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Preface

This book introduces the theoretical description and properties of quantum fluids.
The focus is on gaseous atomic Bose–Einstein condensates and, to a minor extent,
superfluid helium, but the underlying concepts are relevant to other forms of
quantum fluids such as polariton and photonic condensates. The book is pitched at
the level of advanced undergraduates and early postgraduate students, aiming to
provide the reader with the knowledge and skills to develop their own research
project on quantum fluids. Indeed, the content for this book grew from introductory
notes provided to our own research students. It is assumed that the reader has prior
knowledge of undergraduate mathematics and/or physics; otherwise, the concepts
are introduced from scratch, often with references for directed further reading.

After an overview of the history of quantum fluids and the motivations for
studying them (Chap. 1), we introduce the simplest model of a quantum fluid
provided by the ideal Bose gas, following the seminal works of Bose and Einstein
(Chap. 2). The Gross–Pitaevskii equation, an accurate description of weakly
interacting Bose gases at low temperatures, is presented, and its typical
time-independent solutions are examined (Chap. 3). We then progress to solitons
and waves (Chap. 4) and vortices (Chap. 5) in quantum fluids. For important
aspects which fall outside the scope of this book, e.g. modelling of Bose gases at
finite temperatures, we list appropriate reading material. Each chapter ends with key
exercises to deepen the understanding. Detailed solutions can be made available to
instructors upon request to the authors.

We thank Nick Proukakis and Em Rickinson for helpful comments on this work.

Newcastle upon Tyne, UK Carlo F. Barenghi
April 2016 Nick G. Parker
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Chapter 1
Introduction

Abstract Quantum fluids have emerged from scientific efforts to cool matter to
colder and colder temperatures, representing staging posts towards absolute zero
(Fig. 1.1). They have contributed to our understanding of the quantum world, and
still captivate and intrigue scientists with their bizarre properties. Herewe summarize
the background of the twomain quantum fluids to date, superfluid helium and atomic
Bose–Einstein condensates.

1.1 Towards Absolute Zero

Thenature of cold has intriguedhumankind. Its explanation as a primordial substance,
primum frigidum, prevailed from the ancient Greeks until Robert Boyle pioneered the
scientific study of the cold in the mid 1600s. Decrying the “almost totally neglect”
of the nature of cold, he set about hundreds of experiments which systematically
disproved the ancientmyths and seededourmodern understanding.Whileworkingon
an air-based thermometer in 1703, French physicist Guillaume Amontons observed
that air pressurewas proportional to temperature; extrapolating towards zero pressure
led him to predict an “absolute zero” of approximately −240 ◦C in today’s units, not
far from the modern value of −273.15 ◦C (or 0K). The implication was profound:
the realm of the cold wasmuch vaster than anyone had dared believe. An entertaining
account of low temperature exploration is given by Ref. [1].

The liquefaction of the natural gases became the staging posts as low temperature
physicists, with increasingly complex apparatuses, raced to explore the undiscovered
territories of the “map of frigor”. Chlorinewas liquefied at 239K in 1823, and oxygen
and nitrogen at T = 90 and 77K, respectively, in 1877. In 1898 the English physi-
cist James Dewar liquefied what was believed to be the only remaining elementary
gas, hydrogen, at 23K, helped by his invention of the vacuum flask. Concurrently,
however, chemists discovered helium on Earth. Although helium is the second most
common element in the Universe and known to exist in the Sun, its presence on Earth
is tiny. With helium’s even lower boiling point, a new race was on. A dramatic series
of lab explosions and a lack of helium supplies meant that Dewar’s main competitor,
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2 1 Introduction

Fig. 1.1 Timeline of the coldest engineered temperatures, along with some reference temperatures

Heike Kamerlingh Onnes, pipped him to the post, liquifying helium at 4K in 1908.
This momentous achievement led to Onnes being awarded the 1913 Nobel Prize in
Physics.

1.1.1 Discovery of Superconductivity and Superfluidity

These advances enabled scientists to probe the fundamental behaviour of materials
at the depths of cold. Electricity was widely expected to grind to a halt in this limit.
Using liquid helium to cool mercury, Onnes instead observed its resistance to simply
vanish below 4K. Superconductivity, the flow of electrical current without resistance,
has since been observed inmanymaterials, at up to 130K, and has found applications
in medical MRI scanners, particle accelerators and levitating “maglev” trains.

Onnes and his co-workers also observed unusual behaviour in liquid helium itself.
At around 2.2K its heat capacity undergoes a discontinuous change, termed the
“lambda” transition due to the shape of the curve. Since such behaviour is char-
acteristic of a phase change, the idea developed that liquid helium existed in two
phases: helium I for T > Tλ and helium II for T < Tλ, where Tλ is the critical tem-
perature. Later experiments revealed helium II to have unusual properties, such as it
remaining a liquid even as absolute zero is approached, the ability to move through
extremely tiny pores and the reluctance to boil. These two liquid phases, and the fact
that helium remains liquid down to T → 0 (at atmospheric pressure), mean that the
phase diagram of helium (Fig. 1.2) is very different to a conventional liquid (inset).
In 1938, landmark experiments by Allen and Misener and by Kapitza revealed the
most striking property of helium II: its ability to flow without viscosity. The amazing
internal mobility of the fluid, analogous to superconductors, led Kapitza to coin the
term “superfluid”. Other strange observations followed, including “fluid creep” (the
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Fig. 1.2 Phase diagram of
helium. For a conventional
substance (inset), there exists
a triple point (TP), where
solid, liquid and gas coexist.
Helium lacks such a point.
The shaded region illustrates
where Bose–Einstein
condensation is predicted to
occur for an ideal gas

ability of helium to creep up the walls of a vessel and over the edge) and the “fountain
effect” (generation of a persistent fountain when heat was applied to the liquid).

1.1.2 Bose–Einstein Condensation

Superfluidity and superconductivity were at odds with classical physics and required
a new way of thinking. In 1938 London resurrected an obscure 1925 prediction
of Einstein to explain superfluidity. Considering an ideal gas of quantum particles,
Einstein (having developed the ideas put forward by Bose for photons) had predicted
the effect of Bose–Einstein condensation, that at low temperatures a large proportion
of the particles would condense into the same quantum state—the condensate—and
the remainder of the particles would behave conventionally. This idea stalled, how-
ever, since the conditions for this gaseous phenomena lay in the solid region of the
pressure-temperature diagram (shaded region in Fig. 1.2(inset)), making it inacces-
sible. We will follow Einstein’s derivation in Chap. 2. Einstein’s model predicts a
discontinuity in the heat capacity, suggestively similar to that observed in helium.
This, in turn, led to the development of the successful two-fluid model by Tizsa
and Landau, in which helium-II is regarded as a combination of an viscosity-free
superfluid and a viscous “normal fluid”.

Bose–Einstein condensation applies to bosons (particles with integer spin, such
as photons and 4He atoms), but not to fermions (particles with half-integer spin,
such as protons, neutrons and electrons). The Pauli exclusion principle prevents
more than one identical fermion occupying the same quantum state. How then could
Bose–Einstein condensation be responsible for the flow of electrons in superconduc-
tivity? The answer, put forward in 1957 by Bardeen, Cooper and Schrieffer was for
the electrons to form Cooper pairs; these composite bosons could then undergo
Bose–Einstein condensation. The observation of superfluidity in the fermionic

http://dx.doi.org/10.1007/978-3-319-42476-7_2


4 1 Introduction

helium isotope 3He in 1972 (at around 2mK) further cemented this pairing mecha-
nism. More information on superconductivity can be found in Ref. [2].

Superfluid helium and superconductors are both manifestations of Bose–Einstein
condensation. Arising from the macroscopic quantum state that is the condensate,
they represent fluids governed by quantummechanics, i.e. quantum fluids (supercon-
ductors can be considered as fluids of charged Cooper pairs). However, the strong
particle interactions in liquids and solids mean that these systems are much more
complicated that Einstein’s ideal-gas paradigm, and it took until the 1990s for an
almost ideal state to be created.

Hallmarks of superfluidity include the capacity to flow without viscosity, the
presence of a critical velocity above which superflow breaks down, the presence
of quantized vortices, persistent flow, and macroscopic tunneling in the form of
Josephson currents. We will detail all of these superfluid phenomena throughout this
book, with the exception of Josephson currents which can be studied elsewhere [2].

1.2 Ultracold Quantum Gases

1.2.1 Laser Cooling and Magnetic Trapping

Liquids and solids have since been cooled down to milliKelvin and microKelvin
temperatures using cryogenic refrigeration techniques and adiabatic demagnetiza-
tion, respectively [3], and the coldest recorded temperature stands at 100pK for the
nuclear spins in a sample of rhodium; these achievements are shown in Fig. 1.1.
Meanwhile, the cooling of gases was advanced greatly by laser cooling, developed
in the 1980s [4]. Atoms andmolecules in a gas are in constant randommotionwith an
average speed related to temperature, for example, around 300m/s in room temper-
ature air. For a laser beam incident upon a gas of atoms (in a vacuum chamber), and
under certain conditions, the photons in the beam can be made to impart, on average,
momentum to atoms travelling towards the beam, thus slowing them down in that
direction; applying laser beams in multiple directions then allows three-dimensional
(3D) cooling. In 1985 this “optical molasses” produced a gas at 240µK, with aver-
age atom speeds of ∼0.5m/s. A few years later, 2µK was achieved (∼1cm/s).
These vapours were extremely dilute, with typical number densities of n ∼ 1020 m−3

(c.f. n ∼ 1025 m−3 for room temperature air); this made the transition from a gas to
a solid, the natural process at such cold temperatures (inset of Fig. 1.2), so slow as to
be insignificant on the experimental timescales. In addition, magnetic fields allowed
the creation of traps, bowl-like potentials to confine the atoms and keep them away
from hot surfaces; with experimental advances, it is now possible to create such
ultracold gases in a variety of configurations, from toruses to periodic potentials, and
manipulate them in time. The development of laser cooling and magnetic trapping
techniques was recognised with the 1997 Nobel Prize in Physics [5]; further details
of these techniques can be found elsewhere [4, 6].
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1.2.2 Bose–Einstein Condensate à la Einstein

The achievement of ultracold gases put Einstein’s gaseous condensate within sight
and a new race was on. Einstein’s model predicted the condensate to form below a
critical temperature Tc ∼ 10−19n2/3, but the low gas densities employed predicted
Tc ∼ 1µK, colder than achievable by laser cooling alone. To cool even further, a stage
of evaporative cooling was employed whereby the hottest atoms were selectively
removed, just like how evaporation cools a cup of coffee.

In 1995 Cornell andWieman cooled a gas of rubidium atoms down to 200nK (200
billionths of a degree above absolute zero) to realize the first gaseous Bose–Einstein
condensate (BEC) [7]. Figure1.3 shows the famous experimental signature of this
new state of matter. These images were obtained by releasing the trap which confines
the gas, thus letting the atoms fly away and the gas to expand. Above Tc (left plot),
the gas was an energetic “thermal” gas of atoms characterised by a wide distribution
of speed; upon opening the trap, atoms with large speeds moved far away, hence the
broad picture in the left plot. As the temperature was cooled through Tc, a narrow
distribution emerged from the thermal gas (middle and right plots), characteristic
of accumulation of atoms into a state of almost zero energy and speed; these atoms
are the Bose–Einstein condensate. We derive these thermal and condensate profiles
in Chap.2. A few months later, Ketterle independently reported a BEC of sodium
atoms [8]. Seventy years on, Einstein’s prediction had been realized at the depths of
absolute zero. Cornell, Wieman and Ketterle shared the 2001 Nobel Prize for this
landmark achievement [9].

Fig. 1.3 The first observation of a gas Bose–Einstein condensate [7], showing the momentum
distribution of a dilute ultracold gas of 87Rb atoms, confined in a harmonic trap. As the temperature
was reduced, the gas changed from a broad, energetic thermal gas (left) to a narrower distribution
(right), characteristic of the condensate. Image reproduced from theNIST ImageGallery (Reference
NIST/JILA/CU-Boulder)

http://dx.doi.org/10.1007/978-3-319-42476-7_2


6 1 Introduction

There are now over 100 BEC experiments worldwide. These gases are typically
10–100µm across (about the width of a human hair), exist in the temperature range
1 to 100nK, contain 103−109 atoms, and are many times more dilute than room
temperature air. BECs are most commonly formed with rubidium (87Rb) and sodium
(23Na) atoms, but many other atomic species, and a growing number of molecular
species, have been condensed. It is also possible to create multi-component conden-
sates, where two or more condensates co-exist. These gases constitute the purest and
simplest quantum fluids available, with typically 99% of the atoms lying in the con-
densed state. The last property makes condensates amenable to first-principles mod-
elling; the work-horse model is provided by the Gross–Pitaevskii equation, which
will be introduced and analysed in Chap.3. Gaseous condensates have remarkable
properties, such as superfluidity, as we see in Chaps. 4 and 5. Unlike superfluid
helium, the interaction between the atoms is very weak, which makes them very
close to Einstein’s original concept of an ideal gas.

1.2.3 Degenerate Fermi Gases

For a fermionic gas, cooled towards absolute zero, the particles (in the absence of
Cooper pairing) are forbidden to enter the same quantum state by the Pauli exclusion
principle. Instead, they are expected fill up the quantum states, from the ground
state upwards, each with unit occupancy. This effect was observed in 1999 when
a degenerate Fermi gas was formed by cooling potassium (40K) atoms to below
300nK [10]. In this limit, the gas was seen to saturate towards a relatively wide
distribution, indicating the higher average energyof the system, relative to aBEC.The
Pauli exclusion principle exerts a very strong “pressure” against further contraction,
an effect which is believed to stabilize neutron stars against collapse. A striking
experimental comparison between bosonic and fermionic gases as the temperature is
reduced is shown in Fig. 1.4: the distribution of the fermionic system cannot contract
as the bosonic one. More recently, experiments have examined the formation of
Cooper pairs in these systems [11].

1.3 Quantum Fluids Today

We have briefly told the story of the discoveries of superfluid helium and atomic
condensates, but what about the wider implications of these discoveries and the
current status of the field? Here we list some examples.

Many-body quantum systems: Quantum fluids embody quantum behaviour on a
macroscopic scale of many particles; it is this property that gives rise to their
remarkable properties. As such, quantum fluids provide fundamental insight
into quantum many-body physics. Moreover, for the case of condensates, the

http://dx.doi.org/10.1007/978-3-319-42476-7_3
http://dx.doi.org/10.1007/978-3-319-42476-7_4
http://dx.doi.org/10.1007/978-3-319-42476-7_5


1.3 Quantum Fluids Today 7

Fig. 1.4 Change in density profile as a 7Li bosonic gas and a 6Li fermionic gas are cooled towards
absolute zero. The bosonic gas reduces to a narrow distribution corresponding to the low-energy
condensate, while the fermionic gas saturates to a larger distribution due to the outwards Pauli
pressure imposed by the fermions. Reproduced from http://apod.nas.gov with permission from
A.G. Truscott and R.G. Hulet, and corresponding to the experiment of Ref. [12]

experimental capacity to engineer the system, e.g. its interactions, dimensional-
ity, and the presence of disorder and periodicity, allows the controlled investiga-
tion of diverse many-body scenarios and emulation of complex condensed matter
systems such as superconductors.

Nonlinear systems: Quantum fluids represent a prototype fluid, free from viscos-
ity (as we see in Chap.3) and whose vorticity is constrained to take the form of
discrete, uniformly-sized mini-tornadoes. It is interesting then to consider com-
plex fluid dynamics, notably turbulence, in this simplified fluid; we discuss this
quantum turbulence in Chap.5. Condensates also provide an idealized system to
study nonlinear phenomena. The atomic interactions in a condensate give rise to
a well-defined nonlinearity, and experimental tricks allow this nonlinearity to be
controlled in size and nature (e.g. local versus non-local nonlinearity). Nonlinear
effects such as solitons and four-wave mixing have been experimentally studied;
we meet solitons in Chap.4.

Extra-terrestrial phenomena: Condensates are analogous to curved space-time
and support analog black holes and Hawking radiation, while both condensates
and helium provide analogs of the quantum vacuum believed to permeate the uni-
verse and be responsible for its development from the Big Bang. These cosmo-
logical phenomena, not accessible on Earth, may thus be mimicked and explored
in controlled, laboratory-based experiments.

Cooling: The excellent thermal transport property of helium II lends to its use
as a coolant; helium is therefore present in superconducting systems, from MRI
machines in hospitals to the Large Hadron Collider at CERN.

Sensors: Condensates are easily affected by external forces, and experiments
have demonstrated extreme sensitivity to magnetic fields, gravity and rotational
forces. Considerable efforts are currently underway to develop these ideas into

http://apod.nas.gov
http://dx.doi.org/10.1007/978-3-319-42476-7_3
http://dx.doi.org/10.1007/978-3-319-42476-7_5
http://dx.doi.org/10.1007/978-3-319-42476-7_4
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next-generation sensors, for applications such as testing fundamental laws of
physics, geological mapping and navigation.

Since 2000, Bose–Einstein condensation has also been achieved in several new sys-
tems:magnons (magnetic quasi-particles) inmagnetic insulators, polaritons (coupled
light-matter quasi-particles) in semiconductor microcavities, and photons in optical
microcavities. In particular, the latter two systems have realized quantum fluids of
light, with superfluid properties.
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Chapter 2
Classical and Quantum Ideal Gases

Abstract Bose and Einstein’s prediction of Bose–Einstein condensation came out
of their theory for how quantum particles in a gas behaved, and was built on the
pioneering statistical approach of Boltzmann for classical particles. Here we follow
Boltzmann, Bose and Einstein’s footsteps, leading to the derivation of Bose–Einstein
condensation for an ideal gas and its key properties.

2.1 Introduction

Consider the air in the room around you. We ascribe properties such as temperature
and pressure to characterise it, motivated by our human sensitivity to these prop-
erties. However, the gas itself has a much finer level of detail, being composed of
specks of dust, molecules and atoms, all in random motion. How can we explain
the macroscopic, coarse-grained appearance in terms of the fine-scale behaviour?
An exact classical approach would proceed by solving Newton’s equation of motion
for each particle, based on the forces it experiences. For a typical room (volume
∼50 m3, air particle density ∼2×1025 m−3 at room temperature and pressure) this
would require solving around 1028 coupled ordinary differential equations, an utterly
intractable task. Since the macroscopic properties we experience are averaged over
many particles, a particle-by-particle description is unnecessarily complex. Instead it
is possible to describe the fine-scale behaviour statistically through the methodology
of statistical mechanics. By specifying rules about how the particles behave and any
physical constraints (boundaries, energy, etc.), the most likely macroscopic state of
the system can be deduced.

Wedevelop these ideas for an ideal gas of N identical andnon-interactingparticles,
with temperature T and confined to a box of volume V . The system is isolated, with
no energy or particles entering or leaving the system1 Our aim is to predict the
equilibrium state of the gas. After performing this for classical (point-like) particles,
we extend it to quantum (blurry) particles. This leads directly to the prediction of
Bose–Einstein condensation of an ideal gas. In doing so, we follow the seminal

1In the formalism of statistical mechanics, this is termed the microcanonical ensemble.

© The Author(s) 2016
C.F. Barenghi and N.G. Parker, A Primer on Quantum Fluids,
SpringerBriefs in Physics, DOI 10.1007/978-3-319-42476-7_2
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Fig. 2.1 Two different
classical particle trajectories
through 1D phase space
(x, px ), with the same initial
and final states. While
classical phase space is a
continuum of states, it is
convenient to imagine phase
space to be discretized into
finite-sized cells, here with
size Δpx and Δx

works of Boltzmann, Bose and Einstein. Further information can be found in an
introductory statistical physics textbook, e.g., [1] or [2].

2.2 Classical Particles

The state of a classical particle is specified by its position r and momentum p. In
the 3D Cartesian world, this requires six coordinates (x, y, z, px , py, pz). Picturing
the world as an abstract six dimensional phase space, the instantaneous state of the
particle is a point in this space, which traces out a trajectory as it evolves. Accord-
ingly, an N -particle gas is specified by N points/trajectories in this phase space. The
accessible range of phase space is determined by the box (which provides a spa-
tial constraint) and the energy of the gas (which determines the maximum possible
momentum). Figure2.1 (left) illustrates two particle trajectories in 1D phase space
(x, px ).

Classically, a particle’s state (its position and momentum) can be determined
to arbitrary precision. As such, classical phase space is continuous and contains
an infinite number of accessible states. This also implies that each particle can be
independently tracked, that is, that the particles are distinguishable from each other.

2.3 Ideal Classical Gas

We develop an understanding of the macroscopic behaviour of the gas from these
microscopic rules (particle distinguishability, continuum of accessible states) fol-
lowing the pioneering work of Boltzmann in the late 1800s on the kinetic theory of
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gases. Boltzmann’s work caused great controversy, as its particle and statistical basis
was at odds with the accepted view of matter as being continuous and determinis-
tic. To overcome the practicalities of dealing with the infinity of accessible states,
we imagine phase space to be discretized into cells of finite (but otherwise arbitrary)
size, as shown in Fig. 2.1, and our N particles to be distributed across them randomly.
Let there be M accessible cells, each characterised by its average momentum and
position. The number of particles in the i th cell—its occupancy number—is denoted
as Ni . The number configuration across the whole system is specified by the full
set of occupancy numbers {N1, N2, . . . , NM }. We previously assumed that the total
particle number is conserved, that is,

N =
i=M∑

i=1

Ni .

Conservation of energy provides a further constraint; for now, however, we ignore
energetic considerations.

2.3.1 Macrostates, Microstates and the Most Likely
State of the System

The macroscopic, equilibrium state of the gas is revealed by considering the ways
in which the particles can be distributed across the cells. In the absence of ener-
getic constraints, each cell is equally likely to be occupied. Consider two classical
particles, A and B (the distinguishability of the particles is equivalent to saying we
can label them), and three such cells. The nine possible configurations, shown in
Fig. 2.2, are termed microstates. Six distinct sets of occupancy numbers are pos-
sible, {N1, N2, N3} = {2, 0, 0}, {0, 2, 0}, {0, 0, 2}, {1, 1, 0}, {1, 0, 1} and {0, 1, 1};
these are termed macrostates. Each macrostate may be achieved by one or more
microstates.

The particles are constantly moving and interacting/colliding with each other in
a random manner, such that, after a sufficiently long time, they will have visited all
available microstates, a process termed ergodicity. It follows that each microstate is

Fig. 2.2 Possible configurations of two classical particles, A and B, across three equally-accessible
cells. If we treat the energies of cells 1–3 as 0, 1 and 2, respectively, and require that the total system
energy is 1 (in arbitrary units), then only the shaded configurations are possible
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equally likely (the assumption of “equal a priori probabilities”). Thus the most prob-
ablemacrostate of the system is the onewith themostmicrostates. In our example, the
macrostates {1, 1, 0}, {1, 0, 1} and {0, 1, 1} are most probable (having 2 microstates
each). In a physical gas, each macrostate corresponds to a particular macroscopic
appearance, e.g. a certain temperature, pressure, etc. Hence, these abstract proba-
bilistic notions become linked to the most likely macroscopic appearances of the
gas.

For a more general macrostate {N1, N2, N3, .., NI }, the number of microstates is,

W = N !∏
i Ni ! . (2.1)

Invoking the principle of equal a priori probabilities, the probability of being in the
j th macrostate is,

Pr( j) = Wj∑
j W j

. (2.2)

Wj , and hence Pr(j), is maximised for the most even distribution of particles across
the cells. This is true when each cell is equally accessible; as we discuss next, energy
considerations modify the most preferred distribution across cells.

2.3.2 The Boltzmann Distribution

In the ideal-gas-in-a-box, each particle carries only kinetic energy p2/2m = (p2x +
p2y + p2z )/2m. Having discretizing phase space, particle energy also becomes

Fig. 2.3 For the phase space (x, px ) shown in (a), the discretization of phase space, coupled
with the energy-momentum relation E = p2/2m, leads to the formation of (b) energy levels. The
degeneracy g of the levels is shown
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discretized, forming the notion of energy levels (familiar from quantum mechan-
ics). This is illustrated in Fig. 2.3 for (x, px ) phase space. Three energy levels,
E1 = 0, E2 = p21/2m and E3 = p22/2m, are formed from the five momentum values
(p = 0,±p1,±p2). In two- and three-spatial dimensions, cells of energy Ei fall on
circles and spherical surfaces which satisfy p2x + p2y = 2mEi and p2x + p2y + p2z =
2mEi , respectively. The lowest energy state E1 is the ground state; the higher energy
states are excited states.

The total energy of the gas U is,

U =
∑

i

Ni Ei ,

where Ei is the energy of cell i . TakingU to be conserved has important consequences
for the microstates and macrostates. For example, imposing some arbitrary energy
values in Fig. 2.2 restricts the allowed configurations. Particle occupation at high
energy is suppressed, skewing the distribution towards low energy.

For a system at thermal equilibrium with a large number of particles, one
macrostate (or a very narrow range of macrostates) will be greatly favoured. The
preferred macrostate can be analytically predicted by maximising the number of
microstates W with respect to the set of occupancy numbers {N1, N2, N3, . . . , NI };
details can be found in, e.g. [1, 2]. The result is,

Ni = fB(Ei ), (2.3)

where fB(E) is the famous Boltzmann distribution,

fB(E) = 1

e(E−μ)/kBT
. (2.4)

The Boltzmann distribution tells us the most probable spread of particle occupancy
across states in an ideal gas, as a function of energy. This is associated with the
thermodynamic equilibrium state. Here kB is Boltzmann’s constant (1.38 × 10−23 m2

kg s−2 K−1) and T is temperature (in Kelvin degrees, K). On average, each particle
carries kinetic energy 3

2kBT ( 12kBT in each direction of motion); this property is
referred to as the equipartition theorem.

The Boltzmann distribution function fB is normalized to the number of particles,
N , as accommodated by the chemical potential μ. Writing A = eμ/kBT gives fB =
A/eE/kBT , evidencing that A, and therebyμ, controls the amplitude of the distribution
function.

The Boltzmann distribution function fB(E) is plotted in Fig. 2.4. Low energy
states (cells) are highly occupied,with diminishingoccupancyof higher energy states.
As the temperature and hence the thermal energy increases, the distribution broadens
as particles can access, on average, higher energy states. Remember, however, that
this is the most probable distribution. Boltzmann’s theory allows for the possibility,
for example, that the whole gas of molecules of air in a room concentrates into a
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Fig. 2.4 The Boltzmann
distribution function fB(E)

for 3 different temperatures
(the direction of increasing
temperature is indicated)

corner of the room. Due to the strong statistical bias towards an even distribution of
energy, momenta and position, such an occurrence has incredibly low probability,
but it is nonetheless possible, a fact which caused great discomfort with the scientific
community at the time.

It is often convenient towork in terms of the occupancy of energy levels rather than
states (phase space cells). To relate the Boltzmann result to energy levels, we must
take into account the number of states in a given energy level, termed the degeneracy
and denoted g j (we reserve i as the labelling of states). The occupation of the j th
energy level is then,

N j = g j fB(E j ). (2.5)

2.4 Quantum Particles

Having introduced classical particles, their statistics and the equilibrium properties
of the ideal gas, nowwe turn to the quantum case. The statistics of quantum particles,
developed in the 1920s, was pivotal to the development of quantum mechanics, pre-
dating the well-known Schrödinger equation and uncertainty principle.

2.4.1 A Chance Discovery

Quantum physics arose from the failure of classical physics to describe the emission
of radiation from a black body in the ultraviolet range (the “ultraviolet catastrophe”).
In 1900, Max Planck discovered a formula which empirically fit the data for all
wavelengths and led him to propose that energy is emitted in discrete quanta of units
h f (h being Planck’s constant and f the radiation frequency). Einstein extended this
idea with his 1905 prediction that the light itself was quantized.

The notion of quantum particles was discovered by accident. Around 1920, the
Indian physicist Satyendra Bose was giving a lecture on the failure of the classical
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theory of light using statistical arguments; a subtlemistake led to him prove the oppo-
site. Indeed, he was able to derive Planck’s empirical formula from first principles,
based on the assumptions that (a) the radiation particles are indistinguishable and
(b) phase space was discretized into cells of size h3. Bose struggled at first to get
these results published and sought support from Nobel Laureate Einstein; Bose’s
paper “Planck’s law and the light quantum hypothesis” was then published in 1924
[3]. Soon after Einstein extended the idea to particles with mass in the paper “Quan-
tum theory of the monoatomic ideal gas” [4].

The division of phase space was mysterious. Bose wrote “Concerning the kind of
subdivision of this type, nothing definitive can be said”, while Einstein confided in
a colleague that Bose’s “derivation is elegant but the essence remains obscure”. It is
now established as a fundamental property of particles, consistent with de Broglie’s
notion of wave-particle duality (that particles are smeared out, over a lengthscale
given by the de Broglie wavelength λdB = h/p) and with Heisenberg’s uncertainty
principle (that the position and momentum of a particle have an inherent uncertainty
ΔxΔyΔzΔpxΔpyΔpz = h3). Each cell represents a distinct quantum state. The
indistinguishability of particles follows since it becomes impossible to distinguish
two blurry particles in close proximity in phase space.

2.4.2 Bosons and Fermions

Quantum particles come in two varieties—bosons and fermions:

Fermions Soon after Bose and Einstein’s work, Fermi and Dirac developed Fermi-
Dirac statistics for fermions. Fermions possess half-integer spin, and include elec-
trons, protons and neutrons. Fermions obey the Pauli exclusion principle (Pauli,
1925), which states that two identical fermions cannot occupy the same quantum
state simultaneously.

Bosons Bosons obey Bose–Einstein statistics, as developed by Bose and Einstein
(above), and include photons and the Higgs boson. Bosons have integer spin, and
since spin is additive, composite bosons may be formed from equal numbers of
fermions, e.g. 4He, 87Rb and 23Na. Unlike fermions, any number of bosons can
occupy the same quantum state simultaneously.

The indistinguishability of quantum particles, and the different occupancy rules
for bosons and fermions, affect their statistical behaviour. Consider 2 quantum parti-
cles across 3 cells, as shown in Fig. 2.5. Since the particles are indistinguishable, we
can no longer label them. For bosons there are six microstates; for fermions there are
only three (compared to nine for classical particles, Fig. 2.2). The relative probability
of paired states to unpaired states is 1

3 ,
1
2 and 0 for classical particles, bosons and

fermions, respectively. Bosons are the most gregarious, having the greatest tendency
to bunch up, while fermions are the most anti-social of all and completely avoid each
other.
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Fig. 2.5 Possible configurations of two bosons (left) and two fermions (right) across three equally-
accessible cells. The classical case was shown in Fig. 2.2

2.4.3 The Bose–Einstein and Fermi-Dirac Distributions

Boltzmann’s mathematical trick of discretizing classical phase space becomes physi-
cal reality in the quantumworld, and the samemethodology can be applied to find the
distribution functions for bosons and fermions (accounting for their indistinguisha-
bility and occupancy rules). The Bose–Einstein and Fermi-Dirac particle distribution
functions, which describe the mean distribution of bosons and fermions over energy
E in an ideal gas, are,

fBE(E) = 1

e(E−μ)/kBT − 1
, (2.6)

fFD(E) = 1

e(E−μ)/kBT + 1
. (2.7)

The rather insignificant looking −1/ + 1 terms in the denominators have profound
consequences. Figure2.6 compares the Boltzmann, Bose–Einstein and Fermi-Dirac
distributions.

We make the following observations of the distributions functions:

• To be physical, the distribution functions must satisfy f ≥ 0 (for all E). This
implies that μ ≤ 0 for the Bose–Einstein distribution. For the Fermi-Dirac and
Boltzmann distributions, μ can take any value and sign.

Fig. 2.6 The Boltzmann, Bose–Einstein and Fermi-Dirac distribution functions for a T � 0 and
b T ≈ 0
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• For (E − μ)/kBT � 1, theBose–Einstein andFermi-Dirac distributions approach
the Boltzmann distribution. Here, the average state occupancy is much less than
unity, such that the effects of particle indistinguishability become negligible. Note
that the classical limit condition (E − μ)/kBT � 1 should not be interpreted too
directly, as it seems to predict, counter-intuitively, that low temperatures favour
classical behaviour; this is because μ itself has a non-trivial temperature depen-
dence.

• As E → μ from above, the Bose–Einstein distribution diverges, i.e. particles accu-
mulate in the lowest energy states.

• For E � μ, the Fermi-Dirac distribution saturates to one particle per state, as
required by the Pauli exclusion principle.

• For decreasing temperature, the distributions develop a sharper transition about
E = μ, approaching step-like forms for T → 0.

2.5 The Ideal Bose Gas

Ayear after Einstein andBose set forth their newparticle statistics for a gas of bosons,
Einstein published “Quantum theory of the monoatomic ideal gas: a second treatise”
[5], elaborating on this topic. Here he predicted Bose–Einstein condensation. We
now follow Einstein’s derivation of this phenomena and predict some key properties
of the gas.

2.5.1 Continuum Approximation and Density of States

We consider an ideal (non-interacting) gas of bosons confined to a box, with energy
level occupation according to the Bose–Einstein distribution (2.6). For mathemat-
ical convenience we approximate the discrete energy levels by a continuum, valid
providing there are a large number of accessible energy levels. Replacing the level
variables with continuous quantities (E j 	→ E, g j 	→ g(E) and N j 	→ N (E)), the
number of particles at energy E is written,

N (E) = fBE(E) g(E) = g(E)

e(E−μ)/kBT − 1
, (2.8)

where g(E) is the density of states. The total number of particles and total energy
follow as the integrals,

N =
∫

N (E) dE, (2.9)

U =
∫

E N (E) dE . (2.10)
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Fig. 2.7 The volume of
momentum space from p to
p + dp is a spherical shell in
3D momentum space

These are integrated in energy upwards from the E = 0 ( j = 1) ground state.
The density of states g(E) is defined such that the total number of possible states

in phase space Nps is,

Nps =
∫

g(E)dE =
∫

g(p)dp, (2.11)

where we have also provided the corresponding expression in terms of momentum p,
which is more convenient to work with. The quantity g(p)dp represents the number
of states lying between momenta p and p + dp. These states occupy a (6D) volume
in phase space which is the product of their (3D) volume in position space and their
(3D) volume inmomentum space. The former is the box volume,V . For the latter, the
range p to p + dp represents a spherical shell in momentum space of inner radius p
and thickness dp, as illustrated in Fig. 2.7, with momentum-space volume 4π p2dp.
Hence the phase space volume is 4π p2Vdp. Now recall that each quantum state takes
up a volume h3 in phase space. Thus the number of states between p and p + dp is,

g(p)dp = 4π p2V
h3

dp. (2.12)

Using the momentum-energy relation p2 = 2mE , its differential form dp =√
m/2E dE), and the relation g(E) dE = g(p) dp, Eq. (2.12) leads to,

g(E) = 2π(2m)
3
2V

h3
E

1
2 . (2.13)

This is the density of states for an ideal gas confined to a box of volume V . There are
a diminishing amount of states in the limit of zero energy, and an increasing amount
with larger energy.

While the occupancy of a state goes like 1/(e(E−μ)/kBT − 1) and diverges as
E → μ, the occupancy of an energy level goes like E

1
2 /(e(E−μ)/kBT − 1) and dimin-

ishes as E → 0 (due to the decreasing amount of available states in this limit). These
two distributions are compared in Fig. 2.8a.
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Fig. 2.8 a The occupancy of energy levels N (E) (solid line), compared to the Bose–Einstein
distribution fBE (dashed line). The former vanishes as E → 0 due to the diminishing density of

states in this limit. b The function g 3
2
(z) = ∑∞

p=1 z
p/p

3
2 over the relevant range 0 < z ≤ 1

2.5.2 Integrating the Bose–Einstein Distribution

Using Eqs. (2.8, 2.13) we can write the number of particles (2.9) as,

N = 2π(2m)
3
2V

h3

∞∫

0

E
1
2

e(E−μ)/kBT − 1
dE . (2.14)

We seek to evaluate this integral. To assist us, we quote the general integral,2

∞∫

0

xα

ex/z − 1
dx = Γ (α + 1)gα+1(z), (2.15)

where Γ (x) =
∫ ∞

0
t x−1e−tdt is the Gamma function.3 We have also defined a new

function, gβ(z) = ∑∞
p=1

z p

pβ ; an important case is when z = 1 for which it reduces to

the Riemann zeta function,4 ζ(β) =
∞∑

p=1

1

pβ
.

2This result can be derived by introducing new variables z = eμ/kBT and x = E/kBT to rewrite
part of integrand in the form ze−x/(1 − ze−x ), and then writing as a power series expansion.
3Relevant values for us are Γ (3/2) = √

π/2 and Γ (5/2) = 3
√

π/4.
4Relevant values for us are ζ(3/2) = 2.612 and ζ(5/2) = 1.341.
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Taking α = 1
2 , x = E/kBT and z = eμ/kBT in the general result (2.15), we eval-

uate Eq. (2.14) as,

N = (2πmkBT )
3
2V

h3
g 3

2
(z), (2.16)

where we have used the result Γ (3/2) = √
π/2. Note that the relevant range of z

is 0 < z ≤ 1: the lower limit is required since z = eμ/kBT > 0 while the upper limit
z ≤ 1 is required to prevent negative populations. Note also that μ ≤ 0 over this
range, as required for the Bose–Einstein distribution (recall Sect. 2.4.3). In Fig. 2.8b
we plot g 3

2
(z) over this range.

2.5.3 Bose–Einstein Condensation

The prediction of Bose–Einstein condensation in the style of Einstein arises directly
from Eq. (2.16). Consider adding particles to the box, while at constant temperature.
An increase in N is accommodated by an increase in the function g 3

2
(z). However,

g 3
2
(z) is finite, reaching a maximum value of g 3

2
= ζ( 32 ) = 2.612 at z = 1. In other

words, the system becomes saturatedwith particles. This critical number of particles,
denoted Nc, follows as,

Nc = (2πmkBT )
3
2V

h3
ζ(

3

2
). (2.17)

Our derivation predicts a limit to how many particles the Bose–Einstein distribu-
tion can hold, but common sense tells us that it should always be possible to addmore
particles to the box. In fact, we made a subtle mistake. In calculating N we replaced
the summation over discrete energy levels (from the i = 1 ground state upwards) by
an integral over a continuum of energies (from E = 0 upwards). However, this con-
tinuum approximation does not properly account for the population of the ground
state, since the density of states, g(E) ∝ E

1
2 , incorrectly predicts zero population

in the ground state. What we have predicted is the saturation of the excited states;
any additional particles added to the system enter the ground state (which comes
at no energetic cost). For N � Nc, the ground state acquires an anomalously large
population.

As Einstein put it [5], “a number of atoms which always grows with total density
makes a transition to the ground quantum state, whereas the remaining atoms distrib-
ute themselves... A separation occurs; a part condenses, the rest remains a saturated
ideal gas.” This effect is Bose–Einstein condensation, and the collection of particles
in the ground state is the Bose–Einstein condensate. The effect is a condensation in
momentum space, referring to the occupation of the zero momentum state. In prac-
tice, when the system is confined by a potential, a condensation in real space also
takes place, towards the region of lowest potential. Bose–Einstein condensation is
a phase transition, but whereas conventional phase transitions (e.g. transformation
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from gas to liquid or liquid to solid) are driven by particle interactions, Bose–Einstein
condensation is driven by the particle statistics.

Based on the above hindsight, we note that the total atom number N appearing in
Eqs. (2.9), (2.14) and (2.16) should be replaced by the number in excited states, Nex.

2.5.4 Critical Temperature for Condensation

If, instead, the particle number and volume are fixed, then there exists a critical tem-
perature Tc below which condensation occurs. The population of excited particles at
a given temperature is given by Eq. (2.16). For T > Tc, this is sufficient to accommo-
date all of the particles, and the gas is in the normal phase. As temperature is lowered,
however, the excited state capacity also decreases. At the point where the excited
states no longer accommodate all the particles, Bose–Einstein condensation occurs.
The critical temperature is obtained by setting z = 1 in Eq. (2.16) and rearranging
for T ,

Tc = h2

2πmkB

(
N

ζ( 32 )V

) 2
3

. (2.18)

For further decreases in temperature, Nex decreases and so more and more particles
must enter the ground state. In the limit T → 0, excited states can carry no particles
and all particles enter the condensate.

2.5.5 Condensate Fraction

A useful quantity for characterising the gas is the condensate fraction, that is, the
proportion of particles which reside in the condensate, N0/N . Let us consider its
variation with temperature. Writing N = N0 + Nex leads to,

N0

N
= 1 − Nex

N
. (2.19)

For T ≤ Tc, the excited population Nex is given by Eq. (2.16) with z = 1, and the
total population is given by Eq. (2.14) with z = 1 and T = Tc. Substituting both into
the above gives,

N0

N
= 1 −

(
T

Tc

)3/2

. (2.20)

For T > Tc, we expect N0/N ≈ 0. This behaviour is shown in Fig. 2.9.
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Fig. 2.9 a Illustration of
energy level occupations in
the boxed ideal Bose gas. At
T = 0 all particles lie in the
ground state. For
0 < T < Tc, some particles
are in excited levels but there
is still macroscopic
occupation of the ground
state. For T > Tc, there is
negligible occupation of the
ground state. b Variation of
condensate fraction, N0/N ,
with temperature, as per
Eq. (2.20)

2.5.6 Particle-Wave Overlap

Bose–Einstein condensation occurs when N > Nc, with Nc given by Eq. (2.17).
It is equivalent to write this criterion in terms of the number density of particles,
n = N/V , as,

n > ζ

(
3

2

)
(2πmkBT )3/2

h3
. (2.21)

According to de Broglie, particles behave like waves, with a wavelength λdB = h/p.

For a thermally-excited gas, the particle wavelength is λdB = h√
2πmkBT

. Employ-

ing this, the above criterion becomes,

nλ3
dB > ζ

(
3

2

)
. (2.22)

Upon noting that the average inter-particle distance d = n− 1
3 and ζ( 32 )

1
3 ∼ 1 we

arrive at,

λdB � d. (2.23)

Thus, Bose–Einstein condensation coincides with the condition that the particle
waves overlap with each other, as depicted in Fig. 2.10. The individual particles
become smeared out into one giant wave of matter, the condensate.
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Fig. 2.10 Schematic of the transition between a classical gas and a Bose–Einstein condensate. At
high temperatures (T � Tc) the gas is a thermal gas of point-like particles. At low temperatures
(but still exceeding Tc) the de Broglie wavelength λdB becomes significant, yet smaller than the
average spacing d. At Tc, the matter waves overlap (λdB ∼ d), marking the onset of Bose–Einstein
condensation

2.5.7 Internal Energy

The internal energy of the gas U is determined by the excited states only, since the
ground state possesses zero energy; therefore we can expressU by integrating across
the excited state particles as,

U =
∞∫

0

E Nex(E) dE . (2.24)

Upon evaluating this integral below and above Tc we find,

U =

⎧
⎪⎪⎨

⎪⎪⎩

3

2

ζ(5/2)

ζ(3/2)
NkBT

(
T

Tc

)3/2

for T < Tc,

3

2
NkBT for T � Tc.

(2.25)

The T � Tc result is consistent with the classical equipartition theorem for an ideal
gas, which states that each particle has on average 1

2kBT of kinetic energy per direc-
tion of motion. The different behavior for T < Tc confirms the presence of a distinct
state of matter.
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2.5.8 Pressure

The pressure of an ideal gas is P = 2U/3V . From Eq. (2.25), then for T � Tc we
recover the standard result for a classical ideal gas that P ∝ T/V . For T < Tc, and
recalling that Tc ∝ 1/V2/3, we find that P ∝ T 5/2. The pressure of the condensate is
zero at absolute zero and does not depend on the volume of the box! A consequence
of this is that the condensate has infinite compressibility, as explored in Problem 2.6.

2.5.9 Heat Capacity

The heat capacity of a substance is the energy required to raise its temperature by
unit amount. At constant volume it is defined as,

CV =
(

∂U

∂T

)

V
. (2.26)

From Eq. (2.25) we find,

CV =
⎧
⎨

⎩
1.93NkBT 3/2 for T < Tc,
3

2
NkB for T � Tc.

(2.27)

A more precise treatment, describing the dependence at intermediate temperatures,
can be found in Ref. [6]. The form of CV(T ) is depicted in Fig. 2.11, showing a
cusp-like dependence around Tc. In general, discontinuities in the gradient of CV(T )

are signatures of phase transitions between distinct states of matter. The similarity of

Fig. 2.11 Left Heat capacity CV of the ideal Bose gas as a function of temperature T . Right
Experimental heat capacity data of liquid Helium, taken from [7], about the λ-point of 2.2 K. Both
curves show a similar cusped structure
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this prediction to measured heat capacity curves for Helium about the λ-point was
key evidence in linking helium II to Bose–Einstein condensation.

2.5.10 Ideal Bose Gas in a Harmonic Trap

2.5.10.1 Critical Temperature and Condensate Fraction

In typical experiments, atomic Bose–Einstein condensates are confined by harmonic
(quadratic) potentials, rather than boxes,5 with the general form,

V (x, y, z) = 1

2
m

(
ω2
x x

2 + ω2
y y

2 + ω2
z z

2
)
, (2.28)

wherem is the atomicmass, andωx ,ωy andωz are trap frequencieswhich characterise
the strength of the trap in each direction. Here the density of states is modified, being
g(E) = E2/(2�

3ωxωyωz) in 3D. This leads, for example, to a critical temperature
of the form,

Tc = �

kB
(ωxωyωz)

1/3

[
N

ζ(3)

]1/3

, (2.29)

and for the condensate fraction to vary with temperature as,

N0

N
= 1 −

(
T

Tc

)3

. (2.30)

These predictions agree well with experimental measurements of harmonically-
trapped atomic BECs, as seen in Fig. 2.12. This is despite the fact that atomic BECs
are not ideal but feature significant interactions between atoms.

2.5.10.2 Density Profile

We can deduce the density profile of the (non-interacting) condensate in a harmonic
trap as follows. The ground quantum state in a harmonic trap is the ground harmonic
oscillator state. For simplicity, assume a spherically-symmetric trap with ωx = ωy =
ωz ≡ ωr . The ground quantum state for a single particle is provided by solving the
time-independent Schrödinger equation under this harmonic potential, giving the
ground harmonic oscillator wavefunction ψ(r) = (

mω
π�

)3/4
e−mωr2/2�. The quantity

|ψ(r)|2 represents the probability of finding the particle at position r . For a condensate
of N0 such particles, with N0 � 1, the particle density profile will follow as,

5Box-like traps [8, 9] are also possible, and allow the condensate to have uniformdensity, facilitating
comparison with the theory of homogeneous condensates.
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Fig. 2.12 Variation of
condensate fraction N0/N
with temperature for a
harmonically-trapped BEC,
with the ideal-gas
predictions (solid line)
compared to experimental
measurements from Ref. [10]
(circles), with Tc = 280 nK

n(r) = N0|ψ|2 = N0(��2r )
−3/2e−r2/�2r , (2.31)

where we have introduced the harmonic oscillator length �r = �/mωr which char-
acterises the width of the density distribution.

Wecan also deduce the density profile of the thermal gas. Taking the classical limit,
the atoms will be distributed over energy according to the Boltzmann distribution
N (E) ∝ e−E/kBT . The trapping potential V (r) allows us to map energy (potential)
to position, leading to a spatial particle distribution,

n(r) = Nex(��2r,th)
−3/2e−r2/�2r,th , (2.32)

where �r,th = √
2kBT/mω2

r characterises the width of the thermal gas and the profile
has been normalized to Nex atoms. For increased temperature, the atoms have higher
average energy and climb further up the trap walls, leading to a wider profile. While
the profiles of the ideal condensate and ideal thermal gas are both Gaussian in space,
their widths have different functional forms. In particular, the width of the thermal
gas depends on temperature, whereas the condensate width does not.

The typical experimental protocol to form a BEC proceeds by cooling a relatively
warm gas towards absolute zero. Above Tc the gas has a broad thermal distribution,
which shrinks during cooling. As Tc is under-passed, the condensate distribution
forms. In typical atomic BEC experiments, �r � �r,th, such that this is distinctly
narrower than the thermal gas, and the combined density profile is bimodal. Under
further cooling, the condensate profile grows (with fixed width) at the expense of the
thermal profile, and for T � Tc the thermal gas is negligible. In reality, atomic inter-
actions modify the precise shapes of the density profiles but this picture qualitatively
describes what is observed in experiments (see Figs. 1.3 and 1.4).

http://dx.doi.org/10.1007/978-3-319-42476-7_1
http://dx.doi.org/10.1007/978-3-319-42476-7_1
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2.6 Ideal Fermi Gas

We outline the corresponding behaviour of the ideal Fermi gas. Since (identical)
fermions are restricted to up to one per state, Bose–Einstein condensation is prohib-
ited, and the Fermi gas behaves very differently as T → 0. At T = 0 the Fermi-Dirac
distribution (2.7) reduces to a step function,

fFD(E) =
{
1 forE ≤ EF,

0 forE > EF.
(2.33)

All states are occupied up to an energy threshold EF, termed the Fermi energy (equal
to the T = 0 chemical potential).With this simplified distribution it is straightforward
to integrate the number of particles,

N =
∫

N (E) dE =
EF∫

0

g(E) fFD(E) dE = 4πV
3

(
2mEF

h2

)3/2

, (2.34)

where we have used the density of states (2.13). Note that the continuum approxi-
mation N = ∫

g(E) N (E) dE holds for N � 1 fermions since the unit occupation
of the ground state is always negligible. Rearranging for the Fermi energy in terms
of the particle density n = N/V gives,

EF = �
2

2m

(
6π2n

)2/3
. (2.35)

From this we define the Fermi momentum pF = �kF where kF = (6π2n)1/3 is the
Fermi wavenumber. In momentum space, all states are occupied up to momentum
pF, termed the Fermi sphere.

Similarly, the total energy of the gas at T = 0 is,

U =
∫

N (E)E dE = 4πV
5

(
2m

h2

)3/2

E5/2
F = 3

5
NEF. (2.36)

From the pressure relation for an ideal gas, P = 2U/3V , the pressure of the ideal
Fermi gas at T = 0 is,

P = 2

5
nEF. (2.37)

This pressure is finite even at T = 0, unlike the Bose and classical gases, and does
not arise from thermal agitation. Instead it is due to the stacking up of particles in
energy levels, as constrained by the quantum rules for fermions. This degeneracy
pressure prevents very dense stars, such as neutron stars, from collapsing under their
own gravitational fields.
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Fig. 2.13 Energy level occupations for an ideal Fermi gas. At T = 0, there is unit occupation of
states up to the Fermi energy. At T = TF, there is some excitation of states around E = EF. For
T � TF, the system approaches the classical limit, with particles occupying many high-energy
states

As temperature is increased from zero, the step-like Fermi-Dirac distribution
becomes broadened about E = EF, representing that some high energy particles
become excited to energies exceeding EF. It is useful to define the Fermi temper-
ature TF = EF/kB. At low temperatures T ∼ TF, only particles in states close to
EF can be excited out of the Fermi sphere, and the system is still dominated by the
stacking of particles. For high temperatures T � TF, there is significant excitation
of most particles, thermal effects dominates, and the system approaches the classical
Boltzmann result. The Fermi temperature is associated with the onset of degener-
acy, i.e. when quantum effects dominate the system. These regimes are depicted in
Fig. 2.13.

Now consider the Fermi gas to be confined in a harmonic trap. For T � TF the
gas will have a broad, classical profile. As T is decreased, the profile will narrow but
eventually saturates below TF due to degeneracy pressure. The width of the Fermi gas
at zero temperature is proportional to N 1/6�r [11], such that, for N � 1, this cloud
is much wider than its classical and Bose counterparts. This picture is confirmed by
the experimental images in Fig. 1.4.

2.7 Summary

In his 1925 prediction of Bose–Einstein condensation of an ideal gas, Einstein sug-
gested hydrogen, helium and the electron gas were the best candidates for observing
Bose–Einstein condensation. However, the former candidates are no longer gases
at the required densities, and the latter (as soon realized) is fermionic. For over a
decade, Bose–Einstein condensation had “the reputation of having only a purely

http://dx.doi.org/10.1007/978-3-319-42476-7_1
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imaginary character” [12], deemed too fragile to occur in real gases with their finite
size and particle interactions. In 1938 Einstein’s idea became revived when Fritz
London recognized the similarity to the heat capacity curves in Helium as it entered
the superfluid phase. It took several more decades to cement this link with micro-
scopic theory. Bose–Einstein condensation is now know to underly superfluid He4

and He3, superconductors and the ultracold atomic Bose gases. We explore the latter
in the next chapter.

Problems

2.1 Consider a system with 6 classical particles, total energy of 6ε, and 7 cells with
energies 0, ε, 2ε, 3ε, 4ε, 5ε and 6ε. Complete the table below by entering the cell
populations for each macrostate, the statistical weighting for each macrostate W ,
and the average population per cell N̄ (E) (averaged over macrostates). What is the
most probable macrostate? Plot N̄ (E) versus E . It should be evident that the average
distribution approximates the Boltzmann distribution, despite the small number of
particles.

Macrostates
Cell energy E 1 · · · 11 N̄ (E)

6ε ? · · · ? ?
5ε ? · · · ? ?
.
.
.

.

.

. · · ·
.
.
.

.

.

.

ε ? · · · ? ?
0 ? · · · ? ?

Statistical weighting W ? . . . ?

2.2 Consider a system with N classical particles distributed over 3 cells (labelled
1, 2, and 3) of energy 0, ε and 2ε. The total energy is E = 0.5Nε.

(a) Obtain an expression for the number of microstates in terms of N and N3, the
population of cell 3.

(b) Plot the number of microstates as a function of N2 (which parameterises the
macrostate) for N = 50. Repeat for N = 100 and 500. Note how the distribution
changes with N . What form do you expect the distribution to tend towards as N
is increased to much larger values?

2.3 Consider an ideal gas of bosons in two dimensions, confined within a two-
dimensional box of volume V2D.

(a) Derive the density of states g(E) for this two-dimensional system.
(b) Using this result show that the number of particles can be expressed as,
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Nex = 2πmV2DkBT

h2

∫ ∞

0

ze−x

1 − ze−x
dx,

where z = eμ/kBT and x = E/kBT . Solve this integral using the substitution
y = ze−x .

(c) Obtain an expression for the chemical potential μ and thereby show that Bose–
Einstein condensation is possible only at T = 0.

2.4 Equation (2.25) summarizes how the internal energy of the boxed 3D ideal Bose
gas scales with temperature. Derive the full expressions for the internal energy for
the two regimes (a) T < Tc (for which z = 1), and (b) T � Tc (for which z � 1).
Extend your results to derive the expressions for the heat capacity given in Eq. (2.27).

2.5 Bose–Einstein condensates are typically confined in harmonic trapping poten-
tials, as given by Eq. (2.28). Using the corresponding density of states provided in
Sect. 2.5.10.1:

(a) Derive the expression for the critical number of particles.
(b) Derive the expression (2.29) for the critical temperature.
(c) Determine the expression (2.30) for the variation of condensate fraction N0/N

with T/Tc.
(d) In one of the first BEC experiments, a gas of 40, 000 Rubidium-87 atoms (atomic

mass 1.45 × 10−25 kg) underwent Bose–Einstein condensation at a temperature
of 280 nK. The harmonic trap was spherically-symmetric with with ωr = 1130
Hz. Calculate the critical temperature according to the ideal Bose gas prediction.
Howdoes this compare to the result for the boxedgas (youmayassume the atomic
density as 2.5 × 1018 m−3).

2.6 The compressibility β of a gas, a measure of how much it shrinks in response
to a compressional force, is defined as,

β = − 1

V
∂V
∂P

.

Determine the compressibility of the ideal gas for T < Tc.
Hint: Since Tc is a function of V , you should ensure the full V-dependence is

present before differentiating.
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Chapter 3
Gross-Pitaevskii Model of the Condensate

Abstract The Gross-Pitaevskii equation (GPE) is a successful and well-established
model for describing an atomic Bose-Einstein condensate. Here we introduce this
model, along with its assumptions. Throughout the rest of this chapter we explore
its properties and key time-independent solutions.

3.1 The Gross-Pitaevskii Equation

Weassume that the gas is at zero temperature, such that the thermal gas and thermally-
driven excitations of the condensate are non-existent. This is valid for T � Tc,
which is often satisfied in BEC experiments. In any real gas, the particles also inter-
act with each other, deviating from the ideal gas predictions of Chap.2. Particle
interactions amplify the fluctuations in any quantum field (so-called “quantum fluc-
tuations”); these excite particles out of the ground state and deplete the condensate.
An exact description of N interacting quantum particles would proceed by parame-
terising the system by an N -body wavefunction, �(r1, r2, . . . , rN , t), which obeys
the many-body Schrödinger equation. However, the complexity of this approach
makes it intractable for modelling more than a few particles, let alone the thousands
or millions typical of an atomic BEC.

Fortunately, the interactions in atomic BECs are weak; this is due to their extreme
diluteness and the weak forces between neutral atoms. As such, quantum fluctuations
have aweak effect on the condensate, andwill be ignored. Then, and assuming a large
number of particles (N � 1), the many-body wavefunction can be approximated by
an effective single-particle wavefunction, Ψ (r, t). Given the physical picture of the
condensate as a giant matter wave (see Sect. 2.5.6), it is natural to describe it via a
single wavefunction. This macroscopic wavefunction is a complex field that can be
written as,

Ψ (r, t) = √
n(r, t) exp [i S(r, t)] , (3.1)
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where n and S are the density and phase distributions of the condensate, and is
normalized to N atoms, i.e., ∫

|Ψ |2 d3r = N . (3.2)

In the absence of interactions, this wavefunction would be governed by the single-
particle Schrödinger equation, i�∂Ψ/∂t = [−(�2/2m)∇2 + V (r, t)]Ψ , where ∇2 is
the Laplacian operator and V (r, t) is the potential acting on thewavefunction (which,
in general, may depend on position and time). However, the governing equation must
be modified to account for the interactions between atoms. The gas is sufficiently
dilute that three-body (and higher) interactions are typically negligible. The domi-
nant interactions are elastic two-body interactions arising from van der Waals forces
between the neutral atoms. For two atoms at positions r1 and r2 this interaction is
well-described by the contact (hard-sphere) interaction,

U(r1 − r2) = gδ(r1 − r2), (3.3)

where δ is Dirac’s delta function, and the coefficient g is given by,

g = 4π�
2as

m
. (3.4)

Here as is the s-wave scattering length, a quantity used in atomic physics for charac-
terising the interactions of atoms in the low energy limit (for a detailed description
see, e.g. Ref. [1]). For the two most common BEC atomic species, 87Rb and 23Na,
as = 5.8 and 2.8nm, respectively. While the true interaction potential between two
atoms is more complicated, its detailed shape is unimportant provided that as � d,
where d is the average interparticle distance (or, equivalently, na3

s � 1). Further-
more, within this picture, the condition for weak interactions is as � λdB.

Taking into account these interactions, the mean-field wavefunction ψ(r, t) can
be shown to satisfy a modified Schrödinger equation called the Gross-Pitaevskii
equation,

i�
∂Ψ

∂t
= − �

2

2m
∇2Ψ + V (r, t)Ψ + g|Ψ |2Ψ. (3.5)

The formal derivation of the GPE is beyond our scope but can be found in, e.g.
[1–3]. The first two terms on the right-hand side are familiar from the Schrödinger
equation, accounting for kinetic and potential energy. The cubic term g|Ψ |2Ψ arises
from the atomic interactions and makes the equation nonlinear. Similar Nonlinear
Schrödinger Equations (NLSEs) arise in optics, plasma physics and water waves. In
one spatial dimension, the NLSE has special mathematical properties, such as soliton
solutions and infinite conservation laws (see Chap.4). The physical interpretation of
the nonlinear term is that, at a given point in space, there is an energy contribution
arising from the mean-field interactions of all the atoms in the immediate vicinity.
The quantity g depends on the given atomic species and can be positive or negative.

http://dx.doi.org/10.1007/978-3-319-42476-7_4
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Experimentalists can also control sign and magnitude of g using Feshbach reso-
nances. Here magnetic fields are used to couple the two-body scattering to a bound
state; when this coupling is close to some resonant magnetic field, huge changes
in the two-body scattering properties are possible. For g > 0 the interactions are
repulsive, for g < 0 the interactions are attractive, and for g = 0 there are no interac-
tions (and the equation reduces to the Schrödinger equation). The case of repulsive
interaction is the most studied, so, unless we explicitly specify the sign of g, we take
g > 0 hereafter.

The GPE can also be extended to take thermal and quantum effects into account,
and further information can be found in Refs. [4–6].

3.1.1 Mass, Energy and Momentum

The total mass of the condensate is M = m N , where N is provided by the normal-
ization condition on Ψ , Eq. (3.2).

The energy is,

E =
∫ [

�
2

2m
|∇Ψ |2 + V |Ψ |2 + g

2
|Ψ |4

]
d3r = Ekin + Epot + Eint. (3.6)

The terms represent (from left to right) kinetic energy Ekin, potential energy Epot

and interaction energy Eint. Providing that the potential V is independent of time,
then the energy E = Ekin + Epot + Eint is conserved during the time evolution of the
condensate.

It can be useful, particularly when determining the energy numerically, to define
Ψ = Ψr + iΨi, whereΨr andΨi are the real and imaginary parts of the wavefunction.
Then, the |∇Ψ |2 term in the energy can be expressed in a more convenient form,
|∇Ψ |2 = (∇Ψr)

2 + (∇Ψi)
2.

Meanwhile the momentum of the condensate is,

P = i�

2

∫ (
Ψ ∇Ψ ∗ − Ψ ∗∇Ψ

)
d3r. (3.7)

3.2 Time-Independent GPE

Time-independent solutions of the GPE satisfy,

Ψ (r, t) = ψ(r)e−iμt/�, (3.8)

where μ is a constant called the chemical potential. The exponential term represents
the freedom for the phase to freely evolve with time, uniformly across the system,
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while the density n(r, t) = |ψ(r)|2 is unaffected. Inserting Eq. (3.8) into Eq. (3.5),
we obtain the time-independent GPE for the time-independent wavefunction ψ(r),

μψ = − �
2

2m
∇2ψ + V (r)ψ + g|ψ|2ψ. (3.9)

Note that the potential V must be independent of time here. Solutions of the time-
independent GPE are stationary solutions of the system, and the lowest energy solu-
tion is the ground state of the BEC. ψ(r) is real for the simple solutions that we
discuss in this Chapter.

The chemical potential is the eigenvalue of time-independent GPE, and direct
integration leads to the expression,

μ = 1

N
(Ekin + Epot + 2Eint). (3.10)

In the absence of interactions, this reduces to the energy per particle, consistent with
the eigenvalue of the time-independent Schrödinger equation. More generally, the
chemical potential is defined as μ = ∂E/∂N .

3.3 Fluid Dynamics Interpretation

There is a deep link between the GPE and fluid dynamics. Indeed, we can picture
the condensate as a fluid, characterised by its density and velocity distributions.
From the earlier relation, Ψ (r, t) = √

n(r, t)ei S(r,t) (known in this context as the
Madelung transform) the number density follows as n(r, t) = |Ψ (r, t)|2. From this
relation we have also the mass density ρ(r, t) conventionally used in fluid dynamics,
ρ(r, t) = m n(r, t).

The fluid velocity field v(r, t) is defined from the phase via,

v(r, t) = �

m
∇S(r, t). (3.11)

Using the Madelung transform Ψ = √
nei S and the above velocity relation, we

find that the energy integral of Eq. (3.6) can be written as,

E =
∫ [

�
2

2m

(∇√
n
)2 + mnv2

2
+ V n + gn2

2

]
d3r. (3.12)

The first two terms comprise the kinetic energy. The first of these is the quantum
kinetic energy. It arises due to the zero-point motion of confined particles, and van-
ishes for a uniform system. The second term is the conventional kinetic energy
associated with the flow of the fluid.
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Inserting theMadelung transform into theGPE, and separating real and imaginary
terms, we obtain two equations. The first is the classical continuity equation,

∂n

∂t
+ ∇ · (nv) = 0. (3.13)

The continuity equation expresses conservation of the number of atoms (or, when
written in terms of ρ(r, t), conservation of mass). By integrating the equation over
a given volume, we see that, if the number of atoms changes in that volume, it is
because fluid has moved in or out of it.

The second equation is,

m
∂v
∂t

= −∇
(
1

2
mv2 + V + gn − �

2

2m

∇2√n√
n

)
. (3.14)

The ∇2√n/
√

n term is termed the quantum pressure term (see below). With some
manipulation, we can write this in the equivalent form,

mn

(
∂v
∂t

+ (v · ∇)v
)

= −∇(P + P ′) − n∇V, (3.15)

where P and P ′ are respectively the pressure and the quantum pressure,

P = gn2

2
, P ′ = − �

2

4m
n∇2(ln n). (3.16)

Equations (3.13) and (3.14) (or, equivalently, Eqs. (3.13) and (3.15)) are known as
the superfluid hydrodynamic equations. They can also be written in index notation.1

Notice that the pressure depends only on the density. This property makes the
condensate a barotropic fluid; as a consequence, surfaces of constant pressure are
also surfaces of constant density. The quantum pressure is a pure quantum effect,
and vanishes if we set Planck’s constant equal to zero. It has the same origin as the
quantum kinetic energy, i.e. zero point motion, which creates a pressure that opposes
any ‘squashing’ or ‘bending’ of the condensate. In a uniform condensate the quantum
pressure is zero because n is constant.

Equation (3.15) is very similar to the classical Euler equation for an inviscid fluid.
To understand the relation between condensates and classical fluids, we compare the
relative importance of pressure and quantum pressure. Using Eq. (3.16), we estimate

1In index notation, Eqs. (3.13) and (3.15) are
∂n

∂t
+ ∂(nv j )

∂x j
= 0 and mn

(
∂vk

∂t
+ v j

∂vk

∂x j

)
=

− ∂P

∂xk
− ∂P ′

jk

∂x j
− n

∂V

∂xk
, where v j is the j th Cartesian component ( j = 1, 2, 3) of the velocity v,

we have assumed summation over repeated indices, and that the components P ′
jk of the quantum

stress tensor P ′ are P ′
jk = − �

2

4m
n

∂2(ln n)

∂x j ∂xk
.



38 3 Gross-Pitaevskii Model of the Condensate

that the order ofmagnitude of P and P ′ are respectively P ∼ gn2 and P ′ ∼ �
2n/mξ2,

where ξ is the length scale of the variations of n. Then P ′/P ∼ �
2/(mngξ2), and

hence the quantumpressure becomes negligible (P ′ � P) in the limit of length scales
larger than ξ. If in addition, the trapping potential is absent (V = 0) then Eq. (3.15)
become negligible, and the equation reduces to the classical Euler equation, which
describes the motion of a classical fluid without viscosity.

The lengthscale in question is provided by the healing length, defined as,

ξ = �√
gmn

. (3.17)

The typical value of the healing length in atomic BECs is ξ ∼ 10−6 m; for superfluid
helium (4He) the healing length is much smaller, ξ ∼ 10−10 m.

3.4 Stationary Solutions in Infinite or Semi–infinite
Homogeneous Systems

In experiments, atomic condensates are confined by bowl-like trapping potentials
V (r). Condensates are therefore small (typically of the order of 10−5 or 10−4 m)
and inhomogeneous (the density depends on the position). However, many general
properties of atomic condensates can be understood from the simpler scenario of a
homogeneous condensate in an infinitely-sized or semi-infinitely-sized system. The
homogeneous condensate is also a useful model of superfluid helium, as the sizes of
the samples of 4He typically used in experiments range from 10−2 to 10−1 m, many
orders ofmagnitude larger than the healing length.Ahomogeneous condensatewould
not be stable for g < 0 (as we see later) and so we consider g > 0 for now.

3.4.1 Uniform Condensate

For V = 0 (uniform condensate of infinite extent), the stationary solution is uniform,
and the time-independent GPE becomes,

μψ = g|ψ|2ψ. (3.18)

The solution is then,
ψ = ψ0 = √

μ/g. (3.19)

The corresponding number and mass densities are, respectively,

n = n0 = |ψ0|2 = μ/g, ρ = ρ0 = mμ/g. (3.20)
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3.4.2 Condensate Near a Wall

Consider a one-dimensional hard wall defined by,

V (x) =
{

∞ for x < 0,

0 for x ≥ 0.

No atoms exist in the region x < 0 (since this would require infinite energy), and so
the boundary condition at x = 0 is ψ(0) = 0. Away from the wall (in the positive
x direction) the condensate must recover its bulk form, giving the second boundary
condition that ψ(x) → ψ0 = √

μ/g for x → ∞. In the semi-infinite region x ≥ 0
the one-dimensional (1D) time-independent GPE is,

μψ = − �
2

2m

∂2ψ

∂x2
+ g|ψ|2ψ. (3.21)

The solution of this equation which satisfies the boundary conditions is,

ψ(x) = ψ0 tanh

(
x

ξ

)
. (3.22)

The meaning of the healing length ξ is now apparent: it is the characteristic minimal
distance over which ψ changes spatially. The ‘healing’ profile is supported at a wall
by the balance between the kinetic energy term in the GPE and the interaction term.
Denoting the spatial scale of the variation in the wavefunction as ξ, these terms are
of the order of �

2/mξ2 and gn0, respectively. Equating these terms and rearranging
leads to ξ = �/

√
mn0g, the healing length as defined in Eq. (3.17). Note that the

healing length is sometimes defined with a
√
2 in the denominator.

Fig. 3.1 Condensate wavefunction ψ (in units of ψ0) as a function of position x (in units
of ξ) within a 1D infinite square well of width (here with width 20ξ). Shown are the profiles
for a non-interacting condensate (g = 0) and aAtomic condensates repulsively-interacting (g > 0)
condensate. Note how the wavefunction “heals” at each boundary according to Eq. (3.22), recov-
ering its bulk density at a distance from the wall of the order of few times the healing length ξ
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In an infinite square well of width L0, which is muchwider than the healing length
(L0 � ξ), we then expect the wavefunction to ‘heal’ at each boundary, according
to Eq. (3.22), and reach the bulk value in the centre of the well. This is shown in
Fig. 3.1.

It is interesting to compare this to the case of g = 0, for which the ground state
is given by the well-known solution of the Schrödinger equation for a particle in an
infinite well, ψ ∼ sin(πx/L0). Clearly the interactions between the atoms broaden
and flatten the density profile by increasing the energetic cost of concentrating atoms
in one place.

3.5 Stationary Solutions in Harmonic Potentials

Atomic condensates are typically confined by harmonic potentialswhichmay, in gen-
eral, be anisotropic in space. For simplicity herewe start by considering a spherically-
symmetric harmonic trap,

V (r) = m

2
ω2

r r2, (3.23)

where r2 = x2 + y2 + z2. The characteristic length scale of this potential is the
harmonic oscillator length,

�r = √
�/mωr . (3.24)

There is no general analytic solution for the ground state (lowest energy) solution
of the BEC in a harmonic trap; usually the ground state is found by numerically
solving Eq. (3.9). However, there exist useful analytic results for certain regimes
which we describe below. It is useful to work in terms of the interaction parameter,2

Nas/�r . Below we distinguish the following cases: no interactions, strong repulsive
interactions (Nas/�r � 1) and weak interactions (|Nas/�r | � 1).

3.5.1 No Interactions

In the absence of atomic interactions (g = 0) the time-independent GPE reduces to
the Schrödinger equation,

μψ = − �
2

2m
∇2ψ + mω2

r r2

2
ψ. (3.25)

Theground state harmonic oscillator solution iswell-known tobe a three-dimensional
Gaussian wave function,

2More generally, for an anisotropic harmonic trap, the corresponding interaction parameter is Nas/�̄,
where �̄ = √

�/mω̄ and ω̄ = (ωxωyωz)
1/3 is the geometric mean of the trap frequencies.
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ψ(r) = N 1/2

π3/4�
3/2
r

exp

(
− r2

2�2

)
. (3.26)

Using Eq. (3.6), one can show that this has the expected 3D harmonic oscillator

energy E = 3

2
N�ωr .

3.5.2 Strong Repulsive Interactions

Let the interactions be strongly repulsive, satisfying Nas/�r � 1. We expect a
condensate profile which is significantly broadened and flattened due to the repulsive
interactions. An analytic solution is found ifwe neglect the∇2ψ-term in theGPE; this
is known as the Thomas-Fermi approximation. The time-independent GPE simplifies
to,

μψ = g|ψ|2ψ + V ψ. (3.27)

Substituting n = |ψ|2 and V (r) = 1
2mω2r2, we obtain n(r) = (2μ − mω2

r r2)/2g.
Density cannot be negative, so we assume that n(r) = 0 if 2μ ≤ mω2

r r2. The last
equality defines the Thomas-Fermi radius Rr , which satisfies,

μ = 1

2
mω2

r R2
r . (3.28)

We conclude that the Thomas-Fermi density profile is,

n(r) =
⎧
⎨

⎩

μ

g

(
1 − r2

R2
r

)
= mω2

r (R2
r − r2)

2g
if r ≤ Rr ,

0 if r > Rr ,

(3.29)

and has the shape of an inverted parabola. Provided that Nas/�r � 1, the Thomas-
Fermi solution is an excellent approximation of the solution of the GPE determined
numerically, and compares well with experimental data, as shown in Fig. 3.2. Note,
however, the slight deviation from the true numerical solution close to the conden-
sate’s edge; here the gradient terms, neglected within the Thomas-Fermi model,
become significant.

The application of the normalization condition, Eq. (3.2), to the above solution
andmanipulation of the resulting expression leads to useful relations for the chemical
potential and the energy of the condensate in terms of the number of atoms N ,

μ = �ωr

2

(
15Nas

�r

)2/5

, E = 5

7
μN . (3.30)
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Fig. 3.2 aDensity profile n(z) plotted versus position z (in units of the healing length ξ). The agree-
ment between the analytic Thomas-Fermi density profile (dotted black line) and the numerically-
determined solution of the GPE (solid black line) is so good that the lines overlap everywhere but
in the tails near z ≈ ±15ξ. The harmonic trapping potential V (z) is indicated by the dashed red
line. b An experimental density profile, compared to the Thomas-Fermi prediction (solid line) and
the non-interacting prediction (dashed line). Reprinted figure with permission from [7]. Copyright
1999 by the American Physical Society

The latter is obtained from the relation μ = ∂E/∂N . Since Nas/�r � 1, it is evident
that in the Thomas-Fermi regime the chemical potential and energy per particle are
considerably greater than the typical trap energy �ωr .

In the more general case where the harmonic potential is anisotropic in space,
V (x, y, z) = m(ω2

x x2 + ω2
y y2 + ω2

z z2)/2, the Thomas-Fermi boundary is an ellip-
soidal surface satisfying the equation,

x2

R2
x

+ y2

R2
y

+ z2

R2
z

= 1, (3.31)

where the three Thomas-Fermi radii Rx , Ry and Rz satisfy,

μ = 1

2
mω2

x R2
x = 1

2
mω2

y R2
y = 1

2
mω2

z R2
z . (3.32)

In this anisotropic case, it is most convenient to write the density profile as,

n(x, y, z) =

⎧
⎪⎨

⎪⎩

μ

g

(
1 − x2

R2
x

− y2

R2
y

− z2

R2
z

)
,within the ellipsoid,

0 elsewhere.

(3.33)



3.5 Stationary Solutions in Harmonic Potentials 43

From this the anisotropic versions of the chemical potential and energy, Eq. (3.30),
can be determined.

3.5.3 Weak Interactions

The following variational approach determines an approximate solution of the time-
independent GPE in a harmonic potential when the interactions (either positive or
negative) are weak, that is |Nas/�r | < 1.

In the limiting case g = 0 we know that the exact wavefunction is the Gaussian
harmonic oscillator ground state, Eq. (3.26). For weak interactions we assume the
following trial wavefunction, or ansatz, which is Gaussian in shape but has variable
width σ�r ,

ψ(r) =
(

N

π3/2σ3�3r

)1/2

exp

(
− r2

2σ2�2r

)
. (3.34)

where σ is our variational parameter. If g = 0 then σ = 1, i.e. we recover the exact
non-interacting result.

Using the energy integral (3.6), the energy of the ansatz is,

E(σ) = �ωr N

[
3

4σ2
+ 3σ2

4
+ 1√

2π

(
Nas

�r

)
1

σ3

]
. (3.35)

From left to right, the terms in the bracket represent kinetic energy, potential
energy and interaction energy. For a given system (i.e. for specific values of N , ω,
as and �r ), Eq. (3.35) tells us how the energy varies with σ. The variational solution
is defined as the variational state with the lowest energy, i.e. the minimum of E(σ);
the corresponding width is denoted σmin. Figure3.3 plots E(σ) for various values of
the interaction parameter Nas/�. The behaviour is different depending on whether
the interactions are repulsive or attractive:

• For repulsive interactions (g > 0), E(σ) diverges to infinity for both σ → 0 (due
to the positive kinetic and interaction energies) and σ → ∞ (due to the poten-
tial energy), with a global minimum in-between, corresponding to the variational
ground state. If g = 0, σmin = 1, corresponding to the non-interacting Gaussian
solution. For increasing g, σmin increases, i.e., the condensate becomes wider.

• For attractive interactions (g < 0), E(σ) now diverges to minus infinity as
σ → 0. This is due to the dominance of the negative interaction energy in this
limit. The lowest energy solution is thus awavepacket of zerowidth, i.e. an unstable
collapsed state!3 However, for small |Nas/�r |, a local minimum exists in E(σ) at
non-zero width, representing a stable condensate of finite size. For larger |Nas/�r |,

3In reality, the BEC does not quite collapse to zero width; at high densities, repulsive inter-atomic
forces kick-in which cause the condensate to then explode outwards, an effect termed the bosenova.
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Fig. 3.3 Energy E (in units of N�ωr ) versus σ according to Eq. (3.35) for vari-
ous values of the interaction parameter Nas/�r corresponding, from top to bottom, to
[−1,−0.75,−0.67,−0.5,−0.25, 0, 0.5, 1]. Nas/�r = −0.67 (dashed line)marks the critical point
for the onset of collapse

the local minimum shifts to smaller widths; the attractive interactions cause the
condensate to become narrower and more peaked. However, beyond some critical
attractive interactions, the local minimum disappears and no stable solutions exist.
In other words, all states collapse to zero width. The variational method predicts
collapse to occur for Nas/�r ≤ −0.67; this is close to the experimentallymeasured
value of Nas/�r ≤ −0.64. This tendency to collapse is the reason why repulsive
condensates are more common and why we have avoided discussing condensates
with attractive interactions so far.

Note that the above-assumed Gaussian profile is just an approximation. In the
presence of repulsive interactions, the true condensate profile (e.g. as obtained by
numerical solution of the GPE) is broader than a Gaussian (becoming more Thomas-
Fermi like for increasing repulsive interactions), while for attractive interactions the
shape is narrower and more peaked.

3.5.4 Anisotropic Harmonic Potentials and Condensates
of Reduced Dimensionality

The shape of the condensate is determined by the shape of the trapping potential. A
spherical harmonic potential induces a spherical condensate. It is also common to
encounter elongated, or cigar-shaped, condensates and flattened, or pancake-shaped,
condensates. The former case is achieved if the condensate is more tightly trapped
in two directions, e.g. ωx ,ωy > ωz , and the latter case, if it is more tightly trapped
in one direction, e.g. ωz > ωx ,ωy . These shapes are illustrated in Fig. 3.4.

Bymaking these trap anisotropiesmore extreme, it is possible to engineer conden-
sates of reduced dimensionality. Consider first a highly elongated trap (ωx ,ωy � ωz).
If the transverse trapping potential (which is of energy �(ωxωy)

1/2) is much larger
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Fig. 3.4 The three most common condensate shapes that can be formed in an axisymmetric
harmonic potential: a a cigar condensate (ωx ,ωy > ωz), b a spherical condensate (ωx = ωy = ωz),
and c a pancake condensate (ωx ,ωy < ωz)

than the condensate energy scale (the chemical potential, μ), then excitations of
the condensate in the x and y directions are highly suppressed, and the only sig-
nificant dynamics occur in the z direction. The system has become effectively
one-dimensional. An effectively two-dimensional condensate can be realized for
ωx ,ωy � ωz and �ωz � μ.

In these limits the condensate can be described by suitable one-dimensional and
two-dimensional GPEs. The reduction of the full three-dimensional GPE to these
forms is straightforward, as we now outline for a one-dimensional system. Assum-
ing the above criteria for an effectively one-dimensional condensate, we take the
following ansatz for the condensate wavefunction,

ψ(x, y, z, t) = ψz(z, t)Gx (x)G y(y). (3.36)

In other words, we have decomposed ψ into independent components along x , y and
z. Under the criterion �(ωxωy)

1/2 � μ then the x and y component will be “locked”
into the respective ground harmonic oscillator states, which are represented by the
Gaussian functions,

Gx (x) = 1

(π�2x )
1/4

e−x2/2�2x , G y(y) = 1

(π�2y)
1/4

e−y2/2�2y , (3.37)

where �x = √
�/mωx and �y = √

�/mωy denote the harmonic oscillator lengths
along x and y. The time-dependence now only appears in the axial wavefunction,
ψz . Note that ψz is normalized to the number of atoms, i.e.

∫ |ψz|2 dz = N ; as a
result the transverse wavefunctions are both normalized to unity (leading to their
pre-factors).
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To obtain a 1D GPE, one proceeds by inserting the wavefunction ansatz (3.36)
into the 3D GPE and manipulating. Since,

d2Gx (x)

dx2
=

(
x2

�4x
− 1

�2x

)
Gx (x), (3.38)

and similarly for G y(y), each term in the GPE acquires a Gx (x)G y(y) factor. To
eliminate these factors, one multiplies the equation through by G∗

x G∗
y (where ∗

denotes complex conjugate) and integrates over all x and y. It is helpful to note
that

∫ ∞
−∞ e−x2

dx = √
π. This leads to the following one-dimensional GPE for ψz(z),

μ1Dψz = − �
2

2m

d2ψz

dz2
+ g1D|ψz|2ψz + 1

2
mω2

z z2ψz . (3.39)

Here g1D andμ1D are the effective one-dimensional interaction strength and chemical
potential, defined as,

g1D = g

2π�x�y
, μ1D = μ − �ωx

2
− �ωy

2
. (3.40)

Note that the trap geometries are often cylindrically symmetric, with ωx = ωy ; this
symmetry can simplify the integration steps.

Following similar arguments for an effectively two-dimensional condensate, one
obtains the effective two-dimensional GPE for the two-dimensional wavefunction
ψxy(x, y, t),

μ2Dψ⊥ = − �
2

2m

(
d2ψ⊥
dx2

+ d2ψ⊥
dy2

)
+ g2D|ψ⊥|2ψ⊥ + 1

2
m(ω2

x x2 + ω2
y y2)ψ⊥,

g2D = g√
2π�z

, μ2D = μ − �ωz

2
.

In this case the two-dimensional wavefunction is normalized according to∫ |ψ⊥|2 dxdy = N .
In these one- and two-dimensional cases, the system energy is still described

according to Eq. (3.6), with the gradient operator replaced by its one- and two-
dimensional equivalents, and the integration taken over one and two dimensions,
respectively.Moreover, the same analysis techniques presented for three-dimensional
stationary solutions, e.g. the Thomas-Fermi approximation and the Gaussian varia-
tional approach, can be employed. In particular, the 1D GPE provides a simplified
platform to study many generic properties of condensates, and, for example, its sta-
tionary solutions under hard-wall and periodic boundaries arewell-established [8, 9].
Note, however, that the system stability can be significantly affected by the dimen-
sionality of the system, for example, collapse under attractive interactions does not
occur within the 1D GPE, as will be discussed further in Chap.4.

http://dx.doi.org/10.1007/978-3-319-42476-7_4
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Fig. 3.5 Absorption
imaging of a BEC. Laser
light incident upon the BEC
creates a shadow behind it,
whose darkness is
proportional to the
column-integrated density of
the BEC

3.6 Imaging and Column-Integrated Density

Themost common approach to image a condensate is via optical absorption imaging.
The condensate is illuminated by an uniform light beam from one side. The atoms
absorb a proportion of the light such that a two-dimensional shadow is cast behind
the condensate; this is recorded by camera as shown in Fig. 3.5, forming an absorp-
tion image of the condensate. Examples are the images in Fig. 1.4. Importantly, the
darkness of the shadow is proportional to the atomic density, integrated along the
direction light is travelling in4; we call this the column-integrated density.

To enable comparison between experimental absorption images and theoreti-
cal models, one must relate three-dimensional wavefunctions to the correspond-
ing two-dimensional column-integrated density profiles. Assuming imaging in the
z-direction, the column-integrated density nCI is,

nCI(x, y) =
∫ ∞

−∞
n(x, y, z) dz. (3.41)

3.7 Galilean Invariance and Moving Frames

A condensate in a homogeneous (V = 0) system satisfies the GPE,

i�
∂Ψ

∂t
=

(
− �

2

2m
∇2 + g|Ψ |2

)
Ψ. (3.42)

The stationary solution isΨ0 = √
n0 exp [−iμt/�], corresponding to a static (v = 0)

condensate. Now let us imagine, instead, that this condensate is movingwith uniform
velocity v0 in the positive x direction, say. We can construct this moving solution as,

4Fortunately, the atomic density is so low that scattering of the light beam is negligible and so the
light effectively takes a direct path through the condensate.

http://dx.doi.org/10.1007/978-3-319-42476-7_1
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Ψ = Ψ0(x − v0t, y, z) exp

[
i
mv0x

�
− mv2

0 t

2�

]
. (3.43)

Note that the density remains n0 throughout. This is a demonstration of Galilean
invariance, i.e. that the laws of physics are the same in all inertial frames (frames
moving at fixed relative speed to each other). This is true only if the system is
translationally invariant, i.e. the potential is the same everywhere.

Above, we imagine the condensate flowing at speed v0 relative to the static
observer (the lab frame). Instead, we can take the observer to be moving with the
condensate. We can then write the moving frame GPE,

i�
∂Ψ

∂t
=

(
− �

2

2m
∇2 + g|Ψ |2 + i�v0

∂

∂ x̃

)
Ψ, (3.44)

where x̃ is the x-coordinate in the moving frame and the Laplacian is evaluated in
terms of the moving frame coordinates. In this moving frame, the flowing condensate
solution of Eq. (3.43) is actually a stationary solution. It can be useful to work in the
moving frame when modelling flows of condensates.

3.8 Dimensionless Variables

The typical numbers which appear in the GPE equation are very small and cumber-
some, for example the reduced Planck’s constant is � = 1.055 × 10−34 Js. When
numerically solving the GPE tomodel a condensate, it would be better if the numbers
whichwe compute were of order unity; this minimises the role of floating point errors
which are inherent to modern digital computation. Another problem is that not all
the parameters which appear in the GPE are independent: identifying the truly inde-
pendent parameters reduces the number of numerical simulations which are needed
to understand the nature of the solution. It is therefore useful to introduce dimen-
sionless variables and write the GPE in simpler dimensionless form. To illustrate
the procedure, we consider two examples: homogeneous and harmonically-trapped
condensates.

Before we start, we notice for the sake of generality that we are free to introduce
the chemical potential μ in the time-dependent GPE by letting, in analogy with
Eq. (3.8),

Ψ (r, t) = ψ(r, t)e−iμt/�, (3.45)

where now ψ(r, t) depends also on t ; in other words, the exponential term takes care
of part of (but not all of) the time dependence of the wavefunction. The resulting
time-dependent GPE is,
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i�
∂ψ

∂t
= − �

2

2m
∇2ψ + g|ψ|2ψ + V ψ − μψ. (3.46)

3.8.1 Homogeneous Condensate

In the absence of trapping (V = 0), the governing equation is

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + g|ψ|2ψ − μψ. (3.47)

We have seen that the wavefunction of a uniform condensate at rest is ψ0 = √
μ/g,

corresponding to the number density n0 = μ/g. We have also seen that the charac-
teristic minimum distance over which the wavefunction varies is the healing length
ξ = �/

√
mμ. Therefore the quantities n0 and ξ are convenient units of density and

length. Similarly, it is apparent fromEq. (3.8) or Eq. (3.45) that τ = �/μ is the natural
unit of time. These remarks suggest the introduction of the following dimensionless
variables (hereafter denoted by primes):

x ′ = x

ξ
, y′ = y

ξ
, z′ = z

ξ
, (3.48)

(in other words, r′ = r/ξ), and

t ′ = t

τ
, ψ′ = ψ

ψ0
. (3.49)

To begin substituting these new variables into the GPE, we need to develop relations
for their derivatives. Using the chain rule,

d

dx
= 1

ξ

d

dx ′ ,
d

dy
= 1

ξ

d

dy′ ,
d

dz
= 1

ξ

d

dz′ ,
d

dt
= 1

τ

d

dt ′ . (3.50)

Hence the gradient andLaplacian operators acting on the primed variables are defined
as,

∇ = 1

ξ
∇′, ∇2 = 1

ξ2
∇′2. (3.51)

Introducing these relations, Eq. (3.47) becomes the following dimensionless GPE,

i
∂ψ′

∂t ′ = −1

2
∇′2ψ′ + |ψ′|2ψ′ − ψ′. (3.52)
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This equation contains no parameters - it has been simplified to its mathematical
essence.5 These units are often termed natural or healing length units.

3.8.2 Harmonically-Trapped Condensate

Here we assume that the condensate is confined by a spherical harmonic trap V =
mω2

r r2/2. Then the governing equation is,

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + g|ψ|2ψ + V ψ − μψ. (3.53)

In this case the natural units of length and time are based on the harmonic oscillator
length �r = √

�/mωr and the inverse of the trap frequency, ω−1
r . We set r′ = r/�

(that is to say x ′ = x/�, y′ = y/� and z′ = /�) and t ′ = t/τ , where τ = 1/ωr .
It is conventional with these units to define the dimensionless wavefunction ψ′ as

being normalized to unity, i.e.,

∫
|ψ′|2d3r′ = 1. (3.54)

Comparing to Eq. (3.2) and noting that d3r = �3rd
3r′, it follows that ψ =

(N/�3r )
1/2ψ′.

Introducing these relations into Eq. (3.58) we arrive at the dimensionless form,

i
∂ψ′

∂t ′ = −1

2
∇′2ψ′ + C |ψ′|2ψ′ + r ′2

2
ψ′ − μ′ψ′. (3.55)

where μ′ = μ/�ωr and,

C = 4πas N

�
. (3.56)

is a dimensionless interaction parameter. These units are often termedharmonic oscil-
lator units. For anisotropic harmonic traps, the harmonic units can be defined instead
in terms of one of the trap frequencies or their geometric mean, ω̄ = (ωxωyωz)

1/3.

Problems

3.1 (a) Using the normalization condition, determine the dimensions of the wave-
function Ψ in S.I. units (metres, kilograms, seconds).

5In the literature, after transforming the GPE into dimensionless form, it is common to drop the
primes.
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(b) Verify that all terms of the GPE have the same dimension.
(c) Show that g|Ψ |2 has dimension of energy.

3.2 Consider aBEC in theThomas-Fermi limit, confinedwithin a three-dimensional
spherical harmonic trap.
(a) Normalize the wavefunction, and hence determine an expression for the Thomas-
Fermi radius Rr in terms of N , as and �r .
(b) Determine an expression for the peak density in terms of N and Rr .
(c) Find an expression for the ratio Rr/�r , and comment on its behaviour for
large N .
(d) What is the energy of the condensate?

3.3 Derive the expression for the variational energy of a three-dimensional trapped
condensate, Eq. (3.35). Repeat in two dimensions (for a potential V (x, y) =
mω2

r (x2 + y2)/2) and in one dimension (for a potential V (x) = mω2
r x2/2). For

each case plot E/N�ωr versus the variational width σ, for some different values of
the interaction parameter Nas/�r . What effect does dimensionality have on the shape
of the curves? How do this change the qualitative behaviour described in Sect. 3.5.3?

3.4 Consider a BEC in the non-interacting limit with wavefunction

ψ(x, y, z) = √
n0 e−x2/2�2x e−y2/2�2y e−z2/2�2z , (3.57)

where n0 is the peak density and �x , �y and �z are the harmonic oscillator lengths in
three Cartesian directions. The BEC is imaged along the z-direction. Determine the
form of the column-integrated density nCI(x, y). Hint:

∫ ∞
0 eax2 = 1

2

√
π/a.

3.5 Consider a 1D uniform static condensate with V (x) = 0. Obtain an expression
for the energy E in a length L of the condensate, in terms of n0, g and L .

Now consider the condensate to be flowingwith uniform speed v0, by constructing
a solution according to Eq. (3.43). Show that the solution satisfies the 1D GPE, and
confirm that the velocity field of this solution is indeed v(x) = v0. What is the
corresponding energy for the flowing condensate, and how does it differ from the
static result? Finally, what is its momentum?

3.6 Consider a homogeneous condensate. Identify dimensionless variables so that
the dimensionless GPE is,

i
∂ψ′

∂t ′ = −∇′2ψ′ + |ψ′|2ψ′ − ψ′, (3.58)

i.e., without the 1/2 factor as in Eq. (3.52).
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Chapter 4
Waves and Solitons

Abstract In the previous chapter we considered the shape of steady state
condensates, either homogeneous or confined by trapping potentials. We have seen
that the condensate described by the GPE is a special kind of fluid, similar to the
idealized Euler fluid without viscosity that appears in classical fluid dynamics text-
books. Not surprisingly for a fluid, the dynamics of the condensate exhibit a variety
of interesting time-dependent phenomena, from sound waves and shape oscillations,
to solitons and vortices.

4.1 Dispersion Relation and Sound Waves

4.1.1 Dispersion Relation

Of particular importance are the behaviour of perturbations to the ground state (either
homogeneous or in a trap). This includes sound waves, i.e., small-lengthscale density
perturbations of the ground statewhich oscillate periodically, as illustrated in Fig. 4.1.
We now derive the behaviour of these perturbations for a homogeneous condensate.
The governing equation of motion is the GPE as it appears in either Eq. (3.5) or
Eq. (3.46) with V = 0. We consider the latter. Assuming one-dimensional motion
along the x direction, the GPE is,

i�
∂ψ

∂t
= − �

2

2m

∂2ψ

∂x2
+ g|ψ|2ψ − μψ. (4.1)

We know that, for a homogeneous condensate, the steady solution of this equation is
the uniform state ψ0 = √

μ/g, with number density n0 = |ψ0|2 = μ/g. We perturb
this uniform state by assuming a wavefunction with the form,

ψ(x, t) = ψ0 + εψ1(x, t) + ε2ψ2(x, t) + · · · , (4.2)

where ε � 1 is a small parameter and the functions ψ1, ψ2, etc., must be determined.
Substituting Eq. (4.2) into Eq. (4.1), noting that temporal and spatial derivatives of
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Fig. 4.1 a One dimensional sound waves, that is, sinusoidal perturbations of the background
density n0, of wavelength λ and amplitude δn0(x, t) � n0. b The dispersion relation ω(k) of the
homogeneous (weakly-interacting) condensate, according to Eq. (4.5), for g > 0 (black line), g = 0
(blue line) and g < 0 (red line). Solid lines plot the real part ofω and dashed lines plot the imaginary
part. For g < 0, ω becomes imaginary for small k; everywhere else ω is real. Inset In helium II,
the dispersion relation has a different and distinct shape, featuring a maxon (local maximum) and
roton (local minimum). The roton wavenumber is indicated as k0

the steady uniform backgroundψ0 are zero, and neglecting termswhich are quadratic
or of higher order in ε, we obtain,

i�
∂ψ1

∂t
= − �

2

2m

∂2ψ1

∂x2
+ μψ∗

1 + μψ1. (4.3)

This is the linearized equation of motion for the perturbations. We look for travelling
wave solutions of the general form,

ψ1(x, t) = Aei(kx−ωt) + B∗e−i(kx−ωt), (4.4)

where A and B are complex amplitudes which depend on the initial condition,1 k is
thewavenumber andω the angular frequency of the wave. Substituting into Eq. (4.3),
we find that non-trivial (non-zero) solutions for A and B exist only if,

ω =
√(

�k2

2m

)2

+ n0g

m
k2. (4.5)

This is called the dispersion relation, or sometimes the Bogoliubov dispersion rela-
tion after Nikolay Bogoliubov who first derived it. It relates the wave’s angular
frequency ω to its wavenumber k, or equivalently, its period 2π/ω to its wavelength
2π/k.

1We write the amplitude of the second term as B∗ rather than B for mathematical convenience.
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Notice that the phase velocity of the wave2 vph = ω/k depends, in general, on k.
Suppose that the initial condition at t = 0 is a genericwave packet, i.e., the superposi-
tion of different plane waves with different amplitudes and phases; since these waves
move at different phase velocities, the wave-packet spreads out as it propagates, or
disperses.

Consider the behaviour of the dispersion relation ω(k) for different regimes of
interactions, as plotted in Fig. 4.1b.

• In the absence of interactions (g = 0) the dispersion relation reduces to �ω =
�
2k2/2m, in otherwords thewavebehaves like a free particle ofmomentum p = �k

and energy �ω. Note that ω is real; then the exponential terms in the solution
of Eq. (4.4) have imaginary exponents and so describe a temporally-oscillating
solution.

• For repulsive interactions (g > 0), this free-particle behaviour (ω ∼ k2) is recov-
ered in the limit of large k/short waves. However, for low k/long waves, the dis-
persion relation is linear in k. This linear behaviour is characteristic of sound
waves—see below. As for g = 0, the angular frequencies are real.

• For attractive interactions, the situation is fundamentally different. For g < 0
and in the regime of sufficiently small k, ω2 is negative and, correspondingly,
ω becomes complex. Then these exponential terms develop real and positive
exponents, such that they exponentially increase in amplitude over time. This
signifies the dynamical instability of the homogeneous attractively-interacting
condensate—small perturbations are not stable and grow out of control. In fact,
this instability is due to the collapse instability we’ve already described for an
attractive condensate; here the condensate prefers to collapse rather than stay as a
uniform density profile.

In helium II the shape of the dispersion curve is somewhat different (see
Fig. 4.1(inset)), due to the strong inter-atomic interactions in the system. The dis-
persion relation is linear for small k, but then features a local maximum, termed
the maxon, and a local minimum, termed the roton. At even higher k the dispersion
relation flattens off.

4.1.2 Sound Waves

For repulsive interactions (g > 0) and in the limit of small k/long waves, the above
dispersion relation predicts waves whose angular frequency increases linearly with
wavenumber. This is characteristic of soundwaves. The phase velocity of thesewaves
is vph = ω/k ≈ √

n0g/m, which is approximately constant for all wavelengths. This
defines the speed of sound,

c =
√
n0g

m
. (4.6)

2The phase velocity of a wave is the rate at which its phase propagates in space.
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Fig. 4.2 Left experimental creationof soundwaves after suddenlygenerating a ‘hole’ in the centre of
the condensate using a laser beam. Shown is the column-integrated density profile of the condensate
taken at regular intervals of time. Yellow, red and blue are respectively large, medium and small
values of the density. Right the measured speed of sound c (points) as a function of the background
number density, in agreement with Eq. (4.6) (solid line). Reprinted figures with permission from
[1]. Copyright 1997 by the American Physical Society

The physical interpretation of these waves is readily obtained using the Madelung
transform. By perturbing the state of uniform density n = n0 = μ/g, we obtain the
one-dimensional wave equation,

∂2

∂t2
δn = c2

∂2

∂x2
δn, (4.7)

where δn(x, t) � n0 are density perturbations about the background condensate
(here taken to be the homogeneous condensate), as shown in Fig. 4.1. The wave
solution which we have found is one-dimensional—the wave propagates along x—
but can be easily generalized to two and three dimensions.

In a trapped condensate (V �= 0) the speed of sound will vary with the position
due to the spatial dependence of the density. The speed of sound is less near the edge
of the condensate where the density tends to zero.

The prediction of sound waves was tested experimentally in Ref. [1] by using
a laser beam to initially and suddenly “punch” a hole in the density at the centre
of a condensate, much like a stone being thrown into a pond. This generated low
amplitude ripples, i.e., sound waves, which travelled outwards along the condensate,
as shown in Fig. 4.2a. The speed of the waves was found to follow the square-root
of the density, as seen in Fig. 4.2b and in agreement with the prediction of Eq. (4.6).

4.2 Landau’s Criterion and the Breakdown of Superfluidity

Under some perturbation the condensate can become excited. Here we develop a
simple yet powerful criterion for excitations to develop, as developed by Landau
[18]. Consider a homogeneous ground state condensate, into which an impurity
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(e.g. another atom) of mass M enters with initial velocity vi. Let us imagine that
the impurity imparts an excitation of the condensate with energy �ω and momentum
�k; this subsequent velocity of the impurity is vf . The initial energy (relative to
the static background condensate) is just the initial kinetic energy of the impurity,
Mv2

i /2, while the final energy after generating the excitation is Mv2
f /2 + �ω, where

vi = |vi| and vf = |vf |. Applying conservation of energy gives,

1

2
Mv2

i = 1

2
Mv2

f + �ω. (4.8)

Similarly, applying conservation of momentum before and after the event gives,

Mvi = Mvf + �k. (4.9)

Inserting Eq. (4.9) into Eq. (4.8) and simplifying gives,

�ω = 1

2
Mv2

i − 1

2M
(Mvi − �k)2 = �k · vi − �

2k2

2M
. (4.10)

If M is sufficiently large, the second term at the right hand side can be neglected;
for excitations to be energetically favoured, the initial velocity vi then has to satisfy,

vi ≥
∣∣∣∣
k · vi

k

∣∣∣∣ ≥ ω

k
. (4.11)

One can instead write this as,
vi ≥ vc, (4.12)

where vc is termed the critical superfluid velocity,

vc = min
(ω

k

)
. (4.13)

This is a defining property of superfluidity. For vi < vc the impurity propagates with
no damping, i.e. as a superfluid, while for vi ≥ vc excitations the motion becomes
dissipated by the transfer of energy and momentum to the fluid. This marks the
breakdown of superfluidity.

The function ω = ω(k) (the dispersion relation) is typically a non-trivial function
of k. For a weakly-interacting and homogeneous condensate, with dispersion relation
given by Eq. (4.5), this gives,

vc = c. (4.14)

For v < c the atom moves with no damping or hindrance, a defining characteristic
of superfluidity. For v > c damping can occur through the creation of condensate
excitations.
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4.3 Collective Modes

In a trapped condensate of finite size, sound waves should have a wavelength con-
siderably smaller than the condensate size (or, equivalently, the angular frequency
of the wave should be considerably larger than the trap frequency); this, for exam-
ple, is clearly satisfied in the experimental images in Fig. 4.2(left). However, if the
wavelength of the density perturbations becomes of the order of the condensate size,
then these excitations involve a motion of the whole system. These are the collective
modes.

There is a wide family of collective modes which are supported under harmonic
trapping. Here we consider the simplest and most common types, illustrated in
Fig. 4.3:

• The dipole mode corresponds to an oscillation of the condensate’s centre-of-mass
about the trap centre. In a harmonic trap, this oscillation occurs at the trap frequency
in the respective direction. This mode is not affected by g since, in a harmonic
trap, the centre-of-mass motion is decoupled from the internal dynamics. For this
reason, this mode is often excited experimentally to measure the trap frequency.

• The monopole mode involves contraction-expansion oscillations of the conden-
sate, which are in-phase across the directions.

• Thequadrupole mode also involves contraction-expansion oscillations, butwhere
the oscillation in one direction is in anti-phase to that in the other directions. Both
the quadrupole and monopole modes are sensitive to interactions.

4.3.1 Scaling Solutions

Experimentally, the collective modes are typically induced by forming a stationary
condensate, and then suddenly changing the harmonic trap. To induce the dipole
mode, the trap can be suddenly translated in space; the condensate finds itself up
the trap wall and begins to undergo centre-of-mass oscillations about the trap centre.
To induce the monopole, quadrupole or similar modes, the trap frequencies can be

Fig. 4.3 The three common collective modes of a harmonically-trapped condensate
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suddenly changed in time. This scenario, in the absence of centre-of-mass motion,
is the one we consider here. A similar methodology can be used to account for the
centre-of-mass dynamics.

We consider a condensate which is at equilibrium at t = 0, with the trap frequen-
cies suddenly changed for t > 0. We follow the approach introduced in Ref. [2]. We
can model the ensuing oscillations of the condensate through the hydrodynamical
description (Sect. 3.3), along with the Thomas–Fermi approximation (Sect. 3.5.2).
Recalling the hydrodynamic equations, Eqs. (3.13 and 3.15), dropping terms which
depend on the gradients of density, and introducing a general harmonic potential,
leads to,

∂n

∂t
+ ∇(nv) = 0, (4.15)

m
∂v
∂t

+ ∇
(
1

2
mv2 + 1

2
m(ω2

x x
2 + ω2

y y
2 + ω2

z z
2) + gn

)
= 0. (4.16)

The equilibrium solution of the condensate at t = 0 is found by setting v and the
time-derivatives to zero; then the second equation reduces to,

∇
(
1

2
m(ω2

x x
2 + ω2

y y
2 + ω2

z z
2) + gn

)
= 0. (4.17)

Integrating over space and rearranging gives,

n = 2μ − m(ω2
x x

2 + ω2
y y

2 + ω2
z z

2)

2g
, for n ≥ 0, (4.18)

where μ arises as the integration constant. This is the equilibrium density profile for
the condensate in the Thomas–Fermi limit, as obtained in Sect. 3.5.2. We may also
write this in the form,

n = n0

(
1 − x2

R2
x,0

− y2

R2
y,0

− z2

R2
z,0

)
, for n(x, y, z) ≥ 0, (4.19)

where R j,0 = √
2μ/mω j , with j = x, y, z, are the Thomas–Fermi radii and n0 is

the central density of the condensate at t = 0. Applying the usual normalization
condition

∫
n(x, y, z) d3r = N gives the expression for the central density,

n0 = 15N

8πRx,0Ry,0Rz,0
. (4.20)

Following a sudden change in the trap frequencies, ω j → ω j (t), the condensate
profile becomes time-dependent.We consider the time-dependent density tomaintain
the same general shape throughout but where its dimensions become scaled over

http://dx.doi.org/10.1007/978-3-319-42476-7_3
http://dx.doi.org/10.1007/978-3-319-42476-7_3
http://dx.doi.org/10.1007/978-3-319-42476-7_3
http://dx.doi.org/10.1007/978-3-319-42476-7_3
http://dx.doi.org/10.1007/978-3-319-42476-7_3
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time. This is accounted for by making the radii time-dependent, R j → R j (t). If
we further introduce scaling parameters b j (t) = R j (t)/R j,0 then we can write the
time-dependent profile as,

n(x, y, z, t) = n0
bxbybz

(
1 − x2

b2x R
2
x,0

− y2

b2y R
2
y,0

− z2

b2z R
2
z,0

)
, (4.21)

This is known as the scaling solution. The modified pre-factor accounts for the time-
dependence of the central density. The initial conditions of the dynamics are,

b j (t = 0) = 1, ḃ j (t = 0) = 0, (4.22)

where the dot represents the time derivative. To satisfy the continuity equation,
the velocity field which matches this density must be of the form,

v(r, t) = 1

2
∇ [

αx (t)x
2 + αy(t)y

2 + αz(t)z
2
]
, α j = ḃ j

b j
. (4.23)

One proceeds (although the derivation is beyond our scope) to introduce the time-
dependent density and velocity distributions into the Thomas–Fermi hydrodynamic
equations (4.15) and (4.16). This leads to three coupled equations of motion for the
scaling variables b j (t),

b̈ j + ω j (t)
2b j − ω2

j,0

b jbxbybz
= 0, (4.24)

where ω j,0 is the initial trap frequency in the j th direction. Remarkably, these equa-
tions involve the scaling variables bi and the trap frequencies, only. What is also
remarkable is that the same scaling equations of motion arise for a Gaussian ansatz,
a justifiable approximation for weak interactions. As such these scaling equations
have a much wider coverage than the strongly-interacting Thomas–Fermi limit.

For a cylindrically symmetric trap V (r, z) = m(ω2
r r

2 + ω2
z z

2)/2, where r2 =
x2 + y2, this description reduces to two equations of motion,

b̈r + ωr (t)
2br − ω2

r,0

b3r bz
= 0, b̈z + ωz(t)

2bz − ω2
z,0

b2r b
2
z

= 0. (4.25)

To demonstrate the collective mode dynamics, we solve these two ordinary dif-
ferential equations numerically for Thomas–Fermi condensate initially confined to
a spherically-symmetric trap with ωr = ωz = 2π × 50Hz. To induce a monopole
mode, we reduce the trap frequencies by 10% for t > 0. As seen in Fig. 4.4a, the
widths increase initially, and continue to oscillate around a new, larger equilibrium
width. Characteristic of amonopolemode, the oscillations are in phase along r and z.
Meanwhile, a quadrupole mode is generated by simultaneously increasing ωz and
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Fig. 4.4 A monopole mode and a quadrupole mode of a condensate in a cylindrically-symmetric
harmonic trap. Shown are the radial and axial scaling parameters as a function of time, i.e. br (t)
and bz(t), as solved according to the Thomas–Fermi scaling equations of motion, Eq. (4.25). Note
that for the monopole mode, the two curves lie on top of each other

decreasing ωr (both by 10%). As seen in Fig. 4.4b, the condensate initially expands
radially and shrinks axially, and continues to oscillate in anti-phase.

The above scaling equations of motion are valid for arbitrarily large mode ampli-
tudes (providing the Thomas–Fermi approximation is maintained). In the limit of
perturbatively small-amplitude modes (e.g. by linearizing about the equilibrium con-
densate, similar to Sect. 4.1 for a homogeneous system), one can determine the fre-
quency of the collective modes analytically [21]. Under cylindrical symmetry, the
mode frequencies obey,

ω2
M,Q = ω2

r

(
2 + 3

2
λ2 ± 1

2

√
16 − 16λ2 + 9λ4

)
, (4.26)

where the “+” refers to the monopole mode frequency, ωM, and the “−” to the
quadrupole mode frequency, ωQ, and λ = ωz/ωr is the trap ratio. For an approxi-
mately spherical trap (λ ≈ 1) this gives,

ωM ≈ √
5ωr , ωQ ≈ √

2ωr . (4.27)

These are in close agreement with the frequencies of the oscillations in Fig. 4.4.
These scaling predictions give excellent agreement with the mode dynamics

observed in experiments. These modes play an important role in this field. They are
straightforward to generate experimentally and can be measured to high accuracy,
and provide a versatile means to test theoretical models and assumptions. According
to these predictions, the modes persist forever since the condensate has no viscosity.
In reality, thermal dissipation causes the modes to decay over time, although usually
on a much longer timescale than the oscillations themselves.
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4.3.2 Expansion of the Condensate

A particular case of these scaling dynamics is when the trap is suddenly switched off
and the condensate is allowed to expand freely. This is routinely performed in BEC
experiments since some expansion of the gas is often necessary to enable imaging
of small features such as dark solitons and vortices.

For ωr (t) = ωz(t) = 0 the cylindrically-symmetric scaling equations (4.25)
reduce to,

b̈r = ω2
r,0

b3r bz
, b̈z = ω2

z,0

b2r b
2
z

. (4.28)

Replacing the time variable with τ = ωz t and introducing the initial trap ratio, λ =
ωz,0/ωr,0, gives,

d2br
dτ 2

= 1

b3r bz
,

d2bz
dτ 2

= λ2

b2r b
2
z

. (4.29)

It is possible to obtain analytic expressions for br (t) and bz(t) for the case of
a cigar-shaped condensate, λ � 1 [2]. We proceed by expanding the solutions in
powers of λ2, i.e.,

br (τ ) = 1 + αr (τ )λ2 + βr (t)λ
4 + · · · , bz(τ ) = 1 + αz(τ )λ2 + βz(τ )λ4 + · · ·

To lowest order in λ, the axial dynamics satisfy,

d2bz
dτ 2

= 0, bz(τ ) = 1. (4.30)

In obtaining this solution for bz we have applied the initial conditions in Eq. (4.22).
Employing this result, we find the radial dynamics satisfy,

d2br
dτ 2

= 1

b3r
, br (t) =

√
1 + τ 2. (4.31)

Continuing to second order, we find that the axial expansion satisfies,

bz(τ ) = 1 + λ2[τ arctan τ − ln
√
1 + τ 2] + O(λ4). (4.32)

The expansion develops very differently in the two directions. The radial size
increases rapidly at first, whereas the axial spreading is weak, suppressed by the
λ2 factor. We define the aspect ratio of the condensate as Rr/Rz = Rr,0br/Rz,0bz .
Initially, Rr/Rz = ωz/ωr = λ. Over time the aspect ratio is modified by the scaling
dynamics as λbr/bz . Using the above analytic expressions, it can be shown that in
the limit of large τ , the aspect ratio approaches the value,
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Fig. 4.5 The evolution of the aspect ratio Rr/Rz during expansion of a cylindrically-symmetric
condensate, from the experiment of Ref. [3]. The circles are the experimental data points. The con-
densate evolves from its initial cigar shape (Rr/Rz < 1) to a pancake shape (Rr/Rz > 1). The
numerical solution of the scaling Eq. (4.25) and the analytic predictions for λ � 1 are indistin-
guishable (appearing as the solid black line). The dot-dashed line is the corresponding prediction
for non-interacting atoms. The figure is reproduced from Ref. [20] with permission of the Societa
Italiana di Fisica

(
Rr

Rz

)

τ→∞
= 2

πλ
. (4.33)

In other words the condensate reverses its aspect ratio. These predictions agree accu-
rately with experimental observations of condensate expansion, as seen in Fig. 4.5.

4.4 Solitons

In one-dimension and in the absence of an external potential, the GPE is,

i�
∂ψ

∂t
= − �

2

2m

∂2ψ

∂x2
+ g|ψ|2ψ, (4.34)

where the variables and parameters take their 1D definitions. This is a form of the
1D nonlinear Schrödinger equation. This equation is well-studied in the context of
nonlinear optics. It has the special property of being integrable such that its solutions
possess an infinite set of conserved quantities (integrals of motion). The simplest of
these quantities (and those with a clear physical interpretation for our system) are
the norm N , the momentum P and the energy E ,
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N =
+∞∫

−∞
|ψ|2dx, (4.35)

P = i�

2

+∞∫

−∞

(
ψ

∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
dx, (4.36)

E =
+∞∫

−∞

(
�
2

2m

∣∣∣∣
∂ψ

∂x

∣∣∣∣
2

+ g

2
|ψ|4

)
dx . (4.37)

It is due to these special properties that Eq. (4.34) supports solutions known as
solitons. Solitons are nonlinear waves which arise in many areas of physics, from
fluids to optics to plasmas [4]. Solitons have three characteristic properties [6]:

• They have a permanent, unchanging form.
• They are localized in space.
• They emerge unscathed from collisions with other solitons.

Their permanent form is due to dispersion being perfectly balanced by their non-
linearity; as a consequence, solitons propagate without spreading out in space. This
makes them analogous to particles, andmotivated their particle-like name “solitons”.

The soliton solutions of the nonlinear Schrödinger equation were obtained in
the pioneering works of Zakharov and Shabat, using a technique called the inverse
scattering transform (see Ref. [5] for more information). Depending on the sign of
the interaction parameter g, dark solitons and bright solitons are supported, as we see
next. Dark and bright solitons were first studied in the context of nonlinear optics;
there they correspond to a dip and a peak in an optical intensity field, respectively,
giving rise to their names.

Condensates are, in reality, three-dimensional and feature trapping potentials, and
so “solitons” therein are not strictly solitons. However, they show the key solitonic
properties, and so we continue to use the term “soliton”. In other literature, they are
often referred to as “solitary waves”.

4.5 Dark Solitons

4.5.1 Dark Soliton Solutions

Dark solitons are supported for repulsive interactions (g > 0). These waves consist
of a localized density dip with a phase jump across it, and propagate along at speed
u. The speed can exist in the range 0 < u ≤ c, where c is the speed of sound. A broad
review of dark solitons in condensates is given in Ref. [7].
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Fig. 4.6 Density n(x) and phase S(x) profiles of dark solitons with various speeds: u/c = 0 (dot-
dashed line), u/c = 0.25 (dashed line), u/c = 0.5 (dotted line) and u/c = 0.75 (solid line). Density
is scaled in terms of the background density of the homogeneous system, n0, and position in terms
of the healing length, ξ

The general dark soliton solution to Eq. (4.34) with g > 0 is,

ψ(x, t) = √
n0

{
B tanh

[
B(x − ut)

ξ

]
+ i

u

c

}
exp

(
− iμt

�

)
, (4.38)

where B = √
1 − u2/c2. The density and phase profiles of some dark solitons are

shown in Fig. 4.6. The density depression and the phase profile vary with speed. Note
that the soliton width is always of the order of the healing length ξ.

A dark soliton state is an excited state; the ground state is the soliton-free homo-
geneous density. In the lab frame (the frame at rest with the background condensate),
the soliton is a moving solution. However, dark solitons become stationary solutions
in the moving frame, e.g. the u/c = 0.5 soliton is a stationary (excited) state in the
frame moving at the same speed.

If u = 0 then one obtains the stationary black soliton, whose density profile is,

n(x) = n0tanh
2(x/ξ). (4.39)

The density of the black soliton goes to zero at its centre, and the phase jump is
a sharp step of π. At the opposite speed extreme, the u = c dark soliton has zero
density depth and no phase slip, i.e. it is indistinguishable from the background. For
more general speeds, the soliton depth, that is, the maximum depth of the soliton
density depression, follows from Eq. (4.38) as,

nd = n0(1 − u2/c2). (4.40)

The phase slip profile across the soliton also varies with speed. We define the total
phase slipΔS as the difference between the phases at±∞, i.e.ΔS = S(x = −∞) −
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Fig. 4.7 Phase jump from
x → ∞ (at (1, u/c)) to
x → −∞ (at (−1, u/c))
corresponding to a dark
soliton

S(x = ∞). The dark soliton solution becomesψ → √
n0(1 + iu/c) for x → ∞, and

ψ → √
n0(−1 + iu/c) for x → −∞. Therefore, as we move from x = ∞, through

the origin, to x = −∞, the phase ofψ (that is, the angle S betweenRe(ψ) and Im(ψ))
changes from S = S1 at the point (1, u/c) on the complex plane ψ, to S = π/2 at
(0, u/c), to S = π − S1 at (−1, u/c). Hence the change of the phase from x = ∞
to x = −∞ is ΔS = 2arccos(u/c). Taking the limit u/c → 0, we conclude that the
phase jump isΔS = π, as we have said. A dark soliton is therefore a 1D phase defect:
a discontinuity of the quantum mechanical phase (Fig. 4.7).

4.5.2 Particle-Like Behaviour

The energy and momentum of a dark soliton are Es = 4
3n0�cB

3 and Ps = −2�n0u
B/c + 2�n0 arctan(Bc/u), as obtained in Problem 4.1. Here we show that the dark
soliton behaves like a classical particle. Differentiating its energy Es and momentum
Ps with respect to speed u gives,

dEs

du
= −4n0�uB

c
,

dPs
du

= −4n0�B

c
. (4.41)

Note that the energy and momentum both decrease as the soliton gets faster! Using
these results and the chain rule we can then form,

dEs

dPs
= dEs

du

du

dPs
= u. (4.42)

This result informs us that the dark soliton behaves like a classical particle. Its

effective mass is defined as ms = dPs

du
, which we know from Eq. (4.41) is,

ms = −4n0�B

c
. (4.43)
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The dark soliton behaves as a classical particle with negative mass. This is not
surprising given that the dark soliton is an absence of atoms. We can also estimate
the ratio of the soliton mass to the atomic mass,

|ms|
m

∼ 4�n0
mc

∼ 4ξn0. (4.44)

ξn0 is the number of atoms within a ξ-sized length of the system and typically
ξn0  1 such that the soliton is considerably more massive than an atom.

In the limit of slow solitons (B ≈ 1) the energetics of the soliton reduces to a par-
ticularly simple form. Taking the Taylor expansion of the soliton energy, Eq. (4.37),
about v = 0 and up to terms in v2 gives,

E(v) = E(0) + dE

du

∣∣∣
0
u + 1

2

d2E

du2

∣∣∣
0
u2 + O(v3) (4.45)

= 4

3
n0�c − 2n0�u2

c
. (4.46)

Introducing the soliton mass in this limit, ms = −4n0�/c, we obtain,

E(v) = E0 + 1

2
msu

2, (4.47)

which is the form for a classical particle moving in free space with rest mass E0 and
kinetic energy msu2/2. This relation shows that, due to the negative effective mass,
slower solitons have greater energy. Conversely, if the soliton loses energy (due to
some dissipative processes) it will speed up!

4.5.3 Collisions

Solutions of Eq. (4.34) for arbitrary numbers of solitons can be obtained analytically
using the inverse scattering transform [5], and the two soliton solution of the GPE
can be found in Ref. [7]. The collisions of two dark solitons, with equal speeds, are
shown in Fig. 4.8 over different incident speeds. Notice how the solitons emerge from
the collision with unchanged form and speed, one of the fundamental properties of
solitons. For low incoming speed (u/c < 0.5), the solitons appear to bounce, while
for higher speeds (u/c ≥ 0.5) they appear to pass through each other. The only overall
effect of the collision on the outgoing solitons is a shift in their position, relative to
how they would have moved in the absence of another soliton; this is known as the
phase shift during the collision
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Fig. 4.8 Collisions of two dark solitons at different incoming speeds. White represents the back-
ground density n0 and darker shades represents lower densities. Note that the time axis is centred
on the soliton collision

4.5.4 Motion in a Harmonic Trap

The special integrable properties that give rise to the soliton solution of Eq. (4.38)
hold only if the trapping potential V (x) is zero or uniform in space. So what happens
if a non-uniform potential, typical of real condensates, is applied to the system? The
dark soliton then moves through a continuously changing background density; the
soliton, in turn, must adjust to its new surroundings, and in doing so it emits energy
in the form of sound waves. Remarkably, harmonic traps are special in that this decay
is prohibited (in fact, the harmonic trap focuses the emitted sound energy back into
the soliton). This stabilizes the soliton, and we find that the trapped soliton retains
much of the key soliton properties, albeit with modified dynamics due to the trapping
potential.

Figure4.9 shows a simulation of the 1D GPE for a dark soliton in a condensate
under a harmonic trap V (x) = mω2

x x
2/2. The dark soliton is started off away from

Fig. 4.9 A dark soliton oscillating in a harmonically-trapped condensate, simulated by the 1D
GPE. The trap is V (x) = mω2

x x
2/2, with trap frequency ωx = 2π × 8Hz. left shows the density

profile at three times, while right shows a space-time plot of the condensate density (the dark soliton
appearing as the oscillating dark line)
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the trap origin as a black (v = 0) soliton. The soliton accelerates towards the trap
centre and over-shoots, climbs up the far trap wall and decelerates until it becomes
stationary. This motion repeats, such that the soliton oscillates sinusoidally in the
trap. The motion is akin to a classic harmonic oscillator. The oscillations continue
with uniform amplitude due to the absence of any dissipation in the system. The
soliton oscillation induces a weak “wobbling” of the condensate. Note that if the
soliton is black and at the trap centre, then it is stationary. Indeed, this state is the
first excited state of the trapped condensate. If there were some dissipation acting on
the soliton to reduce its energy, its oscillation amplitude will grow due to its negative
effective mass (in contrast to a conventional damped oscillator). This effect is termed
anti-damping.

One might expect the soliton to oscillate at the frequency of the trap. For the
simulation in Fig. 4.9 the trap frequency is ωx = 2π × 8Hz, whereas the soliton has
a frequency ωs = 2π/Ts ≈ 2π × 5.5Hz, where Ts ≈ 0.18s is the observed soliton
period. We can interpret this difference as follows. Assuming that the background
density is slowly-varying in space, we can define the soliton energy as per the homo-
geneous system (see top of Sect. 4.5.2) but where the uniform density is replaced by
its local value, n(x). We then obtain,

Es(u, x) = 4

3

�√
mg

(
n(x)g − mu2

)3
. (4.48)

Again, we take the condensate profile to follow the Thomas–Fermi form, n(x)g =
μ − V (x) = μ − mω2x2/2. Inserting into the above equation gives,

Es(u, x) = 4

3

�√
mg

(
μ − 1

2
mω2

x x
2 − mu2

)3

. (4.49)

We proceed to expand this expression for slow solitons (u/c � 1) and close to the
origin, via a two-dimensional Taylor series,

Es(u, x) = E(0, 0) + x
∂E

∂x

∣∣∣
(0,0)

+ u
∂E

∂u

∣∣∣
(0,0)

+ 1

2

[
u2

∂2E

∂u2

∣∣∣
(0,0)

+ 2ux
∂2E

∂x∂z

∣∣∣
(0,0)

+ x2
∂2E

∂x2

∣∣∣
(0,0)

]
+ O(x3, u3).

This leads to the result,

Es(u, x) = E0 + 1

2
msu

2 + 1

4
msω

2
x x

2, (4.50)

wherems = −4�n0c is the low-speed soliton effectivemass and E0 = 4�μ3/2/4
√
mg

is the rest mass (as used for Eq. (4.46)). For a mass m obeying the classic har-
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monic oscillator ẍ + ω2
x x = 0, the corresponding expression is E = E0 + mu2/2 +

mω2
x x

2/2. By comparison we see that the soliton behaves like an oscillator with
effective frequency,

ωs = ωx√
2
. (4.51)

This result was first predicted in Ref. [8]. For the example in Fig. 4.9, this predicts
ωs = 2π × 5.66Hz and Ts = 0.177s, which is in excellent agreement with the sim-
ulations. It has also been found to agree well with experimental observations.

4.5.5 Experiments and 3D Effects

Dark solitons were first created in condensates in experiments [9, 10], although
they were short-lived. A more recent experiment, working in a highly-elongated,
effectively one-dimensional geometry and at very cold temperature, generated dark
solitons which persisted for several seconds, equivalent to tens of oscillations in the
trap [11]. The dynamics were in good agreement with the predictions of the 1D
GPE. The eventual disappearance of the soliton was attributed to thermal dissipation
acting on the soliton; this causes the soliton to lose energy and anti-damp, eventually
becoming indistinguishable from the rest of the condensate.

The typical approach to generate a dark soliton, as used in the above experiments,
is to first form a condensate in the trap, and then briefly illuminated a portion using
masked laser light. Due to the atom-light interaction, the illuminated part of the
condensate develops a different phase to the un-illuminated part, such that an effective
1D step in the phase is created. This then evolves into one or more dark solitons. In
3D, these solitons appears as stripes of low density, aligned perpendicular to their
axis of propagation, and a phase step along this axis, as illustrated in Fig. 4.10 (left).

Fig. 4.10 Two-dimensional density and phase images through a 3D condensate, which has a 3D
dark soliton positioned initially to one side (left). The initial phase appears as a step profile. If the
condensate is too wide, the soliton undergoes the snake instability (right), leading to its decay into
vortex rings (which appear as vortex-antivortex pairs in this 2D image)
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If the condensate is too wide, the 3D dark soliton is not dimensionally stable. The
soliton stripe becomes unstable to transverse perturbations, causing a bending of the
soliton stripe, known as the snake instability. The soliton stripe gets torn apart into
vortex rings, which are stable excitations in 3D condensates. This decay is illustrated
in Fig. 4.10 (right). To prevent the snake instability, the condensate should be quasi-
one-dimensional (with a transverse size of the order or less than the healing length
ξ—see Sect. 3.5.4). At the crossover between 1D and 3D, it is possible to form
solitonic vortices, which have combined properties of dark solitons and vortices
[12, 19].

4.6 Bright Solitons

For attractive interactions (g < 0) the 1D GPE (4.34) supports bright solitons. In
contrast to dark solitons, these are self-trapped condensates in which the attractive
interactions overcome wavepacket dispersion. We saw in Sect. 4.1.1 that the homo-
geneous condensate in 1D with attractive interactions is unstable. Actually the stable
ground state is a bright soliton. A detailed review of bright solitons in condensates
can be found in Ref. [13].

The general solution for a single bright soliton, containing N atoms and moving
at speed u, is,

ψ(x, t) =
√

N

2ξs
sech

(
x − ut

ξs

)
exp [i f (x, t) + iφ] , (4.52)

where ξs = 2�
2/m|g|N characterises the soliton width, φ is a global phase offset,

and

f (x, t) = mux

�
− t

�

(
mu2

2
− �

2

2mξ2s

)
, (4.53)

is a time- and space-dependent phase factor. The soliton maintains a sech-squared
density profile, shown in Fig. 4.11a, as it propagates. For stronger attractive inter-
actions and/or more atoms, the soliton is narrower, indicative of a stronger binding
effect. For a dark soliton, the density profile of the soliton is related to its speed; for
bright solitons, the density profile and speed are decoupled, and a bright soliton can
take on any speed u.

To understand the manner is which the soliton is supported, we take a variational
approach. As an ansatz for the soliton solution, we adopt a Gaussian wavepacket of
width �, normalised to N atoms, i.e.,

ψ(x) = N 1/2

π1/4�1/2
exp

(
− x2

2�2

)
. (4.54)

http://dx.doi.org/10.1007/978-3-319-42476-7_3


72 4 Waves and Solitons

Fig. 4.11 a Density profile n(x) = |ψ|2 of the bright soliton solution of Eq. (4.52), taking u = 0
(solid line). The variational solution of the Gaussian ansatz (4.54) is in good agreement (dashed
line). b The energy-per-particle E/N of the Gaussian ansatz, given by Eq. (4.55), versus the width
of the ansatz, �, for two regimes of interactions

Using Eq. (3.6), the energy-per-particle E/N of this wavepacket is,

E(�)

N
= �

2

4m�2
+ gN

2
√
2π�

. (4.55)

Consider the form of E/N for two regimes of interactions (illustrated in Fig. 4.11a):

• For g ≥ 0, E/N decreases monotonically with �. All states are prone to expanding
and there is no stationary state. For g = 0 the expansion is driven by dispersion,
while for g > 0 the repulsive interactions also contribute to the expansion.3

• For g < 0 there exists a localminimum in E(�)/N , implying that a stable stationary
state exists. This is due to a delicate balance between the dispersive term, which
scales like 1/�2 and dominates for small �, and the attractive nonlinear term, which
scales like −1/� and dominates elsewhere.

For g < 0 the variational width is found by locating the position of the energy
minimum. Differentiating E/N with respect to �, setting to zero and rearranging
gives the width of the variational solution, �v =

√
2π�

2

m|g|N , which agrees well with the
true solution—see Fig. 4.11a.

4.6.1 Collisions

Being a self-contained condensate, a bright soliton has a global phase, φ, and this
significantly affects the manner in which bright solitons interact. Dark solitons, in
contrast, have no such phase freedom.

3If a harmonic potential is included, then a positive x2 term is added to E(�)/N which then does
support an energy minimum, representing the ground trapped condensate.

http://dx.doi.org/10.1007/978-3-319-42476-7_3
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To get some insight, consider two bright solitons, each with N atoms. Soliton 1
begins at position −x0 (with x0 > 0) and propagates to the right with speed u, while
soliton 2 begins at position x0 and propagates to the left with the same speed. Their
individual solutions are,

ψ1(x, t) =
√

N

2ξs
sech

(
x + x0 − ut

ξs

)
ei f (x,t)eiφ1 , (4.56)

ψ2(x, t) =
√

N

2ξs
sech

(
x − x0 + ut

ξs

)
ei f (x,t)eiφ2 . (4.57)

Note that due to the symmetric configuration, both solitons have the same time- and
space-dependent phase factor ei f (x,t), but we allow for different global phase offsets,
φ1 and φ2.

Assuming that the solitons are well-separatedwe can construct their superposition
asψ′ = ψ1 + ψ2.4 Weproceed to calculate the density profile of this superposed state,
|ψ′| = |ψ1 + ψ2|2,

|ψ′(x, t)|2 = ∣∣|ψ1|ei f (x,t)eiφ1 + |ψ2|ei f (x,t)eiφ2
∣∣2 (4.58)

= |ψ1|2 + |ψ2| + |ψ1||ψ2|
(
eiΔφ + e−iΔφ

)
, (4.59)

where we have introduced the relative phase Δφ = φ2 − φ1. Using the identity
cos θ = (eiθ + e−iθ)/2 we obtain,

|ψ′(x, t)|2 = |ψ1|2 + |ψ2| + 2|ψ1||ψ2| cosΔφ. (4.60)

Let us see how this affects the overlap of the two solitons by calculating the density
at their midpoint (the origin). Introducing the form of ψ1 and ψ2 from Eq. (4.57) and
setting x = 0 gives,

|ψ′(0, t)|2 = N

2ξs

[
2sech2

(
x0 − ut

ξs

)
+ 2 cosΔφ sech2

(
x0 − ut

ξs

)]
. (4.61)

If Δφ = 0 then the density at the midpoint reinforces (constructive interference), in
other words, the solitons overlap with each other. However, forΔφ = π the midpoint
density is forced to zero (destructive interference), and the overlap of the solitons is
prohibited. For intermediate values of the relative phase, the overlap varies smoothly
between these extremes.

Figure4.12 shows the collisions for different relative phases. True to their solitonic
character, the solitons emerge unscathed from the collision, barring a shift. The
role of relative phase becomes clear: for Δφ = 0 the solitons merge at the point

4The superposition theorem does not apply to the GPE since it is a nonlinear equation; constructing
a superposition is only a valid approximation if the density is low. This condition is satisfied here
since we are concerned with the weak overlap between well-separated solitons.
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Fig. 4.12 Density profile n(x, t) = |ψ(x, t)|2 during the collision of two bright solitons, with speed
u = 0.2 and for different relative phases

of collision, while for Δφ = π overlap is prohibited and they appear to bounce.
In between the collision becomes asymmetric. Despite these different behaviours
during the collision, it is remarkable that the outgoing solitons are independent of
Δφ.

4.6.2 Experiments and 3D Effects

The addition of a harmonic potential to the 1D GPE (4.34) breaks the integrability of
the system, and true soliton solutions no longer exist. The state adopts behaviours of
a trapped condensate, such as collective modes. The ground state becomes narrower
and more peaked than the soliton solution, and in the limit of a very strong trap,
the ground state tends towards the Gaussian ground harmonic oscillator state. As
such the width of the wavepacket varies between the two limiting cases, ξs and
lx , respectively. However, the solutions continue to show soliton-like behaviour: an
initially off-centre soliton will oscillate in the trap (the dipole mode) with unchanged
form, and two solitons will collide repeatedly and emerge unscathed.

In reality, bright solitons are 3Dobjects, and this introduces the collapse instability
discussed in Sect. 3.5.3. This physical effect is not modelled within the 1D GPE.
This difference can be understood as follows. For a generalized static attractively-
interacting condensate of characteristic size � inD dimensions, its kinetic energy (due
to zero-point motion) scales asD/�2 and its interaction energy scales as −1/�D. For
D = 1 we recover the behaviour discussed above—the kinetic energy term always
wins in the � → 0 limit, negating a collapse instability. For D = 3, however, the
negative interaction term always dominates in this limit, such that the packet can
lower its energy by shrinking, i.e. a collapse instability. D = 2 is a borderline case
where stability to collapse depends on the system parameters.

http://dx.doi.org/10.1007/978-3-319-42476-7_3
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Fig. 4.13 a As a repulsive BEC travels along a waveguide (with tight transverse harmonic trapping
and very weak axial confinement) it spreads out. b For attractive interactions, the condensate is seen
to maintain its shape over time, characteristic of a bright soliton. Image courtesy of S. L. Cornish
(University of Durham)

A 3D bright soliton can be formed within a waveguide potential, V (r, z) =
mω2

r r
2/2, which has tight harmonic confinement in the transverse directions but

is untrapped along z. Then a 3D bright soliton can form, which is self-trapped along
z. This state is stable to collapse up to a critical interaction strength N |as|/ lr ≈ 0.7.

Bright solitons were first formed with condensates in 2002 [14, 15]. They are typ-
ically generated as follows. A stable repulsive condensate is first formed in a highly-
elongated harmonic trap. The interaction strength is then tuned to being attractive
by means of a magnetic Feshbach resonance. In these early experiments, the critical
number of atoms was exceeded, driving a collapse. Out of the collapse one or more
bright solitons formed. More recent experiments form bright solitons by choosing
parameters which avoid the collapse instability. The weak axial trap is either kept on,
in which case the soliton/s oscillate axially, or is switched off, such that the solitons
propagate freely. An experimental proof of bright solitons is shown in Fig. 4.13. For
repulsive interactions it was seen that the condensate expanded over time, while for
attractive interactions it was seen to maintain its shape, characteristic of a soliton.
More recent experiments have studied the collisions of bright solitonswith each other
[16] and with potential barriers [17].

Problems

4.1 For a dark soliton, the integrals of motion in Eqs. (4.35)–(4.37) are renormalized
so as to remove the contribution from the background and lead to finite values,
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Ns =
+∞∫

−∞
(n0 − |ψ|2) dx
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+∞∫

−∞
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ψ

∂ψ∗

∂x
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2
(|ψ|2 − n0)

2

)
dx

Evaluate these integrals using the dark soliton solution Eq. (4.38), leaving your
answers in terms of ξ, n0, u and c.

4.2 Consider a dark soliton in a harmonically-trapped condensate. Approximating
the background condensate with the Thomas–Fermi profile n(x) = n0(1 − x2/R2

x )

(for x ≤ Rx , otherwise n = 0) and treating the soliton depth nd to be constant, obtain
an expression for the soliton speed as a function of its position x and depth nd. Hence
obtain an expression for the turning points of its motion.

4.3 Show that the static (u = 0) bright soliton solution, obtained from Eq. (4.52), is
a solution to the 1D attractive time-independent GPE with V (x) = 0, i.e.,

μψ = − �
2

2m

d2ψ

dx2
− |g||ψ|2ψ, (4.62)

and hence determine an expression for the chemical potential of the soliton.

4.4 Using the general bright soliton solution, Eq. (4.52), evaluate the soliton inte-
grals of motion according to Eqs. (4.35)–(4.37). The soliton solution is already nor-
malized to the number of atoms, N . Show that the bright soliton behaves as a classical
particle with positive mass.

4.5 Consider a 3D bright soliton in a cylindrically-symmetric waveguide with tight
harmonic confinement (of frequency ωr ) in r and no trapping along z. We can con-
struct the ansatz for the soliton,

ψ(z, r) = Asech

(
z

lrσz

)
exp

(
− r2

2l2r σ
2
r

)
, (4.63)

where lr = √
�/mωr is the harmonic oscillator length in the radial plane and σr and

σz are the dimensionless variational length parameters.

(a) Normalize the ansatz to N atoms to show that A = (N/2πl3r σ
2
r σz).

(b) Show that the variational energy of this ansatz is,

E = �ωr N

(
1

6σ2
z

+ 1

2σ2
r

+ σ2
r

2
+ γ

3σ2
r σz

)
, (4.64)
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where γ = Nas/ lr .
(c) Make a 2D plot of the variational energy per particle, E/N�ωr (scaled by the

transverse harmonic energy) as a function of the two variational length para-
meters, and plot this for γ = −0.5. Locate the variational solution in this 2D
“energy landscape”. Repeat for γ = −1; what happens to the variational solu-
tion? By varying γ estimate the critical value at which the solutions no longer
exist (and they become prone to collapse).

4.6 Consider an object of mass M moving at velocity vi which creates an exci-
tation of energy E and momentum p = �k. Show that Landau’s critical veloc-
ity, vc = min(E/p), is equivalent to dE/dp = E/p. Compare Landau’s critical
velocity for the ideal gas (dispersion relation E(p) = p2/2M) against the weakly-
interacting Bose gas. Finally show that in liquid helium II, Landau’s critical velocity
is vc ≈ 60 m/s. Hint: assume that near the roton minimum the dispersion rela-
tion, shown in Fig. 4.1b, has the approximate form E(p) = Δ0 + (p − p0)2/(2μ0)

where (at very low pressure) Δ0 = 1.20 × 10−22 J is the energy gap, p0 = �k0 =
2.02 × 10−24 kg m/s is the momentum at the roton minimum, μ0 = 0.161 m4 is the
effective roton mass, and m4 = 6.65 × 10−27 kg is the mass of one 4He atom.
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Chapter 5
Vortices and Rotation

Abstract As well as being free from viscosity, the Bose–Einstein condensate has
another striking property—it is constrained to circulate only through the presence of
whirlpools of fixed size and quantized circulation. In contrast, in conventional fluids,
the eddies can have arbitrary size and circulation. Here we establish the form of these
quantum vortices, their key properties, and how they are formed and modelled.

5.1 Phase Defects

The condensate’s wavefunction is a complex quantity. We have seen that it can be
written as Ψ (r, t) = R(r, t)ei S(r,t) (Madelung transform), where R(r, t) and S(r, t)
are respectively the phase and amplitude distributions at time t . Consider following
a closed path C of arbitrary shape through a region of the condensate. As we go
around the path, the integrated change in the phase is

ΔS =
∮

C
∇S · d�, (5.1)

where the vector d� is the line element of integration. Let the wavefunction be Ψ0

and Ψ1 respectively at the starting point and at the final point of C . Since the two
points are the same and Ψ must be single-valued, the condition Ψ1 = Ψ0 means that,

ΔS = 2πq, q = 0,±1,±2, . . . (5.2)

If the integer number q �= 0 then, somewhere within the region enclosed by C ,
there must be a phase defect, a point where the phase wraps by the amount 2πq. At
this point the phase of the wavefunction takes on every value, and the only way that
Ψ can remain single-valued here is if Ψ is exactly zero.

© The Author(s) 2016
C.F. Barenghi and N.G. Parker, A Primer on Quantum Fluids,
SpringerBriefs in Physics, DOI 10.1007/978-3-319-42476-7_5

79



80 5 Vortices and Rotation

5.2 Quantized Vortices

What does the presence of a phase defectmean for the condensate as afluid?Recalling
that the phase distribution defines the fluid’s velocity via v = (�/m)∇S, Eq. (5.2)
implies that the circulation Γ around the path C is either zero or a multiple of the
quantum of circulation κ,

Γ =
∮

C
v · d� = qκ, κ = h

m
. (5.3)

This important result (the quantization of the circulation) tells us that the condensate
flows very differently from ordinary fluids, where the circulation takes arbitrary
values.

Assume that q �= 0, and that the path C is a circle of radius r centred at the
singularity. Consider the simple case of two-dimensional flow in the xy plane. Using
polar coordinates (r, θ), the line element is d� = rdθ êθ, where êθ is the unit vector
in the azimuthal direction θ. Then the circulation becomes,

Γ =
∮

C
v · d� =

∫ 2π

0
rv · êθ dθ = 2πrvθ. (5.4)

Comparison with Eq. (5.3) shows that the fluid’s azimuthal speed around the singu-
larity is,

vθ = q�

mr
= qκ

2πr
. (5.5)

Since the condensate is a fluid without viscosity, this flow around the singularity
should go on forever, at least in principle!

For q �= 0, Eq. (5.5) tells us that the velocity around the singularity decreases to
zero at infinity (vθ → 0 as r → ∞), and that, as we approach the axis, the flow
becomes faster and faster, and diverges (vθ → ∞ as r → 0). If we increase q, the
flow speed increases discontinuously, because q takes only discrete values. The sign
of q determines the direction of the flow (clockwise or anticlockwise) around the
singularity.

We now have a better picture of the nature of the singularity: it is a quantized
vortex line, a whirlpool in the fluid. The quantity q is called the charge of the vortex.
Figure5.1 (left) represents a straight vortex line through the origin, parallel to the z
axis. Since the flow is the same on all planes perpendicular to the z axis, the flow of
the (three-dimensional) straight vortex can be more simply described as the flow due
to a two-dimensional vortex point on the xy plane, as in Fig. 5.1 (middle). If these
conditions are not met, such as the curved vortex line shown in Fig. 5.1 (right), then
the flow is fully three-dimensional and cannot be represented by a vortex point.
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Fig. 5.1 Left Schematic (three-dimensional) straight vortex line through the origin and parallel to
the z axis. The red tube around the vortex axis of radius a0 represents the vortex core. Middle Since
the vortex line is straight, it suffices to consider the two-dimensional flow of a vortex point on the
xy plane (the flow on other planes parallel to the xy plane will be the same). Right For a more
general bent vortex line the flow is fully three-dimensional

5.3 Classical Versus Quantum Vortices

The flow of the condensate is different from the flow of an ordinary fluid in two
respects. Firstly, and as we showed in Sect. 3.3, it is inviscid (there is no viscosity to
slow down the flow and bring it to a stop). Secondly, the circulation is quantized, as
we showed above. To appreciate the second difference we recall the vorticity field
(the local rotation), defined as,

ω = ∇ × v. (5.6)

The following examples illustrate velocity fields with the associated vorticity fields:

(i) Consider water inside a bucket rotating at constant angular velocity Ω . We use
cylindrical coordinates (r, θ, z) where z is the axis of rotation.1 The velocity
field is v = vθ̂eθ = Ωr êθ and the vorticity is ω = 2Ω êz (where êθ and êz are
the unit vectors along θ and z). The azimuthal speed vθ of this flow as a function
of r is shown by case (i) of Fig. 5.2a. This flow is called solid body rotation.

(ii) As derived above, the velocity field around a vortex line in a condensate is
vθ = q�/(mr), shown by case (ii) in Fig. 5.2a. It is easy to verify that its
vorticity is zero: we say that this flow is irrotational. Physically, a parcel of
fluid which goes around the vortex axis does not ‘turn’ (as it does in solid body
rotation), but retains its orientation (like a gondola of a Ferris wheel); this flow
is depicted in case (ii) of Fig. 5.2b. The property of irrotationality also follows
mathematically: the condensate’s velocity is proportional to the gradient of the

1We recall that in cylindrical coordinates, the curl of the vector A = (Ar , Aθ, Az) is

∇ × A =
(
1

r

∂ Az

∂θ
− ∂ Aθ

∂z
,
∂ Ar

∂z
− ∂ Az

∂r
,
1

r

∂(r Aθ)

∂r
− 1

r

∂ Ar

∂θ

)
.

.
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Fig. 5.2 a Examples of rotation curves. (i) solid body rotation, (ii) vortex line in a condensate
(irrotational flow), and (iii) flow around a hurricane or a bathtub vortex, which combines solid body
rotation in the inner region r � a0 and irrotational flow in the outer region r � a0. b Schematic
of the two-dimensional flow for cases (i) and (ii), showing the orientation of an object, here a leaf,
in the flow

quantum mechanical phase, and the curl of a gradient is always zero. However,
the singularity itself contributes vorticity according to,

ω = κδ2(r)̂ez, (5.7)

where δ2(r) is the two-dimensional delta function satisfying δ2(r = 0) = 1 and
δ2(r �= 0) = 0. At first it may surprise that a quantum vortex has zero vorticity,
but the result is expected—the key point is that motion in the condensate is
irrotational, but isolated vortex line singularities are allowed.

(iii) The velocity of the wind around the centre of a hurricane, case (iii) of Fig. 5.2a,
combines solid body rotation in the inner region (r � a0) with irrotational
motion in the outer region (r � a0) where a0 is called the vortex core radius.

In ordinary fluids the vorticity ω is arbitrary, and therefore vortices can be weak
or strong, big or small. In a condensate, Eq. (5.3) is a strict quantum mechanical
constraint: motion around a singularity has fixed form and intensity.

5.4 The Nature of the Vortex Core

A natural question is: what is the structure of the vortex, particularly towards the
axis of the vortex (r → 0), where, according to Eq. (5.5), the velocity becomes
infinite? Using cylindrical coordinates (r, θ, z) again, we consider a straight vortex
line aligned in the z direction in a homogeneous condensate (V = 0). Assuming
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Fig. 5.3 a The radial density profile n(r) of a q = 1 vortex in a homogeneous condensate (solid
line). Shown for comparison is the ‘healing’ profile for a static condensatewhose density is pinned to
zero. bAppearance of a vortex lying along the axis of a trapped condensate. Shown is an isosurface
of the 3Ddensity (with the vortex appearing as a central tube), a 2Ddensity profile column integrated
along z (with the vortex appearing as a black dot), and a 1D density profile column-integrated along
y and z

Ψ (r, θ, z) = A(r)eiqθ and substituting into the GPE of Eq. (3.9) we obtain the fol-
lowing differential equation,2 for the function A(r),

μA = − �
2

2m

1

r

d

dr

(
r
dA

dr

)
+ �

2q2

2mr2
A + gA3, (5.9)

The terms on the right-hand side arise from the quantum kinetic energy, the kinetic
energy of the circulating flow and the interaction energy, respectively. The boundary
conditions are that A(r) → 0 for r → 0 and A(r) → ψ0 for r → ∞. The equation
has no exact solution and must be solved numerically for A(r); the corresponding
density profile n(r) = A2 is shown in Fig. 5.3a. It is apparent that the axis of the
vortex is surrounded by a region of depleted density, essentially a tube of radius
a0 ≈ 5ξ, called the vortex core radius. For small r , the density scales as r |q|. We see
that although the velocity diverges for r → 0, the density vanishes—no atom moves
at infinite speed!We can therefore interpret a vortex as a ‘hole’ surrounded by (quan-
tized) circulation. Recall from Sect. 3.4.2 that if a static and otherwise homogeneous
condensate is pinned to zero density, then the density ‘heals’ back to the background
density with a characteristic profile tanh2(x/ξ). The vortex density profile is slightly
wider than this profile and relaxes more slowly to the background density, as seen in

2We have expressed the Laplacian in its cylindrically symmetric form,

∇2 = 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2
∂2

∂θ2
+ ∂2

∂z2
. (5.8)

http://dx.doi.org/10.1007/978-3-319-42476-7_3
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84 5 Vortices and Rotation

Fig. 5.3a. This is due to the kinetic energy of the circulating flow, which gives rise to
an outwards centrifugal force on the fluid.

While there is no exact analytic form for the vortex density profile, a useful
approximation for a single-charged vortex is,

n(r) = n0

(
1 − 1

1 + r ′2

)
, (5.10)

where r ′ = r/ξ.
This result (a vortex line is a ‘hole’ surrounded by circulating flow) has an interest-

ing mathematical consequence: a condensate with vortices is a multiply-connected
region, and the classical Stokes Theorem3 does not apply.

In a trapped condensate the vortex creates a similar tube surrounded by quantised
circulation; the only difference is that the density of the condensate is not uniform
(as in a homogeneous condensate). In typical 2D column-integrated images of the
condensate, the vortex appears as a low density dot. Since the healing length depends
on the local density, in a trapped condensate the thickness of the vortex core depends
on the position. If the condensate is in the Thomas–Fermi regime and the vortex
along the z axis, then an approximation for the density profile can be constructed as
the product of the static Thomas–Fermi profile, Eq. (3.33), and the vortex density,
Eq. (5.10), i.e.,

n(x, y, z) = n0

(
1 − x2

R2
x

− y2

R2
y

− z2

R2
z

)(
1 − 1

1 + r ′2

)
, (5.11)

where r ′ = r/ξ is defined is terms of the healing length evaluated at the condensate
centre.

5.5 Vortex Energy and Angular Momentum

We now evaluate some useful properties associated with a quantum vortex: its energy
and angular momentum. For simplicity, we still consider the case of a single straight
vortex lying along the z-axis of a cylindrically-symmetric condensate of constant
density; assuming that the condensate’s size is much larger than the healing length,
the density depletion at the axis of the vortex and near the walls can be neglected.
A cylindrical bucket of height H0 and radius R0 containing superfluid liquid helium
would be a realistic example. For trapped atomic condensates, where the vortex size

3Stokes Theorem states that ∮

C
A · d� =

∫

S
(∇ × A) · dS,

where the surface S enclosed by the oriented curve C is simply-connected, i.e. any closed curve on
S can be shrunk continuously to a point within S.

http://dx.doi.org/10.1007/978-3-319-42476-7_3
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is significant relative to the system size and the condensate density varies in space,
these ideas can be generalized by, for example, taking the density profile to be of the
form of Eq. (5.11), or by estimating the necessary integrals numerically.

The kinetic energy Ekin of the swirling fluid is obtained from summing the con-
tributions of the atoms, each carrying kinetic energy mv2

θ/2 where v = vθ̂eθ =
(q�/mr) êθ is the velocity. Summing over all atoms we have,

Ekin =
∫

1

2
mn(r)v2

θ (r) d
3r, (5.12)

where the integral is performed over the bucket’s volume. Using cylindrical coordi-
nates,

Ekin =
∫ H0

0
dz

∫ 2π

0
dθ

∫ R0

0

mn0

2

(
q�

mr

)2

r dr = πH0
n0q2

�
2

m

∫ R0

0

dr

r
. (5.13)

To prevent the integral from diverging at r → 0 we introduce a cutoff length a0,4

the vortex core radius; in doing so, we recognize that the density vanishes at the axis
of the vortex, but simplify the core structure, assuming that the core is hollow up to
the distance r = a0. Notice that without the outer limit of integration (the size of the
container R0) the integral would also diverge at r → ∞. We then obtain,

Ekin = πH0
n0q2

�
2

m

∫ R0

a0

dr

r
= πH0

n0q2
�
2

m
ln

(
R0

a0

)
. (5.14)

We conclude that the kinetic energy per unit length of the vortex, Ekin/H0 =
πn0(q2

�
2/m) ln (R0/a0), is constant.

Each atom swirling around the axis of the vortex carries angular momentum
Lz = mvθr . The total angular momentum of the flow is therefore,

Lz =
∫

mn(r)vθ(r)r d3r. (5.15)

Proceeding as for the kinetic energy, we find,

Lz = 2πH0n0q�

(
R2
0

2
− a2

0

2

)
≈ πH0n0q�R2

0 . (5.16)

Consider a condensate in a state with an arbitrary high angular momentum Lz .
We can construct this state as either (i) one vortex with large q or (ii) many vortices
with q = 1. Which situation is preferred? Since Ekin scales as q2, a state with many
singly-charged vortices has less energy than a state with a single multi-charged

4Often this cutoff is taken instead as the healing length ξ.
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vortex. Experiments confirm that this is indeed the case: in Ref. [1] a q = 2 vortex
was seen to quickly decay into two singly-charged vortices. Hereafter we assume
that all vortices are singly-charged, with q = ±1.

5.6 Rotating Condensates and Vortex Lattices

5.6.1 Buckets

Vortices are easily created by rotating the condensate [22, 23]. Consider again a
cylindrical condensate of height H0, radius R0 and uniform density. A vortex appears
only if the system, by creating a vortex, lowers its energy. In a rotating system at very
low temperature, it is not the energy E which must be minimized, but rather the free
energy F = E − ΩLz where Ω is the angular velocity of rotation. A state without
any vortex, hence without angular momentum, has free energy F1 = E0 where E0

is the internal energy. A state with a vortex has free energy F2 = E0 + Ekin − ΩLz .
The free energy difference is thus,

ΔF = F2 − F1 = Ekin − ΩLz = 2πH0
�
2

m2
ln

(
R0

a0

)
− ΩπH0n0�R2

0 . (5.17)

Therefore ΔF < 0 (the free energy is reduced by creating a vortex) provided that
the rotational velocity is larger than a critical value Ωc1,

Ω > Ωc1 = �

m R2
0

ln

(
R0

a0

)
. (5.18)

For superfluid helium (m = 6.7 × 10−27 kg, κ = 9.97 × 10−8 m2/s, a0 ≈ 10−10 m)
inside a container of radius R0 = 10−2 m, the critical angular velocity is Ωc1 =
3×10−3 s−1. States with two, three and more vortices onset at higher critical veloci-
tiesΩc2,Ωc3 etc., as shown in Fig. 5.4 for superfluid helium and in Fig. 5.7 for atomic
condensates. Note that the vortices are parallel to the rotation axis and arrange them-
selves in a vortex lattice like atoms in a crystal with triangular symmetry. The vortex
lattice is therefore a steady configuration in the frame of reference rotating at angular
velocity Ω .

Vortices are topological defects which can only be created at a boundary or spon-
taneously with an oppositely-charged vortex.5 Where then do the vortices in a vortex
lattice originate from?

For a rotating container of helium, with even a relatively small rotation frequency,
the roughness of the container surface is expected to seed vortices, providing a

5An exception is through the technique of phase imprinting, in which the condensate phase can be
directly and almost instantaneously imprinted with a desired distribution. In this manner vortices
can be suddenly formed within the condensate.
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Fig. 5.4 Experimental images of vortex lattices at increasing angular velocities Ω in superfluid
helium. Reprinted figure with permission from [3]. Copyright 1979 by the American Physical
Society

constant source of vortices from which to develop a vortex lattice in the bulk if the
critical rotation frequency is exceeded.

According to Feynman’s rule, the density of vortices (number of vortices per unit
area) is,

nv = 2Ω

κ
. (5.19)

Since each vortex contributes vorticity according to Eq. (5.7), the average vorticity
per unit area is,

ω̄ = κnv̂ez = 2Ω êz . (5.20)

This tells us that the averaged vorticity (averaged over distance larger than the inter-
vortex spacing) reproduces the vorticity 2Ω of an ordinary fluid in rotation. Similarly,
the large-scale azimuthal flow is v ≈ Ωr êθ. Remarkably, themanyquantized vortices
mimic classical solid body rotational flow. Note that the local velocity field around
vortices can remain rather complicated.

In the frame rotating at angular frequencyΩ about the z-axis, theGPEofEq. (3.46)
is,

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + g|ψ|2ψ + V ψ + ΩLzψ − μψ, (5.21)

where,

Lz = i�

(
y

∂

∂x
− x

∂

∂y

)
, (5.22)

is the angular momentum operator in the z direction. The vortex lattices are the
ground-state stationary solutions of this equation (providing Ω is large enough).
Figure5.5 shows such a vortex lattice solution for a condensate being rotated in a
bucket. The above bucket scenario is modelled through the bucket potential,

http://dx.doi.org/10.1007/978-3-319-42476-7_3
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Fig. 5.5 Vortex lattice formed in a bucket potential rotating about the z-axis. Shown are the a
density (in arbitrary units) and b phase (in units of π) in the xy-plane (position presented in units
of the healing length ξ), corresponding to the stationary solution of the rotating-frame GPE of
Eq. (5.21). The bucket has radius R = 29ξ and the rotation frequency is Ω = 0.08 c/ξ. Image
courtesy of Thomas Winiecki [2]

V (r) =
{
0 if r ≤ R0,

∞ if r > R0.
(5.23)

The lattice features Nv = 56vortices.Note the appearance of the phase “dislocations”
in the phase profile at each vortex position. At the boundary there are as many 2π
phase slips as there are vortices. The average flow speed around the edge of the bucket
can then be approximated by evaluating the magnitude of v = (�/m)∇S around the
boundary, i.e.,

vr (r = R0) = �

m

2πNv

2πR0
= �

m

56

29ξ
≈ 1.93c. (5.24)

This is close to what one would expect for solid body rotation, vr (r = R0) = Ω R0 =
2.3c.

In a small system, at the same value ofΩ one often observes vortex configurations
which are slightly different from each other. This is because there is a very small
energy difference between these slightly rearranged states. For example, Fig. 5.4
shows two states with six vortices each (in one case the six vortices are distributed
around a circle, in the other case there are five vortices around a circle and one vortex
in the middle).

Notice how the background density for the rotating bucket solution in Fig. 5.5
features ameniscus, that is, it is raised towards the edge of the bucket. Let us determine
this background density profile. We denote the rotation vector � = Ω êz .

Recall the fluid interpretation of the GPE. Using the Madelung transformation
ψ = √

nei S and the fluid velocity definition v = (�/m)∇S, the rotating-frame GPE
of Eq. (5.21) is equivalent to the modified fluid equations,
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∂n

∂t
= −∇ · [n (v − � × r)] , (5.25)

m
∂v
∂t

= −∇ ·
(
1

2
mv2 + V + gn − �

2

2m

∇2√n√
n

− mv · [� × r]
)

, (5.26)

where the ω × r terms account for frame rotation and v is the velocity field in the
laboratory frame (expressed in the coordinates of the rotating frame). We assume the
Thomas–Fermi approximation by neglecting the quantumpressure term inEq. (5.26),
and seek the stationary density profile. Setting ∂v/∂t = 0 and integrating gives,

1

2
mv2 + V + gn − mv · [� × r] = μ, (5.27)

where the chemical potential μ is the integration constant.
We consider a coarse-grained scale, ignoring the structure of the individual vor-

tices and for which the velocity field approximates the solid body form v(r) = Ωr êθ.
We then obtain,

gn + V − 1

2
mΩ2r2 = μ, (5.28)

where we have used êz × êr = êθ. Rearranging for the density,

n(r) = 1

g

(
μ − V + 1

2
mΩ2r2

)
, (5.29)

which is valid for n(r) > 0; otherwise n(r) = 0. We conclude that rotation causes a
parabolic increase in the coarse-grained density, consistent with the behaviour visible
in Fig. 5.5. The is due to centrifugal effects, and is observed in rotating classical fluids.
Note that μ can be determined by normalizing the profile to the required number of
atoms or average density.

5.6.2 Trapped Condensates

To predict the critical rotation frequency for vortices to become favoured in a
harmonically-trapped condensate, one can repeat the above approach but the inho-
mogeneous density profile must be accounted for (i.e. replacing n0 above with n(r)).
One way to approximate this is by the Thomas–Fermi density profile. For a trap
which is symmetric in the plane of rotation, with frequency ω⊥, the critical rotation
frequency is then,

Ωc1 = 5

2

�

m R2
⊥
ln

(
0.67R⊥

ξ

)
, (5.30)

where R⊥ is the Thomas–Fermi radius in the plane of rotation. For typical atomic
condensates, Ωc1 ∼ 0.3ω⊥.
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Rotating an axi-symmetric harmonic trap applies no torque to the condensate,
and so in practice the trap is made slightly anisotropic in the plane of rotation in
order to form a vortex lattice. Surprisingly, experiments observed vortices at rotation
frequencies Ω ∼ 0.7ω⊥, considerably higher than the frequency at which they
become energetically favourable. The traps are so smooth that vortex nucleation is
very different to that of helium.

We can examine this by considering the planar potential to be weakly elliptical,
with frequencies ωx = √

1 − εω⊥ and ωy = √
1 + εω⊥, where ε is the trap ellip-

ticity. We follow the approaches of Refs. [6, 7]. We seek the stationary solutions
of the trapped vortex-free condensate under rotation about z. Under the Thomas–
Fermi approximation, the solutions must satisfy Eq. (5.27). Furthermore, we look for
solutions with the phase profile, and corresponding velocity profile, given by,

S(x, y) = βxy, v(x, y) = �

m
∇S = β�

m
(ŷex + x êy). (5.31)

where β is a parameter to be determined below. Inserting into Eq. (5.27), and noting
that � × r = Ω(x êy − ŷex ), leads to the density profile,

n = 1

g

(
μ − 1

2
(mω̃2

x x2 + ω̃2
y y2 + ω2

z z2)

)
, (5.32)

where the effect of the rotation is to introduce effective trap frequencies in the xy-
plane,

ω̃2
x = (1 − ε)ω2

⊥ + β2 − 2βΩ, (5.33)

ω̃2
y = (1 + ε)ω2

⊥ + β2 + 2βΩ. (5.34)

Plugging this density profile into the rotating-frame continuity equation, Eq. (5.25),
and setting ∂n/∂t = 0, leads to an expression for β,

β3 + β(ω2
⊥ − 2Ω2) − εΩω2

⊥ = 0. (5.35)

Fig. 5.6 a Illustration of the irrotational flow pattern of a rotating elliptically-trapped condensate,
according to Eq. (5.31). The color indicates the phase S(x, y) while the velocity field is shown by
arrows. b The velocity field amplitude β as a function of rotation frequencyΩ for an axi-symmetric
trap (ε = 0). AtΩ = ω⊥/

√
2 the solutions trifurcate. In this region, these solutions become unstable
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Hence the stationary solution of the condensate in the rotating frame has been com-
pletely specified. In the laboratory frame, this solution has an elliptical density profile
which rotates about z. However, the fluid remains irrotational, thanks to the special
velocity fieldwhich distorts the density is such away as tomimic rotation, as depicted
in Fig. 5.6a.

Analysing the case of ε = 0 for simplicity, there exists one solution, with β =
0, for Ω ≤ ω⊥/

√
2; this represents a motion-less and axi-symmetric condensate.

However, forΩ > ω⊥/
√
2 the solutions trifurcate,with twonewbrancheswithβ �= 0

and corresponding to non-axi-symmetric solutions of the form shown in Fig. 5.6.
This trifurcation leads to an instability of the condensate (as can be confirmed via
linearizing about these solutions [7]) in which perturbations grow at the condensate

Fig. 5.7 An experimental vortex lattice c formed in a flattened trapped rotating atomic condensate
(image represents the condensate density). b shows the profile of the corresponding non-rotating
condensate. d and e show the side views of the non-rotating and rotating condensates, respectively.
The condensate grew in radius with the number of vortices, as shown in a. Reprinted figure with
permission from [5]. Copyright 2001 by the American Physical Society
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surface and develop into vortices. Experiments [8] and simulations [9] of the GPE
show that this instability then allows the condensate to evolve into a vortex lattice,
the lowest energy state.

Figure5.7 shows a vortex lattice produced in a rotating trapped atomic conden-
sate. Note the regularity and density of the vortex lattice. Note also that the rotating
condensate is significantly broader than the non-rotating condensate. In the presence
of the vortex lattice, we can predict the coarse-grained density profile of the conden-
sate. Considering an axi-symmetric trap (ωx = ωy ≡ ω⊥), then the coarse-grained
density profile of Eq. (5.29) gives,

n(r) = 1

g

(
μ − 1

2
m(ω2

r r2 − Ω2)r2
)

. (5.36)

There is a competition between the quadratic trapping potential, which pushes atoms
inwards, and the quadratic centrifugal potential, which pushes atoms outwards.
The net potential is quadratic with effective harmonic potential ω2

r − Ω2. As Ω

is increased, the condensate expands, and when Ω ≥ ωr it becomes untrapped!

5.7 Vortex Pairs and Vortex Rings

An important property of a vortex is that it moveswith the local fluid velocity, and this
means that two vortices in proximity induce each other to move. We now consider
some important examples.

5.7.1 Vortex-Antivortex Pairs and Corotating Pairs

Consider a pair of vortices of opposite circulation and separation d, a state called
a vortex-antivortex pair or vortex dipole, shown schematically in Fig. 5.8. In the
figure, the flow around the vortex at the left is anticlockwise, and the flow around the
anti-vortex at the right is clockwise. Each vortex is carried along by the flow field
of the other vortex, and at each vortex the flow field has speed v = �/md acting
perpendicular to the line separating the vortices. Moreover, this flow acts in the same
direction for both vortices, and hence they propagate together at this speed.

If instead the vortices have the same circulation, then the flow which carries each
vortex now acts in opposite directions (again, perpendicular to the line separating
the vortices and with the above speed). The net effect is for the vortices to co-rotate
about their mid-point. The angular frequency of this motion isω = 2v/d = 2�/md2.
From this simple example, one can imagine howmanyvortices of the same circulation
rotate together in a vortex lattice. Note that the above predictions for the pair speed
ignore core effects, and so are only valid for d � a0.
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Fig. 5.8 Schematic of a
vortex-antivortex pair

We can estimate the energy of the vortex pairs in a cylindrical condensate (radius
R0, height H0) by assuming a uniform density and integrating the kinetic energy, as
we did to calculate the energy of a single vortex line in Eq. (5.14). The vortices have
circulation q1 and q2, and individual velocity fields v1 and v2, respectively. The net
velocity field of the two vortices is v1+v2. Assuming ξ � d � R0 then the (kinetic)
energy of the pair is,

Ekin =
∫

mn0|v1+v2|2 dr = πn0H0�
2

m

[
q21 ln

R0

a0
+ q22 ln

R0

a0
+ 2q1q2 ln

R0

d

]
. (5.37)

The first two terms are the energies of the individual vortices if they were isolated.
The second term is the interaction energy, the change in energy arising from the
interaction between the vortices. For a vortex-antivortex pair (q1 = −q2) the inter-
action energy is negative. This is because the flow fields tend cancel out in the bulk,
reducing the total kinetic energy. Indeed, in the limit d → a0, the flow fields com-
pletely cancel and the total energy tends to zero; in reality the vortices annihilate
with each other in this limit. For a corotating pair (q1 = q2), the interaction energy
is positive; in the bulk the flow fields tend to reinforce, increasing the total kinetic
energy.

In the presence of dissipation on the vortices, this result also informs us that
vortex-antivortex pairs will shrink (ultimately annihilating when their cores begin to
overlap) and corotating pairs will expand. Interestingly, at finite temperature and in
2D condensates, vortex-antivortex pairs can be created spontaneously [10].

5.7.2 Vortex Rings

A vortex line either terminates at a boundary (e.g. the vortex in the cylindrical con-
tainer discussed in the previous section) or is a closed loop. A circular vortex loop
is called a vortex ring. It is the three-dimensional analog of the (two-dimensional)
vortex-antivortex pair: each element of the ring moves due to the flow induced by the
rest of the ring, resulting in the ring travelling in a straight line at a constant speed
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Fig. 5.9 Vortex ring travelling towards a vortex line computed by numerically solving the GPE
(courtesy of A.J. Youd) in a periodic box (hence the vortex line appears to terminate at the top and
at the bottom)

which is inversely proportional to its radius. Figure5.9 shows a vortex ring travelling
towards, and interacting with, a straight vortex line.

Both vortex rings and vortex-antivortex pairs are forms of solitary waves, since
they propagate without spreading. Moreover, like dark solitons, they are stationary
(excited) solutions of the homogeneous condensate in the frame moving with the
ring/pair.

5.7.3 Vortex Pair and Ring Generation by a Moving Obstacle

Vortex rings are easily generated in ordinary fluids by pushing the fluid through
an orifice: cigarette smokers, volcanoes and dolphins can make vortex rings. In
condensates and helium, rings and vortex-antivortex pairs can be formed by moving
obstacles.

To understand this mechanism, recall Landau’s criterion for the generation
of excitations in the condensate (Sect. 4.2). In the hydrodynamic picture, the speed
of the atom/impurity is replaced by the local fluid velocity. Consider the scenario of
a homogeneous condensate flowing with bulk speed v∞ past a cylindrical obstacle
(this is equivalent to the cylindrical obstacle moving at speed v∞ through a static
condensate but more convenient to simulate). For low v∞, the condensate undergoes
undisturbed laminar flow around the obstacle, as shown in Fig. 5.10 (left). Note that
the local flow speed is approximately twice as large, i.e. 2v∞ at the poles of the
obstacle than it is in the bulk (indeed, for an inviscid Euler fluid one would expect it
to be exactly 2v∞). When v∞ ≈ 0.5c, the local flow at the poles exceeds the speed

http://dx.doi.org/10.1007/978-3-319-42476-7_4
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Fig. 5.10 Flow of a homogeneous condensate past a cylindrical obstacle, below (left) and above
(right) the critical velocity. Shown is the condensate density, and the arrows (left) show the velocity
field. Note that the obstacle punches a large hole in the condensate. Results are based on simulations
of the 2D GPE in the moving frame. Figure reproduced from Ref. [11] under a CC BY licence

Fig. 5.11 a Experimental images of a vortex-antivortex pair moving within a trapped condensate.
b The vortex-antivortex pair’s trajectory is reproduced by numerically solving the GPE. Note that
the vortex core appears larger in the experimental images since the condensate is first expanded
to aid in resolving the cores. Figure adapted with permission from Ref. [14]. Copyrighted by the
American Physical Society. A schematic of the trajectory of a vortex-antivortex pair in a trapped
condensate is shown on the right

of sound, and, as per Landau’s prediction, excitations are created. These take the
form of pairs of opposite circulation vortices, which periodically peal off from the
poles of the obstacle and travel downstream, as seen in Fig. 5.10 (right).

This process has been studied experimentally in atomic condensates [14, 15]. The
obstacle is engineered by a laser beam which exerts a localized repulsive potential
on the condensate, and is moved relative to the condensate. Figure5.11 shows an
experimental vortex-antivortex pair which moves within a trapped condensate (top).
The dynamics can be reproduced by simulating the GPE (bottom). Note that whereas
in an infinite condensate the vortex-antivortex pair has constant translational velocity,
within a harmonically-trapped condensate the motion of each vortex of the pair
follows a curved trajectory.

Similarly, vortex rings arise when a spherical obstacle exceeds a critical speed
relative to the condensate. They can be created in superfluid helium by injecting
electrons with a sharp high-voltage tip; the electron’s zero point motion carves a
small, charged spherical bubble in the liquid of radius approximately 16 × 10−10 m
which can be accelerated by an applied electric field. Upon exceeding a critical
velocity, a vortex ring peels off at the bubble’s equator; subsequently the electron
falls into the vortex core, leaving a vortex ring with an electron bubble attached; the
last part of the sequence is shown in Fig. 5.12.

https://creativecommons.org/licenses/by/3.0/
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Fig. 5.12 Vortex rings nucleated by moving bubbles, computed by numerically solving the GPE.
Figure reproduced from [16] with permission from EDP Sciences

5.8 Motion of Individual Vortices

Wehave seen how vorticesmove due to their interactionswith other vortices. Isolated
vortices can also move under a variety of scenarios.

First imagine a condensate in a static bucket with a straight vortex line positioned
close to the edge. The fluid velocity must be zero at the boundary. In effect, it is as if
an image vortex, with opposite circulation, exists on the other side of the boundary.
As such the vortex moves around the boundary of the container as a virtual pair with
its image.

In a harmonically-trapped condensate, an off-centre vortex precesses about the
trap centre. The slow variation of the density towards the edge complicates an image
interpretation. Instead, we can interpret the precession in terms of a Magnus force.
Imagine the vortex line as a rotating cylinder, shown in Fig. 5.13 (left). The vortex
line feels a radial force due to its position in the condensate, and this gives rise
to a motion of the vortex line which is perpendicular to the force, vL, an effect
well known in classical hydrodynamics. This force can be deduced from the free
energy of the system. This energy decreases with the vortex position, r0, as shown
in Fig. 5.13 (right). This radial force, which follows as −∂E/∂r0, acts outwards and
has contributions from the “buoyancy” of the vortex, which behaves like a bubble, as
well as its kinetic energy. This force balances the Magnus force−mnκ×vL , leading
to the expression,

∂E

∂r0
êr = mnκ × vL, (5.38)

where κ is the circulation vector. The net effect is a precession of the vortex about
the trap centre. More generally, the vortex follows a path of constant free energy;
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Fig. 5.13 Left Schematic of the Magnus effect which causes an off-centre vortex to precess in a
trapped condensate. Right Free energy E of a trapped condensate versus the radial position of a
vortex, r0. The top line is for a non-rotating system, while the lower lines have increasing rotation
frequencies. Reprinted figure with permission from [17]. Copyright 1999 by the American Physical
Society

for example, it will trace out a circular path in an axi-symmetric harmonic trap and
an elliptical path in a non-axi-symmetric harmonic trap. The experiment of Ref.
[18] pioneered the real-time imaging of vortices in condensates and was able to
directly monitor the precession of a vortex, finding it to agree well with theoretical
predictions.

At the trap centre, E(r0) becomes flat such that the vortex ceases to precess; in
fact, the trapped condensate with a central vortex line is a stationary state. For a non-
rotating condensate, this state is energetically unstable (E(r0) is a maximum at the
origin). Under sufficiently fast rotation, however, E(r0) changes shape such that this
state becomes a minimum and thus energetically stable, consistent with discussion
in Sect. 5.6.

This analysis assumes the vortex line to be straight. This is valid is flattened,
quasi-2D geometries, but in 3D geometries, the vortex line can bend and support
excitations.

5.9 Kelvin Waves

A sinusoidal or helical perturbation of the vortex core away from its rest position
is called a Kelvin wave. Figure5.14 (left) shows a Kelvin wave of amplitude A and
wavelength λ. A Kelvin wave of infinitesimal amplitude A and wavelength λ � a0

rotates with angular velocity,

ω0 ≈ κk2

4π

(
ln

(
1

ka0

)
− 0.116

)
, (5.39)
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Fig. 5.14 Left Schematic of Kelvin waves of amplitude A and wavelength λ. The three unit vectors
in the tangent, normal and binormal directions are shown. The waves rotate along the binormal
direction, in the direction opposite to the direction of the flow. Right Comparison between motion
of a vortex ring (radius R = 0.1 cm, blue) and a vortex ring perturbed by Kelvin waves (relative
amplitude A/R = 0.05, red). Calculation performed with the vortex filament model [12]. Figure
adapted with permission from Ref. [12]. Copyrighted by the American Physical Society

where k = 2π/λ is the wavenumber; in other words, the shorter the wave the faster it
rotates. The time sequence shown in Fig. 5.9 shows a vortex ring which hits a straight
vortex. It is apparent that after the collision the straight vortex is perturbed by Kelvin
waves. Vortex rings can also be perturbed by Kelvin waves, see Fig. 5.14 (right); the
vortex ring with waves travels slower than the unperturbed circular ring. Vortex lines
also support excitations in the form of breathers [19].

5.10 Vortex Reconnections

When two quantum vortex lines approach each other, they reconnect, changing the
topology of the flow. The effect, illustrated in Fig. 5.15, has been experimentally
observed in superfluid helium [20] and in atomic condensates [21]. In classical invis-
cid fluids (governed by the Euler equation) vortex reconnections are not possible.
Reconnections of quantum vortices thus arise from the presence of the quantum
pressure term in the Gross–Pitaevskii equation. In classical viscous fluids (governed
by the Navier-Stokes equation) reconnections are possible but involve dissipation
of energy, whereas in condensates reconnections take place while conserving the
energy. Figure5.16 shows the reconnection of two vortices computed using the GPE.
A vortex-antivortex pair, initially slightly bent, propagates to the right. The curva-
ture of the vortices quickly increases at their midpoint, they move faster and hit each
other, reconnecting and then moving away.
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Fig. 5.15 Schematic vortex reconnection of two vortex lines. The arrows indicate the direction of
the vorticity (the rotation of the fluid around the axis of the vortex). Left before the reconnection
(t < t0); Middle at the moment of reconnection, t = t0; Right after the reconnection (t < t0)

Fig. 5.16 Reconnection of antiparallel vortex lines computed by solving the GPE in a periodic
box. Shown is the isosurface of the condensate density ρ = 0.2, where ρ = 1.0 is the bulk value.
Reprinted from [24] with the permission of AIP Publishing

In 2D, vortex reconnections become annihilation events in which two vortex
points of opposite polarity destroy each other. This can occur through the interaction
with a third vortex, and leaves behind a soliton-like rarefaction pulse of sound [25].
Recently, it has been argued that a fourth vortex is required to turn the rarefaction
pulse into soundwaveswhich then spread to infinity [26, 27],making the annihilation
a four-vortex process.
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Fig. 5.17 Left Pattern of sound waves (density variations) on the xy plane generated by a rotating
pair of vortices (shown by the white dots). Image adapted from [28]. Note the small amplitude of the
sound waves, relative to the background density of one. Right Rarefaction sound pulse generated
by the vortex reconnection of Fig. 5.16, shown as density variations on the central plane. Reprinted
from [24] with the permission of AIP Publishing

5.11 Sound Emission

Even in the absence of thermal effects, vortices can lose energy, and they do so by
creating sound waves. This occurs when vortices and vortex elements accelerate, for
example, Fig. 5.17 (left) shows the pattern of spiral sound waves emitted outwards
by a co-rotating pair of vortices. It also arises during vortex reconnections, which
release a sharp pulse of sound, as seen in Fig. 5.17 (right). In 2D annihilation events
leave behind only sound waves.

In all of these scenarios, the pattern of the condensate phase changes. The infor-
mation about this change can travel outwards from the vortices no faster than the
speed of sound. Beyond this “information horizon”, the condensate phase has the
old pattern. The sound waves act to smooth between the new and old patterns, and
prevent discontinuities in the phase at this horizon.

The time evolution of a condensate described by the GPE (that is, a condensate at
very small temperatures) conserves the total energy, although the relative proportion
of kinetic energy (due to vortices) and sound energy (due to waves) may change. In
general, a collection of freely-evolving vortices will decay into sound waves, with
the energy being transferred into the “sound field”, although this decay is typically
very slow. The decay can be prohibited, or even reversed, by suitable driving of the
system, and under certain conditions, intense sound waves can create vortices [29].

5.12 Quantum Turbulence

Besides lattices, Kelvin waves and vortex rings, other complex vortex states have
been studied recently, e.g., U- and S-shaped vortices [30] and vortex knots [31], see
Fig. 5.18. But the most challenging vortex state is turbulence.



5.12 Quantum Turbulence 101

Fig. 5.18 Left UandS-shaped vortices in a spheroidal condensate. Reprinted figurewith permission
from [30]. Copyright 2003 by the American Physical Society. Right The break-up of a T2,3 vortex
knot into two vortex rings. Reprinted figure with permission from [31]. Copyright 2012 by the
American Physical Society

Fig. 5.19 Schematic of
vortex reconnections and
generation of small vortex
loops, as envisaged by
Richard Feynman [32]

A disordered vortex configuration of many vortices is called a vortex tangle; it
represents a state of quantum turbulence. Vortex reconnections and the resulting
generation of smaller and smaller vortex loops in a cascade process were first con-
jectured by Richard Feynman in his pioneering 1955 article on the applications of
quantum mechanics to liquid helium [32]. Figure5.19 illustrates this cascade. Vor-
tices move in an irregular way around each other, undergoing reconnections which
trigger Kelvin waves and generate small vortex loops. In a statistical steady state, the
intensity of the turbulence is usually measured (experimentally and numerically) by
the vortex line density L , defined as the length of vortex lines per unit volume. From
the vortex line density L one estimates that the typical distance between vortices is
� ≈ L−1/2. As well as vortices, quantum turbulence also features sound waves.

Current work [33, 34] studies properties of quantum turbulence such as velocity
and acceleration statistics [35], the emergence of coherent structures out of disorder,
and the energy spectrum Ek (representing the distribution of the kinetic energy over
the length scales); in particular, the energy spectrum is defined from,

E ′ = 1

V
∫

V

v2

2
d3r =

∫ ∞

0
Ek dk, (5.40)

where E ′ is energy per unit mass, V is the volume and k the wavenumber.
The two main tools to study quantum turbulence are the GPE and the vortex fila-

ment model,whichwedescribe inSect. 5.13; the latter is directly relevant to superfluid
helium, but is important in general, as it isolates vortex interactions, neglecting finite
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core-size effects and sound waves. In the next subsections we describe recent results
for 3D and 2D turbulence.

5.12.1 Three-Dimensional Quantum Turbulence

Quantum turbulence at very low temperatures is generated in superfluid helium by
stirring with grids, wires or propellers, or by injecting vortex rings. Observations
of the decay of the vortex line density and the energy spectrum reveal two turbu-
lent regimes [36]. In the first regime [37], called quasi-classical turbulence and
illustrated in Fig. 5.20, the energy spectrum obeys the same Kolmogorov scaling
of ordinary turbulence (Ek ∼ k−5/3) over the hydrodynamic range kD � k � k�

(where k� = 2π/�, kD = 2π/D and D is the system size). This result is confirmed
by numerical simulations based on the GPE [38] and the vortex filament model
[39–41]. Kolmogorov scaling suggests the existence of a classical cascade, which,
step-by-step, transfers energy from large eddies to smaller eddies. The concentration
of energy at the largest length scales (near kD) arises from the emergence of transient
bundles of vortices of the same polarity [42] which induce large scale flows. Without
forcing, quasi-classical turbulence decays as L ∼ t−3/2.

However, under other conditions, Ek peaks at the intermediate scales followed at
large wavenumbers by the k−1 dependence typical of isolated vortices, suggesting
a random vortex configuration without cascade [41]. In the absence of forcing, this
regime, called ultra-quantum turbulence [36], decays as L ∼ t−1.

Fig. 5.20 a Quantum turbulence in superfluid helium computed in a periodic box using the vortex
filament method [42]. Lighter colour denotes bundles of vortex lines with the same orientation:
they are responsible for the emergence of the classical k−5/3 Kolmogorov spectrum. Figure adapted
with permission from Ref. [42]. Copyrighted by the American Physical Society. b Energy spectrum
of the kinetic energy Ek vs k, computed using the vortex filament method [40]: note the k−5/3

Kolmogorov scaling for k < k� ≈ 1.8× 105 m−1. The curve at the bottom shows that the spectrum
of the coarse-grained vorticity is consistent with the k1/3 scaling of Kolmogorov theory
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Fig. 5.21 Left Absorption images of turbulent 3D atomic condensate (top) and schematic diagram
of the inferred distribution of vortices (bottom) [43]. Reprinted figure with permission from [43].
Copyright 2009 by the American Physical Society. Middle Quantum turbulence in a harmonically
confined atomic condensate computed using theGPE. The surface of the condensate is pale blue, the
surface of the vortex cores is purple. Figure adapted with permission from Ref. [35]. Copyrighted
by the American Physical Society. Right Experimental absorption (top) images of an condensate in
a state of 2D turbulence [45]. Images courtesy of Y.I. Shin. Corresponding images of (unexpanded)
condensate density from GPE simulations (bottom) [25]. Images courtesy of G.W. Stagg. Vortices
with positive (negative) circulation are highlighted by red circles (blue triangles). The vortices
appear much smaller since the condensate has not been expanded

Turbulence in atomic condensates has been generated by stirring the gas with
a laser beam or by shaking the confining trap [34, 43]. Current 3D condensates
created in the laboratory are relatively small, see Fig. 5.21. The limited separation of
length scales (unlike helium, D is not much bigger than �, which is not much bigger
than a0) and the difficulty in directly measuring the velocity have so far prevented
measurements of the energy spectrum, although the Kolmogorov regime has been
predicted [44].

5.12.2 Two-Dimensional Quantum Turbulence

Due to the ability to engineer the effective dimensionality, atomic condensates also
allow the study of 2D turbulence, which consists of a disordered arrangement of
vortex points andwaves. This is a remarkable feature of quantumfluids, because (with
the possible exception of soap films) ordinary flows are never really 2D (for example,
only by considering large-scale patterns the atmosphere can be approximated by a 2D
flow). Figure5.21 (right) shows experimental and simulated images of 2D turbulence
in a trapped condensate. The turbulence is not being driven and so the number of
vortices decays over time.

In fluid dynamics, 2D turbulence is expected to shown unique features such as
an inverse cascade where increasingly large vortical structures form over time (an
example is Jupiter’s great Red Spot). The inverse cascade involves the clustering of
vortices with the same sign, predicted by Onsager, and represents a phase transition
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associated with a state of negative effective temperature (defined in terms of the
entropy of the vortex configuration). In the opposite limit the vortices tend to form
dipoles [46, 47].

5.13 Vortices of Infinitesimal Thickness

In this section we derivemathematical tools tomodel quantized vortex lines as vortex
filaments (in 3D) or vortex points (in 2D). Both methods are based on the classical
Euler equation. They assume that the fluid is incompressible, thus neglecting sound
waves, and treat the vortex cores as line (in 3D) or point (in 2D) singularities. This
approximation is realistic for helium turbulence experiments, where there is a wide
separation of length scales between the system size (D ≈ 10−2 to 10−1 m), the inter-
vortex distance (� ≈ 10−6 to 10−4 m) and the vortex core radius (a0 ≈ 10−10 m).
The approximation is less good for atomic condensates, but the model is useful to
isolate pure vortex dynamics from sound and healing length effects.

We have seen that, at length scales larger than the healing length ξ, the
Gross–Pitaevskii equation reduces to classical continuity equation and the com-
pressible Euler equation. In the further limit of velocities much less than the speed of
sound (i.e. small Mach numbers), density variations can be neglected; in this limit,
the compressible Euler equation reduces to the incompressible Euler equation,

∂v
∂t

+ (v · ∇)v = −1

ρ
∇ p, (5.41)

where ρ is constant, and the continiuty equation becomes the solenoidal condition
∇ · v = 0.

5.13.1 Three-Dimensional Vortex Filaments

We introduce the vector potential A defined such that, v = ∇ × A. Since the diver-
gence of a curl is always zero, we have ∇ · A = 0, and A → constant for x → ∞.
The vorticity ω can be written as,

ω = ∇ × v = ∇ × (∇ × A) = ∇(∇ · A) − ∇2A = −∇2A, (5.42)

Given the vorticity distribution ω(r, t) at the time t , the vector potential A(r, t)
is obtained by solving Poisson’s equation,

∇2A = −ω. (5.43)
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The solution of Eq. (5.43) at the point s is,

A(s, t) = 1

4π

∫

V

ω(r, t)

|s − r| d
3r, (5.44)

where r is the variable of integration and V is volume. Taking the curl (with respect
to s), we obtain the Biot–Savart law,

v(s, t) = 1

4π

∫

V

ω(r, t) × (s − r)
|s − r|3 d3r. (5.45)

In electromagnetism, the Biot–Savart law determines the magnetic field as a func-
tion of the distribution of currents. In vortex dynamics, the Biot–Savart law deter-
mines the velocity as a function of the distribution of vorticity. If we assume that the
vorticity ω is concentrated on filaments of infinitesimal thickness with circulation
κ, we can formally replace ω(r, t)d3r with κdr. The volume integral, Eq. (5.45),
becomes a line integral over the vortex line configuration L, and the Biot–Savart law
reduces to,

v(s, t) = − κ

4π

∮

L

(s − r)
|s − r|3 × dr. (5.46)

Equation (5.46) is the cornerstone of the vortex filament method, in which we
model quantized vortices as three dimensional oriented space curves s(ξ0, t) of cir-
culation κ, where the parameter ξ0 is arc length. Since, according to Helmholtz’s
Theorem, a vortex line moves with the flow, the time evolution of the vortex config-
uration is given by,

ds
dt

= vself(s), (5.47)

where,

vself(s) = − κ

4π

∮

L

(s − r)
|s − r|3 × dr. (5.48)

(the self-induced velocity) is the velocity which all vortex lines present in the flow
induce at the point s.

To implement the vortex filament method, vortex lines are discretized into a
large number of points s j ( j = 1, 2, . . .), each point evolving in time according to
Eq. (5.48). Vortex reconnections are performed algorithmically. Since the integrand
of Eq. (5.48) diverges as r → s, it must be desingularized; a physically sensible
cutoff length scale is the vortex core radius a0. This cutoff idea is also behind the
following Local Induction Approximation (LIA) to the Biot–Savart law,

vself(s) = βs′ × s′′, β = κ

4π
ln

(
R

a0

)
, (5.49)
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where s′ = ds/dξ0 is the unit tangent vector at the point s, s′′ = d2s/dξ20 is in
the normal direction, and R = 1/|s′′| is the local radius of curvature. The physical
interpretation of the LIA is simple: at the point s, a vortex moves in the binormal
direction with speed which is inversely proportional to the local radius of curvature.
Note that a straight vortex line does not move, as its radius of curvature is infinite.

To illustrate the LIA, we compute the velocity of a vortex ring of radius R
located on the z = 0 plane at t = 0. The ring is described by the space curve
s = (R cos (θ), R sin (θ), 0), where θ is the angle and ξ0 = Rθ is the arc length.
Taking derivatives with respect to ξ0 we have s′ = (− sin (ξ0/R), cos (ξ0/R), 0)
and s′′ = (−1/R)(cos (ξ0/R), sin (ξ0/R), 0). Using Eq. (5.49), we conclude that the
vortex ring moves in the z direction with velocity,

vself = κ

4πR
ln (R/a0)̂ez . (5.50)

The result is in good agreement with a more precise solution of the Euler equation
based on a hollow core at constant volume, which is,

vself = κ

4πR

(
ln

(
8R

a0

)
− 1

2

)
êz . (5.51)

Using the GPE, Roberts and Grant [48] found that a vortex ring of radius much
larger than the healing length moves with velocity,

vself = κ

4πR

(
ln

(
8R

a0

)
− 0.615

)
êz . (5.52)

5.13.2 Two-Dimensional Vortex Points

As in the previous section, we consider inviscid, incompressible (∇ · v = 0), irro-
tational (∇ × v = 0) flow, and allow singularities. We also assume that the flow is
two-dimensional on the xy plane, with velocity field,

v(x, y) = (vx (x, y), vy(x, y)), (5.53)

The introduction of the stream function ψ (not to be confusedwith thewavefunction),
defined by,

vx = ∂ψ

∂y
, vy = −∂ψ

∂x
, (5.54)

guarantees that ∇ · v = 0. The irrotationality of the flow implies the existence of a
velocity potential φ such that v = ∇φ,
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vx = ∂φ

∂x
, vy = ∂φ

∂y
. (5.55)

It follows that both stream function and velocity potential satisfy the two-dimensional
Laplace’s equation (∇2ψ = 0, ∇2φ = 0), and well-known techniques of complex
variables can be applied. For this purpose, let z = x + iy be a point of the complex
plane (rather than the vertical coordinates). We introduce the complex potential,

Ω(z) = φ + iψ. (5.56)

It can be shown that the velocity components vx and vy are obtained from,

vx − ivy = dΩ

dz
, (5.57)

Any complex potential Ω(z) can be interpreted as a two-dimensional inviscid,
incompressible, irrotational flow. Since Laplace’s equation is linear, the sum of solu-
tions is another solution, and we can add the complex potential of simple flows to
obtain the complex potential of more complicated flows. In particular,

Ω(z) = U0e−iηz, (5.58)

represents a uniform flow of speed U0 at angle η with the x axis, and,

Ω(z) = − iκ

2π
log (z − z0), (5.59)

represents a positive (anticlockwise) vortex point of circulation κ at position z = z0.

Problems

5.1 Consider the bucket of Sects. 5.5 and 5.6 to now feature a harmonic potential
V (r) = 1

2mω2
r r2 perpendicular to the axis of the cylinder. Take the condensate to

adopt the Thomas–Fermi profile.

(a) Show that the energy of the vortex-free condensate is E0 = πmn0ω
2
r H0R4

r /6,
where Rr is the radial Thomas–Fermi radius and n0 is the density along the axis.

(b) Now estimate the kinetic energy Ekin due to a vortex along the axis via Eq. (5.12).
Use the fact that a0 � Rr to simplify your final result.

(c) Estimate the angular momentum of the vortex state, and hence estimate the crit-
ical rotation frequency at which the presence of a vortex becomes energetically
favourable.
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5.2 Use the LIA (Eq. (5.49)) to determine the angular frequency of rotation of a
Kelvin wave of wave length λ = 2π/k (where k is the wavenumber) on a vortex
with circulation κ.

5.3 Using the vortex point method and the complex potential, determine the trans-
lational speed of a vortex-antivortex pair (each of circulation κ) separated by the
distance 2D.

5.4 Using the vortex point method and the complex potential, determine the period
of rotation of a vortex-vortex pair (each of circulation κ) separated by the distance
2D.

5.5 Consider a homogeneous, isotropic, random vortex tangle (ultra-quantum tur-
bulence) of vortex line density L , contained in a cubic box of size D. Show that the
kinetic energy is approximately

E ≈ ρκ2L D3

4π
ln

(
�

a0

)
, (5.60)

where ρ is the density, κ the quantum of circulation, � ≈ L−1/2 is the inter-vortex
distance and a0 is the vortex core radius.

5.6 In an ordinary fluid of kinematic viscosity ν, the decay of the kinetic energy
per unit mass, E ′, obeys the equation

d E ′

dt
= −νω2, (5.61)

whereω is the rms vorticity. Consider ultra-quantum turbulence of vortex line density
L . Define the rms superfluid vorticity asω = κL , and show that the vortex line density
obeys the equation,

d L

dt
= −ν

c
L2, (5.62)

where the constant c is,

c = 1

4π
ln

(
�

a0

)
, (5.63)

hence show that, for large times, the turbulence decays as

L ∼ c

ν
t−1. (5.64)
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Appendix A
Simulating the 1D GPE

The GPE is a nonlinear partial differential equation, and its solution must, in general,
be obtained numerically. A variety of numerical methods exist to solve the GPE,
including those based on Runge–Kutta methods, the Crank–Nicolson method and
the split-step Fourier method.1 The latter (also known as the time-splitting spectral
method) is particularly compact and efficient, and here we apply it to the 1D GPE.
Furthermore, we introduce the imaginary time method for obtaining ground state
solutions. Basic Matlab code is provided.

A.1 Split-Step Fourier Method

The split-step fourier method is well-established for numerically solving the time-
dependent Schrodinger equation, written here in one-dimension,

i�
∂ψ(x, t)

∂t
= Ĥψ(x, t). (A.1)

The Hamiltonian Ĥ can be expressed as Ĥ = T̂ + V̂ , where T̂ ≡ − �
2

2m
∂2

∂x2 and

V̂ ≡ V (x) are the kinetic and potential energy operators. Integrating from t to t+Δt
(and noting the time-independence of the Hamiltonian) leads to the time-evolution
equation,

ψ(x, t + Δt) = e−iΔtĤ/�ψ(x, t). (A.2)

The operators T and V do not commute, hence e−iΔtĤ/� �= e−iΔtT̂/�e−iΔtV̂ /�.
Nonetheless, the following approximation,

e−iΔtĤ/�ψ ≈ e−iΔtV̂ /2�e−iΔtT̂/�e−iΔtV̂ /2�ψ, (A.3)

1A. Minguzzi, S. Succi, F. Toschi, M.P. Tosi, P. Vignolo, Phys. Rep. 395, 223 (2004).
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holds with error O(Δt3). In position space V̂ is diagonal, and so the operation
e−iΔtV̂ /2�ψ simply corresponds to multiplication of ψ(x, t) by e−iΔtV (x)/2�. Although
T̂ is not diagonal in position space, it becomes diagonal in reciprocal space. Con-
version to reciprocal space is achieved by taking the Fourier transform F of the
wavefunction ψ̃(k, t) = F[ψ(x, t)], where k denotes the 1D wavevector. Then the
kinetic energy operation corresponds tomultiplication of ψ̃(k, t) by e−i�Δtk2/2m. Thus
Eq. (A.3) can be written as,

ψ(x, t + Δt) ≈ e− i
2�

V (x)Δt · F−1
[
e− i�k2

2m Δt · F
[
e− i

2�
V (x)Δt · ψ(x, t)

]]
. (A.4)

In practice, the computational expense of performing forward and backward Fourier
transforms to evaluate Eq. (A.3) is small (particularly when using numerical fast
Fourier transform techniques) compared to the significant expense of evaluating
the kinetic energy term directly in position space. Note that the split-step method
naturally incorporates periodic boundary conditions.

The above method was developed for the linear Schrodinger equation with time-
independent Hamiltonian. Remarkably, it holds for the GPE (despite its nonlinearity
and time-dependent Hamiltonian) under the replacement V (x) �→ V (x) + g|ψ|2.
Errors ofO(Δt3) aremaintained, providing themost up-to-dateψ is always employed
during the sequential operations in Eq. (A.4).2

A.2 1D GPE Solver

We now outline the approach to solve the 1D GPE using the split-step method, with
reference to theMatlab code included below. To make the numbers more convenient,
the GPE is divided through by � (equivalent to considering energy in units of �). We
consider a 1D box, discretized into grid points with spacing Δx (dx), and extending
over the spatial range x = [−MΔx,MΔx], whereM (M) is a positive integer. Position
is described by a vector xi (x), defined as xi = −MΔx + (i − 1)Δx, with i =
1, . . . , 2M + 1. The potential V (x) is defined as the vector Vi = V (xi). Starting
from the initial time, the wavefunction ψ(x), represented by the vector ψi = ψ(xi)
(psi), is evolved over the time interval Δt (dt) by evaluating Eq. (A.4) numerically
by replacing the Fourier transform F (and its inverse F−1) by the discrete fast
Fourier transform. Here, wavenumber is discretized into a vector ki (k), defined as
ki = −MΔk + (i − 1)Δk, with Δk = π/MΔx (dk). This time iteration step is
repeated Nt (Nt) times to find the solution at the desired final time.

The Matlab code below simulates a BEC of 5000 87Rb atoms with as = 5.8nm
and trapping frequencies ω⊥ = 2π×100Hz and ωx = 2π×40Hz. Starting from the
narrow non-interacting ground state (Gaussian) profile, the condensate undergoes
oscillating expansions and contractions, due to the competition between repulsive

2J. Javanainen, J. Ruostekoski, J. Phys. A 39, L179 (2006).
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interactions and confining potential. Note—under different scenarios, reduced time
and grid spacings may be required to ensure numerical convergence.

% SOLVES THE 1D GPE VIA THE SPLIT-STEP FOURIER METHOD
clear all;clf; %Clear workspace and figure

hbar=1.054e-34;amu=1.660538921e-27; %Physical constants
m=87*amu;as=5.8e-9; %Atomic mass; scattering length
N=1000;wr=100*2*pi;wx=40*2*pi; %Atom number; trap frequencies

M=200; Nx=2*M+1;
dx=double(2e-7); x=(-M:1:M)*dx; %Define spatial grid
dk=pi/(M*dx); k=(-M:1:M)*dk; %Define k-space grid
dt=double(10e-8); Nt=200000; %Define time step and number

lr=sqrt(hbar/(m*wr)); lx=sqrt(hbar/(m*wx)); %HO lengths
g1d=2*hbar*hbar*as/(m*lrˆ2); %1D interaction coefficient

V=0.5*m*wxˆ2*x.ˆ2/hbar; %Define potential
psi_0=sqrt(N/lx)*(1/pi)ˆ(1/4)*exp(-x.ˆ2/(2*lxˆ2)); %Initial wavefunction

%[psi_0,mu] = get_ground_state(psi_0,dt,g1d,x,k,m,V); %Imaginary time

Nframe=100; %Data saved every Nframe steps
t=0; i=1; psi=psi_0; spacetime=[]; %Initialization

for itime=1:Nt %Time-stepping with split-step Fourier method
psi=psi.*exp(-0.5*1i*dt*(V+(g1d/hbar)*abs(psi).ˆ2));
psi_k=fftshift(fft(psi)/Nx);
psi_k=psi_k.*exp(-0.5*dt*1i*(hbar/m)*k.ˆ2);
psi=ifft(ifftshift(psi_k))*Nx;
psi=psi.*exp(-0.5*1i*dt*(V+(g1d/hbar)*abs(psi).ˆ2));
if mod(itime,Nt/Nframe) == 0 %Save wavefunction every Nframe steps

spacetime=vertcat(spacetime,abs(psi.ˆ2)); t
end
t=t+dt;

end

subplot(1,3,1); %Plot potential
plot(x,V,’k’); xlabel(’x (m)’); ylabel(’V (J/hbar)’);

subplot(1,3,2); %Plot initial and final density
plot(x,abs(psi_0).ˆ2,’k’,x,abs(psi).ˆ2,’b’);
legend(’\psi(x,0)’,’\psi(x,T)’);xlabel(’x (m)’);ylabel(’|\psi|ˆ2 (mˆ{-1})’);

subplot(1,3,3); % Plot spacetime evolution as pcolor plot
dt_large=dt*double(Nt/Nframe);
pcolor(x,dt_large*(1:1:Nframe),spacetime); shading interp;
xlabel(’x (m)’); ylabel(’t (s)’);
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A.3 Imaginary Time Method

A convenient numerical method for obtaining ground state solutions of the
Schrodinger equation/GPE is through imaginary time propagation. Thewavefunction
ψ(x, t) can be expressed as a superposition of eigenstates φm(x)with time-dependent
amplitudes am(t) and energies Em(t), i.e. ψ(x, t) = ∑

m am(t)φm(x), for which, after
the substitution t → −iΔt, the evolution Eq. (A.3) becomes,

ψ(t + Δt) = e−ΔtĤ/�ψ(x, t) =
∑
m

am(t)φm(x)e−ΔtEm/�. (A.5)

The amplitude of each eigenstate contribution decays over time, with the ground
state (with lowest Em) decaying the slowest. Thus, by renormalizing ψ after each
iteration (to ensure the conservation of the desired norm/number of particles), ψ will
evolve towards the ground state.

Convergence may be assessed by monitoring the chemical potential. This is con-
veniently evaluated using the relation μ = (�/Δt) ln |ψ(x, t)/ψ(x, t + Δt)| at some
coordinate within the condensate; this relation is obtained by introducing the eigen-
value μ and imaginary time into Eq. (A.3).

TheMatlab function get_ground_state below obtains the GPE ground state
via imaginary time propagation. Uncommenting line 19 in the aboveGPE solver calls
this function prior to real time propagation; as one expects, the profile remains static
in time.

% SOLVES THE 1D GPE IN IMAGINARY TIME USING THE SPLIT-STEP METHOD
function [psi,mu] = get_ground_state(psi,dt,g1d,x,k,m,V)

hbar=1.054e-34; dx=x(2)-x(1); dk=2*pi/(x(end)-x(1));
N=dx*norm(psi).ˆ2; Nx=length(x); psi_mid_old=psi((Nx-1)/2);
mu_old=1; j=1; mu_error=1;
while mu_error > 1e-8

psi=psi.*exp(-0.5*dt*(V+(g1d/hbar)*abs(psi).ˆ2));
psi_k=fftshift(fft(psi))/Nx;
psi_k=psi_k.*exp(-0.5*dt*(hbar/m)*k.ˆ2);
psi=ifft(ifftshift(psi_k))*Nx;
psi=psi.*exp(-0.5*dt*(V+(g1d/hbar)*abs(psi).ˆ2));

psi_mid=psi((Nx-1)/2);
mu=log(psi_mid_old/psi_mid)/dt; mu_error=abs(mu-mu_old)/mu;

psi=psi*sqrt(N)/sqrt((dx*norm(psi).ˆ2));
if mod(j,5000) == 0

mu_error
end
if j > 1e8

’no solution found’
break

end
psi_mid_old=psi((Nx-1)/2); mu_old=mu; j=j+1;

end
end
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Problems

A.1 Obtain the ground-state density profiles for a 1D condensate under harmonic
confinement with (i) no interactions, (ii) repulsive interactions and (iii) attractive
interactions. Compare (ii) with the corresponding Thomas–Fermi profile.

A.2 Starting from the Gaussian harmonic oscillator ground state, release the non-
interacting condensate into an infinite square well (achieve by setting the potential to
a high value towards the edge of the box, and zero elsewhere). Repeat for repulsive
and attractive interactions. How does the initial expansion (before reflection from
the box walls) depend on the interactions?

Now simulate the longer-term behaviour. The wavefunction undergoes revivals,
known as the Talbot effect, and forms a “quantum carpet”.3

A.3 Form the ground state solution for a repulsively-interacting condensate in a
harmonic trap. Excite a centre-of-mass (“sloshing”) oscillation by shifting the trap
by some distance at t = 0. Similarly, excite a monopole mode by slightly weakening
the trap at t = 0. Extract the frequencies of these modes. Do the frequencies depend
on the number of particles and the interaction sign/strength?

3I. Marzoli et al. Acta Phys. Slov. 48, 323 (1998) [arXiv:quant-ph/9806033].
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oscillator state, 25, 40, 43
Healing length, 38, 39
Healing profile, 39
Heat capacity, 24
Helium, 2

helium I, 2
helium II, 2
phase diagram, 2

I
Imaging

absorption imaging, 47
column-integrated density, 47

Interactions
contact interaction, 34
interaction parameter, 40

Interference, 73

L
Landau criterion, 57, 94

M
Macrostates, 11
Madelung transform, 36
Magnus force, 97
Mass, 35, 36
Microstates, 11
Momentum

angular momentum, 85, 87
condensate, 35

N
Normalization, 34, 59

O
Occupancy number, 11

P
Phase space

cells, 11
classical, 10

Pressure, 37
degeneracy pressure, 6, 27
ideal gas, 24
quantum pressure, 37

Principle of equal a priori probabilities, 12

Q
Quantum particles, 14

indistinguishability, 15
statistics, 15

Quantum turbulence, 7, 100
decay regimes, 102
energy spectrum, 101, 102
in 2D, 103
in 3D, 102
inverse cascade, 103

R
Reimann zeta function, 19
Rotation

in a bucket, 86, 88
in a harmonic trap, 91

S
Scaling solutions, 58
Scattering length, 34
Solitons, 63, 64

bright solitons, 71
collisions, 67, 74
dark solitons, 64
energy, 63
in 3D, 71, 75, 76
integrals of motion, 64, 66, 75, 76
momentum, 63
norm, 63
oscillations, 68, 70
snake instability, 71
solutions, 65, 71

Sound, 53, 55
emission, 100
speed of sound, 55

State
classical, 10
excited state, 13
ground state, 13
quantum state, 15

Stokes theorem, 84
Stream function, 106
Superconductivity, 2
Superfluidity, 2, 57

T
Temperature

critical, 21
Fermi, 28

Thermal gas, 23, 26
Thomas-Fermi
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approximation, 41
radius, 41, 59
rotating solutions, 89
solutions, 59

Trap
ellipticity, 90
harmonic trap, 25, 40
magnetic, 4
trap frequencies, 25

U
Units

harmonic oscillator, 50
healing length, 50

V
Variational method, 43, 71
Velocity potential, 106

Vortex, 81, 83
Biot-Savart law, 105
charge, 80
critical rotation frequency, 86, 89
energy, 85
filament method, 104
Kelvin waves, 97, 101
lattice, 86
line density, 101
local induction approximation, 104
momentum, 85
pairs, 92, 95
points, 106
precession, 97
reconnections, 98
rings, 93, 95
solitonic vortex, 71
sound emission, 100
tangle, 101

Vorticity, 82, 87
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