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  Pref ace   

 The motivation for writing this book came as we saw that there are many books that 
are published related to using Xilinx software for FPGA designs. Most of these 
books are targeted to a specifi c version of Xilinx tools—be it ISE or Vivado or for a 
specifi c device. Xilinx makes two major releases of Vivado each year. Each release 
introduces signifi cant new features and capabilities. Similarly, in each new device 
architecture, Xilinx makes signifi cant enhancements. Hence, books written on any 
specifi c version of the software (or device architecture) get outdated very quickly. 
Besides, Xilinx anyways publishes its own set of documents which are updated with 
each major release of Vivado or FPGA architecture. 

 In this book, we have tried to concentrate on conceptual understanding of Vivado. 
These are expected to remain current through the current architecture of the tool 
chain. Our attempt has been that with a good conceptual understanding provided by 
this book, you will be able to understand the details provided in the user guides, 
which delve into the details of commands and options. 

 The Vivado software tool used for implementing a design on Xilinx’s FPGAs has 
a lot of possible ways to read in a design. A user could describe the design in the 
form of HDL or “C” or make use of Xilinx-provided IP or use a third-party IP or the 
user could use his/her own HDL or “C” code as an IP to be used in multiple designs. 
A user could also describe the design using still higher level of abstractions using IP 
Integrator or SysGen. A design could also potentially use different types of inputs 
(for different portions of the design). You can use this book to understand the inher-
ent strengths of the various modes of design entry. You can then decide which 
mechanism would be most suited for portions of the design. For the exact com-
mands and syntax, you should refer to Xilinx documents. Our book provides a list 
of reference materials. Depending on which specifi c capability you plan to use, you 
can refer to the corresponding reference material. 

 Besides being useful to somebody who is new to Xilinx tools or FPGAs, the 
book may be found useful for those users who are migrating from ISE to Vivado. 
Vivado is conceptually very different from ISE. While ISE was mostly using propri-
etary formats for most of the fl ow, Vivado has moved on to industry standard 
formats. Users who have been long-time ISE users sometimes fi nd it diffi cult to get 
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used to Vivado. This book helps them get a good understanding of Vivado concepts, 
which should make it easier for them to transition to Vivado from ISE. 

 Though I’ve been involved in some of the user guides published by Xilinx, doing 
this book in my personal capacity allows me to deviate from the offi cial stand also, 
wherever I wanted to, and share my real opinion.☺ 

 The most effective way to make use of this book is to not worry about reading the 
book from cover to cover. You can easily feel free to skip the chapters that deal with 
topics which your design does not have.  

  Hyderabad, India     Sanjay     Churiwala       

Preface
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    Chapter 1   
 State-of-the-Art Programmable Logic                     

     Brad     Taylor    

1.1          Introduction 

 The FPGA or fi eld-programmable gate array is a wonderful technology used by 
electronic system developers to design, debug, and implement unique hardware 
solutions without having to develop custom silicon devices. Xilinx is a semiconduc-
tor manufacturer of standard FPGA chips which are sold blank or unprogrammed to 
customers. The customers then program these devices to implement their unique 
systems. If a feature changes or a bug is discovered, the user can simply load a new 
program to the FPGA to create a new product or upgrade. This process can even 
continue after shipment in the form of fi rmware upgrades. The act of programming 
the FPGA is called confi guration to distinguish it from loading any associated soft-
ware programs. With modern FPGAs however, the line is blurring between hard-
ware confi guration and software programming. 

 All this programmability requires additional silicon area compared to hard ASIC 
(application-specifi c integrated circuit) implementations of the same logic. This is 
because in ASIC implementations the gates and wiring are fi xed. This area cost pen-
alty can be in the 1.5–10X range for FPGAs. However, the ASIC also must include the 
development cost and schedule which can be in the range of $10–$500 million dollars 
and can take several years with teams of hundreds of developers. With each generation 
of lithography, the cost to develop an ASIC increases. For these reasons, most medium-
sized and smaller systems rely on a mix of FPGAs for customization along with stan-
dard ASIC or ASSPs and memories. 

 This revolutionary technology has impacted the electronic product development 
cycle for nearly all electronic devices since its introduction in the late 1980s.  

        B.   Taylor    (*) 
  Santa Cruz ,   California ,  USA     
 e-mail: mail.brad.taylor@gmail.com  
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1.2     The Evolution of Programmable Logic 

 The initial user programmable devices called  PLDs  ( programmable logic devices ) 
that were developed in 1978 by MMI could replace ten or so TTL gates and were 
one time programmable. This led to the reprogrammable PLDs based on EEPROM 
or EPROM technologies. 

 By 1985 advancing lithography enabled a new class of device, the FPGA. FPGAs 
introduced two important new architecture features: programmable routing to inter-
connect the increasing number of gates on a device and a programmable gate called 
a  LUT  or  lookup table  with an associated register. The initial devices from Xilinx 
contained up to a hundred  LUT  and fl ip-fl op pairs in a basic logic element called a 
 CLB  or  confi gurable logic block . Rather than using a permanently programmed 
EPROM or EEPROM memory, Xilinx FPGAs relied on CMOS memories to hold 
programming information. Figure  1.1  illustrates the technological improvement of 
modern FPGAs relative to the original Xilinx XC2064 which had 64 programmable 
logic cells.

   The FPGA took its place as a central component in digital systems, replacing 
PLDs and TTL for implementing glue logic. In the 1990s new uses began to emerge 
for FPGAs, which were becoming more capable than just  gluing  I/O to processors. 
The emerging Internet became a growth driver for FPGAs with FPGAs being used 
for prototyping, initial deployment, and full-scale production of Internet switches 
and routers. By 2000 communications systems were the primary market for FPGAs. 
Other new markets for FPGAs also emerged for ASIC prototyping (Chap.   18    ) and 
high-performance DSP (digital signal processing) systems (Chap.   8    ). FPGAs also 
began to be used for implementing soft control processors such as the Xilinx 
MicroBlaze (Chap.   6    ) and PicoBlaze architectures. 

  Fig. 1.1    FPGA evolution since the 1980s       

 

B. Taylor
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 The original FPGA architecture was a simple implementation of a programma-
ble logic block. With each new generation, new programmable functions have been 
added along with hardening of some specifi c functions in order to reduce the cost or 
improve the performance of FPGAs in digital systems. These blocks continue to 
evolve in each generation. Many important functions have been added since the 
initial FPGAs including the following:

•    Fast carry chains for high-speed adders and counters  
•   Small memories called  distributed RAM  s (or  LUTRAM  s)  
•   Block memories (BRAM or block RAMs)  
•   A hard RISC processor block based on the PowerPC  
•   Multi-Gigabit or MGT serial transceivers  
•   The DSP48 for digital signal processing  
•   Hard PCI blocks  
•   A complete system on chip (SoC) as a hard block in the FPGA in the Zynq family 

of FPGAs    

 The inclusion of hard blocks in FPGAs is driven by the trade-off between usage 
and cost. For customers which use these functions, value and performance are 
increased; however, if these hard blocks are not used, they are wasted space which 
can increase cost. Additionally these hard functions require signifi cant software 
support to be useful to customers. For these reasons, hardening functions have been 
limited to those functions of clear value in important market verticals.  

1.3     Current Applications for FPGAs 

 FPGAs fi nd their usage in many applications today. Some of the most commonly 
used applications of FPGAs (and the reasons for FPGA being the sweet spot) include:

•    ASIC prototyping: Chap.   18     covers more on this.  
•   Wired communications: For system development, while the standards themselves 

are evolving.  
•   Wireless communications: DSP in FPGAs is a major attraction for algorithmic 

computations.  
•   Video systems and machine vision: Implement software algorithms at higher 

speed and lower power.  
•   Industrial systems: Communication link between sensor nodes and robotic systems.  
•   Medical systems: I/O interfaces including A-to-D and D-to-A conversion.  
•   Automotive systems: Video processing (for driver assistance), fi eld 

upgradability.  
•   Military and aerospace: Radio waveform processing and processing of huge 

amount of sensor data.  
•   Data center: Interfaces to SSD (solid-state disks), machine learning related 

algorithms.     

1 State-of-the-Art Programmable Logic
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1.4     Application Level System Architectures 

 The above applications in turn identify the need for the following system level 
usage, which might be applicable in multiple markets. 

1.4.1      Glue Logic   and Custom  Interface   IP 

 This was the original use case for early FPGAs. Typically the FPGA is used to 
interface a processor IC to a variety of I/O devices and memory-mapped devices. 
This use case requires low-cost FPGAs with plentiful I/O. Key features are combi-
natorial programmable logic nets, IOBs, and internal registers. 

 Often an application will require a custom interface such as an industrial inter-
face or perhaps multiple interfaces such as USB. If these interfaces are not available 
in the user’s SoC, they can be implemented in a companion FPGA.  

1.4.2     Communications  Switch   

 Multiple interfaces of various standards and performance levels such as 10G 
Ethernet are connected together via an FPGA implemented switch. These switches 
are common in Internet, industrial, and video networks.  

1.4.3     I/O  Stream Processing   

 FPGAs are ideal devices to connect to high-bandwidth real-time I/O streams such 
as video, radio, radar, and ultrasound systems. Often the system is used to reduce 
the high-native bandwidth of the I/O stream to levels manageable for a processor. 
For instance, a radio front end may sample A/D data at 1 GHz but after down con-
version produces a more moderate rate of 10 MB/s. Conversely lower-bandwidth 
data may be up converted to a high-bandwidth I/O stream. Another example is a 
video system with a frame buffer which may be updated infrequently, but the video 
output stream is a real-time high-bandwidth stream.  

1.4.4     Software  Acceleration   

 An emerging FPGA system architecture allows software to be accelerated either 
with a companion FPGA attached to a high-end CPU or with an SoC-based FPGA 
such as the Zynq UltraScale + MPSoC (MPSoC). This acceleration will usually be 

B. Taylor
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accompanied by a signifi cant power reduction per operation. In this use case, the 
FPGA is programmed on the fl y to implement one or more cascaded software func-
tion calls on data in memory. The FPGA gates are compiled or derived from a com-
mon  C  language source which can be implemented either on the FPGA or on the 
CPU. This allows the FPGA to act as a high-performance library call for common 
software functions such as matrix inversion and deep neural networks.   

1.5     FPGA Architecture 

1.5.1     FPGA Architecture Overview 

 The primary function of the FPGA is to implement programmable logic which can 
be used by end customers to create new hardware devices. FPGAs are built around 
an array of programmable logic blocks embedded in a sea of programmable inter-
connect. This array is often referred to as the programmable logic fabric or just the 
 fabric . At the edges are programmable I/O blocks designed to interface the   fabric    
signals to the external world. It was this set of innovations that sparked the FPGA 
industry. Figure  1.2  shows a basic architecture of an FPGA.

   Interestingly, nearly all the other special FPGA features such as carry chains, 
block RAM, or DSP blocks can also be implemented in programmable logic. This 
is in fact the approach the initial FPGAs took and users did implement these func-
tions in LUTs. However, as the FPGA markets developed, it became clear that these 
special functions would be more cost effective as dedicated functions built from 
hard gates and later FPGA families such as the Xilinx 4 K series and Virtex began 

  Fig. 1.2    Basic FPGA architecture       
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to harden these special functions. This hardening improved not only cost but also 
improved frequency substantially. 

 Within any one FPGA family, all devices will share a common fabric architec-
ture, but each device will contain a different amount of programmable logic. This 
enables the user to match their logic requirements to the right-sized FPGA device. 
FPGAs are also available in two or more package sizes which allow the user to 
match the application I/O requirements to the device package. FPGA devices are 
also available in multiple speed grades and multiple temperature grades as well as 
multiple voltage levels. The highest speed devices are typically 25 % faster than 
the lower speed devices. By designing to the lowest speed devices, users can save 
on cost, but the higher performance of the faster devices may minimize system 
level cost. 

 Modern FPGAs commonly operate at 100–500 MHz. In general, most logic 
designs which are not targeted at FPGA architectures will run at the lower fre-
quency range, and designs targeted at FPGAs will run in the mid-frequency range. 
The highest frequency designs are typically DSP designs constructed specifi cally to 
take advantage of FPGA DSP and BRAM blocks. 

 Sections below describe a high level overview of FPGA architectures. Please 
refer to Xilinx’s data sheets and user guides for more detailed and current 
information.  

1.5.2     Programmable  Interconnect   

 Woven through the FPGA logic fabric is a set of wires which can be wired together 
to connect any two blocks in an FPGA. This enables arbitrary logic networks to be 
constructed by the user. The architecture of the interconnect wires varies from gen-
eration to generation and is hidden from the user by the tools.  

1.5.3     Programmable Logic Block 

 An array of programmable logic blocks are embedded into the programmable 
interconnect. These are called  CLBs   (confi gurable logic blocks) in Xilinx devices. 
Today, each logic block consists of one or more programmable logic functions 
implemented as a 4–6-bit confi gurable lookup table ( LUT  ), a confi gurable carry 
chain, and confi gurable registers. We use the word  confi gurable  to indicate a hard 
block which can be confi gured through the FPGA’s confi guration memory to be 
used as part of the user’s logic. For instance, if the user design called for a register 
with a clock enable (CE), the register is confi gured to have the clock enable enabled 
and connected to the user’s CE signal. Figure  1.3a through c  illustrates the 
UltraScale CLB architecture, showing the  CLB  , LUT-fl ip-fl op pair, and the  carry 
chain   structures.

B. Taylor
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   The combination of a LUT, carry chain, and register is called a   logic cell    or  LC . 
The capacity of FPGAs is commonly measured in logic cells. For instance, the 
largest Xilinx Virtex UltraScale FPGA supports up to 4 million LCs, while the 
smallest Spartan device contains as few as 2000 logic cells. Depending on usage, 
each logic cell can map between 5 and 25 ASIC gates. The lower number is com-
monly used for ASIC netlist emulation, while the higher number is achievable under 
expert mapping. 

 For Xilinx UltraScale devices, the CLB supports up to 8 × 6-input LUTs, 16 reg-
isters, and 8 carry chain blocks. Each 8-LUT can be confi gured as 2 × 5-LUTs if the 
5-LUTs share common signals. For comparison purposes, Xilinx rates each 6-LUT 
as the equivalent of 1.6 LCs or Logic cells. 

 Embedded in the CLB is a high-performance look-ahead carry chain which 
enables the FPGA to implement very high-performance adders. Current FPGAs 
have carry chains which can implement a 64-bit adder at 500 MHz. 

 Associated with each LUT is an embedded  register  . The rich register resources 
of the FPGA programmable logic enable highly pipelined designs, which are a key 
to maintaining higher speeds. Each register can be confi gured to support a clock 
enable and reset with confi gurable polarity. 

 An important additional feature of the Xilinx CLB’s 6-LUT is that it can confi gure 
to implement a small 64-bit deep by 1-bit wide memory called a  distributed RAM  . 
An alternate confi guration allows the 6-LUT to implement a confi gurable depth 
shift register with a delay of 1–32 clocks.  

1.5.4      Memory   

 Access to memory is extremely important in modern logic designs. Programmable 
logic designs commonly use a combination of memories embedded in the FPGA 
logic fabric and external DDR memories. Within the logic fabric, memory can be 
implemented as discrete registers,  shift registers  , distributed RAM, or  block RAM  . 
Xilinx UltraScale devices support two sizes of block RAM, 36-kbit RAMs and 288- 
kbit RAMs. In most cases the Xilinx tools will select the best memory type to map 
each memory in the user design. In some cases, netlists optimized for FPGAs will 
hand instantiate memory types to achieve higher density and performance. 

 Special forms of memory called dual-port memories and  FIFOs   are supported as 
special modes of the block RAMs or can be implemented using  distributed RAM  . 

 System memory access to external  DDR   memory (Chap.   5    ) is via a bus interface 
which is commonly an AXI protocol internal to the FPGA. UltraScale FPGAs support 
72-bit wide DDR4 at up to 3200 MB/s. 

 In general, registers or fl ip-fl ops are used for status and control registers, pipelining, 
and shallow (1–2 deep) FIFOs.  Shift registers   are commonly used for signal delay 
elements and for pipeline balancing in DSP designs. Distributed RAMs are 
used for shallow memories up to 64 bits deep and can be as wide as necessary. 
Block RAMs are used for buffers and deeper memories. They can also be aggregated 

1 State-of-the-Art Programmable Logic
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  Fig. 1.3    ( a ) UltraScale CLB, ( b ) one of the eight LUT-fl ip-fl op pairs from an UltraScale CLB, ( c ) 
carry chain paths           
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together to support arbitrary widths and depths. For instance, a 64-bit wide by 
32 K-bit deep memory would require 64 block RAMs. Generally FPGAs contain 
around 1 36 K block RAMs for every 500–1000 logic cells.  

1.5.5      DSP   Blocks 

 Modern FPGAs contain discrete multipliers to enable effi cient DSP processing. 
Commonly DSP applications build pipelines or fl ow graphs of DSP operations and 
data streams through this fl ow graph. A typical DSP fi lter called an FIR (fi nite 
impulse response) fi lter is shown in Fig.  1.4 . It consists of sample delay blocks, 
multipliers, adders, and memories for coeffi cients. Interestingly this graph can be 
almost directly implemented as an FPGA circuit.

   For fi ltering and many other DSP applications, multipliers and adders are used to 
implement the fl ow graph. Xilinx FPGAs contain a DSP block known as a  DSP48   
which supports an 18-bit × 25-bit multiplier, a 48-bit accumulator, and a 25-bit pre- 
adder. In addition up to four levels of pipelining can be supported for operation up 
to 500 MHz. The DSP48 supports integer math directly; however, 32-bit and 64-bit 
fl oating point operations are supported as library elements. A 32-bit fl oating point 
multiplier will require two DSP48s and several hundred LCs. 

 Xilinx tools will generally map multipliers and associated adders in RTL or HDL 
languages to DSP48 blocks. For highest performance however, designs optimized 
for DSP in FPGAs may use DSP48 aware libraries for optimal performance, power, 
and density.  

1.5.6     Clock Management 

 Logic netlists almost universally require one or more system clocks to implement 
synchronous netlists for I/O and for internal operation. Synchronous operation uses a 
clock edge to register the results of upstream logic and hold it steady for use by 

  Fig. 1.4    DSP fl owgraph       
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downstream logic until the next clock edge. The use of synchronous operation allows 
for pipelined fl ow graphs which process multiple samples in parallel. External digital 
communications interfaces use I/O clocks to transfer data to and from the 
FPGA. Commonly, interface logic will run at the I/O clock rate (or a multiple of the 
I/O clock rate). Chapter   12     covers more on clocking resources available on Xilinx 
FPGAs.  

1.5.7     I/O Blocks 

 One of the key capabilities of FPGAs is that they interface directly to external input 
and output (I/O) signals of all types and formats. To support these diverse require-
ments, modern FPGAs contain a special block called the I/O block or  IOB  . This 
block contains powerful buffers to drive external signals out of the FPGA and input 
receivers, along with registers for I/O signals and output enables (OE). IOBs typi-
cally support 1.2–3.3 V CMOS as well as LVDS and multiple industry I/O memory 
standards such as SSTL3. For a complete list, refer to the device datasheet. I/Os are 
abstracted from the user RTL and HDL design and are typically confi gured using a 
text fi le to specify each I/O’s signaling standard. 

 UltraScale devices also include multiplexing and demultiplexing features in the 
I/O block. This feature supports dual data rate (DDR) operation and operation for 
4:1 or 8:1 multiplexing and demultiplexing. This allows the device to operate at a 
lower clock rate than the I/O clock. For example, Gigabit Ethernet (SGMII) oper-
ates at 1.25 GHz over a single LVDS link, which is too fast for the FPGA fabric to 
support directly. The serial signal is expanded to 8/10 bits in the IOB interface to the 
fabric allowing the fabric to operate at 125 MHz. 

 I/Os are commonly a limited resource, and FPGAs are available in multiple 
package sizes to allow the user to use smaller lower-cost FPGAs with lower signal 
count applications and larger package sizes for higher signal count applications. 
This helps to minimize system cost and board space. 

 A primary application of FPGA I/Os is for interfacing to memory systems. 
UltraScale devices support high-bandwidth memory systems such as DDR4.  

1.5.8     High-Speed Serial I/Os ( HSSIO  ) 

 CMOS and LVDS signaling are limited in performance and can be costly in terms 
of power and signal count. For this reason, high-speed serial I/Os have been devel-
oped to enable low-cost, high-bandwidth interfaces. This evolution can be seen in 
the evolving PCI standard which has moved from low-speed 32-bit CMOS inter-
faces at 33 MHz to PCIe Gen3 with 1–8 lanes at 8 Gb/s lane. An eight-lane PCIe 
Gen3 interface can transfer 64 Gb/s of data in each direction. Xilinx UltraScale 
devices support up to 128 MGT (Multi-Gigabit Transceivers) at up to 32.75 Gb/s. 

1 State-of-the-Art Programmable Logic
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 Within the FPGA, the HSSIO are interfaced directly to a custom logic block 
which multiplexes and demultiplexes the signals to wide interfaces at lower clock 
rates. This block also performs link calibration and formatting.   

1.6     System on Chip 

 Current generation FPGAs now include an optional  system on chip   ( SoC  ). 
These are available in the  Zynq-7000   devices as well as the UltraScale + MPSoC 
devices. These SoCs include a state-of-the-art quad core ARM A53 application 
processor, an external DDR DRAM interface, internal memory and caching 
system, common I/O peripherals, and a set of high-bandwidth interfaces to 
the FPGA programmable logic. 

 The SoC is built using ASIC technology and is competitive with discrete embedded 
processors in cost and performance. It boots when powered up from an external 
fl ash memory. The processor is then available to load the FPGA design. While boot-
ing, the CPU boot code is optionally decrypted and authenticated enabling secure 
and safe embedded systems. Chapter   6     talks more about using these devices. 

1.6.1     Operating System Support 

 The SoC system is capable of running bare-bones without an operating system 
or running a real-time operating system ( RTOS  ) or embedded OSs such as 
 Linux  . It also supports asymmetric OSs where, for example, one core runs 
Linux and the other core runs an RTOS. This capability is ideal for embedded 
systems.  

1.6.2     Real-Time OS Support 

 The MPSoC also includes a separate dual core ARM R5 processor. This processor 
is optimized for real-time applications and can optionally run in lockstep for high- 
reliability applications. The combination of the dual core R5 and the quad core A53 
enables secure, high-reliability, real-time processing, while the A53 application 
processor executes application code. This combination is ideal for embedded, 
industrial, and military applications.   

B. Taylor
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1.7     System Level Functions 

 In addition to the SoC and programmable logic array, FPGAs include system level 
functions for confi guring and monitoring FPGAs. 

1.7.1      System Monitor   

 For industrial and embedded applications, it is desirable to be able to monitor the 
voltage of system power supplies and various analog signals as well as the internal 
temperature of the FPGA. This allows the FPGA to detect if the power rails are 
within specifi ed tolerance and allows the FPGA to know it is operating legally. For 
this reason and also for security reasons, FPGAs incorporate a small multichannel 
ADC (analog-to-digital converter). Chapter   16     covers more on system monitor.  

1.7.2     Fabric  Power   Management 

 Before SoCs were introduced, FPGAs operated on a single power domain. Typically 
several voltages are required for the FPGA, the logic power supply, the auxiliary 
power supply, and the I/O power supplies. The FPGA fabric supports several features 
which allow the user to manage and minimize system power. FPGA fabric power 
consists of two types of power—static power which exists even if the device is not 
operating and dynamic power which is a function of clock rates and data activity. 
Static power is quite low at low temperatures but can rise to signifi cant levels at maxi-
mum die temperatures. Additionally some speed and temperature grades have lower 
static power than others. The -2L speed grade is designed to operate at lower voltage 
levels enabling lower system power. The user has some fl exibility to manage power by 
throttling fabric clocks if idle and by lowering die temperature using fan control.  

1.7.3     SoC Device Power Management 

 The SoC devices introduce some additional fl exibility in power management if the 
application allows for sometimes running in reduced functionality or idle modes. 
The Zynq-7000 devices support independent PS ( processing system  ) and PL (pro-
grammable logic) power domains. Thus, if the PL is idle, its power supply can be 
removed. The MPSoCs support even fi ner-grained power domains and can be placed 
into low-power modes with only the R5s operating. This allows system power as 
low as 50 mW to be achieved for low-performance modes. Normal operation of the 
SoC would be in the 1–3 W range and the PL could be in the 2–20 W range.  

1 State-of-the-Art Programmable Logic
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1.7.4      Confi guration   

 Both the PS SoC and the PL require confi guration data to function. For the PS this 
is boot code, and for the PL, it is called the  bitstream  data. FPGAs will commonly include 
a dedicated block to confi gure the FPGA from various sources of bitstream data. 
Xilinx supports boot over JTAG, over a dedicated serial or parallel interface and from 
dedicated fl ash memory devices. In the SoC devices, confi guration is supported by 
a confi guration controller in the SoC. Optionally UltraScale devices can be booted 
over a PCIe interface, eliminating the cost of local fl ash storage and simplifying 
system level confi guration data management.  

1.7.5      Security   

 FPGA security is a relatively new concern, but modern devices contain multiple security 
features which are used to decrypt, authenticate, and monitor confi guration data. 

 Encryption is used to obscure the confi guration data which is stored in external 
memory devices. This is valuable to protect user IP (intellectual property) as well as 
to provide protection for passwords and keys embedded in the confi guration data. 
FPGAs now store one-time programmable encryption key (of up to 256 bits) which 
is used to decrypt confi guration data on the fl y. 

 Today it is critical for system integrity to check confi guration data for correct-
ness before loading into the PL and SoC. The confi guration controller optionally 
does this by fi rst checking to see if the boot code or bitstream can be authenticated. 
The MPSoC devices support authentication of up to 4 K bits in hardware. If an 
authentication fails, the device cannot be booted. The bitstream is authenticated 
against a decryption key stored in external memory. 

 Additional features of MPSoC devices include tamper detection circuitry with 
clock, power, and temperature monitoring. This can be used to deter attacks based 
on operating the device outside of its legal operating conditions. 

 Within the Zynq UltraScale +  PS  , hardware is used to isolate various parts of the sys-
tem. This can prevent the application code from overwriting the secure real-time code.  

1.7.6      Safety   

 FPGAs are physical devices which are specifi ed to operate under specifi c voltage 
and temperature conditions. They have a designed lifetime of 10 years of opera-
tion after which they may fail in various ways. During normal operation cosmic 
rays and alpha radiation from radioactive trace elements can  upset  device regis-
ters. For these reasons circuitry has been built into the FPGA to monitor confi gu-
ration data changes due to upset or other effects. The FPGA confi guration data is 
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monitored for a digital signature. If this changes unexpectedly, a signal is raised 
which can reset the FPGA. Memories are particularly sensitive to upset, and all 
PL block RAMs and the large PS memories have added parity bits to detect a 
single event upset.  

1.7.7      Debug   

 Getting a large FPGA to production is a challenging effort. In order to facilitate 
debugging a dedicated JTAG interface is provided on the FPGA and PS. This inter-
face has access to the FPGA confi guration system and the PS memory map. It can be 
used to download code and to test system level I/O interfaces. Cross-trigger circuitry 
is available to debug SoC software and PL hardware simultaneously. The  PS   also 
includes support for standard ICE debugging pods.  

1.7.8      Performance Monitoring   

 The MPSoC includes a number of performance monitors which can check and measure 
traffi c on the AXI interconnect. For the PL these performance monitoring blocks 
can be implemented in soft logic to monitor PL AXI events.    

1 State-of-the-Art Programmable Logic
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    Chapter 2   
 Vivado Design Tools                     

     Sudipto     Chakraborty    

      The Vivado suite of design tools contain services that support all phases of FPGA 
designs—starting from design entry, simulation, synthesis, place and route,  bitstream   
generation, debugging, and verifi cation as well as the development of software targeted 
for these FPGAs. 

 You can interact with the Vivado environment in multiple ways. This includes a 
GUI-based interface for interactive users, as well as a command-line interface if you 
prefer to use batch mode. Vivado also supports a scripting interface with a rich set of 
 Tcl   commands. These multiple modes of interaction can also be combined in different 
ways to suit the exact needs of users. These are explained in detail below. 

2.1      Project vs. Non-project Mode 

 There are two primary ways to invoke design fl ows in Vivado—using a  project   or a 
 non-project   mode. In the fi rst case, you start by creating a project to manage all your 
design sources as well as output generated from executing design fl ows. When a 
project is created, Vivado creates a predetermined directory structure on disk, which 
contains folders for source fi les, your confi gurations, as well as output data. Once a 
project has been created, you can enter and leave the Vivado environment as needed, 
and each time you can start from where you left off, without having to start from 
scratch each time. The project-based environment supports the notion of   runs    which 
allow users to invoke design fl ows like synthesis and implementation. You are allowed 
to customize the design environment in multiple ways, and these confi gurations are 
also persisted in the project environment in the form of “metadata.” 

        S.   Chakraborty    (*) 
  Xilinx ,   Longmont ,  CO ,  USA   
 e-mail: sudipto@xilinx.com   

mailto:sudipto@xilinx.com


18

 The directory structure created for a project is as follows:

     <project>/ 
 <project>.xpr : the main project fi le in text format 
 <project>.srcs/ : directory for sources local to a project 
 <project>.ip_user_fi les/ : directory for user accessible IP fi les 
 <project>.runs/ : directory for output data from synth/impl 
 <project>.sim/ : directory for output data from simulation 
 <project>.hw/ : directory for hardware debug related data 
 <project>.cache/ : directory for locally cached data 
 <project>.ipdef/ : directory for local IP defi nitions 

    Not all of the above mentioned directories will always be created. For example, 
a Vivado project supports referring to design sources remotely from their original 
location or copying them locally inside the project directory structure, based on user 
preference. The <project>.srcs directory is only created if there are such local cop-
ies of source fi les present. 

 In the non-project mode, you interact more directly with the Vivado environment 
using lower level commands. This mode is called  non-project  because you do not 
directly create a project to get your design fl ows to complete. However, it is important 
to note that a project  object  does exist in this case also; it is created automatically to 
manage certain aspects of the design fl ows. This project object exists only in mem-
ory while your session is active and does not create the on-disk structure described 
above. Since there is no automatic persistence of data on disk, all data is maintained 
only in memory and available only during the current session. Hence, you need to 
make sure that all necessary output is generated before you exit the current non-
project session of Vivado. 

 One interesting note here is that the  project   mode of Vivado is actually built on 
top of the  non-project   mode, as explained in Sect.  2.2.1 .  

2.2      GUI, Command Line, and Tcl 

 Vivado offers a fully interactive graphical user interface to allow you to more easily 
manage your design sources and go through all phases of the design fl ow. Vivado 
also supports doing all these operations in a non-GUI, command-line environment. 
The common connection between these two interfaces is the Tcl commands that 
drive Vivado. Almost all operations performed during the GUI mode end up issuing 
a Tcl command to the core Vivado  engine . These commands are shown in the Tcl 
console in the GUI and are also captured in a  journal   fi le, which is typically located 
where Vivado was started from, and the fi le is named  vivado.jou . When working in 
command-line mode, these Tcl commands can be issued directly without needing 
the presence of a GUI. 

S. Chakraborty
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2.2.1      Interaction with Project/Non-Project 

 While it is common for GUI-based users to typically use the project mode, it is also 
possible to execute the fl ows in non-project mode while being in the GUI. Similarly, 
command-line users can choose to use either project mode or non-project mode. 

 The  Tcl   commands supported for project mode are higher level, macro style com-
mands which perform many functionalities under a single command. The Tcl com-
mands for the non-project mode, on the other hand, are more granular WYSIWYG 
(what you see is what you get) type of commands which only perform the specifi ed 
operation, no more no less. Some  project   mode commands actually use many 
 non-project   commands internally to perform the desired operation. This explains the 
comment in Sect.  2.1  that project mode in Vivado is actually built on top of the non-
project mode. 

 Scripts 1 and 2 are example scripts for project mode and non-project mode, 
which both perform the same operation, but the non-project script is more verbose 
since it uses more granular commands.

      Script 1: Project mode example Tcl script  
  create_project project_1  
  add_fi les top.v child.v  
  launch_runs -to_step write_bitstream impl_1  
  close_project  

  Script 2: Non-Project Mode Tcl Script  
  read_verilog top.v  
  read_verilog child.v  
  synth_design -top top  
  opt_design  
  place_design  
  route_design  
  report_timing_summary  
  write_checkpoint top_routed.dcp  
  write_bitstream top.bit  

2.2.2         Runs Infrastructure 

 In the Script 1 and Script 2 examples, the   launch_runs    command is a macro command 
which is part of the Vivado  runs    infrastructure   . This command internally creates a 
 Tcl   script which looks similar to the  non-project   example Script 2 and automatically 
launches this script with a new Vivado session to execute the fl ow. 

2 Vivado Design Tools
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  Runs infrastructure  allows managing the output products from design fl ow auto-
matically. It also maintains status of the fl ow execution, such that if a design source 
fi le changes, it automatically lets you know that the previously generated output 
product is now  out-of-date  and if you relaunch the end step of a run, it automatically 
determines which previous steps need to be performed fi rst and executes them 
automatically. 

 The  runs  infrastructure also allows parallel execution of independent portions of 
the design fl ows to complete the overall fl ow quicker. These parallel runs can be 
executed on multiple processors in the same host machine, or if a compute farm like 
 LSF   or  GRID   is available, the multiple runs can be executed on different host 
machines in the compute farm.   

2.3     Overview of Vivado GUI 

 This section provides a high level overview of the Vivado GUI and some recom-
mendation for fi rst-time users. Vivado is designed based on a concept of layered 
complexity. This means using the tool for common tasks and designs is made as 
automated and easy as possible without having to have detailed knowledge of the 
tool. However, once you get more familiarized with the tool and want to use 
advanced features to control your design fl ows in a customized manner, Vivado 
allows you with higher control with fi ner granularity. 

 Vivado GUI and  project-  based mode is highly recommended for fi rst-time users 
or those who want to get quickly up and running. Using the GUI makes it easy to use 
the various wizards (like  New Project  wizard) to get started. First-time users can leave 
all settings at default and let the tool decide best automatic options. There are several 
example projects included with Vivado which you can readily open and use to try out 
the design fl ows. If you want to try your own design, the only two minimum required 
pieces of input are an HDL fi le to describe the design and a constraint fi le to specify 
the timing intent and pin mapping of the in/out signals to specifi c FPGA pins. 

 Figure  2.1  shows the screenshot of the Vivado GUI with some of the key areas 
highlighted:

     1.    This area is called the   Flow Navigator   . It provides easy, single click access to the 
common design fl ow steps and confi guration options.   

   2.    This area shows the sources in the design. The fi rst tab here shows a graphical 
view of the sources with modules and instance relationships. The other tabs in 
this area show other key aspects of design sources.   

   3.    This area shows the properties of the items selected in the GUI.   
   4.    This area shows the  Tcl   console in the GUI as well as various reports and design 

run related details.   
   5.    This area shows the built-in text editor, information related to project summary, etc.   
   6.    This is a view of a design open in the GUI, which is key to all the design 

implementation steps.    
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  Starting in the GUI and following the wizards make it easy to get started with the 
Vivado design fl ow. At the same time, as the various operations are being performed 
in the GUI, Vivado generates equivalent Tcl commands for those operations in the 
Tcl console area, as well as in the  journal   fi le as mentioned in Sect.  2.2 . Using these 
Tcl commands, you can later customize the fl ow or build other similar fl ows.    

  Fig. 2.1    Overall organization of Vivado GUI       
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    Chapter 3 
   IP Flows       

     Cyrus     Bazeghi    

3.1          Overview 

  Intellectual property   ( IP  ) cores are fundamental criteria when selecting which 
FPGA vendor and specifi c part to choose for a design. IP provides an easy mecha-
nism for incorporating complex logic in your designs, from high-speed gigahertz 
transceivers (GTs) to digital signal processors (DSPs) as well as soft microproces-
sors (MicroBlaze) to an embedded ARM system on a chip (SoC). Xilinx-provided 
IP have been optimized and tested to work with the FPGA resources including DPS, 
block RAM, and IO, greatly accelerating design development. 

 Most of the IP provided in the Vivado Design Suite have the license included, 
allowing the use of the IP in your designs. Some IP require a license to be purchased 
from Xilinx or an Alliance partner. IP licensing information is provided in the  IP 
Catalog  which will direct you to the appropriate web source. 

 The Vivado Design Suite includes the   IP Catalog    to deliver plug-and-play Xilinx 
IP as well as some third-party alliance partner IP. The catalog can be expanded with 
additional IP from third party IP developers or your own created IP. Your own IP 
could be created through:

•    C/C++ algorithms compiled using the Vivado high-level synthesis ( HLS  ) tool 
(see Chap.   10    )  

•   Modules from system generator for DSP designs (MATLAB ®  from Simulink ®  
algorithms) (see Chap.   8    )  

•   Designs packaged as IP using the Vivado Design Suite IP  Packager      
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 The Vivado IP Packager enables you to create plug-and-play IP which can be 
added to the extensible Vivado IP Catalog. The IP Packager is based on  IP-XACT   
(IEEE Standard 1685),  Standard Structure for Packaging, Integrating, and Reusing 
IP within Tool Flows . 

 After you have assembled a Vivado Design Suite project, the IP Packager lets 
you turn your design into a reusable IP module that you can then add to the Vivado 
 IP Catalog  and that others can use as a design source. 

 The IP Catalog is available either from within a Vivado Design Suite project or 
using a special  Managed IP  project. Both are available from the start screen. 

 The overall fl ow for IP consists of the following stages:

•    Use the IP Catalog to fi nd the IP required for the design.  
•   Customize the IP by specifying confi guration options (produces an IP custom-

ization .xci).  
•    Generate   the IP (Generate Output Products).   

 –    Copy fi les from the Vivado Design Suite installation area to the user-specifi ed 
location or project.  

 –   By default include synthesizing the IP stand-alone ( out-of-context  ).   

•    Instantiate the IP in designs (or in an IP integrator block design).  
•   Simulate.   

 –    Behavioral  
 –   Netlist   

•    Synthesize and implement.     

3.2     IP Catalog 

 The  IP Catalog  (Fig.  3.1 ) provides a central and searchable place for all Xilinx- 
delivered IP, third party vendor IP, as well as user-created IP. To package RTL and 
constraints into a custom IP, the Vivado  IP Packager  is provided. The IP is grouped 
into categories either as a business segment such as  Communication & Networking , 
 Automotive & Industrial , by function such as  Digital Signal Processing  and  Debug 
& Verifi cation  or by creator  Alliance Partner  and  User Repository .

   You can search by keyword, name, type, or function. You can expand to specify 
search options: case sensitivity (default is insensitive), toggle use of wildcards 
or use of regular expressions (default is neither), and match from start/match 
exactly/match anywhere (default). 

 Make sure to read the product guides for the IP cores that you plan to use in your 
design. The product guides provide important information on the functionality, 
requirements, use cases, and other details such as known issues for the IP which 
should be considered. The IP Catalog provides a convenient place to access the 
product guide, change log, product website, and any answer records for the IP.  

C. Bazeghi
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3.3      IP Customization   

 Each IP has many confi guration options that can be set, for example, for a FIFO, 
width and depth, independent read and write clock, etc. (Fig.  3.2 ). A particular set 
of options for an IP is referred to as   customization    and will have a unique user- 
provided name. The customization options are encapsulated in the  IP_name.   xci    fi le. 
Once an IP customization has been created, you can instantiate it in your design 
using the instantiation template (need to generate the output products to get this; see 
Sect.  3.4 ) as many times as required. Creating an IP customization does not add it 
to your design; you must instantiate it in your RTL for it to be used. You can create 
multiple customizations of the same IP, each with differing confi guration options 
having a unique name.

   There are three ways in which to create an IP customization:

•     Managed IP Project   (recommended)  
•   Directly from within a Vivado RTL project  
•   Using Tcl script    

  Fig. 3.1    Vivado IP Catalog       
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3.3.1     Managed IP Project 

 It is recommended when working with IP that you use a  Managed IP  project. This 
is a special Vivado project specifi cally for creating IP customizations. The same  IP 
Catalog  found in a Vivado RTL Project is provided to search for and customize 
IP. Each IP created is kept in its own folder with the user-provided name used during 
the customization. If you elect to use the  Core Container  feature (explained in 
Sect.  3.4.3 ), a single compressed binary fi le with the name given during customiza-
tion with the extension of .xcix will be present. The IP folder or  Core Container  fi le 
are stored outside of the Managed IP Project directory. The IP folder or  Core 
Container  fi le can be copied into a revision control system along with other design 
sources. If electing to use a folder for the IP, it is recommended that you place the 
entire folder and all contents into revision control. 

 From the starting page of Vivado, select  Manage IP  (Fig.  3.3 ). You can either 
specify a new location on disk for a Managed IP Project or open an existing 
location.

  Fig. 3.2    Example of an IP customization GUI       

  Fig. 3.3    Icon for creating 
or opening a managed IP 
project       
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3.3.2        Within a Project 

 You can elect to create IP customizations from directly within an RTL project. From 
the  Flow Navigator , select  IP Catalog  and search/browse for the desired IP. During 
customization, by default the IP and associated fi les will be stored in the Vivado 
project directory structure. You can change this by the  IP Location  button, allowing 
you to specify a directory of your choice. This allows you to save the IP and its 
associated fi les outside of the Vivado project directory, similar as a  Managed IP  
Project does. This is recommended when working with revision control systems.  

3.3.3     Tcl Script 

 When creating an IP customization, Tcl commands are executed to create the IP and 
to apply the various options specifi ed during customization. You can add these Tcl 
commands to your custom  Make  or script fl ow to create the IP on the fl y. To compile 
your design, you would read in your RTL source, create the IP with Tcl commands, 
and proceed to synthesize or implement. The downside to this approach is that each 
time you build your project, the IP will have to be created and generated, which can 
be time consuming if there are many IP being used. Also, if the script was created 
with a previous version of Vivado, the IP might have changed the customization 
options which can result in errors being encountered.   

3.4        IP Generation   

 Once you have customized your IP, it is recommended that you generate all the fi les 
that are needed by Vivado to make use of this IP. The generation of many IP can be 
done in parallel, including the synthesis of IP. 

 Generating output products or generating IP refers to these two stages (Fig.  3.4 ):

•     Copying the IP fi les from the Vivado installation area  
•   Vivado processing the IP   

 –    Produce HDL based upon the customization options specifi ed by the user.  
 –   Synthesize IP stand-alone (default).  
 –   Create simulation scripts for the IP for all supported simulators.    

3.4.1     Synthesis Options 

 There are two options for synthesis of the IP at the end of customizing when pre-
sented with the  Generate Output Products  window (Fig.  3.4 ):

3 IP Flows
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•     Global : The HDL fi les are created at this stage. However, the IP is synthesized 
along with the user HDL each time the design is synthesized.  

•     Out-of-context     per IP  (default): The IP is synthesized at this stage, just one time. 
During synthesis of the design the IP is seen as a black box. Later, during imple-
mentation, the netlist for all the IP will be combined with the top level netlist. 
This can greatly reduce the top level synthesis runtime during development.    

 There is no compelling reason to synthesize the IP globally. Since the Vivado 
tool places a  DONT_TOUCH  on the IP during synthesis, there are no cross bound-
ary optimizations performed (explained in Sect.  3.6.2 ). Any cross boundary 
 optimizations, such as propagation of constants, will be performed during 
implementation.  

3.4.2     Details of Generation 

 Xilinx IP source fi les are delivered in the installation directory of the Vivado Design 
Suite. The IP consist of HDL (much of it encrypted) as well as scripts. The options 
specifi ed during customization are processed by the scripts and HDL fi les are 

  Fig. 3.4    Generate output 
products       

 

C. Bazeghi



29

produced. Part of generation consists of copying all the static HDL fi les as well as 
the script-generated HDL fi les to the IP directory specifi ed during IP 
customization. 

 Depending on the specifi c IP, different fi les will be copied from the install area 
to the user-specifi ed IP folder (or to within the Core Container fi le) during genera-
tion. Possible types of fi les include:

•    Static RTL fi les  
•   RTL fi les produced by scripts  
•   Instantiation templates  
•   Constraints  
•   Simulation fi les  
•   Testbench fi les  
•   Change log    

 Once this stage is completed, Vivado creates simulation scripts for all the sup-
ported simulators and places these scripts in the  ip_user_fi les folder  ( Managed IP  
project) or  <project_name>.ip_user_fi les  (if IP created in a regular RTL project).  

3.4.3       Core Container   

 The Core Container is a compressed binary fi le version of the IP folder  (.   xcix   ). 
Vivado will read directly (not unzip to a temporary location) from the core con-
tainer the fi les needed for synthesis, simulation, and implementation. Using this 
feature greatly reduces the number of fi les on disk needed for the IP. The Core 
Container is a standard ZIP fi le and can be opened with an appropriate utility, 
though modifying any of the contents is not supported and will likely cause issues 
with the use of the fi le. 

 To enable the Core Container for all new IP, go to the  Project Settings → IP→ 
General  tab and check the box  Use Core Containers for IP . Alternatively, you can 
enable or disable the Core Container feature on a per IP basis. Select the IP in the 
 IP Sources  view, right click, and select  Enable Core Container  to enable. If enabled, 
you can right click and select  Disable Core Container . This will switch between the 
IP being a folder on disk or an XCIX fi le and vice versa. 

 The  Core Container  is a complete representative of the IP you customized. All 
the fi les needed for Vivado are contained within. If using a project, the view of the 
IP will be identical regardless of using Core Container or not. You can open unen-
crypted HDL and constraint fi les, which will be listed in the IP Source view exactly 
the same as if not using Core Container. If outside of the Vivado project GUI, sup-
port fi les such as the instantiation template and simulation fi les can be extracted 
from the Core Container using the  export_ip_user_fi les  command. This 
will place them in the  ip_user_fi les  directory.   
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3.5     Using IP in Your Design 

 Using an IP is straightforward. If the IP was created in an RTL project, then simply use 
the provided instantiate template for either VHDL or Verilog to instantiate the IP in 
your design. The template is found in the  IP Sources  tab for the specifi c IP. If not using 
the Vivado GUI, the instantiation template can be found in the following locations:

•    The IP directory  
•   In the  < project name>.ip_user_fi les  (IP created in an RTL project) or the  ip_

user_fi les  directory (IP created in a  Managed IP  project)    

 If scripting your fl ow, read the IP using the  read_ip  command and pass the  < 
ip_name >.xci  or <ip_name>xcix . By referencing the  XCI/XCIX  fi le, Vivado will pull 
all required fi les in as needed, including HDL,   DCP    (if IP synthesized  out-of- context  ), 
constraints, etc. If scripting a non-project fl ow, the IP must be fully generated. 

 Though you can use the IP DCP fi le in your fl ow, it is strongly recommended you 
use the  XCI/XCIX . The reasons are:

•    You can track the state of the IP going forward and can upgrade if you desire.  
•   During implementation, the IP XDC fi les will be processed in context of the 

entire netlist (see Sect.  3.6  for more details).  
•   If needed, you can make changes to the IP HDL (e.g., modify clocking resources).     

3.6      IP  Constraints   

 Most Xilinx IP come with constraint fi les (.xdc). They can contain physical constraints 
such as setting IO standards or locations and timing constraints, such as false paths. 
These two types can be mixed in the same fi le. The constraints are written as if the IP 
were the top of the design. The constraints are automatically scoped to IP instance(s). 
It is strongly recommended that you do not modify the constraints delivered by an IP. 

 There are two sources of constraints used by IP. If you’re a user of IP from the 
available catalog, you need not worry about this distinction. However, this distinc-
tion would be of importance, if you are creating an IP of your own:

•    XDC fi les created during generation of the IP and contained in the IP directory 
or the  Core Container   

•   Constraints created by Vivado automatically during the processing of the IP    

3.6.1     IP Delivered 

 There are three general types of XDC fi les which IP deliver:

•      OOC XDC   : This fi le provides the target frequency for any clocks which drive 
the IP for use during   out-of-context    synthesis. The fi le is not used during global 
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synthesis or global implementation. The target frequency of each clock is set 
either during the IP customization via the GUI or by setting a property on the 
IP after it has been created. This special XDC fi le is always processed before 
all other XDC fi les that an IP may deliver. The fi le has an extension of  _ooc.
xdc . Only one such fi le is delivered per IP.  

•   XDC fi les marked with a  PROCESSING_ORDER  of  EARLY : The constraints con-
tained either provide clock objects or do not have any dependence, such as a clock 
provided from outside the IP. These fi les are typically named <ip_name>.xdc .  

•   XDC fi les marked with a  PROCESSING_ORDER  of  LATE . The constraints con-
tained have a dependency on an external clock(s) being provided. The clock(s) 
would come from the top level during global synthesis and during global imple-
mentation. During out-of-context synthesis and implementation, the  _ooc.xdc  
provides the clock defi nition(s). These fi les have the extension of  _clocks.xdc .    

 With the exception of the  _ooc.xdc , not all IP deliver constraint fi les. It 
depends on the specifi c IP and its requirements. Typically larger and more complex 
IP deliver all three. Some IP may further break their constraints up, for example, 
putting the implementation specifi c constraints in one fi le and timing constraints in 
another fi le.  

3.6.2      Vivado Delivered 

 During the processing of the IP, the Vivado tool creates additional constraints as 
follows:

•    The  <ip_name>_   in_context.xdc    fi le: This fi le is created for IP when 
using the default   out-of-context    synthesis fl ow, where IP is synthesized 
 stand- alone. The  _in_context.xdc  is used during global synthesis, when the IP is 
a black box. After completing synthesis of the IP stand-alone, the IP is scanned 
to determine:   

 –    Does the IP output a clock object? Some IP produce clocks which could be used 
by other IP or by the user during global synthesis and implementation. The 
clocking wizard is an example of one such IP. The  _in_context.xdc  pro-
vides these clock defi nitions, which consist of  create_clock  command(s) 
which will put the clock object(s) on the boundary pin(s) of the IP, which will be 
a black box during global synthesis. This fi le is stored within the IP  DCP   fi le.  

 –   Does the IP contain clock or IO buffers? In this case a property is set on the 
respective boundary pin. With this property set on the IP black box, it will pre-
vent global synthesis from unnecessarily inserting an additional one.   

•    The   dont_touch.xdc    fi le: Depending on the version of Vivado, this fi le 
might be seen being read in the global synthesis log (if the IP is synthesized glob-
ally) or in the IP   out-of-context    synthesis log (default). This fi le places a   DONT_
TOUCH    on the boundary of the IP. This serves two purposes, to prevent the IP 
boundary pins from being optimized away and to prevent the IP hierarchy from 
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being altered. This guarantees any constraints an IP delivers do not get invalidated. 
The   DONT_TOUCH    is removed at the end of synthesis. This allows constant 
propagation and cross boundary optimizations to be performed during imple-
mentation after the IP constraints have been applied. In later versions of Vivado, 
this may be done without the creation of the  dont_touch.xdc  fi le though 
messaging will be produced.     

3.6.3      Processing Order   

 Constraints are processed in a specifi c order. For user XDC fi les, they are processed 
either in the order they are read using the  read_xdc  command in a script or in the 
order they are placed in the Vivado project (the compile order). IP are automatically 
processed along with the user fi les. Synthesis option decides which IP XDC fi les 
will be used: out-of-context (default) or global with the user HDL. The processing 
order is important, if your design has constraints that impact an IP or your design’s 
constraints depend on the constraints of the IP. For such dependence, it is important 
that the dependent constraints are read later. Vivado provides you with an ability to 
process your XDC fi les before or after any IP delivered XDC by setting the 
 PROCESSING_ORDER , though it is not common for users to change the 
 PROCESSING_ORDER  property for their XDC fi les. IP use this property to cause 
their various XDC fi les to come either before or after the user XDC fi les. 

 The order of XDC fi les during synthesis of the top level where the IP a black box, 
since it was synthesized out-of-context, is (default):

    1.    Any <ip_name>_in_context.xdc fi les   
   2.    User fi les in the compile order set     

 The order of XDC fi les when the IP is set to use global synthesis is:

    1.    User fi les with the  PROCESSING_ORDER  property set to  EARLY    
   2.    IP fi les with the  PROCESSING_ORDER  property set to  EARLY    
   3.    User fi les with the  PROCESSING_ORDER  property set to  NORMAL  (default 

order for fi les is based upon the compile order)   
   4.    IP fi les with the  PROCESSING_ORDER  set to  LATE    
   5.    User fi les with the  PROCESSING_ORDER  set to  LATE      

 This is the same order that is used during implementation. 
 To see the order in which the XDC as well as the HDL fi les are processed, use 

the  report_compile_order  command. To see just the constraints, use the 
 -constraints  option. The output is organized into sections:

•    HDL used during global synthesis  
•   HDL used during out-of-context IP synthesis  
•   Constraints used during global synthesis  
•   Constraints used during implementation  
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•   Constraints used during IP out-of-context synthesis  
•   Constraints used during IP out-of-context implementation (results for this are for 

analysis only; to fully place and route logic for use, see the hierarchical design 
document)      

3.7      IP Upgrade Decisions   

 Typically when moving to a new version of the Vivado Design Suite, the Xilinx IP in 
your design will most likely be out-of-date and it will be locked. Each release of 
Vivado only delivers one version of each Xilinx IP. Locked IP cannot be re- customized 
nor be generated. If you had fully generated your IP as recommended in Sect.  3.4 , 
you can continue to use it  as is  since all the fi les needed for it are present. 

 You can review the change log and product guide for the IP in your design and 
determine if you wish to upgrade to the current version or not. The changes can vary 
from simple constraint changes, possible bug fi xes, to the addition of new features. 
Some upgrades will require changes to your logic as the ports of the IP could change 
or the functionality might necessitate logic changes in your design. 

 The process of upgrading is straightforward. Select the IP either in the Vivado 
RTL project in the  IP Sources  area or in the  Managed IP  project, and right click and 
select  Upgrade IP . Once upgraded, you can proceed to generation of the output 
products. For speed and convenience, you can upgrade multiple IP in parallel.  

3.8      Simulation of IP   

 One of the biggest advantages of the Vivado Design Suite is the Xilinx IP are all deliv-
ered as HDL, enabling fast behavioral simulation. The HDL fi les needed for simula-
tion are created during the generation of the output products. The fi les are all located 
in the IP folder or within the  Core Container  fi le. When using the   Core Container ,   the 
simulation-related fi les are copied into the  ip_user_fi les  directory. 

 When using a Vivado RTL project and launching simulations from the GUI, all 
fi les required for simulating the IP are automatically sent to the simulator along with 
your HDL fi les. In addition to the integrated Vivado simulator ( XSIM ), Vivado can 
launch specifi c simulators from third parties.   Chapter 11     covers more on simulation. 

 If you elect to simulate outside of the Vivado Design Suite, scripts are provided 
in the   ip_user_fi les    directory for each supported simulator. These scripts will 
reference IP fi les either from the IP directory or the  ip_user_fi les  as applicable 
depending on if you are using  Core Container  or not. The IP scripts can be incorpo-
rated into your own simulation scripts. 

 You can also use the   export_simulation    command to create a script to 
simulate your entire design, including the IP. The command can also copy all the 
simulation HDL fi les into the directory of your choice. This makes it very easy to 
start simulating your design.    
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    Chapter 4   
 Gigabit Transceivers                     

     Vamsi     Krishna    

4.1          Introduction to MGT (Multi-Gigabit Transceiver) 

 Xilinx ®  provides power-effi cient transceivers in their FPGA architectures. Table  4.1  
shows the maximum line rate supported by various transceivers for seven-series and 
UltraScale architectures. The transceivers are highly confi gurable and tightly inte-
grated with the programmable logic resources of the FPGA. Because of very high 
degree of confi gurability of these transceivers, Vivado also comes with   GT Wizard   , 
which you can use to instantiate the transceivers with the right settings and connec-
tions. It is important to understand various characteristics of the transceivers. This will 
allow you to understand the system level implication of the confi guration options that 
you chose in the Wizard.

4.1.1       Reference Clocks 

 The  reference clock   input is terminated internally with 50 Ω on each leg to 4/5 
 MGTAVCC . Primitives such as  IBUFDS_GTE2/IBUFDS_GTE3  are used to instantiate 
reference clock buffers. Advanced architectures like  GTHE3/GTHE4  support output 
mode of operation. The recovered clock ( RXRECCLKOUT ) from any of the four 
channels within the same  Quad  can be routed to the dedicated reference clock I/O 
pins. This output clock can then be used as the reference clock input at a different 
location. The mode of operation cannot be changed during run time. 

 The reference clock output mode is accessed through one of the two primitives: 
 OBUFDS_GTE3  and  OBUFDS_GTE3_ADV . The choice of the primitive depends 
on your application. 

        V.   Krishna    (*) 
  Xilinx ,   Hyderabad ,  Telangana ,  India   
 e-mail: vamsik@xilinx.com   
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 Figure  4.1  shows the detailed view of the reference clock multiplexer structure 
within a single  GTHE3_COMMON  primitive. The  QPLL0REFCLKSEL  and 
 QPLL1REFCLKSEL  ports are required when multiple reference clock sources are 
connected to this multiplexer. A single  reference clock   is most commonly used. In 
the case of a single reference clock, connect the reference clock to the  GTREFCLK00  
and  GTREFCLK01  pins, and tie the  QPLL0REFCLKSEL  and  QPLL1REFCLKSEL  
ports to  3′b001 .

   Figure  4.1  also shows the reference clock multiplexer structure for the  GTHE3_
CHANNEL  primitive. The  CPLLREFCLKSEL  port is required when multiple refer-
ence clock sources are connected to this multiplexer. For a single reference clock 
(which is the most common scenario), connect the reference clock to the  GTREFCLK0  
port and tie the   CPLLREFCLKSEL    port to  3′b001 . Vivado will handle the complexity 
of the multiplexers and associated routing.   

4.2     PLLs 

4.2.1     CPLL 

 Each transceiver channel contains one ring-based channel  PLL   (  CPLL   ). The inter-
nal channel clocking architecture is shown in Fig.  4.2 . The  TX  and  RX  clock divid-
ers can individually select the clock from the  QPLL  or  CPLL  to allow the  TX  and 

   Table 4.1    Maximum line rate supported by various transceivers   

 GTY  GTX  GTH  GTP 

 Seven series  12.5 Gb/s  13.1 Gb/s  6.6 Gb/s 
 UltraScale  32.75 Gb/s  16.375 Gb/s 

  Fig. 4.1    QPLL and CPLL reference clock selection multiplexer       
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 RX  datapaths to operate at asynchronous frequencies using different reference 
clock inputs.

   The   CPLL    outputs feed the  TX  and  RX  clock divider blocks, which control the 
generation of serial and parallel clocks used by the  PMA  and  PCS  blocks. The  CPLL  
can be shared between the  TX  and  RX  datapaths if they operate at line rates that are 
integral multiples of the same   VCO    frequency. Figure  4.3  illustrates a conceptual 
view of the  CPLL  architecture. The input clock can be divided by a factor of  M  
before feeding into the phase frequency detector. The feedback dividers,  N1  and  N2 , 
determine the  VCO  multiplication ratio and the   CPLL    output frequency. A lock 
indicator block compares the frequencies of the reference clock and the   VCO    feed-
back clock to determine if a frequency lock has been achieved.

4.2.2        QPLL 

 Each  Quad  contains one/two LC-based PLLs, referred to as the  Quad   PLLs ( QPLL0  
and  QPLL1 ). Either  QPLL   can be shared by the serial transceiver channels within the 
same  Quad  but cannot be shared by channels in other  Quads . Use of  QPLL0/QPLL1  
is required when operating the channels at line rates above the  CPLL  operating range. 
The  GTHE3_COMMON/GTHE2_   COMMON    primitive encapsulates both the  GTH 
QPLLs  and must be instantiated when either  QPLL  is used. The  QPLL0/QPLL1  out-
puts feed the  TX  and  RX  clock divider blocks of each serial transceiver channel 
within the same  Quad , which control the generation of serial and parallel clocks used 
by the  PMA  and  PCS  blocks. 
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  Fig. 4.2    Internal channel clocking architecture       
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 Figure  4.4  illustrates a conceptual view of the  QPLL0/QPLL1  architecture. The 
input clock can be divided by a factor of  M  before it is fed into the phase frequency 
detector. The feedback divider  N  determines the  VCO  multiplication ratio. The 
 QPLL0/QPLL1  output frequency is half of the   VCO    frequency. A lock indicator 
block compares the frequencies of the reference clock and the  VCO  feedback clock 
to determine if a frequency  lock   has been achieved.

4.3         Power Down 

 The transceiver supports a range of  power  -down modes. These modes support both 
generic power management capabilities as well as those defi ned in the standard 
protocols. The transceivers offer different levels of power control. Each channel in 
each direction can be powered down separately. Independent PLL power-down 
controls are also provided in transceiver.  

4.4     Loopback 

 Loopback modes are specialized confi gurations of the transceiver datapath where 
the traffi c stream is folded back to the source. Typically, a specifi c traffi c pattern is 
transmitted and then compared to check for errors.  Loopback   test modes fall into 
two broad categories:

•    Near-end loopback mode loop transmits data back in the transceiver closest to 
the traffi c generator.  

•   Far-end loopback mode loop received data back in the transceiver at the far end 
of the link.    

 Loopback testing can be used either during development or in deployed equip-
ment for fault isolation. The traffi c patterns used can be either application traffi c 
patterns or specialized pseudorandom bit sequences. Each transceiver has a built-in 
  PRBS    generator and checker.  
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  Fig. 4.4    QPLL block diagram       
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4.5     Dynamic Reconfi guration Port (DRP) 

 The  dynamic reconfi guration port   (  DRP   ) allows the dynamic change of parameters 
of the transceivers and common primitives. The  DRP  interface is a processor- friendly 
synchronous interface with an address bus ( DRPADDR ) and separated data buses for 
reading ( DRPDO ) and writing ( DRPDI ) confi guration data to the primitives. An 
enable signal ( DRPEN ), a read/write signal ( DRPWE ), and a ready/valid signal 
( DRPRDY ) are the control signals that implement read and write operations, indicate 
operation completion, or indicate the availability of data. Figure  4.5  shows Write and 
Read timings. A new transaction can be initiated when  DRPRDY  is asserted.

4.6        Transmitter 

 Each transceiver includes an independent transmitter, which consists of a   PCS    and 
a   PMA   . Figure  4.6  shows the functional blocks of the transmitter. Parallel data fl ows 
from the FPGA logic into the FPGA  TX  interface, through the  PCS  and  PMA , and 
then out of the  TX  driver as high-speed serial data.

  Fig. 4.5    DRP write operation ( left ) and DRP read operation ( right )       

  Fig. 4.6    TX block diagram       
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   Some of the key elements within the  GTX / GTH  transceiver  TX  are:

    1.    FPGA TX interface   
   2.    TX 8B/10B encoder   
   3.    TX gearbox   
   4.    TX buffer   
   5.    TX buffer bypass   
   6.    TX pattern generator   
   7.    TX polarity control   
   8.    TX confi gurable driver    

4.6.1      FPGA TX Interface 

 The FPGA TX interface is the FPGA’s gateway to the TX datapath of the trans-
ceiver. Applications transmit data through the transceiver by writing data to the 
 TXDATA  port. The width of the port can be confi gured to be two, four, or eight bytes 
wide. The FPGA TX interface includes parallel clocks used in   PCS    logic. The paral-
lel clock rate depends on the internal datawidth and the TX line rate.  

4.6.2     TX 8B/10B Encoder 

 Many protocols use  8B/10B   encoding on outgoing data. 8B/10B is an industry- 
standard encoding scheme that trades two bits overhead per byte for achieved DC 
balance and bounded disparity to allow reasonable clock recovery. The trans-
ceiver has a built-in 8B/10B TX path to encode TX data without consuming 
FPGA resources. Enabling the 8B/10B encoder increases latency through the TX 
path. The 8B/10B encoder can be disabled or bypassed to minimize latency, if 
not needed.  

4.6.3     TX Gearbox 

 Some high-speed data rate protocols use  64B/66B   encoding to reduce the overhead 
of 8B/10B encoding while retaining the benefi ts of an encoding scheme. The TX 
gearbox provides support for 64B/66B and  64B/67B   header and payload combin-
ing. The TX gearbox has two operating modes. The external sequence counter oper-
ating mode must be implemented in user logic. The second mode uses an internal 
sequence counter. Due to additional functionality, latency through the  gearbox   
block is expected to be longer.  
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4.6.4     TX Buffer 

 The transceiver TX datapath has two internal parallel clock domains used in the  PCS : 
the  PMA  parallel clock domain (  XCLK   ) and the  TXUSRCLK  domain. To transmit 
data, the  XCLK  rate must match the   TXUSRCLK    rate, and all phase differences 
between the two domains must be resolved. Figure  4.7  shows the  XCLK  and 
 TXUSRCLK  domains.

   The transmitter includes a TX buffer and a TX phase alignment circuit to resolve 
phase differences between the   XCLK    and   TXUSRCLK    domains. The TX phase 
alignment circuit is used when TX buffer is bypassed. All TX datapaths must use 
either the TX buffer or the TX phase alignment circuit. Table  4.2  shows the trade-off 
between buffering and phase alignment.

  Fig. 4.7    TX clock domains       

   Table 4.2    TX buffer vs phase alignment   

 TX buffer  TX phase alignment 

 Ease of use  The TX buffer is the recommended 
default to use when possible. It is 
robust and easier to operate 

 Phase alignment is an advanced feature 
that requires extra logic and additional 
constraints on clock sources 

 Latency  If low latency is critical, the TX 
buffer must be bypassed 

 Phase alignment uses fewer register in 
the TX datapath to achieve lower and 
deterministic latency 

 TX lane-lane 
Deskew 

 The TX phase alignment circuit can be 
used to reduce the lane skew between 
separate transceivers. All transceivers 
involved must use the same line rate 
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4.6.5        TX Buffer Bypass 

 Bypassing the TX  buffer   is an advanced feature of the transceiver. The TX phase align-
ment circuit is used to adjust the phase difference between the   PMA    parallel clock 
domain (  XCLK   ) and the   TXUSRCLK    domain when the TX buffer is bypassed. It also 
performs the TX delay alignment by adjusting the  TXUSRCLK  to compensate for the 
temperature and voltage variations. The combined TX phase and delay alignments can 
be automatically performed by the transceiver or manually controlled by the user.  

4.6.6     TX Pattern Generator 

 Pseudorandom bit sequences (  PRBS   ) are commonly used to test the signal integrity 
of high-speed links. These sequences appear random but have specifi c properties 
that can be used to measure the quality of a link. The error insertion function is sup-
ported to verify link connection and also for jitter tolerance tests. When an inverted 
 PRBS  pattern is necessary,   TXPOLARITY    signal is used to control polarity.  

4.6.7      TX Polarity Control 

 If   TXP    and   TXN    differential traces are accidentally swapped on the PCB, the differ-
ential data transmitted by the transceiver TX is reversed. One solution is to invert the 
parallel data before serialization and transmission to offset the reversed polarity on 
the differential pair. The TX polarity control can be accessed through the 
 TXPOLARITY  input from the fabric user interface.  

4.6.8     TX Confi gurable Driver 

 The transceiver TX driver is a high-speed current-mode differential output buffer. 
To maximize signal integrity, it includes these features:

•    Differential voltage control  
•   Precursor and post-cursor transmit preemphasis  
•   Calibrated termination resistors      

4.7     Receiver 

 Each transceiver includes an independent receiver, made up of a   PCS    and a   PMA   . 
Figure  4.8  shows the blocks of the transceiver  RX . High-speed serial data fl ows 
from traces on the board into the  PMA  of the transceiver  RX , into the  PCS , and 
fi nally into the FPGA logic.
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   Some of the key elements within the transceiver RX are:

    1.    RX Analog front end   
   2.    RX equalizer (DFE and LPM)   
   3.    RX CDR   
   4.    RX polarity control   
   5.    RX pattern checker   
   6.    RX Byte and Word Alignment   
   7.    RX 8B/10B decoder   
   8.    RX buffer bypass   
   9.    RX elastic buffer   
   10.    RX clock correction   
   11.    RX channel bonding   
   12.    RX gearbox   
   13.    FPGA RX interface     

4.7.1     RX Analog Front End 

 The RX analog front end (  AFE   ) is a high-speed current-mode input differential buf-
fer. It has these features:

•    Confi gurable RX termination voltage  
•   Calibrated termination resistors     

4.7.2     RX Equalizer (DFE and LPM) 

 A serial link bit error rate (  BER   ) performance is a function of the transmitter, the 
transmission media, and the receiver. The transmission media or channel is 
bandwidth limited and the signal traveling through it is subjected to attenuation and 
distortion. 

  Fig. 4.8    RX transceiver block diagram       
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 There are two types of adaptive fi ltering available to the receiver depending on 
system level trade-offs between power and performance. Optimized for power with 
lower channel loss, the receiver has a power-effi cient adaptive mode named the 
low-  power   mode (  LPM   ), see Fig.  4.9 .

   For equalizing lossy channels, the   DFE    mode is available. See Fig.  4.9  for the 
transceiver. The  DFE  allows better compensation of transmission channel losses by 
providing a closer adjustment of fi lter parameters than when using a linear equalizer. 
However, a  DFE  cannot remove the precursor of a transmitted bit; it only compensates 
for the post-cursors. A linear equalizer allows precursor and post- cursor gain. The 
 DFE  mode is a discrete time-adaptive high-pass fi lter. The  TAP  values of the  DFE  are 
the coeffi cients of this fi lter that are set by the adaptive algorithm. 

  LPM  mode is recommended for applications with line rates up to 11.2 Gb/s for 
short reach applications, with channel losses of 12 dB or less at the Nyquist fre-
quency.  DFE  mode is recommended for medium to long-reach applications, with 
channel losses of 8 dB and above at the Nyquist frequency. A  DFE  has the advan-
tage of equalizing a channel without amplifying noise and crosstalk.  DFE  can also 
correct refl ections caused by channel discontinuities within the fi rst fi ve post- cursors 
in transceivers.  DFE  mode is the best choice when crosstalk is a concern or when 
refl ections are identifi ed in a single-bit response analysis. 

 Both   LPM    and   DFE    modes must be carefully considered in 8B/10B applications 
or where data scrambling is not employed. To properly adapt to data, the auto adapta-
tion in both  LPM  and  DFE  modes requires incoming data to be random. Patterns 
with characteristics similar to  PRBS7  (or higher polynomial) are suffi ciently random 
for auto adaptation to properly choose the correct equalization setting.  

4.7.3     RX CDR 

 The RX  clock data recovery   (  CDR   ) circuit in each transceiver extracts the recovered 
clock and data from an incoming data stream. The transceiver employs phase rotator 
 CDR  architecture. Incoming data fi rst goes through receiver equalization stages. The 
equalized data is captured by an edge and a data sampler. The data captured by the 
data sampler is fed to the  CDR  state machine and the downstream transceiver blocks. 

  Fig. 4.9    LPM mode ( left ) and DFE mode ( right ) block diagram       
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The  CDR  state machine uses the data from both the edge and data samplers to determine 
the phase of the incoming data stream and to control the phase interpolators (PIs). 
The phase for the edge sampler is locked to the transition region of the data stream, 
while the phase of the data sampler is positioned in the middle of the data eye. 

 The  PLLs  provides a base clock to the phase interpolator. The phase interpolator 
in turn produces fi ne, evenly spaced sampling phases to allow the  CDR  state machine 
to have fi ne phase control. The  CDR  state machine can track incoming data streams 
that can have a frequency offset from the local PLL reference clock.  

4.7.4     RX  Polarity   Control 

 Similar to  Tx Polarity Control  (explained in  Sect. 4.6.7 ),  RXPLOLARITY  (active 
 High ) input can be used to swap the   RXP    and   RXN    differential pins.  

4.7.5     RX Pattern Checker 

 The receiver includes a built-in PRBS checker. This checker can be set to check for 
one of four industry-standard  PRBS   patterns. The checker is self-synchronizing and 
works on the incoming data before   comma    alignment or decoding. This function 
can be used to test the signal integrity of the channel.  

4.7.6     RX Byte and Word Alignment 

 Serial data must be aligned to symbol boundaries before it can be used as parallel 
data. To make alignment possible, transmitters send a recognizable sequence, usu-
ally called a  comma . The receiver searches for the  comma  in the incoming data. 
When it fi nds a  comma , it moves the   comma    to a byte boundary so the received 
parallel words match the transmitted parallel words.  

4.7.7     RX 8B/10B Decoder 

 If RX received data is  8B/10B   encoded, it must be decoded. The transceiver has a 
built-in 8B/10B encoder in the TX and an  8B/10B   decoder in the RX. The RX 
8B/10B decoder has these features:

•    Supports 2-byte, 4-byte, and 8-byte datapath operation  
•   Provides daisy-chained hookup of running disparity for proper disparity  
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•   Generates K characters and status outputs  
•   Can be bypassed if incoming data is not 8 B/10 B encoded  
•   Pipes out 10-bit literal encoded values when encountering a not-in-table error     

4.7.8     RX Buffer Bypass 

 Bypassing the RX elastic  buffer   is an advanced feature of the transceiver. The RX 
phase alignment circuit is used to adjust the phase difference between the   PMA    paral-
lel clock domain (  XCLK   ) and the   RXUSRCLK    domain when the RX elastic buffer is 
bypassed. It also performs the RX delay alignment by adjusting the  RXUSRCLK  to 
compensate for the temperature and voltage variations. Figure  4.10  shows the  XCLK  
and  RXUSRCLK  domains, and Table  4.3  shows trade-offs between buffering and 

  Fig. 4.10    RX phase alignment       

   Table 4.3    RX buffer vs phase alignment   

 RX elastic buffer  RX phase alignment 

 Ease of use  The RX buffer is the 
recommended default to use when 
possible. It is robust and easier to 
operate 

 Phase alignment is an advanced 
feature that requires extra logic and 
additional constraints on clock 
sources 

 Clocking options  Can use RX recovered clock or 
local clock (with clock correction) 

 Must use the RX recovered clock 

 Initialization  Works immediately  Must wait for all clocks to stabilize 
before performing the RX phase 
and delay alignment procedure 

 Latency  Buffer latency depends on features 
use, such as clock correction and 
channel bonding 

 Lower deterministic latency 

 Clock correction and 
channel bonding 

 Required for clock correction and 
channel bonding 

 Not performed inside the 
transceiver. Required to be 
implemented in user logic 
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phase alignment. The RX elastic  buffer   can be bypassed to reduce latency when the 
RX recovered clock is used to source  RXUSRCLK  and  RXUSRCLK2 . When the RX 
elastic buffer is bypassed, latency through the RX datapath is low and deterministic, 
but clock correction and channel bonding are not available.

4.7.9         RX Elastic  Buffer   

 The transceiver RX datapath has two internal parallel clock domains used in the  PCS : 
the  PMA  parallel clock domain ( XCLK ) and the  RXUSRCLK  domain. To receive data, 
the  PMA  parallel rate must be suffi ciently close to the  RXUSRCLK  rate, and all phase 
differences between the two domains must be resolved.  

4.7.10     RX Clock Correction 

 The RX elastic  buffer   is designed to bridge between two different clock domains, 
 RXUSRCLK  and  XCLK , which is the recovered clock from  CDR . Even if  RXUSRCLK  
and  XCLK  are running at the same clock frequency, there is always a small frequency 
difference. Because   XCLK    and   RXUSRCLK    are not exactly the same, the difference 
can be accumulated to cause the RX elastic buffer to eventually overfl ow or under-
fl ow unless it is corrected. To allow correction, each transceiver TX periodically 
transmits one or more special characters that the transceiver RX is allowed to remove 
or replicate in the RX elastic buffer as necessary. By removing characters when the 
RX elastic buffer is  full   and replicating characters when the RX elastic buffer is 
 empty  , the receiver can prevent overfl ow or underfl ow.  

4.7.11     RX Channel Bonding 

 Protocols such as  XAUI  and  PCI Express  combine multiple serial transceiver con-
nections to create a single higher throughput channel. Each serial transceiver con-
nection is called one lane. Unless each of the serial connections is exactly the same 
length, skew between the lanes can cause data to be transmitted at the same time but 
arrive at different times.  Channel bonding   cancels out the skew between transceiver 
lanes by using the RX elastic buffer as a variable latency block. Channel bonding is 
also called channel   deskew    or  lane-to-lane deskew . Transmitters used for a bonded 
channel all transmit a channel bonding character (or a sequence of characters) 
simultaneously. When the sequence is received, the receiver can determine the skew 
between lanes and adjust the latency of RX elastic buffers so that data is presented 
without skew at the RX fabric user interface.  
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4.7.12     RX Gear Box 

 The RX  gearbox   provides support for  64B/66B   and  64B/67B   header and payload 
separation. The gearbox uses output pins  RXDATA [63:0] and  RXHEADER [2:0] for 
the payload and header of the received data in normal mode. RX gearbox operates 
with the  PMA  using a single clock. Because of this, occasionally, the output data is 
invalid. The data out of the RX gearbox is not necessarily aligned. Alignment is done 
in the FPGA logic. The  RXGEARBOXSLIP  port can be used to slip the data from the 
gearbox cycle by cycle until correct alignment is reached. It takes a specifi c number of 
cycles before the  bitslip   operation is processed and the output data is stable. 
Descrambling of the data and block synchronization is done in the FPGA logic. 

 The RX gearbox operates the same in either external sequence counter mode or 
internal sequence counter mode.  

4.7.13     FPGA RX Interface 

 The FPGA RX interface is the FPGA’s gateway to the RX datapath of the trans-
ceiver. Applications transmit data through the transceiver by writing data to the 
 RXDATA  port. The width of the port can be confi gured to be two, four, or eight bytes 
wide. The rate of the parallel clock at the interface is determined by the RX line rate, 
the width of the  RXDATA  port, and whether or not 8B/10B decoding is enabled.   

4.8     Integrated Bit Error Ratio Tester (IBERT) 

 The customizable LogiCORE™ IP Integrated Bit Error Ratio Tester (  IBERT   ) core for 
FPGA transceivers is designed for evaluating and monitoring the transceivers. This core 
includes pattern generators and checkers that are implemented in FPGA logic and access 
to ports and the dynamic reconfi guration port attributes of the transceivers. Communication 
logic is also included to allow the design to be run time accessible through   JTAG   . 

 The IBERT core provides a broad-based Physical Medium Attachment (  PMA   ) 
evaluation and demonstration platform for FPGA transceivers. Parameterizable to 
use different transceivers and clocking topologies, the IBERT core can also be 
customized to use different line rates, reference clock rates, and logic widths. 
Data pattern generators and checkers are included for each  GTX  transceiver desired, 
giving several different pseudorandom binary sequences (  PRBS   ) and clock patterns 
to be sent over the channels. In addition, the confi guration and tuning of the trans-
ceivers are accessible through logic that communicates to the dynamic reconfi gura-
tion port (  DRP   ) of the GTX transceiver, in order to change attribute settings, as well 
as registers that control the values on the ports. At run time, the Vivado serial I/O 
analyzer communicates to the IBERT core through JTAG, using the Xilinx cables 
and proprietary logic that is part of the IBERT core.    

V. Krishna



49© Springer International Publishing Switzerland 2017 
S. Churiwala (ed.), Designing with Xilinx® FPGAs, 
DOI 10.1007/978-3-319-42438-5_5

    Chapter 5   
 Memory Controllers       

     Karthikeyan     Palanisamy    

5.1          Introduction 

 External memory interface is an important component for majority of systems that 
are designed today. You have the option to choose various types of external memo-
ries depending upon the system requirements. The external memories required by 
you are supported through Xilinx Vivado IP catalog. Vivado provides options for you 
to confi gure various memory controllers as per your requirements. The performance 
of a memory subsystem would depend upon the access pattern to the memory, the 
electrical settings that are available, and the Vivado options. This chapter would go 
over the various types of memories that are available for you and the options that are 
available to confi gure the memory subsystem to get the required performance. 

 The on-chip memory available in an  FPGA  has increased over generations. The 
 FPGA  internal memories can be confi gured in various ways as per your require-
ments. The memory available in an  FPGA  can fully satisfy the memory requi-
rements of a system or partially depending on the system requirements. Systems for 
which the memory requirements are more than that is available in an  FPGA  would 
opt for external memory. The type of memory used in a system will vary based on 
the system requirements. Various factors like   throughput   , storage requirements, 
power consumption, cost, and memory technology roadmap will go into selecting a 
memory interface. 

 Typically for an embedded system, a   DRAM    (dynamic random access memory) 
would be used as the external memory.  DRAM  memories are attractive due to the low 
cost per bit ratio, density, and availability.  DRAM  memories have evolved over time 
and the latest memories come with various power-saving features and also available 
at high data rates (3200 MT/s). A networking system would have a combination of 
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 DRAM  memories and fast   SRAM    (static random access memory) or   RLDRAM    
(reduced latency dynamic random access memory) memories.  RLDRAM  and  SRAM  
memories are also feature rich and reach high data rates.   RLDRAM    and   SRAM    mem-
ories are expensive compared to   DRAM ,   but they are attractive for applications that 
require low memory access times. 

 It is assumed that you have a good understanding of the memory technology, the 
roadmap, and the rationale behind choosing a memory for the system. The focus of 
the chapter will be on various options available for you and how you can set up the 
memory controller to achieve the system performance requirements. 

 Every memory IP has a product guide associated with it. The product guide will 
describe the IP in detail. You are encouraged to read the product guide for a particu-
lar IP to get in-depth knowledge of the IP. For every  FPGA  generation, there is also 
a PCB design user’s guide which has many details regarding the PCB consider-
ations that has to be taken into account for a memory interface.  

5.2     Getting Started 

 Xilinx memory solutions are part of Vivado IP catalog. You can generate various 
memory controller designs by selecting the IP cores available in the IP catalog. The 
following memory IPs are generally available for every generation of  FPGAs :

•      SDRAM   :   DDR3    and   DDR4     
•     SRAM   :   QDRII   + and   QDRIV     
•     RLDRAM   :   RLDRAM    -3   
•     LPDDR   :   LPDDR3    and   LPDDR4       

 The variants for memory devices will vary for every generation of  FPGAs  based 
on the memory roadmap and availability. In this chapter only the memory that is 
prevalent will be discussed in detail. For example, in   SDRAM    the chapter will go 
into details for   DDR4   . Most of the  DDR4  concepts are applicable for   DDR3    , 
LPDDR3 ,    and   LPDDR4   . 

5.2.1     Design Generation 

 Through the IP catalog in Vivado, you will be able to invoke the memory wizard 
tool for a given IP. The wizard will have multiple options to confi gure the IP. The 
options are split into "basic options” and “advanced options.” The basic options 
would be used to confi gure the following:

•     Controller option : The memory controller is split into two parts: the physical 
layer and the controller. The controller converts the user commands into the par-
ticular memory protocol commands. The controller will also have features built 
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in to improve the effi ciency. The physical layer is responsible for initializing the 
memory and performing  calibration  . The main function of calibration is to cap-
ture read data reliably and to send write data with enough margin to the memory. 
Calibration is required to make sure the memory interface works reliably over a 
range of process voltage and temperature. You can choose to generate a design 
with memory controller and physical layer or just the physical layer. Usually a 
physical layer-only design is generated for use in cases in which a system 
requires a custom controller to be used with the physical layer. The physical 
layer-only option is usually only applicable to   SDRAM    designs which has com-
plex controller functions.  

•    Clocking option : The memory controller frequency of operation will be chosen 
here. There will be an option to select the clock input to the memory controller.  

•    Memory device : You can choose the memory device as per your requirements. 
The menu will have multiple memory devices and confi gurations for you to 
choose from. If a particular memory type is not available, the tool provides 
options to generate a custom memory part for you. Other options like the data 
width, read and write latencies (if applicable), and burst length would be chosen 
here. For certain memory types, some pins like chip select or data mask are 
optional and that selection would be done here. Finally if applicable for certain 
memory types, the option to have ECC will also be provided here.    

 With the basic options described above, you can generate a memory controller 
that will satisfy your needs. You can use the advanced option to further customize 
the memory controller. The advanced options would vary by the memory controller 
type. In general there would be options to select the following:

•    By default the controller is confi gured for effi ciency based on the default options. 
You can select switches that would improve effi ciency for your traffi c pattern.  

•   Provides advanced option for you to choose the input clock confi guration.  
•   Option to provide debug hooks and bring the status signals to the Vivado Labtools 

Hardware Manager for easy debug. All the memory controllers will come up 
with a status viewer from Vivado Labtools by default. The status viewer will 
display the  calibration   status, read/write margin, and other relevant information.  

•   Advanced options provided to speed up simulation with behavioral models.  
•   Option to generate additional clocks that is synchronous to the memory control-

ler clock. The additional clocks would be useful for a system that needs to clock 
other blocks that are synchronous to the chosen memory controller.  

•   Options to enable other controller-specifi c advanced features. For example, self-
refresh feature in   DDR4    designs.     

5.2.2     Pin Planning 

 The pin planning for the memory controller would be done in the main Vivado I/O 
Pin planner. To access the Vivado I/O planning environment, you would have to 
open the elaborated RTL design or the synthesized design. Once the design is 
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opened, the I/O planning layout option can be chosen from the menu and pin 
 selection can be done. A default pin out would be preloaded for the memory control-
ler in the I/O planner. You can go with the default or choose your own custom pin 
out. In custom pin out, you have the option to do byte-level or pin- level selections. 
You can also read in an existing pin selection through the XDC fi le and use it for the 
IP pin out in I/O planner.  

5.2.3     Example Design 

 The memory controller solutions have an example design associated with it. The 
 example design   can be invoked by right clicking on the generated IP in the Vivado 
console and choosing the option “Open IP Example Design.” 

 The example design (apart from the IP fi les that was generated) will have the 
necessary fi les for simulation and implementation. The example design is useful for 
you to get a quick start with implementation and simulation of the generated mem-
ory controller. The example design can also be used as an instantiation template 
when you integrate the memory controller IP in your system. A traffi c generator that 
can send in different traffi c patterns depending upon your options will be part of the 
example design. The traffi c generator can generate patterns like  PRBS23   that 
stresses the interface. 

 The implementation fl ow requires a top-level module that instantiates your 
design portion of the IP and the traffi c generator. This top-level fi le will be present 
in the example design. The example design will have all the required constraints for 
the implementation of the design. The example design can be taken through the 
implementation fl ow and a bit fi le can be generated. You can go through the I/O 
planner to customize the pin out of the example design as per your PCB layout. You 
can also skip the I/O planner and generate a bit fi le with the default pin out. You can 
use the example design to validate the memory interface in your PCB. Memory 
interfaces operates at a high data rate. During system bring up, the example design 
fl ow is a good way of bringing up the memory interface in the PCB in a unit level 
without the other parts of the system. 

 The behavioral  simulation   of example design can be performed by selecting the 
 Run Simulation  option in Vivado. The Vivado simulator is supported by default and 
the option to support various third-party simulators is provided. The simulation 
waveform will be opened in the Vivado GUI framework with the relevant signals 
that are important for the design. The example design will have a simulation top 
level that instantiates the user design, traffi c generator, memory model, clocking, 
and reset logic. The example design behavioral simulation provides you with the 
waveforms that show the interaction with the user interface and interaction of the 
memory interface signals with the controller and provides information on the laten-
cies involved in the design.   
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5.3     Calibration 

 Calibration is a very important aspect of the memory controller design. The inter-
face operates at very high data rates and due to that the data valid window will be 
very small. Good  calibration   techniques are required for reading and writing the 
data reliably for the memory interface. This section describes the concept of calibra-
tion that would be applicable for all memory interfaces. 

 The data is captured from the memory and written to the memory at both the 
edges of the clock. A   DDR4    operating at 3200 MT/s will have a clock period of 
625 ps. With the dual data rate interface, the bit time would be 312 ps. Within the 
bit time, various uncertainties will affect the data valid window as shown in Fig.  5.1 .

   The uncertainties shown in Fig.  5.1  will be a combination of variations from 
memory,  FPGA , and PCB. The goal of  calibration   is to center the capture clock in 
the middle of data valid window during reads and have the write clock in the middle 
of the data valid window during writes. For read side the following would add to the 
uncertainties at a high level:

•    Data valid time from the memory  
•   Any drift with respect to clock and data from memory that is sent to the  FPGA   
•   Skew between different signals that pass through the PCB  
•   Board inter symbol interference  
•   Jitter on the clock that is fed to the memory  
•   Setup and hold requirements of the capture fl op in the  FPGA   
•   Delay variations over voltage and temperature in elements used for calibration    

 Write side would have the following added to the uncertainties at a high level:

•    Duty cycle distortion and jitter on the clock that is fed to the memory  
•   Package skew and clock skew from the  FPGA   
•   Delay variations over voltage and temperature in elements used for calibration  
•   Board inter symbol interference  
•   Setup and hold requirements from the memory device    

Bit time

Data valid window

Uncertanities Uncertanities

  Fig. 5.1    Data bit time with uncertainties       
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5.3.1     De-Skew Calibration 

 The read and write data from the memory can be skewed based on package skew, 
PCB skew, clock skew, internal routing skew, and variations in the delay elements 
used during  calibration  . For the parallel memory interfaces, the data to clock ratio 
varies from 4:1 to 36:1. In parallel memory interface where there is one clock per 
multiple data bits, the skew within the data bits will affect the effective data valid 
window. The skew in the interface will affect the effective data valid window as 
shown in Fig.  5.2 .

   The function of the de-skew  calibration   would be to align all the data bits within 
the clock region so that the interface has the maximum data valid window for both 
read and write operation. The interface data valid window will be determined by the 
common time in which all the interfaces have valid data.  

5.3.2     Read Calibration 

 The read clock at the output of the memory during read operations will not be center 
aligned with the data and will be edge aligned as shown in Fig.  5.3 .

Data valid window

Data_N

Data_N+1

  Fig. 5.2    Data bus with skew       

Data_N

Read clock/strobe

  Fig. 5.3    Read data and read clock/strobe from memory       
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   The main function of the read  calibration   is to fi gure out the read valid window 
across all the associated data bits and center the capture clock in the middle of the 
data valid window. This stage will usually write a pattern to memory and read from 
it continuously. Write calibration might not have been completed before this stage. 
The writes to the memory has to be successful for this stage to function properly. 
Some memory standards have registers within the device that has predefi ned data 
patterns that can be used during this stage and would not require a write to the 
memory. For devices that do not have preloaded data pattern, the read calibration 
will write a simple data pattern. The simple data pattern will guarantee enough setup 
and hold margin to make sure the writes are successful. The calibration algorithms 
will start with the simple pattern or preloaded patterns to complete the initial stage. 
After the initial calibration, for higher data rate interfaces, a complex data pattern 
that mimics the worst case signal integrity effects will be used to further center the 
clock accurately in the data valid window. 

 Read  calibration   algorithm using the training pattern will scan the data eye to 
fi gure out the uncertainty region and the effective window in which data is valid. 
This stage requires multiple samples of the read data to accurately fi gure out the 
uncertainty region to account for jitter and other signal integrity effects. Once the 
scanning is done, the  calibration   algorithm will position the capture clock in 
the center of the eye as shown in Fig.  5.4 .

   Read  calibration   in majority of the memory controller designs will include a 
stage for estimating the read latency. A read command will be issued by the memory 
controller, and it will reach the memory device after going through the delay in the 
address path. The memory device will have a spec for read latency, and the read data 
will appear on the read data bus after the read latency number of clock cycles from 
the time the read command was registered. The read data will have to go through the 
read data path delay and any other delay in the read capture stage. In most designs 
the read data will be captured using the clock/strobe from the memory and will be 
transferred to the controller clock domain for use in the other parts of the design. 
The memory interface will have multiple sets of data with its own read clock asso-
ciated with it. All the data sets from the memory need not be aligned when it is 
available at the controller clock domain. Optional delay stages have to be added to 
align the entire interface when the data is available in the controller clock domain. 
The  read valid  calibration stage will estimate all the delays in clock cycles and 
 provide the information on when the read data would be available at the controller 
clock domain after the read command is issued.  

Data_N

Read clock/strobe

  Fig. 5.4    Read data and read clock/strobe after read calibration       
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5.3.3     Write Calibration 

 The write calibration stage is required to center the write clock/strobe in the center 
of the write data. The memory devices have a requirement of having the write clock/
strobe to be in the center during write transactions. For high-speed interfaces in 
which every picosecond counts, a precise calibration would be required to center 
the clock/strobe in the write data window. The concept behind write calibration is 
very similar to read calibration. The calibration algorithm would write a data pattern 
into memory and read it back to see if the write was successful. During the write the 
write clock/strobe will be moved using fi ne resolution delays across the data bit 
time to fi gure out the optimal position. 

 Write calibration in most of the controllers will have write latency calibration. 
Similar to read latency calibration, this stage is to calibrate out the delays that are in 
the write path and estimate the write latency so that the controller can satisfy the 
write latency requirements for the memory device. Write  calibration   depending on 
the memory technology will have an additional calibration stage to align the write 
clock/strobe with the memory clock. The write clock/strobe will be a point to point 
connection. The memory clock will go to multiple components and will have more 
than one load. The arrival times of the write clock/strobe and the memory clock will 
not be aligned and this stage is to align them both.  

5.3.4     VT Compensation 

 VT compensation is not necessarily a  calibration   stage but the logic to compensate 
for the voltage and temperature drift that will occur over the period of time. Initial 
calibration will calibrate out the process variations; the dynamic variations due to 
VT will need compensation. There can be difference in the way variations happen 
between the clock path and the data path. In the worst case scenario, the data path 
and the clock path can drift in opposite directions. The dynamic variations can 
 happen at any rate. The VT compensation logic would have to sense the drift and 
correct for it. 

 The compensation logic would have to monitor the drift and compensate as and 
when the drift happens. If left uncorrected there will be reduction in margin and in 
certain conditions data corruption can occur due to too much variations. The com-
pensation logic would have to monitor the  FPGA  conditions as well as the signals 
from memory to detect the movement. The compensation logic would need to mon-
itor the read data and/or read clock/strobe coming from the memory. If the user 
traffi c does not have any read commands for a certain period of time, then the 
memory controller would issue read commands for maintenance purpose. The read 
data from these maintenance commands will not be passed on to the user interface. 
The interval between the maintenance commands is determined by the memory 
interface design requirements.   
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5.4     Signal Integrity 

 Signal integrity effects play a big part in the memory interface performance. Signal 
integrity simulations need to be performed for the memory interfaces, and the simu-
lation recommendations need to be used for the PCB design as well as the memory 
controller options. For low-frequency interfaces the signal integrity has little effect 
on the signal and the interface can work reliably. At high frequencies the signal 
integrity effects like ringing, cross talk, ground bounce, and refl ections affect the 
signal quality and can result in data integrity problems. Impedance mismatch is one 
of the key aspects that needs to be taken care of in the memory interface design. 
Impedance mismatch causes signals to refl ect along the transmission line. The 
refl ections can subject the signals to ringing, overshoot, and undershoot which in 
turn will cause signals to be sampled improperly at the receiver. The source imped-
ance must match with the trace impedance. 

 Figure  5.5  shows an example of a driver, transmission line, and receiver setup. 
The impedance of the driver, transmission line, and the receiver have to match to 
avoid impedance mismatch. Various termination schemes are available for you to 
match the impedance. You have the option of terminating on the PCB or use the on-
chip termination that is available in the  FPGA  and in the memory device. Xilinx 
 FPGAs  have onboard programmable termination called Digitally Controlled 
Impedance (  DCI   ).  DCI  offers on-chip termination for receivers and drivers across 
multiple confi gurations that will satisfy your system requirement.  DCI  helps you to 
leave the termination implementation to the  FPGA  and simplify the PCB design. 
Similar to the  FPGAs , the memory devices also have on-chip termination called On 
Die Termination. On the  FPGA  end, various other options are provided to improve 
the signal integrity. Vivado provides attributes to control drive strength and slew 
rate. Drive strength and slew rate can be used to tune an interface for adequate speed 
while not overdriving the signals. The memory wizard tool in Vivado IP catalog will 
automatically chose the correct setting for a given memory interface. There are 
certain options like   ODT    that might have multiple choices. You have the choice to 
go with default or chose the option that matches your requirements.

Driver Receiver

Transmission Line

  Fig. 5.5    Driver, transmission line, and receiver example       
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5.5          DDR4 SDRAM 

   DDR4      SDRAM    (double data rate synchronous dynamic random access memory) 
introduced in 2014 is the latest (at the time of writing this book) memory standard 
that is widely used in the industry. 

 The Vivado tool provides various options for you to customize the memory con-
troller. Based on the system requirements, you can select the options given below:

•    Memory device selection: density of the device, DQS to DQ ratio, column 
address strobe read and write latency, memory speed grade, component, DIMM, 
SODIMM, RDIMM, 3DS, or LRDIMM  

•   Memory controller options: user interface selection, effi ciency switches, address-
ing options for various payloads, data width, and   ODT    options  

•    FPGA  options:  FPGA  banks and pins to be used,  FPGA  termination options, 
VREF options, and clocking options (input clock to the memory controller IP)    

 The most important aspect for you would be the  throughput   of the memory con-
troller and the storage requirements. A 64 bit  DDR4  memory operating at 3200 MT/s 
will have a theoretical peak bandwidth of 25,600 MB/s. The bandwidth of the mem-
ory subsystem would depend largely on the memory confi guration and the access 
pattern. The confi guration is fi xed during the initial selection. The access pattern 
varies based on the traffi c in the system. You can take advantage of the memory 
controller features which will help in improving the practical bandwidth. 

5.5.1      Performance 

 Effi ciency of a memory controller is represented by Eq. ( 5.1 ):

     

Efficiency Number of clock cycles DQ bus was busy
Number of memoryc

=
/ llock cycles    ( 5.1 )    

The effi ciency percentage will determine the bandwidth of the system. A 64 bit 
memory operating at 3200 MT/s with 80 % effi ciency will have an effective band-
width of 20,480 MB/s compared to theoretical bandwidth of 25,600 MB/s. The 
memory timing parameters and the memory controller architecture have a big effect 
on the performance of the memory subsystem. The memory timing parameters are 
requirements as per memory protocol, and commands can be scheduled in a way 
that the wait times for servicing timing parameters can be hidden or avoided. 

 To access a memory to perform a read or write operation,   row    access commands 
are required to open and close  rows  in the memory. If a  row  in the  bank  needs to be 
accessed, fi rst the  row  in the  bank  has to be opened. Opening of  row  ( activate  com-
mand) has wait times associated with it to move the data from the   DRAM    cell arrays 
to the sense amplifi ers and having it ready for read or write operations. To close a 
 row  in a  bank , a   precharge    command has to be issued. The  precharge  command has 
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its own timing requirements to reset the sense amplifi ers and get it ready for another 
 row  access command. At a given time only, one  row  can be kept open in a   bank    of 
memory.  DDR4  memory has 16  banks  and at any given time one  row  in each of the 
16  banks  can be kept open. 

 To get the required performance, the number of  row  access commands has to be 
minimized, and more of  column  access commands (read or write) have to be issued. 
 DDR4  memories also have a concept called  bank groups . Each  bank group  will 
have four  banks  associated with it as shown in Fig.  5.6 .

   The new feature in  DDR4  is that access across  bank groups  has less access time 
compared to access within the  bank group . In terms of  bank  access, the example 
shown in Fig.  5.7  has less access time which helps in performance. The example 
shows write commands; the same is true for read commands as well. The memory 
controller will be able to keep multiple  banks  open and can hide the  row  access 
times between the column commands. The  burst length  for  DDR4  is eight, and due 
to the dual data rate for every four memory clock cycles, there will be eight data 
transfers. Back to back   column    commands can be issued only every four memory 
clock cycles. Between the  column  commands, the  row  commands can be interleaved 
to open and close  banks. Column  access that changes  bank groups  every four clock 
cycles will have the advantage of minimum access time. Access across the  bank 
groups  in most of the scenarios will avoid idle cycles between the  column  accesses.

   The other access pattern that can hide the  row  access penalties to a certain extent 
is shown in Fig.  5.8 . The performance of this access pattern will not be as good as 
the performance of access pattern shown in Fig.  5.7 . By switching to different  banks  
within the  bank groups  or across the  bank groups  gives the fl exibility for controller 
to have multiple  banks  open and schedule commands in such a way that the  row  
access times can be hidden. Switching of  banks  within the  bank groups  is not guar-
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  Fig. 5.6    Bank grouping 
for four bank group 
confi guration       
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anteed to avoid the idle cycles between  column  accesses as the access times are 
higher in this scenario compared to accesses across  bank groups .

   In terms of performance, random access pattern will incur more  row  access pen-
alties. An example of a pattern that will have low performance is shown in Fig.  5.9 . 
In the example shown in Fig.  5.9 , the read commands go to different  row  addresses 
in  bank  0 that is present in  bank group  2. The accesses are within the  bank , and 
every time a different  row  is opened, the existing  row  in the  bank  has to be closed 
and the new one opened. The controller has to wait for the closing and opening 
times before issuing the  column  commands. The timing requirements for the  acti-
vate  and   precharge    commands will be more than the time that is between the two 
 column  commands. This results in idle cycles between  column  accesses.

   The data bus for  DDR4  is a bidirectional bus. Every time there is a change from 
write to read or read to write, it takes time to reverse the direction of the data bus. 
Most controllers have reordering functionality built in them to group reads and 
writes to minimize the occurrence of turnaround time. 

 The memory controller solutions from Xilinx provide options for you to map the 
user address to the address bus of the  SDRAM . Depending upon the option selected 
by you, the user interface in the controller maps the address from the user to the 
 SDRAM  address bus. Based on your selection, the parts of the address bits would be 
assigned to  rank ,   bank     group ,  column ,    and   row    bits of the  SDRAM . The mapping 
can have an impact on the memory controller performance. The controller would be 
able to make use of the controller resources and able to keep the data bus busy with 
 column  commands. 

Write to bank group 3 Write to bank group 1 Write to bank group 0 Write to bank group 2

  Fig. 5.7    Access across bank groups       
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  Fig. 5.8    Access to different banks within a bank group       
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  Fig. 5.9    Access to different rows within a bank       
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 There are also memory maintenance commands like   refresh    and  ZQCS  that have 
to be issued to the  SDRAM  periodically. The memory controller by default will issue 
the maintenance commands periodically to satisfy the  SDRAM  requirements. When 
the memory controller issues these maintenance commands, a long   burst    might be 
broken up affecting the effi ciency. The maintenance commands also have the 
requirement to close all the open  banks , and they have to be opened again after the 
completion of the maintenance commands. The user can choose to take control of 
the maintenance commands and issue it through the user interface signals to improve 
effi ciency. Care should be taken to make sure the  SDRAM  timing requirements 
are met when the user takes over the responsibility to issue the maintenance 
commands. 

  DDR4  has wide use in many applications . DDR4  comes in various form factors 
to suit the different system requirements. The common use of the memory is in 
desktop, laptop, and servers as the main system memory.  DDR4  is highly suited for 
processor-based systems and in any application that require mass storage.   LPDDR4    
memory interface has similar features like  DDR4  with additional low- power fea-
tures.  LPPDR4  memory is not discussed separately and majority of the concepts 
described in  DDR4  are applicable to it.   

5.6      RLDRAM3   

  RLDRAM3  (reduced latency dynamic random access memory), introduced in 2012, 
is the latest offering from Micron Technology, Inc., on the reduced latency  DRAM  
category.  RLDRAM3  has the advantage of reduced latency combined with good 
storage capacity. Similar to  DDR4  the Vivado tool provides various options for you 
to confi gure the memory controller. 

5.6.1     Performance 

 Effi ciency equation mentioned in Eq. ( 5.1 ) (Sect.  5.5.1 ) is applicable to  RLDRAM3  
as well. The memory timing parameters and the memory controller architecture 
have a big effect on the performance of the memory subsystem.  RLDRAM3  has two 
important timing parameters that affect performance:  tRC  and  tWTR. tRC  (  row    
cycle time) is defi ned as “after a read, write, or   auto refresh    command is issued to a 
  bank   , a subsequent read, write, or  auto refresh  cannot be issued to the same  bank  
until  tRC  has passed.”  tWTR  (write to read to same address) is defi ned as “write 
command issued to an address in a  bank ; a subsequent read command to the same 
address in the  bank  cannot be issued until  tWTR  has passed.” 

  RLDRAM3  has 16  banks . As shown in Fig.  5.10 , if the access is scheduled in 
such a way that the same  bank  to  bank  access comes in after  tRC  time requirement, 
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then the effi ciency will be high. There will not be any idle cycles between the read 
and write commands. If the traffi c pattern is such that the tRC time is not satisfi ed, 
then the controller has to pause so that  tRC  time can be elapsed before issuing the 
command. The read to write and write to read turnaround as per specifi cation is one 
memory clock cycle. Whenever there is a turnaround requirement, the controller 
has to pause for one memory clock cycle. Some memory controllers due to clock 
ratios and I/O requirements might end up waiting for more than one clock cycle.

    Write  followed by  read  to the same address in the  bank  will have a larger wait 
time. The tWTR parameter comes into effect when a write is followed by read to the 
same address in the  bank . The controller would have to pause the traffi c and wait for 
tWTR to elapse in this scenario which will have an effect on effi ciency. As shown 
in Fig.  5.11 , the write to read to the same address in the  bank  has to be spaced apart 
to satisfy the tWTR requirements. Figure  5.11  also shows an example of write to 
read to different addresses within a  bank . In this scenario only the turnaround time 
and the tRC requirement will come into effect. The same is true for read to write 
within a  bank  for any address; the turnaround time and the tRC requirement will 
come into effect.

   The low-latency and high-bandwidth characteristics of  RLDRAM-3  are highly 
suited for high-bandwidth networking, L3 cache, high-end commercial graphics, 
and other applications that require the  RLDRAM3  features.   

5.7      QDRIV   

  QDRIV    SRAM    (quad data rate IV synchronous random access memory) introduced 
in 2014 is the latest offering from Cypress Semiconductor on the synchronous 
 SRAM  category.  QDRIV  has lower latency and does not have any timing parameters 

bank0 bank2 bank3 bank4bank7 bank9 bank10 bank0…...

bank0 to bank0 access time > tRC

  Fig. 5.10    Access across banks       

Bank1,address x,
write

Bank 1,address y,
read

Bank 1,address x,
read

…...…...

bank1 to bank1 different address
access time > tRC

bank1 write to bank1 read same
address time > tWTR

ss bank1 to bank1 different address
access time > tRC

  Fig. 5.11    Bank access with tRC and tWTR       
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that affect effi ciency. The Vivado tool provides various options for you to customize 
the memory controller similar to   DDR4   . 

  QDRIV  memory device has two independent bidirectional data ports. Both the 
ports operate at   DDR    data rate and can be used for both read and write transactions. 
One common  DDR  address bus is used to access both the ports; rising edge is used 
for accessing one port and the falling edge for the other port. The ports are named 
port  A  and port  B . Each port has its independent read and write clocks. Port  A  
address will be sampled at the rising edge of the address clock, and the port  B  
address will be sampled on the falling edge of the address clock. 

 There are two types of  QDRIV  parts:  XP  and  HP. HP  parts do not have any 
restriction on the access between two ports. XP parts have some restrictions and the 
 bank  access rules are listed below:

•    Port  A  can have any address on rising edge of the address clock. There is no 
restriction for port  A .  

•   Port  B  can access any other   bank    address on the falling edge of the clock other 
than the  bank  address used by port  A  on the rising edge.  

•   Port  B  can access any address in the falling edge if there was address presented 
on rising edge for port  A .  

•   From the rising edge of the input clock cycle to the next rising edge of the input 
clock, there is no address restriction.    

 The most important aspect for you would be the  throughput   of the memory con-
troller and the storage requirements. A 36 bit  QDRIV  memory operating at 1066 MHz 
will have a theoretical peak bandwidth of 153.3 GB/s. The bandwidth of the mem-
ory subsystem would depend largely on the memory confi guration and the access 
pattern. The confi guration is fi xed during the initial selection. The access pattern 
varies based on the traffi c in the system.  QDRIV  interface does not have any timing 
parameter that affects the performance. It has only one restriction on  bank  access 
between the two ports. If the memory is accessed in a way that takes advantage of 
the  QDRIV  features, then 100 % bandwidth can be achieved which is not possible in 
other memory technologies. 

5.7.1     Performance 

 Effi ciency equation mentioned in Eq.  5.1  (Sect.  5.5.1 ) is applicable to  QDRIV  as 
well. The access pattern of the user will have an effect on performance for XP 
 QDRIV  devices. In a given clock cycle, port  B  cannot access the same   bank    address 
as the  bank  address used by port  A . If the traffi c pattern is such that there is banking 
violation in port  B , then the memory controller would have to pause the traffi c to 
take care of the banking restriction. Other than that the only time there will be an 
effect on effi ciency would be the  read  to  write  and  write  to  read  turnaround times. 
The user would have to make sure to group the reads and writes to get maximum 
effi ciency. Since port  A  and port  B  have independent data buses, there is no 
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restriction on  read  and  write  between the ports. The turnaround wait time is within 
the port data bus. 

 Figure  5.12  shows an example of confl ict when port  B  accesses the same  bank  
address as port  A . On every memory controller clock cycle, the commands for port 
 A  and port  B  can be accepted. The corresponding port commands will be sent on the 
rising and falling edge of the memory clock to the  QDRIV    SRAM    device by the 
memory controller. Usually the memory controller will be operated at a lower clock 
frequency than the memory interface frequency for timing reasons. In this example 
it is shown that the memory controller operates at the memory interface frequency. 
The controller would have to stall certain number of clock cycles to resolve the 
confl ict. In  QDRIV  case the stalling would be only one clock cycle unless other 
 factors come into play.

    QDRIV  memory is attractive for applications that would require high effi ciency 
for random traffi c. Latency would also be critical for those applications and  QDRIV  
provides low latency at higher data rates. Typical applications that would use 
 QDRIV  are high-speed networking, communication, and any application that would 
have access that would be random in nature.     
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  Fig. 5.12    Port A and Port B access with confl ict       
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    Chapter 6   
 Processor Options                     

     Siddharth     Rele    

6.1          Introduction 

 FPGAs are great for high performance and parallel computing. Addition of a pro-
cessor enables control path processing which is required for most applications. 
Xilinx FPGAs allow you to make use of processors, which could be soft (imple-
mented on fabric), or hard (pre-built). Designing with processors on FPGA has been 
made easier through use of Xilinx Vivado IP Integrator and SDK tools. This chapter 
will explore the usage of both hard and soft processors within Xilinx FPGAs for 
some typical applications.  

6.2     Computing on FPGAs 

 A basic introduction to FPGAs has been provided in Chap.   1    . Processors and FPGAs 
provide similar general processing capabilities but are differentiated by the way you 
use them for programming and the type of applications/use cases. Processors use 
software methods, while FPGAs were traditionally programmed through use of 
hardware design languages such as Verilog and VHDL. Processors are good when 
it comes to control fl ow as well as processing based on control, while FPGAs are 
preferred when unconditional processing has to be done on a larger data-set. 

 There are several benefi ts of combining the control capabilities of a processor 
with data-intensive compute of the FPGA. Solutions can be developed by having a 
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multi-chip solution with standard discrete processors connecting to FPGAs over I/O 
pins. While these solutions work, they lead to increased latencies which may not be 
acceptable for several high-speed applications. Hence, an integrated processor with 
FPGA solution would be more apt for most applications. These lead to lower laten-
cies when processor accesses rest of the design as well as leads to reduction in 
overall I/O count.  

6.3     Processors on FPGAs 

 There are two categories of processor solutions possible on Xilinx FPGAs:

•     Soft processors    
•    Hard processors      

 You can choose either of these depending on the amount of control processing 
and I/O required for your application. The cost of the overall solution will also play 
a role in making the decision. 

6.3.1     Soft Processors 

 Soft processors make use of the FPGA fabric for implementing the processors. For 
low speed (200 MHz and below), soft processors are a good option. These come in 
multiple fl avors and are user confi gurable. Depending on the nature of the applica-
tion, you can choose to trim down the functionality from the processors. 

 At the lowest end, you can implement an 8-bit processor with bare minimal instruc-
tion set. One example of such a processor is  PicoBlaze  ™ from Xilinx. This processor 
is a good replacement for state machines. PicoBlaze does not have a compiler tool 
chain and hence requires the program to be written in assembly language. This 
program is stored in the local memory available on the FPGA as a memory store. 
The simplicity of the architecture enables a processor which can be implemented in 
just about 26 slices. 

 As a step up, Xilinx introduced a 32-bit highly confi gurable processor named 
 MicroBlaze  ™ in early 2000. This RISC-based soft processor is capable of achiev-
ing clock speed of around 400 MHz on the UltraScale FPGA architectures. It sup-
ports an option of a three-stage or a fi ve-stage pipeline, confi gurable cache, optional 
multiply and divide units, optional barrel shifter, single- and double-precision 
fl oating- point unit, and more. Every additional feature selected in hardware will 
lead to usage of FPGA resources and can have impact on the max frequency ( F  max ) 
possible. The choice can be made based on the needs of the user application. For 
example, if there are many multiply operations to be done, it is better to enable a 
hard multiplier. It can save over 1000 clock cycles for every multiply operation done 
over a software library-based solution (Fig.  6.1 ).
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   In addition to the soft processors from Xilinx, you can also build your own 
processors or procure one from IP vendors and open source. There have been 
implementations of ARM done on Xilinx FPGAs in academia as well as industry. 
There have also been implementations of processors with reduced instruction set 
targeted toward specifi c applications. MicroBlaze has been optimized for FPGA 
implementation and is usually better suited for both resource count as well as  F  max .  

6.3.2     Hard Processors 

 While soft processor can cater to the needs of mid-level applications, there are a few 
factors that make hardened processors on FPGAs a key requirement. Some applica-
tions require high-speed processing of 1 GHz and above. There are several software 
applications which are targeted toward standard processors like ARM. Retargeting 
these to other processors specifi c to FPGAs could take up a lot of effort and reveri-
fi cation (Fig.  6.2 ).

   Xilinx introduced  Zynq-7000  ™ family of devices which includes a complete 
SoC with two Cortex-A9™ processors along with a confi gurable mix of peripher-
als. These include high-speed peripherals such as  GigE  and  USB  and low-speed 
peripherals like  SPI ,  I2C ,  CAN , and  UART . The  processing system   (PS) also includes 
controllers for various volatile memories ( DDR3 ,  DDR2 ,  DDR3L ) as well as fl ash 
memories ( QSPI, NOR  and  NAND ). By hardening the most commonly used blocks 
in the SoC, Xilinx has enabled saving FPGA logic for the key acceleration logic 
rather than using it for interfacing to components on the board. 
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  Fig. 6.1    MicroBlaze processor       
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 The  PS  is built such that the SoC can be used even without the programmable 
logic ( PL ) fabric turned on. This enables the software users to be productive even 
without the FPGA design has been created. Section  6.5  (Putting It All Together) 
talks about some of the ways to use Zynq-like devices. 

 The architecture was further extended in the  Zynq  UltraScale+ MPSoC   ™ 
shown in Fig.  6.3 . Xilinx raised the compute power of the SoC by introducing 
four Cortex A-53™ cores and two Cortex-R5™ cores. In addition to these proces-
sors, there is a  GPU  as part of the SoC as well. With MPSoC, Xilinx has also 
introduced a host of high-speed peripherals which include  SATA ,  DisplayPort , 
 PCIe , and  USB 3.0 . These are built on top of high-speed SerDes which are part of 
the SoC. Xilinx extended the memory support to   DDR4    as well. Security and 
isolated power domains have been two major advancements in Zynq UltraScale+ 
MPSoC. The processor and other masters in the SoC can have secure access to 
specifi c peripheral/memory through the  Xilinx Peripheral Protection Units   
(XPPUs) and  Xilinx Memory Protection Units   (XMPUs). Since the SoC packs a 
lot of powerful peripherals, the power consumption has to be controlled. Xilinx 
has split the SoC in a lower power domain and full power domain making it easier 
for customers to split their application appropriately and shut down peripherals 
when not in use.

  Fig. 6.2     Zynq-7000   block diagram (not to scale)       

 

S. Rele



69

6.4         Tool Chains 

 While processor architectures are a key factor for designs, it is equally important to 
have appropriate tools in order to build systems which can integrate the programma-
bility of FPGAs and processors. These tools include hardware designs tools at a higher 
level of abstraction as well as traditional software design and debug tools. 

6.4.1     Integration Tools in Vivado 

 A completely functional SoC consists of a processor, soft peripherals, as well as 
memories. The fi rst step toward building an SoC + FPGA system is to identify the 
processor of your choice (primarily MicroBlaze or a Zynq class of SoC). The next 
step is to determine the correct memory architecture suitable for your application. 
This includes memories internal to the FPGAs (such as  block RAMs ) and external 
memories (Chap.   5    ) which range from nonvolatile fl ash memories to volatile SRAM 
and SDRAM memories. 
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 System building tools like  Vivado  IP Integrator       (Chap.   7    ) can aid in creating 
such designs with relative ease. The fi rst step toward building the SoC design would 
be to instantiate the necessary processor and then continue to add memories and 
peripherals. It is also important to partition your system into a register-style slow 
access (i.e., access to peripherals) and a faster memory access. It is important to 
ensure that all peripherals and memories are appropriately connected and address-
able by the processor. This is done through use of an  interconnect   .  

 Once the hardware system is built, you need to export the hardware defi nition to 
the software development kit ( SDK  ) for the software user to build their kernels and 
applications. Each hardware system is unique, and hence having a mechanism to 
communicate the information about the hardware built to the SW   BSP    is important 
for the correct functioning of the overall system. The hardware defi nition contains 
the following information which is critical for conveying the details of the system 
built for the purpose of software development:

    1.     Address map   of peripherals as seen by all processors.   
   2.    Parameters of the IPs used in the design. These parameters are used by the drivers 

during BSP generation.   
   3.    A  BMM   fi le, which provides the information of the block memories used in the 

hardware and their corresponding address map for the peripheral. This is only 
used in case of MicroBlaze.   

   4.    The bitstream which is built in Vivado and can be directly downloaded by the 
 SDK   during software development.    

  All this information is critical for the software BSP to be created. Any changes in the hard-
ware require a reexport of the HW information and a regeneration/recompile of the SW  BSP  .  

6.4.2     Compilers and Debuggers 

 Embedded application developers typically write their software programs in a 
higher-level language like  C  and  C++.  These high-level programs are translated 
into assembly-level object code and eventually into an executable and linking for-
mat ( ELF  ) fi le which contains machine-level code. Compilers play an active role in 
optimizing the generated code using the context of the processor being used. For 
example, in case of MicroBlaze, if the multiplier is implemented as part of the SoC, 
the code generated would use the  mul  instruction. If it is not, it would make a call to 
the  multiply  function from the pre-built libraries. 

 Some SoCs such as the MPSoC have more than one processor. These processors 
can be made to work as  SMP  (symmetric  multiprocessing  ) or  AMP  (asymmetric 
 multiprocessing  ). In case of an SMP system, the software kernel such as Linux will 
take care of scheduling processes on appropriate processor based on system load. 
With industry standard processors (ARM A9, Cortex A-53, and R5s) on the SoC, 
you can fi nd the right software kernels for their systems which can be used as a base. 
With AMP system, you need to take care of not just execution on the individual 
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processors but also have the appropriate communication mechanism between the 
various processors. 

 Often, programs need to be debugged in order to get to the correct functionality. 
Software tool chains such as  SDK   would be incomplete without a debugger which can 
connect to the board and provide helpful information about the program execution. 

 There are certain situations where it is important to  debug   the software processes 
running on the processor (  PS   ) in conjunction with the hardware transactions in the 
fabric ( PL ). Xilinx supports   cross trigger    solution for both soft processors 
(MicroBlaze) and hard processors ( Zynq-7000   and  Zynq UltraScale+ MPSoC  ). A 
conceptual diagram is represented in Fig.  6.4 .

   When a  breakpoint   is hit in the software debugger, it raises a  PS  to  PL  trigger. 
This trigger can be connected to a logic debug IP (such as “Integrated Logic 
Analyzer” [ ILA  ] IP). The logic analyzer tool which is part of Vivado will then be 
used to display the current transactions on the signals being tapped in the hardware. 
In a similar fashion, you can generate a trigger from the  ILA  (i.e.,  PL ) to the   PS      . 
This will stop the processor from executing instructions leading to a breakpoint. 
Chapter   17     explains the triggers in hardware. 

 The  cross trigger   capability can be extended to multiple processors and multiple hard-
ware triggers in the  PL . It can be an extremely useful way of debugging HW/SW designs.  

6.4.3     Device Drivers, Libraries, Kernels, and Board Support 
Packages 

 For using peripherals in software, it is important to know the exact function and the 
register map of the peripheral. Peripheral developers would typically provide a 
 device driver   which provides the APIs for accessing information at a high level. 

  Fig 6.4    Cross trigger (conceptual diagram)       
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 Software applications are not all written from scratch. Many applications are 
built using pre-built libraries or libraries obtained from third parties. One good 
example of this would be the  Light weight IP (LwIP)  stack. This provides the 
basic Ethernet packet header processing capabilities. Applications can use the 
high-level APIs provided by the library in order to get their job done. 

 Most applications are written on top of an operating system (also known as 
kernels). Linux is the choice for several embedded applications. A device tree is 
used to communicate the details of the hardware with the Linux kernel. This includes 
the type and width of the devices, interrupt ids, and their addresses. 

 All the software components above are put together in a bundle which is called as 
a  board support package  ( BSP  ). BSPs are typically tied to a specifi c board/SoC and 
the hardware for which the application is expected to be written. Once the hardware 
is fi nalized, the BSP would rarely change. The BSPs would also have standard APIs, 
and hence the software developers are free to write their code according to their 
requirements and not worry about the basic device accesses.  

6.4.4     Beyond Traditional System Design 

 FPGA and SoC combination is now helping go beyond the traditional SoC market 
and providing useful acceleration techniques. Xilinx is now adding support toward 
software-defi ned fl ows. These fl ows enable offl oading of software applications on 
hardware through underlying usage of high-level synthesis ( HLS  ) tools. This 
enables embedded software application developers to off-load a compute- intensive 
complex algorithm to the fabric.   

6.5      Putting It All Together 

 The best use of FPGAs and processors can be explained through a couple of simple 
applications. 

6.5.1     Basic Application 

 One of the basic usages of soft processors is to act as a microcontroller which moni-
tors a video pipeline engine and responds to interrupts when something unusual is 
observed in the video pattern. For example, a security camera can detect moving 
patterns and compare faces to a central database. On fi nding a match with a person 
of criminal background, it can set an alarm which can notify the right offi cials of the 
presence of such a person on premises. A system can be represented in a block dia-
gram as shown in Fig.  6.4 . The block diagram shown in Fig.  6.4  is overly simplifi ed 
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to explain the concept and the role of the processor. In a real system, there would be 
an additional requirement of fl ow control as well as more connections. 

 Xilinx provides IPs such as HDMI controllers, memory controllers, interrupt 
controllers, and MicroBlaze for building systems, while you will have to provide 
the special secret sauce such as facial recognition and the database lookup and com-
pare code. The solid arrows show the typical datafl ow from the external camera 
image and the memory lookup, while the dashed lines indicate the control fl ow. 
The MicroBlaze processor controls all the IPs in the system and is usually respon-
sible for initialization and periodic status checks. This will depend on the software 
developed. Without a processor, you would have to write up complex state machines 
to ensure that the entire system works in tandem.  

6.5.2     Advanced Applications and Acceleration 

 You could potentially decide to port the entire application to an SoC family of 
devices. The  MPSoC   has all the peripheral IPs necessary for realizing a system as 
shown in Fig.  6.5 . This would require the secret sauce (such as the facial recognition 
and database lookup) to be written in a software, which is compiled to the ARM 
processor. But even with a 1.5 GHz processor, it is hard to match the performance 
of dedicated computation in an FPGA.

   The facial recognition and comparison algorithms could take thousands of clock 
cycles to detect an image and compare it to a picture in the database. If the job is 
done in a hardware (i.e., programmable logic), the entire algorithm could be paral-
lelized and be done in a few clock cycles. Xilinx tools make it easy for embedded 
algorithm developers to take the compute-intensive functions through   HLS    tool 

  Fig. 6.5    Basic application       
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chain to create a hardware component which is a faster and a parallel version of 
the software. The tool chain also creates the necessary connection with the processor 
which can continue to take care of data acquisition and overall control. A simplifi ed 
view of the application after running through the tool chain would look similar to 
the one shown in Fig.  6.6 .      

  Fig. 6.6    Accelerated system with MPSoC       
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    Chapter 7   
 Vivado IP Integrator                     

     Sagar     Raghunandan     Gosavi    

7.1          Introduction 

 Vivado IDE provides the  IP integrator  (IPI) with graphic connectivity canvas to 
select peripheral IPs, confi gure the hardware settings, and stitch together the IP 
blocks to create the digital system. Since IPI makes very heavy usage of IPs, it would 
be good to have a good understanding of Vivado IP Flows (explained in Chap.   3    ), in 
order to get a full appreciation of workings under the hood as you use IPI. 

 IPI offers many useful features that enable you to graphically design their sys-
tem. The following are the main features that ensure ease of complex design 
creation:

•    Graphical interface called block design (canvas) to construct complex IP-based 
designs  

•   TCL-based complete support for design creation  
•   Support for auto-connection of key IP interfaces  
•   One-click IP subsystem generation  
•   Design rule checks  
•   Parameter propagation  
•   Address map generation    

 After going through this chapter, you will have a deeper understanding of the 
features offered by the  IP Integrator  fl ow within the Vivado Design Suite and you 
will be comfortable in designing and constructing your own systems using the same. 
This will include instantiating individual IP components, making necessary connec-
tions between the interfaces, defi ning and connecting clocks and resets, confi guring 
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the settings of IP, defi ning the address range of slaves for their respective masters 
(useful in case of processor-based systems), understanding the parameter propaga-
tion, and thus generating the output products of their system. 

7.1.1     Design  Reuse   

 With the complexity of the systems increasing exponentially, it becomes extremely 
important to be able to reuse designs with minor modifi cations to their systems without 
the need to completely redo the design. IPI provides the right means to achieve this 
wherein it empowers you to confi gure the individual components as per the require-
ment in your design to construct the different fl avors required for the system. It offers 
the ability to package your design which can be reused in other projects.   

7.2     Terminology 

7.2.1      Block Design (BD)   

 Vivado IDE provides the capability to create a workspace for you wherein you can 
graphically create design systems in an IPI-provided canvas, stitch the design together 
using the automation tools, ensure the correctness of the design, and generate the design. 
The block design can be created in both project and non-project mode (explained in 
Chap.   2    ). As stated above, one of the major features of the block designs is the graphical 
canvas which allows you to instantiate IP blocks from the  IP Catalog  and construct 
designs. Figure  7.1  shows the block design creation and the canvas of the BD.

7.2.2        Automation  Notifi cations   

 One of the key aspects of IPI is the provision of the connection and board automa-
tion. Whenever IPI identifi es potential interface connections between various IP 
blocks, it notifi es you about the possible availability through a hyperlink visible at 
the top of the canvas, as shown in Fig.  7.2 . For example, clock, reset, and AXI con-
nections between the AXI-compliant IPs are covered in this automation. Detailed 
explanation is covered under Sect.  7.3.2  (Designer Assistance).

7.2.3         Hierarchical IP   

 IPI provides a feature where an IP can pack another block design within itself, thus 
offering another level of block design inside top level to display the logical confi gu-
ration of the parent. These hierarchical blocks enable you to view the contents of the 
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block but do not allow to edit the hierarchy. Changes are permitted only to the top 
level exposed parameters available in the confi guration window of the IP.  

7.2.4      Packaging   

 IPI also provides a feature wherein you can package the entire block design after it 
has been validated and functionality has been proven. This allows you to reuse the 
IP block design in other projects as well. Figure  7.3  depicts the selection window for 
packaging the project.

   Once the block design is packaged, the tool copies the necessary fi les in the speci-
fi ed directory and adds the IP repository to the project locally. The properties associ-
ated with the package can be changed while packaging the design, thus enabling you 
to use the block design in other projects.   

7.3     IPI Flow 

7.3.1     Design Entry Within BD  Canvas      

 The basic method of design entry in a project mode within IPI relies on instantiating 
the IPs from the  IP Catalog  in the block design canvas. Section   3.2     explains about 
 IP Catalog . While creating a design, you need to just drag and drop the IP from the 

  Fig. 7.1    BD canvas of IPI       

  Fig. 7.2    IPI notifying about automation availability       
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catalog in the canvas or can directly add to the canvas by clicking the “+” button. 
The IPs instantiated in the design can be individually confi gured based on the design 
requirement provided that the IP under work has those options available while it 
was being packaged:

•    Stitching the design 
 Various blocks of IP modules instantiated within the block design canvas can be 

respectively connected to structure the system. Block design by default automati-
cally identifi es the AXI interconnect interfaces, clock, and reset connections. This 
assists the users in stitching the design together.  
•   Ports 

   Create Port    option within IPI provides you with more control in specifying the 
input and output, the bit-width, and the type (such as clk, reset, and data). With this 
option you can also specify the frequency for clock ports. There is also a provision 

  Fig. 7.3    Selection window for packaging       
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for making the port from the IP external meaning that it would be promoted to the 
top level.     

7.3.2       Designer Assistance   

 Another powerful feature offered by IP integrator is the  Designer Assistance  which 
includes block automation and connection automation. To narrate it in brief, this 
feature provides users with suggestions to establish potential connections between 
interfaces of the compliant IPs:

•     Connection automation   
 This feature assists the users in connecting the AXI interfaces, reset/clock ports, 

and/or ports of the IPs to external I/O ports. These ports if made external will appear 
in the top-level HDL wrapper, and an appropriate XDC constraint would be required 
to be defi ned for them.  
•    Block automation   

 This feature is available only when an embedded processor such as the Zynq 
7000 Processing System or Zynq MPSoC or MicroBlaze processor or some other 
hierarchical IP such as an Ethernet is instantiated in the  IP Integrator  block design. 
This feature allows users to confi gure the related IPs based on their design require-
ments. It comes with a certain set of options, which you can choose from to confi g-
ure the IP, thus bypassing the need to manually confi gure the IP.    

 For example, in Fig.  7.4 , once the MicroBlaze processor IP is instantiated in the 
design, the block automation becomes available.

   On clicking the  Run Block Automation , a pop-up shows up as shown in Fig.  7.5 , 
which allows you to confi gure the MicroBlaze IP.

   Once confi gured, the block design updates to refl ect the changes selected, and a 
new set of IPs also appear in block design based on the set of selection. 

  Fig. 7.4    Block automation notifi cation       
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 As seen in Fig.  7.6 , the   Connection Automation    gets activated as it has identi-
fi ed the potential AXI and/or clock/reset ports for which it can assist you to estab-
lish connection. On clicking the  Run Connection Automation , a window as shown 
in Fig.  7.7  pops up. You can then choose from the available set of selections for 
these ports.

  Fig. 7.5    Block automation confi guration settings for MicroBlaze       

  Fig. 7.6    Block design after execution of block automation       
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7.3.3          Address Editor   

 The  Address Editor  tab provides the slave address mapping corresponding to the 
master interface. However, please note that the Address Editor tab only appears if 
the block design contains an IP block that functions as an AXI master interface 
(such as the MicroBlaze processor) or if an external bus master (outside of  IP 
Integrator ) is present. 

 As can be seen in Fig.  7.8 , the data and the instruction cache of the MicroBlaze 
are respectively mapped to the block RAM and local memory, the address of whom 
is depicted on the offset address.

•      Address Map   
 Master interfaces reference an assigned memory range container called  address 

spaces . Slave interfaces reference a requested memory range container called a 
memory map. The address space names are related to the usage by the master inter-
face to which it corresponds to. It represents which slaves are mapped to which 

  Fig. 7.7    Confi guration settings for connection automation       

  Fig. 7.8    Address editor       
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address space of the master. The entire address map is available in a separate tab 
called an  Address Editor  tab within the IPI layout.     

7.3.4      Parameter Propagation   

 While designing with IPs in block design, it is important that the confi guration user 
parameters are propagated to the IP blocks connected. It enables an IP to auto- 
update its parameterization based on how it is connected in the design. For example, 
the clock frequency set in one of the IP blocks gets propagated through the design. 
IP can be packaged with specifi c propagation rules, and  IP Integrator  will run these 
rules as the block design is generated. However, if the IP cannot be updated to 
match properties based on its connection, an error is reported to highlight the poten-
tial issues in the design.  

7.3.5      Validate Design   

  Validate design  enables you to run a comprehensive design rule check as your 
design is being consolidated which ensures that the parameter propagation, address 
assignment as described above, and other aspects of the design creation are correct. 

In short it ensures the completeness of the design. You can click on the      icon 
available in either the toolbar pane or in the BD canvas pane to run validation 
checks.  

7.3.6      Generate Design   

 In order to generate the necessary source fi les from the various IPs used in the block 
design which are to be used by synthesis and implementation runs, IPI provides a 
feature to generate the block design called  Generate Block Design  available in the 
fl ow navigator upon successful completion of validation of design. It generates vari-
ous source fi les like the HDLs respective to the IPs, constraints, and register level 
fi les (for processor if any in BD) associated with the individual IP components. If 
this option is run before  validate design , this process will fi rst invoke  validate 
design ; ensure that there are no DRC in the design and will then generate the respec-
tive output products. These outputs can be seen in the Vivado Sources pane. Based 
on the language setting of the project, the output products will be generated accord-
ingly (provided the IP is packaged accordingly).  
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7.3.7     Top-Level  RTL Wrapper   

 The block design can be either the topmost level of the design or it can be instanti-
ated in an RTL which then can be the top level of the design. If the block design is 
the topmost in the hierarchy of the IPs, IPI provides a way to generate the RTL 
wrapper for the same which is used in the synthesis fl ow as shown in Fig.  7.9 .

   Based on whether the project settings have been set to either Verilog or VHDL, 
the top-level RTL wrapper will be generated in a respective HDL.  

7.3.8      Export Hardware Defi nition   

 This feature allows you to transfer the hardware design information to the  Software 
Development Kit  (  SDK   ). It is mainly useful in a hardware-software ecosystem. 
Usually in a processor-based system, when there is a programmable logic (PL) also 
present in the design, the hardware defi nition is exported after bitstream generation 
which thus includes the complete hardware and software confi guration. However, in 
some cases when there is no PL present, there is no need to generate bitstream, and 
the hardware information can be exported right after generation of output products.  

7.3.9     Creating an  Example Design   

 Vivado provides a way to ensure that you get started with some reference design 
created in IPI. It has a predefi ned set of example projects being embedded which 
can be created at the beginning to the project. 

  Fig. 7.9    Creating an HDL 
wrapper       
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 Figure  7.10  shows availability of reference designs which are available for you. 
Based on the selection made, the tool generates an IPI-based design which acts as a 
template design for you. You can alter this design, based on your requirements.

7.4         Tcl  Support   

 One of the powerful aspects of IPI is the extensive backend Tcl support. All the 
features of IPI can be accessed using a set of Tcl commands which can be executed 
in batch mode as well as in the GUI mode. Section   2.2     explains more about making 
use of Tcl support.    

  Fig. 7.10    Creating an example design       
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    Chapter 8   
 SysGen for DSP                     

     Arvind     Sundararajan    

8.1          Introduction 

  DSP systems   generally transform a stream of sampled inputs to a stream of sampled 
outputs. The sampled inputs are usually the result of an analog to digital converter 
sampling the output of a sensor. Development of a DSP algorithm involves trans-
forming these input samples using numerous mathematical operations like convolu-
tion or performing Fast Fourier Transform (FFT). The Implementation of these 
algorithms requires many visualization aids like plotting the spectra, l density of the 
output signal or creating scatter plots of complex signals. Development of these 
systems and algorithms on an FPGA using traditional RTL techniques is very labor 
intensive due to the lack of libraries to create domain-specifi c stimulus generators 
and visualizers. Much of the time would be spent simply creating test benches that 
try to emulate the deployment environment (Fig.  8.1 ).

   MathWorks tools, in particular   Simulink   , are used for modeling the environments 
in which DSP algorithms operate. Ability of the Simulink engine to handle models 
that operate on discrete sample time boundaries as well as continuous signals makes 
it very easy to graphically model DSP systems and real-world physical signals on 
the same canvas. Built-in stimulus generators as well as visualizers alleviate the 
laborious task of creating test benches for DSP system. Synergy between the 
 MATLAB   language and Simulink is particularly highlighted in being able to param-
eterize Simulink blocks and hierarchies using MATLAB expressions. 

 System Generator for DSP (introduced in 2001) is a high-level modeling and 
design tool used for implementing designs on Xilinx FPGA. System Generator 
embeds as a blockset and set of services within MathWorks Simulink. It was the 
fi rst product of its kind using which DSP System Designers familiar with MATLAB 
and Simulink could implement their algorithms on Xilinx FPGA. For the fi rst time, 
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engineers with no prior FPGA design or RTL experience could get a design running 
on an FPGA in a matter of hours using System Generator’s Hardware Co-simulation.  

8.2     Designing in System Generator for DSP 

 System Generator is different from all other Xilinx tools in that it embeds in a pro-
prietary third-party design environment called Simulink. The access to the tool is 
provided through a catalog of blocks available in the Simulink library browser as 
shown in Fig.  8.2 . The process of designing is through drag and drop of built-in 
blocks on the drawing canvas and connecting input and output ports. All System 
Generator blocks can be distinguished from Simulink blocks due to the presence of 
the Xilinx logo.

8.2.1       Xilinx System Generator Blockset 

 The blocks provided for designing and implementing a system (or a portion thereof) 
are organized into libraries. Basic blocks that model mathematical operations like 
addition, multiplication, division, etc., are collected together in the  Math libraries  . 
Abstractions of Xilinx DSP IP like  FIR Compiler   and  DDS Compiler   are available 

  Fig. 8.1    Simulink design environment with visualizer for eye diagram and scatter plot       
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through the DSP Libraries. Blocks that provide rich functionality like  Viterbi 
decoder   help accelerate design creation, while low-level blocks like  AddSub  allow 
users to customize their algorithms. In wireless communication applications, clock 
speeds are often as high as 491 MHz. Many of these blocks, therefore, expose 
parameters that can be tuned to achieve these speeds. For example, the Mult Block 
allows user to tune the latency which helps with pipelining the multiplier. Another 
option provided on the  Mult  Block is to use embedded multipliers (same as DSP48 
slice) which help to close timing at higher clock speeds than implementing it on 
fabric (Fig.  8.3 ).

8.2.1.1        Gateway In   and  Gateway Out   

 The Xilinx Blockset contains two special blocks called  Gateway In  and  Gateway 
Out  that mark the boundary between the portion of the Simulink model that forms 
the test bench and the portion of the Simulink model that forms the design under 
test. All System Generator blocks must be driven by other System Generator blocks 
except  Gateway In  which is driven by Simulink blocks. All System Generator 
blocks can only drive other System Generator blocks except  Gateway Out  which 
can drive a Simulink block 

 In Fig.  8.4 ,  Gateway In  brings data from one of Simulink’s stimulus generator 
(source) block called  Sine Wave , and  Gateway Out  connects the output of the design 
to a Simulink visualizer called the  Scope  block.

  Fig. 8.2    Xilinx blocks with X watermark to distinguish from Simulink blocks       
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8.2.1.2        System Generator Token 

 The System Generator token is a special block in the Xilinx Blockset library that 
holds information about the System Generator model. It captures project informa-
tion such as  compilation targets  including  IP Catalog  and  Hardware Co-simulation  
(Sect.  8.3.2 ), the top level HDL (VHDL or Verilog) to be used, Xilinx  Part  to be 
used,  Target Directory  in which the results of compilation should be placed, etc. The 
fi rst tab of the user interface for System Generator has been reproduced in Fig.  8.5 .

8.2.2         Sample Times and Cycle Accuracy 

 Simulink provides a generic framework for  sample time   propagation that can be 
used to model a variety of different continuous and  discrete time systems  . All 
System Generator for DSP blocks except the  Gateway In  only accept and propagate 
discrete sample times. A discrete sample time is a double-precision number that 
specifi es a time step in seconds. It can either be associated with signals or blocks. 
The discrete sample time associated with a block tells the  Simulink  engine when to 
update the outputs and the internal states of the block. 

 Most System Generator blocks specify the output sample times as function of 
the input sample times and block parameterization. In general (with some nota-

  Fig. 8.3    System Generator blocks can be parameterized to extract maximum performance       
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ble exceptions), the Simulink engine executes blocks at time steps that is a mul-
tiple of the greatest common divisor of the sample times of all the inputs and 
outputs. For example, if the sample times of the inputs of a Xilinx  AddSub  block 
are 2 and 4, then the  AddSub  block will specify the output sample time to be 2. 
This means that at least one of the inputs change at 0, 2, 4, 6, 8 … seconds and 
output also changes at 0, 2, 4, 6, and 8. Between these times the values on the 
signals are held constant. This is a very important abstraction that helps with 
hardware design. 

 Most digital designs make use of a  clock  that keeps time. A cycle refers to a unit 
of time representing one clock period. The System Generator token has a fi eld called 
Simulink   System Period    ( Tsim ) which accepts a double-precision number. This 
number relates the time in simulation with the time in hardware. An advance in time 
in simulation equivalent to  Tsim  corresponds to an advance in time in hardware of 
one clock period. 

  Fig. 8.4    Gateway In and 
Gateway Out blocks mark 
the boundary of the design 
under test       

  Fig. 8.5    System Generator token and its user interface       
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 Going back to the  AddSub  example, if  Tsim  was set to 1, a hardware designer’s 
interpretation would be that one of the inputs to the  AddSub  is held constant for two 
clock cycles, while the other input to the  AddSub  is held constant for four clock 
cycles. It also follows that  Tsim  for this particular example cannot be greater than 2 as 
any signal in an idealized (ignoring logic delays and clock skews) synchronous clock 
design cannot change between rising edges of clocks. In essence,  Tsim  time steps 
represent behavior of the system just after each rising edge of the clock in hardware. 
All Xilinx System Generator blocks provide a  cycle accurate   simulation behavior.  

8.2.3     Data Types 

 The default built-in data type in Simulink is  double , and many of the original built-
 in stimulus generators were only capable of producing double-precision data types 
(this has changed since the introduction of Fixed-Point Toolbox now known as 
Fixed-Point Designer). However, double precision is unsuitable for implementing 
many common DSP algorithms including audio and video signal processing in an 
FPGA because of the large number of resources it consumes. 

 To address this issue, System Generator introduces two new data types in the 
Simulink environment:

•    Fixed- point   data type  
•   Floating- point   data type    

8.2.3.1     Fixed-Point Data Type 

 Fixed-point data-type format is characterized by the number of bits and binary- 
point location as shown in Fig.  8.6 .

   In many digital designs, interpretation of bits as numbers is important; however, 
it is not necessary to have a large  dynamic range   that double precision offers. For 
example, the output of a counter limited to a count of 15 can be represented using 

1

22 21 20 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13

1 1 1 1 1 1 10 0 0 01 10 0

Binary Point

Number of bits

  Fig. 8.6    Bit layout of an example fi xed-point number with number of bits set to 16 and binary 
point located at 13       
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four bits. Modeling values as fi xed-point data type introduces  quantization   errors 
and loss of dynamic range (when compared to double precision), but the resource 
saving afforded by fi xed-point type far outweighs these drawbacks. 

 Most of the System Generator blocks operate on fi xed-point data type and on 
compilation propagate binary-point alignment as well as bit growth to ensure no 
loss in precision. For example, if an  AddSub  block confi gured as an Adder has two 
16 bit inputs with binary points located at 8, by default the output bit width would 
be set to 17 with binary-point location at 8. This can have an undesired increase in 
resources due to bit growth. Therefore, many of these blocks also have options to 
specify what the output type should be to keep the bit growth in check. Figure  8.7  
shows the user interface to specify the output type on some of the typical operators 
that show bit growth.

8.2.3.2        Floating-Point Data Type 

 System Generator also supports fl oating- point   data type including double precision 
(64 bits), single precision (32 bits), as well as arbitrary precision. This is particularly 
useful in converting golden Simulink models to System Generator models as well 
as developing applications that require high dynamic range, for example, matrix 
inversion. To exploit the fl exibility offered by FPGAs, arbitrary precision fl oating- 
point data types are also supported wherein the user can explicitly manage the num-
ber of bits for  exponent   as well as  mantissa  . 

 Note that the support for fl oating-point data types is not as extensive as fi xed- 
point data types (i.e., only the blocks in the  Xilinx fl oating-point library  actually 
support fl oating-point data type), and conversion from fl oating-point block to fi xed- 
point block is supported using the convert block.   

  Fig. 8.7    Specifying output type on the AddSub block to keep bit growth under check       
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8.2.4      Compilation  ,  Code Generation,   and Design Flow 

 Compilation of a System Generator design refers to the process of validating all the 
parameters on all the blocks in the design, performing rate, and type propagation 
and validating the results of rate and type propagation. This can be likened to the 
elaboration phase in HDL compilers. Compilation of a System Generator design is 
invoked anytime the Simulink model containing a System Generator design is simu-
lated or code generation through the System Generator token is invoked. As part of 
the compilation process:

•    The tool confi rms that a System Generator token is placed at the root of the 
System Generator module.  

•   User parameters on each of the blocks including MATLAB expressions are eval-
uated and validated.  

•   Connectivity is established and there are no undriven ports in System Generator 
module.  

•   The type and sample time propagation engine is invoked, and sample times of 
each block and signals as well as types of the signals are resolved.    

 Code generation refers to the process of transforming the Simulink model con-
taining a System Generator subsystem into RTL and IP that can be synthesized. 
Following compilation either simulation can be performed or code generation can 
be performed. In general, if the compilation is successful, it should be possible to 
perform code generation or simulation. The general design fl ow is presented as a 
fl owchart in Fig.  8.8 .

8.3         Verifi cation of System Generator Design 

8.3.1     RTL Test Bench 

 Along with the RTL and IP that represents the System Generator design in Simulink, 
you can also optionally generate a self-verifying RTL test  bench  . On invoking code 
generation, the design is simulated in Simulink where Gateway In and Gateway Out 
blocks log the data they consume and produce into fi les with  .dat  extensions. 
Running the RTL simulation of the test bench uses the data fi les generated from 
 Gateway In s as stimuli and compares the results of RTL simulation on the output 
ports of the module with the data fi les generated from  Gateway Out . The RTL test 
bench can be reused to verify the results of  synthesis   of the System Generator 
 module as well as implementation. 

 System Generator modules are generally a submodule of a larger design, typi-
cally a DSP data path. The RTL test bench allows users to verify the System 
Generator module in isolation. Also the RTL test bench along with a System 
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close on a System 
Generator module       
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Generator module provides a handoff mechanism to an RTL developer responsible 
for integrating the system. This will help the RTL developer to become familiar with 
the System Generator submodule of a larger design.  

8.3.2      Hardware Co- simulation   

 Many DSP algorithms require processing of a very large number of samples for rati-
fi cation. For example, a receiver in a communications pipeline may need to process 
millions of samples to generate BER numbers. Often times even cycle accurate 
simulation in Simulink may take many days of simulation to verify that the algo-
rithm is correct. To help with reducing the simulation run times, System Generator 
also has an important feature called  Hardware Co - simulation  that accelerates 
Simulation by using one of Xilinx’s Hardware Evaluation Boards. 

 To use Hardware  Co-simulation  the design must be compiled for a specifi c target 
board. This is done by setting the compilation target for Hardware Co-simulation. 

 Invoking code generation compiles the design into a bitstream that includes the 
user design as expressed in Simulink and a communication interface to pass data 
from the host PC to the FPGA board. Two types of communication interfaces are 
supported including  JTAG   and Ethernet. In general Hardware Co-simulation helps 
only if the Simulink simulation time is on the order of 6 h or more. This is because 
for each iteration, the design must fi rst be implemented.   

8.4     Integrating System Generator Submodule in a System 

 System Generator provides facilities and services that enable expression and verifi -
cation of DSP data paths rapidly. However, a system implemented on FPGA includes 
more than the DSP data path such as interfacing with memory, bringing data in from 
sensors through ADCs and IOs or HDMI interface. Other Xilinx tools such as 
Vivado IP Integrator (Chap.   7    ) or RTL fl ow with Pin Planner are more suitable for 
this purpose. To aid with these user fl ows, System Generator provides  IP Catalog  as 
a compilation target as shown in Fig.  8.9 .

   In this compilation mode, in addition to generating products from System 
Generator that are synthesizable using Vivado, the output products are also pack-
aged into an IP located in the  IP  folder under target directory. This IP can be used in 
an IPI project or instantiated in an RTL project. More on IPI is covered in Chap.   7    , 
and on using an IP in an RTL project is covered in Chap.   3    .    
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  Fig. 8.9    IP Catalog as a 
compilation target       
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    Chapter 9   
 Synthesis                     

     Nithin     Kumar     Guggilla      and     Chaithanya     Dudha   

9.1          Introduction 

 Synthesis is the fi rst step, which maps architecture-independent RTL code into 
technology- specifi c primitives. Usually, synthesis tools are supposed to isolate the 
users from knowing the device details. However, having a good idea of device prim-
itives allows you to fi ne-tune the synthesis behavior. This might be required mainly 
for the following reasons:

•    Code written for another device might need tweaks in order to get optimal area, 
performance, and power on the current device.  

•   Sometimes, synthesis is done on individual parts of the design. So, what might 
appear as a good optimization decision in the context of that small design might 
not necessarily be the right decision in the context of the whole design. You 
might need to guide the synthesis tool in such cases to alter the optimization 
decisions.  

•   Sometimes, for designs with special purpose application, you might want to 
obtain the last bit of  performance   or area or power—depending on the need—
even at the cost of a few other factors.    

 Synthesis behavior can also have an impact on how effi ciently a design can be 
taken through the back end place and route tools. In the context of this chapter, any 
synthesis behavior refers specifi cally to Vivado synthesis tool, though some other 
synthesis tools may also provide similar capabilities.  

        N.  K.   Guggilla    (*) 
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9.2     Designs Migrating from ASIC 

9.2.1     Inline  Initialization   

 Each register or latch in any FPGA device can be individually confi gured to power 
up in a known  0  or  1  state. This initial state is independent of any asynchronous 
clear or preset signals used to operate the register. The INIT attribute defi nes the 
initial power-up state of registers and latches. An initialization in HDL will cause 
Vivado synthesis tool to attach the corresponding INIT. The initialization given 
below will result in register with INIT value as  1 :

      reg state_bit = 1;  

    In ASIC world, there is no such provision. This would imply that while you 
need to specifi cally have a reset or set in an ASIC, for FPGAs, you should just 
initialize your registers and can get rid of  set/reset  conditions for the fl ops and 
latches.  

9.2.2      Memory Initialization   

 FPGAs have dedicated memory blocks (distributed/block RAM). These support ini-
tial values which can be used for applications like ROM on power up. Synthesis 
tools support inferring these initializations when coded using initial blocks and 
using  $readmemh/$readmemb  to initialize memories:

      reg [31:0] mem  [1023:0] ;  
  initial begin  
    $readmemb("init.dat", mem) ;  
  end  

9.2.3         MUX  Pushing   

 For an ASIC, there is not much difference (in timing) between an adder followed by 
  MUX    and  MUX  followed by an adder which performs the same functionality. But 
FPGA architectures have   CARRY    chains which are preceded by LUTs. In this con-
text, consider two scenarios:

•    An adder followed by a MUX  
•   MUX followed by an adder    
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 The fi rst one results in 1 additional LUT + 1 logic level. The second one can 
combine the adder into the same LUT. The RTL code segment below would result 
in an adder followed by a MUX, as shown in the schematic of Fig.  9.1 :

       always @ (posedge clk)  
  begin  
   …..  
   if(sel_reg)  
        dout <= din_reg + din0_reg;  
   else  
        dout <= din_reg + din1_reg;  
  end  

    The critical path in Fig.  9.1  is through the adder and the MUX. This is translated 
to 1 LUT + 2  CARRY4  + 1 LUT. The same functionality can be recoded as below to 
give a circuit as shown in Fig.  9.2 , where  MUX  is moved in front of the adder:

  Fig. 9.1    RTL view before MUX pushing       

  Fig. 9.2    RTL view after MUX pushing       
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        always @ (posedge clk)  
  begin  
   …;  
   dout <= din_reg + dout_tmp;  
  end  
  dout_tmp = sel_reg ? din0_reg: din1_reg;  

    One-bit addition and the MUX can now be combined into the same LUT. So the 
critical path is now 1 LUT + 2  CARRY4 .  

9.2.4     Clock Gating 

 Clock gating is a popularly used technique in ASICs and FPGAs for  eliminating    
unnecessary switching activity there by reducing dynamic  power  . Based on the 
design functionality, designers will add this gating logic to drive sequential elements 
which will disable clock as and when required. 

 Since clocking resources on an FPGA are predetermined, gating might have to 
be done within the specifi c clocking structures available. A gating logic on clock 
path for an FPGA could result in  skew   and thereby  timing violations  , especially 
 hold   violations. 

 You can move the gating logic onto  clock buffer  as shown in Fig. 9.3, specially if the 
same gated clock controls a high number of elements. These clock buffers are designed 
to prevent spurious clocking, due to change in enable while the clock is in  active  phase. 

 Gating logic on clock path should typically be moved to  enable  path for fl ip-fl ops 
or latches. Vivado synthesis tool will do this automatically (under user option). But 
if the structures are too complicated, user intervention might be needed in terms of 
altering HDL code. 

 FPGAs have dedicated primitives like block RAMs, DSPs which contribute to a 
good percentage of the total power. These primitives have  clock enables  which can 
be leveraged similar to fl ip-fl ops if there are clock gating structures on these.   

  Fig.9.3    Using  BUFGCE   
for clock gating       
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9.3     Getting the Most of Device Primitives 

 FPGA is made up of a fi xed number of different varieties of structures. Having an 
understanding of the target architecture and the impact of different mappings will 
allow you to obtain a very high   QoR   , by tweaking the actual inference and resource 
mix—depending on your specifi c design care-abouts. 

 Same functionality may be realized using different combinations of primitives. If 
your design makes excessive use of a specifi c primitive, you might want to imple-
ment some of the functionality onto another type of primitive, where possible, even 
if that other primitive type might usually be considered suboptimal for that specifi c 
functionality realization. 

 This section covers some of the dedicated primitives of Xilinx FPGA and exam-
ples of decision-making process to show the best way to obtain optimal results 
through Vivado synthesis. 

 The examples given below are w.r.t Xilinx 7 series, UltraScale, and UltraScale+ 
devices. The basic idea behind providing these is to give a conceptual understanding 
which can be adjusted for other architectures, depending on the structure available 
in those future architectures. 

9.3.1     SRLs 

 Xilinx FPGAs contain primitive which is  LUTM  (LUT memory) which can be con-
fi gured as a sequential element like a  shift register   ( SRL32 ) or a distributed 
RAM. This section covers some examples to illustrate decision-making process 
around  SRL s. 

 Take a simple example of a delay chain of 64 of 1 bit wide. This can be imple-
mented in 64 fl ip-fl ops. These would need at least four  slices  . Or, they can be imple-
mented in 2 LUTMs—going into a single slice. Each LUT confi gured as an 
 SRL32  + an additional fl op for better  clock_to_out  which can all go into a single 
slice. 

 On the other hand, consider a design having many delay lines with small depth 
(say 3). If these are mapped to  SRL , these could cause congestion due to high utili-
zation of  SRLs . Based on the design statistics, you should control the  SRL  threshold 
for getting a better trade-off. Vivado synthesis tool provides  directives   and switches 
to change the threshold for  SRL  inference. 

 Structures around SRL also play a role. Consider the following sets of 
structures:

•    Combo logic followed/preceded by SRL  
•   Block RAM/distributed RAM followed/preceded by SRL  
•   DSP followed/preceded by SRL    
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 For better  clock_to_out , synthesis will pull out the last stage of  SRL  into a fl ip- 
fl op. You can control this behavior using synthesis attributes. You might also con-
sider pulling out the fi rst stage of an  SRL  into fl op which would provide higher 
fl exibility for placement. This can be controlled using synthesis attribute  srl_style . 
For example,  srl_style = reg_srl_reg  will force the tool to have  SRL s  w ith registers 
on both sides.  

9.3.2     Memories 

 Designs typically use memories for storing data, buffering, etc. At a fundamental 
level, a memory is  a bank of fl ops with decoding logic at the input and MUX logic 
at the output . 

 FPGAs provide dedicated primitives for implementing memories. These are of 
two types. First is distributed memory which is implemented using  LUTM s and the 
second are block RAMs which are hard blocks of size 18 k/36 k. 

 For very smaller memories, the obvious choice is register based, since the num-
ber of fl ops/ glue logic   will be less. 

 For choosing between distributed and  block RAM   based, the fi rst requirement is 
synchronous nature. An asynchronous read from the memory will be inferred as a 
 distributed RAM  . A synchronous read which implies either output data is registered 
or the read address being registered is a requirement for block RAM to be inferred. 

 Since distributed RAM is implemented using a LUT, a six-input LUT can be 
confi gured to implement a 64 × 1 single port memory. A block RAM can support 18 
k/36 k bits. Choosing a crossover point on where to use a distributed RAM and 
block RAM is important. Synthesis tools use thresholds/timing  constraints   for infer-
ring these memories automatically. 

 For highly utilized designs where the design is dominant in one of the primitives, 
i.e., distributed RAMs vs. block RAMs, you should guide the tool using attributes/
switches to have a different implementation to get balanced utilization of resources. 
This will in turn affect the place and route tools on providing better opportunities for 
placement. There is no deterministic optimal ratio of distributed RAMs vs. block 
RAMs. The right mix depends on various factors. 

 Based on few case studies that we have encountered, we will try to mention some 
of the good practices that can be used based on the scenario. Your design may need 
its own decision. 

9.3.2.1     Distributed RAM Usage 

 For a highly utilized design with tighter timing constraints, make sure that the  dis-
tributed RAM   percentage of the overall slice usage is relatively low. The reason is 
that if there are too many distributed RAMs, there would be lot of fabric routing that 
would converge at each slice/ CLB  which would result in  congestion  . 
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 Look at configurations of smaller depth, wider data bus. Synthesis tools 
might look at a combined view of the aspect ratio to decide on inferring distrib-
uted or block RAMs. In cases where depth is small, distributed RAMs are a 
better choice. 

 For example, depth × width = 32 × 256. This would result in four block RAMs if 
used in simple dual port ( SDP ) mode. In terms of distributed RAM, it would be 256 
LUTs. In this example it is better to go with 256 LUTs. If we look at block RAM 
bits that are actually inferred, it is 8192 vs. the total capacity of 147,456 (four block 
RAMs).  

9.3.2.2     Block RAM  Pipelining   

 For higher frequencies, always use the pipeline registers or else the  clock_to_out  
of the block RAM would limit the performance that can be achieved. In the follow-
ing situations, synthesis tool might not pull in the  register  , even if there are 
pipelines:

•    Feedback path on the register  
•   Fanout from the fi rst stage of the pipeline    

 Use additional register outside the block RAM for higher performance if block 
RAM has multi- fanout  . Place and route tools would have higher fl exibility in plac-
ing this register, based on its fanout load placement.   

9.3.3     DSPs 

 DSP blocks come with a number of features. A few to mention are pre-adder, mul-
tiplier, and post-adder/accumulator with pipeline register at each output. 

 This section uses examples based on  DSP48E2   from Xilinx UltraScale devices. 
 DSP48E2 supports a signed multiplier of size 27 × 18, 48-bit post-adder, an input 

pre-adder which is connected to the 27-bit multiplier port. 

9.3.3.1     Extra DSPs Inferred 

 Note that a multiplier of size 27 × 18 will be mapped into a single  DSP  block only if 
the inputs are signed. So the fi rst thing to check is if the inputs are unsigned. 

 Adder followed by multiplier when used for full width will not be packed 
into a single DSP block. A 27-bit addition would result in 28-bit result and 
then this 28 bit should be used for multiplication. So, the operand size has 
grown beyond 27—the width of the multiplier. You need to consider the mul-
tiplier input size and calculate the maximum possible at the input of DSP prim-
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itive. For a signed multiplier of 27 × 18, taking the  carry  into consideration, the 
maximum possible adder at the input is 26 bit. If it is unsigned, it would be less 
by one more bit. 

 Consider a situation, where the multiplier output is tapped/padded with  0 s. 
before driving an adder. Multiplier output to adder is hardwired, so if there is some 
truncation/padding, it cannot be done within single DSP block. 

 To summarize on the above section, DSP is a powerful block, and to use the 
capabilities of DSP blocks to fuller extent, make sure you understand the hardwired 
connections and the widths of the supported primitives internally. 

 You can make use of DSP’s pipeline registers for achieving high performance. 
Make sure to use all the pipelines if you have a tighter timing requirement.   

9.3.4      MUXFs   

 These are 2:1 Muxes that multiplex LUTs which can be used for implementing 
wider functions. For example, two LUT6s are muxed by a  MUXF7  which pro-
vides a capability for implementing a seven-input function. Similar analogy can 
be used for MUXF8 and MUXF9. But note that the MUXF8 would have inputs 
as MUXF7s. 

 There is always a trade-off of using MUXFs vs. LUT3, for example, to imple-
ment a two-input MUX when used in the context of a complete design. Simply 
specifi ed in another way, if a MUXF is driving a register, then it would be advanta-
geous to use it because there is a direct route from MUXF to register. If it is driving 
some combo, the LUT3 can be combined with another function which would result 
in a reduction of one logic level. Synthesis tools can be directed by switches/attri-
butes to control the behavior.  

9.3.5      Carry   Chains 

 For implementing arithmetic operations like adder, subtractor, or comparators, dedi-
cated  carry chains  (or, carry look ahead) have faster routes. 

 When using carry chains, make sure to exploit the capability of the architecture. 
Avoid using an  adder  and feeding into a combo and then feeding into other  adder , 
as shown in Fig.  9.4 . In this case though the adders are implemented using carry 
chains, because of the combo, the exit from  CARRY  to LUT and entry from LUT to 
 CARRY  will contribute to a larger percentage of the delay. This can be slightly 
restructured to have adder, adder, combo or combo, adder, and adder (as shown in 
Fig.  9.5 ) to minimize the delay.

    The other best practice is to use a register at the output of adder so that they can 
be packed into the same slice.   
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  Fig. 9.4    Adder, logic, adder       

  Fig. 9.5    Logic, adder, adder       

9.4      Attributes  / Directives   to Control Synthesis Behavior 

 Synthesis tools support directives/attributes which can be used in RTL and or XDC 
to provide fi ner control to the user. These can be used to change default mapping by 
synthesis and stop/force some optimizations. 

 Though a tool could support lot of attributes to control the behavior, an important 
point to be noted is the implication of these attributes when used in different con-
texts. Let us look at few examples which illustrate this. 
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 Below is a simple RTL which has   max_fanout    applied on the  enable  signal which 
drives 1024 fl ops:

      module top (  
              ….  
              output reg [1023:0] dout  
             );  
  (* max_fanout = 10 *) reg en_r;  
  always @ (posedge clk)  
  …  
    if(en_r)  
       dout <= din;  
  …  

    Consider the scenario when the attribute is not used. This RTL will infer 1025 
fl ip-fl ops, which would be placed in 65 slices (assuming 16 fl ops being packed per 
 slice ). All the 1024 registers have the same control signal. 

 Now let us consider the case where  max_fanout  of 10 is used. Synthesis will 
 replicate    en_r  1024/10 (103) times. So we have 103 control sets now. This will use 
103 slices for 1024 registers. Due to replication we have 103 additional fl ops which 
need ~seven slices. 

 In the above example, though your intention was to reduce the fanout for 
improved timing, you  can   see that control sets played a role which ended up in a 
considerable area overhead. 

 Let us look at another example of how multiple attributes when used in conjunc-
tion can become nondeterministic. Consider a case where you have an   FSM    and 
want to force the encoding to one-hot and want to  debug   this using  logic analyzer . 
To achieve this,  fsm_encoding  attribute along with  mark_debug  would be applied. 

 At a fi rst glance, it looks correct. But there is a confl ict.  mark_debug  implies that 
the exact signal name be intact. With  fsm_encoding  as one-hot, there would be addi-
tional fl ops and state name would get changed. So synthesis tool chooses to honor 
 mark_debug  and  fsm_encoding  would be ignored. A better way in this case would 
be to add  mark_debug  post-synthesis via XDC so that the encoded FSM state would 
be available for debug. 

 Look at synthesis log fi le for any message related to attribute being ignored for 
some reason.  DONT_TOUCH  stops optimizations in the complete fl ow. So make 
sure that it is intended. 

  XDC   provides a powerful mechanism which can be used to apply attributes with-
out having the need to change the RTL. Consider a simple example of a module 
which describes the memory being instantiated in different hierarchies. If you want 
to map few hierarchies to block RAM and few hierarchies to  distributed RAM  , a 
simple Tcl-based XDC can be used, as shown:

      set_property RAM_STYLE distributed [get_cells u/u1]  
  set_property RAM_STYLE block [get_cells u/u2]  
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9.5         Synthesis vs. Simulation Mismatch: Common Cases 

9.5.1     Global Set/Reset 

 Vivado netlist simulations do not come out of  reset  till 100 ns. The reason for this is 
there is a  global set/     reset  ( GSR ) in Xilinx FPGAs which retains the initial values on 
all the fl ops for the fi rst 100 ns of simulation time. 

 If you are planning to reuse your testbench from the RTL, ensure that in your 
testbench, the  reset  is at least asserted for 100 ns before pumping in the actual 
vectors.  

9.5.2     Other Cases 

 Memories are one area which might expose a difference in RTL vs. synthesized 
netlist. In cases where the RTL description is mapped to a  simple dual port  or  true 
dual port  block RAM, during   address collision   , there would be mismatch. Look for 
warnings during netlist simulation. 

 In addition, other conventional cases of synthesis vs. simulation mismatches apply.   

9.6     Synthesis Switches 

 Synthesis tools provide switches which act on the complete design. Attributes are 
for fi ner control whereas switches are for global control. Let’s take a simple exam-
ple to understand this better.  Flatten_hierarchy  is a switch which has values like 
 full ,  none , and  rebuilt . Let’s say you want to fl atten the complete design except for 
few hierarchies. This can be done using the synthesis switch  fl atten_hierarchy full  
and applying   keep_hierarchy     yes  on the desired hierarchies. 

 These global switches play an important role due to the fact that  place  and  route  
tools would see a different view of the same design, depending on the switches 
used. Though the changes might not be so predominant, factors like  control sets , 
 FSM  encoding would result in a change in the resource count and hence different 
input netlists for  place  and  route  tools. 

 There are few switches that synthesis tools support to limit the number of inferred 
primitives like block RAM and DSP. This control is useful, when you are synthesiz-
ing a part of the design, and want to leave out resources for other portions of the 
design. Also for reducing LUT count, the tool can be directed to combine LUTs 
which will have an impact on timing. So based on the requirement, you can use 
these switches to fi ne-tune the output netlist.  

9 Synthesis



108

9.7     Coding Styles for Improved QOR 

 RTL coding style plays an important role for getting optimal results. Synthesis tools 
support specifi c coding templates for inferring different primitives. Modern tools 
understand and map to the desired primitives when the user codes in a slightly dif-
ferent way and maintains the intent, but for getting repeatable results, follow the 
usually recommended coding practices. 

 Below are few specifi c suggestions:

•    Avoid using too many hierarchies. Else different fl attening options will provide 
signifi cantly different results.  

•   A simple code using simple constructs is always better. It helps in understanding 
the intent if you have to revisit the code after a while. Plus, however smart a tool 
might be, a simpler code would give you the best result always. For example, 
instead of using a for-loop to assign individual bits, assign the whole bus.  

•   Look for cases where the tool might do  resource   sharing. If you need perfor-
mance, code using parallel structures.  

•   Avoid instantiation in RTL unless really required. Synthesis tools would not opti-
mize an instantiated primitive.  

•   Constrain the ranges if the signals/parameters do not need full range evaluation. 
For example, signals in vhdl if declared as integer type should be constrained as 
 0–15 , if you need only 16 values.  

•   Avoid logic functionality  while   port mapping.    

 A simple example below illustrates the importance of coding style:

      module top (  
              input [3:0] din,  
              output dout  
             );  
  sub u (  
         .din(din[3:2] | din[1:0]),  
         .dout(dout)  
        );  
  endmodule  
  module sub (  
              input [1:0] din,  
              output dout  
             );  
  assign dout = &din;        
  endmodule         

    In the above example, the output is just a function of four inputs. Synthesizing this 
one would expect one LUT4 and one logic level. But this may not happen always. 
Consider a  DONT_TOUCH  on  sub  or this design is run  with    fl atten_hierarchy none  
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option. In that case, there would be two LUTs and two logic levels. The point to note 
here is that coding logic during port mapping can be an easy option for making quick 
code changes but the repercussions due to the same should be thought up-front.  

9.8     Guidelines to Get Best Results Out of Synthesis 

•     Understand your target architecture, so that you can fully exploit all its 
capabilities.  

•   Avoid using too many attributes that could hinder synthesis optimizations. Few 
of them are like   DONT_TOUCH    /MARK_   DEBUG . Debug   comes with the cost of 
additional area/timing penalty. So make sure you understand the intent.  

•   Look at log fi le for synthesis info/warning messages, mainly on attributes and if 
any pipeline registers for block RAM/DSPs are missing.  

•   There is a misconception that heavy pipelining would make the design meet tim-
ing easily. This might have an adverse impact. The reason is too many registers 
would make packing diffi cult. Maintain a good ratio of LUT to register, in the 
range of 1.5. If the ratio is less, relook if pipelining is more than needed.  

•      Look at logic level distribution post-synthesis. If there are too many paths at the 
higher side, use a systematic approach to distribute these. Few of the tricks learnt 
in this chapter should come handy.       

9 Synthesis
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    Chapter 10   
 C-Based Design                     

     Duncan     Mackay    

10.1          Introduction 

 Recent advances in design tools have enabled a new approach to FPGA design, 
C-based  design  . Designing in C allows you to specify your designs at higher levels 
of abstraction than traditional RTL and obtain the productivity benefi ts of working 
at a higher level of abstraction: faster design capture, faster design verifi cation, 
faster design changes, and easier design reuse. 

 Figure  10.1  provides an overview of the C-based design fl ow. The key steps are 
as follows:

•     C simulation verifi es that the C function gives the desired behavior.  
•   High-level  synthesis   ( HLS) is used   to synthesize the C function into an RTL 

design which satisfi es the specifi ed performance, timing, and resource 
requirements.  

•   RTL verifi cation confi rms the output from HLS matches the functionality of the 
original C function.  

•   During IP integration, the RTL output from HLS is incorporated into an RTL design.  
•   RTL synthesis and Place & Route then create the bitstream used to program 

the FPGA.    

 The productivity benefi ts of a C-based design fl ow are achieved at different 
stages of the design fl ow. During the initial development, the primary productivity 
benefi t is provided by fast C simulation which allows you to quickly verify the 
intended functionality. For example, to simulate a full frame of HD video for a typi-
cal video algorithm using C simulation typically takes less than a minute. Simulating 
the RTL design to perform the same function typically takes a day, if not longer. 

        D.   Mackay    (*) 
  Xilinx ,   San Jose ,  CA ,  USA   
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 Once the functionality of the C code has been confi rmed,  HLS  allows you to 
quickly create different RTL implementations from the same C source code, allow-
ing you the time to fi nd the most optimal implementation which satisfi es the design 
requirements: in some cases it may be a fast design at the cost of size, and in other 
cases it may be a smaller design at the cost of speed (or any point in between). 

 Once the design is complete,  HLS  allows the same C code to be easily targeted to 
a different technology or to a different clock frequency or to a different set of perfor-
mance characteristics, making design migration and evolution substantially easier.  

10.2     C Simulation 

  C simulation   is the process of compiling and executing the C program and is the 
most underappreciated part of a C-based design fl ow. The benefi ts of C simulation 
can be summarized as speed, speed, and speed. It is while performing C simulation 
that you actually design—create an algorithm, simulate the algorithm, review the 
results, refi ne the algorithm, simulate the algorithm, review the results, etc. The fast 
compilation and execution times of C simulation allow these design iterations to be 
performed quickly and productively. 

C Simulation 

High-Level Synthesis 

RTL Verification 

RTL IP Integration 

RTL Synthesis 

Place & Route 

FPGA Bitstream 

  Fig. 10.1    C-based design 
fl ow       
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 As highlighted in Fig.  10.2 , the top level of every C program is the  main()  function. 
In a C-based hardware design fl ow, the C program is considered to be two separate 
components, the  C testbench   and the design function to be synthesized into hardware.

   In the example in Fig.  10.2 , the C program contains eight sub-functions,  f1–f8 . 
Function  f3  is the top-level function for synthesis, and everything below function 
(including)  f3  is the design function to be synthesized (functions  f3 ,  f7 , and  f8 ). The 
 C testbench   is everything below (including) the level  main()  excluding the design 
functions (functions  main() ,  f1 ,  f2 ,  f4 ,  f5 , and  f6 ). The testbench creates input for the 
design function and accepts output from the design function and hence is used to 
verify the design function. 

 A key part of any productive C-based design fl ow is an intelligent testbench: one 
which both analyzes and verifi es the results from the design function. Figure  10.3  
shows an example C design and testbench. The design function, shown on the left-
hand side, is a simple design which reads a set of input data from array  DataIn  and 
determines the minimum and maximum values in the data set. The C testbench, 
shown on the right-hand side, creates a set of input data, calls the design function, 
analyzes the output results from the design function (in this simple example, by 
comparing them to the expected results), and sets the return value to  main()  as zero 
only if the results are correct.

   In a more complex design than the example shown in Fig.  10.3 , the input data 
may be read from a data fi le on the disk, and the output results may be compared 
against golden results also read from a data fi le or from results generated in the 
testbench. The concept however is the same. C simulation is used to exhaustively 
verify the design and the C testbench is used to exhaustively analyze the results. 

main()

f1 f2 f3

f4 f5 f6 f7 f8

C Program

Design Function

Test Bench

  Fig. 10.2    Testbench and design function       
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 A fi nal important point on the topic of the testbench is its re-use later in the 
design fl ow. HLS provides an automated RTL verifi cation feature: the HLS tool will 
generate an RTL testbench to verify the RTL output. If the C testbench checks the 
results, an RTL  testbench   can be created which automatically checks the results 
after RTL  simulation  .  

10.3     Arbitrary Precision Data Types 

 An interesting feature of the example shown in Fig.  10.3  is the use of  arbitrary pre-
cision    data types   (the header fi le in Fig.  10.3  defi nes data type  data_t  as  ap_int<12> ). 
All data types in the C language are defi ned on 8-bit boundaries—a  char  is 8-bit, a 
 short  is 16-bit, an  int  is 32-bit, and the  long long  data type is 64-bit. When perform-
ing hardware design, it is often desirable to have data widths which are more precise 
than those provided in the C language. Arbitrary precision data types are a library of 
data types provided with the HLS tool which allow data types to be specifi ed in any 
size, from 1-bit up to 4096-bit. 

 The most obvious advantage for using arbitrary precision data types is synthesis. 
If the design needs to read 18-bit data and perform 18-bit multiplications, it is a 
waste of hardware resources to use the next largest data type in the C language, the 
 int  data type (32-bit) which results in 32-bit multipliers and 32-bit registers. 
Arbitrary precision data types allow the hardware designer to accurately size data 
values in the C function and ensure the most optimal hardware is created. 

 A less appreciated benefi t of arbitrary precision data types is that they allow accu-
rate C simulation to be performed before synthesis. If specifi c (signed or unsigned) 
data types are required in the design, they can be both specifi ed and verifi ed in the C 
function before synthesis. Fast C simulation is used to confi rm the bit- accurate 
behavior.  

  Fig. 10.3    Minmax_frame design example       
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10.4     High-Level Synthesis 

 An overview of the  HLS   process is shown in Fig.  10.4 . A key difference between 
RTL design and C-based design is that HLS synthesizes a single top-level C func-
tion into an RTL design which is then incorporated as an IP block into a larger 
RTL design. The C function is never the top level of an FPGA design; rather HLS 
is used to quickly create RTL IP blocks which are then assembled in an RTL 
environment.

   The inputs to HLS are the C design function, a C testbench to verify the behavior 
of the C design function, and design constraints and optimization directives to specify 
the performance and structure of the RTL design. 

 The design  constraints   are the target technology and the clock frequency. The 
target technology specifi es the component delays. Given the component delays and 
the clock frequency, HLS creates an RTL design which meets timing after RTL 
synthesis. HLS determines how much logic can be executed in each clock cycle and 
then creates an FSM to sequence the design operation. It can be expected that when 
targeting a newer and faster technology, HLS is able to perform more operations 
within a clock cycle, and hence fi nish in fewer clock cycles, than when targeting an 
older and typically slower technology. 

 Optimization  directives   may be used to specify the performance and area of the 
RTL design. During the synthesis process, the HLS tool will perform some default 
optimizations. These defaults are specifi ed in the documentation provided with the 
HLS tool. Optimization directives are used to create an  RTL   design with optimiza-
tions which are different from the default synthesis, e.g., to vary the area- performance 
trade-off point. 

 The outputs from HLS are an RTL design and  reports   which detail the perfor-
mance of the design and an estimate of the maximum delays and the resources 
required to implement the design. At this point in the design process, only estimates 
of the timing and area are reported—the exact details cannot be known until RTL 
synthesis and Place & Route are performed—however, the estimates are generally 
accurate (±10 %).  

  Fig. 10.4    High-level synthesis design fl ow       
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10.5     Interface Synthesis 

 C synthesis may be thought of as two separate processes:  interface synthesis   and 
design synthesis (although both are very much intertwined). Interface synthesis is 
the process of converting the arguments of the design function from simple data 
values to an RTL cycle accurate interface which optionally may include an IO 
protocol. 

 The  minmax_frame  example shown in Fig.  10.3  helps demonstrate the concept 
of interface synthesis. Figure  10.5  shows the top-level function for synthesis with 
arguments  DataIn ,  min , and  max . After synthesis, these C arguments may be trans-
formed into RTL interfaces shown (in both Verilog and VHDL) in Fig.  10.5 .

   A clock and reset are added to the RTL design. The tool provides options to con-
trol whether the reset port is active-high, active-low, or if it is present at all. 

10.5.1     Port-Level  IO Interfaces   

 Each of the data arguments from the C function— DataIn ,  min , and  max —are trans-
formed into RTL data ports with associated interface protocol signals. In this particu-
lar case, the array  DataIn  is transformed into a block RAM interface. This interface 
protocol assumes array  DataIn  is a block RAM outside the design and is therefore 
accessed with standard block RAM address, data, and chip-enable signals. In this 
case, HLS determined this port is only ever read and hence there is no requirement 
for a write-enable ( WE ) port. 

 Similarly, HLS automatically determined arguments  min  and  max  are only written 
to and hence these are implemented as output ports in the RTL design. In the example 
shown in Fig.  10.5 , both ports are implemented with an associated output valid 
signal to indicate when the data is valid. 

  Fig. 10.5    Interface synthesis       
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 Interface synthesis provides many options for interfaces. The array  DataIn  could 
also be implemented as an AXI master or AXI-Lite interface. If the array is accessed 
in a streaming manner, with each address location accessed in sequential order (as 
in this case), the  DataIn  port may be implemented as an AXI-Stream interface, or a 
FIFO interface, or a two-way handshake interface. 

 In a C-based design fl ow, it is highly advisable to synthesize the interfaces with 
 IO  protocols. This allows the fi nal RTL design to be simply connected to other RTL 
blocks during the RTL integration phase without you manually trying to determine 
when the data may be read or written.  

10.5.2     Block-Level  IO Interfaces   

 In addition to the port-level  IO  protocols, HLS may optionally add a block-level  IO  
protocol as shown in Fig.  10.5 . A block-level  IO  protocol is a protocol which is 
associated with the design or block, rather than any particular port. In Fig.  10.5 , the 
 ap_start  port controls when the block can start its operation, the  ap_ready  indicates 
when the design is ready to accept new input data, and the  ap_done  and  ap_idle  
signals indicate when the design has completed its operation and is idle. Block-level 
 IO  signals may also be implemented as an   AXI -Lite   interface allowing the RTL IP 
to be easily controlled from a CPU or microcontroller. 

 The block-level  IO  and port-level  IO  protocols also help enable automatic veri-
fi cation of the RTL. Given a handshake protocol on both the design and the IO 
ports, it is always possible to automatically generate an RTL testbench. Without 
these handshake protocols, it may only be possible to automatically generate a 
testbench for certain cases. Even if the  IO  protocols are not required for the design, 
it is worth considering that the small overhead in logic means you do not have to 
write an RTL testbench. 

 As with synthesis in general, the HLS tool will have a default interface protocols 
for each type of C argument (arrays, input pointers, output pointers, etc.). You can 
then use directives to specify interface protocols other than the defaults.  

10.5.3     Interface Options 

 As noted earlier, HLS provides many options for selecting interface protocols. 
Figure  10.6  shows some examples of the type of interface which may be created for 
the  minmax_frame  C code example shown in Fig.  10.3 :

     A.    This is the case shown in Fig.  10.5 . The array is implemented as a block RAM 
interface, and the output ports are implemented with output valid signals.   

   B.    In this case, the array is partitioned into discrete elements and each is imple-
mented as an AXI-Steam interface. Since  N  is 8 in the  minmax_frame  example, 
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there are eight discrete ports for the inputs, allowing all inputs to be read 
simultaneously.   

   C.    In the fi nal case, since all data accesses are sequential in this example, both the 
input array and the output ports are implemented as AXI-Stream interfaces. 
Also, in this example the block-level  IO  protocol is implemented as an AXI-Lite 
interface.    

  Once you have selected the IO protocols, HLS design synthesis then optimizes 
the internal logic to maximize the performance of the design.   

10.6     Measuring Performance 

 Performance in HLS is measured by the design  latency   and   initiation interval    (  II   ). 
Figure  10.7  shows an example design which takes fi ve clock cycles to complete. 
It starts in state S1 where it performs a read on the data port and proceeds through 
to state S5 where the output is written.

•     The latency is defi ned as the number of cycles it takes to complete all outputs. 
In Fig.  10.7 , the latency is fi ve clock cycles.  

•   The  initiation interval  ( II ) is defi ned as the number of cycles before the design can 
start to process a new set of inputs. In Fig.  10.7 , the next read is not performed until 
the design has completed, and hence the  II  is six clock cycles.    

 Both latency and  II  may be specifi ed using optimization directives. Typically, the 
key performance metric is the  II : how quickly the design processes new input data 
and produces output data. In most applications, the goal is to create a design which 
can read new inputs every clock cycle ( II  = 1). 

  Fig. 10.6    Interface synthesis variations       
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 The resources used to implement the design may also be considered a perfor-
mance metric. HLS provides reports which specify how many LUTs, fl ip-fl ops, 
DSP48, and block RAMs are used. Optimization directives may be used to control 
the number of these resources; however, doing so impacts the latency and/or the  II .  

10.7     Optimizing Your RTL 

 When your optimization goals are different from those provided by the default opti-
mizations performed by HLS, you can specify  optimization    directives   to control the 
RTL implementation. HLS provides a number of optimizations, and it is diffi cult to 
review all of the optimizations here; however, it is worth reviewing a few of the key 
optimizations to provide a sense of what is possible. The  minmax_frame  example 
shown in Fig.  10.8  can be used to highlight the key HLS optimizations.

10.7.1       Increasing Data Accesses 

  Arrays   are a collection of elements accessed through an index and are synthesized 
into a  block RAM  , which is a collection of elements accessed through an address. 
If an array is on the top-level interface, it is assumed to be outside the design and a 
block RAM interface is created. Conversely, if the array is inside the C function, it 
is implemented as a block RAM inside the design. 

 Arrays may be partitioned and mapped. Partitioning an array splits it into multi-
ple smaller  block RAMs   (or block RAM interfaces). Since a block RAM only has a 
maximum of two ports, arrays are typically partitioned to improve data access, 
allowing more data samples to be accessed in a single clock cycle. Mapping arrays 
together implements multiple arrays in the C code into the same block RAM, saving 
resource but often reducing data accesses and limiting data throughput. 

2 3 4 5 6 7 8 9 10

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

Rd Wr Rd Wr

1

Latency = 5 Clock Cycles

Initiation Interval (II) = 6 Clock Cycles

  Fig. 10.7    HLS performance metrics       
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 In both cases, the array optimizations allow the C code to remain unchanged. 
Optimization directives are used to instruct HLS to implement the most ideal RTL 
structure without any need to change the source code. 

  Loops   may be left rolled or they may be unrolled. In a rolled loop, HLS synthe-
sizes one copy of the loop body and then executes it multiple times. Using the  min-
max_frame  example from Fig.  10.8 , the logic to perform the reads and comparisons 
is created and then an FSM will ensure the logic is executed eight times (since 
 N  = 8 in this example). This ensures the minimum amount of logic is used, but it can 
take many clock cycles to complete all operations specifi ed by the loop. 

 Loops may be partially or fully unrolled. Using the  minmax_frame  example from 
Fig.  10.8 , if the loop is partially unrolled by a factor of, say, 2, this would create two 
copies of the logic in the loop body and the design will execute this logic (8/2 = 4) 
four times. This creates more logic than a rolled loop, but now allows more reads 
and writes to be performed in parallel, increasing throughput (or in other words, 
reducing the  II ). 

 At this point, you can perhaps start to see the interaction between the options for 
interface synthesis and design synthesis:

•    Completely unrolling the loop in the  minmax_frame  example creates eight copies of 
the hardware and allows all reads and writes to occur as soon as possible: poten-
tially, all in the same clock cycle if the frequency is slow enough (or the target 
technology is fast enough).  

  Fig. 10.8    Key optimization objects       
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•   However, if the  DataIn  interface is implemented as a block RAM interface, only 
a maximum of two reads can be performed in each clock cycle. Most of the hard-
ware is wasted since it must sit and wait for the data to become available at the 
input port.  

•   To take advantage of all the hardware created by a fully unrolled loop, the 
solution here is to also partition the  DataIn  input port into eight separate ports 
(or four separate dual-port block RAM interfaces).    

 Similarly, only partitioning the input port does not guarantee greater throughput: 
the loop also has to be unrolled to create enough hardware to consume the data.  

10.7.2     Controlling Resources 

 Functions and loops represent scopes within a C design function and may have 
optimization directive applied to the objects within them. A scope in C is any region 
enclosed by the braces  {  and  } . Optimization directives may be applied to functions 
and loops to control the resources used to implement the functionality. For example, 
if the C code contains 12 multiplications, HLS will by default create as many hard-
ware multipliers as necessary to achieve the required performance. In most cases, 
this will typically be 12 multipliers. 

 Optimization directives may be used to limit the actual number of multipliers in 
the RTL design. For example, if an optimization directive is used to limit the number 
of multipliers to 1, this will force HLS to allocate only one multiplier in the RTL 
design and hence share the same hardware multiplier for all 12 multiplications in the 
C code. This will result in a smaller design, but sharing the resource (the multiplier 
will have a 12:1 mux in front of it) will mean the design requires more clock cycles 
to complete as only one multiplication may be performed in each clock cycle.  

10.7.3      Pipelining   for Performance 

 Functions and loops may also be pipelined to improve the design performance. 
Figure  10.9  shows another example of the performance metrics discussed earlier 
(in Fig.  10.7 ). In this example the design is pipelined. States  S1  through  S5  represent 
the number of clock cycles required to implement one execution of a function or one 
iteration of a loop. The design completes the read operation in state  S1  and starts the 
operations in state  S2 . While the operations in state  S2  are being performed, the next 
iteration of the function or loop can be started, and the operations for the next  S1  state 
can be performed while the operations in the current  S2  state are performed.

   As Fig.  10.9  demonstrates, when pipelining is used, there is no change to the 
latency, which is still 5 as in the previous example (Fig  10.7 ). However, the  II  is 
now 1: the design now processes a new data input every clock cycle, for a 5× 
increase in throughput. Thus,  pipelining   resulted in this improved performance 
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with only a minimal increase in resources (typically a few extra LUTs and fl ip-fl ops 
in the FSM). 

 Pipelining is one of the most used and most important optimizations performed 
by HLS.   

10.8      Optimization   Methodology 

 Any methodology for creating an optimal RTL implementation ideally requires 
understanding what the requirements of the RTL implementation are. However, the 
following methodology assumes you wish to create the highest-performing design. 
If this is not the case, skip steps 4 and 5:

    1.    Simulate the C design and ensure the results are checked in the testbench.   
   2.    Synthesize the C code to create a baseline design. This will be the default syn-

thesis performed by HLS and provide you with a starting point for optimization.   
   3.    Apply the optimizations for interface synthesis. This ensures the interfaces are of 

the required type to integrate the design with the rest of the system.   
   4.    Apply pipeline directives.   
   5.    Address any structural issues which create bottlenecks and prevent pipelining 

achieving the desired  II , such as partitioning arrays and unrolling loops.   
   6.    Use the optimization directives which control the allocation of resources to 

improve the area if this is required.   
   7.    Finally, if the latency is a performance requirement, specify any latency directives.     

2 3 4 5 6 7 8 9 10
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  Fig. 10.9    Performance improvement with pipelining       
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 This methodology can be applied to the  minmax_frame  function to create three 
data points for design comparison. The clock frequency is specifi ed as 4 ns and a 
Kintex7 device is targeted. 

 The  performance   and  resources   for the three examples are shown in Fig.  10.10 . 
Remember that this design example has eight input values and therefore the reported 
 II  is the number of cycles before another eight new inputs can be processed.

   Example 1: Small Design 

•   Input array  DataIn  is specifi ed as a block RAM interface.  
•   Both outputs are specifi ed with an output valid signal.  
•   A block-level IO protocol is specifi ed.  
•   The loop is left rolled.    

 Leaving the loop rolled ensures the minimum amount of hardware; however, the 
latency and  II  are the highest because HLS creates logic to implement the body of 
 Loop1  and then executes the same logic eight times sequentially (calculating each 
iteration of the loop before starting to calculate the next iteration).

  Example 2: Fastest Design 

•   Input array  DataIn  is completely partitioned into eight separate ports.  
•   Since the input array  DataIn  is read in sequential order, it is specifi ed as an AXI- 

Stream to reduce resources (no address generation logic) resulting in eight sepa-
rate AXI-Stream interfaces.  

•   Both outputs are specifi ed as AXI-Stream interfaces.  
•   A block-level IO protocol is specifi ed.  
•   The loop is fully unrolled.    

 Unrolling the loop creates a design with the largest amount of hardware—eight 
copies of the logic required to implement the loop body—and partitioning the input 
ports allows parallel reads and writes. This creates the fastest design but also uses 
the greatest number of resource. If the clock frequency is reduced, this design can 
complete in a single clock cycle.

  Example 3: Pipelined Design 

•   Since the input array  DataIn  is read in sequential order, it is specifi ed as an 
AXI- Stream to reduce resources.  

  Fig. 10.10    Example design implementations       
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•   Both outputs are also specifi ed as AXI-Stream interfaces.  
•   A block-level IO protocol is specifi ed as an AXI-Lite interface.  
•    Loop1  is pipelined.    

 Pipelining the loop keeps the hardware to a minimum while still ensuring the 
design is able to process one sample per clock cycle ( II  = 8: the design can process 
eight inputs in eight clock cycles). 

 The ability to generate multiple RTL implementations from the same C code is a 
large productivity benefi t of using HLS. You are able to explore the design space to 
create the most optimum design implementation.  

10.9     A Productivity Data Point 

 For the  minmax_frame  example used throughput this chapter:

•    Writing the C code, the C testbench, and performing C simulation to verify the 
results took approximately 45 min.  

•   The run time to generate each of the three HLS solutions shown in Fig.  10.10  is 
approximately 3 min per solution.  

•   Between each solution, the time to determine, select, and apply the optimization 
directives is approximately 5 min.  

•   Within approximately 1 h, these solutions represent three unique RTL imple-
mentations and 1500 lines of RTL HDL code.    

 Since the clock frequency and target technology are input parameters to HLS, 
this design may be targeted to a new target technology or a new clock frequency and 
new RTL generated in a matter of minutes. Although this is a small demonstrative 
example, the productivity benefi ts scale when working on larger designs.  

10.10     RTL Verifi cation 

 Automatic RTL  verifi cation   is a feature of HLS. Since the HLS tool knows the inter-
faces which are created in the RTL, it is possible to automatically create an RTL 
testbench to verify the RTL output from HLS. This allows the RTL to be verifi ed 
without the requirement to create an RTL testbench. 

 Since the RTL verifi cation is based on the C testbench, the amount of verifi cation 
which is performed on the RTL is exactly correlated with the effort spent writing a 
C testbench which exhaustively verifi es all modes. As stated earlier, spending time 
and effort to create a C testbench which exhaustively tests all modes is a productive 
investment, since C simulation is fast and productive and the investment in this is 
automatically leveraged into the RTL verifi cation. 
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 RTL verifi cation typically takes substantially longer to complete than any other 
part of a C-based design fl ow. It is therefore recommended to only perform RTL 
verifi cation when the design exploration process is complete or whenever you wish 
to take a representative sample through the remainder of the design fl ow. 

 Verifi cation confi rms the behavior of the RTL matches the behavior of the C code 
simulation. To verify the RTL in the context of the other RTL blocks in the full FPGA 
design, the RTL output must be integrated into the FPGA RTL design project.  

10.11     RTL Integration 

 The output from HLS is used as RTL input to the remainder of the FPGA design 
fl ow. The HLS output is provided in industry standard RTL format (Verilog and 
VHDL) and in gate-level format ( EDIF  ). The most productive methodology for 
using the outputs of HLS is the one which uses an IP integration fl ow where the RTL 
output from HLS is another IP block in the RTL system along with existing RTL IP. 

 An IP  integration   environment allows the IP blocks, including the HLS-generated 
RTL design, to be easily integrated into the chip-level design, and is explained in 
Chap.   7    . It would typically take more effort to add the HLS IP into the chip-level 
RTL design manually (connecting each port in a text editor), than using IPI. Since 
IPI uses IPs based on AXI protocol, you are highly encouraged to use AXI  interfaces 
for your HLS designs, allowing the HLS IP to easily be integrated into your FPGA 
RTL design using the IP integration environment.  

10.12     Tcl Support 

 The fi nal part of any productive C-based design fl ow is the use of a Tcl script to take 
advantage of batch processing. Batch processing through Tcl is supported by HLS, 
allowing C simulation, C synthesis, RTL verifi cation, and RTL IP integration to be 
performed effi ciently in batch mode.    

10 C-Based Design

http://dx.doi.org/10.1007/978-3-319-42438-5_7


127© Springer International Publishing Switzerland 2017 
S. Churiwala (ed.), Designing with Xilinx® FPGAs, 
DOI 10.1007/978-3-319-42438-5_11

    Chapter 11   
 Simulation                     

     Saikat     Bandopadhyay    

11.1          Introduction 

 Simulation is a way to verify the functionality of design by creating an HDL model 
and putting it through various input conditions and verifying the output. If the FPGA 
design doesn’t work as intended, i.e., it has bugs, then the design can be corrected 
and the device can be reprogrammed easily. However, most modern circuits are 
complex, and it is almost impossible to debug these circuits merely by observing the 
outputs. For that purpose, Xilinx provides hardware debug solutions (explained in 
Chap.   17    ). However, the whole process of hardware debug has its own challenges. 
Unless the circuit is small and simple, it is prudent to identify and correct all design 
issues up-front using simulation. That is, the reason simulation has become an inte-
gral part of current generation of FPGA designs. Xilinx Vivado not only provides its 
own simulator, but it also has most of the industry standard simulators (i.e.,  Questa , 
 NCSim / Incisive ,  VCS , and  Aldec  simulators) integrated into its environment. The 
actual availability of the third-party simulators will depend on your license agree-
ment with those simulators. 

 Vivado makes simulation very easy by providing the same framework for design 
and simulation. Once the design (and testbench) is set up in Vivado, it can generate 
scripts for seamless simulation—including for external simulators with very little to 
no additional change. 

 In this chapter we will go through the process of setting up the design for 
simulation, running simulation, observing the outputs, and review various tools 
available for debugging the design. We will also talk about Vivado’s native simu-
lator and use of C-models to speed up the simulation. As mentioned in Sect.   2.2    , 
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all GUI actions get logged into  vivado.jou , and those Tcl commands can be used 
to create a script, for running in batch mode for automation and regression runs. 
This chapter will explain some other alternative options for some of these com-
mands. For an exhaustive list of options for these commands, you should use 
 <command> -help  on the Tcl console of Vivado.  

11.2     Setting Up Design for Simulation 

 For simulating the design, you need to specify a  testbench  . The testbench contains 
HDL fi le(s) which provides the input to the design for simulation. It also prints and/
or checks the outputs. A more complex testbench may even do white box testing by 
performing assertion checks on internal signals of the design. 

 You need to add these testbench fi les in addition to the design fi les. While adding 
source fi les from the GUI menu ( fi le → add sources ), Vivado provides an option to 
 add or create simulation source . You need to select this option for testbench fi les 
that are not part of the design being implemented on the FPGA. These testbench 
fi les are used (along with the design fi les) for the purpose of simulation. Vivado 
determines the HDL language and variants through the fi le extensions. For example, 
fi les with  .sv  extension are considered as of type   SystemVerilog   . 

 Each simulator provides some options that you need to set appropriately. You can 
select the simulator and set the options by clicking on  simulation settings.  Simulation 
is done in three stages Compilation, Elaboration and actual Simulation. Each stage 
has its own set of options. 

11.2.1     Compilation 

  Compilation  is the stage where Verilog, VHDL, or System Verilog is read and a 
parse tree representing the model is created and stored in the design library. Most of 
the language-related errors are detected at this stage.  XSIM  compilation for Verilog/
SystemVerilog and VHDL is performed by  xvlog  and  xvhdl , respectively. Some of 
the options for xvlog/xvhdl are:

•    Verilog options: To add and include paths for searching  ‘include d fi les and also 
for defi ning Verilog macros  ’defi ne  from command line  

•   Generics or parameter options: To change the default parameters for top-level 
 module  or  entity   

•     nosort   : To prevent Vivado from trying to auto-determine the dependencies across 
HDL fi les to determine the order of parsing  

•     relax   : To show some leniency toward LRM noncompliance but commonly used 
styles in HDL     
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11.2.2     Elaboration 

  Elaboration  is the stage where parse trees are combined based on design hierarchy; 
parameters are resolved and a simulation kernel code corresponding to the HDL 
code is generated inside a design snapshot.  XSIM  elaboration is performed by  xelab  
command. Some of the options for  xelab  are:

•      snapshot   : To specify the name of design snapshot meant for simulation. Default 
name is top-level  module/entity .  

•     debug_level   : To specify the level of debug that may be performed. It impacts the 
level of optimization that can be performed by the simulation engine. Values 
could be:

 –     typical : For line tracing, waveform display, and deriver debugging  
 –    all : All of typical and debug of Xilinx precompiled library  
 –    off : No debugging. Provides the fastest simulation     

•     relax   : To show some leniency toward LRM noncompliance but commonly used 
styles in HDL.  

•    mt_level : To use  multi-threading   for faster elaboration.

 –     auto : Determined the level automatically, based on machine confi guration.  
 –    off : No multi-threading  
 –   <num>: use max of <num> threads        

11.2.3     Simulation 

  Simulation  is the fi nal stage where the simulation kernel corresponding to the design 
is verifi ed and debugged by running it. In the context of Vivado’s inbuilt simulator, 
 xsim  is the command for the actual simulation using the generated design snapshot. 
Some of the options for simulation are:

•     runtime : Time for which simulation should be run, before stopping. In a typical 
simulation, it is the setup time, after which initial simulation stops and control is 
returned to Tcl shell. Simulation can continue further from Tcl shell with com-
mands   run –all  or  run <time> .  

•     wdb   : The waveform database fi le that is generated from simulation. This data-
base can be viewed by Vivado waveform viewer.  

•     saif    /saif_all_signals : Used to generate  SAIF  fi le for power analysis.    

 There are also  additional options  under  compilation/elaboration  and  simulation  
tabs which can be used for passing any options to the parser ( xvlog/xvhdl ), elabora-
tor ( xelab ), or simulation engine ( xsim ).   
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11.3     Simulation and Observing Results 

11.3.1     Simulation of Behavioral/RTL Model 

 Initially (before synthesis) only RTL design is available, and simulation can be per-
formed on it via selecting  run simulation  from Flow Navigator window and further 
selecting  run behavioral simulation . This is the fastest simulation and any issue found at 
this stage is the easiest to fi x. After synthesis and implementation, the  run simulation  will 
also let you run post-synthesis functional/timing simulation and post-implementation 
functional/timing simulations, respectively. These simulations are more accurate but 
considerably slower.  

11.3.2     Simulation Steps 

 On running simulation, Vivado internally calls   launch_simulation    command to run 
the simulation and displays the initial result.  launch_simulation  is the command for 
not just Vivado simulator but also for other integrated simulators. To select the 
appropriate simulator, set the property   TARGET_SIMULATOR    to one of   XSIM   , 
  ModelSim   ,   IES ,   or   VCS   . The default value is XSIM.

      set_property TARGET_SIMULATOR <name>  

     launch_simulation  script does the following:

•    Determines design sources, including fi les  
•   Determines the order of parsing (if requested)  
•   Compiles all Verilog and System Verilog fi les with   xvlog     
•   Compiles all the VHDL fi les with   xvhdl     
•   Elaborates the design into simulation snapshot using   xelab    command  
•   Opens up  design scope  window,  objects  window, and  waveform  window to mon-

itor the simulation  
•   Runs simulation on the snapshot using   xsim    command for a pre-specifi ed simula-

tion time  
•   Gives control back to Tcl shell for further simulation commands or for inspec-

tion of design or output    

 Some of the options for  launch_simulation  that might be of interest to you are:

•     step : Fine control of simulation stage to perform. Values are  compile ,  elaborate , 
 simulate , and  all  (default is  all ).  

•    scripts_only : Only generate the simulation scripts; don’t actually execute the scripts.  
•    noclean  _   dir   : After simulation run, don’t clean up the directory.    

 Any error in compilation or elaboration of the HDL fi les will be reported in the 
 messages  as well as  log  tab at the bottom of Vivado. The error messages in the mes-
sage tab has hyperlink to the source for speeding development. Output of simulation 
can be observed in  log window   of Vivado. 
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 Scope can be browsed on the   scope  window  . On selecting a scope, all the signals 
in the scope are displayed in the   objects  window   as in Fig.  11.1 . Once the scope is 
changed, the object window will start displaying signals of the new scope. This 
 objects  window displays the current value of the signal. Vivado picks the default 
radix to display the value. This radix can be customized by the pop-up menu on 
right click over the signal. To see previous values at specifi c time, waveform viewer 
can be used. This is explained in Sect.  11.3.6 .

   Some of the Tcl commands related to  scope  are:

•      current_scope    without any argument: Returns the name of the current scope.  
•    current_scope <name> : The scope is changed to the specifi ed name.  
•     get_scopes    :  Lists all the child scopes of the current scope.  
•     report_scopes    Describes all the child scopes of the current scope.    

 The following is an example transcript:

      current_scope   /counter_tb  
  /counter_tb  
  get_scopes  
  /counter_tb/dut /counter_tb/Initial28_0 /counter_tb/Always35_1 /
counter_tb/Monitor32_6  
  report_scopes  
        Verilog Instance: {dut}  
        Verilog Process: {Initial28_0}  
        Verilog Process: {Always35_1}  
        Verilog Process: {Monitor32_6}  

  Fig. 11.1    Objects window       
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11.3.3          Observing Simulation Results with Tcl 

 The values of signals can be printed by Tcl command. Each signal can be uniquely 
identifi ed by a full hierarchical path separated by / or the name relative to the current 
scope. The following Tcl session prints the value ( 28  in this case) for the signal /
counter_tb/dut/i1/r3. If the current scope is set to  /counter_tb/dut , the same 
signal can also be accessed by the name  i1/r3 .

       get_value     /counter_tb/dut/i1/r3  
  28  

    The type of the signal can be queried with the command  describe . That is:

       describe     /counter_tb/dut/i1/r3  
      Port(OUT): {r3[7:0]}  
      Path: {/counter_tb/dut/i1/r3}  
      Location:{File "C:/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv" 
Line 26}  

    To print all the signal values in the current scope, Tcl command  report_values  is 
used.

       report_values    
    Declared: {count[7:0]}             Verilog 28  
    Variable: {reset}                        Verilog 0  
    Variable: {clock}                        Verilog 1  

11.3.4         Timing Simulation 

 Xilinx maintains libraries with and without timing information. Library without 
timing can be used for faster verifi cation of functionality. However, if you want to 
also consider the individual gate and wire delays, you should use  post-synthesis 
timing simulation . In this mode, the simulators will also fl ag if any of the timing 
checks as they are violated during simulation. Post-implementation timing simula-
tion uses. SDF fi les generated from Vivado to model more accurate wire delays 
and timing checks.  

11.3.5      Controlling Simulation from Tcl 

 Simulation in Vivado will run for time duration specifi ed in simulation options and 
will stop for further commands. Simulation can be continued with the Vivado 
command   run   .  run  runs the simulation further from the currently stopped time.
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      run 100      #runs simulation for 100 ns (ns is default time unit for simulation)  
  run 100 us     #runs simulation for 100 micro second (timeunits are ms, us, ns, fs)  
  run –all           #runs simulation till there are no more process in the design  

    Current simulation time can be observed with the command Vivado Tcl com-
mand   current_time   . To redo the simulation without the overhead of re-compilation, 
there is the Vivado Tcl command   reset_simulation   . This resets the simulation time 
to  0  and cleans up any fi les or data generated during simulation. If you are debug-
ging and want to preserve  breakpoints  and  conditions , you will need to use the com-
mand   restart    instead of  reset_simulation .  

11.3.6      Waveform Window 

 During simulation, Vivado generates a waveform database and displays it in the 
waveform window. When simulation is done for the fi rst time, Vivado automatically 
displays all the signals at the top level of the design. You can add signals to wave-
form window by dragging signals from the  objects  window to the  waveform  win-
dow. Or, you can use the Vivado Tcl command   add_wave            with hierarchical or 
relative signal name. You can customize the waveform being added through the use 
of the following switches to add_wave:

•     radix : To set the radix for displaying the values. Valid radix types are bin, oct, 
hex, dec, unsigned or ascii.  

•    after_wave/before_wave : To customize the placement of the wave. By default, 
the new waveform is added at the bottom of the existing waveforms.  

•    color : To set the color of the waveform, which can be a standard color name or a 
string of the form ##RRGGBB.  

•    r : Used to add all signals under the specifi ed scope.    

 If you have customized your waveform, you can save the customization as 
waveform confi guration, to be loaded during future simulation of the same design. 
To save a waveform confi guration, select the waveform and press  Ctrl-S . The 
confi guration gets saved as a  *.   wcfg  fi le  . It is possible to save multiple waveform 
confi gurations into separate wcfg fi les. For restoring a stored waveform confi gu-
ration, select  fi le → open waveform confi guration  from the menu and select the 
 *.wcfg  fi le. 

 Waveform viewer also has an ability to display the data in analog form, as shown 
in Fig.  11.2 . It can be very useful in visualizing signal processing data. To see  analog 
wave  , right-click on the signal and select  waveform style  as  analog .
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11.4         Debugging 

 Vivado IDE has easy and intuitive ways of debugging. The fi rst step is to analyze the 
waveform and/or the log to get to the simulation time, where the bug fi rst manifests 
itself. Once that is identifi ed, you should take the simulator to the specifi c simula-
tion time with  run  (explained in Sect.  11.3.5 ) command. Tracing and HDL code 
debugging are done further to isolate and identify the bug. 

  Fig. 11.2    Analog waveform       

  Fig. 11.3    Source window with breakpoints       
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11.4.1     Enabling Tracing 

  Tracing  refers to ability to follow (trace) the fl ow of simulation on your HDL code. 
Vivado simulator has two tracing commands:   ptrace    for process tracing and   ltrace    
for line tracing. Use  ptrace on  (or,  off ) to turn on (or, off) process tracing. An exam-
ple session with process tracing would look like as below:

      run   5  
  INFO: /counter_tb/Always35_1  
  INFO: 
C:/Users/     saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v:35  
  INFO: /counter_tb/Forked24_7  
  INFO: 
C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv:24  
  INFO: /counter_tb/Monitor32_6  
  INFO: 
C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v:32  
  INFO: /counter_tb/Always35_1      
  INFO: 
C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v:35  
                  4055: clock:0 reset:0 ==> count:10010010  

    Similarly line tracing can be turned on or off with the command   ltrace     on|off . 
An example session with line tracing would look like as below:

      run   5  
  4060 ns 
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v":36  
  4060 ns 
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v":35  
  4060 ns 
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v":36  
  4060 ns 
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv":29  
  4060 ns 
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv":32  
  4060 ns 
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv":28  
                  4060: clock:1 reset:0 ==> count:10010011  
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    Since there can be a lot of information generated by  ltrace  or  ptrace , it might be 
more effective to use tracing with condition (explained in Sect.  11.4.3 ).  

11.4.2     Breakpoint 

 HDL source has executable lines on which breakpoint can be applied. Breakpoint 
can be set from Vivado GUI or from Tcl Console. In Vivado GUI, the breakable 
lines have empty circles in front of them, as shown in Fig.  11.3 . Clicking on this 
circle will add the breakpoint. The breakpoints on the GUI are toggle switch. So 
clicking them again will remove the breakpoint.

   The Tcl command to add breakpoint is:

       add_bp     counter.sv 29  

    Running the simulator now will automatically stop on hitting this line. The signal 
values can be observed by hovering the mouse over the signals of interest. Values 
can also be checked from Tcl shell with  get_value  or  report_value  (described in 
Sect.  11.3.3 ) command. Alternately current values can also be observed in the 
objects window by selecting the appropriate scope. 

 All the currently active breakpoints can be listed by the command  report_bps . 
The report of active breakpoints will look like:

       report_bps    
  bp2: 
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v":32  
  bp3: 
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v":30  
  bp4: 
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv":29  
  bp5: 
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv":32  

    Tcl command   remove_bp    can be used to remove a breakpoint by either specifying 
the breakpoint id or fi le and line number. So the following two commands are 
equivalent:

      remove_bp bp5  
  remove_bp –fi le “C:/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv" 
–line 32  

    To remove all the breakpoints, you can use the option  –all .  
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11.4.3      Conditions 

 Condition is a very powerful debugging concept. It permits an action to be asso-
ciated with a Boolean expression turning true. Whenever the condition is met, the 
command associated with the condition is executed. You can make use of this capa-
bility through   add_condition    from Tcl command. The command associated with 
condition can be any valid simulator command. Thus  add_condition  can be a pow-
erful tool to do white box testing of design without modifying it. For example, to 
break simulation if a non-zero data is present with reset, use the following 
command:

       add_condition –name ignoredData {reset == 1  &&  data !=0 } stop  

    Here  stop  is the command that gets executed when ( reset==1  &&  data !=0 ) 
becomes true. On stopping, the other related signal values can be inspected for 
debugging. Once inspected simulation can further continue with  run  command. 

   report_conditions    reports all the condition objects that are active.   remove_condi-
tion    just like  remove_bp  can be used to remove one specifi c or all conditions.  

11.4.4     Changing Values of Signals 

 For debugging, you may sometimes want to see the impact of a changed value of 
signal without changing the design and recompiling it. Vivado simulator provides 
with two ways to do that from the Vivado Tcl. They are setting and forcing values. 

11.4.4.1     Setting Value 

 You can use   set_value    to update a signal or reg immediately. It however permits the 
value to be changed with future signal update events. Example use:

      set_value -radix bin /test/bench_VStatus_pad_0_i[7:0] 1110100101  

11.4.4.2         Forcing Value 

 Forcing is similar to setting value, except it can be done only for signals, and once 
the value is forced, it cannot be changed till the force is on. You can force a signal 
to the desired value through   add_force   . Similarly the force can be removed by the 
command   remove_force   . 

 You can also use GUI to  force  a signal to a constant value and to remove the 
 force . Right-click on the signal in the  object  window and select  force constant  to 
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force a signal to a constant value. Similarly select  remove_  force  from the menu to 
remove any  force  on the signal. You can also  force  a toggling value to a signal by 
selecting  force clock  and fi lling up the pop-up window with toggle values, start 
time(offset), duty cycle, and period.    

11.5     Combining C with HDL Using DPI 

 With SystemVerilog, you can write a part of design in  C  or  C++  and use it from 
SystemVerilog. SystemVerilog can  import  C    functions via  import  command. Once 
a  C  function is imported, it can be called as a regular SystemVerilog  function  or  task  
(depending on the  import  command syntax). Similarly SystemVerilog  function  or 
 task  can be exported to  C  side. These exported SystemVerilog functions (or tasks) 
can be called from C functions. Exported SystemVerilog tasks can be used to mimic 
 #delay  or  @wait  from  C  functions. 

 For simulating SystemVerilog with  C  code, it is important to make sure that they 
are compatible.   xelab    has an option  –dpiheader . This generates a  C  header fi le for 
the imported and exported functions. The  C  function defi nition prototype must 
match with this generated header for successful linking of functions. 

 Use the Tcl command   xsc    to compile the  C  fi les and then link with  xelab . Only 
simple scalar types are permitted as function return for imported or exported  DPI  
functions. The permitted data types that can be passed between C and SystemVerilog 
are mentioned in Table  11.1 .

   Let us take an example to elaborate. A SystemVerilog fi le  hdl.sv  (with the design 
top name  TESTBENCH ) calls a  C  function defi ned in fi le  helper.c . The prototype for 
the function as defi ned in  hdl.sv  is:

  Table 11.1    Permitted 
data-types between 
SystemVerilog and C  

 SystemVerilog  Matching C type 

 bit   SVBit   
 logic or reg   SVLogic   
 int  int 
 byte  char 
 short  short 
 long  long 
 chandle  void* 
 packed array of bits   SVBitVector   
 packed array of logic   SVLogicVector   
 unpacked struct  struct 
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          typedef struct {  
          bit a;  
          integer b, c;  
      } stType;  

      typedef struct {  
          reg r;  
          stType st;  
      } stType1;  
      import "DPI-C" function int func(input stType1 in, input stType1 in1);  

    To generate the equivalent  C  prototype for function, you need to elaborate the 
design using  xelab  with the additional command line option  –dpiheader . This will 
generate a header fi le with the name  dpi.h . For this case, the  dpi.h  will contain the 
 C  prototype of the equivalent function.

      #include "svdpi.h"  
  typedef struct {  
      svBit a;  
      svLogicVecVal b[SV_PACKED_DATA_NELEMS(32)];  
      svLogicVecVal c[SV_PACKED_DATA_NELEMS(32)];  
  } stType;  

      typedef struct {  
      svLogic r;  
      stType st;  
  } stType1;  

  /* Imported (by SV) function */  
  DPI_LINKER_DECL DPI_DLLESPEC int func( const stType1* in , const stType1* 
in1);  

     SV_PACKED_DATA_NELEMS()  is defi ned in  svdpi.h  which is included.  SV_
PACKED_DATA_NELEMS  rounds the bits into chunks of 32 bits needed to hold. So 
number from  1  to  32  will become  1 ,  33 – 64  will become  2 , and so on. The  C  code 
needs to have the same prototype for  function . The  C  code can be compiled into a 
dynamic library  dpi.so  with the command  xsc  as:

      xsc helper.c  

    The next step is to create the simulation kernel with  xelab  command where the 
name of the  dpi  library is specifi ed.

      xelab TESTBENCH –snapshot SIM1 –sv_lib dpi  
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    Once the kernel is created, the simulation can be run using  xsim  command. This 
will open up a Tcl shell that takes all the simulation commands.

      xsim SIM1  

11.6         Generating SAIF File for Power Estimation 

 For power analysis, usually functional simulation is performed and  Switching 
Activity Interchange Format  ( SAIF ) fi le is generated. This  SAIF  fi le is input to the 
power analysis tools. During simulation a  SAIF  fi le can be opened with Tcl com-
mand   open_saif     <SAIF_fi le_name>.  Only one SAIF fi le can be opened at a time 
during simulation. Simulator needs to be then instructed to log signals into SAIF 
fi le, which is done via   log_saif     <signal>+.  To log all the signals in the current 
scope,  log_saif  can be used with  get_objects  as:

      log_saif [get_objects]  

    Once logging is done for SAIF, it can be closed with Vivado Tcl command 
  close_saif .      
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    Chapter 12   
 Clocking                     

     John     Blaine    

12.1          Clocking in FPGA Designs 

 FPGAs are designed to be used with synchronous design techniques. As such, 
understanding clocking structures and their capabilities is vital to be able to realize 
a design. Poor understanding will create designs that are unreliable and diffi cult to 
meet timing, while good understanding will create reliable designs and allow you to 
focus on resolving non-clocking issues. 

 FPGA clocking is not a diffi cult subject to understand. Wherever you face a 
design decision, opt to prioritize clocking and keep the clocking as simple as pos-
sible. This simple rule will guide you well. Often decisions taken that do not give 
optimal clocking performance will result in delays to the project, board respins, etc. 

 FPGAs provide low skew clock routing. These are high load distribution net-
works. The network is fully buffered by design. It does not reduce in performance 
as you increase the load. One key progression in UltraScale FPGAs is to provide 
more clocking fl exibility when compared to older FPGAs. There are many more 
available networks to use now. 

 Additionally, FPGAs provide PLLs/MMCMs that allow you to do frequency 
synthesis and phase shifting. These attributes allow you to interface to external 
components and generate internal clocks of almost any frequency up to the maxi-
mum operating range of the FPGA. This allows for effi cient FPGA design as you 
can easily change the frequency at which the design operates to be optimal for the 
given FPGA and part of the design.  
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12.2     Choice of Clock Frequency 

 A typical FPGA design has many clock networks, as shown in Fig.  12.1 , because 
each of the following may have its own network:

•     Each source synchronous interface coming into or leaving the FPGA  
•   Each transceiver interface  
•   Internal system FPGA clock network  
•   Low-speed clocking networks for control like high fanout processor control via 

an AXI-Lite interface, external fl ash clocking  
•   Optional internal fast clock networks for conducting DSP operations    

 Most designs do not run at any single clock frequency. Design frequencies are 
normally dictated by:

•    Bandwidth of incoming data  
•   Bandwidth of outgoing data  
•   Resource consumed by a particular function    

 The fi rst two points are typically decided by the system. However, the third point 
is a design decision, in the sense that there might be multiple combinations of freq 
vs. utilization that would be possible. Generating different frequency clocks is easy 
in a FPGA. Running something faster will usually save resource. So, you can change 
frequency to save FPGA resource like DSP slices. 
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  Fig. 12.1    A high level look at a typical clock network       
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  Wireless radio  designs, for example, have parts that run at sweet spot frequency 
of 491 MHz. Usually it is only the DSP portions that run at this performance. This 
includes fi lters, power monitors, DPD, and crest factor reduction. The designs have 
characteristics such as:

•    Low load control paths.  
•   Point-to-point data paths.  
•   Design can be pipelined without issue.  
•   Data paths are typically small around 32 bits.    

  Wired designs  tend to have a lot of switching and wide data paths. Data paths 
can be 512/1024/2048 bits. These large data paths represent a challenge to the 
FPGA design software. You can help here by selecting a frequency that balances 
the diffi culty and data path width. These designs tend to operate in the region of 
300–350 MHz. For UltraScale+, there could be benefi t in doubling the frequency 
to something like 600 MHz and halving the data width. Smaller data widths are 
easier to route for the FPGA software tools. 

 For other types of design, you should consider  data path sizes  , high fanout non- 
clock nets, and logic levels required. These are the typical factors that infl uence 
 Fmax . Of course, faster device families and speed grades move the window. 

 You should also consider productivity against the cost saving of running faster. It 
is important to choose the right performance without impacting your productivity 
level. For example, closing timing at 400 MHz may take a few extra weeks com-
pared to closing timing at 200 MHz.  

12.3     Number of Clocks 

 UltraScale provides capability to use up to 24 truly  global clocks  . Usually designs 
require something under 12 truly global lines. The unused networks can be broken 
down into many smaller clock networks. This can give hundreds of smaller clock 
networks. In practice, there is one smaller clock per interface, and you can use the 
additional remaining clocking resources for non-clock (but, high fanout signals) 
routing like clock enables or resets. 

 Vivado will handle up to 24 clocks without issue. Once you go over 24 clocks, 
your intervention could be required. For example, consider a design with 12 global 
clocks and 36 interface clocks. The 12 global clocks could be Vivado placed, and 
36 regional clocks might require some user fl oor planning to ensure that there are no 
overlaps where you might exceed 24 clocks in a region. 

 It is possible to have many  local clock networks  . These are where the clock is 
routed on standard FPGA routing. These networks should be kept to a minimum 
number of loads. The recommendation would be to keep everything inside a single 
slice or two slices, and this would mean under 32 loads. More than this is possible 
but you should avoid.  
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12.4     A Typical Clock Network 

 A typical clock network (shown in Fig.  12.2 ) in a FPGA starts with a pin that is fed 
by an external oscillator. If a frequency modifi cation is required, you should feed the 
incoming clock to a MMCM/PLL and then into a global clock network via a BUFG. 
From this point it can access clock pins of basic logic elements like fl ip- fl ops and 
RAMs. There are many variants of this. This chapter explains your choices depend-
ing on your requirements and optimal implementation for UltraScale FPGAs.

12.4.1       Clocks Entering a FPGA 

 There are two primary places where a clock source will enter a FPGA. The fi rst is a 
global clock IO or  GCIO  . In UltraScale, there are four P/N pairs per clock region. 
For single-ended clock, connect on the P side. From these inputs there is a direct 
connection to a PLL and MMCM or BUFGs. 

 The other main entry points are gigabit transceivers. Each quad has two clocks 
that can enter the FPGA. These clocks can be used in the fabric as is or can be used 
with some modifi cation of frequency. Access to MMCMs can be made through 
BUFGs. In Zynq MPSoC, there is a third source of clocks and that is the processing 
subsystem. These can pass clocks to the FPGA fabric.  

12.4.2     Generating Clocks with Different Frequencies 

 Designs typically require many different clocks of different frequencies. FPGAs 
provide the facility to generate clocks of different frequency and phases using 
MMCMs and PLLs. PLLs can be considered as MMCMs with reduced features. 
Each MMCM/PLL can generate multiple output clocks at different frequencies 
and/or phases, over a wide range of frequencies. 

 MMCMs/PLLs are usually driven by (a) clocks that come from external oscillators, 
(b) source synchronous IO interface clocks, or (c) other internally generated clocks. 
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  Fig. 12.2    A typical clock network       
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Usually you need to ensure that clocks supplied to these components should not 
stop. If they do, you need to reset these components. It is generally advisable to reset 
the components before using them. 

 Use the  Clocking   Wizard   IP   to make use of MMCMs/PLLs. This IP is part of 
Vivado  IP Catalog , explained in Chap.   3    . 

 Zynq MPSoC components also have their own PLLs to change the frequency of 
input clocks to the subsystem. Additionally frequency change can be achieved 
within a gigabit transceiver, and clock division can be done in BUFGCE_DIVs and 
BUFG_GTs which are described next. Detailed analysis of Zynq and transceiver 
clocking is not covered here.  

12.4.3     Accessing Global Routing 

 Clock buffers  BUFGCE  ,  BUFGCE_DIV  ,  BUFG_GT,   and  BUFGCTRL   instruct 
Vivado to use the special clock routing resources. There are no special requirements 
to come off the global routing. Collectively these are called BUFG*. There is a 
BUFG primitive, which is inherently a BUFGCE, but without using the  enable  
function. Vivado can infer  BUFG   automatically or you can instantiate them. 
Alternatively, IP can include them via instantiation. Only BUFG buffers can be 
inferred. Other types of clock buffers have to be instantiated in your HDL or in IP. 

 The following buffers exist in clock regions that contain IOs:

 –    BUFGCE—It offers an enable/disable switch. There are 24 per region. This is 
the base primitive.  

 –   BUFGCE_DIV—This is similar to the above but also can divide the clock 
frequency. There are 4 per clock region.  

 –   BUFGCTRL—This offers muxing capability. This is required for clock switching 
or multiplexing. There are 8 per clock region.    

 The following buffers exist in clock regions that contain GTs:

 –    BUFG_GT—The input has access from any of the transceiver clock sources. 
These have dynamic divide capability. There are 24 per region.    

 The access to each of the BUFGCEs in each region is independent. Each of the 
24 buffers can be accessed on the input side from any MMCM/PLL output, internal 
FPGA resource, or IO. However, the output side will drive a particular clock track. 
For BUFGCE_DIV and BUFGCTRL, the input sides are shared with BUFGCEs, 
but the output side is fl exible. Figure  12.3  shows how BUFGCE uses different 
clocking tracks.

   The complex connections of these buffers mean that generally Vivado should 
decide the locations of the buffers. You can place them at the clock region level 
through the command below, but Vivado will determine the track numbers.

      set_property CLOCK_REGION [get_cells <BUFGCE_CELL>]  

12 Clocking
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  Fig. 12.3    BUFGCE output track usage by other buffers       

12.4.4         Clock Routing, CLOCK_ROOT, and Clock Distribution 

 Due to additional clocking resources, UltraScale has introduced new terms. From 
the output of one of the BUFG*, the clocks travel on  clock  routing    .  This is new term 
to describe the wires after a BUFG. Each clock region has 24 of these tracks. The 
point at which the clock signal transfers to   distribution    resources is termed the 
  CLOCK_ROOT   . Distribution resources will carry the signal to fl ip-fl op clock pins 
and other endpoints. Each clock region has 24 of these too. They are mutually 
exclusive in each clock region, except that both will be used in the CLOCK_ROOT 
region. Figure  12.4  explains the terminology.

   Clock roots can be seen after place design using the following TCL command:

      report_clock_utilization –clock_roots  

    Vivado will approximately choose the geometric mean of the locations of the 
load on the clock tree to determine the CLOCK_ROOT. Balancing the clock root is 
important as it impacts clock tree skew which impacts timing. When interfacing to 
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a GT, CLOCK_ROOTS may be placed close to the GT in order to meet a skew 
requirement on transceiver clock network. This can mean that the CLOCK_ROOT 
is not in the geometric center. You can control the CLOCK_ROOT using the following 
constraint:

      set _property USER_CLOCK_ROOT <clock_region> [get_nets <clock net after 
BUFG>]  

    When two or more clock networks have the same source MMCM, they can go to 
different CLOCK_ROOTS. This can mean that there are different delays on the 
clock networks, as shown in Fig.  12.5 . Different delays on clock networks will 
translate to skew in timing which can make designs diffi cult to close timing.

   If there are paths that are related between these clocks, you should link the two 
clock networks using   USER_CLOCK_GROUP    constraint.

      set_property USER_CLOCK_GROUP <group_name> [get_nets [list <clock after 
BUFG1> <clock after BUFG2>]]  

    This will ensure that clock paths have roughly similar delay as shown in Fig.  12.6 .
   CLOCK_ROOT impacts the general  skew   that a network has. Clock skew can be 

positive for setup when moving away from the clock root and negative as you move 
toward the clock root (Fig.  12.7 ). Smaller networks will have optimal CLOCK_
ROOT placement with lesser skew. For this reason, it can be benefi cial to break a 
larger clock network into two smaller ones if the interface timing can be managed, 
e.g., using a FIFO where the networks cross. For this to be effective, there should be 
no cross clocking timing.
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  Fig. 12.4    Clocking terminology explained       
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12.5         Optimizing Clock Networks to Improve Internal 
Timing 

 Vivado models the most pessimistic timing. That means for setup analysis, the 
source path will have maximum delay, while destination path will have minimal 
delays. These confl icting models can signifi cantly reduce timing budget but are 
required to generate a design that works in hardware in all devices. 

12.5.1     Clock Pessimism Removal and the Common Node 

 Clock  pessimism removal   is compensation in a timing report for the common 
segments in the clock paths. It is not possible to have both the best and worst case 
occurring at the same time, on any given path segment. Vivado compensates for the 
unnecessary pessimism due to delay differential on this common segment. The 
point at which the source and destination clocks diverge is termed the  common  
  node   , as shown in Fig.  12.8 . Having the  common node  as close as possible to both 
the source and destination will improve timing margin signifi cantly as signifi cant 
portion will be common, from where pessimism would be compensated.

   You can infl uence  common node  during early clocking decisions, such as clock 
frequency to use. If you choose a common clock, the  common node  will be some-
where after the BUFG. If you choose different clocks, then the  common node  will 
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  Fig. 12.6    Clock roots and length of clock tracks aligned through USER_CLOCK_GROUP       
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be at the MMCM. If you opt for different clocks, then consider using asynchronous 
design techniques to cross the clock boundaries to improve timing. Using, for exam-
ple, a FIFO will mean that timing can be relaxed at this point. 

 Minor  common node  infl uences, such as different slices, are largely controlled by 
the placer. However, if manually creating a fl oor plan, keep to clock region boundar-
ies for optimal common nodes. Horizontal fl oor plan shapes are more optimal than 
vertical ones but, sometimes, some other considerations (e.g., data fl ow through 
DSP chain) may cause you to prefer vertical shapes.  

12.5.2     Optimizing Common Node for Synchronous Cross 
Domain  Crossings   

 In UltraScale, the total length of a typical clock network is made up of 
MMCM → BUFG → CLOCK_ROOT → LOADs. When crossing between two different 
clocks, the common node will be at the MMCM/PLL, as shown in Fig.  12.9 .

COMMON 
NODE A => B

COMMON 
NODE B => C

A B C

  Fig. 12.8    Common node       
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  Fig. 12.9    Example circuit with a poor common node       
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   In the case where the MMCM is not required for IO interfaces, it can be optimal 
to move the MMCM/BUFGs as close to  CLOCK_ROOT  as possible, as shown in 
Fig.  12.10 . This has the effect of improving the common node, and hence greater 
clock pessimism removal is seen. An initial run through the tools is required to 
achieve this optimization.

   In order to do this optimization, you must instruct Vivado as the default is to have 
the MMCM next to the global clock input, through the following:

    1.    LOCK the MMCM to the clock region close to the CLOCK_ROOT.   
   2.    Insert a BUFGCE between the IO and the MMCM.      

12.5.3      Phase Error   

 When two clocks come out of the same MMCM and there are timing paths between 
them, a value for phase error is added to both setup and hold times. This value is 
120 ps for both windows. Together this creates a window of at least 240 ps that 
reduces timing margin. In reality, when common node compensation and hold time 
fi xing are added, approximately 1200 ps are lost from the setup window. This should 
be taken into account when crossing between related clocks.  

12.5.4     Internally Related Clocks Divisible by 2, 4, and 8 

 In a special case where the clocks are multiple of each other, use BUFGCE_DIV 
from a single output of MMCM/PLL. This will remove phase_error and improve 
the  common node . 
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  Fig. 12.10    Optimization of common node       
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  BUFGCE_DIV   primitives can divide the clock by an integer number between 
1 and 8. Since there are four BUFGCE_DIVs in a region, you can derive up to four 
divided clocks. Consider the example circuit shown in Fig.  12.2 . The clocking can 
be improved as shown in Fig.  12.11 . The key steps are:

•     Generate an MMCM with just the highest frequency output, in this case 
CLK2X. The  Clocking Wizard  IP should use  no buffer  as its drives selection  

•   Connect up 3 BUFGCE_DIV buffers in parallel  
•   Even for the original clock, insert a BUFGCE_DIV to divide-by 1, which helps 

achieve uniform delay in the clock paths     
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  Fig. 12.11    Optimized clock network for synchronous clocks       

  Fig. 12.12    ( a ) One combination of output jitter values. ( b ) Alternate combination of output jitter 
values         
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12.5.5     Jitter Reduction 

  Jitter   can be reduced by selecting different options in the  Clocking Wizard  IP. Output 
jitter can be minimized at the expense of input jitter fi ltering. It is recommended to 
play with these options and evaluate the output under the  Port Renaming  tab inside 
the   Clocking Wizard   . It is possible to improve each path in the design by up to 
±150 ps by selecting optimal settings. Figure  12.12a, b  shows two difference values 
for peak-to-peak jitter for outputs, using two different settings ( balanced  and  output 
jitter optimized , respectively). Be aware that change in these jitter values could 
impact power also, because higher frequency of VCO will result in higher power.

12.6         Optimizing Clock Networks for Interfaces 

12.6.1     GT Clocking 

 GT clocking is generally taken care of by the IP. However, there are use cases where 
proprietary protocols need implementing, and in this case clocking should be 
understood. In UltraScale, MMCMs and PLLs are generally not required for GTs. 
This makes the clocking much more scalable to the GT count. Instead, dividers in 
BUFG_GT allow a user to generate the user clocks to interface with the GT. Typically 
 USRCLK  1 and USRCLK2 are either frequency matched or USRCLK2 is half the 
rate of USRCLK1. The choice of this depends on the protocol. 

 Additionally there are some protocols that require a line rate change. Line rate 
changes also require a USRCLK change that is in proportion to the line rate change. 
 BUFG_GTs   provide a user signal divide capability that allows a user to change the 
divide ratio of the input/output clock. Synchronization logic is also provided to 
allow a seamless clocking change.  

12.6.2     IO Interfaces 

 Only use a MMCM for  system synchronous   IO interfaces. PLLs do not provide 
clock network deskew. Generally for interfaces, use MMCM CLKOUT0 and set 
 compensation  to  ZHOLD  . For source synchronous interfaces, MMCM can be used 
but setting for ZHOLD may adversely impact timing. You should play with the 
options here to establish good timing. Good constraints are mandatory for this 
approach.     
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    Chapter 13   
 Stacked Silicon Interconnect (SSI)                     

     Brian     Philofsky    

      A growing trend in the semiconductor market is to gravitate toward 2.5D and 3D 
technologies as a way to extend and improve the growth and integration path that 
Moore’s law has paved for more than 50 years. Xilinx has been a forerunner into 
this emerging technology entering into this foray in 2011 with the public introduc-
tion of the Xilinx XC7V2000T device utilizing four active die on a passive inter-
poser creating not only the largest FPGA of the time but one of the fi rst commercially 
available examples of this new technology. Since the introduction of that device, 
several other devices have followed and now are becoming a more mainstream 
means to realize large, high-performance devices to address some of the most 
demanding FPGA designs. Due to the sheer size and unique construction of these 
devices, a new approach to design should be considered in order to facilitate design 
entry, implementation, and closure. 

13.1     SSI Terminology 

 With Xilinx being one of the fi rst companies to release a  2.5D   device, no established 
terminology for the details of the technology existed prior. So as a means to com-
municate this, several new terms were created by Xilinx to describe the differences 
in the 2.5D devices. Figure  13.1  shows a representation of SSI device.

•       Monolithic Device   : Single-die or non-SSI device  
•     Super Logic Region     (   SLR    ) : An active die in an SSI device construction.  
•    Stacked Silicon Interconnect (SSI) : The 2.5D structure utilizing multiple active 

SLRs attached and connected to a passive interposer  
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•     Interposer   : A passive layer in the construction of an SSI device that serves the 
purpose of power delivery, confi guration connectivity, and connectivity between 
SLRs as well as connects the SLRs to the package substrate via through-silicon 
vias (TSVs)  

•     Super Long Line     (   SLL    ) : The active signals used to connect one SLR to an adja-
cent SLR in an SSI device.  

•     Laguna   : The dedicated interface to traverse from one SLR to another via an 
SLL. This interface may or may not use a dedicated register.    

 The fi rst thing that should be stated is that SSI devices do not require an all new 
design methodology. It is possible to target an SSI device using the same top-down 
method generally applied to monolithic devices with no difference in design entry, 
implementation, and validation. The thing that needs to be realized however is that 
ignoring the size and construction of the underlying device may lead to less optimal 
results and a longer design cycle.  

13.2     Design  Partitioning   

 One of the fi rst SSI-specifi c decisions is to either chose to manually select or parti-
tion the logic to each underlying SLR in the device or to allow the tools to automati-
cally partition the design into the separate SLRs. Vivado has the ability to take a 
single defi nition of the design and decide what portions of the logic should be placed 
into which SLR. The primary benefi t of automatic partitioning is the obvious 

  Fig. 13.1    Representation of an SSI device ( source : Xilinx)       
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up-front ease-of-use benefi t of not having to make such a decision, and it is very 
possible that you may see better out-of-the-box performance and results from auto-
matic partitioning. Automatic partitioning can also result in higher device utiliza-
tion and can potentially adjust to signifi cant design changes more easily than manual 
partitioning. The drawback however is the loss of control of the design placement 
in the FPGA which may yield less repeatability and control during timing closure. 
In situations where timing closure may prove diffi cult, this may be a very important 
trade- off to consider as the added control may allow much quicker timing closure 
for diffi cult designs. 

 The primary design parameter that often dictates the better fl ow has to do with 
performance requirements and how much margin there is in the design to meet those 
requirements. For designs that wish to push the limits of the device in terms of per-
formance or for designs in which it is desired to ensure that areas of the design that 
remain unchanged to have similar place and route results in future runs, manual 
partitioning is generally the better choice. An important thing to note is that perfor-
mance limits are not always dictated by desired clock rate. For instance, for a design 
that has low latency or lack of pipelining, several logic levels or high fanout nets 
may have a much lower maximum clock rate than one that is highly pipelined. For 
this example, a much lower clock frequency may be pushing the performance limits 
of the device compared to that of a well-crafted, pipelined version operating in that 
same device. Following good overall design practices promotes more performance 
margin in the device in general and can lead to more fl exibility in such design deci-
sions. The main thing to consider is how much performance margin is expected for 
the design. For designs that have adequate performance margin, either method 
(manual fl oor planning or auto derived) may be suitable.  

13.3      Pinout Considerations for SSI Designs 

 Another important up-front consideration is the  pinout   selection. Whether using an 
automatic or manual partitioning style, selection of which I/O pins are located in 
which SLR has a substantial impact on the associated logic placement and routing 
of the design. A well thought-out pinout selection will lead to good datafl ow through 
the FPGA leading to good implementation results, providing better utilization, tim-
ing, and power. The best approach to determine a good pinout starts with examining 
the expected datafl ow of all portions of the design and how that maps to the I/O 
resources of the device. All associated control signals such as clocking, enables, and 
resets should be considered in conjunction with this data fl ow. 

 The data path represented in Fig.  13.2  originates at SLR 0 (bottom SLR), must 
go to the SLR 3 (top SLR) in order to buffer the data to an external memory, and 
then travel back to SLR 1 to exit the device. This  pinout   selection has some obvious 
drawbacks. First off, the data path is required to traverse six SLRs to complete the 
data cycle. This could cause possible timing and resource issues. Also notice that 
the clock and reset signals that must drive all of the logic are located in SLR3. Since 
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these are high  fanout   signals, a better selection would be in the center SLRs so that 
the signals can be more evenly distributed improving the overall timing paths of 
both signals. Placing the reset in the center would likely reduce the overall delay 
from source to destination as the overall distance between these points is mini-
mized. Moving the clock to a more centralized location will also reduce the inser-
tion delay but, more importantly, it balances the overall  clock skew   as well. With the 
clock placed in the top SLR, the data path entering the chip to the external memory 
interface must travel against the clock. This increases the amount of negative clock 
skew for that portion of the path resulting in reduced timing margin. The best place-
ment for the clock has to do with what portion of the design is expected to have the 
least timing margin and placing the clock so that it is either in the same SLR or the 
clock travels with the data. Having the clock travel in the same direction as data will 
improve setup timing margin by making use of useful (positive) skew.

   Figure  13.3  shows the same data path with the memory interface moved to SLR1 
and the clock and reset relocated to SLR0. The benefi ts of this change should be 
fairly evident. The overall SLR crossings reduced from 5 to 1. The high fanout reset 
now only needs to reach two SLRs rather than all four and is located closer to the 
logic it must drive. The clock is placed in SLR 0 so that the overall data path is 
traveling with the clock rather than against it, promoting better skew characteristics 
for this path. This  pinout   will likely consume less routing and fewer logic resources 
as less pipelining and resource impacting optimizations like logic replication should 
be necessary. Such simple pinout changes could have a dramatic impact on the over-
all implementation results of this design.

   Often pinout decisions must weigh a balance between board layout consider-
ations and internal datafl ow optimization. Due to the size of SSI device packages, 
often there are numerous high-speed connections that must be routed out of a dense 
ball grid array that pose its own diffi culties in PCB routing and power delivery. This 

  Fig. 13.2    Simple 
representation of clock and 
datafl ow through an SSI 
device       
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often leads to an iterative approach between the digital design team and the printed 
circuit board team trying to fi nd the best compromise between internal datafl ow and 
external PCB routability. Extra time and effort spent at this point can pay large divi-
dends later in terms of easing design timing closure and reducing the overall design 
implementation cycle while also requiring fewer device resources and less power 
consumption as once pinout decisions are fi xed, it is very diffi cult to change later.  

13.4     Partitioning Considerations 

 For automatic partitioning, there is no difference in how you would operate the tools 
over targeting a traditional monolithic device. Manual partitioning however involves 
more up-front planning. Logical hierarchical boundaries, selected IP, division of 
design between different engineering teams, or combination of these factors are 
used to decide what logic should be physically placed in which SLR. The mechanics 
of manual partitioning is not all that different from fl oor planning,    which is a com-
mon design closure technique. 

13.4.1     Limit SLR Crossings 

 There is a relatively high but hard limit in the number of signals that can cross from 
one SLR to another, so ensure that any selected partition does not exceed the avail-
able  SLL  s for the selected device. Make an effort to understand the number of avail-
able SLLs per-SLR crossing as well as the expected SLLs required by the design as 

  Fig. 13.3    Alternative 
pinout (compared to 
Fig.  13.2 )       
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criteria in selecting a partition. The example in Sect.  13.3  showed that the number 
of SLR crossings is often dictated by the datafl ow of the design. So, good pinout 
selection is important. Once the datafl ow of the design is established, the mapping 
of the associated logic to those datapaths is often a much simpler task. After deci-
sions as to which logic hierarchies should be mapped into which SLRs, the number 
of SLR crossing required for the design can be tallied and tracked. In general avoid 
using more than 60 % of the given SLLs in the device for any given SLR crossing. 
The reason behind this is twofold. Higher utilization of SLLs requires more trade- 
offs for placement and routing of those SLR crossing, and since the SLR crossing 
can often be critical paths in the design, building additional fl exibility for placement 
can pay large benefi ts for timing closure. The other reason to reduce utilization is to 
allow future design changes and additions without concern for overutilization of 
SLL resources. 

   Report Design Analysis    has a section that provides information on modules that 
are contributing to SLR crossings. This can help you in making decisions related to 
fl oor planning—by blocking this module to an SLR—if possible. 

 On the other hand, keep in mind that trying to reduce the number of SLR cross-
ings could cause you to place more and more logic within an SLR—causing higher 
utilization within the SLR. Hence, it is good to maintain a good balance.  

13.4.2     Limit Timing Critical Paths Across SLRs 

 Where possible, pipeline the data paths for the SLR crossings. If it becomes neces-
sary to have signals that cross multiple SLRs, add additional pipeline stages 
accordingly to ensure adequate timing margin for such crossings. Making the deci-
sion up-front as to pipeline these interfaces often makes it much easier to under-
stand and balance the pipeline stages compared to adding it in later stages of the 
design. A good practice is to use a common naming convention for registers 
intended for SLR interface crossing as it can help with timing analysis and fl oor 
planning later. It may also be necessary to add synthesis attributes on these pipeline 
registers to prevent synthesis from using shift register LUTs for those structures 
when multiple pipeline stages are used in a single SLR. When possible, locate 
control logic and the associated control signals from the data paths in the same 
SLR. For control logic that must span multiple SLRs, it is often best to place the 
logic into a centralized SLR to the partitioned logic in order to allow a more evenly 
distributed timing. If it is suspected that timing may still be critical, replication of 
the logic may become necessary in order to best manage locating the source logic 
to its loads. This is not much different from the process used in monolithic design. 
The only difference is that these decisions now have ramifi cation into the partition-
ing decisions for the logic.  
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13.4.3     Balance Resource Usage 

  Resource management   is important whether using automatic partitioning or manual 
partitioning; however, manual partitioning adds the extra task of determining a 
proper balance of those resources across the different SLRs. It should be planned so 
that any one SLR does not become too full as to negatively impact place and route 
results. The actual target for maximum resource usage depends on the resource 
type, performance requirements, and the interaction between them. For instance, a 
design which has a lot of margin for performance may be able to fi ll the SLRs to a 
larger capacity than one that can barely meet timing with the current requirements 
and design characteristics. Also, often larger blocks such as RAM blocks or DSP 
blocks are more diffi cult to get higher utilization within the SLR than more common 
blocks like LUTs or registers. An effective strategy for designs requiring a high 
percentage utilization of a particular resource is to trade off for another. For instance, 
if a particular design requires a high percentage of block memory, utilizing a lesser 
amount of LUTs and DSP often helps in the overall place and route results. Another 
consideration is future design growth. A good partitioning plan accounts for areas 
of the design that may grow so that as the design defi nition changes, the partitioning 
does not need to change to account for that.   

13.5     SSI Synthesis Techniques 

 Once the SLR partitioning has been decided, creation of the design can commence. 
Design entry does not have to differ from that of a monolithic design creation. 
Functional verifi cation is also no different. Synthesis and implementation may be 
augmented to help with this design fl ow. There are three possible approaches to 
synthesis for a manually partitioned design. In all of these synthesis approaches, the 
common theme is maintaining designated SLR partitions during the design fl ow 
which should maintain the intended data paths between SLRs. 

13.5.1      Top-Down Synthesis   

 One method is to use a standard top-down approach. For the instances at SLR parti-
tion boundaries, place   KEEP_HIERARCHY    attributes. The  KEEP_HIERARCHY  
attribute as the name implies instructs synthesis to retain the hierarchy in which it is 
applied which limits optimization at and across that hierarchy. Using this attribute 
prevents synthesis from moving intended logic from one hierarchy boundary to 
another and should retain all logic structures including additional pipelining at that 
boundary. Strategically placing this attribute only on the hierarchy instances that 
border an SLR allows synthesis to optimize across logical hierarchies contained 
solely within an SLR while preventing optimization of logic across designated SLRs.  
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13.5.2      Bottom-Up Synthesis   

 This approach generally consists of synthesizing each SLR or portions of SLR logic 
in its own separate project. This methodology by design will prevent optimization 
of logic across the designated boundaries but also can help facilitate team design by 
allowing multiple portions of the design to be implemented and verifi ed in parallel. 
This method also does the best job to retain the results of areas of the design that 
have not changed from iteration to iteration. There are other benefi ts such as the 
ability to apply unique synthesis options for each portion of the design, and often 
overall runtime between iterations is reduced with this method. The drawbacks are 
that multiple synthesis projects must be maintained, and design coordination and 
assembly could become a little more diffi cult compared to the top-down approach.  

13.5.3      OOC Synthesis   

 Yet another method that you could use is to synthesize the designated SLR parti-
tions out of context with each other. This design methodology is a hybrid approach 
in that a single project can be maintained; however, the individual SLR partitions 
can be implemented independent of each other and later assembled when the top- 
level of the project is implemented.   

13.6     SSI Implementation Flow 

 Once synthesis is completed, analyze the synthesis results performing utilization, 
 DRC,   and any other reports indicating the readiness for implementation. You should 
also perform  timing analysis   to ensure adequate timing margin with the unplaced 
design prior to starting implementation. Performing such steps is good practice for 
any FPGA design but is more crucial for SSI design since implementation runtime 
can be much longer due to the overall design size. Once you have verifi ed synthesis 
results, you can run implementation or place and route. The  place and route   fl ow for 
SSI implementation is no different than it is for a monolithic design. It is suggested 
to implement the design using default options and evaluate the results. If timing and 
power requirements are met, then there is nothing more that is needed. Even the best 
planned designs may not always be successful the fi rst time they are implemented; 
so if timing is not close to being met, then timing analysis should be performed with 
appropriate action to the design and/or synthesis settings and attributes. If the criti-
cal timing path crosses an SLR or multiple SLRs, reexamine and evaluate the parti-
tioning. If possible, consider additional pipelining, logic restructuring, or  fanout   
reduction. If the critical timing paths exist solely inside a single SLR, apply the 
same timing closure techniques (refer to Chap.   14    ) used for monolithic designs. If 
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timing is close to being met, there are some  strategies   in the Vivado tools that apply 
specifi c algorithms for SSI devices. These SSI-specifi c strategies are identifi ed with 
either the term SLR or SLLs in them. For instance, the strategy  Performance_
ExploreSLLs  is a performance-oriented strategy impacting SLR placement and 
routing algorithms. Try one or more of these strategies to attempt to fi nd additional 
improvement over the default implementation results. If several CPU cores are 
available, multiple strategies can be run in parallel on a single or multiple machines 
cutting down on the overall implementation runtime in using several strategies.  

13.7     Examining SSI Results 

 Analysis of the implementation results for an SSI design is largely similar to that of 
a monolithic. There are no additional steps or reports to create; however, some of 
the existing reports will show additional information pertaining to SSI. When gen-
erating a  utilization report   for instance, a few additional sections appear for an SSI 
device that contains useful information about the implementation run. The fi rst two 
SSI-specifi c sections contain information about the SLR crossing and clocking.

     

    This is a good indicator of how well the design is partitioned in the device. Looking 
at the total  SLL  s and usage percentage ensures that they are within the expectations 
and goals for the design. Analyze the clocking to ensure that it is distributed as antici-
pated. Within the  SLR   connectivity matrix section, the more  interesting information 
is concerning the number of signals that must cross multiple SLRs, SLR0 to/from 
SLR2 for instance. While it is many times impossible to get that number to zero, keep-
ing that number as low as possible is a good indicator of a well-portioned design. The 
remaining sections more pertain to SLR resource utilization statistics:
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    These sections indicate whether per-SLR utilization goals are met as well show-
ing the balance of resources across the different SLRs. You need to consider changes 
if a particular resource appears to be close to full utilization in a given SLR that can 
impact placement, timing, or future design growth. 

  Timing reports   are another place where SSI-specifi c information can be found 
that is important to understand in terms of analyzing the results of the implementa-
tion run. When analyzing any failing path, look whether the data path crosses one or 
more SLRs. This is clearly denoted in that section of the report with an  SLR crossing  
notation followed by the originating and destination SLR numbers. If this indicates 
that more than one SLR is traversed, timing will be diffi cult to meet for that path. If 
there are several logic levels or a very high  fanout,   net is created on an SLR crossing 
that may make it diffi cult to meet timing. If any of these situations are encountered, 
the more common approach to address the timing issue is to either change the logic 
in the failed timing path to reduce depth/fanout, repartition the logic to reduce SLR 
crossings, or add additional  pipelining  . 

 For high-speed logic paths that must cross SLRs,  clock skew   and clock uncer-
tainty due to inter-SLR compensation should also be analyzed for improvement. Due 
to the size of SSI devices, clock skew can be a larger impact to timing than in smaller 
devices. First you want to ensure that a good clocking topology is used incorporating 
proper clock buffer usage and no logic exists in the clock tree as poor clock manage-
ment impacts can be magnifi ed in these larger designs. When crossing SLRs, it is 
generally best to not at the same time cross common clock domains as well as that 
can introduce additional clock skew to the timing path. Inter- SLR compensation   is a 
calculation applied to timing paths that the source and destination exist in separate 
SLRs to account for uncertainties in the clocking due to PVT  (process, voltage, and 
temperature) differences between two SLRs. Minimizing  clock skew   as well as the 
distance traveled and thus insertion delay between points crossing the SLR are ways 
to better manage the impact of inter-SLR compensation. 

 A true benefi t to the manual partitioning approach is that, if done properly, any 
critical timing paths found after place and route are typically contained within an 
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SLR, and general timing closure techniques can be applied to address them. It is 
also often found that, once functional and timing closure is completed on an SLR, 
logic changes to other areas of the design have little to no impact on that portion of 
the design. This can be less true for general monolithic or automatically partitioned 
design strategies.  

13.8     Divide and Conquer 

 There may seem to be more up-front work to design with SSI and there often is. 
However, having a good pinout and partition can result in less overall design cycle 
and fewer iterations for design closure. Effectively, a very large design is broken 
through a good partition into smaller more manageable pieces. Using good design 
practices taking into account the SSI device size and structure can result in less 
power, less area, and higher performance, all of which often results in fewer design 
iterations and a shorter overall design cycle.    
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    Chapter 14   
 Timing Closure                     

     Srinivasan     Dasasathyan    

14.1          Introduction to Timing Concepts 

 Timing closure involves modifying constraints, design, or tool fl ow/settings to 
meet timing requirements. In Vivado tool, the timing constraints are entered in 
 XDC  format. XDC constraints are based on the standard Synopsys Design 
Constraints (SDC) format. 

 For brevity all the constraints that Vivado supports are not explained in this 
chapter but only few are given to help understand topics discussed later in this 
chapter. For details on XDC constraints and syntax, please refer to UG903 published 
by Xilinx. 

14.1.1     Creating and Defi ning a Clock 

   create_clock    Tcl command allows user to defi ne clock on a certain port and also 
allows users to specify properties like period, waveform, root, etc. Unless a clock is 
defi ned using the   create_clock    command, static timing analysis is not performed on 
the clock. Also,  create_clock  command defi nes primary clocks, and all  derived  
clocks are automatically inferred. Usually the  derived  clocks come from the clock 
modifying blocks like MMCM and PLL.  

        S.   Dasasathyan    (*) 
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14.1.2     Defi ning Clock Relationships 

 Like all other SDC-based tools, Vivado also does timing analysis on all the cross- clock 
paths. However, designers in certain occasions would want to ignore certain paths, 
because those paths are either static paths (no signal transition happens) or the paths 
are asynchronous and hence should not be timed. In such cases   set_clock_groups    or 
  set_false_path    commands are used to preclude certain portions of the designs from 
timing analysis. This is an essential step as ISE (the previous Xilinx tool) which 
used UCF constraints, assumed the opposite, i.e., unless clock relationship was 
specifi ed, timing analysis was not done on cross-clock paths.  

14.1.3     Timing Analysis 

 Given these basic defi nitions of creating clock constraints and specifying clock relation-
ships, Vivado’s timing analysis engine does several checks under the static timing analy-
sis engine. The  timing analysis engine   analyzes and reports  slack   at the timing path 
endpoints. The slack is the difference between the data required time and the data arrival 
time at the path endpoint. A data is safely transferred between two registers if both the 
setup and hold relationships are successfully verifi ed on that path. In other words, if both 
setup and hold slacks are positive, the path is considered good from a timing point of 
view. The following are the checks performed by Vivado’s timing analysis engine:

•    Setup check  
•   Hold check  
•   Pulse-width check      

14.2     Generating Timing Reports 

 The fi rst step in timing closure is to understand whether the design has met all the 
timing checks or not. In order to generate timing reports to view failing paths, the 
following options are available in Vivado. 

14.2.1     Report Timing Summary 

   Report timing summary    gives an overall picture of timing on the design. It performs 
 setup ,  hold ,  pulse-width  checks, and gives a summary on whether some or all of 
these checks have failed. Even if one of the checks has failed, this command reports 
that the design has failed to meet timing. Based on this report, it can be decided if 
further steps are needed to achieve timing closure. Figure  14.1  gives a sample snap-
shot of the command, where  setup ,  hold , and  pulse-width   violations   are checked.
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   Once the design is determined to have not met timing requirements, you can 
further analyze failing timing paths in the design by running report timing or slack 
histogram command.  

14.2.2     Report Timing 

   Report timing summary    only gives a top-level report on timing failures; however, 
 report timing  gives details of all the paths that fail timing checks (setup and hold). By 
default  report timing  reports on all path groups and prints the top 10 paths in each 
path group and sort it by slack in ascending order. Additional fi lters can be added to 
customize timing analysis on different  from ,  through , or  to  points as well as select 
more paths to view.  Report timing  only works for  setup  and  hold  checks.  Pulse-width  
 checks   are reported in Vivado log fi le indicating where the errors are.  

14.2.3     Slack Histogram 

 Another way to see the failing timing paths is to generate   slack histogram   .  Slack histo-
gram  gives a concise view of all the timing paths across all path groups. Figure  14.2  
shows a sample slack histogram plot. Slack histogram divides the slacks into different 
bins. The  X -axis represents different slack bins and the  Y -axis represents the number 
of paths in each bin. Clicking on each of the bars fi lters the paths in that bin, where 
you can examine paths in each of the bin.

  Fig. 14.1    Report timing summary output       

  Fig. 14.2    Slack histogram       
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   In both report timing and slack histogram, you can click and double-click any of 
the paths to examine each of the timing path in detail, including characteristics of 
the path as well as placement and connectivity details.   

14.3     Timing Paths and Constraint Correctness 

   Timing paths    are defi ned by the connectivity between the instances of the design. 
In digital designs, timing paths are formed by a pair of sequential elements controlled 
by the same clock or by two different clocks. 

 In order to debug and fi x the timing paths, it is important to fi rst check whether 
these paths are valid or not. Checking constraints is one of the key and easy steps in 
getting to timing closure. One of the common issues in writing of XDC constraint 
is related to incorrect cross- clock domain crossing   paths. Timer takes the worst case 
requirements for timing analysis. Hence if cross-clock paths are getting wrongly 
timed (very often they needn’t be timed), they might have very tough requirement, 
resulting in a big negative slack.  Report CDC  and  report clock interaction  are two 
very useful commands to check if the interclock paths are being timed correctly. 

14.3.1     Clock Interaction 

   Report clock interaction    gives a matrix and specifi es where all the clock pairs in the 
design are considered for interaction. Each entry in the matrix is color coded. All 
the entries across the diagonal are the paths within the same clock group. It is impor-
tant to examine if there are any unexpected cross-clock domain paths, and fi x them 
by adding proper XDC constraints (  set_false_path   ,   set_clock_groups   ). Xilinx pub-
lished UG903 has more details.  

14.3.2     Report Clock Domain Crossing 

   Report CDC    (clock domain crossing) performs a structural analysis of the  clock 
domain crossings   in your design. You can use this information to identify poten-
tially unsafe CDCs, which will lead to metastability or data coherency issues. While 
the CDC report is similar to the clock interaction report, the CDC report focuses on 
structures and their timing constraints, but does not provide information related to 
timing slack. 

 Before generating the CDC report, you must ensure that the design has been 
properly constrained and there are no missing clock defi nitions.  Report CDC  only 
analyzes and reports paths where both source and destination clocks have been 
defi ned.   Report CDC    performs structural analysis on:
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    1.    On all paths between asynchronous clocks   
   2.    Only on paths between synchronous clocks that have the timing exceptions (e.g., 

clocks coming out of MMCM)    

  Synchronous clock paths with no such  timing exception      are assumed to be safely 
timed and are not analyzed by the CDC engine. The report CDC operates without 
taking into consideration any net or cell delays.   

14.4     Timing Closure Techniques 

14.4.1     Critical Path Analysis 

 Timing reports can be generated at any stage during the synthesis and/or implemen-
tation phase. You should generate timing reports at each stage after synthesis, place-
ment, and routing and analyze the paths to make sure that the design is converging. 
Catching and fi xing issues earlier in the fl ow will save several iterations of the sub-
sequent stages. For example, fi xing issues at synthesis will save time in place and 
route stage. 

 A timing failure might happen due to multiple different reasons. Based on the 
analysis of the timing paths, fi xes may be required at synthesis stage or the place-
ment and routing stage. Hence it is important to study the characteristic of top fail-
ing paths to determine the reasons and fi xes. Below are some of the important 
characteristics in the timing paths that can be examined and remedies that can be 
taken to mitigate them.  

14.4.2     Logic vs. Wire Delay 

 Critical path delay can be broken down into  logic delay   and  wire delay  . The percent-
age of logic and wire delay in critical path can help to determine where to reduce 
delays. A low logic delay component usually means that wire delay is higher, where 
potentially fl oor  planning   the design can help in timing closure. A higher logic 
delay component means that there are too many logic levels in the design.  

14.4.3     Reducing Logic Levels 

 For paths with higher levels of logic, looking at the levels of logic in the top failing 
paths can reveal if there are any issues in the RTL or inferring of the logic. 

 Synthesis step in Vivado infers structures in optimal way to balance between area 
and speed. Different RTL coding styles guide the tool to infer structures that are 
sometimes area optimal or performance optimal. By observing the  logic levels   in 
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critical path, we can identify if we need to change either RTL coding style or guide 
the tool to infer for performance as opposed to area. To reduce the levels of logic, 
you can return to the RTL and check for the following general issues. In addition, 
refer to Chap.   9     for controlling synthesis behavior.

•    Use   FSM_ENCODING    in your RTL to infer  ONE_HOT FSM  , which are usually 
better for speed.  

•   Use   CASE  statements   instead of nested  IF-ELSE  statements; though the former 
takes more area, it has effi cient inferences of Muxes which leads to better delays.  

•   Add pipeline  registers   to the critical path.    

 Any change to RTL will require resynthesizing the design. Several iterations 
may be needed to get optimal depth of logic.  

14.4.4     Clock Skew 

   Clock skew    is the difference between delays that clock takes from  common source  to 
capture fl op/sequential element and the launch fl op/sequential element. Examining the 
magnitude of clock skew can reveal issues in clocking structure. A design with high 
clock skew in critical paths usually means that the clocking structure needs to be 
revisited. Using MMCMs to multiply/divide clocks is recommended than using LUTs. 
UltraScale and newer devices have a very fl exible clock architecture and offer lots of 
clocks to the user. To ease the issue of reducing clock skew and to generate  H-tree  
clocking structures, the device offers  CLOCK_ROOT  which is the center tap points 
from where clock distribution happens.   CLOCK_ROOT    is chosen by Vivado for set of 
clock loads such that clock skew for the set of loads is minimal. However, in some 
cases where the paths are legal cross-clock domain paths, clock skew might be higher. 
In these cases user can choose  CLOCK_ROOT  manually to reduce the clock skew. 
UG912 from Xilinx explains the mechanism to modify  CLOCK_ROOT  location.  

14.4.5     Reducing High-Fanout Signals 

 High-fanout  signals   typically pose a challenge to the place and route tools, as due to 
the very nature they have many connections, and the placement will be spread out. 
Due to this, delay on the net would be relatively higher. If the top several critical 
paths have some commonality that all of them involve high-fanout signal, some 
optimization can be done at RTL level to reduce the fanout coupled with options to 
synthesis tool. Some options are: 

 Duplicate the driver and tell the synthesis tool not to remove the duplicate logic 
(attribute   DONT_TOUCH   ). 

 For the signals other than control signals such as reset, set, and clock enable, 
using   max_fanout    in synthesis will direct synthesis to replicate the driver. 
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 Another option is to use   phys_opt_design    (post-placement). This command 
performs timing-based logic replication of high-fanout drivers and critical-path 
cells. Drivers are replicated, then loads are distributed among the replicated drivers, 
and the replicated drivers are automatically placed. This optional command can be 
run after placement and before routing.  

14.4.6      Control Sets   and Control Set Optimization 

 In Xilinx FPGA architecture (for 7 series and UltraScale), each  slice  has eight 
fl ip- fl ops (FFs). These eight FFs share control signals, so the FFs that are placed in 
the same slice should have same control sets. Hence the fl ops in the same slice have 
to share the control set. Placer algorithm honors this constraint by placing FFs of the 
same control sets together. Xilinx FPGAs can accommodate several thousand con-
trol sets; however, the higher the number of control sets, the more complex the job 
for placer to place fl ops into slices without wasting fl ops.   report_control_sets    com-
mand can be used to assess the number of unique control sets in the design. Under 
verbose options, the command gives details on the distribution of the fanouts of the 
control signal. 

 Vivado synthesis has an option which is used to specify threshold for synchro-
nous control set optimization to lower number of control sets. The number set to this 
value specifi es how large the fanout of a control set should be before it starts using 
it as a control set. For example, if   control_set_opt_threshold    is set to 5, a synchro-
nous reset that only fans out to 5 registers would be moved to the  D  input’s logic 
rather than using the reset line of a register. The default threshold value is currently 
set to 4. 

 Other ways to reduce control sets is to use  resets  judiciously. Be selective on the 
use of  resets  by observing the following points:

•    Have resets only where they have impact on functionality.  
•   Use  synchronous resets   rather than asynchronous reset.     

14.4.7     Floor Planning 

 Examining the critical path in the Vivado GUI will show the placement of the logic 
in the path. Sometimes, placer while trying to optimize several constraints might 
yield a suboptimal placement. Examining the top several critical paths in the GUI 
will give an idea if the placer indeed did a suboptimal job in placement of critical- 
path object. If so, fl oor planning can be done to guide the placer. A hierarchical fl oor 
 plan   can reduce the route delay in the critical logic. A good starting point when fl oor 
planning for the fi rst time is to fl oor plan only the logic that the implementation 
tools consider timing critical. Generally start with the lower-level hierarchies that 
the place and route stage fi nds to be timing critical. More often it is useful to look at 
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the placement of block RAMs and DSP blocks, as these are not distributed throughout 
the FPGA. Floor planning them not only gives better performance but also predic-
tive results in future iterations of the same project. When the design meets timing, it 
is also possible to reuse the placement. 

 For SSI devices, fl oor planning poses additional requirements to consider, which 
are explained in Chap.   13    .  

14.4.8     Physical Optimization 

  Physical optimization   performs optimization on the paths that fail to meet timing. 
Optimizations involve replication, retiming, hold fi xing, and placement improve-
ment. Physical optimization is usually run after placement when the timing picture 
is reasonably accurate. These optimizations are invoked by explicitly running the 
optional   phys_opt_design    command. This command performs the following physi-
cal optimizations. 

   High-Fanout Optimization   : High-fanout nets, with negative slack within a per-
centage of the WNS, are considered for replication. The drivers are replicated and 
the replicated drivers are placed near to cluster of loads. 

  Placement-Based Optimization : Cells on the critical path are replaced to reduce 
wire delays. 

  Rewire : LUT connections are swapped to reduce the number of logic levels for 
critical signals. LUT equations are modifi ed to maintain design functionality. 

  Critical-Cell Optimization : Cells in failing paths are replicated. If the loads on a 
specifi c cell are placed far apart, the cell may be replicated with new drivers placed 
closer to load clusters. High fanout is not a requirement for this optimization to 
occur, but the path must fail timing with slack within a percentage of the worst nega-
tive slack. 

   DSP Register Optimization   : Registers are moved out of the DSP cell into the 
logic array or from logic to DSP cells if it improves the delay on the critical path. 

  Block RAM Register    Optimization   : Registers are moved out of the block RAM 
cell into the logic array or from logic to block RAM cells if it improves the delay on 
the critical path. 

  Retiming : Registers are moved across combinational logic to provide better 
timing. 

  Forced Net Replication : Net drivers are replicated, regardless of timing slack. 
Replication is based on load placements and requires manual analysis to determine 
if replication is suffi cient. If further replication is required, nets can be replicated 
repeatedly by successive commands. Although timing is ignored, the net must be in 
a timing-constrained path to trigger the replication. 

 The above optimizations are run only during post-placement physical optimization 
steps; however, Vivado also allows to run physical optimization at post-route stage 
also. Only a subset of the optimizations are run at post-route stage, as the runtime of 
physical optimization post-routing is higher.  
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14.4.9     Strategy and Directives 

 Directives are powerful features that are available with every implementation step 
(synthesis, optimize design, placement, physical optimization, and routing). 
Directives give the implementation step to direct behavior of the algorithms toward 
alternate goal. It changes the implementation step by using:

•    Different fl ows  
•   Different algorithms  
•   Different objectives    

 Directives allow each implementation step to enable more design space exploration 
than in the default mode. Directives have different objectives such as  reduce area , 
 reduce runtime ,  improve performance ,  and improve power.  

  Directives   are enabled by running any synthesis and implementation step with the 
option  -directive . Usually the names of the directive are chosen to indicate how dif-
ferent they are compared to the default behavior and their objective. Every imple-
mentation step has the directive  explore . Explore allows the implementation step to 
work in a high effort mode to meet the timing objective at the expense of runtime. For 
designs with very tight requirements, it is recommended to use  explore  directive for 
most of the implementation steps (especially placement and physical optimization). 
Directives related to placement usually give the biggest improvement for  performance. 
Please refer to UG904 from Xilinx for details on the list of directives and what each 
of the directive’s objectives is. 

  Strategies   defi ne the fl ow of Vivado and customize the different implementaiton 
steps, and how each of these steps are confi gured. As each synthesis and implemen-
tation step has varieties of options and directives, strategies confi gure the best pos-
sible combination of these switches. You can also defi ne your own custom strategy. 
Strategies are categorized into the following:

•    Performance  
•   Area  
•   Power  
•   Flow  
•   Congestion    

 Each of the above strategy categories has several strategies which can be used to 
extract the last mile performance from the tools. In the context of timing closure, 
categories related to performance and congestion are applicable. One way is to run 
all the available performance strategies and pick the best results.  

14.4.10      Congestion   and Congestion Alleviation 

 FPGA routing architecture has different kinds of routing resources to service differ-
ent scenarios seen in placement of the design. Congestion can happen when in a 
region there is more demand of certain kinds or all kinds of routing resources than 
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their availability. Extent of the congestion regions defi nes whether the congestion 
is local or global. Router and placement algorithms, in order to alleviate conges-
tion, introduce  white spaces  and  detours . These changes may impact the routing 
delays by worsening them, which impact the timing of the design. There are certain 
steps you can take to reduce the effect of congestion on timing. Congested regions 
can be determined by running congestion reporting using  report design analysis . 
Also designs with heavy utilization of block RAMs, MuxF7s, and MuxF8s and 
 distributed RAMs   have a tendency to have congestion. Care should be taken to 
reduce the utilization of any block with high connectivity. Blocks with high connec-
tivity increase number of signals coming in a region where the blocks are placed. 
If there are many high connectivity blocks placed in a small region, one can increase 
the size of a region by defi ning a  pblock . The size of the pblock can be increased to 
make it large enough to have enough routing resources to complete routing all nets 
and thereby alleviating congestion.  

14.4.11     Report Design Analysis 

   Report design analysis    is a command that summarizes several important details on 
the critical paths. Commonly occurring issues in critical paths are summarized in a 
tabular format. By looking at the characteristics of several critical paths, issues can 
be deduced.  Report design analysis  has three modes of operation:

•    Timing  
•   Congestion  
•   Complexity    

  Timing  mode is used to fi nd out the characteristics of critical paths. For each of 
the path, many important characterisitcs are printed. For example, it is easy to 
determine if the top critical paths have block RAMs and whether they are regis-
tered or not. Or, if the top several critical paths have LUTs which are combined in 
synthesis stage (we can turn this off by using  -lc off  option). Xilinx published 
UG906 provides information on other meaningful information that can be obtained 
from this report. 

   Congestion    mode gives the post-placement and post-routing congestion windows, 
and  complexity  computes the   rent’s  exponent   of the netlist or modules specifi ed. 
Congestion combined with complexity can determine whether the netlist itself is 
inherently congested, or the congestion is placement induced. Using congestion 
mode, you can fi nd the congested window and also determine what modules are 
placed in the region. Later you can run complexity on these modules and compute the 
 rent’s  complexity on them. Rule of thumb says that any rent’s complexity over  0.7  
can be considered as an issue in netlist.  
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14.4.12     Timing Closure and Hold Violation 

 The previous section covered several techniques related to closure of timing which 
mainly focused on setup violations. Hold violations are also another kind of timing 
failures that you need to be aware of.  Hold violations   are severe, as reducing the clock 
frequency will not help in timing closure. Vivado tool is hold aware and tries to miti-
gate the violations by detouring and adding extra delay to the paths failing  hold.  
However, you should be aware of these requirements and not solely depend on tool to 
fi x the issues. Buffers can be added in hold failing path with   DONT_TOUCH    attribute 
so that synthesis tool does not optimize them away. Further post-route physical optimi-
zation and few router directives can also help to reduce the hold violation. Figure  14.3  
provides a top-level fl ow chart for achieving timing closure on your design.      

  Fig. 14.3    Flow chart for 
timing closure       
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    Chapter 15   
 Power Analysis and Optimization                     

     Anup     Kumar     Sultania     ,     Chun     Zhang    ,     Darshak     Kumarpal     Gandhi    , 
and     Fan     Zhang   

15.1          Introduction 

 There are several factors that infl uence the power consumption of a given system 
and can be divided into two broad categories—physical and functional. Board 
design, packaging, and device selections are examples of physical factors, whereas 
functionality is largely related to the RTL design itself. In this chapter, we will 
explore the tools available for power estimation and optimization. 

 Power estimation can be done at various levels of granularity, and the accuracy 
of the estimation is dependent on the amount of information you can provide. The 
more information you can provide, the more accurate the estimates will be com-
pared to the power consumption on the fi nal hardware. Xilinx provides three tools 
to help analyze and optimize for power (see Fig.  15.1 ). These are:

     1.    Xilinx Power Estimator ( XPE ): This is used for predesign phase estimation. This 
is an Excel-based tool and relies heavily on user-entered information in both 
physical and functional categories. While  XPE  is very helpful in doing power 
budgeting in the early phase of a project, it can also be used to do a what-if analysis 
for an implemented design.   

   2.    Vivado   Report Power   : This is used for post-design phase power analysis. This is 
a more accurate tool as it operates on a synthesized, placed, or routed netlist. 
While majority of the functional information is obtained from the netlist, you 
still need to enter the physical factors and switching activity information to get 
an accurate power estimation.   
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   3.    Vivado  Power Optimization  : This implements ASIC style clock- gating   
technique based on sequential analysis of the designs. It reduces the activity on 
portions of the design that do not impact the design output.    

  FPGA power can vary from few hundreds of mW to tens of Watts. It depends on 
a variety of factors – design function, clock frequency, switching activity, and board 
and environmental setup. Power on an FPGA can be broadly divided into four 
categories:

•    Device  Static  : This is the power which is consumed even if there is no design 
configured into FPGA. This is typically measured by programming a blank 
bitstream into the device and is a function of process, voltage, and 
temperature.  

•   Core  Dynamic  : This is the dynamic power consumed when the FPGA is in use 
and does not include I/O and Transceiver power.  

•   I/O and Transceiver: Power in I/O and Transceivers is categorized separately as 
they have a high impact on overall power. The tools provide a capability to 
explore various confi gurations to make the best possible decision from power 
standpoint.     

Logic Synthesis.
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Place Design

Route Design
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Optimization

Power 
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Bit Stream
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Flow

  Fig. 15.1    Xilinx power analysis and optimization fl ow       
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15.2     Xilinx Power  Estimator   (XPE) 

 XPE is a predesign phase tool meant to be used early in the project cycle to come 
up with power budgets for FPGA. It also helps Xilinx to provide customers an 
opportunity to explore power profi les for future devices. In the backend, XPE 
implements power models which take in user-entered information and generate a 
power number. The power models go through multiple stages— Preview  for models 
based on early device design specifi cation,  Advanced  for models based on device 
design simulation,  Preliminary  for models based on measurements on early silicon, 
and  Production  for models based on production silicon measurements. 

 XPE being Microsoft Excel-based tool, it retains a majority of Excel capabilities. 
It is divided into several sheets; several of them are dedicated to a specifi c resource 
type on the FPGA. On  Summary  sheet, device selection and environment setup can 
be explored. It also contains detailed power report.   Snapshot    sheet allows to com-
pare power reports between different settings. There is also a blank  user  sheet which 
retains all the Excel functionality. It can be used in a variety of ways, from scratch 
space to detailed system level block diagram, and can cross-reference data from rest 
of the sheets. 

 Apart from exploring different device and thermal setup for optimal static power, 
it is also important to explore the relative dynamic power impacts across different 
confi gurations of various blocks. For example,  Transceiver  sheet mainly asks for 
basic transceiver-related inputs like  channel count ,  data rate ,  data width , and  opera-
tion modes . Besides these, you can do a what-if analysis to see power savings of 
choosing low-power mode ( LPM ) over decision–feedback equalization ( DFE ). This 
sheet can also estimate the additional power of using eye scanning, out of band (OOB) 
sequence generation, or any hard IP blocks with a given transceiver. 

 One more example is the  I/O  sheet which asks for basic I/O characteristics like 
 data rates ,  toggle rates ,  enable rates , and  pin confi gurations . It also gives the capa-
bility to do a what-if analysis between high-performance ( HP ) and high-range ( HR ) 
I/O banks. It gives an extensive and intelligent drop-down list of IO standards 
depending on availability in selected I/O bank and device. For more accurate esti-
mation, advanced users can also provide input termination and output impedance 
when they are supported by selected I/O standard. 

 Manually entering entire design data in XPE can be tedious and confusing at 
times. To aid in this, XPE provides various wizards— Quick Estimate ,  Memory 
Interface Confi guration ,  Memory Generator , and  Transceiver    Wizard   . Quick 
Estimate wizard is to do a very quick and coarse power estimation. The remaining 
wizards are for ease of design data entry. For example, you can use  Transceiver  
Wizard to choose from a variety of protocols from the drop-down menu and enter 
few key information like  data rate ,  clock , etc., and it will not only populate the 
 Transceiver  sheet but also add link layer logic information in the  Logic  sheet. XPE 
also allows you to delete the design data added through one of the above wizards by 
using  Manage IP  wizard. 

15 Power Analysis and Optimization



180

 As a fi nal note, XPE can only be as accurate as the data entered. Often, it is very 
diffi cult to estimate power accurately because accurate switching activity and design 
information is not known very early in the design cycle. If suffi cient information is 
provided, XPE can estimate  device static ,  I/O , and  Transceiver  power with reasonable 
accuracy. However, it still does not have suffi cient design connectivity information to 
accurately estimate  core dynamic  power. Since power budgets are frozen early in the 
design cycle, it is important to account for this uncertainty early on.  

15.3     Vivado  Report Power   

 Report Power is a very detailed power analysis tool and computes power at a fi ne- 
grained level. For example, it estimates power for each  LUT  based on switching 
activity and capacitance information present at input and output pins of the  LUT . 
Similarly, it accounts for the exact routing of each net while estimating power. This 
is in contrast to the coarse model present in XPE. 

 The Vivado Power Analysis engine uses four types of information as shown 
in Fig.  15.2 . It gathers the netlist information and configurations of various 
blocks by analyzing the design. It uses hardware characterization data based on 
selected device and package. Operating conditions like process, voltage, and 
temperature must be set and are typically pre-decided when exploring through 
XPE. Finally, power constraints comprising of switching activity constraints 
and clock constraints need to be carefully set to get accurate power estimation. 
All these are passed as inputs to various algorithms to come up with a detailed 
power estimation.
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Device 
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Operating Conditions

Switching Activity 
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  Fig. 15.2    Vivado power analysis engine       
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15.3.1        Operating Conditions   

 Defi ning proper operating conditions are essential for the accuracy of power calcula-
tions. Power engine can use predefi ned typical or calculated values for most of the 
operating conditions; however, it is strongly recommended that you overwrite a few 
critical values based on the system specifi cations. For example, if you are aware of the 
maximum junction temperature, then you should set that in operating conditions. 
This will prevent the tool from estimating  junction temperature   based on environment 
and board setup. Similarly, the tool default for the process corner is  typical.  You 
should change this to  maximum  to get worst-case device static power. You should also 
provide exact or worst-case (i.e., maximum) supply voltage values provided by exter-
nal power regulators as power depends signifi cantly on voltage supply values.  

15.3.2      Power Constraints   

 Similar to static timing analysis (STA) tools, Vivado Power Analysis (report power) 
requires you to provide power constraints to guide the tool for accurate power predic-
tion. Power constraints are specifi c to clock frequency and switching activities. For 
clocks, the frequency can be constrained using the same SDC timing commands. You 
need to guarantee that all the clocks are properly constrained. Switching activity is 
represented by a pair of values as ( toggle_rate, static_probability ). By defi nition, 
 toggle_   rate    is the probability of a signal in a synchronous design making a ‘0’ → ‘1’ 
or ‘1’ → ‘0’ transition within a clock cycle.  Static_   probability    is the probability of a 
signal being  1  in any clock cycle. Figure  15.3  shows signal  x  with  toggle_rate  of 
40 % and  static_probability  of 0.3 within a ten clock-cycle window.

   Power analysis requires switching activities for all nets. At the fi rst appearance, 
this seems like a daunting task for users to provide all  switching activity   constraints 
in brute force. The novel methodology in Vivado Power Analysis requires you to 
only provide switching activities for a subset of nets rather than all of them and, 
together with the activity propagation engine (see Sect.  15.3.3 ), greatly minimizes 
design effort and at the same time provides accurate results. There are two ways to 
provide switching activity information. 

 First, you can simulate the design (or its portions) to generate switching activity 
constraints. It is recommended that you do simulation on some critical modules of 

  Fig. 15.3    Signal toggles four times within ten clock cycles and stays “1” for 3 out of 10 cycles       
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the design and generate a Switching Activity Interchange Format (  SAIF   ) fi le. This 
fi le can then be used to annotate switching activities on the design. Power results are 
greatly impacted by simulation done at different design stages as well as with or 
without glitches. For accuracy purpose, simulation at post route stage with delays 
will generate switching activities most close to real hardware. 

 Second, if simulation results are not available, you can constrain critical control 
signals of the design and let activity propagation engine estimate activities on the 
remaining nets. The critical control signals are those that can enable or disable a large 
portion of the design. Examples of critical control signals include  set/reset  pins that 
drive large fl op fan-outs, block RAM  enable  pins that switch on/off the data path, 
clock selection pins to switch between clocks at clock controller output, pins that 
enables the power down or sleep feature of hard IP blocks, etc. Not all control signals 
are critical. Control signals that only reset limited number of nonessential fl ops can 
be safely ignored without impacting the accuracy of power prediction. 

 In addition to critical control signals, another way of guiding the tool is to 
provide activities on groups of data path signals, for example, block RAM or GT 
data output pins and chip-level input ports. This approach of setting activities en 
masse is useful in doing worst-case power estimation.  

15.3.3       Activity Propagation   

 After constraints are provided to annotate partial design nets with switching activi-
ties, activity propagation engine triggers to propagate activities on the remaining 
parts of the design. The activity propagation is a statistical analysis based engine 
and, on a large design with a million LUTs and registers, can usually complete 
within several minutes. Figure  15.4  demonstrates activity propagation for a simple 
AND gate.

   Assume the same  static_probability  for input  a  and input  b :  SP(a) = SP(b) =  0.5. 
Those values can be from user constraints or propagated values from previous logic. In 
the case of the  AND  gate,  SP(o)  is computed to be 0.5 × 0.5 = 0.25. This is under the 
assumption that inputs  a  and  b  are totally independent of each other. Similarly, activity 
propagation engine will also compute output toggle rate. Details of this algorithm are 
not necessary for you as a user of these tools. Not just combinational circuits, activity 
propagation engine can also propagate activities across sequential circuits. 

 Real designs are usually large and complex due to correlations between different 
signals. It is infeasible to compute exact switching activity for all the nets within a 

a, SP(a) = 0.5
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  Fig. 15.4    AND gate 
activity propagation       
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reasonable amount of time.  Report Power  activity propagation engine is able to 
intelligently solve a subset of correlations in the design and trades off between run-
time and accuracy. With proper constraints on clocks and critical control signals, 
 Report Power  is able to predict power reasonably close to hardware measurement. 
It is to be noted that activity propagation engine does not override user-provided 
constraints, rather it uses them as inputs to estimate activities on remaining nets. 

 Because of its ease of use over other activity analysis methods like simulation, 
activity propagation can be used to effi ciently evaluate relative impact on power 
after a design netlist change or switching activity change.  

15.3.4     Export– Import   Flow with XPE 

 Vivado  Report Power  and  XPE  are two independent power analysis tools. In  Report 
Power , majority of the information is gathered directly from the design where as in 
 XPE  you have to enter all the information. When running  Report Power , you can 
export all the physical and functional information to an  XPE  exchange (. xpe ) fi le 
which can be easily imported into  XPE  tool. While  XPE  has very high-level design 
information and less model accuracy compared to Vivado, exporting design infor-
mation from  Report Power  to  XPE  can be very helpful for multiple use cases. 

 One use case for this fl ow is to do a what-if analysis at post synthesis design 
stage. When the power reported in  Report Power  exceeds allocated budget, the 
design can be exported to XPE to evaluate power saving ideas without actually 
making any RTL changes. For example, you can evaluate how much power reduc-
tion can be achieved by reducing the resource usage or changing confi gurations of 
blocks like BRAMs and DSPs. The impact of using different parts or environment 
settings and different voltage options can also be studied very easily. Snapshot and 
graph features of XPE come in very handy while doing several what-if analysis. 

 Another use case is to do a more accurate early estimation for the next generation 
of the design, which may reuse some design components from the current design. 
For example, if the next-generation design is going to use most of the similar design 
elements, then you can import the current  .xpe  fi le to XPE and make changes to 
sheets where the design change is predicted. Often the next generation of Xilinx 
FPGAs are supported in XPE relatively earlier than Vivado. In such cases, export–
import fl ow is very helpful to study power profi les on not only existing devices but 
also future devices.   

15.4     Vivado Power Optimization 

 Vivado  power optimization   exploits a variety of techniques to reduce the dynamic 
power consumption of the design. As shown in Fig.  15.5 , it detects the clock cycles 
under which certain sequential circuit elements do not contribute to observable 
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design functionality, and applies ASIC-like clock- gating   techniques to reduce their 
activities. Due to the fact that FPGAs have dedicated clock routing resources, the 
clock gating is actually applied to the  enable  port of sequential elements such as a 
fl op or block RAM. Compared to the coarse-grained clock gating that requires a non-
trivial amount of design effort, Vivado power optimization is capable of automatically 
inferring more fi ne-grained gating conditions across multiple levels of logic and 
sequential boundaries.

15.4.1       Optimization Paradigms 

 The fundamental of Vivado power optimization is the inference of logic conditions 
under which the sequential element can be disabled without disturbing observable 
design states and/or functionalities. There are two major paradigms that Vivado 
power optimization explores: the  output don’t care ( ODC )   paradigm and the  input 
don’t toggle ( IDT )   paradigm. A brief introduction of these paradigms will help in 
intuitively understanding the potential netlist-level changes applied by Vivado power 
optimization, which is important for designing and analyzing low-power systems. 

 The  ODC  paradigm infers the enable condition by exploring the output side of a 
sequential element, with the key idea that the sequential element only needs to be 
enabled when its output is consumed by logic in the fan-out cone. As shown in 
Fig.  15.6 , the output of  FF1  becomes don’t care when  FF2 ’s  CLR  signal is asserted. 
Consequently, Vivado power optimization infers that  FF1  only needs to be enabled 
when  FF2 ’s  CLR  signal is de-asserted and applies that signal to the  enable  port of 
 FF1  through the inverter. Since a fl op’s  enable  decides its output data availability in 
the next clock cycle, the actual  enable  of the  FF1  needs to be traced back by one 
clock cycle which is applied through  FF3  in the example.

   To infer  enable  conditions across sequential boundaries, Vivado power optimiza-
tion performs multiple iterations of ODC analysis. This essentially unrolls the time 
span and back propagates ODC conditions across multiple levels of fl ops. In the 
example shown in Fig.  15.7 , the ODC  enable  for fl op  FF2  is inferred in the fi rst 
iteration from its output observability at the MUX, while the ODC enable for  FF1  
is decided in the second iteration based on  FF2 ’s inferred ODC enable.

   On the other hand, the IDT paradigm searches  enable  condition by exploring the 
input side of a sequential element, with the idea that if its input data remains same, 
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  Fig. 15.5    Vivado power optimization       
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the sequential element can be safely disabled without altering the direct output. In 
the example illustrated in Fig.  15.8 , the fl op  FF1 ’s input doesn’t toggle when  a  = 1 
and  b  = 0 since its output is directly fed into its input. Consequently, Vivado power 
optimization generates the IDT enable signal of  FF1  as the complement of such 
disable condition, i.e.,  EN = ~a + b . Generally speaking, the IDT paradigm is useful 
for reducing dynamic power of designs with many feedback loops.

   In addition to the general ODC and IDT paradigms, Vivado power optimization 
also takes care of applying specifi c optimization techniques to certain high-power- 
consuming components such as  block RAMs  . To illustrate a few, the following 
techniques are deployed:

•    Block RAM Structural ODC Optimization—Different from the general ODC 
paradigm, this optimization searches the conditions under which the block RAM 
is used in  write-only  manner and thus directly utilizes the  write-enable  signal as 
the block RAM’s global enable control to suppress any unnecessary READ 
operations.  

•   Block RAM  Write-Mode Optimization  —Write mode defi nes the behavior of the 
block RAM’s outputs when data is being written into it, which can be set to  NO_
CHANGE  to suppress any unnecessary output toggling. To fully utilize this feature, 
Vivado power optimization searches the block RAMs whose outputs aren’t 
consumed during WRITE operations and sets their write mode to  NO_CHANGE .  
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•   Block RAM Quiescent IDT (QIDT) Optimization—When the block RAM’s 
input addresses remain the same in two consecutive READ cycles, Vivado 
power optimization safely disables the block RAM without disturbing its 
functionality.  

•   Cascaded Block RAM Optimization—When multiple block RAMs are cascaded, 
only one of the block RAM needs to be active at the same time. Consequently, 
Vivado power optimization generates the enable signal for each block RAM in 
the cascaded chain from most-signifi cant bits (MSBs) of the address bus such 
that only the block RAM being accessed is enabled.    

 Post Vivado power optimization, you may observe different outputs of certain 
sequential elements such as fl ops or block RAMs from simulation. This is expected 
since the activities of these elements are reduced by clock gating the  EN  port. But, 
Vivado power optimization guarantees that the design’s observable functionality 
remains undisturbed (i.e., from primary outputs), since these sequential elements 
are only disabled during the clock cycles when their outputs are not consumed or 
remain unchanged.  

15.4.2     Suggestions for Low-Power  Design   

 In addition to automatically reducing the power consumption of the design, some 
design level considerations could further improve the power characteristics and/or 
create more optimization opportunities for Vivado power optimizer. In this subsec-
tion a few techniques good for low-power design are proposed:
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  Fig. 15.8    IDT optimization paradigm       
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•    Cascaded block RAMs—To implement the same memory, block RAMs can be 
cascaded in different ways which impact the power and timing of the design. For 
example, to implement the 36*8K memory, one option is to have nine 4*8K 
block RAMs in parallel, each contributing 4 bits of the data. Although this 
achieves the highest speed, it requires all block RAMs to be active concurrently, 
which consumes a signifi cant amount of power. On the other hand, the same 
memory can be implemented by cascading nine 36*1K block RAMs, which is 
power optimal since only one block RAM is active at the same time. Generally, 
you shall consider the balance between parallel/cascaded block RAM implemen-
tation to achieve the best power and speed trade-off.  

•    Distributed RAM   vs. block RAM—Similarly, the choice of using distributed 
RAM or block RAM to implement the memory could affect the power consump-
tion of a design. For instance, to implement the 32*100 memory, using one block 
RAM is functionally correct but wastes a large portion of the data capacity of the 
block RAM. On the other hand, the same memory can be implemented by 100 
distributed RAMs without wasting any resource or power. Consequently, it is 
also a good idea to consider distributed RAM vs. block RAM under certain 
power and resource constraints.  

•   MUX chain design—The structure of the MUX chain decides the way ODC 
analysis is being performed by Vivado power optimization. Pushing the high- 
power- consuming element such as block RAM to the end of the MUX chain 
increases the chance for Vivado power optimization to fi nd the best ODC enable 
condition for that element.  

•   XOR tree design.—While XOR tree is good for implementing arithmetic log-
ics, it has the disadvantage of causing excessive glitches with increased levels 
of XOR gates. Consequently for power-centric designs, it is suggested to limit 
the logic levels of XOR tree by applying techniques such as inserting pipeline 
stages in between.        

15 Power Analysis and Optimization
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Chapter 16
System Monitor

Sanjay Kulkarni

16.1  Usage and Need

Since the introduction of Virtex5 FPGA devices, the SYSMON (System Monitor) has 
been a part of every new FPGA family introduced by Xilinx. The SYSMON allows 
you to monitor the critical parameters like on-chip temperature, voltages, power, etc. 
With each new generation of FPGA families (6-series, 7-Series, UltraScale, Zynq, 
Zynq US+ MPSoC, etc.), Xilinx has improved the capabilities of the SYSMON to 
cater to the newer challenges and user design requirements. You may expect similar 
trend for SYSMON features in Xilinx future FPGA families.

This chapter provides the details of System Monitor based upon the Xilinx latest 
UltraScale FPGA family.

16.2  Overview of SYSMON

The SYSMON functionality is built around the hard silicon block ADC (analog-
to-digital converter) and its interface to various on-chip sensors. When combined 
with a number of on-chip sensors, the ADC is used to measure FPGA’s physical 
operating parameters like on-chip power supply voltages and on-die temperature. 
The ADC provides a general-purpose, high-precision analog interface for a range of 
applications. The external analog interface inputs allow the ADC to monitor the 
physical environment of the board or enclosure. As soon as the FPGA is powered 
up, even before it is configured for any application purpose, the SYSMON is already 
activated and starts functioning. At this point, its functionality is restricted to the 
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measurement of on-chip parameters only. This data can be accessed through JTAG 
or with dedicated I2C interface. Even if the SYSMON is not part of the FPGA- 
based design, it is still accessible through these interfaces.

To understand further about SYSMON, let us look at the block diagram as shown 
in Fig. 16.1.

Access to external analog world is provided through a dedicated analog input 
pair (VP/VN) and 16 user-selectable analog inputs, known as Auxiliary Analog 
inputs. The ADC supports differential sampling of unipolar and bipolar analog 
input signals. The ADC has different range of operating modes to handle the external 
analog inputs. SYSMON block includes a rich set of Configuration Registers. These 
registers are classified into different groups like Control Register, Alarm Register, 
and Status Register.

SYSMON operates at very low-voltage level in UltraScale FPGA devices either 
using the external reference source (1.25 V) or on-chip voltage source (VCCAUX 
1.8 V). If the requirement is restricted only to monitor the on-chip temperature and 
voltages, then it is always beneficial to use the on-chip voltage source as reference.

16.3  Evolution of SYSMON in Xilinx FPGA

Table 16.1 shows the comparison of SYSMON evolution in Xilinx 7 series through 
UltraScale+ FPGA families.

16.4  Using the SYSMON in System Design

As per the requirements for the system design, you can directly instantiate the hard 
macro template in the design RTL files and use appropriate interface ports as per the 
required configuration. The RTL instantiation template is available in Vivado under 
Advanced Device Primitives. Xilinx also provides the SYSMON Wizard IP core under 
Vivado IP catalogue, which helps the user to pre-configure the SYSMON for FPGA-
based system applications. Figure 16.2 represents the UltraScale-based SYSMON 
primitive level diagram showing ports of different groups and interfaces.

It is expected that you should be familiar with each of the SYSMON ports group 
and its intended usage in their application when SYSMON is incorporated in the 
design. The Dynamic Reconfigurable Port group is mainly used to access the internal 
set of registers. Control and Reset port group is used to control the reset as well as 
controlled conversion start access. The External Analog Input ports are the main 
ports for you to connect up to 16 external analog channels to be monitored, while 
the VP/VN are dedicated input ports. The 16 analog inputs are actually FPGA 
general- purpose IOs, while the VP/VN pins are non-shared pins. If VP/VN is not 
used, then these pins cannot be used for any other general-purpose IO usage and 
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need to be connected to analog ground. SYSMON also provides indicators for any 
adverse conditions through ALARMS group of signal. Your application can connect 
this group of signals to the monitoring LEDs on the board. The Status Group of 
signals mainly indicates the end of current conversion cycle, which channel is at 
present under process, status of JTAG access of registers suit, etc. The I2C DRP 
group of signals is used to provide two-wire standard low-cost I2C protocol access 
by external I2C master. These are the main peripheral ports you need to be aware 
while planning the system-level designs along with SYSMON.

Table 16.1 Evolution of SYSMON in Xilinx family of FPGA devices

Feature
7-Series/Zynq FPGA 
(28 nm)

UltraScale FPGA 
(20 nm)

UltraScale+ FPGA 
(16 nm)

SYSMON primitive 
name

XADC SYSMONE1 SYSMONE4

Resolution 12-bit 10-bit 10-bit

Sample rate 1 MSPS 200 KSPS 200 KSPS—In PLa

1 MSPS—In PSb

Analog-to-digital 
converters

2 (in PL) 1 (in PL) 2 (1 in PLa, 1 in PSb)

Banks supporting 
external analog inputs

1 All IO banks 
support analog 
inputs

All banks (In PLa 
SYSMON only)

Alarm outputs Total 8 Total 16 Total 16

ALM[7:0] ALM[15:0] In PL including 
Supplies + Temp +  
Analog Bus

Supply sensors System supply 
sensors:

System supply 
sensors:

System supply sensors:

VCCINT, VCCAUX, 
VCCBRAM

VCCINT, VCCAUX, 
VCCBRAM

PL: VCCINT, VCCAUX, 
VCCBRAM

Zynq: VCCPINT, 
VCCPAUX, VCCO_DDR

Zynq: VCC_PSINTLP, VCC_

PSINTFP, VCC_PSAUX

User supply sensors: User supply 
sensors:

User supply sensors:

0 4 4 (Vuser[3:0])

PS: many supplies (do 
not have the list)

Reconfiguration 
interfaces

Fabric DRP, JTAG 
TAP

Fabric DRP, JTAG 
TAP, I2C DRP

Fabric DRP or dedicated 
PS DRP, JTAG TAP, 
PMBUS, I2C DRP

Sequence mode Default, single pass, 
continuous, single 
channel, simultaneous 
sampling, independent 
ADC

Default, single 
pass, continuous, 
and single channel

Default, single pass, 
continuous, dual 
sequence

aPL = programmable logic
bPS = processing system
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16.5  ADC Capabilities of SYSMON

The heart of UltraScale FPGA-based SYSMON is designed around a 10-bit ADC, 
capable of working at 200 KSPS (kilo samples per second). It is commonly used 
between the external analog signals as well as on-chip sensors. The SYSMON ADC 
has nominal external input voltage range of 0–1 V. Various operating modes of the 
ADC, sensors, and analog inputs can be configured using the SYSMON Control 
Registers. The ADC supports Unipolar Mode (which is default mode) of operation 
for on-chip sensors, while for external channels both the Unipolar and Bipolar 
operation modes are supported. The ADC always produces 16-bit conversion result, 
out of which the 10 MSB (left most bits) represent the 10-bit transfer function, 
which is stored in the Status Registers. The remaining six LSB can be used to 
improve the resolution through averaging or filtering.

In case of Unipolar Mode, for input of 0 V, the ADC produces 0x000h code, 
while for the highest input of 1 V the ADC produces full-scale code of 0x3FFh. 
This shows that the ADC output in Unipolar Mode is straight binary equivalent. 
Each bit increase represents 977 μV increase. When external analog inputs are con-
figured as Bipolar Mode, they can accommodate true differential and bipolar analog 
signals. The output coding of ADC in Bipolar Mode is two’s complement. In this 
case also each of the bit count represents 977 μV. The diagrammatic representation 
of the Unipolar and Bipolar Modes transfer function of SYSMON is as shown in 
Fig. 16.3 and 16.4. Note the upper range of binary code representation is the same for 
Unipolar and Bipolar Mode. The output coding of the ADC in Bipolar Mode is two’s 
complement and indicates the sign of the input signal on VP relative to VN.

Fig. 16.2 SYSMONE1 primitive port structure in the UltraScale FPGA devices
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DADDR[7:0]
DEN
DWE
DCLK
DRDY

Dynamic 
Reconfiguration 
Port Group 
Signals (DRP)

RESET
CONVST
CONVSTCLK

Control and 
Reset Port Group 
Signals

VP
VN
VAUXP[15:0]
VAUXN[15:0]

External Analog 
Input Port Group 
Signals

SYSMONE1
Primitive Port 

Structure In Xilinx
UltraScale FPGA 

Devices
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16.6  Transfer Function of Various On-Chip Sensors

16.6.1  Temperature Sensor

The UltraScale based SYSMON has on-chip temperature sensor, which produces the 
equivalent output voltage proportionate to the die temperature. The ADC can be 
configured to use external as well as internal reference voltage for temperature 
conversion. When using an external reference voltage, the transfer function of the 
temperature sensor is as given by (16.1). ADC value corresponding to a given tem-
perature can also be obtained by the same equation:

 
T =

×
−

ADC
bits

502 9098

2
273 8195

.
.

 
(16.1)
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Fig. 16.3 Unipolar transfer function of SYSMON ADC
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T = Temperature K (Kelvin)
When using the on-chip reference voltage, the transfer function for temperature 

sensor is as shown by (16.2):

 
T =

×
−

ADC
bits

501 3743

2
273 6777

.
.

 
(16.2)

16.6.2  Power Supply Sensors

The SYSMON also includes on-chip sensors that allow monitoring of the device 
power supply voltages using the ADC. The sensors sample and attenuate the power 
supply voltages VUSER [3:0], VCCINT, VCCAUX, VCC_PSINTLP, VCC_PSINTFP, VCC_PSAUX, and 
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Fig. 16.4 Bipolar transfer function of SYSMON ADC
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VCCBRAM on the package power supply balls. Equation (16.3) gives the power supply 
sensor transfer function after digitizing by the ADC. The power supply sensor can 
be used to measure voltages in the range 0 V to VCCAUX + 3 % with a resolution of 
approximately 2.93 mV. The equation transfer function is related to the HP (High 
Performance) IO banks. The power supply measurement results are stored in the 
respective Status Registers:

 
Voltage

ADCCode
V= ×

1024
3

 
(16.3)

16.7  Controlling the SYSMON Operation

The SYSMON has a rich set of registers which can be accessed in three different 
mechanisms of interfaces (Fabric DRP access, I2C access, JTAG TAP access). 
Figure 16.5 shows the SYSMON register set. The access for up to 256 registers is 
allowed which are of 16-bit wide each, by any of the three interface mechanisms 
mentioned above. You need to follow the timing relation of different DRP ports 
while accessing these registers through fabric interface. The fabric register access is 
referred with respect to the DCLK.

Fig. 16.5 SYSMONE1 register interface
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16.7.1  SYSMON Control Registers

The Control Registers are used to configure the SYSMON operation. All the 
SYSMON functionality is controlled through these registers. These Control Registers 
are initialized using the SYSMON attributes when the SYSMON is instantiated in a 
design. This means that the SYSMON can be configured to start in a predefined 
mode after the FPGA configuration.

The Control Registers are further classified into:

• Configuration Registers (address range 0x40h to 0x43h)
• Sequence Registers (address range 0x46h to 0x4Fh and 0x78h to 0x79h)
• Alarm Registers (address range 0x50h to 0x6Fh)

The Configuration Register has bits associated with operating modes like 
Sequence Mode, Single-Channel or External Multiplexer Mode (Auto Channel 
Sequencer), Continuous or Event Trigger Mode, Averaging Mode on selected 
channel, Channel Sequencing operation, Calibration settings, etc.

Along with the Control Register configuration, there are multiple Sequence 
Registers available that need to be configured in order to help SYSMON to operate 
in the correct manner. In case of Single-Channel mode, the Control Register needs 
to be set to select only one of the available channels. In cases, when multiple chan-
nels need to be monitored, then Auto Channel Sequencer Mode is enabled. Based 
upon predefined sequence of channels defined in the Channel Sequence Register 
(SEQCHSEL), the sequencer automatically selects the next channel for conversion, 
sets the averaging (SEQAVG), configures the analog input channels (SEQINMODE), 
sets the required settling time for acquisition (SEQACQ), and stores the results in 
the Status Registers.

The ADC Channel Averaging Registers (SEQAVG) enable and disable the averag-
ing of the channel data in a sequence. The result of a measurement on an averaged 
channel is generated by using 16 or 64 or 256 samples, which is controlled through 
Configuration Register bits. Offset correction enablement is also configurable option 
for ADC and supply sensors.

The SYSMON provides mechanism to raise the user intervention for any adverse 
condition occurring in the system using Alarm Registers. The Alarm Registers are 
used to set up the automatic alarms once the channel input signals crossover the 
limits set by you. The alarms are generated on 16-bit ALM port. You can program 
the alarm thresholds in the Control Register address range of 0x50h to 0x6Bh. 
The alarm for particular input will be set up both for the lower as well as higher 
limits. The alarms are reset when a subsequently measured value falls inside the 
threshold (min and max) ranges.

The on-chip temperature measurement is used for critical temperature warnings 
and also supports automatic shutdown of the FPGA device to help prevent the 
device from being permanently damaged. During very high temperature scenarios 
beyond 125 °C, the FPGA device is auto shut down; however this option needs to 
be enabled separately by you through configuration of the Over Temperature (OT) 
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upper Alarm Register. The device auto-shutdown facility is disabled by default. 
During FPGA shutdown the SYSMON still maintains its data using the internal 
clock oscillator. The auto-shutdown facility is really useful as it prevents the device 
from getting permanently damaged. Once the on-chip temperature reduces, it is 
necessary to reconfigure the device for further usage.

User application can keep watch on the temperature alarm signals and should 
take the necessary action like turning on the cooling system, etc.

16.7.2  SYSMON Status Registers

The SYSMON Status Registers are read-only registers, which have the updates of 
all the measurements carried out by the SYSMON ADC. These registers can be 
accessed at the address range of 0x00h to 0x3Fh and 0x80h to 0xBFh. For each of 
the ADC capabilities, one individual register is provided. It includes parameters like 
on-chip temperature, different on-chip voltages (VCCINT, VCCAUX), external 
analog channel registers, etc.

There are two more set of Status Registers which are categorized in MAX and 
MIN type, which store the maximum and minimum values of these parameters since 
the FPGA is powered on or since last reset of SYSMON. The MAX and MIN set of 
registers are different than the regular set of registers which stores the latest ADC 
conversion values. The Flag Registers (address range 0x3Eh, 0x3Fh) are considered 
to be part of Status Registers with each bit indicating the status of parameters for 
various alarms and Over Temperature (OT).

SYSMON can be digitally calibrated to phase out any offset as well as the gain 
errors in ADC and power supply sensors using the Calibration Registers which are 
also part of the Status Registers (address range 0x08h to 0x0Ah). A built-in calibration 
function automatically calculates these coefficients.

16.8  Operating Modes of SYSMON

SYSMON provides access mechanism for a range of analog signals such as an on- 
chip temperature sensor, on-chip supply sensors, the dedicated analog input (VP/
VN), the auxiliary analog inputs, and the user supplies. It provides multiple operat-
ing modes to select the analog signals used in a design. The default mode of 
SYSMON operation is restricted only for the on-chip sensors, which is available 
even when the SYSMON is not instantiated in your design. The default mode uses 
calibration and on-chip oscillators to automatically measure temperature, VCCINT, 
VCCAUX, and VCCBRAM.
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16.8.1  Single-Channel and Auto Channel Sequence Mode

The single-channel mode uses a Configuration Register (0x41h) to select the analog 
channel. By writing to the Configuration Register, a design can select different analog 
channels. In application where many channels need to be monitored, to avoid over-
head on the processing system for reconfiguration of the Control Register each time, 
Automatic Channel Sequence Mode function can be used. The automatic channel 
sequencer sets up a range of predefined operating modes, where a number of channels 
(on-chip sensors and external inputs) are used. The sequencer automatically selects 
the next channel for conversion, sets the averaging, configures the analog input chan-
nels, sets the required settling time for acquisition, and stores the results in the Status 
Registers based on a once off setting. Averaging can also be selected independently 
for each channel in the sequence. The sequence mode is further categorized into 
Single-Pass Mode and Continuous Sequence Mode. The channel sequencer function-
ality is implemented using a set of 12 Control Registers. Section 16.7.1 contains more 
information about the different user configurable registers of the SYSMON.

16.8.2  External Multiplexer Mode

In some applications, where IO resources are limited and need to monitor several 
external analog inputs, in such cases the External Multiplexer Mode can be used. The 
external multiplexer can be connected to the dedicated analog inputs (like VP/VN 
ports) or one of the auxiliary analog inputs. Figure 16.6 shows how you can use 
External Multiplexer operation with VP/VN ports.

VAUXP[0]
VAUXN[0]

VAUXP[1]

VAUXP[15]
VAUXN[15]

MUX

ADDR
4

VN

MUX

UltraScale Device
°c

MUXADDR[3:0]

10 bit, .2 MSPS
ADC

VP

Temp.
Sensor

Supply
Sensor

External Analog
Multiplexer 16:1

VAUXN[1]

Fig. 16.6 External multiplexer mode
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16.8.3  Automatic Alarms

The SYSMON also generates an alarm signal on the logic outputs ALM[15:0] when 
a sensor measurement exceeds some user-defined thresholds. The Alarm Registers 
are classified in to upper and lower alarm threshold control registers. The alarms are 
generated when the status register value for the corresponding recently measured 
channel goes outside the lower or upper limit mentioned in the Alarm Threshold 
Control registers (address range 0x50h to 0x6Bh). The alarms are suppressed auto-
matically when the next new measurement of the channel falls within the range of 
upper and lower threshold registers.

16.8.4  Sampling Modes

The SYSMON has two modes of data sampling, namely, Continuous Mode and 
Event-Driven Mode. In Continuous Mode, the SYSMON ADC is busy doing the 
continuous conversion for the configured channel(s). A dedicated internal clock, 
namely, ADCCLK, is used to facilitate this conversion. The ADC takes around 26 
ADCCLK clock cycles for any conversion. The maximum operating ADCCLK fre-
quency is 5.2 MHz. The ADCCLK clock is dedicated only for the SYSMON ADC 
usage and it cannot be shared with other applications. For the SYSMON to operate 
in Event-Driven Mode, user application needs to provide one DCLK-wide active 
high pulse on the CONVST port of SYSMON. This pulse triggers the ADC to start 
the conversion of selected analog input. The End of Sequence (EOS) or End of 
Conversion (EOC) indicates that the current conversion cycle is over, and converted 
data is available in the respective Status Register.

The settling time of ADC decides the actual conversion rate. This flexibility 
helps the ADC to get 10-bit precise representation of analog conversion.

16.9  Using SYSMON in Standalone Mode

In Standalone Mode, SYSMON continuously monitors the on-chip sensors. Your 
application is no longer associated with the SYSMON results. Using the JTAG or 
I2C interface, you can also configure some of the external analog inputs. No instan-
tiation is required to access the DRP interface over JTAG.

The JTAG as well as I2C access is slower as compared to the fabric DRP access. 
The SYSMON supports transfer up to 400 Kb/s, Standard Mode (SM) and Fast 
Mode (FM). For using the JTAG interface to access SYSMON, you need to be 
aware of the IEEE 1149.1 standard, while for I2C access, the knowledge of I2C 
2-wire protocol is necessary.

The SYSMON could shut down the device operation if the junction temperature 
crosses 125 °C (Over Temperature (OT)), where it is still accessible only through 
JTAG access.
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16.10  Disabling the SYSMON

Optionally, in order to save power further or in case your application does not 
require the inclusion of SYSMON, you can permanently disable it by connecting 
SYSMON’s supply voltages to the ground. This is completed by connecting AVDD, 
VREFP, VREPN, and AVSS to ground reference. VP and VN also should be con-
nected to GND. These groundings can be done while designing the PCB for your 
application. Alternately, XDC settings can be used during the system building pro-
cess to disable SYSMON. As the SYSMON would not be available to monitor on-
chip crucial parameters, you should carefully design your application to avoid any 
damage (like due to Over Temperature, etc.) to the FPGA. Disabling the SYSMON 
using external grounding of signals is shown in Fig. 16.7.

16.11  SYSMON Use Cases

The SYSMON can be found in various applications and use cases. Some of the 
applications are:

• Vehicle automation systems
• Food preservation systems
• Medical equipments
• Equipments used in harsh industrial atmosphere
• FPGA-centric critical systems

VP

VN
VREFN

VREFP AVDD

AVSS

ADC

Fig. 16.7 Disabling the 
SYSMON
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Typical FPGA-based system is as shown in below Fig. 16.8.
In the FPGA-centric system shown in the Fig. 16.8, the SYSMON plays a 

crucial role of monitoring the internal parameters like on-chip temperature, volt-
age, etc. It also monitors the external parameters like on pressure, external tem-
perature, incoming analog signals from cooling fan speed rotation control system, 
etc. Its Alarm Signals are connected to Audio Control System which controls the 
speaker activation. The Alarm Signals are also connected to a series of LEDs, 
which will be  activated if any parameter under monitoring crosses the minimum 
or maximum range of user configurable parameters selected for monitoring pur-
pose. The Alarm Signal also connects to cooling system. If the temperature goes 
beyond the limit, then the alarm signal automatically gets asserted and it controls 
the rotation speed of the fan. The set of Alarm Signals are connected internally 
to GPIO signals, which helps in monitoring these parameters when the system is 
in stable condition.

The interrupt signal from the AXI-based wrapper around SYSMON is connected 
to the dedicated input port of Interrupt Controller IP. The interrupt actions should 
be configured by the user based upon its severity. In critical cases like Over 
Temperature (OT) or if the on-chip voltage drops below minimum level, then the 
interrupt generated by the core will force the CPU to store the present status of its 
registers and application-related information in to nonvolatile SRAM memory. This 
can be done by using the nvSRAM controller (or equivalent NAND Flash controller 
if NAND memories are used as nonvolatile memories). The nvSRAM controller 
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stores all the crucial information into nvSRAM, which can be used by the processor 
next time when the system reboots.

This system-level operation provides an example usage of SYSMON in FPGA- 
centric systems.
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    Chapter 17   
 Hardware Debug                     

     Brad     Fross    

      It is often necessary to  debug   FPGA designs in hardware, for several reasons:

•    Problems are visible only when design is run in hardware at system speed.  
•   It is not feasible to re-create the failure in a simulation environment.  
•   It is faster to test the design in hardware than in a simulation or emulation 

environment.    

 This chapter discusses some of the advantages of debugging FPGA designs in 
hardware, how debugging complements other methods of verifi cation and valida-
tion, and various techniques for getting the most out of debugging FPGA designs 
in hardware. 

17.1     Debug Methodologies for FPGA Designs 

17.1.1     Iterative Debug Methodology 

 Creating and  debugging   FPGA designs using an iterative design fl ow leverages one 
of the key advantages that FPGA devices have over ASICs and ASSPs: FPGAs are 
reprogrammable. Adding, modifying, and removing debug instrumentation are an 
integral part of the FPGA design cycle, as shown in Fig.  17.1 . Due to their fi xed 
nature, it is not possible to add, change, or remove debug instrumentation in 
ASIC/ASSP designs after fabrication.

   While you can add debug instrumentation to ASIC/ASSP designs before tape 
out, it is typically only done at the block interface level or in key control sections of 
the design. It can be diffi cult to predict where bugs will pop up in a design, which 
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means you might not be monitoring the appropriate part of the ASIC/ASSP design. 
In FPGA designs, you can add just the right amount of debug  instrumentation   to the 
appropriate part of the design to fi nd the bugs and then remove the instrumentation 
when it is no longer needed.  

17.1.2     Simulation vs. Debugging in Hardware 

 FPGAs are similar to ASICs/ASSPs in that simulation-based verifi cation can be 
used to ensure the design meets the specifi cation. The main advantage that simula-
tion has over debugging in hardware is that simulation allows for full visibility of 
any node in the design. However, when debugging in hardware, the number of nodes 
that can be debugged in any given design iteration is limited to the amount of 
resources available to the debug instrumentation. 

 An example of debug instrumentation that is used to trigger on hardware events 
and capture data of interest is called the  Integrated Logic Analyzer  (  ILA   ) debug 
core. The ILA IP core uses FPGA fabric resources to implement the trigger func-
tions and it uses block RAM to store the captured data samples. Table  17.1  shows a 
chart of how many block RAM Tiles in the FPGA device are used for various levels 
of design debug visibility. The amount of  slice  logic used by the  ILA  core ranges 
from 0.81 to 2.61 % of a Kintex-7 XC7K480T device.

   While simulation provides for increased debug node visibility and deeper capture 
trace, debugging in hardware has two distinct advantages over simulation:

•    Faster test run times, typically at the speed of the system under test  
•   Testing in a real system environment rather than a simulation testbench    

Add/Modify/Remove 
Debug Instrumentation

Design Verified

Find Next Bug

Fix Previous Bug

Download & Debug 
Design in Hardware

Start Design

Synthesize & 
Implement Design

  Fig. 17.1    FPGA design and debug cycle       
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 Simulation and hardware debugging are not mutually exclusive. In fact, it is 
often benefi cial to use simulation to verify the functionality of a design before test-
ing it out in hardware. This is especially true if the design consists of signifi cantly 
new content that has not been previously verifi ed. After verifying the design using 
simulation, you can debug in hardware to fi nd issues that result from design integra-
tion or other system-level considerations, under the environment of real-world traffi c 
patterns. 

 In some cases, it can be advantageous to skip simulation altogether and verify 
the design entirely in hardware. For example, in cases where designs that have 
been previously verifi ed in simulation are undergoing small modifi cations or are 
being ported from one FPGA device family to another, you may go directly to 
hardware.  

17.1.3     Debugging a Design That Meets Timing 

 Before debugging in hardware, make sure the design meets all timing constraint 
requirements. Debugging a design that does not meet timing is typically not a 
worthwhile endeavor since any misbehavior could easily be attributed to the failure 
to meet timing. 

 In addition to ensuring the design on its own meets timing, also ensure that the 
design including the debug instrumentation IP (such as the  ILA   core) meets timing 
as well. The ILA core uses FPGA device resources and can exhibit unexpected 
behavior if design does not meet timing. 

 The ILA core has a  clock  input that is used to synchronize the measurements to 
the design-under-test; therefore all design constraints related to that clock domain 
also apply to the ILA core. The ILA core also has its own design constraints that 
time the portions of the  ILA   core not related to the design clock domain. Once all 
timing constraints are applied correctly and are met, it is quite likely that any mis-
behaviors that are encountered are due to real functional issues as opposed to 
timing- related anomalies.   

    Table 17.1    Number of block RAM Tiles used by ILA cores of varying data dimensions   

 ILA core dimensions 

 Data depth 

 1024  2048  4096  8192  16,384  32,768 

  Data width    32   1  2  4  7.5  15  30 
  64   2  4  7.5  14.5  29  58 
  128   4  7.5  14.5  29  57.5  115 
  256   7.5  14.5  29  57.5  114.5  229 
  512   15  29  57.5  114.5  228.5  457 
  1024   29.5  57.5  114.5  228.5  456.5  913 
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17.2     Instrumenting the Design for Debug 

17.2.1     Choosing the Type of Debug Instrumentation 

 Deciding what type and amount of debug  instrumentation   to add to the design 
depends on two key factors:

•    Type of issue being debugged  
•   Resources available for debug instrumentation    

 The types of design functionality issues can range from simple  status  and/or 
 control  issues to complex logic and/or system-level issues. The amount of resources 
available in the device (especially block RAM resources) can be the limiting factor 
in choosing the appropriate debug instrumentation IP. Table  17.2  shows how the 
Xilinx debug instrumentation options address various debug scenarios.

17.2.2        Choosing What Signals to Debug 

 It is important to consider two guidelines when choosing signals to debug:

•    Select signals that will provide the necessary information to fi nd and fi x the bug 
without exceeding device resources  

•   Select signals that do not degrade the performance and/or functionality of the design    

    Table 17.2    Types of Xilinx debug instrumentation   

 Debug IP 
 Requires 
block RAM?  Debug scenarios 

  Integrated 
Logic Analyzer   
( ILA  ) 

 Yes a   • Useful when capturing samples in multiple consecutive 
clock cycles is required 

 • Allows for complex triggering to fi nd diffi cult-to- detect 
events 

 Virtual Input/
Output ( VIO  ) 

 No  • Useful for low-bandwidth communication with 
design-under-test 

 • Can replace or augment board-level control and status 
indicators such as buttons, LEDs, etc. 

  JTAG-to-AXI 
Master   

 Yes b   • Useful for reading/writing AXI-based peripherals 

  Integrated Bit 
Error Ratio 
Tester   ( IBERT  ) 

 Yes c   • Useful for debugging board-level signal integrity issues 
with high-speed serial I/O transceivers 

 • Also used to determine transmit and receive margin of 
high-speed transceivers 

   a Amount of block RAM varies with IP port width and data depth parameters. See Table  17.1  for details 
  b JTAG-to- AXI   Master uses two to six block RAM tiles, depending on IP parameters 
  c The number of block RAM depends on the number of transceiver QUADs available in the 
target device  
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 When choosing what signals to debug, it is usually best to select signals that are 
driven by synchronous elements such as fl ip-fl ops, block RAMs, etc. The act of prob-
ing synchronous elements will not typically change the circuit unless the register 
would otherwise be combined into a primitive element (such as a block RAM output 
register or I/O block register). If you want to debug the outputs of combinational 
logic, it is important to consider how the act of probing the circuit will change its 
implementation by preventing the tools from optimizing it.  

17.2.3     Choosing How to Add Debug Instrumentation 

 Along with deciding what signals to debug, it can be equally important to decide 
how to add debug instrumentation to a design. There are two methods for adding 
 debug instrumentation  :

•    Source-level instantiation of debug  cores    
•   Netlist-level insertion of debug  cores      

 In the source-level instantiation method for adding debug instrumentation to a 
design, you directly instantiate the debug IP in the design source (e.g., HDL source 
code or  IP Integrator  block design). The debug IP is generated separately and can 
either be synthesized separately (i.e.,  out of    context   ) or with the design-under-test 
(i.e., in context). You can add any of the debug cores described in Table  17.2  using 
the source-level instantiation method. 

 In the netlist-level insertion method, you add the debug  instrumentation   to the 
post-synthesis design netlist. You choose what signals to debug and how to debug 
them and then the Vivado software tools automatically insert the debug IP into the 
design-under-test netlist. You can add only the ILA debug core to the design using 
the netlist-level insertion method. 

 Some of the benefi ts for each method of adding debug  instrumentation   to a 
design are described in Table  17.3 .

   Table 17.3    Benefi ts of two methods for adding debug instrumentation to a design   

 Benefi t 
 Source-level 
instantiation 

 Netlist-level 
insertion 

 Full correlation to source-level signals  Yes  No 
 Source code modifi cation required  Yes  No a  
 Ease of probing across hierarchical boundaries  Low  High 
 Ease of adding, modifying, removing debug instrumentation  Moderate  High 
 Adding, modifying, or removing debug instrumentation 
requires design resynthesis 

 Yes  No 

 Adding, modifying, or removing debug instrumentation 
requires design re-implementation 

 Yes  Yes 

   a An optional step to improve the preservation of HDL signals during RTL synthesis is to use 
 MARK_DEBUG  or  DONT_TOUCH  properties on them  
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17.3         Interacting with Debug  Instrumentation   

 Once you have added the debug instrumentation to the design, the design has been 
successfully implemented, and the design meets all timing constraints, it is time to 
program the design into the device-under-test and debug it. This section describes 
several ways to interact with debug instrumentation in a simple example design. 
Figure  17.2  shows the simple example design that contains a  MicroBlaze  micropro-
cessor, a block RAM memory buffer, a  UART  peripheral, and a  GPIO  peripheral.

   The example design shown in Fig.  17.2  has been instrumented with the following 
debug IP cores:

•    An  ILA   core to monitor the AXI interfaces of the block RAM controller  
•   A   VIO    to monitor the inputs and outputs of the GPIO peripheral  
•   A JTAG-to- AXI   Master to read/write the contents of the block RAM    

 The example design containing this debug instrumentation is shown in Fig.  17.3 . 
The arrows indicate the new IP inserted due to the debug instrumentation.

17.3.1       Connecting to Hardware and Programming the Device 

 Before interacting with the debug cores in the design in hardware, you need to con-
nect to the device-under-test via a  JTAG cable   and program the design into the 
device-under-test. In a typical lab environment, the JTAG cable for the target system 
is attached to the host machine that is running Vivado. In this case, clicking the  Auto 
Connect  toolbar button of the  Hardware window  in the   Hardware Manager    will 
connect to the locally attached JTAG cable, as shown in Fig.  17.4 .

  Fig. 17.2    Example design before adding debug instrumentation       
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   Once the connection to the  JTAG cable   is established, Vivado scans the target 
system to detect the devices in the  JTAG chain  . After Vivado detects the  xc7k325t_0  
FPGA device, the next step is to program the device with the bitstream fi le and 
debug probes fi le that correspond to the design in the current project, as shown in 
Fig.  17.5 . The last step before debugging the design involves Vivado automatically 
detecting the debug cores in the device-under-test, as shown in Fig.  17.6 .

17.3.2         Taking a Basic Measurement Using the ILA Core 

 The  ILA   core is very useful for triggering and capturing events as they occur in real 
time in the design-under-test. In the example design shown in Fig.  17.3 , an ILA core 
is used to monitor transactions on the AXI interface of the block RAM controller 
peripheral. 

  Fig. 17.3    Example design after adding debug instrumentation       

  Fig. 17.4    Using Auto Connect to connect to a JTAG cable       
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 A common measurement to take when monitoring an AXI interface is the start of 
 read  transaction which is signifi ed by the  read address  acceptance event 
( ARVALID  =  1  and  ARREADY  =  1 ). The basic  trigger   setup of the  ILA   core can be 
used to take this measurement, as shown in Fig.  17.7 .

   After arming the  ILA   core to trigger on the start of an AXI read transaction, the 
ILA core waits for the trigger condition to occur. Once the trigger condition occurs, 
the captured data is uploaded and displayed in the  waveform   viewer, as shown in 
Fig.  17.8 .

  Fig. 17.5     Programming   the device-under-test       

  Fig. 17.6    Hardware 
window in Vivado showing 
device with three debug IP 
cores       

  Fig. 17.7    ILA basic 
trigger setup for start of an 
AXI read transaction       
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17.3.3        Maximizing the Usage of the ILA Core Data Capture 
Memory 

 The ILA core uses on-chip block RAM to store captured data samples. In its default 
setup, the  ILA   core captures a data sample every clock cycle following the trigger 
event. In many cases, it is desirable to only capture data samples that satisfy a par-
ticular capture condition. For instance, it might be desirable to only capture data 
samples when either the AXI  address  and/or  data  is valid. However, in the waveform 
shown in Fig.  17.8 , many clock cycles worth of invalid  address  and/or  data  were 
captured following the burst of  read  transactions. By fi lling up the  ILA’s   capture 
buffer with invalid data, subsequent bursts of valid data would be missed. 

 The following Boolean equation can be used as a  capture  setup    condition 
(see Fig.  17.9 ) to only store only valid  address  and/or  data :

   

Capture SetupCondition ARVALID or

RVALID or

AWVAL

= ( )
( )

== 1

== 1

IID or

WVALID or

BVALID

== 1

== 1

== 1

( )
( )
( );    

  Using the same basic  trigger   setup as shown in Fig.  17.7 , the  waveform   in 
Fig.  17.10  shows how many more  read  transactions can be stored when only valid 
address and/or data cycles are captured.

  Fig. 17.8    Waveform showing captured data after fi rst AXI read transaction       

  Fig. 17.9    ILA setup for 
capturing valid address 
and/or data       
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17.3.4        Taking an Advanced Measurement Using the ILA Core 

 Sometimes it is necessary to take a more advanced measurement with an  ILA   
core than the basic trigger settings used in the previous section, as shown in 
Fig.  17.7 . For instance, it is sometimes desirable to trigger when a particular 
AXI interface is idle for a certain number of clock cycles following a  read  trans-
action. This can be useful in detecting data transfer stalls or other throughput/
latency issues. 

 You can use the ILA core’s  advanced trigger   state machine feature to trigger on 
such an event, as shown in Fig.  17.11 . You can optionally enable the ILA advanced 
trigger state machine feature at compile time and then use at run-time by selecting 
the  ADVANCED trigger  mode in the ILA trigger setup dashboard window. The 
 waveform   in Fig.  17.12  depicts the trigger occurring 1024 clock cycles after the last 
assertion of the  RLAST  signal.

17.3.5         Using  JTAG-to-AXI Master   to Access AXI-Based 
Registers 

 The  IP Integrator Block Design  AXI  Address Editor  shown in Fig.  17.13  has two 
AXI masters that are capable of initiating AXI transactions: a  MicroBlaze  micropro-
cessor ( microblaze_0 ) and a JTAG-to-AXI Master ( jtag_axi_0 ). The JTAG-to-AXI 
Master debug IP core provides a means to access any register or memory that is in 
the AXI address map of the design. The JTAG-to-AXI Master debug IP core can be 
very useful for inspecting AXI-based memory contents or checking AXI-based 
status registers.

  Fig. 17.10    ILA waveform showing only valid AXI address and/or data cycles       
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   Interacting with the JTAG-to-AXI Master IP involves two steps:

    1.    Create a transaction using the  create_hw_axi_txn  command.   
   2.    Run the transaction created in step 1 using the  run_hw_axi  command.     

 Below is an example for creating and running a  read  and a  write  transaction, both 
of which are 32-word  bursts  starting at address  0xC000_0000  (the  axi_bram_ctrl_0  
block RAM controller peripheral):

•    Create and run a 32-word  burst read  transaction from address  C000000  and confi rm 
the data is all  0 ’s:

    create_hw_axi_txn rd [get_hw_axis hw_axi_1] -type read -address C0000000 -len 32   
   run_hw_axi [get_hw_axi_txns rd]   

  Fig. 17.11    Triggering 1024 clock cycles after last AXI read transaction       
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   INFO: [Labtoolstcl 44-481] READ DATA is: 0000…      

•   Create and run a 32-word  burst write  transaction to address  C0000000  that 
repeats the four-word pattern of  11111111, 22222222, 33333333, 44444444 :

    create_hw_axi_txn wr [get_hw_axis hw_axi_1] -type write -address C0000000 
-len 32 –data {44444444_33333333_22222222_11111111}   

   run_hw_axi [get_hw_axi_txns wr]   
   INFO: [Labtoolstcl 44-481] WRITE DATA is: 4444…      

•   Rerun the  read  transaction:

    run_hw_axi [get_hw_axi_txns rd]   
   INFO: [Labtoolstcl 44-481] READ DATA is: 4444…      

•   Confi rm the data at address  C0000000  is the same pattern that was previously 
written:

    report_hw_axi_txn [get_hw_axi_txns rd]   

  Fig. 17.12    Waveform showing trigger after 1024 idle cycles       

  Fig. 17.13    Example design AXI address map       
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   c0000000 11111111 22222222   
   c0000008 33333333 44444444   
   …   
   c0000078 33333333 44444444        

 This sequence of AXI  read  and  write  transactions confi rms the block RAM 
controller peripheral is working as expected.  

17.3.6     Using  Virtual Input/Output   to Debug Design in Hardware 

 The Virtual Input/Output (  VIO   ) debug IP core is useful for representing status indicators 
and high-level controls such as LEDs and pushbuttons. You can use the VIO core in 
situations where the hardware is not physically accessible or there are not suffi cient 
interactive controls on the hardware platform. 

 The example design in Fig.  17.3  shows how a VIO core can be used to monitor 
the inputs to and outputs from an AXI  GPIO  (General Purpose I/O) peripheral. 
The VIO dashboard in the Vivado tool can be used to show the value of the  GPIO  
outputs (which are inputs to the VIO), as shown in Fig.  17.14 .

   The   JTAG-to-AXI Master    IP can also be used to write a nonzero value to the 
GPIO outputs:

•    Create a transaction to write  0x0000000F  to the  GPIO  output register at address 
 0x40000008 :

    create_hw_axi_txn gpio_f [get_hw_axis hw_axi_1] -type write -address 
40000008 -data {0000000F}      

•   Run the transaction:

    run_hw_axi [get_hw_axi_txn gpio_f]        

 Note that the value of the  VIO   inputs (GPIO outputs) changed from all zeroes to 
all ones, as shown in Fig.  17.15 ).

  Fig. 17.14    VIO dashboard showing inputs are all zeroes       
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17.4         Board-Level Debugging 

 In addition to debugging system designs internal to the FPGA or the PL portion of 
an  MPSoC  device, you can also use the Vivado hardware debug tools to debug 
board-level issues. Below are some of the board-level debug features included in the 
Vivado tool:

•    Debugging high-speed serial I/O signal integrity issues and measuring the trans-
mitter and receiver margin using the  Integrated Bit Error Ratio Tester  (  IBERT   ) 
 debug   feature  

•   Debugging external memory calibration issues and measuring read and write 
margin using the  Calibration   Debug feature of External Memory Controller  

•   Measuring on-chip temperature and voltage sensor values using the System 
Monitor feature    

 Usage of external memory, transceiver, and System Monitor is described in 
Chaps.   4    ,   5     and   16    , respectively.    

  Fig. 17.15     VIO   dashboard showing inputs are all ones       
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    Chapter 18   
 Emulation Using FPGAs                     

     Paresh     K.     Joshi    

18.1          Introduction to  Emulation   

 For the purpose of this chapter, we will use emulation to include prototyping also—
since underlying challenges and methodologies are common. We read about simula-
tors in Chap.   11    . An emulator is a  simulation - specifi c  hardware, which is capable of 
retaining the parallelism of the blocks of the design, thereby signifi cantly improving 
the speed of execution. 

 Depending on the capabilities of the emulator, you can get very close to your 
design environment. Since emulators are dedicated hardware, the speed advantage 
is obtained at the cost of observability and controllability. Emulation also needs 
additional setup, which is what this chapter is mostly about. In an ideal scenario, the 
emulator must support all the features of simulation at a speed and cost advantage. 

18.1.1     Types of Emulators 

     1.     Array of simulation - specifi c processors  ( Cadence Palladium series ): Array of 
processors whose instruction set and software is tailored to simulation tasks. One 
set of such arrays is called a  board . Each processor on the board can simulate 
millions of gates in parallel. Furthermore, each processor on the board talks to 
other processors via a fi xed (specifi c) protocol.   

   2.     Array of FPGAs (Synopsys ZeBu series):  Array of FPGAs. Each FPGA can have 
mapped gates programmed into it. Each FPGA in the Array usually has dedi-
cated wiring with other FPGAs.   
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   3.     A hybrid array of both simulation - specifi c processors and FPGAs (Mentor 
Veloce series) .     

 For large designs boards in an emulator can be cascaded. To better utilize the 
components in the emulator, there are partitions possible which enable multiple 
users to simultaneously access the resources of the emulator. 

 Since emulators comprise of hardware components, it is possible to connect the 
emulator to real external targets like JTAG, UART, QSPI, I2C, etc. The JTAG and 
UART are used by the software team to do hardware-software co-design and debug 
at the  programmers view  level. 

 Figure  18.1  illustrates an FPGA or processor array-based emulator system with 
multiple user terminals, standard connectors, IOs, and a backplane to cascade mul-
tiple such boards. Multiple users can then use the emulator boards for improving 
resource utilization.

18.1.2        Uses of Emulation/Prototyping 

  Substitute for simulation : This is the most obvious usage. In practice, however, 
emulation is resorted to only after the RTL design reaches a certain level of matu-
rity. A not-so-mature RTL design will fi nd iterative debug to be diffi cult, due to 
limited observability and controllability of emulation. 

  Enabling    pre-silicon software     development : Once the RTL is reasonably mature, 
the software teams can use the emulator for developing BOOTROM, Software 
(UBOOT, Linux, Android, RTOS, UEFI), Device Drivers (BSP), etc. Doing so pro-
vides several months of lead time to the software teams. This enables the software 
components to be available and ready for use, immediately after the device silicon 
is available. 

  Fig. 18.1    Cascading 4 processors/FPGAs to build a larger emulation system       
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  Place-holder for actual silicon : The fi rst silicon bring-up team designs an evalu-
ation board with sockets for the device. Before the actual silicon is available, the 
emulator can behave as a prototype and fi t into the socket using a plug-in board. The 
evaluation board along with silicon bring-up test cases can be run on the system as 
shown in Fig.  18.2 .

18.2         Emulation Using FPGAs 

 System designers and prototyping teams have been using FPGAs to their benefi t. 
FPGA tools are available to provide RTL to FPGA mapping. If you have a prototyp-
ing environment, the additional activities for going to emulation include:

    1.    Creation of a synthesizable and reconfi gurable testbench.   
   2.    Addition of instrumentation into design for advance debug purposes.   
   3.    Mapping of complex design blocks like IOs, SERDES, DSP blocks, and block 

RAMs to the FPGA.   
   4.    Remapping of complex clocking structure of the device to the FPGA-based 

PLLs and clock controllers.   
   5.    Mapping of design IOs to the FPGA IOs to obtain connectivity to the external 

targets (JTAG, UART, etc.).   
   6.    For designs which require multiple FPGAs:

    (a)      Logic Partitioning   : Partitioning of the design into chunks of logic to fi t into 
individual FPGAs. This depends on the size of the design and the size of 
placeable gates on the FPGA. The logic and memory closely associated with 
the said logic are grouped together into pieces which fi t on the same FPGA.   

   (b)      Pin Partitioning   : Partitioning of the design with appropriate pin count across 
FPGAs. This depends on the hardware board design and is usually fi xed for 
a particular board.         

 The additional activities for going to emulation from a simulation setup include:

CHIP SOCKET FPGA BASED 
EMULATOR

SILICON 
EVALUATION 

BOARD

  Fig. 18.2    Silicon Evaluation Board with a socket being interposed with FPGA-based emulator       
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    1.     Observability:  Simulation allows to see the waveforms for all signals at all 
times. The waveforms are directly dumped into a hard disk during runtime. In an 
FPGA, there are limited logic and memory resources. So complete runtime 
waveform dumping is not possible. Thus, you have to add instrumentation to 
 trigger  the start of waveform dumping for a known limited number of signals 
and for a known limited amount of time. Furthermore, you need to build in a 
mechanism to retrieve the waveform data from the FPGA block RAMs. Xilinx 
Vivado provides ILA core for doing this—as explained in Chap.   17    .   

   2.     Controllability : For some tests, a specifi c pin (say:  reset ) may need to be kept at 
a desired value for a specifi c duration. In simulation you can force the signal then 
release it. A similar ability needs to be provided when doing emulation using 
FPGAs. Xilinx Vivado provides VIO.   

   3.      Memory initialization   : The DUV usually contains BOOTROM which needs to 
be programmed (preloaded) with the appropriate bitmapped code. The testbench 
could have other memory models of fl ash, DDR, etc. In the simulation environ-
ment, the memory load ( $readmemb ) and dump can be used. A similar ability is 
required for emulation using FPGAs.     

 Xilinx FPGAs and the Vivado tool set provide the methods and means to make 
all of the above possible.  

18.3      Challenges in Emulation Using FPGAs 

 The basic challenge is to stitch the hardware, the tool software, and the RTL- 
mapping fl ow with the evaluation board and components. This section breaks up the 
challenge into multiple parts and sections. Section  18.4  then explains on how to deal 
with these challenges. 

18.3.1     Design Logic and Memory Size 

 The engineering choice is to use one FPGA which fi ts the design. However, some-
times the DUV may be bigger than the largest FPGA available. Even otherwise, 
sometimes fi tting the DUV into two smaller FPGAs is cheaper than using the largest 
FPGA available. If the design is skewed toward huge memory blocks, the FPGA 
tools can map parts of unmapped logic on the FPGA tile for memory blocks. For an 
emulator using FPGAs, (since the testbench is embedded into the FPGA) large 
memories like fl ash, DDR pose mapping problems. In such scenarios the emulator 
is fi tted with large external memories which are then remodeled to behave like fl ash 
and DDR. Note that this remodeling is done through custom instrumentation inser-
tion prior to using Vivado P&R tools.  
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18.3.2     Design Pin Count 

 The FPGA (or an array of FPGAs) must be able to support the relevant pin count of the 
device being emulated. In general, for emulation purposes a  synthesizable testbench   is 
used, indicating that there are fewer external connections. In certain cases, fl ash mem-
ory can be real components on the board which are then pinned-out to the board.  

18.3.3     Clocking 

 Clocking between FPGAs and ASIC/ASSP is different. In an ASIC/ASSP there could 
be many hundreds of clock domains with multiple PLLs embedded. Each root clock 
derived from a PLL can have multiple secondary clock generation logic (say for 
dividing clocks, test clocking). Furthermore, sets of fl ip-fl ops or registers in the design 
can have clock-gating circuit implemented as part of power-reduction techniques. 

 FPGAs usually have a limited number of PLLs and a limited number of balanced 
clock channels incident upon a larger cluster of fl ip-fl ops. The challenge is to 
straighten up the ASIC clocks to map it easily onto the FPGA clocking.  

18.3.4     RTL Constructs and Remodeling 

 Several RTL constructs are not FPGA friendly. These need to be modeled appropri-
ately for FPGA. The remodeling has to be done without modifying the functional-
ity. A module RTL makes it easier and scalable since there is a great usage of 
common cells in the design. 

18.3.4.1     IO Pads Modeling 

 IO pads typically have tristate functionality. Usually, these IOs of the DUV are connected 
to the BFMs in the testbench. Recent FPGAs do not have built-in tristate gates. For FPGA 
usage, you need to remodel the tristates as shown by the example in Fig.  18.3 . The Xilinx 
ISE/Vivado toolset automatically transforms internal tristates into logic elements.

18.3.4.2        ADC Module Modeling 

 For a module with analog behavior (e.g., ADC/DAC), you need to appropriately 
model to ensure that its boundary talking to the digital side of the design is clean. 
For example, an ADC module can easily be modeled with a memory and digital 
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output. The memory can be preloaded with the kind of analog behavior we expect 
out of the design. Alternatively, an ADC can be placed on the FPGA board and the 
digital output can be used as an input to the design. If the ADC module is deeply 
embedded into the DUV, you need to bring out the wires from the embedded hier-
archies onto the top level of the testbench. 

 For Xilinx FPGAs you can use the SYSMON module (explained in Chap.   16    ). 
However, you still need to take care of:

•    Performance of the SYSMON for emulator clocking  
•   The analog stimulus to be fed to the SYSMON  
•   The appropriate remodeling of the ADC to instantiate the SYSMON into it     

18.3.4.3     Memory Modeling 

 Typically the RTL has memories which are either ASIC technology memories or 
modeled as a memory array. Also, the RTL memory model could have test logic 
embedded into it. Remodeling memories for FPGA is typically a four-step process.

    1.    Identify the memories in the design. If the memories belong to the same technol-
ogy node, then the entity is usually identical except for the  address  and  data  
width. Sometimes, there might be variants (e.g., byte-wise write).   

   2.    Remodel the memory component with an equivalent FPGA friendly construct. 
If you are not interested in test logic, they could be tied to their disabled state. 
This remodeled memory component is then verifi ed to be true using simulation. 
If the memory needs to have user-defi ned preloading or dynamic preloading, 
then explicit instrumentation needs to be added.   

   3.    One level of FPGA synthesis and run is carried out to fl ush out the fl ow.   
   4.    Create a scriptware to convert all the fl avors of  data  and  address  widths.     

 Steps (2), (3), and (4) are true for all types of remodeling done at RTL level, but 
it deserves a special mention for memories since there are many types.  

X

oen _dut oen _bfm

Weak 
pullUp

o_dut o_bfm

sig = ~oen _dut ? o_dut :
~oen _bfm ? o_bfm :
1 'b1; 

  Fig. 18.3    Remodeling of typical IO connectivity within testbench between DUV and BFM       
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18.3.4.4     Standard Cells Modeling 

 It is best to have synthesizable view of the technology standard cells in the design. 
Most technology libraries provide the synthesizable view of standard cells.  

18.3.4.5     Inferred Components Modeling 

 Some RTL descriptions infer multipliers, dividers, special Register Files, FIFOs, 
etc., during the ASIC synthesis fl ows. These components use compiled models/
descriptions for simulation. Such components will end up as being unresolved. A 
way to resolve this problem is to actually do an ASIC synthesis and use the verilog 
equivalent for the said component. Thus:

    FPGA RTL view = synthesized netlist from ASIC tool + the synthesizable RTL view 
of technology std-cell       

18.3.5     FPGA Board Design 

 The FPGA-based emulation system is very much dependent on the FPGA board 
design. In particular, the number of FPGAs in the array, the capacity of each FPGA 
in the array, the external memory connected (for modeling large memories, for 
dynamic waveform dumping, and for using memory as Look Up Table for large 
pieces of logic with huge fan-in cones), and the external connectors, switches, 
GPIOs, and LEDs are provided. Its levels of complexity are higher to move from 
one FPGA-based emulator to another than it is to move across simulators from dif-
ferent vendors. The basic complexity is due to the use of hardware for emulation 
and so it is fi xed. This complexity makes it diffi cult to make sound design and 
fi nancial decisions for the right choice of FPGA-based emulators. FPGA vendors 
provide a chart with logic gate count estimates, IOs, memory blocks, SERDES 
blocks, and DSP blocks within the FPGA.   

18.4      General Methodology 

 In this section we provide some known recipes to the challenges explained in 
Sect.  18.3 . The recipes below would help design teams to realize their own FPGA- 
based emulator. We have assumed (by this chapter, toward the end of the book) a 
basic understanding of FPGA-based design. 

  Note  that you should perform RTL to RTL Logic Equivalence Check after any 
RTL transformation. 
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18.4.1     RTL-Related Transformations 

  PLLs : All technology ASIC libraries contain PLLs. Each PLL consists of basic  ref-
erence clock in ,  clock out , with pins indicating the multiplier factor in terms of 
 Numerator  and  Denominator  values. These have to be mapped to the equivalent 
PLLs in the selected FPGA. The methodology used is to keep the ASIC PLL entity 
identical but to instantiate the FPGA clocking resource in place. If the PLL has 
multiple clock outputs, the same are also remapped to the FPGA. 

  Clock Dividers : If there are dividers in the design, then it is appropriate to remove 
the divider circuits and replace them with the FPGA clock resource outputs as 
defi ned in the MMCM clock tile. 

 It would be useful to maintain a table similar to Table  18.1 .
   In the Table  18.1 , for (#2) and (#3), the clock frequencies are the same, i.e., 

20 MHz. It would be worthwhile to investigate from an ASIC clocking point of 
view, if it is possible to use the same PLL output of 20 MHz driving the clock end 
points of both (#2) and (#3). If the clocks are of the same frequency, but asynchro-
nous to each other, it would be OK to reduce the use of a PLL and free up routing 
resources and reduce complexity of mapping to the FPGA. 

  Programmable Clock Dividers : Usually there is a use of Programmable Clock 
Dividers to select a baud rate as it is in the case of UART. In such cases,  reconfi gurable 
registers of the ASIC need to be remapped to the Dynamic Reconfi guration Data 
Input of the Clocking tile. Most emulation designers would put the dynamic recon-
fi guration data input as part of the instrumentation in the testbench, so that they have 
better control over the clock. 

  Clock Gating Cells : Integrated clock gating cells are instantiated by the RTL 
designer to enable dynamic power reduction. This can be a problem with FPGAs 
which can get resource limited if there are too many  clock gating   cells in the design. 
A solution is to do a tool-based or hand-scripted transformation to the clock gating 
cells. A typical example is provided in Fig.  18.4 .

    Table 18.1    Mapping of ASIC clock frequencies to FPGA clocks   

 #  ASIC clock  ASIC freq 
 FPGA clock 
resource 

 FPGA 
freq  Comments 

 1  Clock.A  400 MHz  PLL1.CLKOUT0  40 MHz  All clock scaled as div 
by 10 

 2  Clock.B  200 MHz  PLL2.CLKOUT1  20 MHz 
 3  Clock.A.div2  200 MHz  PLL1.CLKOUT1  20 MHz  A divider in the path of 

ClockA is remapped to 
a clock output 
synchronous to div2 of 
the PLL1.CLKOUT0 

 4  Clock.A.div8  50 MHz  PLL1.CLKOUT2  5 MHz  Div8 of the PLL1.
CLKOUT0 
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18.4.2        Multiple FPGA Specifi c (The  Partitioning   Problem) 

 Now that the individual pieces of your RTL have been readied for FPGA-based 
emulation, the next level of complexity comes if the design cannot be mapped on 
one FPGA. For a particular design, it might not fi t into a single FPGA, due to either 
of the following:

•    Design logic size exceeding the logic that can be mapped onto the FPGA.  
•   Design logic could be mapped, but it could not be routed.  
•   Design logic was mapped and routed, but design has more memory than the 

block RAMs on the FPGA.  
•   Design ran out of IO that could be appropriately mapped on the FPGA.    

 Irrespective of the situation leading to the use of multiple FPGAs, all of the 
above need to be resolved on a per FPGA basis on a MultiFPGA emulation system. 
To start with, get a gate, memory, and pin count estimate for the big blocks in the 
design. Also, assume that each FPGA may be about 60 % utilized to begin with. 
Typically, most big IPs would fall within 5 ~ 6 sub-hierarchical levels of logic. This 
exercise would give a rough estimate of the number of FPGAs required to fi t the 
design and testbench. 

 The exercise is iterative. Start with partitioning through the most constrained of 
the three resources (gate count, pin count, memory) and then affect the grouping 
changes to see if the other constraints can also fi t. Figure  18.5  depicts the hierarchi-
cal view of the DUV and the testbench BFM components and the Table  18.2  the 
tabular view of the same. Both these views (hierarchical and tabular) help in con-
verging to the right partitioning between multiple FPGAs.

RTL implementation:
always @ (posedge clk or negedge resetn) begin
if (~resetn) begin

q <= 1'b0; 
end
else if (enable) begin

q <= d; 
end

end
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  Fig. 18.4    Typical ASIC and FPGA implementation for a clock gating cell       
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18.4.2.1        Partitioning Gate Count Challenge 

 Once the gross level partitioning is known through analytical method as per 
Table  18.2 , we need to get the same implemented. There are tools which can read in 
the RTL fi les and then dump out a regrouped fi le. Such grouping would result in 
new hierarchical tables being generated, as shown in Table  18.3 .

   For this example, considering per FPGA gate count of ~100M gates, Table  18.3  
shows that FPGA3 is OK, but FPGA1 and FPGA2 are likely challenges to the P&R 

  Fig. 18.5    Hierarchical view for embedded synthesizable testbench with DUV and BFM       

    Table 18.2    FPGA view for the embedded synthesizable testbench with DUV and BFM   

 subHier 
Level  ModName  GateCount  PinCount  TotalMemory 

 Estimate 
FPGA 

 1  tb_top  250  200  4 Mbits 
 2  tb_top.BFM1  12M  100  200 Kbits  FPGA1 
 2  tb_top.BFM2  24M  50  100 Kbits  FPGA2 
 2  tb_top.BFM3  14M  125  250 Kbits  FPGA3 
 2  tb_top.DUV  200M  350  3.5 Mbits 
 3  tb_top.DUV.BLOCK1  75M  450  FPGA1 
 3  tb_top.DUV.BLOCK2  80M  FPGA2 
 3  tb_top.DUV.BLOCK3  35M  FPGA3 
 3  tb_top.DUV.BLOCK4  5M  FPGA1 
 3  tb_top.DUV.ANA1  5M  FPGA3 
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stage. These considerations and iterations go on until there is suffi cient conver-
gence. Table  18.3  is defi cient in terms of pin count and memory as it is for illustra-
tion purpose only. 

 However, since the module BLOCK2 and BFM2 are closely knit with each other, 
there could be pin count challenge if some readjustments of modules of BLOCK2 
are done onto FPGA3 which seems to be least constrained.  

18.4.2.2     Partitioning Pin Count 

 The MultiFPGA board usually has fi xed pin count which can be summarized in a 
template table as in Table  18.4 .

   In Table  18.4  PF12 are the physical IO pins that are available between FPGA1 
and FPGA2 (F1 <--> F2) on the FPGA board. 

 In Table  18.4  we have a Not Applicable (NA) if the particular FPGA is not used 
in the implementation. The implemented pin count across the FPGAs (IPF) should 
be less than the provisioned pin count across the FPGAs (PF). Thus, the pin count 
criteria can be converged when IPF12 < PF12 and so on. 

 If the pin count criteria are not satisfi ed, you could resort to pin muxing for the 
IO. This means that another utility RTL needs to be added to send multiple bits of 
data over a single IO from one FPGA to another. This utility RTL is inserted prior 
to the pin-multiplexed IO. Figure  18.6  shows the circuit for the utility RTL on the 
FPGAs for pin multiplexing. There are three main operations done:

•     Load: convert from parallel to serial.  
•   Shift: shift the serial data from FPGA2FPGA.  

     Table 18.3    Sorted list of hierarchies on per FPGA basis   

 subHier 
Level  ModName  GateCount  PinCount  TotalMemory 

 Estimate 
FPGA 

 1  tb_top  250M  200  4 Mbits 
 2  FPGA1.BFM1  12M  100  200 Kbits   FPGA1  
 2  FPGA1.BLOCK1  75M   FPGA1  
 2  FPGA1.BLOCK4  5M   FPGA1  
 2  FPGA2.BFM2  24M  50  100 Kbits  FPGA2 
 2  FPGA2.BLOCK2  80M  FPGA2 
 2  FPGA3.BFM3  14M  125  250 Kbits   FPGA3  
 2  FPGA3.BLOCK3  35M   FPGA3  
 2  FPGA3.ANA1  5M   FPGA3  

     Table 18.4    Actual partitioned pin count vs. available connections between FPGAs   

 F1 <--> F2  F1 <--> F3  F1 <--> F4  F2 <--> F3  F2 <--> F4  F3 <--> F4 

 PF12  PF13  PF14  PF23  PF24  PF34 
 IPF12  IPF13  NA  IPF23  NA  NA 
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•   Restore: convert serial data back to parallel.    

 EDA Tools like Certify™ from Synopsys ®  form a major backbone to enablement 
of this convergence.  

18.4.2.3     Using SERDES Lanes 

 It is also possible to use the FPGA SERDES Lanes as an extension to the pin 
multiplexing. SERDES provides a convenient  serializer  and  deserializer  over a 
two- wire network, which can transmit and receive data Gbps (Giga bits per 
second) range. The SERDES lanes are useful in converting FPGA2FPGA IOs 
into serial, sending it across at high speed and reconstructing the same at the 
other end.  

18.4.2.4     Handling Clocks Over Multiple FPGAs 

 As soon as we move into using multiple FPGAs, the clocking complexity increases. 
One way is to see each hop or evaluation as a phase (a dedicated time slot) and 
increase the emulation clock period accordingly. This means that the performance 
of the emulator drops every time there is a signal hop.    
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  Fig. 18.6    Pin muxing for IOs over two FPGAs       
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18.5     Instrumenting 

 There are ways of achieving some degree of controllability and observability on an 
FPGA-based emulator, albeit at the cost of performance, logic area, and memory 
requirements. A general observation is that about 10 ~ 40 % (depending on design 
specifi cs) of the design overhead on an emulator is attributed to addition of instru-
mentation for controllability and observability. At each step of the instrumentation 
addition, exercise care to maintain the equivalence of the design. 

 Let us assume that the emulator adds an  instrumentation port   (say Instrumentation 
JTAG or iJTAG) through which it can carry out the functions of observability and 
controllability to the design. This instrumentation port provides an interface to the user 
using a host computer. Figure  18.7  logically explains the two ports needed for an emu-
lator. Modern emulators like Synopsys ZeBu use the PCIe as an instrumentation port.

18.5.1       Ability to Stop and Start the Emulation 

 The emulator start-stop is affected by the clocking. If the clock to the logic blocks 
does not tick, the emulator is in  stop  state. The instrumentation needed to achieve 
the purpose are:

  Fig. 18.7    Instrumentation (iJTAG) port connecting host computer and the emulator       
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    1.    Create a set of clock gates in instrumentation through the use of the  BUFGCE , 
 BUFGMUX , etc. The  BUFGCE  is used for  Enable . The  BUFGMUX  is a mux 
between  instrumentation  mode and  functional  mode.   

   2.    Create a set of counters, preferably one per primary clock. It should be possible 
to start, stop, and free run the counter. A set of count comparators, then could 
gate the clock to the functional logic blocks. Through the iJTAG one can write 
into these instrumentation registers which control the counters and clocks.   

   3.    Using similar control instrumentation, you can also have some DUV internal 
signals  trigger  or  stop  the emulator clocks.    

18.5.2       General Observability of Signals and Registers 
in the Design 

 The RTL synthesis process for FPGA optimizes out intermediate combinatorial 
logic signals. This scenario is in contrast with “array of processor”-based emulators, 
where each node can be maintained within the processor database.

•    For the registers, using the iJTAG port, and decoding logic-related instrumenta-
tion, it is possible to have full controllability and observability. Figure  18.8  gives 
a feel of the instrumentation to be added for a register (fl ip-fl op).

•      For intermediate signals (part of combinatorial logic), a monitor fl op and control 
mux can be added to gain controllability and observability.    

 There are multiple methods to enable these instrumentations:

•    Modify the RTL to add pragmas known to Xilinx Vivado tool suite.  
•   Use a netlist editor tool post functional synthesis.  
•   Use a dedicated vendor tool for instrumentation insertion. Example Synopsys 

ZeBu tool suite does a seamless instrumentation insertion tailored to the ZeBu 
FPGA-based emulator.     

18.5.3     Instrumentation for DUV Internal Memory 

 Often, it is needed to preload internal ROM and SRAMs with the executable code. 
The  C  program for the application is compiled, linked, and loaded into internal mem-
ories. The intent is to release the CPU reset and expect the CPU to execute the code 
and data loaded into the respective memories. Instrumentation can be added and 
accessed using the iJTAG as per the Fig.  18.8  even for memories. Note that the func-
tional ROMs can also be preloaded using the iJTAG after instrumentation insertion. 

 For memories like dual-port memories, the port which has both write and read 
ports is chosen for instrumentation. Table  18.5  indicates the typical instrumentation 
that needs to be inserted for commonly used memories within the DUV.
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   If the SP/DP RAM has bit- or byte-wise write and read control (functionally 
strobed lanes), then the instrumentation is suitably adjusted so that all the byte lanes 
are affected during memory load and dump through iJTAG. 

 The typical sequence for the usage would be:

    1.    Stop all the clocks to the emulator. This is through iJTAG-based instrumentation 
register confi guration.   

   2.    Preload the memories using external iJTAG:

    (a)    Glitch-free selection of the clock to point to iJTAG_TCK.   
   (b)    Select the memory to be preloaded.   
   (c)    Preload the memory with the (address, value) pairs.       

   3.    Apply reset to the DUV.   
   4.    Start the clocks to the emulator.   

D
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Instrumentation select

MUX

MUX

INSTRUMENTATION 
COMBINATORIAL 
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FUNCTIONAL 
SIGNAL PATH

INSTRUMENTATION 
READ PATH

Q

  Fig. 18.8    Control and observability for registers using instrumented logic       

   Table 18.5    Typical instrumentation needs for memories   

 Memory  Functional  Instrumentation 

 ROM  Read only  (a) Clock muxing 
 (b) Write port addition 
 (c) Address and data line muxing 

 Single-port (SP) 
RAM 

 Read and write  (a) Clock muxing 
 (b) Address and data line muxing 
 (c) Write/read control signal muxing 

 Dual-port (DP) 
RAM 

 Different types  (a) Clock muxing on any one Write Port 
 (a) 1 W, 1R  (b) Insertion of read port instrumentation for the write 

port (if it does not exist) 
 (b) 1 W&R, 1R  (c) Address and data line muxing (for instrumented 

port) 
 (c) 1 W&R, 

1W&R 
 (d) Write/read control signal muxing 
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   5.    Release reset to the DUV.   
   6.    Expect the design to run the test (application).   
   7.    Stop all the clocks to the emulator.   
   8.    Read the memory (address, value) pairs, and store it to a fi le on host machine.      

18.5.4     Adding Signal Observability (Waveforms) 

 Observing waveforms is an important part of the debug process and this feature is 
integral to any emulator. With regard to waveform, there are a few key concepts that 
need to be put in place as below:

    1.     Signal List : List of signals and buses (full hierarchical names) that you want to 
be added into the debug waveform.   

   2.     Trigger Signals and Trigger Expression : A set of  Trigger  signals and the Boolean 
expression which would control the start and stop of the waveform capture.   

   3.     Trace Depth : The maximum number of  waveform samples  that can be taken 
using the appropriate sampling clock.   

   4.     Trace Window : The period of time when the waveform samples are captured. 
You can also have a circular trace buffer, allowing for a % trigger start, i.e., the 
trace starts  x % prior to the actual trigger event and lasts up to (100 −  x )% after the 
trigger event. One can also defi ne a pre-trigger percent or a post trigger percent 
based on this as is indicated by Fig.  18.9 .

       Chapter   17     explains various debug cores provided by Xilinx that can be used 
to capture waveforms. However, often, for deeper level of debug, the ILA is not 
suffi cient, and at times the  Signal List  can span multiple FPGAs. To address this 
problem, emulators usually have their own external SRAM/DDR memory which 
can go up to 128 GB to enable deep trace. Intuitively, one can see that the instru-
mentation needed for this feature is huge. Some basic components are listed in 
Table  18.6 .      

100 % ; N-samples

Trigger point

PreTrigger %
PostTrigger %

  Fig. 18.9    Illustration of Trigger Point and “pre- and post trigger percent”       
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   Table 18.6    Instrumentation components for waveforms using external memory   

 Instrumentation 
component  Usage 

 DDR Memory  The waveform samples would be written in the DDR memory. The 
samples are then read back and stored onto a host fi le 

 DDR Controller  To adhere to the DDR protocol for writing and reading the DDR 
memory 

 Signal Funnel  An instrumentation logic which converts (packs) the Signal List 
into chunks of data for writing and reading to the DDR memory 

 Instrumentation clock  Addition of an instrumentation clock, which is typically 1× or 2× 
the frequency of the sampled signals 

 Optional instrumentation 
CPU subsystem (iCPU) 

 The triggering, capturing of set of signals would need an 
instrumentation CPU to control the fl ow. The CPU would control 
the traces written to the DDR, and can also help in reading the 
traces and formatting for waveform generation by appropriate 
usage of iJTAG (host port connection) 
 If an iCPU is being added, it can also be confi gured to enable other 
instrumentation tasks including complex clock management for 
starting and stopping the emulator 
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    Chapter 19   
 Partial Reconfi guration and Hierarchical 
Design                     

     Amr     Monawir    

       Partial Reconfi guration   takes advantage of hierarchical design capabilities available 
in the Xilinx Vivado Design Suite. This chapter describes the various designs that 
can benefi t from the use of Partial Reconfi guration, as well as the key concepts and 
design considerations for Partial Reconfi guration and the other  hierarchical design   
fl ows available. 

19.1      Partial Reconfi guration   

 FPGA technology provides the fl exibility of programming and reprogramming a 
device with a modifi ed design in the fi eld without the need to go through re- 
fabrication.  Partial Reconfi guration   takes this one step further, allowing the dynamic 
modifi cation of  part  of an operating FPGA design without impacting the rest of the 
design. 

19.1.1     Applications 

 Any system with functions that can be time-multiplexed stands to benefi t from tak-
ing advantage of  Partial Reconfi guration  . Using Partial Reconfi guration allows 
functions to be switched on hardware, similar to a microprocessor’s ability to switch 
between tasks in software. 

        A.   Monawir    (*) 
  Xilinx Ireland ,   Dublin ,  Ireland   
 e-mail: aye20@hotmail.com  
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19.1.1.1     Multi-protocol Networking 

 In   optical transport network  ( OTN ),   client side ports need to support multiple 
interface protocols. To ensure this, every possible interface protocol has to be 
independently implemented for each port. This is resource intensive and ineffi -
cient, especially considering that only one protocol will be used per port at any 
one time.  Partial Reconfi guration   allows the different protocols for each port to be 
dynamically loaded on demand. This removes redundant logic and provides a 
more effi cient use of resource to implement the same functionality. Figure  19.1  
shows the same 100G Muxponder system implemented with and without Partial 
Reconfi guration.

19.1.1.2        SW-Controlled HW Coprocessing 

 Hardware  coprocessing   is achieved by off-loading compute-intensive functions 
from the central processor to a coprocessor or dedicated hardware, which executes 
the function with lower power and latency. Image and video coprocessing is a typi-
cal example of this approach. 

 Having dedicated hardware for each function is an ineffi cient use of resources. 
 Partial Reconfi guration   allows a library of hardware functions to be partially 
reconfi gured onto the same set of FPGA resources as and when required. 
Figure  19.2  gives an example of a processor system, with an array of dedicated 
hardware coprocessing functions, implemented with and without the use of Partial 
Reconfi guration.

  Fig. 19.1    100G Muxponder design implemented without and with  partial reconfi guration         
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  Fig. 19.2    A microprocessor system with dedicated hardware coprocessors implemented without 
partial reconfi guration on the left and with partial reconfi guration on the right       

19.1.1.3        Security and Encryption 

 Encryption and public-private asymmetric key  cryptography   are widely used as a 
means of protecting sensitive or proprietary data. Partial Reconfi guration can be 
combined with asymmetric key cryptography to provide secure encrypted bitstream 
or data transfer. The encryption key generation and/or decryption engine on the 
FPGA is part of the initial or  static  part of the design. The encrypted  partial  bit-
stream containing the proprietary data is then sent to the decryption engine, 
decrypted inside the FPGA, and programmed via the   internal confi guration access 
port  ( ICAP ),   thus ensuring that the  partial  bitstream is never unencrypted outside 
the FPGA. 

 Figure  19.3  gives an example of how a decryption engine can be used in conjunc-
tion with  Partial Reconfi guration  .

19.1.2         Key Concepts 

 All  Partial Reconfi guration   designs consist of three basic parts. The   Static    is the 
portion of the design that does not change and is expected to continue to function at 
all times. The   Reconfi gurable Partition    is the instance or level of hierarchy within 
which multiple   Reconfi gurable Modules    are defi ned and implemented. Each 
 Reconfi gurable Module  represents one of the time-multiplexed functions that will 
be switched in and out of the FPGA (Fig.  19.4 ).

 

19 Partial Reconfi guration and Hierarchical Design



240

  Fig. 19.4    Basic  partial reconfi guration   concept and terminology       

  Fig. 19.3    Delivery of encrypted bitstreams using partial reconfi guration       

    Partial Reconfi guration   designs can contain one or more   Reconfi gurable Partitions ,   
each of which must occupy a mutually exclusive physical area of the FPGA. The 
physical area for a given  Reconfi gurable Partition  must contain the aggregated 
resources required to individually implement each of the   Reconfi gurable Modules    
associated with it. The resource types and granularity of the physical area within the 
FPGA that can be reconfi gured at any given time vary by device family. 

 Both the   Static    and the interface points between the  Static  and the  Reconfi gurable 
Partition  need to be identical for all the  Reconfi gurable Modules  in the design. 
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Vivado achieves this by preserving the  Static  implementation and reusing it to 
implement subsequent  Reconfi gurable Modules . An additional innovation in Vivado 
is the creation of virtual I/O for each of the interface port called a   Partition Pin   . 
 Partition Pins  can be locked to specifi c anchor points within the routing tiles and 
maintained across  Reconfi gurable Modules . This consumes no LUTs or fl ip-fl ops, 
thus reducing resource overhead and timing delays at the interface. 

 Vivado generates a   partial bitstream    fi le for each  Reconfi gurable Module  in each 
  Reconfi gurable Partition    as well as a  full bitstream  which contains the data for both 
the   Static    and the  Reconfi gurable Module(s)  being implemented. The  full bitstream  
is used for initial confi guration of the FPGA, while the  partial bitstreams  are used 
for switching in and out the various   Reconfi gurable Modules   . Loading of  partial 
bitstreams  into the FPGA is generally performed via the FPGA’s standard external 
confi guration ports or via the internal confi guration ports which can be incorporated 
into the   Static    portion of the design. 

  Partial Reconfi guration   takes advantage of the FPGA’s addressable confi guration 
infrastructure which allows specifi c areas of the FPGA to be reconfi gured. The 
smallest addressable segment of the FPGA is known as a   Confi guration Frame   . 
Each frame typically corresponds to a single column of resources which is a clock 
region in height. As such each frame contains a single resource type, for example, 
DSP, block RAM, CLB, or routing interconnect; the actual number of resources in 
each frame depends on the resource type and varies by device family.  

19.1.3     Design Considerations 

 In order to take full advantage of the potential benefi ts of  Partial Reconfi guration   for 
a given application, you need to take on board a number of considerations prior to 
starting the design. These are divided into three different categories:

•    FPGA device family  
•   Design structure  
•   Support functions for  Partial Reconfi guration      

19.1.3.1     FPGA Device Family 

 Vivado currently supports  Partial Reconfi guration   for all production devices for all 
families starting with 7-Series. 

 Starting with the UltraScale device family, all resources except the  confi guration 
block  can be partially reconfi gured, while support in 7-Series is limited to CLBs, 
DSPs, and block RAMs. As UltraScale devices allow IOs, BUFGs, MMCMs, and 
other clocking components to reside inside the   Reconfi gurable Partition   , different 
clocking structures can now be supported inside any   Reconfi gurable Module   . It 
should be noted that clocks sourced from within the  Reconfi gurable Module  may 
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only be used to clock logic inside that same  Reconfi gurable Module. Reconfi gurable 
Module  clocks cannot be used to clock logic in   Static   . The addition in UltraScale 
silicon of more granular control of global reset after Partial Reconfi guration has 
removed the 7-Series requirement for clock-region alignment for  Reconfi gurable 
Partition  fl oorplans. It is, however, still recommended that the  Reconfi gurable 
Partition  fl oorplan be a regular rectangle which aligns to device clock regions. With 
changes in the  stacked silicon interconnect ( SSI )   in UltraScale,   Reconfi gurable 
Partitions    and   Reconfi gurable Modules    are now able to span multiple super logic 
regions ( SLRs)   and are no longer restricted to a single die as is the case with 7-Series 
 SSI  devices.  

19.1.3.2     Design Structure 

 The most important design consideration is the choice of an appropriate instance on 
which a   Reconfi gurable Partition    is set. This instance should be defi ned to incorpo-
rate the full functionality that is being reconfi gured at a given time under a single 
hierarchical block. If the function being reconfi gured is made up of several hierar-
chical blocks, these must all be merged under a single hierarchical block. 

 Ensure that the resources required by all the   Reconfi gurable Modules    are recon-
fi gurable for the device family being used. Therefore, the design should be struc-
tured in a way—such that resources that cannot be reconfi gured reside in the   Static    
portion of the design—outside the   Reconfi gurable Partition   . 

 The ports of the instance selected will be the  Partition Pins  of the  Reconfi gurable 
Partition . These should be the union of the pins of all the  Reconfi gurable Modules  
associated with that  Reconfi gurable Partition . 

  Partial Reconfi guration   is designed to support unconnected input and output 
 Partition Pins . Unconnected output  Partition Pins  will be tied  high  by default. If 
you need to tie them to the  ground , you need to do so explicitly in the  Reconfi gurable 
Module . However, it is worth noting that explicitly tying to the  ground  is resource 
ineffi cient. Creating a  Reconfi gurable Module  where all inputs and outputs are 
unconnected results in a black-box module which can be used to  turn off  functional-
ity inside the  Reconfi gurable Partition . 

 Optimization across the  Reconfi gurable Partition  boundary is prohibited in order 
to avoid optimization of   Static    to suit one  Reconfi gurable Module  at the expense of 
another. Therefore, ensure that the design does not rely on optimizations across 
 Reconfi gurable Partition  boundary. In addition, logic upstream and downstream of 
unconnected  Partition Pins  does not get optimized away by Vivado. 

 As with any FPGA design, achieving timing closure is key, it is recommended 
that registers are inserted on both sides of each   Partition Pin   . Registers on both 
sides of the  Reconfi gurable Partition  boundary allow the Vivado tools to maximize 
the timing budget when implementing the  Static  and each of the  Reconfi gurable 
Modules .  
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19.1.3.3     Support Functions for Partial Reconfi guration 

 In order to allow the Partial Reconfi guration process to operate correctly, a number 
of support functions need to be added to the design. These can reside in the  Static  
design, the board or with the system in which the FPGA is being used. These include 
storing of partial bitstreams, triggering the Partial Reconfi guration process, deliver-
ing of the partial bitstreams to the FPGA’s confi guration memory, as well as decou-
pling the  Static  design from the  Reconfi gurable Partition  during the Partial 
Reconfi guration process. 

 Xilinx provides a   Partial Reconfi guration Decoupler IP    which can be used to 
decouple the   Static    from the   Reconfi gurable Partitions    and can be driven by the 
user’s  Static  design. An alternative is to use an enable signal on the timing registers 
on the  Static  side of the design to decouple the design during Partial Reconfi guration. 

 The more  Reconfi gurable Partitions  and   Reconfi gurable Modules    a design con-
tains, the more storage would be required to store the  partial bitstreams  generated 
by Vivado.  Partial bitstreams  can be stored in on-board nonvolatile memory or off- 
board on an external storage location. Regardless of where it is stored, the design 
requires a means of transferring these partial bitstreams from their storage location 
into FPGA’s confi guration memory. 

 The Xilinx   Partial Reconfi guration Controller IP    can be used to help manage the 
transfer of partial bitstreams into the FPGA’s confi guration memory. Section  19.1.5  
gives more insight into   partial bitstream    handling, the FPGA’s internal and external 
confi guration ports, and the means by which the FPGA can be confi gured.   

19.1.4      Design Tool Flow 

 The Vivado  Partial Reconfi guration   tool fl ow involves a number of simple steps:

    1.    Synthesize the   Static    with   Reconfi gurable Partitions    as black  boxes  .   
   2.    Synthesize each of the   Reconfi gurable Modules    separately in   out-of-context    

 mode. Out-of-context mode  synthesis results in a design being synthesized 
without IOB insertion, which allows it to be stitched into the rest of the design 
at a later stage. If IOBs are required inside a   Reconfi gurable Module   , then these 
must be explicitly instantiated.   

   3.    Create a physical area constraint or  pblock  to defi ne the  Reconfi gurable Region  
for each   Reconfi gurable Partition   . This area should contain all the resources 
required for each of the  Reconfi gurable Modules  and will be used to contain all 
 Reconfi gurable Module  routing.   Static    logic is excluded, while  Static  routing 
can enter this area.   

   4.    Set   HD.RECONFIGURABLE    property on each   Reconfi gurable Partition   .   
   5.    Implement the   Static    with one   Reconfi gurable Module    per   Reconfi gurable 

Partition   . Save a copy of the fully routed design.   
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   6.    Remove   Reconfi gurable Modules    from this design and save a static-only copy 
of the design. This copy will allow black-box partial bitstreams to be generated 
and used to remove logic from the  Reconfi gurable Partitions  on the FPGA.   

   7.    Lock the static placement and routing.   
   8.    Add a different  Reconfi gurable Module  to static-only design to each 

 Reconfi gurable Partition , implement, and save the fully routed design.   
   9.    Repeat Step 8 until all  Reconfi gurable Modules  are implemented.   
   10.    Run  Partial Reconfi guration   verifi cation utility on all routed designs.   
   11.    Generate bitstreams for each routed design; this generates  Full Bitstreams  and 

 partial bitstreams  for each   Reconfi gurable Module   .    

  Any of the  Full Bitstreams  generated can be used to initially confi gure the FPGA; 
the choice should be determined by the functionality required at the start of the 
system. The   partial bitstreams    for the   Reconfi gurable Modules    that are generated 
are compatible across confi gurations; therefore, the  partial bitstreams  generated 
can be used with any full bitstream even if they were not generated as part of the 
same confi guration.  

19.1.5      Confi guration Management 

 Storing and managing   partial bitstreams    is key to the success of  Partial Reconfi -
guration   in a design. Storage of  partial bitstreams  is typically outside the FPGA, 
either on a nonvolatile fl ash memory on the board or on another remote medium, 
and accessible to the FPGA via PCIe, Ethernet, or other data transfer protocol. 
Managing these  partial bitstreams  can be done using an external processor or an 
internal state machine or processor within the   Static    region of the FPGA. The pro-
cessor or state machine determines which   Reconfi gurable Module    should be loaded, 
where the partial bitstream for that  Reconfi gurable Module  resides as well as when 
and how it will be downloaded into the FPGA’s confi guration memory. The Xilinx 
 Partial Reconfi guration Controller IP  can also be used to help manage partial bit-
stream confi guration. 

 Depending on the location of the  partial bitstreams  and the management engine 
used, various confi guration ports can be used to confi gure the FPGA. The following 
are the available confi guration ports:

•     ICAP  ( internal confi guration access    port   ): The primary choice where confi gura-
tion management is being done internally to the FPGA. This requires a controller 
as well as logic to drive the ICAP interface.  

•    MCAP  ( media confi guration access    port   ): Provides access to confi guration 
memory from one specifi c PCIe block only in UltraScale devices.  

•    PCAP  ( processor confi guration access    port   ): The primary confi guration mecha-
nism for Zynq-7000 SoC designs.  

•     JTAG   : Test and debug port. Mainly driven by the Vivado Hardware Manager.  
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•    Slave  SelectMAP    or  slave serial  : A good choice to perform full and partial recon-
fi guration, especially when using an external processor.      

19.2      Tandem   and  Field Update   

 The PCI Express specifi cation requires the  PCIe   link to be ready to link train with a 
peer within 120 ms after power is stable. This is nominally referred to as the  100 ms 
boot time . Meeting this requirement is a challenge for large FPGAs due to the size 
of the bitstream and typical confi guration rates available.  Tandem  support in 7-Series 
and UltraScale allows the PCIe to be up and ready to link train within the required 
timeframe. 

19.2.1     Key Concepts 

 The Tandem fl ow allows the PCIe block in the FPGA to meet the 120 ms boot-up 
requirement by splitting the confi guration into two stages:

•      Stage 1   : The minimum PCIe functionality needed to ensure device discovery is 
confi gured. This stage requires a very small bitstream that can be confi gured in 
much less than 120 ms and is capable of handling all transactions during enu-
meration time.  

•     Stage 2   : The rest of the FPGA is confi gured with the user design after the PCIe 
block becomes active.    

 There are two tandem confi guration methods supported,  Tandem PCIe   and 
 Tandem PROM  . Both methods employ the  two-stage  bitstream confi guration 
principle outlined above. In both cases,   Stage 1    is confi gured via an on-board 
PROM which resides on the board, in order to meet the 120 ms start-up time. The 
main difference is in the delivery of the   Stage 2    bitstream;  Tandem PROM   uses 
the same on-board PROM, while in  Tandem PCIe  , the  PCIe   interface is used. 
Unlike  Partial Reconfi guration  , the Tandem approach never reconfi gures a frame. 
Every frame in the device is confi gured only once. If dynamic updates to the user 
application are required,  Partial Reconfi guration   or the   Field Update    fl ow should 
be used. 

 The tandem with   Field Update    fl ow was introduced starting with the UltraScale 
architecture;  Tandem   confi guration methods are used to initially confi gure the 
device when the power is turned on, followed by  Partial Reconfi guration   of the full 
  Stage 2    logic. Thus, the Field Update fl ow allows multiple  Stage 2  bitstreams to be 
downloaded on demand, without the need to reconfi gure the   Stage 1   , thus maintain-
ing the PCIe linkup throughout. Figure  19.5  shows how the  Tandem PROM  ,  Tandem 
PCIe,   and Tandem with  Field Update  fl ows operate.

19 Partial Reconfi guration and Hierarchical Design



246

19.2.2        Design Tool Flow 

 The support for the tandem and tandem with Field Update fl ows is embedded within 
the PCIe core. The PCIe core and example design should be used as the foundation 
of any applications that utilize these fl ows. The following steps outline the tool fl ow 
to be followed by you:

    1.    Select the type of tandem fl ow required and generate the core.   
   2.    Open the example project, and implement the example design.   
   3.    Use the IP and XDC from the example project as the basis of your project.   
   4.    Synthesize and implement your design.   
   5.    If using tandem with  Field Update  , follow steps 6–10 from Sect.  19.1.4 .   
   6.    Generate bitstream and PROM fi les required.      

19.2.3     Confi guration Management 

  Tandem PROM   and  Tandem PCIe   fl ows both rely on initial PROM confi guration of 
  Stage 1    followed by   Stage 2    being confi gured via the external confi guration pins in 
Tandem PROM or via the PCIe link in Tandem PCIe. 

 In Tandem PCIe, the PCIe IP provides an internal interface to the confi guration 
memory. In 7-Series this is achieved by an explicit connection to the  ICAP  (internal 
confi guration access port). This connection is disabled after   Stage 2    confi guration. 
In UltraScale the connection to the confi guration memory is made via the  MCAP  

  Fig. 19.5     Tandem PROM  ,  Tandem PCIe,   and tandem with  Field Update   confi guration fl ows       
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(media confi guration access  port  ) which is embedded inside the PCIe block. This 
connection remains enabled even after  Stage 2  confi guration is complete. Access to 
the  MCAP  after  Stage 2  is the key enabler for the Tandem   Field Update    fl ow.   

19.3      Hierarchical Design   (HD) Preservation 

 Hierarchical design ( HD ) fl ows enable you to partition a design into smaller mod-
ules that can be implemented independently, before choosing whether or not to 
reuse the results at the top level of the design. 

19.3.1     Key Concepts 

 Hierarchical design fl ow provides the ability to take a given module, synthesize and 
implement it independently, and then reuse the results in an overall design. There 
are two parts of the hierarchical design fl ow:   Module Analysis    and   Module Reuse   . 

 In   Module Analysis    you can synthesize, implement, and conduct resource or tim-
ing analysis on a module without the need of special wrappers. The implementation 
is done with no  IOs  or  clocks . These need to be explicitly specifi ed if needed. The 
implementation results can then be saved for reuse. 

 In   Module Reuse    you take the results of an implemented   Module Analysis    run, 
lock-down, and reuse them in a top-level design. There are two variants of  Module 
Reuse :  bottom up  and  top down . 

   Bottom-up reuse    is where you ran the   Module Analysis    fl ow without prior knowl-
edge of the top-level design. This allows you to reuse the same  Module Analysis  
results for multiple top-level designs on the same device. 

   Top-down reuse    is where you use a top-level design and fl oorplan to generate 
 out-of-context  constraints, to be used by independent   Module Analysis    runs, before 
reusing the results to assemble the top-level design. This fl ow allows a team to work 
simultaneously on portions of the same design.  

19.3.2     Design Tool Flow 

 The Vivado tool fl ow for  hierarchical design   is split into   Module Analysis    and 
  Module Reuse   . To run the  Module Analysis , use the following steps:

    1.    Synthesize the module or IP in  out-of-   context    or  bottom-up synthesis.    
   2.    Set the   HD.PARTITION    property on the module.   
   3.    Add clock and timing constraints specifi c to that module.   
   4.    Floorplan the area into which the module will be placed.   
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   5.    Add  out-of-context  constraints including   HD.CLK_SRC    property as well as   par-
tition pin    locks and optimization constraints.   

   6.    Implement the module and save the placed and routed module results.    

  To run the   Module Reuse    fl ow, use the following steps:

    1.    Synthesize the top level with black boxes for module instances.   
   2.    Set   HD.PARTITION    property on the module instances.   
   3.    Read in results from   Module Analysis    run, into the relevant instances.   
   4.    Lock the implementation results of the modules that have just been read in. This 

can be done at either logical, placement, or routing level.   
   5.    Implement the remainder of the design.    

19.4         Isolation Design Flow   

 The   Isolation Design  fl ow   was developed to allow independent functions to operate 
on a single chip with the suffi cient level of isolation required for various certifi ca-
tions. Applications of this fl ow include redundant type I  cryptographic   modules or 
resident safety-critical functions. 

19.4.1     Key Concepts 

 There are a few unique design details that you must adhere to, in order to achieve an 
FPGA-based   isolation design  fl ow   solution. The requirements that a design needs to 
meet in order to take advantage of the  isolation design  fl ow are shown in Fig.  19.6  and 
include:

•       Isolated Module   : Each function to be isolated must be in its own level of hierar-
chy and reside within its own physical region of the FPGA.  

•     Fence   : This is a set of unused tiles with no logic or routing used—to separate the 
 isolated modules . This has to be a minimum of one non-routing tile in depth.  

•     Trusted Routing   : On-chip communication between isolated functions is achieved 
through the use of  trusted routing . Vivado chooses one to one routes along the 
coincident physical borders of  isolated modules .  

•    Top Level : Only global logic including BUFG and MMCM is allowed at the top 
level. All other logic must reside inside an  isolated module .  

•    IOBs : IOBs can be instantiated or inserted inside the  isolated modules .     
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19.4.2     Design Tool Flow 

 The   isolation design  fl ow   relies on you logically partitioning the design such that 
each  isolated module  resides in a different hierarchical block directly under the top 
level of the design. Once this is achieved, there are a few steps that you need to 
follow:

    1.    Set the   HD.ISOLATED    property on each  isolated module .   
   2.    Set the   HD.ISOLATED_EXEMPT    property on any logic at the top level.   
   3.    Synthesize the design.   
   4.    Floorplan the   isolated modules   .   
   5.    Run isolation verifi cation on the fl oorplan to ensure adequate fencing.   
   6.    Implement the design.   
   7.    Run isolation verifi cation on routed design to ensure correct isolation.   
   8.    Generate bitstream.         

  Fig. 19.6    Isolated design fl ow fl oorplan with trusted routes and fences shown       
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