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    Chapter 18   
 Emulation Using FPGAs                     

     Paresh     K.     Joshi    

18.1          Introduction to  Emulation   

 For the purpose of this chapter, we will use emulation to include prototyping also—
since underlying challenges and methodologies are common. We read about simula-
tors in Chap.   11    . An emulator is a  simulation - specifi c  hardware, which is capable of 
retaining the parallelism of the blocks of the design, thereby signifi cantly improving 
the speed of execution. 

 Depending on the capabilities of the emulator, you can get very close to your 
design environment. Since emulators are dedicated hardware, the speed advantage 
is obtained at the cost of observability and controllability. Emulation also needs 
additional setup, which is what this chapter is mostly about. In an ideal scenario, the 
emulator must support all the features of simulation at a speed and cost advantage. 

18.1.1     Types of Emulators 

     1.     Array of simulation - specifi c processors  ( Cadence Palladium series ): Array of 
processors whose instruction set and software is tailored to simulation tasks. One 
set of such arrays is called a  board . Each processor on the board can simulate 
millions of gates in parallel. Furthermore, each processor on the board talks to 
other processors via a fi xed (specifi c) protocol.   

   2.     Array of FPGAs (Synopsys ZeBu series):  Array of FPGAs. Each FPGA can have 
mapped gates programmed into it. Each FPGA in the Array usually has dedi-
cated wiring with other FPGAs.   
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   3.     A hybrid array of both simulation - specifi c processors and FPGAs (Mentor 
Veloce series) .     

 For large designs boards in an emulator can be cascaded. To better utilize the 
components in the emulator, there are partitions possible which enable multiple 
users to simultaneously access the resources of the emulator. 

 Since emulators comprise of hardware components, it is possible to connect the 
emulator to real external targets like JTAG, UART, QSPI, I2C, etc. The JTAG and 
UART are used by the software team to do hardware-software co-design and debug 
at the  programmers view  level. 

 Figure  18.1  illustrates an FPGA or processor array-based emulator system with 
multiple user terminals, standard connectors, IOs, and a backplane to cascade mul-
tiple such boards. Multiple users can then use the emulator boards for improving 
resource utilization.

18.1.2        Uses of Emulation/Prototyping 

  Substitute for simulation : This is the most obvious usage. In practice, however, 
emulation is resorted to only after the RTL design reaches a certain level of matu-
rity. A not-so-mature RTL design will fi nd iterative debug to be diffi cult, due to 
limited observability and controllability of emulation. 

  Enabling    pre-silicon software     development : Once the RTL is reasonably mature, 
the software teams can use the emulator for developing BOOTROM, Software 
(UBOOT, Linux, Android, RTOS, UEFI), Device Drivers (BSP), etc. Doing so pro-
vides several months of lead time to the software teams. This enables the software 
components to be available and ready for use, immediately after the device silicon 
is available. 

  Fig. 18.1    Cascading 4 processors/FPGAs to build a larger emulation system       
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  Place-holder for actual silicon : The fi rst silicon bring-up team designs an evalu-
ation board with sockets for the device. Before the actual silicon is available, the 
emulator can behave as a prototype and fi t into the socket using a plug-in board. The 
evaluation board along with silicon bring-up test cases can be run on the system as 
shown in Fig.  18.2 .

18.2         Emulation Using FPGAs 

 System designers and prototyping teams have been using FPGAs to their benefi t. 
FPGA tools are available to provide RTL to FPGA mapping. If you have a prototyp-
ing environment, the additional activities for going to emulation include:

    1.    Creation of a synthesizable and reconfi gurable testbench.   
   2.    Addition of instrumentation into design for advance debug purposes.   
   3.    Mapping of complex design blocks like IOs, SERDES, DSP blocks, and block 

RAMs to the FPGA.   
   4.    Remapping of complex clocking structure of the device to the FPGA-based 

PLLs and clock controllers.   
   5.    Mapping of design IOs to the FPGA IOs to obtain connectivity to the external 

targets (JTAG, UART, etc.).   
   6.    For designs which require multiple FPGAs:

    (a)      Logic Partitioning   : Partitioning of the design into chunks of logic to fi t into 
individual FPGAs. This depends on the size of the design and the size of 
placeable gates on the FPGA. The logic and memory closely associated with 
the said logic are grouped together into pieces which fi t on the same FPGA.   

   (b)      Pin Partitioning   : Partitioning of the design with appropriate pin count across 
FPGAs. This depends on the hardware board design and is usually fi xed for 
a particular board.         

 The additional activities for going to emulation from a simulation setup include:

CHIP SOCKET FPGA BASED 
EMULATOR

SILICON 
EVALUATION 

BOARD

  Fig. 18.2    Silicon Evaluation Board with a socket being interposed with FPGA-based emulator       
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    1.     Observability:  Simulation allows to see the waveforms for all signals at all 
times. The waveforms are directly dumped into a hard disk during runtime. In an 
FPGA, there are limited logic and memory resources. So complete runtime 
waveform dumping is not possible. Thus, you have to add instrumentation to 
 trigger  the start of waveform dumping for a known limited number of signals 
and for a known limited amount of time. Furthermore, you need to build in a 
mechanism to retrieve the waveform data from the FPGA block RAMs. Xilinx 
Vivado provides ILA core for doing this—as explained in Chap.   17    .   

   2.     Controllability : For some tests, a specifi c pin (say:  reset ) may need to be kept at 
a desired value for a specifi c duration. In simulation you can force the signal then 
release it. A similar ability needs to be provided when doing emulation using 
FPGAs. Xilinx Vivado provides VIO.   

   3.      Memory initialization   : The DUV usually contains BOOTROM which needs to 
be programmed (preloaded) with the appropriate bitmapped code. The testbench 
could have other memory models of fl ash, DDR, etc. In the simulation environ-
ment, the memory load ( $readmemb ) and dump can be used. A similar ability is 
required for emulation using FPGAs.     

 Xilinx FPGAs and the Vivado tool set provide the methods and means to make 
all of the above possible.  

18.3      Challenges in Emulation Using FPGAs 

 The basic challenge is to stitch the hardware, the tool software, and the RTL- 
mapping fl ow with the evaluation board and components. This section breaks up the 
challenge into multiple parts and sections. Section  18.4  then explains on how to deal 
with these challenges. 

18.3.1     Design Logic and Memory Size 

 The engineering choice is to use one FPGA which fi ts the design. However, some-
times the DUV may be bigger than the largest FPGA available. Even otherwise, 
sometimes fi tting the DUV into two smaller FPGAs is cheaper than using the largest 
FPGA available. If the design is skewed toward huge memory blocks, the FPGA 
tools can map parts of unmapped logic on the FPGA tile for memory blocks. For an 
emulator using FPGAs, (since the testbench is embedded into the FPGA) large 
memories like fl ash, DDR pose mapping problems. In such scenarios the emulator 
is fi tted with large external memories which are then remodeled to behave like fl ash 
and DDR. Note that this remodeling is done through custom instrumentation inser-
tion prior to using Vivado P&R tools.  
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18.3.2     Design Pin Count 

 The FPGA (or an array of FPGAs) must be able to support the relevant pin count of the 
device being emulated. In general, for emulation purposes a  synthesizable testbench   is 
used, indicating that there are fewer external connections. In certain cases, fl ash mem-
ory can be real components on the board which are then pinned-out to the board.  

18.3.3     Clocking 

 Clocking between FPGAs and ASIC/ASSP is different. In an ASIC/ASSP there could 
be many hundreds of clock domains with multiple PLLs embedded. Each root clock 
derived from a PLL can have multiple secondary clock generation logic (say for 
dividing clocks, test clocking). Furthermore, sets of fl ip-fl ops or registers in the design 
can have clock-gating circuit implemented as part of power-reduction techniques. 

 FPGAs usually have a limited number of PLLs and a limited number of balanced 
clock channels incident upon a larger cluster of fl ip-fl ops. The challenge is to 
straighten up the ASIC clocks to map it easily onto the FPGA clocking.  

18.3.4     RTL Constructs and Remodeling 

 Several RTL constructs are not FPGA friendly. These need to be modeled appropri-
ately for FPGA. The remodeling has to be done without modifying the functional-
ity. A module RTL makes it easier and scalable since there is a great usage of 
common cells in the design. 

18.3.4.1     IO Pads Modeling 

 IO pads typically have tristate functionality. Usually, these IOs of the DUV are connected 
to the BFMs in the testbench. Recent FPGAs do not have built-in tristate gates. For FPGA 
usage, you need to remodel the tristates as shown by the example in Fig.  18.3 . The Xilinx 
ISE/Vivado toolset automatically transforms internal tristates into logic elements.

18.3.4.2        ADC Module Modeling 

 For a module with analog behavior (e.g., ADC/DAC), you need to appropriately 
model to ensure that its boundary talking to the digital side of the design is clean. 
For example, an ADC module can easily be modeled with a memory and digital 
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output. The memory can be preloaded with the kind of analog behavior we expect 
out of the design. Alternatively, an ADC can be placed on the FPGA board and the 
digital output can be used as an input to the design. If the ADC module is deeply 
embedded into the DUV, you need to bring out the wires from the embedded hier-
archies onto the top level of the testbench. 

 For Xilinx FPGAs you can use the SYSMON module (explained in Chap.   16    ). 
However, you still need to take care of:

•    Performance of the SYSMON for emulator clocking  
•   The analog stimulus to be fed to the SYSMON  
•   The appropriate remodeling of the ADC to instantiate the SYSMON into it     

18.3.4.3     Memory Modeling 

 Typically the RTL has memories which are either ASIC technology memories or 
modeled as a memory array. Also, the RTL memory model could have test logic 
embedded into it. Remodeling memories for FPGA is typically a four-step process.

    1.    Identify the memories in the design. If the memories belong to the same technol-
ogy node, then the entity is usually identical except for the  address  and  data  
width. Sometimes, there might be variants (e.g., byte-wise write).   

   2.    Remodel the memory component with an equivalent FPGA friendly construct. 
If you are not interested in test logic, they could be tied to their disabled state. 
This remodeled memory component is then verifi ed to be true using simulation. 
If the memory needs to have user-defi ned preloading or dynamic preloading, 
then explicit instrumentation needs to be added.   

   3.    One level of FPGA synthesis and run is carried out to fl ush out the fl ow.   
   4.    Create a scriptware to convert all the fl avors of  data  and  address  widths.     

 Steps (2), (3), and (4) are true for all types of remodeling done at RTL level, but 
it deserves a special mention for memories since there are many types.  

X

oen _dut oen _bfm

Weak 
pullUp

o_dut o_bfm

sig = ~oen _dut ? o_dut :
~oen _bfm ? o_bfm :
1 'b1; 

  Fig. 18.3    Remodeling of typical IO connectivity within testbench between DUV and BFM       
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18.3.4.4     Standard Cells Modeling 

 It is best to have synthesizable view of the technology standard cells in the design. 
Most technology libraries provide the synthesizable view of standard cells.  

18.3.4.5     Inferred Components Modeling 

 Some RTL descriptions infer multipliers, dividers, special Register Files, FIFOs, 
etc., during the ASIC synthesis fl ows. These components use compiled models/
descriptions for simulation. Such components will end up as being unresolved. A 
way to resolve this problem is to actually do an ASIC synthesis and use the verilog 
equivalent for the said component. Thus:

    FPGA RTL view = synthesized netlist from ASIC tool + the synthesizable RTL view 
of technology std-cell       

18.3.5     FPGA Board Design 

 The FPGA-based emulation system is very much dependent on the FPGA board 
design. In particular, the number of FPGAs in the array, the capacity of each FPGA 
in the array, the external memory connected (for modeling large memories, for 
dynamic waveform dumping, and for using memory as Look Up Table for large 
pieces of logic with huge fan-in cones), and the external connectors, switches, 
GPIOs, and LEDs are provided. Its levels of complexity are higher to move from 
one FPGA-based emulator to another than it is to move across simulators from dif-
ferent vendors. The basic complexity is due to the use of hardware for emulation 
and so it is fi xed. This complexity makes it diffi cult to make sound design and 
fi nancial decisions for the right choice of FPGA-based emulators. FPGA vendors 
provide a chart with logic gate count estimates, IOs, memory blocks, SERDES 
blocks, and DSP blocks within the FPGA.   

18.4      General Methodology 

 In this section we provide some known recipes to the challenges explained in 
Sect.  18.3 . The recipes below would help design teams to realize their own FPGA- 
based emulator. We have assumed (by this chapter, toward the end of the book) a 
basic understanding of FPGA-based design. 

  Note  that you should perform RTL to RTL Logic Equivalence Check after any 
RTL transformation. 
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18.4.1     RTL-Related Transformations 

  PLLs : All technology ASIC libraries contain PLLs. Each PLL consists of basic  ref-
erence clock in ,  clock out , with pins indicating the multiplier factor in terms of 
 Numerator  and  Denominator  values. These have to be mapped to the equivalent 
PLLs in the selected FPGA. The methodology used is to keep the ASIC PLL entity 
identical but to instantiate the FPGA clocking resource in place. If the PLL has 
multiple clock outputs, the same are also remapped to the FPGA. 

  Clock Dividers : If there are dividers in the design, then it is appropriate to remove 
the divider circuits and replace them with the FPGA clock resource outputs as 
defi ned in the MMCM clock tile. 

 It would be useful to maintain a table similar to Table  18.1 .
   In the Table  18.1 , for (#2) and (#3), the clock frequencies are the same, i.e., 

20 MHz. It would be worthwhile to investigate from an ASIC clocking point of 
view, if it is possible to use the same PLL output of 20 MHz driving the clock end 
points of both (#2) and (#3). If the clocks are of the same frequency, but asynchro-
nous to each other, it would be OK to reduce the use of a PLL and free up routing 
resources and reduce complexity of mapping to the FPGA. 

  Programmable Clock Dividers : Usually there is a use of Programmable Clock 
Dividers to select a baud rate as it is in the case of UART. In such cases,  reconfi gurable 
registers of the ASIC need to be remapped to the Dynamic Reconfi guration Data 
Input of the Clocking tile. Most emulation designers would put the dynamic recon-
fi guration data input as part of the instrumentation in the testbench, so that they have 
better control over the clock. 

  Clock Gating Cells : Integrated clock gating cells are instantiated by the RTL 
designer to enable dynamic power reduction. This can be a problem with FPGAs 
which can get resource limited if there are too many  clock gating   cells in the design. 
A solution is to do a tool-based or hand-scripted transformation to the clock gating 
cells. A typical example is provided in Fig.  18.4 .

    Table 18.1    Mapping of ASIC clock frequencies to FPGA clocks   

 #  ASIC clock  ASIC freq 
 FPGA clock 
resource 

 FPGA 
freq  Comments 

 1  Clock.A  400 MHz  PLL1.CLKOUT0  40 MHz  All clock scaled as div 
by 10 

 2  Clock.B  200 MHz  PLL2.CLKOUT1  20 MHz 
 3  Clock.A.div2  200 MHz  PLL1.CLKOUT1  20 MHz  A divider in the path of 

ClockA is remapped to 
a clock output 
synchronous to div2 of 
the PLL1.CLKOUT0 

 4  Clock.A.div8  50 MHz  PLL1.CLKOUT2  5 MHz  Div8 of the PLL1.
CLKOUT0 
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18.4.2        Multiple FPGA Specifi c (The  Partitioning   Problem) 

 Now that the individual pieces of your RTL have been readied for FPGA-based 
emulation, the next level of complexity comes if the design cannot be mapped on 
one FPGA. For a particular design, it might not fi t into a single FPGA, due to either 
of the following:

•    Design logic size exceeding the logic that can be mapped onto the FPGA.  
•   Design logic could be mapped, but it could not be routed.  
•   Design logic was mapped and routed, but design has more memory than the 

block RAMs on the FPGA.  
•   Design ran out of IO that could be appropriately mapped on the FPGA.    

 Irrespective of the situation leading to the use of multiple FPGAs, all of the 
above need to be resolved on a per FPGA basis on a MultiFPGA emulation system. 
To start with, get a gate, memory, and pin count estimate for the big blocks in the 
design. Also, assume that each FPGA may be about 60 % utilized to begin with. 
Typically, most big IPs would fall within 5 ~ 6 sub-hierarchical levels of logic. This 
exercise would give a rough estimate of the number of FPGAs required to fi t the 
design and testbench. 

 The exercise is iterative. Start with partitioning through the most constrained of 
the three resources (gate count, pin count, memory) and then affect the grouping 
changes to see if the other constraints can also fi t. Figure  18.5  depicts the hierarchi-
cal view of the DUV and the testbench BFM components and the Table  18.2  the 
tabular view of the same. Both these views (hierarchical and tabular) help in con-
verging to the right partitioning between multiple FPGAs.

RTL implementation:
always @ (posedge clk or negedge resetn) begin
if (~resetn) begin

q <= 1'b0; 
end
else if (enable) begin

q <= d; 
end

end
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  Fig. 18.4    Typical ASIC and FPGA implementation for a clock gating cell       
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18.4.2.1        Partitioning Gate Count Challenge 

 Once the gross level partitioning is known through analytical method as per 
Table  18.2 , we need to get the same implemented. There are tools which can read in 
the RTL fi les and then dump out a regrouped fi le. Such grouping would result in 
new hierarchical tables being generated, as shown in Table  18.3 .

   For this example, considering per FPGA gate count of ~100M gates, Table  18.3  
shows that FPGA3 is OK, but FPGA1 and FPGA2 are likely challenges to the P&R 

  Fig. 18.5    Hierarchical view for embedded synthesizable testbench with DUV and BFM       

    Table 18.2    FPGA view for the embedded synthesizable testbench with DUV and BFM   

 subHier 
Level  ModName  GateCount  PinCount  TotalMemory 

 Estimate 
FPGA 

 1  tb_top  250  200  4 Mbits 
 2  tb_top.BFM1  12M  100  200 Kbits  FPGA1 
 2  tb_top.BFM2  24M  50  100 Kbits  FPGA2 
 2  tb_top.BFM3  14M  125  250 Kbits  FPGA3 
 2  tb_top.DUV  200M  350  3.5 Mbits 
 3  tb_top.DUV.BLOCK1  75M  450  FPGA1 
 3  tb_top.DUV.BLOCK2  80M  FPGA2 
 3  tb_top.DUV.BLOCK3  35M  FPGA3 
 3  tb_top.DUV.BLOCK4  5M  FPGA1 
 3  tb_top.DUV.ANA1  5M  FPGA3 
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stage. These considerations and iterations go on until there is suffi cient conver-
gence. Table  18.3  is defi cient in terms of pin count and memory as it is for illustra-
tion purpose only. 

 However, since the module BLOCK2 and BFM2 are closely knit with each other, 
there could be pin count challenge if some readjustments of modules of BLOCK2 
are done onto FPGA3 which seems to be least constrained.  

18.4.2.2     Partitioning Pin Count 

 The MultiFPGA board usually has fi xed pin count which can be summarized in a 
template table as in Table  18.4 .

   In Table  18.4  PF12 are the physical IO pins that are available between FPGA1 
and FPGA2 (F1 <--> F2) on the FPGA board. 

 In Table  18.4  we have a Not Applicable (NA) if the particular FPGA is not used 
in the implementation. The implemented pin count across the FPGAs (IPF) should 
be less than the provisioned pin count across the FPGAs (PF). Thus, the pin count 
criteria can be converged when IPF12 < PF12 and so on. 

 If the pin count criteria are not satisfi ed, you could resort to pin muxing for the 
IO. This means that another utility RTL needs to be added to send multiple bits of 
data over a single IO from one FPGA to another. This utility RTL is inserted prior 
to the pin-multiplexed IO. Figure  18.6  shows the circuit for the utility RTL on the 
FPGAs for pin multiplexing. There are three main operations done:

•     Load: convert from parallel to serial.  
•   Shift: shift the serial data from FPGA2FPGA.  

     Table 18.3    Sorted list of hierarchies on per FPGA basis   

 subHier 
Level  ModName  GateCount  PinCount  TotalMemory 

 Estimate 
FPGA 

 1  tb_top  250M  200  4 Mbits 
 2  FPGA1.BFM1  12M  100  200 Kbits   FPGA1  
 2  FPGA1.BLOCK1  75M   FPGA1  
 2  FPGA1.BLOCK4  5M   FPGA1  
 2  FPGA2.BFM2  24M  50  100 Kbits  FPGA2 
 2  FPGA2.BLOCK2  80M  FPGA2 
 2  FPGA3.BFM3  14M  125  250 Kbits   FPGA3  
 2  FPGA3.BLOCK3  35M   FPGA3  
 2  FPGA3.ANA1  5M   FPGA3  

     Table 18.4    Actual partitioned pin count vs. available connections between FPGAs   

 F1 <--> F2  F1 <--> F3  F1 <--> F4  F2 <--> F3  F2 <--> F4  F3 <--> F4 

 PF12  PF13  PF14  PF23  PF24  PF34 
 IPF12  IPF13  NA  IPF23  NA  NA 
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•   Restore: convert serial data back to parallel.    

 EDA Tools like Certify™ from Synopsys ®  form a major backbone to enablement 
of this convergence.  

18.4.2.3     Using SERDES Lanes 

 It is also possible to use the FPGA SERDES Lanes as an extension to the pin 
multiplexing. SERDES provides a convenient  serializer  and  deserializer  over a 
two- wire network, which can transmit and receive data Gbps (Giga bits per 
second) range. The SERDES lanes are useful in converting FPGA2FPGA IOs 
into serial, sending it across at high speed and reconstructing the same at the 
other end.  

18.4.2.4     Handling Clocks Over Multiple FPGAs 

 As soon as we move into using multiple FPGAs, the clocking complexity increases. 
One way is to see each hop or evaluation as a phase (a dedicated time slot) and 
increase the emulation clock period accordingly. This means that the performance 
of the emulator drops every time there is a signal hop.    
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  Fig. 18.6    Pin muxing for IOs over two FPGAs       
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18.5     Instrumenting 

 There are ways of achieving some degree of controllability and observability on an 
FPGA-based emulator, albeit at the cost of performance, logic area, and memory 
requirements. A general observation is that about 10 ~ 40 % (depending on design 
specifi cs) of the design overhead on an emulator is attributed to addition of instru-
mentation for controllability and observability. At each step of the instrumentation 
addition, exercise care to maintain the equivalence of the design. 

 Let us assume that the emulator adds an  instrumentation port   (say Instrumentation 
JTAG or iJTAG) through which it can carry out the functions of observability and 
controllability to the design. This instrumentation port provides an interface to the user 
using a host computer. Figure  18.7  logically explains the two ports needed for an emu-
lator. Modern emulators like Synopsys ZeBu use the PCIe as an instrumentation port.

18.5.1       Ability to Stop and Start the Emulation 

 The emulator start-stop is affected by the clocking. If the clock to the logic blocks 
does not tick, the emulator is in  stop  state. The instrumentation needed to achieve 
the purpose are:

  Fig. 18.7    Instrumentation (iJTAG) port connecting host computer and the emulator       
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    1.    Create a set of clock gates in instrumentation through the use of the  BUFGCE , 
 BUFGMUX , etc. The  BUFGCE  is used for  Enable . The  BUFGMUX  is a mux 
between  instrumentation  mode and  functional  mode.   

   2.    Create a set of counters, preferably one per primary clock. It should be possible 
to start, stop, and free run the counter. A set of count comparators, then could 
gate the clock to the functional logic blocks. Through the iJTAG one can write 
into these instrumentation registers which control the counters and clocks.   

   3.    Using similar control instrumentation, you can also have some DUV internal 
signals  trigger  or  stop  the emulator clocks.    

18.5.2       General Observability of Signals and Registers 
in the Design 

 The RTL synthesis process for FPGA optimizes out intermediate combinatorial 
logic signals. This scenario is in contrast with “array of processor”-based emulators, 
where each node can be maintained within the processor database.

•    For the registers, using the iJTAG port, and decoding logic-related instrumenta-
tion, it is possible to have full controllability and observability. Figure  18.8  gives 
a feel of the instrumentation to be added for a register (fl ip-fl op).

•      For intermediate signals (part of combinatorial logic), a monitor fl op and control 
mux can be added to gain controllability and observability.    

 There are multiple methods to enable these instrumentations:

•    Modify the RTL to add pragmas known to Xilinx Vivado tool suite.  
•   Use a netlist editor tool post functional synthesis.  
•   Use a dedicated vendor tool for instrumentation insertion. Example Synopsys 

ZeBu tool suite does a seamless instrumentation insertion tailored to the ZeBu 
FPGA-based emulator.     

18.5.3     Instrumentation for DUV Internal Memory 

 Often, it is needed to preload internal ROM and SRAMs with the executable code. 
The  C  program for the application is compiled, linked, and loaded into internal mem-
ories. The intent is to release the CPU reset and expect the CPU to execute the code 
and data loaded into the respective memories. Instrumentation can be added and 
accessed using the iJTAG as per the Fig.  18.8  even for memories. Note that the func-
tional ROMs can also be preloaded using the iJTAG after instrumentation insertion. 

 For memories like dual-port memories, the port which has both write and read 
ports is chosen for instrumentation. Table  18.5  indicates the typical instrumentation 
that needs to be inserted for commonly used memories within the DUV.
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   If the SP/DP RAM has bit- or byte-wise write and read control (functionally 
strobed lanes), then the instrumentation is suitably adjusted so that all the byte lanes 
are affected during memory load and dump through iJTAG. 

 The typical sequence for the usage would be:

    1.    Stop all the clocks to the emulator. This is through iJTAG-based instrumentation 
register confi guration.   

   2.    Preload the memories using external iJTAG:

    (a)    Glitch-free selection of the clock to point to iJTAG_TCK.   
   (b)    Select the memory to be preloaded.   
   (c)    Preload the memory with the (address, value) pairs.       

   3.    Apply reset to the DUV.   
   4.    Start the clocks to the emulator.   

D
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Instrumentation clk

Instrumentation select

MUX

MUX

INSTRUMENTATION 
COMBINATORIAL 

LOGIC (WRITE PATH)

FUNCTIONAL 
SIGNAL PATH

INSTRUMENTATION 
READ PATH

Q

  Fig. 18.8    Control and observability for registers using instrumented logic       

   Table 18.5    Typical instrumentation needs for memories   

 Memory  Functional  Instrumentation 

 ROM  Read only  (a) Clock muxing 
 (b) Write port addition 
 (c) Address and data line muxing 

 Single-port (SP) 
RAM 

 Read and write  (a) Clock muxing 
 (b) Address and data line muxing 
 (c) Write/read control signal muxing 

 Dual-port (DP) 
RAM 

 Different types  (a) Clock muxing on any one Write Port 
 (a) 1 W, 1R  (b) Insertion of read port instrumentation for the write 

port (if it does not exist) 
 (b) 1 W&R, 1R  (c) Address and data line muxing (for instrumented 

port) 
 (c) 1 W&R, 

1W&R 
 (d) Write/read control signal muxing 
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   5.    Release reset to the DUV.   
   6.    Expect the design to run the test (application).   
   7.    Stop all the clocks to the emulator.   
   8.    Read the memory (address, value) pairs, and store it to a fi le on host machine.      

18.5.4     Adding Signal Observability (Waveforms) 

 Observing waveforms is an important part of the debug process and this feature is 
integral to any emulator. With regard to waveform, there are a few key concepts that 
need to be put in place as below:

    1.     Signal List : List of signals and buses (full hierarchical names) that you want to 
be added into the debug waveform.   

   2.     Trigger Signals and Trigger Expression : A set of  Trigger  signals and the Boolean 
expression which would control the start and stop of the waveform capture.   

   3.     Trace Depth : The maximum number of  waveform samples  that can be taken 
using the appropriate sampling clock.   

   4.     Trace Window : The period of time when the waveform samples are captured. 
You can also have a circular trace buffer, allowing for a % trigger start, i.e., the 
trace starts  x % prior to the actual trigger event and lasts up to (100 −  x )% after the 
trigger event. One can also defi ne a pre-trigger percent or a post trigger percent 
based on this as is indicated by Fig.  18.9 .

       Chapter   17     explains various debug cores provided by Xilinx that can be used 
to capture waveforms. However, often, for deeper level of debug, the ILA is not 
suffi cient, and at times the  Signal List  can span multiple FPGAs. To address this 
problem, emulators usually have their own external SRAM/DDR memory which 
can go up to 128 GB to enable deep trace. Intuitively, one can see that the instru-
mentation needed for this feature is huge. Some basic components are listed in 
Table  18.6 .      

100 % ; N-samples

Trigger point

PreTrigger %
PostTrigger %

  Fig. 18.9    Illustration of Trigger Point and “pre- and post trigger percent”       
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   Table 18.6    Instrumentation components for waveforms using external memory   

 Instrumentation 
component  Usage 

 DDR Memory  The waveform samples would be written in the DDR memory. The 
samples are then read back and stored onto a host fi le 

 DDR Controller  To adhere to the DDR protocol for writing and reading the DDR 
memory 

 Signal Funnel  An instrumentation logic which converts (packs) the Signal List 
into chunks of data for writing and reading to the DDR memory 

 Instrumentation clock  Addition of an instrumentation clock, which is typically 1× or 2× 
the frequency of the sampled signals 

 Optional instrumentation 
CPU subsystem (iCPU) 

 The triggering, capturing of set of signals would need an 
instrumentation CPU to control the fl ow. The CPU would control 
the traces written to the DDR, and can also help in reading the 
traces and formatting for waveform generation by appropriate 
usage of iJTAG (host port connection) 
 If an iCPU is being added, it can also be confi gured to enable other 
instrumentation tasks including complex clock management for 
starting and stopping the emulator 
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