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    Chapter 1   
 State-of-the-Art Programmable Logic                     

     Brad     Taylor    

1.1          Introduction 

 The FPGA or fi eld-programmable gate array is a wonderful technology used by 
electronic system developers to design, debug, and implement unique hardware 
solutions without having to develop custom silicon devices. Xilinx is a semiconduc-
tor manufacturer of standard FPGA chips which are sold blank or unprogrammed to 
customers. The customers then program these devices to implement their unique 
systems. If a feature changes or a bug is discovered, the user can simply load a new 
program to the FPGA to create a new product or upgrade. This process can even 
continue after shipment in the form of fi rmware upgrades. The act of programming 
the FPGA is called confi guration to distinguish it from loading any associated soft-
ware programs. With modern FPGAs however, the line is blurring between hard-
ware confi guration and software programming. 

 All this programmability requires additional silicon area compared to hard ASIC 
(application-specifi c integrated circuit) implementations of the same logic. This is 
because in ASIC implementations the gates and wiring are fi xed. This area cost pen-
alty can be in the 1.5–10X range for FPGAs. However, the ASIC also must include the 
development cost and schedule which can be in the range of $10–$500 million dollars 
and can take several years with teams of hundreds of developers. With each generation 
of lithography, the cost to develop an ASIC increases. For these reasons, most medium-
sized and smaller systems rely on a mix of FPGAs for customization along with stan-
dard ASIC or ASSPs and memories. 

 This revolutionary technology has impacted the electronic product development 
cycle for nearly all electronic devices since its introduction in the late 1980s.  
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1.2     The Evolution of Programmable Logic 

 The initial user programmable devices called  PLDs  ( programmable logic devices ) 
that were developed in 1978 by MMI could replace ten or so TTL gates and were 
one time programmable. This led to the reprogrammable PLDs based on EEPROM 
or EPROM technologies. 

 By 1985 advancing lithography enabled a new class of device, the FPGA. FPGAs 
introduced two important new architecture features: programmable routing to inter-
connect the increasing number of gates on a device and a programmable gate called 
a  LUT  or  lookup table  with an associated register. The initial devices from Xilinx 
contained up to a hundred  LUT  and fl ip-fl op pairs in a basic logic element called a 
 CLB  or  confi gurable logic block . Rather than using a permanently programmed 
EPROM or EEPROM memory, Xilinx FPGAs relied on CMOS memories to hold 
programming information. Figure  1.1  illustrates the technological improvement of 
modern FPGAs relative to the original Xilinx XC2064 which had 64 programmable 
logic cells.

   The FPGA took its place as a central component in digital systems, replacing 
PLDs and TTL for implementing glue logic. In the 1990s new uses began to emerge 
for FPGAs, which were becoming more capable than just  gluing  I/O to processors. 
The emerging Internet became a growth driver for FPGAs with FPGAs being used 
for prototyping, initial deployment, and full-scale production of Internet switches 
and routers. By 2000 communications systems were the primary market for FPGAs. 
Other new markets for FPGAs also emerged for ASIC prototyping (Chap.   18    ) and 
high-performance DSP (digital signal processing) systems (Chap.   8    ). FPGAs also 
began to be used for implementing soft control processors such as the Xilinx 
MicroBlaze (Chap.   6    ) and PicoBlaze architectures. 

  Fig. 1.1    FPGA evolution since the 1980s       
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 The original FPGA architecture was a simple implementation of a programma-
ble logic block. With each new generation, new programmable functions have been 
added along with hardening of some specifi c functions in order to reduce the cost or 
improve the performance of FPGAs in digital systems. These blocks continue to 
evolve in each generation. Many important functions have been added since the 
initial FPGAs including the following:

•    Fast carry chains for high-speed adders and counters  
•   Small memories called  distributed RAM  s (or  LUTRAM  s)  
•   Block memories (BRAM or block RAMs)  
•   A hard RISC processor block based on the PowerPC  
•   Multi-Gigabit or MGT serial transceivers  
•   The DSP48 for digital signal processing  
•   Hard PCI blocks  
•   A complete system on chip (SoC) as a hard block in the FPGA in the Zynq family 

of FPGAs    

 The inclusion of hard blocks in FPGAs is driven by the trade-off between usage 
and cost. For customers which use these functions, value and performance are 
increased; however, if these hard blocks are not used, they are wasted space which 
can increase cost. Additionally these hard functions require signifi cant software 
support to be useful to customers. For these reasons, hardening functions have been 
limited to those functions of clear value in important market verticals.  

1.3     Current Applications for FPGAs 

 FPGAs fi nd their usage in many applications today. Some of the most commonly 
used applications of FPGAs (and the reasons for FPGA being the sweet spot) include:

•    ASIC prototyping: Chap.   18     covers more on this.  
•   Wired communications: For system development, while the standards themselves 

are evolving.  
•   Wireless communications: DSP in FPGAs is a major attraction for algorithmic 

computations.  
•   Video systems and machine vision: Implement software algorithms at higher 

speed and lower power.  
•   Industrial systems: Communication link between sensor nodes and robotic systems.  
•   Medical systems: I/O interfaces including A-to-D and D-to-A conversion.  
•   Automotive systems: Video processing (for driver assistance), fi eld 

upgradability.  
•   Military and aerospace: Radio waveform processing and processing of huge 

amount of sensor data.  
•   Data center: Interfaces to SSD (solid-state disks), machine learning related 

algorithms.     
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1.4     Application Level System Architectures 

 The above applications in turn identify the need for the following system level 
usage, which might be applicable in multiple markets. 

1.4.1      Glue Logic   and Custom  Interface   IP 

 This was the original use case for early FPGAs. Typically the FPGA is used to 
interface a processor IC to a variety of I/O devices and memory-mapped devices. 
This use case requires low-cost FPGAs with plentiful I/O. Key features are combi-
natorial programmable logic nets, IOBs, and internal registers. 

 Often an application will require a custom interface such as an industrial inter-
face or perhaps multiple interfaces such as USB. If these interfaces are not available 
in the user’s SoC, they can be implemented in a companion FPGA.  

1.4.2     Communications  Switch   

 Multiple interfaces of various standards and performance levels such as 10G 
Ethernet are connected together via an FPGA implemented switch. These switches 
are common in Internet, industrial, and video networks.  

1.4.3     I/O  Stream Processing   

 FPGAs are ideal devices to connect to high-bandwidth real-time I/O streams such 
as video, radio, radar, and ultrasound systems. Often the system is used to reduce 
the high-native bandwidth of the I/O stream to levels manageable for a processor. 
For instance, a radio front end may sample A/D data at 1 GHz but after down con-
version produces a more moderate rate of 10 MB/s. Conversely lower-bandwidth 
data may be up converted to a high-bandwidth I/O stream. Another example is a 
video system with a frame buffer which may be updated infrequently, but the video 
output stream is a real-time high-bandwidth stream.  

1.4.4     Software  Acceleration   

 An emerging FPGA system architecture allows software to be accelerated either 
with a companion FPGA attached to a high-end CPU or with an SoC-based FPGA 
such as the Zynq UltraScale + MPSoC (MPSoC). This acceleration will usually be 
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accompanied by a signifi cant power reduction per operation. In this use case, the 
FPGA is programmed on the fl y to implement one or more cascaded software func-
tion calls on data in memory. The FPGA gates are compiled or derived from a com-
mon  C  language source which can be implemented either on the FPGA or on the 
CPU. This allows the FPGA to act as a high-performance library call for common 
software functions such as matrix inversion and deep neural networks.   

1.5     FPGA Architecture 

1.5.1     FPGA Architecture Overview 

 The primary function of the FPGA is to implement programmable logic which can 
be used by end customers to create new hardware devices. FPGAs are built around 
an array of programmable logic blocks embedded in a sea of programmable inter-
connect. This array is often referred to as the programmable logic fabric or just the 
 fabric . At the edges are programmable I/O blocks designed to interface the   fabric    
signals to the external world. It was this set of innovations that sparked the FPGA 
industry. Figure  1.2  shows a basic architecture of an FPGA.

   Interestingly, nearly all the other special FPGA features such as carry chains, 
block RAM, or DSP blocks can also be implemented in programmable logic. This 
is in fact the approach the initial FPGAs took and users did implement these func-
tions in LUTs. However, as the FPGA markets developed, it became clear that these 
special functions would be more cost effective as dedicated functions built from 
hard gates and later FPGA families such as the Xilinx 4 K series and Virtex began 

  Fig. 1.2    Basic FPGA architecture       
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to harden these special functions. This hardening improved not only cost but also 
improved frequency substantially. 

 Within any one FPGA family, all devices will share a common fabric architec-
ture, but each device will contain a different amount of programmable logic. This 
enables the user to match their logic requirements to the right-sized FPGA device. 
FPGAs are also available in two or more package sizes which allow the user to 
match the application I/O requirements to the device package. FPGA devices are 
also available in multiple speed grades and multiple temperature grades as well as 
multiple voltage levels. The highest speed devices are typically 25 % faster than 
the lower speed devices. By designing to the lowest speed devices, users can save 
on cost, but the higher performance of the faster devices may minimize system 
level cost. 

 Modern FPGAs commonly operate at 100–500 MHz. In general, most logic 
designs which are not targeted at FPGA architectures will run at the lower fre-
quency range, and designs targeted at FPGAs will run in the mid-frequency range. 
The highest frequency designs are typically DSP designs constructed specifi cally to 
take advantage of FPGA DSP and BRAM blocks. 

 Sections below describe a high level overview of FPGA architectures. Please 
refer to Xilinx’s data sheets and user guides for more detailed and current 
information.  

1.5.2     Programmable  Interconnect   

 Woven through the FPGA logic fabric is a set of wires which can be wired together 
to connect any two blocks in an FPGA. This enables arbitrary logic networks to be 
constructed by the user. The architecture of the interconnect wires varies from gen-
eration to generation and is hidden from the user by the tools.  

1.5.3     Programmable Logic Block 

 An array of programmable logic blocks are embedded into the programmable 
interconnect. These are called  CLBs   (confi gurable logic blocks) in Xilinx devices. 
Today, each logic block consists of one or more programmable logic functions 
implemented as a 4–6-bit confi gurable lookup table ( LUT  ), a confi gurable carry 
chain, and confi gurable registers. We use the word  confi gurable  to indicate a hard 
block which can be confi gured through the FPGA’s confi guration memory to be 
used as part of the user’s logic. For instance, if the user design called for a register 
with a clock enable (CE), the register is confi gured to have the clock enable enabled 
and connected to the user’s CE signal. Figure  1.3a through c  illustrates the 
UltraScale CLB architecture, showing the  CLB  , LUT-fl ip-fl op pair, and the  carry 
chain   structures.
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   The combination of a LUT, carry chain, and register is called a   logic cell    or  LC . 
The capacity of FPGAs is commonly measured in logic cells. For instance, the 
largest Xilinx Virtex UltraScale FPGA supports up to 4 million LCs, while the 
smallest Spartan device contains as few as 2000 logic cells. Depending on usage, 
each logic cell can map between 5 and 25 ASIC gates. The lower number is com-
monly used for ASIC netlist emulation, while the higher number is achievable under 
expert mapping. 

 For Xilinx UltraScale devices, the CLB supports up to 8 × 6-input LUTs, 16 reg-
isters, and 8 carry chain blocks. Each 8-LUT can be confi gured as 2 × 5-LUTs if the 
5-LUTs share common signals. For comparison purposes, Xilinx rates each 6-LUT 
as the equivalent of 1.6 LCs or Logic cells. 

 Embedded in the CLB is a high-performance look-ahead carry chain which 
enables the FPGA to implement very high-performance adders. Current FPGAs 
have carry chains which can implement a 64-bit adder at 500 MHz. 

 Associated with each LUT is an embedded  register  . The rich register resources 
of the FPGA programmable logic enable highly pipelined designs, which are a key 
to maintaining higher speeds. Each register can be confi gured to support a clock 
enable and reset with confi gurable polarity. 

 An important additional feature of the Xilinx CLB’s 6-LUT is that it can confi gure 
to implement a small 64-bit deep by 1-bit wide memory called a  distributed RAM  . 
An alternate confi guration allows the 6-LUT to implement a confi gurable depth 
shift register with a delay of 1–32 clocks.  

1.5.4      Memory   

 Access to memory is extremely important in modern logic designs. Programmable 
logic designs commonly use a combination of memories embedded in the FPGA 
logic fabric and external DDR memories. Within the logic fabric, memory can be 
implemented as discrete registers,  shift registers  , distributed RAM, or  block RAM  . 
Xilinx UltraScale devices support two sizes of block RAM, 36-kbit RAMs and 288- 
kbit RAMs. In most cases the Xilinx tools will select the best memory type to map 
each memory in the user design. In some cases, netlists optimized for FPGAs will 
hand instantiate memory types to achieve higher density and performance. 

 Special forms of memory called dual-port memories and  FIFOs   are supported as 
special modes of the block RAMs or can be implemented using  distributed RAM  . 

 System memory access to external  DDR   memory (Chap.   5    ) is via a bus interface 
which is commonly an AXI protocol internal to the FPGA. UltraScale FPGAs support 
72-bit wide DDR4 at up to 3200 MB/s. 

 In general, registers or fl ip-fl ops are used for status and control registers, pipelining, 
and shallow (1–2 deep) FIFOs.  Shift registers   are commonly used for signal delay 
elements and for pipeline balancing in DSP designs. Distributed RAMs are 
used for shallow memories up to 64 bits deep and can be as wide as necessary. 
Block RAMs are used for buffers and deeper memories. They can also be aggregated 
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  Fig. 1.3    ( a ) UltraScale CLB, ( b ) one of the eight LUT-fl ip-fl op pairs from an UltraScale CLB, ( c ) 
carry chain paths           
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together to support arbitrary widths and depths. For instance, a 64-bit wide by 
32 K-bit deep memory would require 64 block RAMs. Generally FPGAs contain 
around 1 36 K block RAMs for every 500–1000 logic cells.  

1.5.5      DSP   Blocks 

 Modern FPGAs contain discrete multipliers to enable effi cient DSP processing. 
Commonly DSP applications build pipelines or fl ow graphs of DSP operations and 
data streams through this fl ow graph. A typical DSP fi lter called an FIR (fi nite 
impulse response) fi lter is shown in Fig.  1.4 . It consists of sample delay blocks, 
multipliers, adders, and memories for coeffi cients. Interestingly this graph can be 
almost directly implemented as an FPGA circuit.

   For fi ltering and many other DSP applications, multipliers and adders are used to 
implement the fl ow graph. Xilinx FPGAs contain a DSP block known as a  DSP48   
which supports an 18-bit × 25-bit multiplier, a 48-bit accumulator, and a 25-bit pre- 
adder. In addition up to four levels of pipelining can be supported for operation up 
to 500 MHz. The DSP48 supports integer math directly; however, 32-bit and 64-bit 
fl oating point operations are supported as library elements. A 32-bit fl oating point 
multiplier will require two DSP48s and several hundred LCs. 

 Xilinx tools will generally map multipliers and associated adders in RTL or HDL 
languages to DSP48 blocks. For highest performance however, designs optimized 
for DSP in FPGAs may use DSP48 aware libraries for optimal performance, power, 
and density.  

1.5.6     Clock Management 

 Logic netlists almost universally require one or more system clocks to implement 
synchronous netlists for I/O and for internal operation. Synchronous operation uses a 
clock edge to register the results of upstream logic and hold it steady for use by 

  Fig. 1.4    DSP fl owgraph       
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downstream logic until the next clock edge. The use of synchronous operation allows 
for pipelined fl ow graphs which process multiple samples in parallel. External digital 
communications interfaces use I/O clocks to transfer data to and from the 
FPGA. Commonly, interface logic will run at the I/O clock rate (or a multiple of the 
I/O clock rate). Chapter   12     covers more on clocking resources available on Xilinx 
FPGAs.  

1.5.7     I/O Blocks 

 One of the key capabilities of FPGAs is that they interface directly to external input 
and output (I/O) signals of all types and formats. To support these diverse require-
ments, modern FPGAs contain a special block called the I/O block or  IOB  . This 
block contains powerful buffers to drive external signals out of the FPGA and input 
receivers, along with registers for I/O signals and output enables (OE). IOBs typi-
cally support 1.2–3.3 V CMOS as well as LVDS and multiple industry I/O memory 
standards such as SSTL3. For a complete list, refer to the device datasheet. I/Os are 
abstracted from the user RTL and HDL design and are typically confi gured using a 
text fi le to specify each I/O’s signaling standard. 

 UltraScale devices also include multiplexing and demultiplexing features in the 
I/O block. This feature supports dual data rate (DDR) operation and operation for 
4:1 or 8:1 multiplexing and demultiplexing. This allows the device to operate at a 
lower clock rate than the I/O clock. For example, Gigabit Ethernet (SGMII) oper-
ates at 1.25 GHz over a single LVDS link, which is too fast for the FPGA fabric to 
support directly. The serial signal is expanded to 8/10 bits in the IOB interface to the 
fabric allowing the fabric to operate at 125 MHz. 

 I/Os are commonly a limited resource, and FPGAs are available in multiple 
package sizes to allow the user to use smaller lower-cost FPGAs with lower signal 
count applications and larger package sizes for higher signal count applications. 
This helps to minimize system cost and board space. 

 A primary application of FPGA I/Os is for interfacing to memory systems. 
UltraScale devices support high-bandwidth memory systems such as DDR4.  

1.5.8     High-Speed Serial I/Os ( HSSIO  ) 

 CMOS and LVDS signaling are limited in performance and can be costly in terms 
of power and signal count. For this reason, high-speed serial I/Os have been devel-
oped to enable low-cost, high-bandwidth interfaces. This evolution can be seen in 
the evolving PCI standard which has moved from low-speed 32-bit CMOS inter-
faces at 33 MHz to PCIe Gen3 with 1–8 lanes at 8 Gb/s lane. An eight-lane PCIe 
Gen3 interface can transfer 64 Gb/s of data in each direction. Xilinx UltraScale 
devices support up to 128 MGT (Multi-Gigabit Transceivers) at up to 32.75 Gb/s. 
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 Within the FPGA, the HSSIO are interfaced directly to a custom logic block 
which multiplexes and demultiplexes the signals to wide interfaces at lower clock 
rates. This block also performs link calibration and formatting.   

1.6     System on Chip 

 Current generation FPGAs now include an optional  system on chip   ( SoC  ). 
These are available in the  Zynq-7000   devices as well as the UltraScale + MPSoC 
devices. These SoCs include a state-of-the-art quad core ARM A53 application 
processor, an external DDR DRAM interface, internal memory and caching 
system, common I/O peripherals, and a set of high-bandwidth interfaces to 
the FPGA programmable logic. 

 The SoC is built using ASIC technology and is competitive with discrete embedded 
processors in cost and performance. It boots when powered up from an external 
fl ash memory. The processor is then available to load the FPGA design. While boot-
ing, the CPU boot code is optionally decrypted and authenticated enabling secure 
and safe embedded systems. Chapter   6     talks more about using these devices. 

1.6.1     Operating System Support 

 The SoC system is capable of running bare-bones without an operating system 
or running a real-time operating system ( RTOS  ) or embedded OSs such as 
 Linux  . It also supports asymmetric OSs where, for example, one core runs 
Linux and the other core runs an RTOS. This capability is ideal for embedded 
systems.  

1.6.2     Real-Time OS Support 

 The MPSoC also includes a separate dual core ARM R5 processor. This processor 
is optimized for real-time applications and can optionally run in lockstep for high- 
reliability applications. The combination of the dual core R5 and the quad core A53 
enables secure, high-reliability, real-time processing, while the A53 application 
processor executes application code. This combination is ideal for embedded, 
industrial, and military applications.   
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1.7     System Level Functions 

 In addition to the SoC and programmable logic array, FPGAs include system level 
functions for confi guring and monitoring FPGAs. 

1.7.1      System Monitor   

 For industrial and embedded applications, it is desirable to be able to monitor the 
voltage of system power supplies and various analog signals as well as the internal 
temperature of the FPGA. This allows the FPGA to detect if the power rails are 
within specifi ed tolerance and allows the FPGA to know it is operating legally. For 
this reason and also for security reasons, FPGAs incorporate a small multichannel 
ADC (analog-to-digital converter). Chapter   16     covers more on system monitor.  

1.7.2     Fabric  Power   Management 

 Before SoCs were introduced, FPGAs operated on a single power domain. Typically 
several voltages are required for the FPGA, the logic power supply, the auxiliary 
power supply, and the I/O power supplies. The FPGA fabric supports several features 
which allow the user to manage and minimize system power. FPGA fabric power 
consists of two types of power—static power which exists even if the device is not 
operating and dynamic power which is a function of clock rates and data activity. 
Static power is quite low at low temperatures but can rise to signifi cant levels at maxi-
mum die temperatures. Additionally some speed and temperature grades have lower 
static power than others. The -2L speed grade is designed to operate at lower voltage 
levels enabling lower system power. The user has some fl exibility to manage power by 
throttling fabric clocks if idle and by lowering die temperature using fan control.  

1.7.3     SoC Device Power Management 

 The SoC devices introduce some additional fl exibility in power management if the 
application allows for sometimes running in reduced functionality or idle modes. 
The Zynq-7000 devices support independent PS ( processing system  ) and PL (pro-
grammable logic) power domains. Thus, if the PL is idle, its power supply can be 
removed. The MPSoCs support even fi ner-grained power domains and can be placed 
into low-power modes with only the R5s operating. This allows system power as 
low as 50 mW to be achieved for low-performance modes. Normal operation of the 
SoC would be in the 1–3 W range and the PL could be in the 2–20 W range.  

1 State-of-the-Art Programmable Logic
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1.7.4      Confi guration   

 Both the PS SoC and the PL require confi guration data to function. For the PS this 
is boot code, and for the PL, it is called the  bitstream  data. FPGAs will commonly include 
a dedicated block to confi gure the FPGA from various sources of bitstream data. 
Xilinx supports boot over JTAG, over a dedicated serial or parallel interface and from 
dedicated fl ash memory devices. In the SoC devices, confi guration is supported by 
a confi guration controller in the SoC. Optionally UltraScale devices can be booted 
over a PCIe interface, eliminating the cost of local fl ash storage and simplifying 
system level confi guration data management.  

1.7.5      Security   

 FPGA security is a relatively new concern, but modern devices contain multiple security 
features which are used to decrypt, authenticate, and monitor confi guration data. 

 Encryption is used to obscure the confi guration data which is stored in external 
memory devices. This is valuable to protect user IP (intellectual property) as well as 
to provide protection for passwords and keys embedded in the confi guration data. 
FPGAs now store one-time programmable encryption key (of up to 256 bits) which 
is used to decrypt confi guration data on the fl y. 

 Today it is critical for system integrity to check confi guration data for correct-
ness before loading into the PL and SoC. The confi guration controller optionally 
does this by fi rst checking to see if the boot code or bitstream can be authenticated. 
The MPSoC devices support authentication of up to 4 K bits in hardware. If an 
authentication fails, the device cannot be booted. The bitstream is authenticated 
against a decryption key stored in external memory. 

 Additional features of MPSoC devices include tamper detection circuitry with 
clock, power, and temperature monitoring. This can be used to deter attacks based 
on operating the device outside of its legal operating conditions. 

 Within the Zynq UltraScale +  PS  , hardware is used to isolate various parts of the sys-
tem. This can prevent the application code from overwriting the secure real-time code.  

1.7.6      Safety   

 FPGAs are physical devices which are specifi ed to operate under specifi c voltage 
and temperature conditions. They have a designed lifetime of 10 years of opera-
tion after which they may fail in various ways. During normal operation cosmic 
rays and alpha radiation from radioactive trace elements can  upset  device regis-
ters. For these reasons circuitry has been built into the FPGA to monitor confi gu-
ration data changes due to upset or other effects. The FPGA confi guration data is 
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monitored for a digital signature. If this changes unexpectedly, a signal is raised 
which can reset the FPGA. Memories are particularly sensitive to upset, and all 
PL block RAMs and the large PS memories have added parity bits to detect a 
single event upset.  

1.7.7      Debug   

 Getting a large FPGA to production is a challenging effort. In order to facilitate 
debugging a dedicated JTAG interface is provided on the FPGA and PS. This inter-
face has access to the FPGA confi guration system and the PS memory map. It can be 
used to download code and to test system level I/O interfaces. Cross-trigger circuitry 
is available to debug SoC software and PL hardware simultaneously. The  PS   also 
includes support for standard ICE debugging pods.  

1.7.8      Performance Monitoring   

 The MPSoC includes a number of performance monitors which can check and measure 
traffi c on the AXI interconnect. For the PL these performance monitoring blocks 
can be implemented in soft logic to monitor PL AXI events.    
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