
219© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_18

 Chapter 18
 Emulation Using FPGAs

 Paresh K. Joshi

18.1 Introduction to Emulation

 For the purpose of this chapter, we will use emulation to include prototyping also—
since underlying challenges and methodologies are common. We read about simula-
tors in Chap. 11 . An emulator is a simulation - specifi c hardware, which is capable of
retaining the parallelism of the blocks of the design, thereby signifi cantly improving
the speed of execution.

 Depending on the capabilities of the emulator, you can get very close to your
design environment. Since emulators are dedicated hardware, the speed advantage
is obtained at the cost of observability and controllability. Emulation also needs
additional setup, which is what this chapter is mostly about. In an ideal scenario, the
emulator must support all the features of simulation at a speed and cost advantage.

18.1.1 Types of Emulators

 1. Array of simulation - specifi c processors (Cadence Palladium series): Array of
processors whose instruction set and software is tailored to simulation tasks. One
set of such arrays is called a board . Each processor on the board can simulate
millions of gates in parallel. Furthermore, each processor on the board talks to
other processors via a fi xed (specifi c) protocol.

 2. Array of FPGAs (Synopsys ZeBu series): Array of FPGAs. Each FPGA can have
mapped gates programmed into it. Each FPGA in the Array usually has dedi-
cated wiring with other FPGAs.

 P. K. Joshi (*)
 Intel Mobile Communications , Bangalore , Karnataka , India
 e-mail: paresh.k.joshi@intel.com

http://dx.doi.org/10.1007/978-3-319-42438-5_11
mailto:paresh.k.joshi@intel.com

220

 3. A hybrid array of both simulation - specifi c processors and FPGAs (Mentor
Veloce series) .

 For large designs boards in an emulator can be cascaded. To better utilize the
components in the emulator, there are partitions possible which enable multiple
users to simultaneously access the resources of the emulator.

 Since emulators comprise of hardware components, it is possible to connect the
emulator to real external targets like JTAG, UART, QSPI, I2C, etc. The JTAG and
UART are used by the software team to do hardware-software co-design and debug
at the programmers view level.

 Figure 18.1 illustrates an FPGA or processor array-based emulator system with
multiple user terminals, standard connectors, IOs, and a backplane to cascade mul-
tiple such boards. Multiple users can then use the emulator boards for improving
resource utilization.

18.1.2 Uses of Emulation/Prototyping

 Substitute for simulation : This is the most obvious usage. In practice, however,
emulation is resorted to only after the RTL design reaches a certain level of matu-
rity. A not-so-mature RTL design will fi nd iterative debug to be diffi cult, due to
limited observability and controllability of emulation.

 Enabling pre-silicon software development : Once the RTL is reasonably mature,
the software teams can use the emulator for developing BOOTROM, Software
(UBOOT, Linux, Android, RTOS, UEFI), Device Drivers (BSP), etc. Doing so pro-
vides several months of lead time to the software teams. This enables the software
components to be available and ready for use, immediately after the device silicon
is available.

 Fig. 18.1 Cascading 4 processors/FPGAs to build a larger emulation system

P.K. Joshi

221

 Place-holder for actual silicon : The fi rst silicon bring-up team designs an evalu-
ation board with sockets for the device. Before the actual silicon is available, the
emulator can behave as a prototype and fi t into the socket using a plug-in board. The
evaluation board along with silicon bring-up test cases can be run on the system as
shown in Fig. 18.2 .

18.2 Emulation Using FPGAs

 System designers and prototyping teams have been using FPGAs to their benefi t.
FPGA tools are available to provide RTL to FPGA mapping. If you have a prototyp-
ing environment, the additional activities for going to emulation include:

 1. Creation of a synthesizable and reconfi gurable testbench.
 2. Addition of instrumentation into design for advance debug purposes.
 3. Mapping of complex design blocks like IOs, SERDES, DSP blocks, and block

RAMs to the FPGA.
 4. Remapping of complex clocking structure of the device to the FPGA-based

PLLs and clock controllers.
 5. Mapping of design IOs to the FPGA IOs to obtain connectivity to the external

targets (JTAG, UART, etc.).
 6. For designs which require multiple FPGAs:

 (a) Logic Partitioning : Partitioning of the design into chunks of logic to fi t into
individual FPGAs. This depends on the size of the design and the size of
placeable gates on the FPGA. The logic and memory closely associated with
the said logic are grouped together into pieces which fi t on the same FPGA.

 (b) Pin Partitioning : Partitioning of the design with appropriate pin count across
FPGAs. This depends on the hardware board design and is usually fi xed for
a particular board.

 The additional activities for going to emulation from a simulation setup include:

CHIP SOCKET FPGA BASED
EMULATOR

SILICON
EVALUATION

BOARD

 Fig. 18.2 Silicon Evaluation Board with a socket being interposed with FPGA-based emulator

18 Emulation Using FPGAs

222

 1. Observability: Simulation allows to see the waveforms for all signals at all
times. The waveforms are directly dumped into a hard disk during runtime. In an
FPGA, there are limited logic and memory resources. So complete runtime
waveform dumping is not possible. Thus, you have to add instrumentation to
 trigger the start of waveform dumping for a known limited number of signals
and for a known limited amount of time. Furthermore, you need to build in a
mechanism to retrieve the waveform data from the FPGA block RAMs. Xilinx
Vivado provides ILA core for doing this—as explained in Chap. 17 .

 2. Controllability : For some tests, a specifi c pin (say: reset) may need to be kept at
a desired value for a specifi c duration. In simulation you can force the signal then
release it. A similar ability needs to be provided when doing emulation using
FPGAs. Xilinx Vivado provides VIO.

 3. Memory initialization : The DUV usually contains BOOTROM which needs to
be programmed (preloaded) with the appropriate bitmapped code. The testbench
could have other memory models of fl ash, DDR, etc. In the simulation environ-
ment, the memory load ($readmemb) and dump can be used. A similar ability is
required for emulation using FPGAs.

 Xilinx FPGAs and the Vivado tool set provide the methods and means to make
all of the above possible.

18.3 Challenges in Emulation Using FPGAs

 The basic challenge is to stitch the hardware, the tool software, and the RTL-
mapping fl ow with the evaluation board and components. This section breaks up the
challenge into multiple parts and sections. Section 18.4 then explains on how to deal
with these challenges.

18.3.1 Design Logic and Memory Size

 The engineering choice is to use one FPGA which fi ts the design. However, some-
times the DUV may be bigger than the largest FPGA available. Even otherwise,
sometimes fi tting the DUV into two smaller FPGAs is cheaper than using the largest
FPGA available. If the design is skewed toward huge memory blocks, the FPGA
tools can map parts of unmapped logic on the FPGA tile for memory blocks. For an
emulator using FPGAs, (since the testbench is embedded into the FPGA) large
memories like fl ash, DDR pose mapping problems. In such scenarios the emulator
is fi tted with large external memories which are then remodeled to behave like fl ash
and DDR. Note that this remodeling is done through custom instrumentation inser-
tion prior to using Vivado P&R tools.

P.K. Joshi

http://dx.doi.org/10.1007/978-3-319-42438-5_17

223

18.3.2 Design Pin Count

 The FPGA (or an array of FPGAs) must be able to support the relevant pin count of the
device being emulated. In general, for emulation purposes a synthesizable testbench is
used, indicating that there are fewer external connections. In certain cases, fl ash mem-
ory can be real components on the board which are then pinned-out to the board.

18.3.3 Clocking

 Clocking between FPGAs and ASIC/ASSP is different. In an ASIC/ASSP there could
be many hundreds of clock domains with multiple PLLs embedded. Each root clock
derived from a PLL can have multiple secondary clock generation logic (say for
dividing clocks, test clocking). Furthermore, sets of fl ip-fl ops or registers in the design
can have clock-gating circuit implemented as part of power-reduction techniques.

 FPGAs usually have a limited number of PLLs and a limited number of balanced
clock channels incident upon a larger cluster of fl ip-fl ops. The challenge is to
straighten up the ASIC clocks to map it easily onto the FPGA clocking.

18.3.4 RTL Constructs and Remodeling

 Several RTL constructs are not FPGA friendly. These need to be modeled appropri-
ately for FPGA. The remodeling has to be done without modifying the functional-
ity. A module RTL makes it easier and scalable since there is a great usage of
common cells in the design.

18.3.4.1 IO Pads Modeling

 IO pads typically have tristate functionality. Usually, these IOs of the DUV are connected
to the BFMs in the testbench. Recent FPGAs do not have built-in tristate gates. For FPGA
usage, you need to remodel the tristates as shown by the example in Fig. 18.3 . The Xilinx
ISE/Vivado toolset automatically transforms internal tristates into logic elements.

18.3.4.2 ADC Module Modeling

 For a module with analog behavior (e.g., ADC/DAC), you need to appropriately
model to ensure that its boundary talking to the digital side of the design is clean.
For example, an ADC module can easily be modeled with a memory and digital

18 Emulation Using FPGAs

224

output. The memory can be preloaded with the kind of analog behavior we expect
out of the design. Alternatively, an ADC can be placed on the FPGA board and the
digital output can be used as an input to the design. If the ADC module is deeply
embedded into the DUV, you need to bring out the wires from the embedded hier-
archies onto the top level of the testbench.

 For Xilinx FPGAs you can use the SYSMON module (explained in Chap. 16).
However, you still need to take care of:

• Performance of the SYSMON for emulator clocking
• The analog stimulus to be fed to the SYSMON
• The appropriate remodeling of the ADC to instantiate the SYSMON into it

18.3.4.3 Memory Modeling

 Typically the RTL has memories which are either ASIC technology memories or
modeled as a memory array. Also, the RTL memory model could have test logic
embedded into it. Remodeling memories for FPGA is typically a four-step process.

 1. Identify the memories in the design. If the memories belong to the same technol-
ogy node, then the entity is usually identical except for the address and data
width. Sometimes, there might be variants (e.g., byte-wise write).

 2. Remodel the memory component with an equivalent FPGA friendly construct.
If you are not interested in test logic, they could be tied to their disabled state.
This remodeled memory component is then verifi ed to be true using simulation.
If the memory needs to have user-defi ned preloading or dynamic preloading,
then explicit instrumentation needs to be added.

 3. One level of FPGA synthesis and run is carried out to fl ush out the fl ow.
 4. Create a scriptware to convert all the fl avors of data and address widths.

 Steps (2), (3), and (4) are true for all types of remodeling done at RTL level, but
it deserves a special mention for memories since there are many types.

X

oen _dut oen _bfm

Weak
pullUp

o_dut o_bfm

sig = ~oen _dut ? o_dut :
~oen _bfm ? o_bfm :
1 'b1;

 Fig. 18.3 Remodeling of typical IO connectivity within testbench between DUV and BFM

P.K. Joshi

http://dx.doi.org/10.1007/978-3-319-42438-5_16

225

18.3.4.4 Standard Cells Modeling

 It is best to have synthesizable view of the technology standard cells in the design.
Most technology libraries provide the synthesizable view of standard cells.

18.3.4.5 Inferred Components Modeling

 Some RTL descriptions infer multipliers, dividers, special Register Files, FIFOs,
etc., during the ASIC synthesis fl ows. These components use compiled models/
descriptions for simulation. Such components will end up as being unresolved. A
way to resolve this problem is to actually do an ASIC synthesis and use the verilog
equivalent for the said component. Thus:

 FPGA RTL view = synthesized netlist from ASIC tool + the synthesizable RTL view
of technology std-cell

18.3.5 FPGA Board Design

 The FPGA-based emulation system is very much dependent on the FPGA board
design. In particular, the number of FPGAs in the array, the capacity of each FPGA
in the array, the external memory connected (for modeling large memories, for
dynamic waveform dumping, and for using memory as Look Up Table for large
pieces of logic with huge fan-in cones), and the external connectors, switches,
GPIOs, and LEDs are provided. Its levels of complexity are higher to move from
one FPGA-based emulator to another than it is to move across simulators from dif-
ferent vendors. The basic complexity is due to the use of hardware for emulation
and so it is fi xed. This complexity makes it diffi cult to make sound design and
fi nancial decisions for the right choice of FPGA-based emulators. FPGA vendors
provide a chart with logic gate count estimates, IOs, memory blocks, SERDES
blocks, and DSP blocks within the FPGA.

18.4 General Methodology

 In this section we provide some known recipes to the challenges explained in
Sect. 18.3 . The recipes below would help design teams to realize their own FPGA-
based emulator. We have assumed (by this chapter, toward the end of the book) a
basic understanding of FPGA-based design.

 Note that you should perform RTL to RTL Logic Equivalence Check after any
RTL transformation.

18 Emulation Using FPGAs

226

18.4.1 RTL-Related Transformations

 PLLs : All technology ASIC libraries contain PLLs. Each PLL consists of basic ref-
erence clock in , clock out , with pins indicating the multiplier factor in terms of
 Numerator and Denominator values. These have to be mapped to the equivalent
PLLs in the selected FPGA. The methodology used is to keep the ASIC PLL entity
identical but to instantiate the FPGA clocking resource in place. If the PLL has
multiple clock outputs, the same are also remapped to the FPGA.

 Clock Dividers : If there are dividers in the design, then it is appropriate to remove
the divider circuits and replace them with the FPGA clock resource outputs as
defi ned in the MMCM clock tile.

 It would be useful to maintain a table similar to Table 18.1 .
 In the Table 18.1 , for (#2) and (#3), the clock frequencies are the same, i.e.,

20 MHz. It would be worthwhile to investigate from an ASIC clocking point of
view, if it is possible to use the same PLL output of 20 MHz driving the clock end
points of both (#2) and (#3). If the clocks are of the same frequency, but asynchro-
nous to each other, it would be OK to reduce the use of a PLL and free up routing
resources and reduce complexity of mapping to the FPGA.

 Programmable Clock Dividers : Usually there is a use of Programmable Clock
Dividers to select a baud rate as it is in the case of UART. In such cases, reconfi gurable
registers of the ASIC need to be remapped to the Dynamic Reconfi guration Data
Input of the Clocking tile. Most emulation designers would put the dynamic recon-
fi guration data input as part of the instrumentation in the testbench, so that they have
better control over the clock.

 Clock Gating Cells : Integrated clock gating cells are instantiated by the RTL
designer to enable dynamic power reduction. This can be a problem with FPGAs
which can get resource limited if there are too many clock gating cells in the design.
A solution is to do a tool-based or hand-scripted transformation to the clock gating
cells. A typical example is provided in Fig. 18.4 .

 Table 18.1 Mapping of ASIC clock frequencies to FPGA clocks

 # ASIC clock ASIC freq
 FPGA clock
resource

 FPGA
freq Comments

 1 Clock.A 400 MHz PLL1.CLKOUT0 40 MHz All clock scaled as div
by 10

 2 Clock.B 200 MHz PLL2.CLKOUT1 20 MHz
 3 Clock.A.div2 200 MHz PLL1.CLKOUT1 20 MHz A divider in the path of

ClockA is remapped to
a clock output
synchronous to div2 of
the PLL1.CLKOUT0

 4 Clock.A.div8 50 MHz PLL1.CLKOUT2 5 MHz Div8 of the PLL1.
CLKOUT0

P.K. Joshi

227

18.4.2 Multiple FPGA Specifi c (The Partitioning Problem)

 Now that the individual pieces of your RTL have been readied for FPGA-based
emulation, the next level of complexity comes if the design cannot be mapped on
one FPGA. For a particular design, it might not fi t into a single FPGA, due to either
of the following:

• Design logic size exceeding the logic that can be mapped onto the FPGA.
• Design logic could be mapped, but it could not be routed.
• Design logic was mapped and routed, but design has more memory than the

block RAMs on the FPGA.
• Design ran out of IO that could be appropriately mapped on the FPGA.

 Irrespective of the situation leading to the use of multiple FPGAs, all of the
above need to be resolved on a per FPGA basis on a MultiFPGA emulation system.
To start with, get a gate, memory, and pin count estimate for the big blocks in the
design. Also, assume that each FPGA may be about 60 % utilized to begin with.
Typically, most big IPs would fall within 5 ~ 6 sub-hierarchical levels of logic. This
exercise would give a rough estimate of the number of FPGAs required to fi t the
design and testbench.

 The exercise is iterative. Start with partitioning through the most constrained of
the three resources (gate count, pin count, memory) and then affect the grouping
changes to see if the other constraints can also fi t. Figure 18.5 depicts the hierarchi-
cal view of the DUV and the testbench BFM components and the Table 18.2 the
tabular view of the same. Both these views (hierarchical and tabular) help in con-
verging to the right partitioning between multiple FPGAs.

RTL implementation:
always @ (posedge clk or negedge resetn) begin
if (~resetn) begin

q <= 1'b0;
end
else if (enable) begin

q <= d;
end

end

D

CLK

Q

RSTN

Integrated
Clock

Gating Cell

d

resetn

clk

enable

ASIC
IMPLEMENTATION

q D

CLK

Q
RSTN

MUX

resetn

FPGA
IMPLEMENTATION

q

clk

d

q

enable

 Fig. 18.4 Typical ASIC and FPGA implementation for a clock gating cell

18 Emulation Using FPGAs

228

18.4.2.1 Partitioning Gate Count Challenge

 Once the gross level partitioning is known through analytical method as per
Table 18.2 , we need to get the same implemented. There are tools which can read in
the RTL fi les and then dump out a regrouped fi le. Such grouping would result in
new hierarchical tables being generated, as shown in Table 18.3 .

 For this example, considering per FPGA gate count of ~100M gates, Table 18.3
shows that FPGA3 is OK, but FPGA1 and FPGA2 are likely challenges to the P&R

 Fig. 18.5 Hierarchical view for embedded synthesizable testbench with DUV and BFM

 Table 18.2 FPGA view for the embedded synthesizable testbench with DUV and BFM

 subHier
Level ModName GateCount PinCount TotalMemory

 Estimate
FPGA

 1 tb_top 250 200 4 Mbits
 2 tb_top.BFM1 12M 100 200 Kbits FPGA1
 2 tb_top.BFM2 24M 50 100 Kbits FPGA2
 2 tb_top.BFM3 14M 125 250 Kbits FPGA3
 2 tb_top.DUV 200M 350 3.5 Mbits
 3 tb_top.DUV.BLOCK1 75M 450 FPGA1
 3 tb_top.DUV.BLOCK2 80M FPGA2
 3 tb_top.DUV.BLOCK3 35M FPGA3
 3 tb_top.DUV.BLOCK4 5M FPGA1
 3 tb_top.DUV.ANA1 5M FPGA3

P.K. Joshi

229

stage. These considerations and iterations go on until there is suffi cient conver-
gence. Table 18.3 is defi cient in terms of pin count and memory as it is for illustra-
tion purpose only.

 However, since the module BLOCK2 and BFM2 are closely knit with each other,
there could be pin count challenge if some readjustments of modules of BLOCK2
are done onto FPGA3 which seems to be least constrained.

18.4.2.2 Partitioning Pin Count

 The MultiFPGA board usually has fi xed pin count which can be summarized in a
template table as in Table 18.4 .

 In Table 18.4 PF12 are the physical IO pins that are available between FPGA1
and FPGA2 (F1 <--> F2) on the FPGA board.

 In Table 18.4 we have a Not Applicable (NA) if the particular FPGA is not used
in the implementation. The implemented pin count across the FPGAs (IPF) should
be less than the provisioned pin count across the FPGAs (PF). Thus, the pin count
criteria can be converged when IPF12 < PF12 and so on.

 If the pin count criteria are not satisfi ed, you could resort to pin muxing for the
IO. This means that another utility RTL needs to be added to send multiple bits of
data over a single IO from one FPGA to another. This utility RTL is inserted prior
to the pin-multiplexed IO. Figure 18.6 shows the circuit for the utility RTL on the
FPGAs for pin multiplexing. There are three main operations done:

• Load: convert from parallel to serial.
• Shift: shift the serial data from FPGA2FPGA.

 Table 18.3 Sorted list of hierarchies on per FPGA basis

 subHier
Level ModName GateCount PinCount TotalMemory

 Estimate
FPGA

 1 tb_top 250M 200 4 Mbits
 2 FPGA1.BFM1 12M 100 200 Kbits FPGA1
 2 FPGA1.BLOCK1 75M FPGA1
 2 FPGA1.BLOCK4 5M FPGA1
 2 FPGA2.BFM2 24M 50 100 Kbits FPGA2
 2 FPGA2.BLOCK2 80M FPGA2
 2 FPGA3.BFM3 14M 125 250 Kbits FPGA3
 2 FPGA3.BLOCK3 35M FPGA3
 2 FPGA3.ANA1 5M FPGA3

 Table 18.4 Actual partitioned pin count vs. available connections between FPGAs

 F1 <--> F2 F1 <--> F3 F1 <--> F4 F2 <--> F3 F2 <--> F4 F3 <--> F4

 PF12 PF13 PF14 PF23 PF24 PF34
 IPF12 IPF13 NA IPF23 NA NA

18 Emulation Using FPGAs

230

• Restore: convert serial data back to parallel.

 EDA Tools like Certify™ from Synopsys ® form a major backbone to enablement
of this convergence.

18.4.2.3 Using SERDES Lanes

 It is also possible to use the FPGA SERDES Lanes as an extension to the pin
multiplexing. SERDES provides a convenient serializer and deserializer over a
two- wire network, which can transmit and receive data Gbps (Giga bits per
second) range. The SERDES lanes are useful in converting FPGA2FPGA IOs
into serial, sending it across at high speed and reconstructing the same at the
other end.

18.4.2.4 Handling Clocks Over Multiple FPGAs

 As soon as we move into using multiple FPGAs, the clocking complexity increases.
One way is to see each hop or evaluation as a phase (a dedicated time slot) and
increase the emulation clock period accordingly. This means that the performance
of the emulator drops every time there is a signal hop.

FPGA1

MUX SELECT

FPGA2

P
A
R
A
L
L

L

2

2

S
E
R

A
L

I

S
E
R

A
L

I

E

P
A
R
A
L
L

L
E

 Fig. 18.6 Pin muxing for IOs over two FPGAs

P.K. Joshi

231

18.5 Instrumenting

 There are ways of achieving some degree of controllability and observability on an
FPGA-based emulator, albeit at the cost of performance, logic area, and memory
requirements. A general observation is that about 10 ~ 40 % (depending on design
specifi cs) of the design overhead on an emulator is attributed to addition of instru-
mentation for controllability and observability. At each step of the instrumentation
addition, exercise care to maintain the equivalence of the design.

 Let us assume that the emulator adds an instrumentation port (say Instrumentation
JTAG or iJTAG) through which it can carry out the functions of observability and
controllability to the design. This instrumentation port provides an interface to the user
using a host computer. Figure 18.7 logically explains the two ports needed for an emu-
lator. Modern emulators like Synopsys ZeBu use the PCIe as an instrumentation port.

18.5.1 Ability to Stop and Start the Emulation

 The emulator start-stop is affected by the clocking. If the clock to the logic blocks
does not tick, the emulator is in stop state. The instrumentation needed to achieve
the purpose are:

 Fig. 18.7 Instrumentation (iJTAG) port connecting host computer and the emulator

18 Emulation Using FPGAs

232

 1. Create a set of clock gates in instrumentation through the use of the BUFGCE ,
 BUFGMUX , etc. The BUFGCE is used for Enable . The BUFGMUX is a mux
between instrumentation mode and functional mode.

 2. Create a set of counters, preferably one per primary clock. It should be possible
to start, stop, and free run the counter. A set of count comparators, then could
gate the clock to the functional logic blocks. Through the iJTAG one can write
into these instrumentation registers which control the counters and clocks.

 3. Using similar control instrumentation, you can also have some DUV internal
signals trigger or stop the emulator clocks.

18.5.2 General Observability of Signals and Registers
in the Design

 The RTL synthesis process for FPGA optimizes out intermediate combinatorial
logic signals. This scenario is in contrast with “array of processor”-based emulators,
where each node can be maintained within the processor database.

• For the registers, using the iJTAG port, and decoding logic-related instrumenta-
tion, it is possible to have full controllability and observability. Figure 18.8 gives
a feel of the instrumentation to be added for a register (fl ip-fl op).

• For intermediate signals (part of combinatorial logic), a monitor fl op and control
mux can be added to gain controllability and observability.

 There are multiple methods to enable these instrumentations:

• Modify the RTL to add pragmas known to Xilinx Vivado tool suite.
• Use a netlist editor tool post functional synthesis.
• Use a dedicated vendor tool for instrumentation insertion. Example Synopsys

ZeBu tool suite does a seamless instrumentation insertion tailored to the ZeBu
FPGA-based emulator.

18.5.3 Instrumentation for DUV Internal Memory

 Often, it is needed to preload internal ROM and SRAMs with the executable code.
The C program for the application is compiled, linked, and loaded into internal mem-
ories. The intent is to release the CPU reset and expect the CPU to execute the code
and data loaded into the respective memories. Instrumentation can be added and
accessed using the iJTAG as per the Fig. 18.8 even for memories. Note that the func-
tional ROMs can also be preloaded using the iJTAG after instrumentation insertion.

 For memories like dual-port memories, the port which has both write and read
ports is chosen for instrumentation. Table 18.5 indicates the typical instrumentation
that needs to be inserted for commonly used memories within the DUV.

P.K. Joshi

233

 If the SP/DP RAM has bit- or byte-wise write and read control (functionally
strobed lanes), then the instrumentation is suitably adjusted so that all the byte lanes
are affected during memory load and dump through iJTAG.

 The typical sequence for the usage would be:

 1. Stop all the clocks to the emulator. This is through iJTAG-based instrumentation
register confi guration.

 2. Preload the memories using external iJTAG:

 (a) Glitch-free selection of the clock to point to iJTAG_TCK.
 (b) Select the memory to be preloaded.
 (c) Preload the memory with the (address, value) pairs.

 3. Apply reset to the DUV.
 4. Start the clocks to the emulator.

D

CLK

Q

RSTN

FUNCTIONAL
COMBINATORIAL

LOGIC

Functional clk

Instrumentation clk

Instrumentation select

MUX

MUX

INSTRUMENTATION
COMBINATORIAL

LOGIC (WRITE PATH)

FUNCTIONAL
SIGNAL PATH

INSTRUMENTATION
READ PATH

Q

 Fig. 18.8 Control and observability for registers using instrumented logic

 Table 18.5 Typical instrumentation needs for memories

 Memory Functional Instrumentation

 ROM Read only (a) Clock muxing
 (b) Write port addition
 (c) Address and data line muxing

 Single-port (SP)
RAM

 Read and write (a) Clock muxing
 (b) Address and data line muxing
 (c) Write/read control signal muxing

 Dual-port (DP)
RAM

 Different types (a) Clock muxing on any one Write Port
 (a) 1 W, 1R (b) Insertion of read port instrumentation for the write

port (if it does not exist)
 (b) 1 W&R, 1R (c) Address and data line muxing (for instrumented

port)
 (c) 1 W&R,

1W&R
 (d) Write/read control signal muxing

18 Emulation Using FPGAs

234

 5. Release reset to the DUV.
 6. Expect the design to run the test (application).
 7. Stop all the clocks to the emulator.
 8. Read the memory (address, value) pairs, and store it to a fi le on host machine.

18.5.4 Adding Signal Observability (Waveforms)

 Observing waveforms is an important part of the debug process and this feature is
integral to any emulator. With regard to waveform, there are a few key concepts that
need to be put in place as below:

 1. Signal List : List of signals and buses (full hierarchical names) that you want to
be added into the debug waveform.

 2. Trigger Signals and Trigger Expression : A set of Trigger signals and the Boolean
expression which would control the start and stop of the waveform capture.

 3. Trace Depth : The maximum number of waveform samples that can be taken
using the appropriate sampling clock.

 4. Trace Window : The period of time when the waveform samples are captured.
You can also have a circular trace buffer, allowing for a % trigger start, i.e., the
trace starts x % prior to the actual trigger event and lasts up to (100 − x)% after the
trigger event. One can also defi ne a pre-trigger percent or a post trigger percent
based on this as is indicated by Fig. 18.9 .

 Chapter 17 explains various debug cores provided by Xilinx that can be used
to capture waveforms. However, often, for deeper level of debug, the ILA is not
suffi cient, and at times the Signal List can span multiple FPGAs. To address this
problem, emulators usually have their own external SRAM/DDR memory which
can go up to 128 GB to enable deep trace. Intuitively, one can see that the instru-
mentation needed for this feature is huge. Some basic components are listed in
Table 18.6 .

100 % ; N-samples

Trigger point

PreTrigger %
PostTrigger %

 Fig. 18.9 Illustration of Trigger Point and “pre- and post trigger percent”

P.K. Joshi

http://dx.doi.org/10.1007/978-3-319-42438-5_17

235

 Table 18.6 Instrumentation components for waveforms using external memory

 Instrumentation
component Usage

 DDR Memory The waveform samples would be written in the DDR memory. The
samples are then read back and stored onto a host fi le

 DDR Controller To adhere to the DDR protocol for writing and reading the DDR
memory

 Signal Funnel An instrumentation logic which converts (packs) the Signal List
into chunks of data for writing and reading to the DDR memory

 Instrumentation clock Addition of an instrumentation clock, which is typically 1× or 2×
the frequency of the sampled signals

 Optional instrumentation
CPU subsystem (iCPU)

 The triggering, capturing of set of signals would need an
instrumentation CPU to control the fl ow. The CPU would control
the traces written to the DDR, and can also help in reading the
traces and formatting for waveform generation by appropriate
usage of iJTAG (host port connection)
 If an iCPU is being added, it can also be confi gured to enable other
instrumentation tasks including complex clock management for
starting and stopping the emulator

18 Emulation Using FPGAs

	Chapter 18: Emulation Using FPGAs
	18.1 Introduction to Emulation
	18.1.1 Types of Emulators
	18.1.2 Uses of Emulation/Prototyping

	18.2 Emulation Using FPGAs
	18.3 Challenges in Emulation Using FPGAs
	18.3.1 Design Logic and Memory Size
	18.3.2 Design Pin Count
	18.3.3 Clocking
	18.3.4 RTL Constructs and Remodeling
	18.3.4.1 IO Pads Modeling
	18.3.4.2 ADC Module Modeling
	18.3.4.3 Memory Modeling
	18.3.4.4 Standard Cells Modeling
	18.3.4.5 Inferred Components Modeling

	18.3.5 FPGA Board Design

	18.4 General Methodology
	18.4.1 RTL-Related Transformations
	18.4.2 Multiple FPGA Specific (The Partitioning Problem)
	18.4.2.1 Partitioning Gate Count Challenge
	18.4.2.2 Partitioning Pin Count
	18.4.2.3 Using SERDES Lanes
	18.4.2.4 Handling Clocks Over Multiple FPGAs

	18.5 Instrumenting
	18.5.1 Ability to Stop and Start the Emulation
	18.5.2 General Observability of Signals and Registers in the Design
	18.5.3 Instrumentation for DUV Internal Memory
	18.5.4 Adding Signal Observability (Waveforms)

