
Chapter 5
Vortices and Rotation

Abstract As well as being free from viscosity, the Bose–Einstein condensate has
another striking property—it is constrained to circulate only through the presence of
whirlpools of fixed size and quantized circulation. In contrast, in conventional fluids,
the eddies can have arbitrary size and circulation. Here we establish the form of these
quantum vortices, their key properties, and how they are formed and modelled.

5.1 Phase Defects

The condensate’s wavefunction is a complex quantity. We have seen that it can be
written as Ψ (r, t) = R(r, t)ei S(r,t) (Madelung transform), where R(r, t) and S(r, t)
are respectively the phase and amplitude distributions at time t . Consider following
a closed path C of arbitrary shape through a region of the condensate. As we go
around the path, the integrated change in the phase is

ΔS =
∮

C
∇S · d�, (5.1)

where the vector d� is the line element of integration. Let the wavefunction be Ψ0

and Ψ1 respectively at the starting point and at the final point of C . Since the two
points are the same and Ψ must be single-valued, the condition Ψ1 = Ψ0 means that,

ΔS = 2πq, q = 0,±1,±2, . . . (5.2)

If the integer number q �= 0 then, somewhere within the region enclosed by C ,
there must be a phase defect, a point where the phase wraps by the amount 2πq. At
this point the phase of the wavefunction takes on every value, and the only way that
Ψ can remain single-valued here is if Ψ is exactly zero.
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80 5 Vortices and Rotation

5.2 Quantized Vortices

What does the presence of a phase defectmean for the condensate as afluid?Recalling
that the phase distribution defines the fluid’s velocity via v = (�/m)∇S, Eq. (5.2)
implies that the circulation Γ around the path C is either zero or a multiple of the
quantum of circulation κ,

Γ =
∮

C
v · d� = qκ, κ = h

m
. (5.3)

This important result (the quantization of the circulation) tells us that the condensate
flows very differently from ordinary fluids, where the circulation takes arbitrary
values.

Assume that q �= 0, and that the path C is a circle of radius r centred at the
singularity. Consider the simple case of two-dimensional flow in the xy plane. Using
polar coordinates (r, θ), the line element is d� = rdθ êθ, where êθ is the unit vector
in the azimuthal direction θ. Then the circulation becomes,

Γ =
∮

C
v · d� =

∫ 2π

0
rv · êθ dθ = 2πrvθ. (5.4)

Comparison with Eq. (5.3) shows that the fluid’s azimuthal speed around the singu-
larity is,

vθ = q�

mr
= qκ

2πr
. (5.5)

Since the condensate is a fluid without viscosity, this flow around the singularity
should go on forever, at least in principle!

For q �= 0, Eq. (5.5) tells us that the velocity around the singularity decreases to
zero at infinity (vθ → 0 as r → ∞), and that, as we approach the axis, the flow
becomes faster and faster, and diverges (vθ → ∞ as r → 0). If we increase q, the
flow speed increases discontinuously, because q takes only discrete values. The sign
of q determines the direction of the flow (clockwise or anticlockwise) around the
singularity.

We now have a better picture of the nature of the singularity: it is a quantized
vortex line, a whirlpool in the fluid. The quantity q is called the charge of the vortex.
Figure5.1 (left) represents a straight vortex line through the origin, parallel to the z
axis. Since the flow is the same on all planes perpendicular to the z axis, the flow of
the (three-dimensional) straight vortex can be more simply described as the flow due
to a two-dimensional vortex point on the xy plane, as in Fig. 5.1 (middle). If these
conditions are not met, such as the curved vortex line shown in Fig. 5.1 (right), then
the flow is fully three-dimensional and cannot be represented by a vortex point.
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Fig. 5.1 Left Schematic (three-dimensional) straight vortex line through the origin and parallel to
the z axis. The red tube around the vortex axis of radius a0 represents the vortex core. Middle Since
the vortex line is straight, it suffices to consider the two-dimensional flow of a vortex point on the
xy plane (the flow on other planes parallel to the xy plane will be the same). Right For a more
general bent vortex line the flow is fully three-dimensional

5.3 Classical Versus Quantum Vortices

The flow of the condensate is different from the flow of an ordinary fluid in two
respects. Firstly, and as we showed in Sect. 3.3, it is inviscid (there is no viscosity to
slow down the flow and bring it to a stop). Secondly, the circulation is quantized, as
we showed above. To appreciate the second difference we recall the vorticity field
(the local rotation), defined as,

ω = ∇ × v. (5.6)

The following examples illustrate velocity fields with the associated vorticity fields:

(i) Consider water inside a bucket rotating at constant angular velocity Ω . We use
cylindrical coordinates (r, θ, z) where z is the axis of rotation.1 The velocity
field is v = vθ̂eθ = Ωr êθ and the vorticity is ω = 2Ω êz (where êθ and êz are
the unit vectors along θ and z). The azimuthal speed vθ of this flow as a function
of r is shown by case (i) of Fig. 5.2a. This flow is called solid body rotation.

(ii) As derived above, the velocity field around a vortex line in a condensate is
vθ = q�/(mr), shown by case (ii) in Fig. 5.2a. It is easy to verify that its
vorticity is zero: we say that this flow is irrotational. Physically, a parcel of
fluid which goes around the vortex axis does not ‘turn’ (as it does in solid body
rotation), but retains its orientation (like a gondola of a Ferris wheel); this flow
is depicted in case (ii) of Fig. 5.2b. The property of irrotationality also follows
mathematically: the condensate’s velocity is proportional to the gradient of the

1We recall that in cylindrical coordinates, the curl of the vector A = (Ar , Aθ, Az) is

∇ × A =
(
1

r

∂ Az

∂θ
− ∂ Aθ

∂z
,
∂ Ar

∂z
− ∂ Az

∂r
,
1

r

∂(r Aθ)

∂r
− 1

r

∂ Ar

∂θ

)
.

.
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Fig. 5.2 a Examples of rotation curves. (i) solid body rotation, (ii) vortex line in a condensate
(irrotational flow), and (iii) flow around a hurricane or a bathtub vortex, which combines solid body
rotation in the inner region r � a0 and irrotational flow in the outer region r � a0. b Schematic
of the two-dimensional flow for cases (i) and (ii), showing the orientation of an object, here a leaf,
in the flow

quantum mechanical phase, and the curl of a gradient is always zero. However,
the singularity itself contributes vorticity according to,

ω = κδ2(r)̂ez, (5.7)

where δ2(r) is the two-dimensional delta function satisfying δ2(r = 0) = 1 and
δ2(r �= 0) = 0. At first it may surprise that a quantum vortex has zero vorticity,
but the result is expected—the key point is that motion in the condensate is
irrotational, but isolated vortex line singularities are allowed.

(iii) The velocity of the wind around the centre of a hurricane, case (iii) of Fig. 5.2a,
combines solid body rotation in the inner region (r � a0) with irrotational
motion in the outer region (r � a0) where a0 is called the vortex core radius.

In ordinary fluids the vorticity ω is arbitrary, and therefore vortices can be weak
or strong, big or small. In a condensate, Eq. (5.3) is a strict quantum mechanical
constraint: motion around a singularity has fixed form and intensity.

5.4 The Nature of the Vortex Core

A natural question is: what is the structure of the vortex, particularly towards the
axis of the vortex (r → 0), where, according to Eq. (5.5), the velocity becomes
infinite? Using cylindrical coordinates (r, θ, z) again, we consider a straight vortex
line aligned in the z direction in a homogeneous condensate (V = 0). Assuming
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Fig. 5.3 a The radial density profile n(r) of a q = 1 vortex in a homogeneous condensate (solid
line). Shown for comparison is the ‘healing’ profile for a static condensatewhose density is pinned to
zero. bAppearance of a vortex lying along the axis of a trapped condensate. Shown is an isosurface
of the 3Ddensity (with the vortex appearing as a central tube), a 2Ddensity profile column integrated
along z (with the vortex appearing as a black dot), and a 1D density profile column-integrated along
y and z

Ψ (r, θ, z) = A(r)eiqθ and substituting into the GPE of Eq. (3.9) we obtain the fol-
lowing differential equation,2 for the function A(r),

μA = − �
2

2m

1

r

d

dr

(
r
dA

dr

)
+ �

2q2

2mr2
A + gA3, (5.9)

The terms on the right-hand side arise from the quantum kinetic energy, the kinetic
energy of the circulating flow and the interaction energy, respectively. The boundary
conditions are that A(r) → 0 for r → 0 and A(r) → ψ0 for r → ∞. The equation
has no exact solution and must be solved numerically for A(r); the corresponding
density profile n(r) = A2 is shown in Fig. 5.3a. It is apparent that the axis of the
vortex is surrounded by a region of depleted density, essentially a tube of radius
a0 ≈ 5ξ, called the vortex core radius. For small r , the density scales as r |q|. We see
that although the velocity diverges for r → 0, the density vanishes—no atom moves
at infinite speed!We can therefore interpret a vortex as a ‘hole’ surrounded by (quan-
tized) circulation. Recall from Sect. 3.4.2 that if a static and otherwise homogeneous
condensate is pinned to zero density, then the density ‘heals’ back to the background
density with a characteristic profile tanh2(x/ξ). The vortex density profile is slightly
wider than this profile and relaxes more slowly to the background density, as seen in

2We have expressed the Laplacian in its cylindrically symmetric form,

∇2 = 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2
∂2

∂θ2
+ ∂2

∂z2
. (5.8)
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Fig. 5.3a. This is due to the kinetic energy of the circulating flow, which gives rise to
an outwards centrifugal force on the fluid.

While there is no exact analytic form for the vortex density profile, a useful
approximation for a single-charged vortex is,

n(r) = n0

(
1 − 1

1 + r ′2

)
, (5.10)

where r ′ = r/ξ.
This result (a vortex line is a ‘hole’ surrounded by circulating flow) has an interest-

ing mathematical consequence: a condensate with vortices is a multiply-connected
region, and the classical Stokes Theorem3 does not apply.

In a trapped condensate the vortex creates a similar tube surrounded by quantised
circulation; the only difference is that the density of the condensate is not uniform
(as in a homogeneous condensate). In typical 2D column-integrated images of the
condensate, the vortex appears as a low density dot. Since the healing length depends
on the local density, in a trapped condensate the thickness of the vortex core depends
on the position. If the condensate is in the Thomas–Fermi regime and the vortex
along the z axis, then an approximation for the density profile can be constructed as
the product of the static Thomas–Fermi profile, Eq. (3.33), and the vortex density,
Eq. (5.10), i.e.,

n(x, y, z) = n0

(
1 − x2

R2
x

− y2

R2
y

− z2

R2
z

)(
1 − 1

1 + r ′2

)
, (5.11)

where r ′ = r/ξ is defined is terms of the healing length evaluated at the condensate
centre.

5.5 Vortex Energy and Angular Momentum

We now evaluate some useful properties associated with a quantum vortex: its energy
and angular momentum. For simplicity, we still consider the case of a single straight
vortex lying along the z-axis of a cylindrically-symmetric condensate of constant
density; assuming that the condensate’s size is much larger than the healing length,
the density depletion at the axis of the vortex and near the walls can be neglected.
A cylindrical bucket of height H0 and radius R0 containing superfluid liquid helium
would be a realistic example. For trapped atomic condensates, where the vortex size

3Stokes Theorem states that ∮
C
A · d� =

∫
S
(∇ × A) · dS,

where the surface S enclosed by the oriented curve C is simply-connected, i.e. any closed curve on
S can be shrunk continuously to a point within S.

http://dx.doi.org/10.1007/978-3-319-42476-7_3
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is significant relative to the system size and the condensate density varies in space,
these ideas can be generalized by, for example, taking the density profile to be of the
form of Eq. (5.11), or by estimating the necessary integrals numerically.

The kinetic energy Ekin of the swirling fluid is obtained from summing the con-
tributions of the atoms, each carrying kinetic energy mv2

θ/2 where v = vθ̂eθ =
(q�/mr) êθ is the velocity. Summing over all atoms we have,

Ekin =
∫

1

2
mn(r)v2

θ (r) d
3r, (5.12)

where the integral is performed over the bucket’s volume. Using cylindrical coordi-
nates,

Ekin =
∫ H0

0
dz

∫ 2π

0
dθ

∫ R0

0

mn0

2

(
q�

mr

)2

r dr = πH0
n0q2

�
2

m

∫ R0

0

dr

r
. (5.13)

To prevent the integral from diverging at r → 0 we introduce a cutoff length a0,4

the vortex core radius; in doing so, we recognize that the density vanishes at the axis
of the vortex, but simplify the core structure, assuming that the core is hollow up to
the distance r = a0. Notice that without the outer limit of integration (the size of the
container R0) the integral would also diverge at r → ∞. We then obtain,

Ekin = πH0
n0q2

�
2

m

∫ R0

a0

dr

r
= πH0

n0q2
�
2

m
ln

(
R0

a0

)
. (5.14)

We conclude that the kinetic energy per unit length of the vortex, Ekin/H0 =
πn0(q2

�
2/m) ln (R0/a0), is constant.

Each atom swirling around the axis of the vortex carries angular momentum
Lz = mvθr . The total angular momentum of the flow is therefore,

Lz =
∫

mn(r)vθ(r)r d3r. (5.15)

Proceeding as for the kinetic energy, we find,

Lz = 2πH0n0q�

(
R2
0

2
− a2

0

2

)
≈ πH0n0q�R2

0 . (5.16)

Consider a condensate in a state with an arbitrary high angular momentum Lz .
We can construct this state as either (i) one vortex with large q or (ii) many vortices
with q = 1. Which situation is preferred? Since Ekin scales as q2, a state with many
singly-charged vortices has less energy than a state with a single multi-charged

4Often this cutoff is taken instead as the healing length ξ.
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vortex. Experiments confirm that this is indeed the case: in Ref. [1] a q = 2 vortex
was seen to quickly decay into two singly-charged vortices. Hereafter we assume
that all vortices are singly-charged, with q = ±1.

5.6 Rotating Condensates and Vortex Lattices

5.6.1 Buckets

Vortices are easily created by rotating the condensate [22, 23]. Consider again a
cylindrical condensate of height H0, radius R0 and uniform density. A vortex appears
only if the system, by creating a vortex, lowers its energy. In a rotating system at very
low temperature, it is not the energy E which must be minimized, but rather the free
energy F = E − ΩLz where Ω is the angular velocity of rotation. A state without
any vortex, hence without angular momentum, has free energy F1 = E0 where E0

is the internal energy. A state with a vortex has free energy F2 = E0 + Ekin − ΩLz .
The free energy difference is thus,

ΔF = F2 − F1 = Ekin − ΩLz = 2πH0
�
2

m2
ln

(
R0

a0

)
− ΩπH0n0�R2

0 . (5.17)

Therefore ΔF < 0 (the free energy is reduced by creating a vortex) provided that
the rotational velocity is larger than a critical value Ωc1,

Ω > Ωc1 = �

m R2
0

ln

(
R0

a0

)
. (5.18)

For superfluid helium (m = 6.7 × 10−27 kg, κ = 9.97 × 10−8 m2/s, a0 ≈ 10−10 m)
inside a container of radius R0 = 10−2 m, the critical angular velocity is Ωc1 =
3×10−3 s−1. States with two, three and more vortices onset at higher critical veloci-
tiesΩc2,Ωc3 etc., as shown in Fig. 5.4 for superfluid helium and in Fig. 5.7 for atomic
condensates. Note that the vortices are parallel to the rotation axis and arrange them-
selves in a vortex lattice like atoms in a crystal with triangular symmetry. The vortex
lattice is therefore a steady configuration in the frame of reference rotating at angular
velocity Ω .

Vortices are topological defects which can only be created at a boundary or spon-
taneously with an oppositely-charged vortex.5 Where then do the vortices in a vortex
lattice originate from?

For a rotating container of helium, with even a relatively small rotation frequency,
the roughness of the container surface is expected to seed vortices, providing a

5An exception is through the technique of phase imprinting, in which the condensate phase can be
directly and almost instantaneously imprinted with a desired distribution. In this manner vortices
can be suddenly formed within the condensate.
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Fig. 5.4 Experimental images of vortex lattices at increasing angular velocities Ω in superfluid
helium. Reprinted figure with permission from [3]. Copyright 1979 by the American Physical
Society

constant source of vortices from which to develop a vortex lattice in the bulk if the
critical rotation frequency is exceeded.

According to Feynman’s rule, the density of vortices (number of vortices per unit
area) is,

nv = 2Ω

κ
. (5.19)

Since each vortex contributes vorticity according to Eq. (5.7), the average vorticity
per unit area is,

ω̄ = κnv̂ez = 2Ω êz . (5.20)

This tells us that the averaged vorticity (averaged over distance larger than the inter-
vortex spacing) reproduces the vorticity 2Ω of an ordinary fluid in rotation. Similarly,
the large-scale azimuthal flow is v ≈ Ωr êθ. Remarkably, themanyquantized vortices
mimic classical solid body rotational flow. Note that the local velocity field around
vortices can remain rather complicated.

In the frame rotating at angular frequencyΩ about the z-axis, theGPEofEq. (3.46)
is,

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + g|ψ|2ψ + V ψ + ΩLzψ − μψ, (5.21)

where,

Lz = i�

(
y

∂

∂x
− x

∂

∂y

)
, (5.22)

is the angular momentum operator in the z direction. The vortex lattices are the
ground-state stationary solutions of this equation (providing Ω is large enough).
Figure5.5 shows such a vortex lattice solution for a condensate being rotated in a
bucket. The above bucket scenario is modelled through the bucket potential,

http://dx.doi.org/10.1007/978-3-319-42476-7_3
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Fig. 5.5 Vortex lattice formed in a bucket potential rotating about the z-axis. Shown are the a
density (in arbitrary units) and b phase (in units of π) in the xy-plane (position presented in units
of the healing length ξ), corresponding to the stationary solution of the rotating-frame GPE of
Eq. (5.21). The bucket has radius R = 29ξ and the rotation frequency is Ω = 0.08 c/ξ. Image
courtesy of Thomas Winiecki [2]

V (r) =
{
0 if r ≤ R0,

∞ if r > R0.
(5.23)

The lattice features Nv = 56vortices.Note the appearance of the phase “dislocations”
in the phase profile at each vortex position. At the boundary there are as many 2π
phase slips as there are vortices. The average flow speed around the edge of the bucket
can then be approximated by evaluating the magnitude of v = (�/m)∇S around the
boundary, i.e.,

vr (r = R0) = �

m

2πNv

2πR0
= �

m

56

29ξ
≈ 1.93c. (5.24)

This is close to what one would expect for solid body rotation, vr (r = R0) = Ω R0 =
2.3c.

In a small system, at the same value ofΩ one often observes vortex configurations
which are slightly different from each other. This is because there is a very small
energy difference between these slightly rearranged states. For example, Fig. 5.4
shows two states with six vortices each (in one case the six vortices are distributed
around a circle, in the other case there are five vortices around a circle and one vortex
in the middle).

Notice how the background density for the rotating bucket solution in Fig. 5.5
features ameniscus, that is, it is raised towards the edge of the bucket. Let us determine
this background density profile. We denote the rotation vector � = Ω êz .

Recall the fluid interpretation of the GPE. Using the Madelung transformation
ψ = √

nei S and the fluid velocity definition v = (�/m)∇S, the rotating-frame GPE
of Eq. (5.21) is equivalent to the modified fluid equations,
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∂n

∂t
= −∇ · [n (v − � × r)] , (5.25)

m
∂v
∂t

= −∇ ·
(
1

2
mv2 + V + gn − �

2

2m

∇2√n√
n

− mv · [� × r]
)

, (5.26)

where the ω × r terms account for frame rotation and v is the velocity field in the
laboratory frame (expressed in the coordinates of the rotating frame). We assume the
Thomas–Fermi approximation by neglecting the quantumpressure term inEq. (5.26),
and seek the stationary density profile. Setting ∂v/∂t = 0 and integrating gives,

1

2
mv2 + V + gn − mv · [� × r] = μ, (5.27)

where the chemical potential μ is the integration constant.
We consider a coarse-grained scale, ignoring the structure of the individual vor-

tices and for which the velocity field approximates the solid body form v(r) = Ωr êθ.
We then obtain,

gn + V − 1

2
mΩ2r2 = μ, (5.28)

where we have used êz × êr = êθ. Rearranging for the density,

n(r) = 1

g

(
μ − V + 1

2
mΩ2r2

)
, (5.29)

which is valid for n(r) > 0; otherwise n(r) = 0. We conclude that rotation causes a
parabolic increase in the coarse-grained density, consistent with the behaviour visible
in Fig. 5.5. The is due to centrifugal effects, and is observed in rotating classical fluids.
Note that μ can be determined by normalizing the profile to the required number of
atoms or average density.

5.6.2 Trapped Condensates

To predict the critical rotation frequency for vortices to become favoured in a
harmonically-trapped condensate, one can repeat the above approach but the inho-
mogeneous density profile must be accounted for (i.e. replacing n0 above with n(r)).
One way to approximate this is by the Thomas–Fermi density profile. For a trap
which is symmetric in the plane of rotation, with frequency ω⊥, the critical rotation
frequency is then,

Ωc1 = 5

2

�

m R2
⊥
ln

(
0.67R⊥

ξ

)
, (5.30)

where R⊥ is the Thomas–Fermi radius in the plane of rotation. For typical atomic
condensates, Ωc1 ∼ 0.3ω⊥.
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Rotating an axi-symmetric harmonic trap applies no torque to the condensate,
and so in practice the trap is made slightly anisotropic in the plane of rotation in
order to form a vortex lattice. Surprisingly, experiments observed vortices at rotation
frequencies Ω ∼ 0.7ω⊥, considerably higher than the frequency at which they
become energetically favourable. The traps are so smooth that vortex nucleation is
very different to that of helium.

We can examine this by considering the planar potential to be weakly elliptical,
with frequencies ωx = √

1 − εω⊥ and ωy = √
1 + εω⊥, where ε is the trap ellip-

ticity. We follow the approaches of Refs. [6, 7]. We seek the stationary solutions
of the trapped vortex-free condensate under rotation about z. Under the Thomas–
Fermi approximation, the solutions must satisfy Eq. (5.27). Furthermore, we look for
solutions with the phase profile, and corresponding velocity profile, given by,

S(x, y) = βxy, v(x, y) = �

m
∇S = β�

m
(ŷex + x êy). (5.31)

where β is a parameter to be determined below. Inserting into Eq. (5.27), and noting
that � × r = Ω(x êy − ŷex ), leads to the density profile,

n = 1

g

(
μ − 1

2
(mω̃2

x x2 + ω̃2
y y2 + ω2

z z2)

)
, (5.32)

where the effect of the rotation is to introduce effective trap frequencies in the xy-
plane,

ω̃2
x = (1 − ε)ω2

⊥ + β2 − 2βΩ, (5.33)

ω̃2
y = (1 + ε)ω2

⊥ + β2 + 2βΩ. (5.34)

Plugging this density profile into the rotating-frame continuity equation, Eq. (5.25),
and setting ∂n/∂t = 0, leads to an expression for β,

β3 + β(ω2
⊥ − 2Ω2) − εΩω2

⊥ = 0. (5.35)

Fig. 5.6 a Illustration of the irrotational flow pattern of a rotating elliptically-trapped condensate,
according to Eq. (5.31). The color indicates the phase S(x, y) while the velocity field is shown by
arrows. b The velocity field amplitude β as a function of rotation frequencyΩ for an axi-symmetric
trap (ε = 0). AtΩ = ω⊥/

√
2 the solutions trifurcate. In this region, these solutions become unstable
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Hence the stationary solution of the condensate in the rotating frame has been com-
pletely specified. In the laboratory frame, this solution has an elliptical density profile
which rotates about z. However, the fluid remains irrotational, thanks to the special
velocity fieldwhich distorts the density is such away as tomimic rotation, as depicted
in Fig. 5.6a.

Analysing the case of ε = 0 for simplicity, there exists one solution, with β =
0, for Ω ≤ ω⊥/

√
2; this represents a motion-less and axi-symmetric condensate.

However, forΩ > ω⊥/
√
2 the solutions trifurcate,with twonewbrancheswithβ �= 0

and corresponding to non-axi-symmetric solutions of the form shown in Fig. 5.6.
This trifurcation leads to an instability of the condensate (as can be confirmed via
linearizing about these solutions [7]) in which perturbations grow at the condensate

Fig. 5.7 An experimental vortex lattice c formed in a flattened trapped rotating atomic condensate
(image represents the condensate density). b shows the profile of the corresponding non-rotating
condensate. d and e show the side views of the non-rotating and rotating condensates, respectively.
The condensate grew in radius with the number of vortices, as shown in a. Reprinted figure with
permission from [5]. Copyright 2001 by the American Physical Society
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surface and develop into vortices. Experiments [8] and simulations [9] of the GPE
show that this instability then allows the condensate to evolve into a vortex lattice,
the lowest energy state.

Figure5.7 shows a vortex lattice produced in a rotating trapped atomic conden-
sate. Note the regularity and density of the vortex lattice. Note also that the rotating
condensate is significantly broader than the non-rotating condensate. In the presence
of the vortex lattice, we can predict the coarse-grained density profile of the conden-
sate. Considering an axi-symmetric trap (ωx = ωy ≡ ω⊥), then the coarse-grained
density profile of Eq. (5.29) gives,

n(r) = 1

g

(
μ − 1

2
m(ω2

r r2 − Ω2)r2
)

. (5.36)

There is a competition between the quadratic trapping potential, which pushes atoms
inwards, and the quadratic centrifugal potential, which pushes atoms outwards.
The net potential is quadratic with effective harmonic potential ω2

r − Ω2. As Ω

is increased, the condensate expands, and when Ω ≥ ωr it becomes untrapped!

5.7 Vortex Pairs and Vortex Rings

An important property of a vortex is that it moveswith the local fluid velocity, and this
means that two vortices in proximity induce each other to move. We now consider
some important examples.

5.7.1 Vortex-Antivortex Pairs and Corotating Pairs

Consider a pair of vortices of opposite circulation and separation d, a state called
a vortex-antivortex pair or vortex dipole, shown schematically in Fig. 5.8. In the
figure, the flow around the vortex at the left is anticlockwise, and the flow around the
anti-vortex at the right is clockwise. Each vortex is carried along by the flow field
of the other vortex, and at each vortex the flow field has speed v = �/md acting
perpendicular to the line separating the vortices. Moreover, this flow acts in the same
direction for both vortices, and hence they propagate together at this speed.

If instead the vortices have the same circulation, then the flow which carries each
vortex now acts in opposite directions (again, perpendicular to the line separating
the vortices and with the above speed). The net effect is for the vortices to co-rotate
about their mid-point. The angular frequency of this motion isω = 2v/d = 2�/md2.
From this simple example, one can imagine howmanyvortices of the same circulation
rotate together in a vortex lattice. Note that the above predictions for the pair speed
ignore core effects, and so are only valid for d � a0.
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Fig. 5.8 Schematic of a
vortex-antivortex pair

We can estimate the energy of the vortex pairs in a cylindrical condensate (radius
R0, height H0) by assuming a uniform density and integrating the kinetic energy, as
we did to calculate the energy of a single vortex line in Eq. (5.14). The vortices have
circulation q1 and q2, and individual velocity fields v1 and v2, respectively. The net
velocity field of the two vortices is v1+v2. Assuming ξ � d � R0 then the (kinetic)
energy of the pair is,

Ekin =
∫

mn0|v1+v2|2 dr = πn0H0�
2

m

[
q21 ln

R0

a0
+ q22 ln

R0

a0
+ 2q1q2 ln

R0

d

]
. (5.37)

The first two terms are the energies of the individual vortices if they were isolated.
The second term is the interaction energy, the change in energy arising from the
interaction between the vortices. For a vortex-antivortex pair (q1 = −q2) the inter-
action energy is negative. This is because the flow fields tend cancel out in the bulk,
reducing the total kinetic energy. Indeed, in the limit d → a0, the flow fields com-
pletely cancel and the total energy tends to zero; in reality the vortices annihilate
with each other in this limit. For a corotating pair (q1 = q2), the interaction energy
is positive; in the bulk the flow fields tend to reinforce, increasing the total kinetic
energy.

In the presence of dissipation on the vortices, this result also informs us that
vortex-antivortex pairs will shrink (ultimately annihilating when their cores begin to
overlap) and corotating pairs will expand. Interestingly, at finite temperature and in
2D condensates, vortex-antivortex pairs can be created spontaneously [10].

5.7.2 Vortex Rings

A vortex line either terminates at a boundary (e.g. the vortex in the cylindrical con-
tainer discussed in the previous section) or is a closed loop. A circular vortex loop
is called a vortex ring. It is the three-dimensional analog of the (two-dimensional)
vortex-antivortex pair: each element of the ring moves due to the flow induced by the
rest of the ring, resulting in the ring travelling in a straight line at a constant speed
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Fig. 5.9 Vortex ring travelling towards a vortex line computed by numerically solving the GPE
(courtesy of A.J. Youd) in a periodic box (hence the vortex line appears to terminate at the top and
at the bottom)

which is inversely proportional to its radius. Figure5.9 shows a vortex ring travelling
towards, and interacting with, a straight vortex line.

Both vortex rings and vortex-antivortex pairs are forms of solitary waves, since
they propagate without spreading. Moreover, like dark solitons, they are stationary
(excited) solutions of the homogeneous condensate in the frame moving with the
ring/pair.

5.7.3 Vortex Pair and Ring Generation by a Moving Obstacle

Vortex rings are easily generated in ordinary fluids by pushing the fluid through
an orifice: cigarette smokers, volcanoes and dolphins can make vortex rings. In
condensates and helium, rings and vortex-antivortex pairs can be formed by moving
obstacles.

To understand this mechanism, recall Landau’s criterion for the generation
of excitations in the condensate (Sect. 4.2). In the hydrodynamic picture, the speed
of the atom/impurity is replaced by the local fluid velocity. Consider the scenario of
a homogeneous condensate flowing with bulk speed v∞ past a cylindrical obstacle
(this is equivalent to the cylindrical obstacle moving at speed v∞ through a static
condensate but more convenient to simulate). For low v∞, the condensate undergoes
undisturbed laminar flow around the obstacle, as shown in Fig. 5.10 (left). Note that
the local flow speed is approximately twice as large, i.e. 2v∞ at the poles of the
obstacle than it is in the bulk (indeed, for an inviscid Euler fluid one would expect it
to be exactly 2v∞). When v∞ ≈ 0.5c, the local flow at the poles exceeds the speed

http://dx.doi.org/10.1007/978-3-319-42476-7_4
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Fig. 5.10 Flow of a homogeneous condensate past a cylindrical obstacle, below (left) and above
(right) the critical velocity. Shown is the condensate density, and the arrows (left) show the velocity
field. Note that the obstacle punches a large hole in the condensate. Results are based on simulations
of the 2D GPE in the moving frame. Figure reproduced from Ref. [11] under a CC BY licence

Fig. 5.11 a Experimental images of a vortex-antivortex pair moving within a trapped condensate.
b The vortex-antivortex pair’s trajectory is reproduced by numerically solving the GPE. Note that
the vortex core appears larger in the experimental images since the condensate is first expanded
to aid in resolving the cores. Figure adapted with permission from Ref. [14]. Copyrighted by the
American Physical Society. A schematic of the trajectory of a vortex-antivortex pair in a trapped
condensate is shown on the right

of sound, and, as per Landau’s prediction, excitations are created. These take the
form of pairs of opposite circulation vortices, which periodically peal off from the
poles of the obstacle and travel downstream, as seen in Fig. 5.10 (right).

This process has been studied experimentally in atomic condensates [14, 15]. The
obstacle is engineered by a laser beam which exerts a localized repulsive potential
on the condensate, and is moved relative to the condensate. Figure5.11 shows an
experimental vortex-antivortex pair which moves within a trapped condensate (top).
The dynamics can be reproduced by simulating the GPE (bottom). Note that whereas
in an infinite condensate the vortex-antivortex pair has constant translational velocity,
within a harmonically-trapped condensate the motion of each vortex of the pair
follows a curved trajectory.

Similarly, vortex rings arise when a spherical obstacle exceeds a critical speed
relative to the condensate. They can be created in superfluid helium by injecting
electrons with a sharp high-voltage tip; the electron’s zero point motion carves a
small, charged spherical bubble in the liquid of radius approximately 16 × 10−10 m
which can be accelerated by an applied electric field. Upon exceeding a critical
velocity, a vortex ring peels off at the bubble’s equator; subsequently the electron
falls into the vortex core, leaving a vortex ring with an electron bubble attached; the
last part of the sequence is shown in Fig. 5.12.

https://creativecommons.org/licenses/by/3.0/
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Fig. 5.12 Vortex rings nucleated by moving bubbles, computed by numerically solving the GPE.
Figure reproduced from [16] with permission from EDP Sciences

5.8 Motion of Individual Vortices

Wehave seen how vorticesmove due to their interactionswith other vortices. Isolated
vortices can also move under a variety of scenarios.

First imagine a condensate in a static bucket with a straight vortex line positioned
close to the edge. The fluid velocity must be zero at the boundary. In effect, it is as if
an image vortex, with opposite circulation, exists on the other side of the boundary.
As such the vortex moves around the boundary of the container as a virtual pair with
its image.

In a harmonically-trapped condensate, an off-centre vortex precesses about the
trap centre. The slow variation of the density towards the edge complicates an image
interpretation. Instead, we can interpret the precession in terms of a Magnus force.
Imagine the vortex line as a rotating cylinder, shown in Fig. 5.13 (left). The vortex
line feels a radial force due to its position in the condensate, and this gives rise
to a motion of the vortex line which is perpendicular to the force, vL, an effect
well known in classical hydrodynamics. This force can be deduced from the free
energy of the system. This energy decreases with the vortex position, r0, as shown
in Fig. 5.13 (right). This radial force, which follows as −∂E/∂r0, acts outwards and
has contributions from the “buoyancy” of the vortex, which behaves like a bubble, as
well as its kinetic energy. This force balances the Magnus force−mnκ×vL , leading
to the expression,

∂E

∂r0
êr = mnκ × vL, (5.38)

where κ is the circulation vector. The net effect is a precession of the vortex about
the trap centre. More generally, the vortex follows a path of constant free energy;
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Fig. 5.13 Left Schematic of the Magnus effect which causes an off-centre vortex to precess in a
trapped condensate. Right Free energy E of a trapped condensate versus the radial position of a
vortex, r0. The top line is for a non-rotating system, while the lower lines have increasing rotation
frequencies. Reprinted figure with permission from [17]. Copyright 1999 by the American Physical
Society

for example, it will trace out a circular path in an axi-symmetric harmonic trap and
an elliptical path in a non-axi-symmetric harmonic trap. The experiment of Ref.
[18] pioneered the real-time imaging of vortices in condensates and was able to
directly monitor the precession of a vortex, finding it to agree well with theoretical
predictions.

At the trap centre, E(r0) becomes flat such that the vortex ceases to precess; in
fact, the trapped condensate with a central vortex line is a stationary state. For a non-
rotating condensate, this state is energetically unstable (E(r0) is a maximum at the
origin). Under sufficiently fast rotation, however, E(r0) changes shape such that this
state becomes a minimum and thus energetically stable, consistent with discussion
in Sect. 5.6.

This analysis assumes the vortex line to be straight. This is valid is flattened,
quasi-2D geometries, but in 3D geometries, the vortex line can bend and support
excitations.

5.9 Kelvin Waves

A sinusoidal or helical perturbation of the vortex core away from its rest position
is called a Kelvin wave. Figure5.14 (left) shows a Kelvin wave of amplitude A and
wavelength λ. A Kelvin wave of infinitesimal amplitude A and wavelength λ � a0

rotates with angular velocity,

ω0 ≈ κk2

4π

(
ln

(
1

ka0

)
− 0.116

)
, (5.39)
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Fig. 5.14 Left Schematic of Kelvin waves of amplitude A and wavelength λ. The three unit vectors
in the tangent, normal and binormal directions are shown. The waves rotate along the binormal
direction, in the direction opposite to the direction of the flow. Right Comparison between motion
of a vortex ring (radius R = 0.1 cm, blue) and a vortex ring perturbed by Kelvin waves (relative
amplitude A/R = 0.05, red). Calculation performed with the vortex filament model [12]. Figure
adapted with permission from Ref. [12]. Copyrighted by the American Physical Society

where k = 2π/λ is the wavenumber; in other words, the shorter the wave the faster it
rotates. The time sequence shown in Fig. 5.9 shows a vortex ring which hits a straight
vortex. It is apparent that after the collision the straight vortex is perturbed by Kelvin
waves. Vortex rings can also be perturbed by Kelvin waves, see Fig. 5.14 (right); the
vortex ring with waves travels slower than the unperturbed circular ring. Vortex lines
also support excitations in the form of breathers [19].

5.10 Vortex Reconnections

When two quantum vortex lines approach each other, they reconnect, changing the
topology of the flow. The effect, illustrated in Fig. 5.15, has been experimentally
observed in superfluid helium [20] and in atomic condensates [21]. In classical invis-
cid fluids (governed by the Euler equation) vortex reconnections are not possible.
Reconnections of quantum vortices thus arise from the presence of the quantum
pressure term in the Gross–Pitaevskii equation. In classical viscous fluids (governed
by the Navier-Stokes equation) reconnections are possible but involve dissipation
of energy, whereas in condensates reconnections take place while conserving the
energy. Figure5.16 shows the reconnection of two vortices computed using the GPE.
A vortex-antivortex pair, initially slightly bent, propagates to the right. The curva-
ture of the vortices quickly increases at their midpoint, they move faster and hit each
other, reconnecting and then moving away.
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Fig. 5.15 Schematic vortex reconnection of two vortex lines. The arrows indicate the direction of
the vorticity (the rotation of the fluid around the axis of the vortex). Left before the reconnection
(t < t0); Middle at the moment of reconnection, t = t0; Right after the reconnection (t < t0)

Fig. 5.16 Reconnection of antiparallel vortex lines computed by solving the GPE in a periodic
box. Shown is the isosurface of the condensate density ρ = 0.2, where ρ = 1.0 is the bulk value.
Reprinted from [24] with the permission of AIP Publishing

In 2D, vortex reconnections become annihilation events in which two vortex
points of opposite polarity destroy each other. This can occur through the interaction
with a third vortex, and leaves behind a soliton-like rarefaction pulse of sound [25].
Recently, it has been argued that a fourth vortex is required to turn the rarefaction
pulse into soundwaveswhich then spread to infinity [26, 27],making the annihilation
a four-vortex process.
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Fig. 5.17 Left Pattern of sound waves (density variations) on the xy plane generated by a rotating
pair of vortices (shown by the white dots). Image adapted from [28]. Note the small amplitude of the
sound waves, relative to the background density of one. Right Rarefaction sound pulse generated
by the vortex reconnection of Fig. 5.16, shown as density variations on the central plane. Reprinted
from [24] with the permission of AIP Publishing

5.11 Sound Emission

Even in the absence of thermal effects, vortices can lose energy, and they do so by
creating sound waves. This occurs when vortices and vortex elements accelerate, for
example, Fig. 5.17 (left) shows the pattern of spiral sound waves emitted outwards
by a co-rotating pair of vortices. It also arises during vortex reconnections, which
release a sharp pulse of sound, as seen in Fig. 5.17 (right). In 2D annihilation events
leave behind only sound waves.

In all of these scenarios, the pattern of the condensate phase changes. The infor-
mation about this change can travel outwards from the vortices no faster than the
speed of sound. Beyond this “information horizon”, the condensate phase has the
old pattern. The sound waves act to smooth between the new and old patterns, and
prevent discontinuities in the phase at this horizon.

The time evolution of a condensate described by the GPE (that is, a condensate at
very small temperatures) conserves the total energy, although the relative proportion
of kinetic energy (due to vortices) and sound energy (due to waves) may change. In
general, a collection of freely-evolving vortices will decay into sound waves, with
the energy being transferred into the “sound field”, although this decay is typically
very slow. The decay can be prohibited, or even reversed, by suitable driving of the
system, and under certain conditions, intense sound waves can create vortices [29].

5.12 Quantum Turbulence

Besides lattices, Kelvin waves and vortex rings, other complex vortex states have
been studied recently, e.g., U- and S-shaped vortices [30] and vortex knots [31], see
Fig. 5.18. But the most challenging vortex state is turbulence.
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Fig. 5.18 Left UandS-shaped vortices in a spheroidal condensate. Reprinted figurewith permission
from [30]. Copyright 2003 by the American Physical Society. Right The break-up of a T2,3 vortex
knot into two vortex rings. Reprinted figure with permission from [31]. Copyright 2012 by the
American Physical Society

Fig. 5.19 Schematic of
vortex reconnections and
generation of small vortex
loops, as envisaged by
Richard Feynman [32]

A disordered vortex configuration of many vortices is called a vortex tangle; it
represents a state of quantum turbulence. Vortex reconnections and the resulting
generation of smaller and smaller vortex loops in a cascade process were first con-
jectured by Richard Feynman in his pioneering 1955 article on the applications of
quantum mechanics to liquid helium [32]. Figure5.19 illustrates this cascade. Vor-
tices move in an irregular way around each other, undergoing reconnections which
trigger Kelvin waves and generate small vortex loops. In a statistical steady state, the
intensity of the turbulence is usually measured (experimentally and numerically) by
the vortex line density L , defined as the length of vortex lines per unit volume. From
the vortex line density L one estimates that the typical distance between vortices is
� ≈ L−1/2. As well as vortices, quantum turbulence also features sound waves.

Current work [33, 34] studies properties of quantum turbulence such as velocity
and acceleration statistics [35], the emergence of coherent structures out of disorder,
and the energy spectrum Ek (representing the distribution of the kinetic energy over
the length scales); in particular, the energy spectrum is defined from,

E ′ = 1

V
∫
V

v2

2
d3r =

∫ ∞

0
Ek dk, (5.40)

where E ′ is energy per unit mass, V is the volume and k the wavenumber.
The two main tools to study quantum turbulence are the GPE and the vortex fila-

ment model,whichwedescribe inSect. 5.13; the latter is directly relevant to superfluid
helium, but is important in general, as it isolates vortex interactions, neglecting finite



102 5 Vortices and Rotation

core-size effects and sound waves. In the next subsections we describe recent results
for 3D and 2D turbulence.

5.12.1 Three-Dimensional Quantum Turbulence

Quantum turbulence at very low temperatures is generated in superfluid helium by
stirring with grids, wires or propellers, or by injecting vortex rings. Observations
of the decay of the vortex line density and the energy spectrum reveal two turbu-
lent regimes [36]. In the first regime [37], called quasi-classical turbulence and
illustrated in Fig. 5.20, the energy spectrum obeys the same Kolmogorov scaling
of ordinary turbulence (Ek ∼ k−5/3) over the hydrodynamic range kD � k � k�

(where k� = 2π/�, kD = 2π/D and D is the system size). This result is confirmed
by numerical simulations based on the GPE [38] and the vortex filament model
[39–41]. Kolmogorov scaling suggests the existence of a classical cascade, which,
step-by-step, transfers energy from large eddies to smaller eddies. The concentration
of energy at the largest length scales (near kD) arises from the emergence of transient
bundles of vortices of the same polarity [42] which induce large scale flows. Without
forcing, quasi-classical turbulence decays as L ∼ t−3/2.

However, under other conditions, Ek peaks at the intermediate scales followed at
large wavenumbers by the k−1 dependence typical of isolated vortices, suggesting
a random vortex configuration without cascade [41]. In the absence of forcing, this
regime, called ultra-quantum turbulence [36], decays as L ∼ t−1.

Fig. 5.20 a Quantum turbulence in superfluid helium computed in a periodic box using the vortex
filament method [42]. Lighter colour denotes bundles of vortex lines with the same orientation:
they are responsible for the emergence of the classical k−5/3 Kolmogorov spectrum. Figure adapted
with permission from Ref. [42]. Copyrighted by the American Physical Society. b Energy spectrum
of the kinetic energy Ek vs k, computed using the vortex filament method [40]: note the k−5/3

Kolmogorov scaling for k < k� ≈ 1.8× 105 m−1. The curve at the bottom shows that the spectrum
of the coarse-grained vorticity is consistent with the k1/3 scaling of Kolmogorov theory
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Fig. 5.21 Left Absorption images of turbulent 3D atomic condensate (top) and schematic diagram
of the inferred distribution of vortices (bottom) [43]. Reprinted figure with permission from [43].
Copyright 2009 by the American Physical Society. Middle Quantum turbulence in a harmonically
confined atomic condensate computed using theGPE. The surface of the condensate is pale blue, the
surface of the vortex cores is purple. Figure adapted with permission from Ref. [35]. Copyrighted
by the American Physical Society. Right Experimental absorption (top) images of an condensate in
a state of 2D turbulence [45]. Images courtesy of Y.I. Shin. Corresponding images of (unexpanded)
condensate density from GPE simulations (bottom) [25]. Images courtesy of G.W. Stagg. Vortices
with positive (negative) circulation are highlighted by red circles (blue triangles). The vortices
appear much smaller since the condensate has not been expanded

Turbulence in atomic condensates has been generated by stirring the gas with
a laser beam or by shaking the confining trap [34, 43]. Current 3D condensates
created in the laboratory are relatively small, see Fig. 5.21. The limited separation of
length scales (unlike helium, D is not much bigger than �, which is not much bigger
than a0) and the difficulty in directly measuring the velocity have so far prevented
measurements of the energy spectrum, although the Kolmogorov regime has been
predicted [44].

5.12.2 Two-Dimensional Quantum Turbulence

Due to the ability to engineer the effective dimensionality, atomic condensates also
allow the study of 2D turbulence, which consists of a disordered arrangement of
vortex points andwaves. This is a remarkable feature of quantumfluids, because (with
the possible exception of soap films) ordinary flows are never really 2D (for example,
only by considering large-scale patterns the atmosphere can be approximated by a 2D
flow). Figure5.21 (right) shows experimental and simulated images of 2D turbulence
in a trapped condensate. The turbulence is not being driven and so the number of
vortices decays over time.

In fluid dynamics, 2D turbulence is expected to shown unique features such as
an inverse cascade where increasingly large vortical structures form over time (an
example is Jupiter’s great Red Spot). The inverse cascade involves the clustering of
vortices with the same sign, predicted by Onsager, and represents a phase transition
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associated with a state of negative effective temperature (defined in terms of the
entropy of the vortex configuration). In the opposite limit the vortices tend to form
dipoles [46, 47].

5.13 Vortices of Infinitesimal Thickness

In this section we derivemathematical tools tomodel quantized vortex lines as vortex
filaments (in 3D) or vortex points (in 2D). Both methods are based on the classical
Euler equation. They assume that the fluid is incompressible, thus neglecting sound
waves, and treat the vortex cores as line (in 3D) or point (in 2D) singularities. This
approximation is realistic for helium turbulence experiments, where there is a wide
separation of length scales between the system size (D ≈ 10−2 to 10−1 m), the inter-
vortex distance (� ≈ 10−6 to 10−4 m) and the vortex core radius (a0 ≈ 10−10 m).
The approximation is less good for atomic condensates, but the model is useful to
isolate pure vortex dynamics from sound and healing length effects.

We have seen that, at length scales larger than the healing length ξ, the
Gross–Pitaevskii equation reduces to classical continuity equation and the com-
pressible Euler equation. In the further limit of velocities much less than the speed of
sound (i.e. small Mach numbers), density variations can be neglected; in this limit,
the compressible Euler equation reduces to the incompressible Euler equation,

∂v
∂t

+ (v · ∇)v = −1

ρ
∇ p, (5.41)

where ρ is constant, and the continiuty equation becomes the solenoidal condition
∇ · v = 0.

5.13.1 Three-Dimensional Vortex Filaments

We introduce the vector potential A defined such that, v = ∇ × A. Since the diver-
gence of a curl is always zero, we have ∇ · A = 0, and A → constant for x → ∞.
The vorticity ω can be written as,

ω = ∇ × v = ∇ × (∇ × A) = ∇(∇ · A) − ∇2A = −∇2A, (5.42)

Given the vorticity distribution ω(r, t) at the time t , the vector potential A(r, t)
is obtained by solving Poisson’s equation,

∇2A = −ω. (5.43)
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The solution of Eq. (5.43) at the point s is,

A(s, t) = 1

4π

∫
V

ω(r, t)

|s − r| d
3r, (5.44)

where r is the variable of integration and V is volume. Taking the curl (with respect
to s), we obtain the Biot–Savart law,

v(s, t) = 1

4π

∫
V

ω(r, t) × (s − r)
|s − r|3 d3r. (5.45)

In electromagnetism, the Biot–Savart law determines the magnetic field as a func-
tion of the distribution of currents. In vortex dynamics, the Biot–Savart law deter-
mines the velocity as a function of the distribution of vorticity. If we assume that the
vorticity ω is concentrated on filaments of infinitesimal thickness with circulation
κ, we can formally replace ω(r, t)d3r with κdr. The volume integral, Eq. (5.45),
becomes a line integral over the vortex line configuration L, and the Biot–Savart law
reduces to,

v(s, t) = − κ

4π

∮
L

(s − r)
|s − r|3 × dr. (5.46)

Equation (5.46) is the cornerstone of the vortex filament method, in which we
model quantized vortices as three dimensional oriented space curves s(ξ0, t) of cir-
culation κ, where the parameter ξ0 is arc length. Since, according to Helmholtz’s
Theorem, a vortex line moves with the flow, the time evolution of the vortex config-
uration is given by,

ds
dt

= vself(s), (5.47)

where,

vself(s) = − κ

4π

∮
L

(s − r)
|s − r|3 × dr. (5.48)

(the self-induced velocity) is the velocity which all vortex lines present in the flow
induce at the point s.

To implement the vortex filament method, vortex lines are discretized into a
large number of points s j ( j = 1, 2, . . .), each point evolving in time according to
Eq. (5.48). Vortex reconnections are performed algorithmically. Since the integrand
of Eq. (5.48) diverges as r → s, it must be desingularized; a physically sensible
cutoff length scale is the vortex core radius a0. This cutoff idea is also behind the
following Local Induction Approximation (LIA) to the Biot–Savart law,

vself(s) = βs′ × s′′, β = κ

4π
ln

(
R

a0

)
, (5.49)
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where s′ = ds/dξ0 is the unit tangent vector at the point s, s′′ = d2s/dξ20 is in
the normal direction, and R = 1/|s′′| is the local radius of curvature. The physical
interpretation of the LIA is simple: at the point s, a vortex moves in the binormal
direction with speed which is inversely proportional to the local radius of curvature.
Note that a straight vortex line does not move, as its radius of curvature is infinite.

To illustrate the LIA, we compute the velocity of a vortex ring of radius R
located on the z = 0 plane at t = 0. The ring is described by the space curve
s = (R cos (θ), R sin (θ), 0), where θ is the angle and ξ0 = Rθ is the arc length.
Taking derivatives with respect to ξ0 we have s′ = (− sin (ξ0/R), cos (ξ0/R), 0)
and s′′ = (−1/R)(cos (ξ0/R), sin (ξ0/R), 0). Using Eq. (5.49), we conclude that the
vortex ring moves in the z direction with velocity,

vself = κ

4πR
ln (R/a0)̂ez . (5.50)

The result is in good agreement with a more precise solution of the Euler equation
based on a hollow core at constant volume, which is,

vself = κ

4πR

(
ln

(
8R

a0

)
− 1

2

)
êz . (5.51)

Using the GPE, Roberts and Grant [48] found that a vortex ring of radius much
larger than the healing length moves with velocity,

vself = κ

4πR

(
ln

(
8R

a0

)
− 0.615

)
êz . (5.52)

5.13.2 Two-Dimensional Vortex Points

As in the previous section, we consider inviscid, incompressible (∇ · v = 0), irro-
tational (∇ × v = 0) flow, and allow singularities. We also assume that the flow is
two-dimensional on the xy plane, with velocity field,

v(x, y) = (vx (x, y), vy(x, y)), (5.53)

The introduction of the stream function ψ (not to be confusedwith thewavefunction),
defined by,

vx = ∂ψ

∂y
, vy = −∂ψ

∂x
, (5.54)

guarantees that ∇ · v = 0. The irrotationality of the flow implies the existence of a
velocity potential φ such that v = ∇φ,
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vx = ∂φ

∂x
, vy = ∂φ

∂y
. (5.55)

It follows that both stream function and velocity potential satisfy the two-dimensional
Laplace’s equation (∇2ψ = 0, ∇2φ = 0), and well-known techniques of complex
variables can be applied. For this purpose, let z = x + iy be a point of the complex
plane (rather than the vertical coordinates). We introduce the complex potential,

Ω(z) = φ + iψ. (5.56)

It can be shown that the velocity components vx and vy are obtained from,

vx − ivy = dΩ

dz
, (5.57)

Any complex potential Ω(z) can be interpreted as a two-dimensional inviscid,
incompressible, irrotational flow. Since Laplace’s equation is linear, the sum of solu-
tions is another solution, and we can add the complex potential of simple flows to
obtain the complex potential of more complicated flows. In particular,

Ω(z) = U0e−iηz, (5.58)

represents a uniform flow of speed U0 at angle η with the x axis, and,

Ω(z) = − iκ

2π
log (z − z0), (5.59)

represents a positive (anticlockwise) vortex point of circulation κ at position z = z0.

Problems

5.1 Consider the bucket of Sects. 5.5 and 5.6 to now feature a harmonic potential
V (r) = 1

2mω2
r r2 perpendicular to the axis of the cylinder. Take the condensate to

adopt the Thomas–Fermi profile.

(a) Show that the energy of the vortex-free condensate is E0 = πmn0ω
2
r H0R4

r /6,
where Rr is the radial Thomas–Fermi radius and n0 is the density along the axis.

(b) Now estimate the kinetic energy Ekin due to a vortex along the axis via Eq. (5.12).
Use the fact that a0 � Rr to simplify your final result.

(c) Estimate the angular momentum of the vortex state, and hence estimate the crit-
ical rotation frequency at which the presence of a vortex becomes energetically
favourable.
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5.2 Use the LIA (Eq. (5.49)) to determine the angular frequency of rotation of a
Kelvin wave of wave length λ = 2π/k (where k is the wavenumber) on a vortex
with circulation κ.

5.3 Using the vortex point method and the complex potential, determine the trans-
lational speed of a vortex-antivortex pair (each of circulation κ) separated by the
distance 2D.

5.4 Using the vortex point method and the complex potential, determine the period
of rotation of a vortex-vortex pair (each of circulation κ) separated by the distance
2D.

5.5 Consider a homogeneous, isotropic, random vortex tangle (ultra-quantum tur-
bulence) of vortex line density L , contained in a cubic box of size D. Show that the
kinetic energy is approximately

E ≈ ρκ2L D3

4π
ln

(
�

a0

)
, (5.60)

where ρ is the density, κ the quantum of circulation, � ≈ L−1/2 is the inter-vortex
distance and a0 is the vortex core radius.

5.6 In an ordinary fluid of kinematic viscosity ν, the decay of the kinetic energy
per unit mass, E ′, obeys the equation

d E ′

dt
= −νω2, (5.61)

whereω is the rms vorticity. Consider ultra-quantum turbulence of vortex line density
L . Define the rms superfluid vorticity asω = κL , and show that the vortex line density
obeys the equation,

d L

dt
= −ν

c
L2, (5.62)

where the constant c is,

c = 1

4π
ln

(
�

a0

)
, (5.63)

hence show that, for large times, the turbulence decays as

L ∼ c

ν
t−1. (5.64)
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