
1© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_1

 Chapter 1
 State-of-the-Art Programmable Logic

 Brad Taylor

1.1 Introduction

 The FPGA or fi eld-programmable gate array is a wonderful technology used by
electronic system developers to design, debug, and implement unique hardware
solutions without having to develop custom silicon devices. Xilinx is a semiconduc-
tor manufacturer of standard FPGA chips which are sold blank or unprogrammed to
customers. The customers then program these devices to implement their unique
systems. If a feature changes or a bug is discovered, the user can simply load a new
program to the FPGA to create a new product or upgrade. This process can even
continue after shipment in the form of fi rmware upgrades. The act of programming
the FPGA is called confi guration to distinguish it from loading any associated soft-
ware programs. With modern FPGAs however, the line is blurring between hard-
ware confi guration and software programming.

 All this programmability requires additional silicon area compared to hard ASIC
(application-specifi c integrated circuit) implementations of the same logic. This is
because in ASIC implementations the gates and wiring are fi xed. This area cost pen-
alty can be in the 1.5–10X range for FPGAs. However, the ASIC also must include the
development cost and schedule which can be in the range of $10–$500 million dollars
and can take several years with teams of hundreds of developers. With each generation
of lithography, the cost to develop an ASIC increases. For these reasons, most medium-
sized and smaller systems rely on a mix of FPGAs for customization along with stan-
dard ASIC or ASSPs and memories.

 This revolutionary technology has impacted the electronic product development
cycle for nearly all electronic devices since its introduction in the late 1980s.

 B. Taylor (*)
 Santa Cruz , California , USA
 e-mail: mail.brad.taylor@gmail.com

mailto:mail.brad.taylor@gmail.com

2

1.2 The Evolution of Programmable Logic

 The initial user programmable devices called PLDs (programmable logic devices)
that were developed in 1978 by MMI could replace ten or so TTL gates and were
one time programmable. This led to the reprogrammable PLDs based on EEPROM
or EPROM technologies.

 By 1985 advancing lithography enabled a new class of device, the FPGA. FPGAs
introduced two important new architecture features: programmable routing to inter-
connect the increasing number of gates on a device and a programmable gate called
a LUT or lookup table with an associated register. The initial devices from Xilinx
contained up to a hundred LUT and fl ip-fl op pairs in a basic logic element called a
 CLB or confi gurable logic block . Rather than using a permanently programmed
EPROM or EEPROM memory, Xilinx FPGAs relied on CMOS memories to hold
programming information. Figure 1.1 illustrates the technological improvement of
modern FPGAs relative to the original Xilinx XC2064 which had 64 programmable
logic cells.

 The FPGA took its place as a central component in digital systems, replacing
PLDs and TTL for implementing glue logic. In the 1990s new uses began to emerge
for FPGAs, which were becoming more capable than just gluing I/O to processors.
The emerging Internet became a growth driver for FPGAs with FPGAs being used
for prototyping, initial deployment, and full-scale production of Internet switches
and routers. By 2000 communications systems were the primary market for FPGAs.
Other new markets for FPGAs also emerged for ASIC prototyping (Chap. 18) and
high-performance DSP (digital signal processing) systems (Chap. 8). FPGAs also
began to be used for implementing soft control processors such as the Xilinx
MicroBlaze (Chap. 6) and PicoBlaze architectures.

 Fig. 1.1 FPGA evolution since the 1980s

B. Taylor

http://dx.doi.org/10.1007/978-3-319-42438-5_18
http://dx.doi.org/10.1007/978-3-319-42438-5_8
http://dx.doi.org/10.1007/978-3-319-42438-5_6

3

 The original FPGA architecture was a simple implementation of a programma-
ble logic block. With each new generation, new programmable functions have been
added along with hardening of some specifi c functions in order to reduce the cost or
improve the performance of FPGAs in digital systems. These blocks continue to
evolve in each generation. Many important functions have been added since the
initial FPGAs including the following:

• Fast carry chains for high-speed adders and counters
• Small memories called distributed RAM s (or LUTRAM s)
• Block memories (BRAM or block RAMs)
• A hard RISC processor block based on the PowerPC
• Multi-Gigabit or MGT serial transceivers
• The DSP48 for digital signal processing
• Hard PCI blocks
• A complete system on chip (SoC) as a hard block in the FPGA in the Zynq family

of FPGAs

 The inclusion of hard blocks in FPGAs is driven by the trade-off between usage
and cost. For customers which use these functions, value and performance are
increased; however, if these hard blocks are not used, they are wasted space which
can increase cost. Additionally these hard functions require signifi cant software
support to be useful to customers. For these reasons, hardening functions have been
limited to those functions of clear value in important market verticals.

1.3 Current Applications for FPGAs

 FPGAs fi nd their usage in many applications today. Some of the most commonly
used applications of FPGAs (and the reasons for FPGA being the sweet spot) include:

• ASIC prototyping: Chap. 18 covers more on this.
• Wired communications: For system development, while the standards themselves

are evolving.
• Wireless communications: DSP in FPGAs is a major attraction for algorithmic

computations.
• Video systems and machine vision: Implement software algorithms at higher

speed and lower power.
• Industrial systems: Communication link between sensor nodes and robotic systems.
• Medical systems: I/O interfaces including A-to-D and D-to-A conversion.
• Automotive systems: Video processing (for driver assistance), fi eld

upgradability.
• Military and aerospace: Radio waveform processing and processing of huge

amount of sensor data.
• Data center: Interfaces to SSD (solid-state disks), machine learning related

algorithms.

1 State-of-the-Art Programmable Logic

http://dx.doi.org/10.1007/978-3-319-42438-5_18

4

1.4 Application Level System Architectures

 The above applications in turn identify the need for the following system level
usage, which might be applicable in multiple markets.

1.4.1 Glue Logic and Custom Interface IP

 This was the original use case for early FPGAs. Typically the FPGA is used to
interface a processor IC to a variety of I/O devices and memory-mapped devices.
This use case requires low-cost FPGAs with plentiful I/O. Key features are combi-
natorial programmable logic nets, IOBs, and internal registers.

 Often an application will require a custom interface such as an industrial inter-
face or perhaps multiple interfaces such as USB. If these interfaces are not available
in the user’s SoC, they can be implemented in a companion FPGA.

1.4.2 Communications Switch

 Multiple interfaces of various standards and performance levels such as 10G
Ethernet are connected together via an FPGA implemented switch. These switches
are common in Internet, industrial, and video networks.

1.4.3 I/O Stream Processing

 FPGAs are ideal devices to connect to high-bandwidth real-time I/O streams such
as video, radio, radar, and ultrasound systems. Often the system is used to reduce
the high-native bandwidth of the I/O stream to levels manageable for a processor.
For instance, a radio front end may sample A/D data at 1 GHz but after down con-
version produces a more moderate rate of 10 MB/s. Conversely lower-bandwidth
data may be up converted to a high-bandwidth I/O stream. Another example is a
video system with a frame buffer which may be updated infrequently, but the video
output stream is a real-time high-bandwidth stream.

1.4.4 Software Acceleration

 An emerging FPGA system architecture allows software to be accelerated either
with a companion FPGA attached to a high-end CPU or with an SoC-based FPGA
such as the Zynq UltraScale + MPSoC (MPSoC). This acceleration will usually be

B. Taylor

5

accompanied by a signifi cant power reduction per operation. In this use case, the
FPGA is programmed on the fl y to implement one or more cascaded software func-
tion calls on data in memory. The FPGA gates are compiled or derived from a com-
mon C language source which can be implemented either on the FPGA or on the
CPU. This allows the FPGA to act as a high-performance library call for common
software functions such as matrix inversion and deep neural networks.

1.5 FPGA Architecture

1.5.1 FPGA Architecture Overview

 The primary function of the FPGA is to implement programmable logic which can
be used by end customers to create new hardware devices. FPGAs are built around
an array of programmable logic blocks embedded in a sea of programmable inter-
connect. This array is often referred to as the programmable logic fabric or just the
 fabric . At the edges are programmable I/O blocks designed to interface the fabric
signals to the external world. It was this set of innovations that sparked the FPGA
industry. Figure 1.2 shows a basic architecture of an FPGA.

 Interestingly, nearly all the other special FPGA features such as carry chains,
block RAM, or DSP blocks can also be implemented in programmable logic. This
is in fact the approach the initial FPGAs took and users did implement these func-
tions in LUTs. However, as the FPGA markets developed, it became clear that these
special functions would be more cost effective as dedicated functions built from
hard gates and later FPGA families such as the Xilinx 4 K series and Virtex began

 Fig. 1.2 Basic FPGA architecture

1 State-of-the-Art Programmable Logic

6

to harden these special functions. This hardening improved not only cost but also
improved frequency substantially.

 Within any one FPGA family, all devices will share a common fabric architec-
ture, but each device will contain a different amount of programmable logic. This
enables the user to match their logic requirements to the right-sized FPGA device.
FPGAs are also available in two or more package sizes which allow the user to
match the application I/O requirements to the device package. FPGA devices are
also available in multiple speed grades and multiple temperature grades as well as
multiple voltage levels. The highest speed devices are typically 25 % faster than
the lower speed devices. By designing to the lowest speed devices, users can save
on cost, but the higher performance of the faster devices may minimize system
level cost.

 Modern FPGAs commonly operate at 100–500 MHz. In general, most logic
designs which are not targeted at FPGA architectures will run at the lower fre-
quency range, and designs targeted at FPGAs will run in the mid-frequency range.
The highest frequency designs are typically DSP designs constructed specifi cally to
take advantage of FPGA DSP and BRAM blocks.

 Sections below describe a high level overview of FPGA architectures. Please
refer to Xilinx’s data sheets and user guides for more detailed and current
information.

1.5.2 Programmable Interconnect

 Woven through the FPGA logic fabric is a set of wires which can be wired together
to connect any two blocks in an FPGA. This enables arbitrary logic networks to be
constructed by the user. The architecture of the interconnect wires varies from gen-
eration to generation and is hidden from the user by the tools.

1.5.3 Programmable Logic Block

 An array of programmable logic blocks are embedded into the programmable
interconnect. These are called CLBs (confi gurable logic blocks) in Xilinx devices.
Today, each logic block consists of one or more programmable logic functions
implemented as a 4–6-bit confi gurable lookup table (LUT), a confi gurable carry
chain, and confi gurable registers. We use the word confi gurable to indicate a hard
block which can be confi gured through the FPGA’s confi guration memory to be
used as part of the user’s logic. For instance, if the user design called for a register
with a clock enable (CE), the register is confi gured to have the clock enable enabled
and connected to the user’s CE signal. Figure 1.3a through c illustrates the
UltraScale CLB architecture, showing the CLB , LUT-fl ip-fl op pair, and the carry
chain structures.

B. Taylor

7

 The combination of a LUT, carry chain, and register is called a logic cell or LC .
The capacity of FPGAs is commonly measured in logic cells. For instance, the
largest Xilinx Virtex UltraScale FPGA supports up to 4 million LCs, while the
smallest Spartan device contains as few as 2000 logic cells. Depending on usage,
each logic cell can map between 5 and 25 ASIC gates. The lower number is com-
monly used for ASIC netlist emulation, while the higher number is achievable under
expert mapping.

 For Xilinx UltraScale devices, the CLB supports up to 8 × 6-input LUTs, 16 reg-
isters, and 8 carry chain blocks. Each 8-LUT can be confi gured as 2 × 5-LUTs if the
5-LUTs share common signals. For comparison purposes, Xilinx rates each 6-LUT
as the equivalent of 1.6 LCs or Logic cells.

 Embedded in the CLB is a high-performance look-ahead carry chain which
enables the FPGA to implement very high-performance adders. Current FPGAs
have carry chains which can implement a 64-bit adder at 500 MHz.

 Associated with each LUT is an embedded register . The rich register resources
of the FPGA programmable logic enable highly pipelined designs, which are a key
to maintaining higher speeds. Each register can be confi gured to support a clock
enable and reset with confi gurable polarity.

 An important additional feature of the Xilinx CLB’s 6-LUT is that it can confi gure
to implement a small 64-bit deep by 1-bit wide memory called a distributed RAM .
An alternate confi guration allows the 6-LUT to implement a confi gurable depth
shift register with a delay of 1–32 clocks.

1.5.4 Memory

 Access to memory is extremely important in modern logic designs. Programmable
logic designs commonly use a combination of memories embedded in the FPGA
logic fabric and external DDR memories. Within the logic fabric, memory can be
implemented as discrete registers, shift registers , distributed RAM, or block RAM .
Xilinx UltraScale devices support two sizes of block RAM, 36-kbit RAMs and 288-
kbit RAMs. In most cases the Xilinx tools will select the best memory type to map
each memory in the user design. In some cases, netlists optimized for FPGAs will
hand instantiate memory types to achieve higher density and performance.

 Special forms of memory called dual-port memories and FIFOs are supported as
special modes of the block RAMs or can be implemented using distributed RAM .

 System memory access to external DDR memory (Chap. 5) is via a bus interface
which is commonly an AXI protocol internal to the FPGA. UltraScale FPGAs support
72-bit wide DDR4 at up to 3200 MB/s.

 In general, registers or fl ip-fl ops are used for status and control registers, pipelining,
and shallow (1–2 deep) FIFOs. Shift registers are commonly used for signal delay
elements and for pipeline balancing in DSP designs. Distributed RAMs are
used for shallow memories up to 64 bits deep and can be as wide as necessary.
Block RAMs are used for buffers and deeper memories. They can also be aggregated

1 State-of-the-Art Programmable Logic

http://dx.doi.org/10.1007/978-3-319-42438-5_5

8

 Fig. 1.3 (a) UltraScale CLB, (b) one of the eight LUT-fl ip-fl op pairs from an UltraScale CLB, (c)
carry chain paths

CROSSBAR
SWITCH

F
P

G
A

 R
O

U
T

IN
G

CROSSBAR
SWITCH

O0

CLB

LUT
#1

LUT
#8

l0

l0

l63
l7

l56

l63

O0

O31

O1

O2

O3

O28

O29

O30

O31

B. Taylor

9

O6 From LUTH

O6 From LUTG

O5 From LUTG

O5 From LUTF

O6 From LUTE

O6 From LUTE

O5 From LUTD

O5 From LUTC

O6 From LUTB

O6 From LUTB

O6 From LUTA

O5 From LUTA

O6 From LUTC

O6 From LUTD

O6 From LUTF

HX

GX

FX

EX

DX

CX

BX

AX

D10

CYINIT

MUXCY

MUXCY

MUXCY

MUXCY

CYINIT

D14

D15

D16

D17

S4

S5

S6

S7

CO7

CO6

CO5

CO4

CO3

CO2

CO1

CO0

O7

O6 GMUX

GMUX/GQ(1)

HMUX/HQ(1)

HQ

FMUX/FQ(1)

EMUX/EQ(1)

DMUX/DQ(1)

CMUX/CQ(1)

BMUX/BQ(1)

AMUX/AQ(1)

AQ

BQ

CQ

DQ

EMUX

FMUX

GQ

(Optional)

(Optional)

(Optional)

(Optional)

(Optional)

(Optional)

(Optional)

(Optional)

Note 1: Can be used it
unregistered/registered
outputs are free.

O5

O4

O3

O2

O1

O0

0 1

MUXCY

MUXCY

MUXCY

MUXCY

COUT

Carry Chain Block (CARRY8)

CIN

CIN

S0

S1

S2

S3

D11

D12

D13

O5 From LUTH

0 1

D Q

D Q

D Q

D Q

D Q

D Q

D Q

FQ

EQ

DMUX

CMUX

BMUX

AMUX

HMUX

Fig. 1.3 (conrinued)

1 State-of-the-Art Programmable Logic

10

together to support arbitrary widths and depths. For instance, a 64-bit wide by
32 K-bit deep memory would require 64 block RAMs. Generally FPGAs contain
around 1 36 K block RAMs for every 500–1000 logic cells.

1.5.5 DSP Blocks

 Modern FPGAs contain discrete multipliers to enable effi cient DSP processing.
Commonly DSP applications build pipelines or fl ow graphs of DSP operations and
data streams through this fl ow graph. A typical DSP fi lter called an FIR (fi nite
impulse response) fi lter is shown in Fig. 1.4 . It consists of sample delay blocks,
multipliers, adders, and memories for coeffi cients. Interestingly this graph can be
almost directly implemented as an FPGA circuit.

 For fi ltering and many other DSP applications, multipliers and adders are used to
implement the fl ow graph. Xilinx FPGAs contain a DSP block known as a DSP48
which supports an 18-bit × 25-bit multiplier, a 48-bit accumulator, and a 25-bit pre-
adder. In addition up to four levels of pipelining can be supported for operation up
to 500 MHz. The DSP48 supports integer math directly; however, 32-bit and 64-bit
fl oating point operations are supported as library elements. A 32-bit fl oating point
multiplier will require two DSP48s and several hundred LCs.

 Xilinx tools will generally map multipliers and associated adders in RTL or HDL
languages to DSP48 blocks. For highest performance however, designs optimized
for DSP in FPGAs may use DSP48 aware libraries for optimal performance, power,
and density.

1.5.6 Clock Management

 Logic netlists almost universally require one or more system clocks to implement
synchronous netlists for I/O and for internal operation. Synchronous operation uses a
clock edge to register the results of upstream logic and hold it steady for use by

 Fig. 1.4 DSP fl owgraph

B. Taylor

11

downstream logic until the next clock edge. The use of synchronous operation allows
for pipelined fl ow graphs which process multiple samples in parallel. External digital
communications interfaces use I/O clocks to transfer data to and from the
FPGA. Commonly, interface logic will run at the I/O clock rate (or a multiple of the
I/O clock rate). Chapter 12 covers more on clocking resources available on Xilinx
FPGAs.

1.5.7 I/O Blocks

 One of the key capabilities of FPGAs is that they interface directly to external input
and output (I/O) signals of all types and formats. To support these diverse require-
ments, modern FPGAs contain a special block called the I/O block or IOB . This
block contains powerful buffers to drive external signals out of the FPGA and input
receivers, along with registers for I/O signals and output enables (OE). IOBs typi-
cally support 1.2–3.3 V CMOS as well as LVDS and multiple industry I/O memory
standards such as SSTL3. For a complete list, refer to the device datasheet. I/Os are
abstracted from the user RTL and HDL design and are typically confi gured using a
text fi le to specify each I/O’s signaling standard.

 UltraScale devices also include multiplexing and demultiplexing features in the
I/O block. This feature supports dual data rate (DDR) operation and operation for
4:1 or 8:1 multiplexing and demultiplexing. This allows the device to operate at a
lower clock rate than the I/O clock. For example, Gigabit Ethernet (SGMII) oper-
ates at 1.25 GHz over a single LVDS link, which is too fast for the FPGA fabric to
support directly. The serial signal is expanded to 8/10 bits in the IOB interface to the
fabric allowing the fabric to operate at 125 MHz.

 I/Os are commonly a limited resource, and FPGAs are available in multiple
package sizes to allow the user to use smaller lower-cost FPGAs with lower signal
count applications and larger package sizes for higher signal count applications.
This helps to minimize system cost and board space.

 A primary application of FPGA I/Os is for interfacing to memory systems.
UltraScale devices support high-bandwidth memory systems such as DDR4.

1.5.8 High-Speed Serial I/Os (HSSIO)

 CMOS and LVDS signaling are limited in performance and can be costly in terms
of power and signal count. For this reason, high-speed serial I/Os have been devel-
oped to enable low-cost, high-bandwidth interfaces. This evolution can be seen in
the evolving PCI standard which has moved from low-speed 32-bit CMOS inter-
faces at 33 MHz to PCIe Gen3 with 1–8 lanes at 8 Gb/s lane. An eight-lane PCIe
Gen3 interface can transfer 64 Gb/s of data in each direction. Xilinx UltraScale
devices support up to 128 MGT (Multi-Gigabit Transceivers) at up to 32.75 Gb/s.

1 State-of-the-Art Programmable Logic

http://dx.doi.org/10.1007/978-3-319-42438-5_12

12

 Within the FPGA, the HSSIO are interfaced directly to a custom logic block
which multiplexes and demultiplexes the signals to wide interfaces at lower clock
rates. This block also performs link calibration and formatting.

1.6 System on Chip

 Current generation FPGAs now include an optional system on chip (SoC).
These are available in the Zynq-7000 devices as well as the UltraScale + MPSoC
devices. These SoCs include a state-of-the-art quad core ARM A53 application
processor, an external DDR DRAM interface, internal memory and caching
system, common I/O peripherals, and a set of high-bandwidth interfaces to
the FPGA programmable logic.

 The SoC is built using ASIC technology and is competitive with discrete embedded
processors in cost and performance. It boots when powered up from an external
fl ash memory. The processor is then available to load the FPGA design. While boot-
ing, the CPU boot code is optionally decrypted and authenticated enabling secure
and safe embedded systems. Chapter 6 talks more about using these devices.

1.6.1 Operating System Support

 The SoC system is capable of running bare-bones without an operating system
or running a real-time operating system (RTOS) or embedded OSs such as
 Linux . It also supports asymmetric OSs where, for example, one core runs
Linux and the other core runs an RTOS. This capability is ideal for embedded
systems.

1.6.2 Real-Time OS Support

 The MPSoC also includes a separate dual core ARM R5 processor. This processor
is optimized for real-time applications and can optionally run in lockstep for high-
reliability applications. The combination of the dual core R5 and the quad core A53
enables secure, high-reliability, real-time processing, while the A53 application
processor executes application code. This combination is ideal for embedded,
industrial, and military applications.

B. Taylor

http://dx.doi.org/10.1007/978-3-319-42438-5_6

13

1.7 System Level Functions

 In addition to the SoC and programmable logic array, FPGAs include system level
functions for confi guring and monitoring FPGAs.

1.7.1 System Monitor

 For industrial and embedded applications, it is desirable to be able to monitor the
voltage of system power supplies and various analog signals as well as the internal
temperature of the FPGA. This allows the FPGA to detect if the power rails are
within specifi ed tolerance and allows the FPGA to know it is operating legally. For
this reason and also for security reasons, FPGAs incorporate a small multichannel
ADC (analog-to-digital converter). Chapter 16 covers more on system monitor.

1.7.2 Fabric Power Management

 Before SoCs were introduced, FPGAs operated on a single power domain. Typically
several voltages are required for the FPGA, the logic power supply, the auxiliary
power supply, and the I/O power supplies. The FPGA fabric supports several features
which allow the user to manage and minimize system power. FPGA fabric power
consists of two types of power—static power which exists even if the device is not
operating and dynamic power which is a function of clock rates and data activity.
Static power is quite low at low temperatures but can rise to signifi cant levels at maxi-
mum die temperatures. Additionally some speed and temperature grades have lower
static power than others. The -2L speed grade is designed to operate at lower voltage
levels enabling lower system power. The user has some fl exibility to manage power by
throttling fabric clocks if idle and by lowering die temperature using fan control.

1.7.3 SoC Device Power Management

 The SoC devices introduce some additional fl exibility in power management if the
application allows for sometimes running in reduced functionality or idle modes.
The Zynq-7000 devices support independent PS (processing system) and PL (pro-
grammable logic) power domains. Thus, if the PL is idle, its power supply can be
removed. The MPSoCs support even fi ner-grained power domains and can be placed
into low-power modes with only the R5s operating. This allows system power as
low as 50 mW to be achieved for low-performance modes. Normal operation of the
SoC would be in the 1–3 W range and the PL could be in the 2–20 W range.

1 State-of-the-Art Programmable Logic

http://dx.doi.org/10.1007/978-3-319-42438-5_16

14

1.7.4 Confi guration

 Both the PS SoC and the PL require confi guration data to function. For the PS this
is boot code, and for the PL, it is called the bitstream data. FPGAs will commonly include
a dedicated block to confi gure the FPGA from various sources of bitstream data.
Xilinx supports boot over JTAG, over a dedicated serial or parallel interface and from
dedicated fl ash memory devices. In the SoC devices, confi guration is supported by
a confi guration controller in the SoC. Optionally UltraScale devices can be booted
over a PCIe interface, eliminating the cost of local fl ash storage and simplifying
system level confi guration data management.

1.7.5 Security

 FPGA security is a relatively new concern, but modern devices contain multiple security
features which are used to decrypt, authenticate, and monitor confi guration data.

 Encryption is used to obscure the confi guration data which is stored in external
memory devices. This is valuable to protect user IP (intellectual property) as well as
to provide protection for passwords and keys embedded in the confi guration data.
FPGAs now store one-time programmable encryption key (of up to 256 bits) which
is used to decrypt confi guration data on the fl y.

 Today it is critical for system integrity to check confi guration data for correct-
ness before loading into the PL and SoC. The confi guration controller optionally
does this by fi rst checking to see if the boot code or bitstream can be authenticated.
The MPSoC devices support authentication of up to 4 K bits in hardware. If an
authentication fails, the device cannot be booted. The bitstream is authenticated
against a decryption key stored in external memory.

 Additional features of MPSoC devices include tamper detection circuitry with
clock, power, and temperature monitoring. This can be used to deter attacks based
on operating the device outside of its legal operating conditions.

 Within the Zynq UltraScale + PS , hardware is used to isolate various parts of the sys-
tem. This can prevent the application code from overwriting the secure real-time code.

1.7.6 Safety

 FPGAs are physical devices which are specifi ed to operate under specifi c voltage
and temperature conditions. They have a designed lifetime of 10 years of opera-
tion after which they may fail in various ways. During normal operation cosmic
rays and alpha radiation from radioactive trace elements can upset device regis-
ters. For these reasons circuitry has been built into the FPGA to monitor confi gu-
ration data changes due to upset or other effects. The FPGA confi guration data is

B. Taylor

15

monitored for a digital signature. If this changes unexpectedly, a signal is raised
which can reset the FPGA. Memories are particularly sensitive to upset, and all
PL block RAMs and the large PS memories have added parity bits to detect a
single event upset.

1.7.7 Debug

 Getting a large FPGA to production is a challenging effort. In order to facilitate
debugging a dedicated JTAG interface is provided on the FPGA and PS. This inter-
face has access to the FPGA confi guration system and the PS memory map. It can be
used to download code and to test system level I/O interfaces. Cross-trigger circuitry
is available to debug SoC software and PL hardware simultaneously. The PS also
includes support for standard ICE debugging pods.

1.7.8 Performance Monitoring

 The MPSoC includes a number of performance monitors which can check and measure
traffi c on the AXI interconnect. For the PL these performance monitoring blocks
can be implemented in soft logic to monitor PL AXI events.

1 State-of-the-Art Programmable Logic

	Chapter 1: State-of-the-Art Programmable Logic
	1.1 Introduction
	1.2 The Evolution of Programmable Logic
	1.3 Current Applications for FPGAs
	1.4 Application Level System Architectures
	1.4.1 Glue Logic and Custom Interface IP
	1.4.2 Communications Switch
	1.4.3 I/O Stream Processing
	1.4.4 Software Acceleration

	1.5 FPGA Architecture
	1.5.1 FPGA Architecture Overview
	1.5.2 Programmable Interconnect
	1.5.3 Programmable Logic Block
	1.5.4 Memory
	1.5.5 DSP Blocks
	1.5.6 Clock Management
	1.5.7 I/O Blocks
	1.5.8 High-Speed Serial I/Os (HSSIO)

	1.6 System on Chip
	1.6.1 Operating System Support
	1.6.2 Real-Time OS Support

	1.7 System Level Functions
	1.7.1 System Monitor
	1.7.2 Fabric Power Management
	1.7.3 SoC Device Power Management
	1.7.4 Configuration
	1.7.5 Security
	1.7.6 Safety
	1.7.7 Debug
	1.7.8 Performance Monitoring

