian

H D p2x C p2y
2

C V.x; y/I V.x; y/ D 1

2
!2x x

2 C 1

2
!2y y

2 C 
x2y: (10.7)

The parameters used for the calculations are !x D 1:1, !y D 1, and 
 D �0:11.
In the spectrum obtained by the diagonalization of the Hamiltonian (10.7) in the
basis of the harmonic oscillator, the pair of states  .˙/.x; y/ was found, like the
ones shown in Fig. 10.2e, f, with abnormally low splitting of�E D 0:0001 and with
the energy E D 13:59: The sum and difference of these functions give the wave
functions  .1/ and  .2/, which are similar to those shown in Fig. 10.2c, d. These
wave functions are mainly concentrated in the vicinity of the classical periodic
orbits shown in Fig. 10.2a, b. It is important to note that despite the absence of
the potential barrier, the classical trajectories starting in the vicinity of the phase
space of one of the periodic orbits never fall into a neighborhood of another. This

a

b

e

d f

c

Fig. 10.2 Quantum doublets generated by dynamical tunneling
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fact is a consequence of the presence of the additional (other than energy) integral
of motion. So the classical trajectories can be “captured” on one or the other side
of the dynamical barrier exactly like classical motion in a symmetric double well
at energies below the barrier limited by one of the potential wells. The quantum-
mechanical situation is fundamentally different. The quasiperiodic orbits, which are
similar to the orbits shown in Fig. 10.2a, b with independent quantization, give a pair
of degenerate wave functions, as shown in Fig. 10.2c, d. When taking into account
the interaction (tunneling), the wave functions  .1;2/(quasimodes) are not correct
eigenfunctions. They should be replaced by the symmetric and antisymmetric
combinations  .˙/(6) (Fig. 10.2e, f). These pairs are split in frequency by a factor
of 10�4, while the fundamental frequency of the oscillations in the potential well
is of order unity. The system initially prepared in a state  .1/ representing the
linear combination of the states  .˙/,  .C/ ˙  .�/, as in the one-dimensional
case, may make transitions between this state and the state  .2/ with a frequency
of order�E=„. Naturally, the question arises what factors determine the oscillation
frequency of the WP, and in particular, if in the phase space of the system there are
two symmetric stability islands separated by a chaotic sea, then how this sea affects
the (dynamical) tunneling between the islands.

10.3 Dynamical Tunneling: Anharmonic Oscillator
with a Periodic Perturbation

A preliminary response to the above question was obtained by Lin and Ballentine
[6, 7]. The authors examined a model of a periodically excited double well in which
the degree of stochasticity can be adjusted by changing the amplitude of the exciting
force. The model Hamiltonian is

H D P2

2M
C Bx4 � Dx2 C 
x cos!0t; (10.8)

M D 1; B D 0:5; D D 10:

The classical equations of motion are

Px D P=M;

Pp D �4Bx3 C 2Dx � 
 cos!0t:
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To solve the Schrödinger equation, we use the basis fjnig of the harmonic oscillator
with the Hamiltonian OH equal to

OH D Op2=2M C 1

2
M!2x2;

OHjni D
�
n C 1

2

�
„! jni : (10.9)

The Schrödinger equation in this representation is

i„ d

dt
hmj .t/i D

1X

nD0
Hmnhnj .t/i: (10.10)

To calculate the matrix elements, we have to use the formula

Z 1

�1
e�.x�y/2Hm.x/Hn.x/dx D 2n

p
�mŠyn�mLn�m

m

��2y2� ; m � n:

Here, Hn are the Hermite polynomials, and Lnm are Laguerre polynomials. The
Schrödinger equation was solved for a given set hn j  .0/i with 0 < n < nmax. An
analysis of the Schrödinger equation (10.10) can be conveniently performed using a
transition to the Husimi functions [8] �.x; p/, defined as

�.x; p/ � .2�„/�1ˇ̌˝�x;p
ˇ̌
 .t/

˛ˇ̌2
; (10.11)

where
ˇ̌
�x;p

˛
is the minimum uncertainty wave packet [9], having average position x

and average momentum p, or the coherent state of the harmonic oscillator [10]. In
the basis fjnig,

h�x;pjni D exp

�
�1
2

j˛j2
�
˛�n=

p
nŠ;

where ˛ D .x C igp=„/ =p2g, g D „=M!. The Husimi function provides a
quantum analogue of the classical distribution function in the phase space.

We are using as parameters the driving force values 
 D 10 and !0 D 6:07.
These parameters provide the following structure of the phase space (see Fig. 10.3):
two islands of stability are centered at values of x ' �1:5, p D 0 and x ' 4:15,
p D 0. We choose as the initial state the WP j .0/i D ˇ̌

 x0 ;p0

˛
, which is centered

in the left island of stability in Fig. 10.3. It can be expected that the WP, which is
initially localized in the classically regular area, will remain localized in this area
or tunnel slowly therefrom into the chaotic region. Contrary to these expectations,
it turned out that there are coherent tunneling oscillations between unrelated regular
islands.
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Fig. 10.3 Stroboscopic cross section of the phase trajectories of the Hamiltonian (10.8) [6]

Figure 10.4 shows the time evolution of the Husimi function obtained by
numerical integration of the Schrödinger equation in the basis of the harmonic
oscillator (nmax D 115). Figure 10.4 presents the WP of minimum uncertainty
centered in the left island of the stability. With t D 115 	0 .	0 D 2�=!0/, there
is a probability close to unity of finding a particle in the next potential well, and in
t D 230	0, the initial state will be restored with a fairly high degree of accuracy.
The characteristic time of tunneling can be identified by a half-period of these
oscillations. What is the nature of these tunneling oscillations?

As it turned out [11], the effect can be understood in terms very similar to those
we used above in the description of dynamical tunneling. Due to the fact that the
considered Hamiltonian is periodically dependent on time,

OH.t/ D OH .t C 	0/ ;

an arbitrary state can be written as a linear combination of the so-called quasienergy
states [12]:

 .x; t/ D
1X

kD1
ak k.x; t/ D

1X

kD1
akuk.x; t/e

�i"k t=„;
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Fig. 10.4 The time-dependence of Husimi functions: (a) t D 0, (b) t D 5	0, (c) t D 115	0, (d)
t D 230	0 [6]

where "k is the quasienergy, and the function uk.x; t/ satisfies the equation

�
OH.t/ � i„ @

@t

�
uk.x; t/ D "kuk.x; t/;

and furthermore,

uk.x; t/ D uk.x; t C 	0/:

The Hamiltonian (10.8) has a discrete symmetry:

H.x; p; t/ D H.�x;�p; t C 	0=2/:

This means that the islands of stability in the classical system appear as sym-
metrically related pairs. For a quantum system, this leads to the fact that the
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quasienergy states are even or odd with respect to the replacement x ! �x,
t ! t C 	0=2. Consequently the quasienergy states can be grouped in doublets.
Each doublet includes even and odd members. If this doublet is localized within
a pair of classically regular islands, then it is possible to form from them the WP,
which is localized in only one of these islands. This doublet is coherently tunneled
(forward and backward) between the regular islands, showing the phenomenon of
quantum beating. The tunneling time is inversely proportional to the splitting of the
quasienergy in the doublet. The doublets that are localized in such a way are called
tunneling doublets. If a tunneling doublet exists, then the WP, initially localized
in one of the regular islands, will have coherent tunneling oscillations. But this
effect does not occur for doublets that are not localized in the regular islands.
Unfortunately, the only way to be sure whether this doublet is localized is to perform
a numerical simulation.

10.4 Annular Billiards as a Paradigm for Chaos-Assisted
Tunneling

In this section we consider a dynamical system that makes it possible to study
qualitatively and quantitatively the relation between the energy splitting that
determines the tunneling velocity in the two-level approximation and the structure
of the classical phase space [13]. The system is composed of an external circle of
radius R .R D 1/ and an internal circle (disk) of radius r < R (see Fig. 10.5). A
point particle moves uniformly in a straight line in the area between the two circles
and has elastic mirror reflections on the boundary. In this setting, we are dealing
with a two-parameter family of billiards, each of which is defined by a pair of real

Fig. 10.5 The geometry of a
circular billiard

r δ

α

θ

P
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Fig. 10.6 The area (gray) of
the whispering gallery
trajectories

O' O

numbers .r; ı/, where ı is the eccentricity (shift) of the disk center relative to the
center of the external circle.

All the possible trajectories in billiards can be divided into two fundamentally
different classes:

1. trajectories that never collide with the internal disk.
2. trajectories that collide at least once with the internal disk.

The trajectories that belong to the first class (and which play a crucial role in further
discussion) are commonly called whispering gallery trajectories. They always exist,
except in the case of r C ı D R, and are within the shaded symmetric circular area
bounded by the external circle and caustic corresponding to the whispering gallery
trajectories that are tangent to the internal disk (see Fig. 10.6). For a one-parameter
family of billiards r C ı D const (0 < const < R), this area remains the same: if
ı varies but r C ı is kept constant, then all whispering gallery trajectories remain
undisturbed.

As the dynamic variables describing the evolution of the system, we can choose
the values (see Fig. 10.5) S D sin ˛, where ˛ is the angle of reflection at the external
circle in the point P, and L D �=2�R, where � is the arc length in P, counted
from the intersection point of the line connecting the centers of the circles with the
external circle that is closer to the center of the external circle than to the internal
one. It is obvious that jSj � 1 and jLj � 1=2.

The structure of the phase space in the domain r C ı < jSj < 1 is trivial. A torus
in the phase space corresponds to each whispering gallery trajectory in configuration
space. The cross section of the torus in the .L; S/ plane is a horizontal line S D const;
on collision with the external circle, the impact parameter S does not change. Every
torus with a given value S can be associated with another torus �S, derived from the
initial whispering gallery trajectory by changing the rotational direction.
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Fig. 10.7 Poincaré sections for r C ı D const and different eccentricities ı: (a) ı D 0:01, (b)
ı D 0:065 , (c) ı D 0:10 , (d) ı D 0:25 [13]

The rays with a smaller impact parameter S < r C ı collide with the internal
circle, and since the angular momentum in such collisions is not conserved, the
motion is no longer integrable (the number of integrals of motion is less than the
number of degrees of freedom). This leads to a number of phenomena associated
with the concept of a mixed phase space of the nonintegrable system: the islands of
stability, immersed in the chaotic sea.

Figure 10.7 shows some Poincaré sections for r C ı D 3=4 and the different
eccentricity values ı. For small values of ı (Fig. 10.7a), we can observe around
a fixed point at the coordinate origin the presence of libration (or vibration) tori,
corresponding to the trajectories that successively collide with internal and external
circles. If we reverse this motion, the resulting trajectory will be based on the
original torus. Outside the separatrix in the region jSj � r C ı, there are rotational
tori that like whispering gallery tori, appear in pairs corresponding to the direct and
inverse rotation. But in this case (in contrast to the whispering gallery trajectories),
the circular motion occurs with the collisions with the internal circle. The rotational
tori (unlike the whispering gallery tori) deform when ı is changing, even if r C ı D
const. When ı is increasing (Fig. 10.7b), the region occupied by the libration tori
is compressed: part of the vibration tori is destroyed and is replaced by the chaotic



258 10 Tunneling and Chaos

layers. The same holds for part of the rotational tori. In the end, the chaotic sea that
appears connects the regions S D ˙.r C ı/ of congruent whispering gallery tori
(Fig. 10.7c). When ı is further increased, the region covered by libration tori keeps
shrinking (see Fig. 10.7d), until it disappears for ı D r.

The quantum mechanics of annular billiards [5, 13] with boundary conditions of
Dirichlet type is described by the Helmholtz equation:

.�C k2/ .q/ D 0; (10.12)

and the requirement that the wave functions vanish at the internal and external
boundaries of the billiards. The wave number k is associated with the energy by
the relation E D k2. The boundary conditions lead to the quantization of energy
(wave number). For the case ı D 0, due to the rotational symmetry, the orbital
angular momentum k ! knm is maintained (as well as the energy), where n is the
quantum number of the angular momentum and m is the radial quantum number
(n D 0; 1 : : : I m D 1; 2 : : :). Let us recall that the angular momentum quantum
number n in the semiclassical limit is associated with the classical impact parameter
S by the relation S D n=k. The stationary wave function of the circular billiards with
ı D 0 is coupled in energetically degenerate doublets, consisting of the components
of the angular momentum with n and �n. In a system with eccentricity .ı ¤ 0/, the
degeneracy is removed by a violation of rotational invariance. But the doublets are
perturbed to different degrees, depending on the relative values of n and k.rCı/. The
symmetry-breaking strongly affects the doublets with a small value of the angular
momentum jnj < k.r C ı/, corresponding to the classical motion in which there
are collisions with the internal circle. For doublets with small n, the degeneration
is removed effectively with the increase of ı. The chaotic eigenstates appear and
expand on the states between �k.r C ı/ and k.r C ı/. The higher doublets with the
angular momentum jnj > k.r C ı/ change only slightly under the violation of the
symmetry (this is understandable, since the trajectories with such impact parameters
do not collide with the internal circle, so its movement affects them slightly). The
doublets are preserved, and the degeneration is slightly removed. The states are
basically symmetric and antisymmetric combinations of n and �n components of
the angular momentum:

ˇ̌
˛.˙/

˛ � 1p
2
.jni ˙ j�ni/ : (10.13)

As explained above, the energy splitting between
ˇ̌
˛.C/

˛
and

ˇ̌
˛.�/

˛
leads to

the tunneling oscillations between the quasimodes j˙ni, linked with whispering
gallery tori ˙S D ˙n=k .S > r C ı/. A quantum particle prepared in the
state jni will change its rotation from clockwise to counterclockwise and vice
versa with the frequency 2�„=�En. This tunneling process is a clear example
of dynamical tunneling. It occurs in the phase space and not in the configuration
space. Whispering gallery tori ˙S are identical in configuration space. Also, in the
tunneling process, the overcoming of the potential barrier in the configuration space
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does not occur. Indeed, the energy does not play any role in tunneling, because the
energy is associated only with the absolute value of the momentum and not with its
direction. The tunneling process violates the dynamic law of conservation of angular
momentum for the rays with large impact parameters (for small impact parameters
it is not conserved because of the internal circle).

We want to find out whether the classical dynamics corresponding to the states
jSj < r C ı (chaotic sea) affect the splitting of quasidoublets, which are constructed
on the whispering gallery tori jSj > r C ı. In particular, it is interesting to consider
the quasidoublets corresponding to the one-parameter family rCı D const. Indeed,
when the eccentricity changes, the chaos measure also changes in the intermediate
domains (between tori S and �S; see Fig. 10.7), but quantized whispering gallery
tori remain unperturbed.

We now proceed directly to an analysis of the splitting magnitudes of quasidou-
blets defining the tunneling speed of wave packets. Why do we expect an increase
in this speed? The semiclassical argumentation indicates that the probability distri-
bution associated with the quantized torus decays exponentially outside the torus.
A small overlap in the classically forbidden domain of the decaying distributions
centered on two congruent quantized tori .n;�n/ leads to the tunneling splitting. If
there is no chaotic domain between the tori, this overlap is small. However, if the
chaotic area between the tori exists, the wave functions corresponding to the tori link
first with the chaotic state. Due to the ergodic nature of the chaotic wave functions
(the homogeneous distribution of the probability density), the connection between
the two tori seems to be more effective than in the case of a regular intermediate
state. Hence we can expect that tunneling will be reinforced by the presence of a
chaotic region.

To make this argumentation more convincing, it should be confirmed by numer-
ical calculations. Bohigas et al. [13] investigated numerically the transformation of
a set consisting of the five tunneling quasidoublets of a one-parameter family of
circular billiards with r C ı D 0:75. The observed general tendency represented a
dramatic increase in the splitting of quasidoublets (several orders of magnitude) with
the increase of the proportion of chaotic phase space (growth of ı). Such a tendency
suggests the idea [13] of calling the observed effect chaos-assisted tunneling (CAT).
An important feature of the CAT effect is that splitting of quasidoublets increases
with an increase in ı. That is why the following observations are important for
understanding the physics of this effect:

1. The dependence of the splitting of the eccentricity ı is determined by two
independent characteristics of the quasidoublet: the position in the spectrum and
the position in the phase space.

2. Quasidoublets that are higher on the spectrum have less splitting.
3. Quasidoublets that are nearest to a chaotic sea have maximum splitting.

It is important to note that the numerical results show significant fluctuations of
splittings as a function of eccentricity. Each of the fluctuations is associated with
quasicrossing “outsider” chaotic level and considered regular (tunnel) quasidoublet.
Because there is no dynamic partitioning of the chaotic region in an unrelated
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symmetric field, as is the case in the regular part of the phase space, we have no
reason to expect chaotic doublets. Every chaotic state has a fixed parity. At the
quasicrossings, the local domain of the spectrum can be described by a three-level
model [4] with the Hamiltonian

OH D
0

@
E C " 0 0

0 E � " v
0 v Ec

1

A :

Here, E ˙ " are the energies of a regular quasidoublet consisting of the symmetric
and antisymmetric combinations of the respective quasimodes. In accordance with
this model, the even chaotic state jCi of the energy Ec is associated with the state
jCi, having energy E � " as a constant of the interactions v. In practice, one of the
constants v and " dominates over the other. If " dominates, then we return to the
two-level model that has already been considered. Therefore, we assume that the
coupling between the states jCi and jCi is dominant, and we set " D 0. In this
case, the splitting of the quasidoublet �E is determined by the shift EC due to the
interaction v. The diagonalization of OH leads to

�E D
(

v2

E�Ec E � Ec 	 v

jvj E � Ec  v

Thus when changing ı, we see peaks in the splitting of the quasidoublets of height
jvj at the intersection of Ec.ı/ with EC.ı/.

Let us sum up. Unlike the integrable systems with mixed dynamics with the phase
space that contains both regular and chaotic areas, a new mechanism of tunneling is
demonstrated. The splitting of the doublets, which defines the tunneling velocity in
the mixed systems in the two-level approximation, is usually several orders greater
than is the case of similar but integrable systems. In contrast to to the direct process
whereby the particle tunnels directly from one state to another, CAT corresponds to
the following three-step process:

1. tunneling from the periodic orbit to the nearest point of the chaotic sea;
2. the classical spread in the chaotic domain of phase space to the vicinity of another

periodic orbit;
3. tunneling from a chaotic sea to another periodic orbit.

In other words, the process of splitting of doublets owes its existence to the
reflection symmetry and is not direct but happens through the compound process
of destruction of the wave function, piece by piece, close to one regular domain, the
chaotic transport in the neighboring symmetric regular area, and restoration of the
initial state. Schematically, this three-step process is shown in Fig. 10.8.
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Fig. 10.8 Schematic
representation of direct
tunneling (black trajectory)
and the CAT process (gray
trajectory)

Note that the CAT process is formally of higher order of perturbation theory
than direct tunneling. However, the corresponding matrix elements for the CAT
are much greater than for direct tunneling. Intuitively, this can be understood as
follows: The tunneling from the periodic orbits into a chaotic sea is typically
accompanied by significantly smaller violations of classical mechanics than in the
case of direct tunneling and therefore has exponentially greater amplitude. More
precisely, this means that since a large part of the distance (in a chaotic sea) is
a classically allowed transition, we can expect that these indirect trajectories will
make a greater contribution to the tunnel flow than direct ones. In the case of
direct tunneling, the entire subbarrier trajectory is a forbidden process. The first
experimental confirmation of CAT in a microwave version of circular billiards was
obtained in [14]. Later, experiments were performed to detect the dynamic tunneling
of cold (10�K) cesium atoms in an amplitude-modulated light wave [15]. The
arguments in favor of the CAT being responsible for the effect of the transition
from superdeformed states of nuclei to states with a normal deformation were given
in [16].

Let us briefly consider the experiments using the microwave analogue of annular
billiards [14]. This experimental technique makes it possible to work with the
spectra in which the size of the splitting of some quasidoublets is several orders of
magnitude smaller than the average distance between the levels. Figure 10.9 shows
fragments of the spectrum of the circular microwave billiards with superconducting
walls in a neighborhood of f D 9GHz for various values of eccentricity ı [14].

Among a number of the singlet levels, the quasidoublet is clearly visible, and its
position in the spectrum changes only slightly with the increase of ı. It becomes
possible to measure the quasidoublet splitting of the family of 30 wave functions
.n;m D 1/. In order to detect the effect of CAT, the quasidoublet splitting should be
analyzed as a function of the position of the quasidoublet in the phase space. This
can be done using the following considerations. The wave number of states forming
a quasidoublet is very close to the concentric case ı D 0. As we pointed out, this
happens because the trajectory with a big impact parameter does not collide with
the internal circle, so its movement (change ı) weakly perturbs the corresponding
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Fig. 10.9 The frequency spectrum of microwave circular billiards with superconductive walls in
the vicinity of the frequency f D 9GHz for different parameter values ı. The fragments of the
spectrum stretched 50 times by the frequency are shown in small circles [14]
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Fig. 10.10 The dependence of the relative doublet splitting j�f=f j on the position of the doublet
in the phase space for the value ı D 0:20 [14]

wave functions. This makes it possible to express in terms S D n=k the location of
the whispering gallery tori in the phase space. The result of the measurement of the
relative doublet splitting j�f=f j for the value ı D 0:20 is given in Fig. 10.10.

In addition to the expected smooth transition from states with big splitting inside
the chaotic sea (S < 0:75) to states with low splitting in a regular area, the local
maximum can be clearly seen in the vicinity of the chaotic sea coast (S D 0:75),
which can be considered a direct experimental confirmation of the CAT effect.
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10.5 Chaotic Nuclear Dynamics

Recent progress in the understanding of chaotic aspects in nonlinear dynamical
systems has attracted interest to nuclear dynamics. Indeed, experimental data and
modern theory provide a very useful realistic model that allows one to study
classical dynamical chaos and the quantum manifestations of classical stochasticity
(QMCS).

The chaos concept, despite strong resistance, was introduced in nuclear theory
in the 1980s [17–27]. This concept has allowed a fresh look at the peculiarities of
nuclear structure [17, 20–23, 28, 29] and nuclear reactions [18, 23, 27], and has
helped also to solve a number of old contradictions in nuclear theory [22, 30].
Substantial progress was achieved in the description of concrete nuclear effects
[19, 20, 31–33]. Finally, the direct observation of chaotic modes in the simulation
of reactions with heavy ions [18] has proven the correctness of the new approach.

Baranger [24] clearly formulated two different approaches to the study of the
chaotic aspects of nuclear dynamics.

Philosophy I. Nuclei are complicated, and chaos comes out of this complication.
We expect to find chaos almost everywhere in nuclear physics. Interesting
information is in few places without chaos.
Philosophy II. Chaos is a property of simple systems. The interesting new
information may be found in simple areas of nuclear physics that are chaotic.

Currently, Philosophy II finds more and more supporters. Let us illustrate this
approach by a few examples.

We address first one of the oldest paradoxes in nuclear theory: the possibility to
apply two absolutely opposite physical models—the liquid drop model with strong
internucleon interaction and the shell model of no interacting particles—to describe
the same object (an atomic nucleus). In order to resolve this paradox in the frame of
deterministic chaos (Philosophy II), we use the results of [24, 30]:

1. If the nucleons’ motion in the nucleus is regular (integrable dynamics), we could
expect the manifestations of strong shell effects, which are well described by the
model of independent particles in the potential well.

2. If the nucleons’ dynamics are dominated by the chaotic component, then one can
expect that the liquid drop model or the Thomas–Fermi approximation would be
more adequate.

This hypothesis is based on understanding the mechanism according to which the
shell effects are destroyed in the process of the regularity–chaos transition. In the
early 1900s, Henri Poincaré pointed out that the main problem of dynamics was to
study the perturbations of conditionally periodic motion in a system defined by the
Hamiltonian

H D H0.I/C "V .I; �/ ; (10.14)
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where H0.I/ is the Hamiltonian of the integrable problem, which depends solely on
the action variables I, and "V .I; �/ is the nonintegrable perturbation. The solution of
this problem is essentially based on the so-called KAM theorem [34]. This theorem
guarantees that the classical integrable system can preserve regular behavior, even
at sufficiently strong nonintegrable perturbation. We consider the problem of the
shell structure destruction in the quantum spectrum, where the theorem plays the
principal role. The residual nucleon–nucleon interaction is a nonintegrable addition
to the self-consistent field, obtained for instance in the Hartree–Fock approximation
[35]. Therefore we can try to relate the destruction of the shells to the deviation from
integrability, or conversely, to relate the growth of the shell effects to the approach
of the system to the integrable situation. The possibility for the shell structure to
exist at sufficiently strong residual interaction is due to the rigidity of the KAM tori.
This mechanism of shell structure evolution seems quite natural, taking into account
that the semiclassical quantization procedure [36] is based on similar assumptions.

Let us confirm those general considerations by numerical analysis of the shell
structure evolution in the potential of quadrupole oscillations UQO (9.18). As we
have seen in Chap. 9, the topology of the potential family UQO.x; yI a; b; c/ is
determined by only one parameter W D b2=ac. The region 0 < W < 16 includes
the potentials with a unique extremum—a minimum at the origin, corresponding
to a spherically symmetric ground state of the nucleus. We shall restrict our
consideration to that area. Recall that for 0 < W < 4, the motion is regular at
every energy, and for 4 < W < 16, we deal with the R-C-R transition.

Based on these assumptions, let us consider the Hamiltonian of the two-
dimensional harmonic oscillator in the role of H0 D H .b D 0; c D 0/. The
degenerate equidistant spectrum of this Hamiltonian and the eigenstates jN;Li
are well known. Evidently, the eigenstates of the exact Hamiltonian .c; b ¤ 0/

are not already the eigenstates of the operators ON and OL. Nevertheless, numerical
calculations show that one can use the quantum numbers N and L to classify the
quantum states, even at sufficiently strong nonlinearity.

The limiting value of the nonlinearity, up to which such a classification is still
reasonable (i.e., the shell structure still exists), is related to the quasicrossing of
the neighboring levels. By the quasicrossing we understand the approach of the
neighboring levels up to a distance of order the numerical accuracy. As one can see
from Fig. 10.11a, in the potential with W D 13 approaching the critical energy of the
transition to chaos determined by the negative curvature criterion (see Chap. 9), the
shell structure is destroyed, observed as the emergence of multiple quasicrossings.
At the same time, for the potential with W D 3:9 (Fig. 10.11b), there is no local
instability generated by the negative curvature of the potential energy surface: the
motion remains regular at every energy, so the quasicrossings are absent, even for
nonlinearity stronger than that in Fig. 10.11a.

The evolution of the shell structure during the R-C-R transition can be followed
on the level of wave functions, using the information contained in the coefficients
C.k/NLj of decomposition of the wave functions in terms of the harmonic oscillator
basis (9.67). For that purpose, similar to the usual thermodynamic entropy, we
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Fig. 10.11 (a) Energy spectrum of the quadrupole oscillations Hamiltonian as a function of the
parameter b for W D 13. The points show the quasicrossings. The solid line shows the dependence
of the critical energy of transition to chaos on the parameter b (c D 10�4). The dashed line marks
the beginning of the quasicrossing region. (b) The same for W D 3:9. The quasicrossings are
absent

introduce [37, 38] the entropy of an arbitrary state k of the exact Hamiltonian H,

S.k/ D �
X

NLj

ˇ̌
ˇC.k/NLj

ˇ̌
ˇ
2

ln
ˇ̌
ˇC.k/NLj

ˇ̌
ˇ
2

: (10.15)

In the regions R1 and R2, corresponding to regular motion, the entropy changes
correlate with the shell-to-shell transition (see Fig. 10.12). In the chaotic region C,
two effects are observed. Firstly, the violation of the quasiperiodic dependence of
the entropy on energy reveals the destruction of the shell structure. Secondly, the
entropy grows on average monotonically and then reaches a plateau corresponding
to the entropy of the random sequence, at energies essentially exceeding the critical
energy of the transition to chaos.

The dependence of the shell structure on the type of classical motion is manifest
also in such a characteristic of the nucleus as mass. Strutinsky [39] proposed a
method to take into account the influence of the shell structure on the nuclear
mass. The method is based on the following representation of the total energy of
the nucleus as the sum of two terms:

U.Z;N; x/ D NU.Z;N; x/C QU.Z;N; x/; (10.16)

where Z and N are the proton and neutron numbers respectively, and x represents a
set of the parameters that define the shape of the nucleus. The first term NU describes
the bulk properties of the nucleus, and contains all the contributions that vary
smoothly with proton and neutron numbers. The second term QU describes the shell
effects, related to the shape-dependent microscopic fluctuations. As we have seen
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Fig. 10.12 Entropy Sk as a function of state number k for the UQO.x; y;W D 13/ potential. The
solid lines connecting the points correspond to the shell classification according to N
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above, the evolution of the shell structure essentially depends on the type of classical
motion. Bohigas and Leboeuf [40] proposed to split the shell correction QU into two
parts, QU D QUreg C QUch. The two contributions QUreg and QUch correspond respectively
to the regular and chaotic components of the nucleon motion. According to [40], the
presently calculated masses can correctly reproduce only QUreg; however, the final
result for the fluctuations produced by the chaotic part of the motion is in fact of
a much more general validity, and may be interpreted as arising from the residual
interactions. This approach, as was mentioned above, is equivalent to interpretation
of the residual nucleon–nucleon interaction as a nonintegrable addition to the self-
consistent field.

From a semiclassical point of view, the Gutzwiller trace formula (see Sect. 9.2)
allows one to interpret the shell effects as modulations in the single-particle
spectrum produced by the periodic orbits of the corresponding classical dynamics.
The trace formula (9.13) allows us to calculate the oscillatory part Q�.E; x/ of the
total level density �.E; x/ D N�.E; x/ C Q�.E; x/. The shell correction to the nuclear
mass is computed by inserting the oscillatory part of the density of states into the
expression for the energy:

QU .x;A;T/ D
Z

dEE Q�.E; x/f .E;T/ ; (10.17)

where f .E;T/ is the Fermi function. In a semiclassical expansion, the leading-order
term in the integral comes from the energy dependence of the action. Having set
T D 0, one obtains

QU.x;A/ D 2„2
X

p

1X

kD1

Ap;k

k2T2p
cos

h
k
�
Ip � �

2
�p

	i
: (10.18)

According to (10.18), the presence of the fluctuations in the total energy is therefore
a very general phenomenon that occurs for an arbitrary Hamiltonian, irrespective of
the nature of the corresponding classical dynamics. However, their importance (i.e.,
their amplitude) strongly depends on the properties of the dynamics, particularly on
its chaotic or regular type [41, 42].

Let us give one more example to show how the atomic nucleus can be a useful
tool for QMCS investigations. One of the alternative approaches [43] to describing
quantum chaos is based on the traditional method of time series analysis. Let us
consider the energy spectrum as a discrete signal, and a sequence of N energy
levels as a time series. We shall characterize the spectra fluctuations by the statistical
characteristic ın defined as

ın D
nX

iD1
.si � hsi/ D

nX

iD1
wi; (10.19)
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where the index n runs from 1 to N�1. The quantities wi characterize the fluctuation
of the ith spacing between the nearest neighbors with respect to its average value
hsi D 1. The energy spectrum is assumed to be already unfolded in the standard
way, i.e., the initial spectrum was mapped to an auxiliary one .Ei ! "i/ with unit
average value of the level density. Then si D "iC1 � "i, i D 1 : : :N � 1.

Let us consider how the spectral characteristic ın changes during the transition
from regular systems to chaotic ones. For that purpose, we calculate the power
spectrum S.k/ for the discrete series defined as

S.k/ D
ˇ̌
ˇ Oık
ˇ̌
ˇ
2

; (10.20)

where ık is the Fourier transform of ın,

Oık D 1p
N

X

n

ın exp

�
�2�ikn

N

�
; (10.21)

and N is the time series length.
As an object for detailed investigation of the spectrum, Relano et al. [43]

chose the atomic nucleus at high excitation energy, where the density level is
very high. They obtained the energy spectrum by diagonalization of the nuclear
Hamiltonian with a realistic interaction that reproduces the experimental data quite
well. Diagonalization was performed for the different values of angular momentum
J, parity � , and isospin T. Among the obtained spectra, they selected a series of
256 consecutive levels with equal J� , T from the regions of high-level density. In
order to reduce statistical errors and to clarify the general trend, the obtained power
spectrum S.k/ was averaged over 25 level series.

Figure 10.13 represents the results of the averaged power spectrum for the stable
Mg24 nucleus (the spectrum was obtained by diagonalization of a 2000 � 2000

matrix) and unstable Na34 nucleus (5000 � 5000 matrix). One can see clearly that
the power density of the quantity ın is close to a power law, presumably following a
simple functional form:

hS.k/i 
 1

k˛
: (10.22)

Least-squares fitting gives the results ˛ D 1:11˙0:03 for Na34 and ˛ D 1:06˙0:05
for Mg24. A natural question arises: can there be some universal relations between
the peculiarities of the quantum spectrum corresponding to the type of classical
motion and the power spectrum of the ın fluctuations?

Perhaps the simplest way to answer that question is to compare the power density
for the spectrum corresponding to the Poisson statistics to that of the random
matrices ensemble, generating the Wigner distribution. The answer obtained in [43]
was quite amazing. Ignoring the very high frequency region, where some deviations
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Fig. 10.13 Average power spectrum of the ın-function for Mg24 from the high-level density
region. The plots are displaced to avoid overlapping [43]

were observed probably due to the finiteness of the considered matrices, it was found
that ˛ ' 1:99 for the Poisson spectrum with uncertainty of order of 2%. In contrast,
˛ ' 1:08 was found for the Gaussian orthogonal ensemble of the high-dimension
matrices, which is usually considered a paradigm of a chaotic quantum spectrum.
Therefore, generalizing the obtained results, one can conclude the following [43]:
the power spectrum hS.k/i behaves as 1=k˛ both for regular and chaotic energy
spectra, but the level correlation decreases from the maximum value of ˛ D 2 for the
regular uncorrelated spectrum to the minimum value of ˛ D 1 for chaotic quantum
systems.

More generally, this result can be formulated as a hypothesis: the energy spectra
are characterized by 1=f -noise. Recall that the 1=f -noise (i.e., the flicker-noise)
was discovered in the 1920s as a universal satellite of all irreversible stationary
processes: its contribution cancels out when the irreversible flows disappear and the
system reaches thermodynamic equilibrium.

The proposed hypothesis [43] has a number of attractive features. The considered
property characterizes immediately the chaotic spectrum without any reference to
properties of other systems (i.e., random matrix ensembles). It is universal for all
types of chaotic systems, regardless of whether they are invariant with respect to
time reversal, or whether their spin is integer or half-integer. Besides that, the 1=f
characteristic brings together the quantum chaotic systems with a very wide set of
systems from very different branches of science. The flicker-noise is omnipresent.
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Therefore, the energy spectra of chaotic systems demonstrate the same type of
fluctuations as many others. However, there are no reasons to believe that the 1=f -
noise in the spectral fluctuations of quantum systems implies 1=f -noise in their
classical analogues.

The common conception of the possible stochastization mechanism in
quadrupole nuclear oscillations of high amplitude is confirmed by direct
observations of chaotic regimes in numerical simulations of reactions with heavy
ions [18].

The time-dependent Hartree–Fock theory [35] constitutes a well-defined starting
point for the study of such processes. The time-dependent Hartree–Fock equations
can be obtained from the variation of the many-body action S,

S D
Z t2

t1

dt

�
�.t/

ˇ̌
ˇ̌i
@

@t
� H.t/

ˇ̌
ˇ̌ �.t/i : (10.23)

In this expression, H is the many-body Hamiltonian, and the A-nucleon wave
function�.t/ is chosen to be of determinant form, constructed from time-dependent
single-particle states  
 .r; t/

� .r1; r2 : : : rAI t/ D 1p
AŠ

det j 
 .r; t/j : (10.24)

The variation of Eq. (10.23) with respect to the single-particle states  
 and  �



yields the equations of motion
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and a similar equation for  �

 .r; t/.

The classical nature of these equations can be put into better perspective via
the definition of the classical field coordinates �
 .r; t/, and conjugate moments
�
 .r; t/,
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Then the result is Hamilton’s equations:
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The time-dependent Hartree–Fock equation (10.25) and its complex conjugate are
solved on a three-dimensional space-time lattice with special initial wave functions
[44]:

'
 .r; t/ ! p
2 cos .k
r � "
t/ �
.r/;

�
 .r; t/ ! p
2 sin .k
r � "
t/ �
.r/; (10.28)

where "
 is the solution of the static Hartree–Fock equations h�
.r/ D "
�
.r/,

 D 1 � � �A, and k
 is the parameter of the initial boost.

The time-dependent Hartree–Fock calculations for head-on collisions of He4 C
C14, C12 C C12

�
0C� and He4 C Ne20 were performed by Umar et al. [18] at

bombarding energies near the Coulomb barrier. The results are interpreted in terms
of their classical behavior. The initial energy and the separation of the centers
of the ions are the parameters labeling the initial state. After initial contact, the
compound nuclear system (O18 or Mg24) relaxes into a configuration undergoing
quasiperiodic or chaotic motion. The analysis of nuclear density multipole moments˚
MLI.t/; PMLI.t/

�
has been applied for classifying those solutions using Poincaré

sections. The definitions of the moments are as follows:

MLI.t/ D
Z

d3rrLYLM .Or/ �I .r; t/ ;

MLI.!/ D
Z

dt exp .�i!t/MLI.t/; (10.29)

where the isoscalar .I D 0/ and isovector .I D 1/ densities are

�I .r; t/ D
(
�p .r; t/C �n .r; t/ .I D 0/ ;

�p .r; t/ � �n .r; t/ .I D 1/ :
(10.30)

The proton �p and neutron �n densities in terms of the field coordinates �
 and
moments �
 are

�q .r; t/ D 1
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ˇ̌2 C ˇ̌
'
;q .r; t/

ˇ̌2i
; q D p; n: (10.31)

The isoscalar quadrupole mode (L D 2, I D 0), shown in Fig. 10.14 for the Mg24

nuclear system, seems to fill most of the available phase space in the Poincaré
section

˚
MLI.t/; PMLI.t/

�
.
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Fig. 10.14 Poincaré section˚
MLI.t/; PMLI.t/

�
for isoscalar

quadrupole mode for the
Mg24 system [18]
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Fig. 10.15 The autocorrelation function C20.t/ as a function of time for the isoscalar quadrupole
mode in the Mg24 system [18]

The corresponding autocorrelation function (Fig. 10.15)

C20.t/ D
Z C1

�1
d!

2�
exp .i!t/ jM20 .!/j2 (10.32)

damps rapidly. All this favors the view that the corresponding motion is closer to
stochastic, rather than quasiperiodic.

In conclusion, let us describe briefly one more nuclear effect, which demonstrates
that the nucleus is a laboratory for research of general physical effects such as
tunneling, chaos, and phase transitions. Recently, it became clear [45, 46] that
superdeformed nuclei offer a new way of understanding nuclear structure. On the
one hand, nuclei provide interesting data for the study of these general phenomena;
on the other hand, we obtain new information about the nuclear structure.

A superdeformed nucleus is a nucleus that is very far from spherical, forming an
ellipsoid with axes in ratios of approximately 2W1W1. Only some nuclei can exist
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in superdeformed states. These superdeformed nuclei are produced in reactions
with heavy ions. Initially accelerated heavy ions, in colliding with nuclei of the
target material, produce highly excited and rapidly rotating compound nuclei. These
nuclei release part of the excitation energy by the emission of light particles
(neutrons, protons, alpha particles) and photons. In all observations of rapidly
rotating superdeformed nuclei, rotation breaks off (already at low momentum) when
the nucleus suddenly changes its shape and decays to the state that corresponds to
lower deformations. Three stages of the transition from the superdeformed state to
the normal deformed one are presented in Fig. 10.16 [47]: feeding of superdeformed
bands, ordered rotation, and decay from superdeformed to the normal state.

The lowest states in a superdeformed local minimum correspond to high
excitations in the main minimum. As a result, the lowest superdeformed states
(cold states) are characterized by good quantum numbers and symmetries, while
their decays to the main minimum are controlled by the strict rules of selection.
In contrast, the normal deformed states at the same energy could correspond to
chaotic motion in the semiclassical limit. Statistical analysis confirms this idea: the
energy spectrum in this energy region of the main minimum demonstrates all the
signs of chaos [47]. This means that in the considered region of nuclei excitation
for which the deformation potential allows the existence of the second minimum,
a mixed state occurs (see Sect. 9.3). The question is whether the chaos-assisted
tunneling mechanism can be used for the description of the transition from the
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superdeformed state to the normal deformed one. We should stress that we can
consider dynamical tunneling because the transition takes place in multidimensional
space: the nuclear shape is characterized by at least two parameters. Aberg [16]
estimated in perturbation theory the tunneling probability in two limiting cases. The
first limit was the case of no mixing between the normal deformed states (completely
regular normal deformed system), while the second was that the tunneling strength
is spread out over all normal deformed states (i.e., quantum chaos). For the ratio of
the probability of tunneling Tchaotic and T regular, Aberg found [16]

Tchaotic

T regular

 104–106: (10.33)

Therefore, we expect the tunneling probability to be enhanced by a factor of 104–
106 if the normal deformed states are chaotic. In other words, the tunneling process
connected to the decay out of superdeformed states is strongly enhanced by the
chaotic properties of the normal deformed states.
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