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    Chapter 14   
 Timing Closure                     

     Srinivasan     Dasasathyan    

14.1          Introduction to Timing Concepts 

 Timing closure involves modifying constraints, design, or tool fl ow/settings to 
meet timing requirements. In Vivado tool, the timing constraints are entered in 
 XDC  format. XDC constraints are based on the standard Synopsys Design 
Constraints (SDC) format. 

 For brevity all the constraints that Vivado supports are not explained in this 
chapter but only few are given to help understand topics discussed later in this 
chapter. For details on XDC constraints and syntax, please refer to UG903 published 
by Xilinx. 

14.1.1     Creating and Defi ning a Clock 

   create_clock    Tcl command allows user to defi ne clock on a certain port and also 
allows users to specify properties like period, waveform, root, etc. Unless a clock is 
defi ned using the   create_clock    command, static timing analysis is not performed on 
the clock. Also,  create_clock  command defi nes primary clocks, and all  derived  
clocks are automatically inferred. Usually the  derived  clocks come from the clock 
modifying blocks like MMCM and PLL.  
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14.1.2     Defi ning Clock Relationships 

 Like all other SDC-based tools, Vivado also does timing analysis on all the cross- clock 
paths. However, designers in certain occasions would want to ignore certain paths, 
because those paths are either static paths (no signal transition happens) or the paths 
are asynchronous and hence should not be timed. In such cases   set_clock_groups    or 
  set_false_path    commands are used to preclude certain portions of the designs from 
timing analysis. This is an essential step as ISE (the previous Xilinx tool) which 
used UCF constraints, assumed the opposite, i.e., unless clock relationship was 
specifi ed, timing analysis was not done on cross-clock paths.  

14.1.3     Timing Analysis 

 Given these basic defi nitions of creating clock constraints and specifying clock relation-
ships, Vivado’s timing analysis engine does several checks under the static timing analy-
sis engine. The  timing analysis engine   analyzes and reports  slack   at the timing path 
endpoints. The slack is the difference between the data required time and the data arrival 
time at the path endpoint. A data is safely transferred between two registers if both the 
setup and hold relationships are successfully verifi ed on that path. In other words, if both 
setup and hold slacks are positive, the path is considered good from a timing point of 
view. The following are the checks performed by Vivado’s timing analysis engine:

•    Setup check  
•   Hold check  
•   Pulse-width check      

14.2     Generating Timing Reports 

 The fi rst step in timing closure is to understand whether the design has met all the 
timing checks or not. In order to generate timing reports to view failing paths, the 
following options are available in Vivado. 

14.2.1     Report Timing Summary 

   Report timing summary    gives an overall picture of timing on the design. It performs 
 setup ,  hold ,  pulse-width  checks, and gives a summary on whether some or all of 
these checks have failed. Even if one of the checks has failed, this command reports 
that the design has failed to meet timing. Based on this report, it can be decided if 
further steps are needed to achieve timing closure. Figure  14.1  gives a sample snap-
shot of the command, where  setup ,  hold , and  pulse-width   violations   are checked.
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   Once the design is determined to have not met timing requirements, you can 
further analyze failing timing paths in the design by running report timing or slack 
histogram command.  

14.2.2     Report Timing 

   Report timing summary    only gives a top-level report on timing failures; however, 
 report timing  gives details of all the paths that fail timing checks (setup and hold). By 
default  report timing  reports on all path groups and prints the top 10 paths in each 
path group and sort it by slack in ascending order. Additional fi lters can be added to 
customize timing analysis on different  from ,  through , or  to  points as well as select 
more paths to view.  Report timing  only works for  setup  and  hold  checks.  Pulse-width  
 checks   are reported in Vivado log fi le indicating where the errors are.  

14.2.3     Slack Histogram 

 Another way to see the failing timing paths is to generate   slack histogram   .  Slack histo-
gram  gives a concise view of all the timing paths across all path groups. Figure  14.2  
shows a sample slack histogram plot. Slack histogram divides the slacks into different 
bins. The  X -axis represents different slack bins and the  Y -axis represents the number 
of paths in each bin. Clicking on each of the bars fi lters the paths in that bin, where 
you can examine paths in each of the bin.

  Fig. 14.1    Report timing summary output       

  Fig. 14.2    Slack histogram       
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   In both report timing and slack histogram, you can click and double-click any of 
the paths to examine each of the timing path in detail, including characteristics of 
the path as well as placement and connectivity details.   

14.3     Timing Paths and Constraint Correctness 

   Timing paths    are defi ned by the connectivity between the instances of the design. 
In digital designs, timing paths are formed by a pair of sequential elements controlled 
by the same clock or by two different clocks. 

 In order to debug and fi x the timing paths, it is important to fi rst check whether 
these paths are valid or not. Checking constraints is one of the key and easy steps in 
getting to timing closure. One of the common issues in writing of XDC constraint 
is related to incorrect cross- clock domain crossing   paths. Timer takes the worst case 
requirements for timing analysis. Hence if cross-clock paths are getting wrongly 
timed (very often they needn’t be timed), they might have very tough requirement, 
resulting in a big negative slack.  Report CDC  and  report clock interaction  are two 
very useful commands to check if the interclock paths are being timed correctly. 

14.3.1     Clock Interaction 

   Report clock interaction    gives a matrix and specifi es where all the clock pairs in the 
design are considered for interaction. Each entry in the matrix is color coded. All 
the entries across the diagonal are the paths within the same clock group. It is impor-
tant to examine if there are any unexpected cross-clock domain paths, and fi x them 
by adding proper XDC constraints (  set_false_path   ,   set_clock_groups   ). Xilinx pub-
lished UG903 has more details.  

14.3.2     Report Clock Domain Crossing 

   Report CDC    (clock domain crossing) performs a structural analysis of the  clock 
domain crossings   in your design. You can use this information to identify poten-
tially unsafe CDCs, which will lead to metastability or data coherency issues. While 
the CDC report is similar to the clock interaction report, the CDC report focuses on 
structures and their timing constraints, but does not provide information related to 
timing slack. 

 Before generating the CDC report, you must ensure that the design has been 
properly constrained and there are no missing clock defi nitions.  Report CDC  only 
analyzes and reports paths where both source and destination clocks have been 
defi ned.   Report CDC    performs structural analysis on:
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    1.    On all paths between asynchronous clocks   
   2.    Only on paths between synchronous clocks that have the timing exceptions (e.g., 

clocks coming out of MMCM)    

  Synchronous clock paths with no such  timing exception      are assumed to be safely 
timed and are not analyzed by the CDC engine. The report CDC operates without 
taking into consideration any net or cell delays.   

14.4     Timing Closure Techniques 

14.4.1     Critical Path Analysis 

 Timing reports can be generated at any stage during the synthesis and/or implemen-
tation phase. You should generate timing reports at each stage after synthesis, place-
ment, and routing and analyze the paths to make sure that the design is converging. 
Catching and fi xing issues earlier in the fl ow will save several iterations of the sub-
sequent stages. For example, fi xing issues at synthesis will save time in place and 
route stage. 

 A timing failure might happen due to multiple different reasons. Based on the 
analysis of the timing paths, fi xes may be required at synthesis stage or the place-
ment and routing stage. Hence it is important to study the characteristic of top fail-
ing paths to determine the reasons and fi xes. Below are some of the important 
characteristics in the timing paths that can be examined and remedies that can be 
taken to mitigate them.  

14.4.2     Logic vs. Wire Delay 

 Critical path delay can be broken down into  logic delay   and  wire delay  . The percent-
age of logic and wire delay in critical path can help to determine where to reduce 
delays. A low logic delay component usually means that wire delay is higher, where 
potentially fl oor  planning   the design can help in timing closure. A higher logic 
delay component means that there are too many logic levels in the design.  

14.4.3     Reducing Logic Levels 

 For paths with higher levels of logic, looking at the levels of logic in the top failing 
paths can reveal if there are any issues in the RTL or inferring of the logic. 

 Synthesis step in Vivado infers structures in optimal way to balance between area 
and speed. Different RTL coding styles guide the tool to infer structures that are 
sometimes area optimal or performance optimal. By observing the  logic levels   in 
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critical path, we can identify if we need to change either RTL coding style or guide 
the tool to infer for performance as opposed to area. To reduce the levels of logic, 
you can return to the RTL and check for the following general issues. In addition, 
refer to Chap.   9     for controlling synthesis behavior.

•    Use   FSM_ENCODING    in your RTL to infer  ONE_HOT FSM  , which are usually 
better for speed.  

•   Use   CASE  statements   instead of nested  IF-ELSE  statements; though the former 
takes more area, it has effi cient inferences of Muxes which leads to better delays.  

•   Add pipeline  registers   to the critical path.    

 Any change to RTL will require resynthesizing the design. Several iterations 
may be needed to get optimal depth of logic.  

14.4.4     Clock Skew 

   Clock skew    is the difference between delays that clock takes from  common source  to 
capture fl op/sequential element and the launch fl op/sequential element. Examining the 
magnitude of clock skew can reveal issues in clocking structure. A design with high 
clock skew in critical paths usually means that the clocking structure needs to be 
revisited. Using MMCMs to multiply/divide clocks is recommended than using LUTs. 
UltraScale and newer devices have a very fl exible clock architecture and offer lots of 
clocks to the user. To ease the issue of reducing clock skew and to generate  H-tree  
clocking structures, the device offers  CLOCK_ROOT  which is the center tap points 
from where clock distribution happens.   CLOCK_ROOT    is chosen by Vivado for set of 
clock loads such that clock skew for the set of loads is minimal. However, in some 
cases where the paths are legal cross-clock domain paths, clock skew might be higher. 
In these cases user can choose  CLOCK_ROOT  manually to reduce the clock skew. 
UG912 from Xilinx explains the mechanism to modify  CLOCK_ROOT  location.  

14.4.5     Reducing High-Fanout Signals 

 High-fanout  signals   typically pose a challenge to the place and route tools, as due to 
the very nature they have many connections, and the placement will be spread out. 
Due to this, delay on the net would be relatively higher. If the top several critical 
paths have some commonality that all of them involve high-fanout signal, some 
optimization can be done at RTL level to reduce the fanout coupled with options to 
synthesis tool. Some options are: 

 Duplicate the driver and tell the synthesis tool not to remove the duplicate logic 
(attribute   DONT_TOUCH   ). 

 For the signals other than control signals such as reset, set, and clock enable, 
using   max_fanout    in synthesis will direct synthesis to replicate the driver. 
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 Another option is to use   phys_opt_design    (post-placement). This command 
performs timing-based logic replication of high-fanout drivers and critical-path 
cells. Drivers are replicated, then loads are distributed among the replicated drivers, 
and the replicated drivers are automatically placed. This optional command can be 
run after placement and before routing.  

14.4.6      Control Sets   and Control Set Optimization 

 In Xilinx FPGA architecture (for 7 series and UltraScale), each  slice  has eight 
fl ip- fl ops (FFs). These eight FFs share control signals, so the FFs that are placed in 
the same slice should have same control sets. Hence the fl ops in the same slice have 
to share the control set. Placer algorithm honors this constraint by placing FFs of the 
same control sets together. Xilinx FPGAs can accommodate several thousand con-
trol sets; however, the higher the number of control sets, the more complex the job 
for placer to place fl ops into slices without wasting fl ops.   report_control_sets    com-
mand can be used to assess the number of unique control sets in the design. Under 
verbose options, the command gives details on the distribution of the fanouts of the 
control signal. 

 Vivado synthesis has an option which is used to specify threshold for synchro-
nous control set optimization to lower number of control sets. The number set to this 
value specifi es how large the fanout of a control set should be before it starts using 
it as a control set. For example, if   control_set_opt_threshold    is set to 5, a synchro-
nous reset that only fans out to 5 registers would be moved to the  D  input’s logic 
rather than using the reset line of a register. The default threshold value is currently 
set to 4. 

 Other ways to reduce control sets is to use  resets  judiciously. Be selective on the 
use of  resets  by observing the following points:

•    Have resets only where they have impact on functionality.  
•   Use  synchronous resets   rather than asynchronous reset.     

14.4.7     Floor Planning 

 Examining the critical path in the Vivado GUI will show the placement of the logic 
in the path. Sometimes, placer while trying to optimize several constraints might 
yield a suboptimal placement. Examining the top several critical paths in the GUI 
will give an idea if the placer indeed did a suboptimal job in placement of critical- 
path object. If so, fl oor planning can be done to guide the placer. A hierarchical fl oor 
 plan   can reduce the route delay in the critical logic. A good starting point when fl oor 
planning for the fi rst time is to fl oor plan only the logic that the implementation 
tools consider timing critical. Generally start with the lower-level hierarchies that 
the place and route stage fi nds to be timing critical. More often it is useful to look at 
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the placement of block RAMs and DSP blocks, as these are not distributed throughout 
the FPGA. Floor planning them not only gives better performance but also predic-
tive results in future iterations of the same project. When the design meets timing, it 
is also possible to reuse the placement. 

 For SSI devices, fl oor planning poses additional requirements to consider, which 
are explained in Chap.   13    .  

14.4.8     Physical Optimization 

  Physical optimization   performs optimization on the paths that fail to meet timing. 
Optimizations involve replication, retiming, hold fi xing, and placement improve-
ment. Physical optimization is usually run after placement when the timing picture 
is reasonably accurate. These optimizations are invoked by explicitly running the 
optional   phys_opt_design    command. This command performs the following physi-
cal optimizations. 

   High-Fanout Optimization   : High-fanout nets, with negative slack within a per-
centage of the WNS, are considered for replication. The drivers are replicated and 
the replicated drivers are placed near to cluster of loads. 

  Placement-Based Optimization : Cells on the critical path are replaced to reduce 
wire delays. 

  Rewire : LUT connections are swapped to reduce the number of logic levels for 
critical signals. LUT equations are modifi ed to maintain design functionality. 

  Critical-Cell Optimization : Cells in failing paths are replicated. If the loads on a 
specifi c cell are placed far apart, the cell may be replicated with new drivers placed 
closer to load clusters. High fanout is not a requirement for this optimization to 
occur, but the path must fail timing with slack within a percentage of the worst nega-
tive slack. 

   DSP Register Optimization   : Registers are moved out of the DSP cell into the 
logic array or from logic to DSP cells if it improves the delay on the critical path. 

  Block RAM Register    Optimization   : Registers are moved out of the block RAM 
cell into the logic array or from logic to block RAM cells if it improves the delay on 
the critical path. 

  Retiming : Registers are moved across combinational logic to provide better 
timing. 

  Forced Net Replication : Net drivers are replicated, regardless of timing slack. 
Replication is based on load placements and requires manual analysis to determine 
if replication is suffi cient. If further replication is required, nets can be replicated 
repeatedly by successive commands. Although timing is ignored, the net must be in 
a timing-constrained path to trigger the replication. 

 The above optimizations are run only during post-placement physical optimization 
steps; however, Vivado also allows to run physical optimization at post-route stage 
also. Only a subset of the optimizations are run at post-route stage, as the runtime of 
physical optimization post-routing is higher.  
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14.4.9     Strategy and Directives 

 Directives are powerful features that are available with every implementation step 
(synthesis, optimize design, placement, physical optimization, and routing). 
Directives give the implementation step to direct behavior of the algorithms toward 
alternate goal. It changes the implementation step by using:

•    Different fl ows  
•   Different algorithms  
•   Different objectives    

 Directives allow each implementation step to enable more design space exploration 
than in the default mode. Directives have different objectives such as  reduce area , 
 reduce runtime ,  improve performance ,  and improve power.  

  Directives   are enabled by running any synthesis and implementation step with the 
option  -directive . Usually the names of the directive are chosen to indicate how dif-
ferent they are compared to the default behavior and their objective. Every imple-
mentation step has the directive  explore . Explore allows the implementation step to 
work in a high effort mode to meet the timing objective at the expense of runtime. For 
designs with very tight requirements, it is recommended to use  explore  directive for 
most of the implementation steps (especially placement and physical optimization). 
Directives related to placement usually give the biggest improvement for  performance. 
Please refer to UG904 from Xilinx for details on the list of directives and what each 
of the directive’s objectives is. 

  Strategies   defi ne the fl ow of Vivado and customize the different implementaiton 
steps, and how each of these steps are confi gured. As each synthesis and implemen-
tation step has varieties of options and directives, strategies confi gure the best pos-
sible combination of these switches. You can also defi ne your own custom strategy. 
Strategies are categorized into the following:

•    Performance  
•   Area  
•   Power  
•   Flow  
•   Congestion    

 Each of the above strategy categories has several strategies which can be used to 
extract the last mile performance from the tools. In the context of timing closure, 
categories related to performance and congestion are applicable. One way is to run 
all the available performance strategies and pick the best results.  

14.4.10      Congestion   and Congestion Alleviation 

 FPGA routing architecture has different kinds of routing resources to service differ-
ent scenarios seen in placement of the design. Congestion can happen when in a 
region there is more demand of certain kinds or all kinds of routing resources than 
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their availability. Extent of the congestion regions defi nes whether the congestion 
is local or global. Router and placement algorithms, in order to alleviate conges-
tion, introduce  white spaces  and  detours . These changes may impact the routing 
delays by worsening them, which impact the timing of the design. There are certain 
steps you can take to reduce the effect of congestion on timing. Congested regions 
can be determined by running congestion reporting using  report design analysis . 
Also designs with heavy utilization of block RAMs, MuxF7s, and MuxF8s and 
 distributed RAMs   have a tendency to have congestion. Care should be taken to 
reduce the utilization of any block with high connectivity. Blocks with high connec-
tivity increase number of signals coming in a region where the blocks are placed. 
If there are many high connectivity blocks placed in a small region, one can increase 
the size of a region by defi ning a  pblock . The size of the pblock can be increased to 
make it large enough to have enough routing resources to complete routing all nets 
and thereby alleviating congestion.  

14.4.11     Report Design Analysis 

   Report design analysis    is a command that summarizes several important details on 
the critical paths. Commonly occurring issues in critical paths are summarized in a 
tabular format. By looking at the characteristics of several critical paths, issues can 
be deduced.  Report design analysis  has three modes of operation:

•    Timing  
•   Congestion  
•   Complexity    

  Timing  mode is used to fi nd out the characteristics of critical paths. For each of 
the path, many important characterisitcs are printed. For example, it is easy to 
determine if the top critical paths have block RAMs and whether they are regis-
tered or not. Or, if the top several critical paths have LUTs which are combined in 
synthesis stage (we can turn this off by using  -lc off  option). Xilinx published 
UG906 provides information on other meaningful information that can be obtained 
from this report. 

   Congestion    mode gives the post-placement and post-routing congestion windows, 
and  complexity  computes the   rent’s  exponent   of the netlist or modules specifi ed. 
Congestion combined with complexity can determine whether the netlist itself is 
inherently congested, or the congestion is placement induced. Using congestion 
mode, you can fi nd the congested window and also determine what modules are 
placed in the region. Later you can run complexity on these modules and compute the 
 rent’s  complexity on them. Rule of thumb says that any rent’s complexity over  0.7  
can be considered as an issue in netlist.  
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14.4.12     Timing Closure and Hold Violation 

 The previous section covered several techniques related to closure of timing which 
mainly focused on setup violations. Hold violations are also another kind of timing 
failures that you need to be aware of.  Hold violations   are severe, as reducing the clock 
frequency will not help in timing closure. Vivado tool is hold aware and tries to miti-
gate the violations by detouring and adding extra delay to the paths failing  hold.  
However, you should be aware of these requirements and not solely depend on tool to 
fi x the issues. Buffers can be added in hold failing path with   DONT_TOUCH    attribute 
so that synthesis tool does not optimize them away. Further post-route physical optimi-
zation and few router directives can also help to reduce the hold violation. Figure  14.3  
provides a top-level fl ow chart for achieving timing closure on your design.      

  Fig. 14.3    Flow chart for 
timing closure       
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