
165© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_14

 Chapter 14
 Timing Closure

 Srinivasan Dasasathyan

14.1 Introduction to Timing Concepts

 Timing closure involves modifying constraints, design, or tool fl ow/settings to
meet timing requirements. In Vivado tool, the timing constraints are entered in
 XDC format. XDC constraints are based on the standard Synopsys Design
Constraints (SDC) format.

 For brevity all the constraints that Vivado supports are not explained in this
chapter but only few are given to help understand topics discussed later in this
chapter. For details on XDC constraints and syntax, please refer to UG903 published
by Xilinx.

14.1.1 Creating and Defi ning a Clock

 create_clock Tcl command allows user to defi ne clock on a certain port and also
allows users to specify properties like period, waveform, root, etc. Unless a clock is
defi ned using the create_clock command, static timing analysis is not performed on
the clock. Also, create_clock command defi nes primary clocks, and all derived
clocks are automatically inferred. Usually the derived clocks come from the clock
modifying blocks like MMCM and PLL.

 S. Dasasathyan (*)
 Xilinx Inc. , San Jose , CA
 e-mail: srini.das@gmail.com

mailto:srini.das@gmail.com

166

14.1.2 Defi ning Clock Relationships

 Like all other SDC-based tools, Vivado also does timing analysis on all the cross- clock
paths. However, designers in certain occasions would want to ignore certain paths,
because those paths are either static paths (no signal transition happens) or the paths
are asynchronous and hence should not be timed. In such cases set_clock_groups or
 set_false_path commands are used to preclude certain portions of the designs from
timing analysis. This is an essential step as ISE (the previous Xilinx tool) which
used UCF constraints, assumed the opposite, i.e., unless clock relationship was
specifi ed, timing analysis was not done on cross-clock paths.

14.1.3 Timing Analysis

 Given these basic defi nitions of creating clock constraints and specifying clock relation-
ships, Vivado’s timing analysis engine does several checks under the static timing analy-
sis engine. The timing analysis engine analyzes and reports slack at the timing path
endpoints. The slack is the difference between the data required time and the data arrival
time at the path endpoint. A data is safely transferred between two registers if both the
setup and hold relationships are successfully verifi ed on that path. In other words, if both
setup and hold slacks are positive, the path is considered good from a timing point of
view. The following are the checks performed by Vivado’s timing analysis engine:

• Setup check
• Hold check
• Pulse-width check

14.2 Generating Timing Reports

 The fi rst step in timing closure is to understand whether the design has met all the
timing checks or not. In order to generate timing reports to view failing paths, the
following options are available in Vivado.

14.2.1 Report Timing Summary

 Report timing summary gives an overall picture of timing on the design. It performs
 setup , hold , pulse-width checks, and gives a summary on whether some or all of
these checks have failed. Even if one of the checks has failed, this command reports
that the design has failed to meet timing. Based on this report, it can be decided if
further steps are needed to achieve timing closure. Figure 14.1 gives a sample snap-
shot of the command, where setup , hold , and pulse-width violations are checked.

S. Dasasathyan

167

 Once the design is determined to have not met timing requirements, you can
further analyze failing timing paths in the design by running report timing or slack
histogram command.

14.2.2 Report Timing

 Report timing summary only gives a top-level report on timing failures; however,
 report timing gives details of all the paths that fail timing checks (setup and hold). By
default report timing reports on all path groups and prints the top 10 paths in each
path group and sort it by slack in ascending order. Additional fi lters can be added to
customize timing analysis on different from , through , or to points as well as select
more paths to view. Report timing only works for setup and hold checks. Pulse-width
 checks are reported in Vivado log fi le indicating where the errors are.

14.2.3 Slack Histogram

 Another way to see the failing timing paths is to generate slack histogram . Slack histo-
gram gives a concise view of all the timing paths across all path groups. Figure 14.2
shows a sample slack histogram plot. Slack histogram divides the slacks into different
bins. The X -axis represents different slack bins and the Y -axis represents the number
of paths in each bin. Clicking on each of the bars fi lters the paths in that bin, where
you can examine paths in each of the bin.

 Fig. 14.1 Report timing summary output

 Fig. 14.2 Slack histogram

14 Timing Closure

168

 In both report timing and slack histogram, you can click and double-click any of
the paths to examine each of the timing path in detail, including characteristics of
the path as well as placement and connectivity details.

14.3 Timing Paths and Constraint Correctness

 Timing paths are defi ned by the connectivity between the instances of the design.
In digital designs, timing paths are formed by a pair of sequential elements controlled
by the same clock or by two different clocks.

 In order to debug and fi x the timing paths, it is important to fi rst check whether
these paths are valid or not. Checking constraints is one of the key and easy steps in
getting to timing closure. One of the common issues in writing of XDC constraint
is related to incorrect cross- clock domain crossing paths. Timer takes the worst case
requirements for timing analysis. Hence if cross-clock paths are getting wrongly
timed (very often they needn’t be timed), they might have very tough requirement,
resulting in a big negative slack. Report CDC and report clock interaction are two
very useful commands to check if the interclock paths are being timed correctly.

14.3.1 Clock Interaction

 Report clock interaction gives a matrix and specifi es where all the clock pairs in the
design are considered for interaction. Each entry in the matrix is color coded. All
the entries across the diagonal are the paths within the same clock group. It is impor-
tant to examine if there are any unexpected cross-clock domain paths, and fi x them
by adding proper XDC constraints (set_false_path , set_clock_groups). Xilinx pub-
lished UG903 has more details.

14.3.2 Report Clock Domain Crossing

 Report CDC (clock domain crossing) performs a structural analysis of the clock
domain crossings in your design. You can use this information to identify poten-
tially unsafe CDCs, which will lead to metastability or data coherency issues. While
the CDC report is similar to the clock interaction report, the CDC report focuses on
structures and their timing constraints, but does not provide information related to
timing slack.

 Before generating the CDC report, you must ensure that the design has been
properly constrained and there are no missing clock defi nitions. Report CDC only
analyzes and reports paths where both source and destination clocks have been
defi ned. Report CDC performs structural analysis on:

S. Dasasathyan

169

 1. On all paths between asynchronous clocks
 2. Only on paths between synchronous clocks that have the timing exceptions (e.g.,

clocks coming out of MMCM)

 Synchronous clock paths with no such timing exception are assumed to be safely
timed and are not analyzed by the CDC engine. The report CDC operates without
taking into consideration any net or cell delays.

14.4 Timing Closure Techniques

14.4.1 Critical Path Analysis

 Timing reports can be generated at any stage during the synthesis and/or implemen-
tation phase. You should generate timing reports at each stage after synthesis, place-
ment, and routing and analyze the paths to make sure that the design is converging.
Catching and fi xing issues earlier in the fl ow will save several iterations of the sub-
sequent stages. For example, fi xing issues at synthesis will save time in place and
route stage.

 A timing failure might happen due to multiple different reasons. Based on the
analysis of the timing paths, fi xes may be required at synthesis stage or the place-
ment and routing stage. Hence it is important to study the characteristic of top fail-
ing paths to determine the reasons and fi xes. Below are some of the important
characteristics in the timing paths that can be examined and remedies that can be
taken to mitigate them.

14.4.2 Logic vs. Wire Delay

 Critical path delay can be broken down into logic delay and wire delay . The percent-
age of logic and wire delay in critical path can help to determine where to reduce
delays. A low logic delay component usually means that wire delay is higher, where
potentially fl oor planning the design can help in timing closure. A higher logic
delay component means that there are too many logic levels in the design.

14.4.3 Reducing Logic Levels

 For paths with higher levels of logic, looking at the levels of logic in the top failing
paths can reveal if there are any issues in the RTL or inferring of the logic.

 Synthesis step in Vivado infers structures in optimal way to balance between area
and speed. Different RTL coding styles guide the tool to infer structures that are
sometimes area optimal or performance optimal. By observing the logic levels in

14 Timing Closure

170

critical path, we can identify if we need to change either RTL coding style or guide
the tool to infer for performance as opposed to area. To reduce the levels of logic,
you can return to the RTL and check for the following general issues. In addition,
refer to Chap. 9 for controlling synthesis behavior.

• Use FSM_ENCODING in your RTL to infer ONE_HOT FSM , which are usually
better for speed.

• Use CASE statements instead of nested IF-ELSE statements; though the former
takes more area, it has effi cient inferences of Muxes which leads to better delays.

• Add pipeline registers to the critical path.

 Any change to RTL will require resynthesizing the design. Several iterations
may be needed to get optimal depth of logic.

14.4.4 Clock Skew

 Clock skew is the difference between delays that clock takes from common source to
capture fl op/sequential element and the launch fl op/sequential element. Examining the
magnitude of clock skew can reveal issues in clocking structure. A design with high
clock skew in critical paths usually means that the clocking structure needs to be
revisited. Using MMCMs to multiply/divide clocks is recommended than using LUTs.
UltraScale and newer devices have a very fl exible clock architecture and offer lots of
clocks to the user. To ease the issue of reducing clock skew and to generate H-tree
clocking structures, the device offers CLOCK_ROOT which is the center tap points
from where clock distribution happens. CLOCK_ROOT is chosen by Vivado for set of
clock loads such that clock skew for the set of loads is minimal. However, in some
cases where the paths are legal cross-clock domain paths, clock skew might be higher.
In these cases user can choose CLOCK_ROOT manually to reduce the clock skew.
UG912 from Xilinx explains the mechanism to modify CLOCK_ROOT location.

14.4.5 Reducing High-Fanout Signals

 High-fanout signals typically pose a challenge to the place and route tools, as due to
the very nature they have many connections, and the placement will be spread out.
Due to this, delay on the net would be relatively higher. If the top several critical
paths have some commonality that all of them involve high-fanout signal, some
optimization can be done at RTL level to reduce the fanout coupled with options to
synthesis tool. Some options are:

 Duplicate the driver and tell the synthesis tool not to remove the duplicate logic
(attribute DONT_TOUCH).

 For the signals other than control signals such as reset, set, and clock enable,
using max_fanout in synthesis will direct synthesis to replicate the driver.

S. Dasasathyan

http://dx.doi.org/10.1007/978-3-319-42438-5_9

171

 Another option is to use phys_opt_design (post-placement). This command
performs timing-based logic replication of high-fanout drivers and critical-path
cells. Drivers are replicated, then loads are distributed among the replicated drivers,
and the replicated drivers are automatically placed. This optional command can be
run after placement and before routing.

14.4.6 Control Sets and Control Set Optimization

 In Xilinx FPGA architecture (for 7 series and UltraScale), each slice has eight
fl ip- fl ops (FFs). These eight FFs share control signals, so the FFs that are placed in
the same slice should have same control sets. Hence the fl ops in the same slice have
to share the control set. Placer algorithm honors this constraint by placing FFs of the
same control sets together. Xilinx FPGAs can accommodate several thousand con-
trol sets; however, the higher the number of control sets, the more complex the job
for placer to place fl ops into slices without wasting fl ops. report_control_sets com-
mand can be used to assess the number of unique control sets in the design. Under
verbose options, the command gives details on the distribution of the fanouts of the
control signal.

 Vivado synthesis has an option which is used to specify threshold for synchro-
nous control set optimization to lower number of control sets. The number set to this
value specifi es how large the fanout of a control set should be before it starts using
it as a control set. For example, if control_set_opt_threshold is set to 5, a synchro-
nous reset that only fans out to 5 registers would be moved to the D input’s logic
rather than using the reset line of a register. The default threshold value is currently
set to 4.

 Other ways to reduce control sets is to use resets judiciously. Be selective on the
use of resets by observing the following points:

• Have resets only where they have impact on functionality.
• Use synchronous resets rather than asynchronous reset.

14.4.7 Floor Planning

 Examining the critical path in the Vivado GUI will show the placement of the logic
in the path. Sometimes, placer while trying to optimize several constraints might
yield a suboptimal placement. Examining the top several critical paths in the GUI
will give an idea if the placer indeed did a suboptimal job in placement of critical-
path object. If so, fl oor planning can be done to guide the placer. A hierarchical fl oor
 plan can reduce the route delay in the critical logic. A good starting point when fl oor
planning for the fi rst time is to fl oor plan only the logic that the implementation
tools consider timing critical. Generally start with the lower-level hierarchies that
the place and route stage fi nds to be timing critical. More often it is useful to look at

14 Timing Closure

172

the placement of block RAMs and DSP blocks, as these are not distributed throughout
the FPGA. Floor planning them not only gives better performance but also predic-
tive results in future iterations of the same project. When the design meets timing, it
is also possible to reuse the placement.

 For SSI devices, fl oor planning poses additional requirements to consider, which
are explained in Chap. 13 .

14.4.8 Physical Optimization

 Physical optimization performs optimization on the paths that fail to meet timing.
Optimizations involve replication, retiming, hold fi xing, and placement improve-
ment. Physical optimization is usually run after placement when the timing picture
is reasonably accurate. These optimizations are invoked by explicitly running the
optional phys_opt_design command. This command performs the following physi-
cal optimizations.

 High-Fanout Optimization : High-fanout nets, with negative slack within a per-
centage of the WNS, are considered for replication. The drivers are replicated and
the replicated drivers are placed near to cluster of loads.

 Placement-Based Optimization : Cells on the critical path are replaced to reduce
wire delays.

 Rewire : LUT connections are swapped to reduce the number of logic levels for
critical signals. LUT equations are modifi ed to maintain design functionality.

 Critical-Cell Optimization : Cells in failing paths are replicated. If the loads on a
specifi c cell are placed far apart, the cell may be replicated with new drivers placed
closer to load clusters. High fanout is not a requirement for this optimization to
occur, but the path must fail timing with slack within a percentage of the worst nega-
tive slack.

 DSP Register Optimization : Registers are moved out of the DSP cell into the
logic array or from logic to DSP cells if it improves the delay on the critical path.

 Block RAM Register Optimization : Registers are moved out of the block RAM
cell into the logic array or from logic to block RAM cells if it improves the delay on
the critical path.

 Retiming : Registers are moved across combinational logic to provide better
timing.

 Forced Net Replication : Net drivers are replicated, regardless of timing slack.
Replication is based on load placements and requires manual analysis to determine
if replication is suffi cient. If further replication is required, nets can be replicated
repeatedly by successive commands. Although timing is ignored, the net must be in
a timing-constrained path to trigger the replication.

 The above optimizations are run only during post-placement physical optimization
steps; however, Vivado also allows to run physical optimization at post-route stage
also. Only a subset of the optimizations are run at post-route stage, as the runtime of
physical optimization post-routing is higher.

S. Dasasathyan

http://dx.doi.org/10.1007/978-3-319-42438-5_13

173

14.4.9 Strategy and Directives

 Directives are powerful features that are available with every implementation step
(synthesis, optimize design, placement, physical optimization, and routing).
Directives give the implementation step to direct behavior of the algorithms toward
alternate goal. It changes the implementation step by using:

• Different fl ows
• Different algorithms
• Different objectives

 Directives allow each implementation step to enable more design space exploration
than in the default mode. Directives have different objectives such as reduce area ,
 reduce runtime , improve performance , and improve power.

 Directives are enabled by running any synthesis and implementation step with the
option -directive . Usually the names of the directive are chosen to indicate how dif-
ferent they are compared to the default behavior and their objective. Every imple-
mentation step has the directive explore . Explore allows the implementation step to
work in a high effort mode to meet the timing objective at the expense of runtime. For
designs with very tight requirements, it is recommended to use explore directive for
most of the implementation steps (especially placement and physical optimization).
Directives related to placement usually give the biggest improvement for performance.
Please refer to UG904 from Xilinx for details on the list of directives and what each
of the directive’s objectives is.

 Strategies defi ne the fl ow of Vivado and customize the different implementaiton
steps, and how each of these steps are confi gured. As each synthesis and implemen-
tation step has varieties of options and directives, strategies confi gure the best pos-
sible combination of these switches. You can also defi ne your own custom strategy.
Strategies are categorized into the following:

• Performance
• Area
• Power
• Flow
• Congestion

 Each of the above strategy categories has several strategies which can be used to
extract the last mile performance from the tools. In the context of timing closure,
categories related to performance and congestion are applicable. One way is to run
all the available performance strategies and pick the best results.

14.4.10 Congestion and Congestion Alleviation

 FPGA routing architecture has different kinds of routing resources to service differ-
ent scenarios seen in placement of the design. Congestion can happen when in a
region there is more demand of certain kinds or all kinds of routing resources than

14 Timing Closure

174

their availability. Extent of the congestion regions defi nes whether the congestion
is local or global. Router and placement algorithms, in order to alleviate conges-
tion, introduce white spaces and detours . These changes may impact the routing
delays by worsening them, which impact the timing of the design. There are certain
steps you can take to reduce the effect of congestion on timing. Congested regions
can be determined by running congestion reporting using report design analysis .
Also designs with heavy utilization of block RAMs, MuxF7s, and MuxF8s and
 distributed RAMs have a tendency to have congestion. Care should be taken to
reduce the utilization of any block with high connectivity. Blocks with high connec-
tivity increase number of signals coming in a region where the blocks are placed.
If there are many high connectivity blocks placed in a small region, one can increase
the size of a region by defi ning a pblock . The size of the pblock can be increased to
make it large enough to have enough routing resources to complete routing all nets
and thereby alleviating congestion.

14.4.11 Report Design Analysis

 Report design analysis is a command that summarizes several important details on
the critical paths. Commonly occurring issues in critical paths are summarized in a
tabular format. By looking at the characteristics of several critical paths, issues can
be deduced. Report design analysis has three modes of operation:

• Timing
• Congestion
• Complexity

 Timing mode is used to fi nd out the characteristics of critical paths. For each of
the path, many important characterisitcs are printed. For example, it is easy to
determine if the top critical paths have block RAMs and whether they are regis-
tered or not. Or, if the top several critical paths have LUTs which are combined in
synthesis stage (we can turn this off by using -lc off option). Xilinx published
UG906 provides information on other meaningful information that can be obtained
from this report.

 Congestion mode gives the post-placement and post-routing congestion windows,
and complexity computes the rent’s exponent of the netlist or modules specifi ed.
Congestion combined with complexity can determine whether the netlist itself is
inherently congested, or the congestion is placement induced. Using congestion
mode, you can fi nd the congested window and also determine what modules are
placed in the region. Later you can run complexity on these modules and compute the
 rent’s complexity on them. Rule of thumb says that any rent’s complexity over 0.7
can be considered as an issue in netlist.

S. Dasasathyan

175

14.4.12 Timing Closure and Hold Violation

 The previous section covered several techniques related to closure of timing which
mainly focused on setup violations. Hold violations are also another kind of timing
failures that you need to be aware of. Hold violations are severe, as reducing the clock
frequency will not help in timing closure. Vivado tool is hold aware and tries to miti-
gate the violations by detouring and adding extra delay to the paths failing hold.
However, you should be aware of these requirements and not solely depend on tool to
fi x the issues. Buffers can be added in hold failing path with DONT_TOUCH attribute
so that synthesis tool does not optimize them away. Further post-route physical optimi-
zation and few router directives can also help to reduce the hold violation. Figure 14.3
provides a top-level fl ow chart for achieving timing closure on your design.

 Fig. 14.3 Flow chart for
timing closure

14 Timing Closure

	Chapter 14: Timing Closure
	14.1 Introduction to Timing Concepts
	14.1.1 Creating and Defining a Clock
	14.1.2 Defining Clock Relationships
	14.1.3 Timing Analysis

	14.2 Generating Timing Reports
	14.2.1 Report Timing Summary
	14.2.2 Report Timing
	14.2.3 Slack Histogram

	14.3 Timing Paths and Constraint Correctness
	14.3.1 Clock Interaction
	14.3.2 Report Clock Domain Crossing

	14.4 Timing Closure Techniques
	14.4.1 Critical Path Analysis
	14.4.2 Logic vs. Wire Delay
	14.4.3 Reducing Logic Levels
	14.4.4 Clock Skew
	14.4.5 Reducing High-Fanout Signals
	14.4.6 Control Sets and Control Set Optimization
	14.4.7 Floor Planning
	14.4.8 Physical Optimization
	14.4.9 Strategy and Directives
	14.4.10 Congestion and Congestion Alleviation
	14.4.11 Report Design Analysis
	14.4.12 Timing Closure and Hold Violation

