
Sanjay Churiwala Editor

Designing
with Xilinx®
FPGAs
Using Vivado

 Designing with Xilinx® FPGAs

 Sanjay Churiwala
 Editor

 Designing with Xilinx®
FPGAs
 Using Vivado

 ISBN 978-3-319-42437-8 ISBN 978-3-319-42438-5 (eBook)
 DOI 10.1007/978-3-319-42438-5

 Library of Congress Control Number: 2016951983

 © Springer International Publishing Switzerland 2017
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
 The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made.

 Printed on acid-free paper

 This Springer imprint is published by Springer Nature
 The registered company is Springer International Publishing AG Switzerland

 Editor
 Sanjay Churiwala
 Hyderabad , India

v

 Pref ace

 The motivation for writing this book came as we saw that there are many books that
are published related to using Xilinx software for FPGA designs. Most of these
books are targeted to a specifi c version of Xilinx tools—be it ISE or Vivado or for a
specifi c device. Xilinx makes two major releases of Vivado each year. Each release
introduces signifi cant new features and capabilities. Similarly, in each new device
architecture, Xilinx makes signifi cant enhancements. Hence, books written on any
specifi c version of the software (or device architecture) get outdated very quickly.
Besides, Xilinx anyways publishes its own set of documents which are updated with
each major release of Vivado or FPGA architecture.

 In this book, we have tried to concentrate on conceptual understanding of Vivado.
These are expected to remain current through the current architecture of the tool
chain. Our attempt has been that with a good conceptual understanding provided by
this book, you will be able to understand the details provided in the user guides,
which delve into the details of commands and options.

 The Vivado software tool used for implementing a design on Xilinx’s FPGAs has
a lot of possible ways to read in a design. A user could describe the design in the
form of HDL or “C” or make use of Xilinx-provided IP or use a third-party IP or the
user could use his/her own HDL or “C” code as an IP to be used in multiple designs.
A user could also describe the design using still higher level of abstractions using IP
Integrator or SysGen. A design could also potentially use different types of inputs
(for different portions of the design). You can use this book to understand the inher-
ent strengths of the various modes of design entry. You can then decide which
mechanism would be most suited for portions of the design. For the exact com-
mands and syntax, you should refer to Xilinx documents. Our book provides a list
of reference materials. Depending on which specifi c capability you plan to use, you
can refer to the corresponding reference material.

 Besides being useful to somebody who is new to Xilinx tools or FPGAs, the
book may be found useful for those users who are migrating from ISE to Vivado.
Vivado is conceptually very different from ISE. While ISE was mostly using propri-
etary formats for most of the fl ow, Vivado has moved on to industry standard
formats. Users who have been long-time ISE users sometimes fi nd it diffi cult to get

vi

used to Vivado. This book helps them get a good understanding of Vivado concepts,
which should make it easier for them to transition to Vivado from ISE.

 Though I’ve been involved in some of the user guides published by Xilinx, doing
this book in my personal capacity allows me to deviate from the offi cial stand also,
wherever I wanted to, and share my real opinion.☺

 The most effective way to make use of this book is to not worry about reading the
book from cover to cover. You can easily feel free to skip the chapters that deal with
topics which your design does not have.

 Hyderabad, India Sanjay Churiwala

Preface

vii

 Acknowledgments

 I would like to express my gratitude to several of my colleagues and friends—
within Xilinx and outside—who agreed to write the chapters on their areas of exper-
tise and also reviewed each other’s work. Each of these authors is highly
knowledgeable in their respective areas. They took time out of their regular work to
be able to contribute to this book.

 I also thank my management chain at Xilinx, especially Arne Barras, Salil Raje,
Victor Peng, and Vamsi Boppana—who were supportive of this work, even though
this was being done in my personal capacity. I also thank the Xilinx legal/HR team,
who provided me with the necessary guidance, permissions, and approvals to be
able to complete this work, including usage of copyrighted material where relevant:
Rajesh Choudhary, Lorraine Cannon Lalor, David Parandoosh, Fred Hsu, Cynthia
Zamorski, and Silvia Gianelli. Amandeep Singh Talwar has been very helpful with
fi gures and various aspects of the word processor. I often reached out to him, when-
ever I was having diffi culty on either of these two aspects. Shant Chandrakar and
Steve Trimberger helped me with specifi c items related to FPGA architecture. There
are many more who have been supporting this actively.

 I also thank my many teachers, colleagues, and seniors who have been teaching
me so many things—that I could understand Semiconductor, EDA, and now specifi -
cally Xilinx FPGAs and Vivado. Over the last 23 years of professional experience in
this fi eld, there are just too many of such people that I dare not even try to name some,
for the fear that I would end up fi lling up too many pages just with these names.

 I also thank my family members. My immediate family members obviously
adjusted with the fact that instead of spending time with them, I was working on this
book. However, my entire extended family has been highly encouraging, by express-
ing their pride very openly at my past books.

viii

 And, I’m especially thankful to Charles Glaser of Springer, who is ever support-
ive of me working on any technical book. For this book, I also thank Murugesan
Tamilselvan of Springer who is working through the actual processes involved in
publication.

 For me, writing continues to be a hobby that I cherish. And, once in a while,
when I encounter somebody who identifi es me with one of my books, the fun just
gets multiplied many times for me. To anybody who has done this, I want to give a
big “thanks” for encouraging me.

Acknowledgments

ix

 Contents

 1 State-of-the-Art Programmable Logic .. 1
 Brad Taylor

 2 Vivado Design Tools .. 17
 Sudipto Chakraborty

 3 IP Flows .. 23
 Cyrus Bazeghi

 4 Gigabit Transceivers ... 35
 Vamsi Krishna

 5 Memory Controllers ... 49
 Karthikeyan Palanisamy

 6 Processor Options ... 65
 Siddharth Rele

 7 Vivado IP Integrator ... 75
 Sagar Raghunandan Gosavi

 8 SysGen for DSP ... 85
 Arvind Sundararajan

 9 Synthesis... 97
 Nithin Kumar Guggilla and Chaithanya Dudha

 10 C-Based Design .. 111
 Duncan Mackay

 11 Simulation .. 127
 Saikat Bandopadhyay

 12 Clocking ... 141
 John Blaine

x

 13 Stacked Silicon Interconnect (SSI) .. 153
 Brian Philofsky

 14 Timing Closure .. 165
 Srinivasan Dasasathyan

 15 Power Analysis and Optimization ... 177
 Anup Kumar Sultania , Chun Zhang , Darshak Kumarpal Gandhi ,
and Fan Zhang

 16 System Monitor ... 189
 Sanjay Kulkarni

 17 Hardware Debug ... 205
 Brad Fross

 18 Emulation Using FPGAs .. 219
 Paresh K. Joshi

 19 Partial Reconfiguration and Hierarchical Design................................ 237
 Amr Monawir

 References .. 251

 Index ... 255

Contents

1© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_1

 Chapter 1
 State-of-the-Art Programmable Logic

 Brad Taylor

1.1 Introduction

 The FPGA or fi eld-programmable gate array is a wonderful technology used by
electronic system developers to design, debug, and implement unique hardware
solutions without having to develop custom silicon devices. Xilinx is a semiconduc-
tor manufacturer of standard FPGA chips which are sold blank or unprogrammed to
customers. The customers then program these devices to implement their unique
systems. If a feature changes or a bug is discovered, the user can simply load a new
program to the FPGA to create a new product or upgrade. This process can even
continue after shipment in the form of fi rmware upgrades. The act of programming
the FPGA is called confi guration to distinguish it from loading any associated soft-
ware programs. With modern FPGAs however, the line is blurring between hard-
ware confi guration and software programming.

 All this programmability requires additional silicon area compared to hard ASIC
(application-specifi c integrated circuit) implementations of the same logic. This is
because in ASIC implementations the gates and wiring are fi xed. This area cost pen-
alty can be in the 1.5–10X range for FPGAs. However, the ASIC also must include the
development cost and schedule which can be in the range of $10–$500 million dollars
and can take several years with teams of hundreds of developers. With each generation
of lithography, the cost to develop an ASIC increases. For these reasons, most medium-
sized and smaller systems rely on a mix of FPGAs for customization along with stan-
dard ASIC or ASSPs and memories.

 This revolutionary technology has impacted the electronic product development
cycle for nearly all electronic devices since its introduction in the late 1980s.

 B. Taylor (*)
 Santa Cruz , California , USA
 e-mail: mail.brad.taylor@gmail.com

mailto:mail.brad.taylor@gmail.com

2

1.2 The Evolution of Programmable Logic

 The initial user programmable devices called PLDs (programmable logic devices)
that were developed in 1978 by MMI could replace ten or so TTL gates and were
one time programmable. This led to the reprogrammable PLDs based on EEPROM
or EPROM technologies.

 By 1985 advancing lithography enabled a new class of device, the FPGA. FPGAs
introduced two important new architecture features: programmable routing to inter-
connect the increasing number of gates on a device and a programmable gate called
a LUT or lookup table with an associated register. The initial devices from Xilinx
contained up to a hundred LUT and fl ip-fl op pairs in a basic logic element called a
 CLB or confi gurable logic block . Rather than using a permanently programmed
EPROM or EEPROM memory, Xilinx FPGAs relied on CMOS memories to hold
programming information. Figure 1.1 illustrates the technological improvement of
modern FPGAs relative to the original Xilinx XC2064 which had 64 programmable
logic cells.

 The FPGA took its place as a central component in digital systems, replacing
PLDs and TTL for implementing glue logic. In the 1990s new uses began to emerge
for FPGAs, which were becoming more capable than just gluing I/O to processors.
The emerging Internet became a growth driver for FPGAs with FPGAs being used
for prototyping, initial deployment, and full-scale production of Internet switches
and routers. By 2000 communications systems were the primary market for FPGAs.
Other new markets for FPGAs also emerged for ASIC prototyping (Chap. 18) and
high-performance DSP (digital signal processing) systems (Chap. 8). FPGAs also
began to be used for implementing soft control processors such as the Xilinx
MicroBlaze (Chap. 6) and PicoBlaze architectures.

 Fig. 1.1 FPGA evolution since the 1980s

B. Taylor

http://dx.doi.org/10.1007/978-3-319-42438-5_18
http://dx.doi.org/10.1007/978-3-319-42438-5_8
http://dx.doi.org/10.1007/978-3-319-42438-5_6

3

 The original FPGA architecture was a simple implementation of a programma-
ble logic block. With each new generation, new programmable functions have been
added along with hardening of some specifi c functions in order to reduce the cost or
improve the performance of FPGAs in digital systems. These blocks continue to
evolve in each generation. Many important functions have been added since the
initial FPGAs including the following:

• Fast carry chains for high-speed adders and counters
• Small memories called distributed RAM s (or LUTRAM s)
• Block memories (BRAM or block RAMs)
• A hard RISC processor block based on the PowerPC
• Multi-Gigabit or MGT serial transceivers
• The DSP48 for digital signal processing
• Hard PCI blocks
• A complete system on chip (SoC) as a hard block in the FPGA in the Zynq family

of FPGAs

 The inclusion of hard blocks in FPGAs is driven by the trade-off between usage
and cost. For customers which use these functions, value and performance are
increased; however, if these hard blocks are not used, they are wasted space which
can increase cost. Additionally these hard functions require signifi cant software
support to be useful to customers. For these reasons, hardening functions have been
limited to those functions of clear value in important market verticals.

1.3 Current Applications for FPGAs

 FPGAs fi nd their usage in many applications today. Some of the most commonly
used applications of FPGAs (and the reasons for FPGA being the sweet spot) include:

• ASIC prototyping: Chap. 18 covers more on this.
• Wired communications: For system development, while the standards themselves

are evolving.
• Wireless communications: DSP in FPGAs is a major attraction for algorithmic

computations.
• Video systems and machine vision: Implement software algorithms at higher

speed and lower power.
• Industrial systems: Communication link between sensor nodes and robotic systems.
• Medical systems: I/O interfaces including A-to-D and D-to-A conversion.
• Automotive systems: Video processing (for driver assistance), fi eld

upgradability.
• Military and aerospace: Radio waveform processing and processing of huge

amount of sensor data.
• Data center: Interfaces to SSD (solid-state disks), machine learning related

algorithms.

1 State-of-the-Art Programmable Logic

http://dx.doi.org/10.1007/978-3-319-42438-5_18

4

1.4 Application Level System Architectures

 The above applications in turn identify the need for the following system level
usage, which might be applicable in multiple markets.

1.4.1 Glue Logic and Custom Interface IP

 This was the original use case for early FPGAs. Typically the FPGA is used to
interface a processor IC to a variety of I/O devices and memory-mapped devices.
This use case requires low-cost FPGAs with plentiful I/O. Key features are combi-
natorial programmable logic nets, IOBs, and internal registers.

 Often an application will require a custom interface such as an industrial inter-
face or perhaps multiple interfaces such as USB. If these interfaces are not available
in the user’s SoC, they can be implemented in a companion FPGA.

1.4.2 Communications Switch

 Multiple interfaces of various standards and performance levels such as 10G
Ethernet are connected together via an FPGA implemented switch. These switches
are common in Internet, industrial, and video networks.

1.4.3 I/O Stream Processing

 FPGAs are ideal devices to connect to high-bandwidth real-time I/O streams such
as video, radio, radar, and ultrasound systems. Often the system is used to reduce
the high-native bandwidth of the I/O stream to levels manageable for a processor.
For instance, a radio front end may sample A/D data at 1 GHz but after down con-
version produces a more moderate rate of 10 MB/s. Conversely lower-bandwidth
data may be up converted to a high-bandwidth I/O stream. Another example is a
video system with a frame buffer which may be updated infrequently, but the video
output stream is a real-time high-bandwidth stream.

1.4.4 Software Acceleration

 An emerging FPGA system architecture allows software to be accelerated either
with a companion FPGA attached to a high-end CPU or with an SoC-based FPGA
such as the Zynq UltraScale + MPSoC (MPSoC). This acceleration will usually be

B. Taylor

5

accompanied by a signifi cant power reduction per operation. In this use case, the
FPGA is programmed on the fl y to implement one or more cascaded software func-
tion calls on data in memory. The FPGA gates are compiled or derived from a com-
mon C language source which can be implemented either on the FPGA or on the
CPU. This allows the FPGA to act as a high-performance library call for common
software functions such as matrix inversion and deep neural networks.

1.5 FPGA Architecture

1.5.1 FPGA Architecture Overview

 The primary function of the FPGA is to implement programmable logic which can
be used by end customers to create new hardware devices. FPGAs are built around
an array of programmable logic blocks embedded in a sea of programmable inter-
connect. This array is often referred to as the programmable logic fabric or just the
 fabric . At the edges are programmable I/O blocks designed to interface the fabric
signals to the external world. It was this set of innovations that sparked the FPGA
industry. Figure 1.2 shows a basic architecture of an FPGA.

 Interestingly, nearly all the other special FPGA features such as carry chains,
block RAM, or DSP blocks can also be implemented in programmable logic. This
is in fact the approach the initial FPGAs took and users did implement these func-
tions in LUTs. However, as the FPGA markets developed, it became clear that these
special functions would be more cost effective as dedicated functions built from
hard gates and later FPGA families such as the Xilinx 4 K series and Virtex began

 Fig. 1.2 Basic FPGA architecture

1 State-of-the-Art Programmable Logic

6

to harden these special functions. This hardening improved not only cost but also
improved frequency substantially.

 Within any one FPGA family, all devices will share a common fabric architec-
ture, but each device will contain a different amount of programmable logic. This
enables the user to match their logic requirements to the right-sized FPGA device.
FPGAs are also available in two or more package sizes which allow the user to
match the application I/O requirements to the device package. FPGA devices are
also available in multiple speed grades and multiple temperature grades as well as
multiple voltage levels. The highest speed devices are typically 25 % faster than
the lower speed devices. By designing to the lowest speed devices, users can save
on cost, but the higher performance of the faster devices may minimize system
level cost.

 Modern FPGAs commonly operate at 100–500 MHz. In general, most logic
designs which are not targeted at FPGA architectures will run at the lower fre-
quency range, and designs targeted at FPGAs will run in the mid-frequency range.
The highest frequency designs are typically DSP designs constructed specifi cally to
take advantage of FPGA DSP and BRAM blocks.

 Sections below describe a high level overview of FPGA architectures. Please
refer to Xilinx’s data sheets and user guides for more detailed and current
information.

1.5.2 Programmable Interconnect

 Woven through the FPGA logic fabric is a set of wires which can be wired together
to connect any two blocks in an FPGA. This enables arbitrary logic networks to be
constructed by the user. The architecture of the interconnect wires varies from gen-
eration to generation and is hidden from the user by the tools.

1.5.3 Programmable Logic Block

 An array of programmable logic blocks are embedded into the programmable
interconnect. These are called CLBs (confi gurable logic blocks) in Xilinx devices.
Today, each logic block consists of one or more programmable logic functions
implemented as a 4–6-bit confi gurable lookup table (LUT), a confi gurable carry
chain, and confi gurable registers. We use the word confi gurable to indicate a hard
block which can be confi gured through the FPGA’s confi guration memory to be
used as part of the user’s logic. For instance, if the user design called for a register
with a clock enable (CE), the register is confi gured to have the clock enable enabled
and connected to the user’s CE signal. Figure 1.3a through c illustrates the
UltraScale CLB architecture, showing the CLB , LUT-fl ip-fl op pair, and the carry
chain structures.

B. Taylor

7

 The combination of a LUT, carry chain, and register is called a logic cell or LC .
The capacity of FPGAs is commonly measured in logic cells. For instance, the
largest Xilinx Virtex UltraScale FPGA supports up to 4 million LCs, while the
smallest Spartan device contains as few as 2000 logic cells. Depending on usage,
each logic cell can map between 5 and 25 ASIC gates. The lower number is com-
monly used for ASIC netlist emulation, while the higher number is achievable under
expert mapping.

 For Xilinx UltraScale devices, the CLB supports up to 8 × 6-input LUTs, 16 reg-
isters, and 8 carry chain blocks. Each 8-LUT can be confi gured as 2 × 5-LUTs if the
5-LUTs share common signals. For comparison purposes, Xilinx rates each 6-LUT
as the equivalent of 1.6 LCs or Logic cells.

 Embedded in the CLB is a high-performance look-ahead carry chain which
enables the FPGA to implement very high-performance adders. Current FPGAs
have carry chains which can implement a 64-bit adder at 500 MHz.

 Associated with each LUT is an embedded register . The rich register resources
of the FPGA programmable logic enable highly pipelined designs, which are a key
to maintaining higher speeds. Each register can be confi gured to support a clock
enable and reset with confi gurable polarity.

 An important additional feature of the Xilinx CLB’s 6-LUT is that it can confi gure
to implement a small 64-bit deep by 1-bit wide memory called a distributed RAM .
An alternate confi guration allows the 6-LUT to implement a confi gurable depth
shift register with a delay of 1–32 clocks.

1.5.4 Memory

 Access to memory is extremely important in modern logic designs. Programmable
logic designs commonly use a combination of memories embedded in the FPGA
logic fabric and external DDR memories. Within the logic fabric, memory can be
implemented as discrete registers, shift registers , distributed RAM, or block RAM .
Xilinx UltraScale devices support two sizes of block RAM, 36-kbit RAMs and 288-
kbit RAMs. In most cases the Xilinx tools will select the best memory type to map
each memory in the user design. In some cases, netlists optimized for FPGAs will
hand instantiate memory types to achieve higher density and performance.

 Special forms of memory called dual-port memories and FIFOs are supported as
special modes of the block RAMs or can be implemented using distributed RAM .

 System memory access to external DDR memory (Chap. 5) is via a bus interface
which is commonly an AXI protocol internal to the FPGA. UltraScale FPGAs support
72-bit wide DDR4 at up to 3200 MB/s.

 In general, registers or fl ip-fl ops are used for status and control registers, pipelining,
and shallow (1–2 deep) FIFOs. Shift registers are commonly used for signal delay
elements and for pipeline balancing in DSP designs. Distributed RAMs are
used for shallow memories up to 64 bits deep and can be as wide as necessary.
Block RAMs are used for buffers and deeper memories. They can also be aggregated

1 State-of-the-Art Programmable Logic

http://dx.doi.org/10.1007/978-3-319-42438-5_5

8

 Fig. 1.3 (a) UltraScale CLB, (b) one of the eight LUT-fl ip-fl op pairs from an UltraScale CLB, (c)
carry chain paths

CROSSBAR
SWITCH

F
P

G
A

 R
O

U
T

IN
G

CROSSBAR
SWITCH

O0

CLB

LUT
#1

LUT
#8

l0

l0

l63
l7

l56

l63

O0

O31

O1

O2

O3

O28

O29

O30

O31

B. Taylor

9

O6 From LUTH

O6 From LUTG

O5 From LUTG

O5 From LUTF

O6 From LUTE

O6 From LUTE

O5 From LUTD

O5 From LUTC

O6 From LUTB

O6 From LUTB

O6 From LUTA

O5 From LUTA

O6 From LUTC

O6 From LUTD

O6 From LUTF

HX

GX

FX

EX

DX

CX

BX

AX

D10

CYINIT

MUXCY

MUXCY

MUXCY

MUXCY

CYINIT

D14

D15

D16

D17

S4

S5

S6

S7

CO7

CO6

CO5

CO4

CO3

CO2

CO1

CO0

O7

O6 GMUX

GMUX/GQ(1)

HMUX/HQ(1)

HQ

FMUX/FQ(1)

EMUX/EQ(1)

DMUX/DQ(1)

CMUX/CQ(1)

BMUX/BQ(1)

AMUX/AQ(1)

AQ

BQ

CQ

DQ

EMUX

FMUX

GQ

(Optional)

(Optional)

(Optional)

(Optional)

(Optional)

(Optional)

(Optional)

(Optional)

Note 1: Can be used it
unregistered/registered
outputs are free.

O5

O4

O3

O2

O1

O0

0 1

MUXCY

MUXCY

MUXCY

MUXCY

COUT

Carry Chain Block (CARRY8)

CIN

CIN

S0

S1

S2

S3

D11

D12

D13

O5 From LUTH

0 1

D Q

D Q

D Q

D Q

D Q

D Q

D Q

FQ

EQ

DMUX

CMUX

BMUX

AMUX

HMUX

Fig. 1.3 (conrinued)

1 State-of-the-Art Programmable Logic

10

together to support arbitrary widths and depths. For instance, a 64-bit wide by
32 K-bit deep memory would require 64 block RAMs. Generally FPGAs contain
around 1 36 K block RAMs for every 500–1000 logic cells.

1.5.5 DSP Blocks

 Modern FPGAs contain discrete multipliers to enable effi cient DSP processing.
Commonly DSP applications build pipelines or fl ow graphs of DSP operations and
data streams through this fl ow graph. A typical DSP fi lter called an FIR (fi nite
impulse response) fi lter is shown in Fig. 1.4 . It consists of sample delay blocks,
multipliers, adders, and memories for coeffi cients. Interestingly this graph can be
almost directly implemented as an FPGA circuit.

 For fi ltering and many other DSP applications, multipliers and adders are used to
implement the fl ow graph. Xilinx FPGAs contain a DSP block known as a DSP48
which supports an 18-bit × 25-bit multiplier, a 48-bit accumulator, and a 25-bit pre-
adder. In addition up to four levels of pipelining can be supported for operation up
to 500 MHz. The DSP48 supports integer math directly; however, 32-bit and 64-bit
fl oating point operations are supported as library elements. A 32-bit fl oating point
multiplier will require two DSP48s and several hundred LCs.

 Xilinx tools will generally map multipliers and associated adders in RTL or HDL
languages to DSP48 blocks. For highest performance however, designs optimized
for DSP in FPGAs may use DSP48 aware libraries for optimal performance, power,
and density.

1.5.6 Clock Management

 Logic netlists almost universally require one or more system clocks to implement
synchronous netlists for I/O and for internal operation. Synchronous operation uses a
clock edge to register the results of upstream logic and hold it steady for use by

 Fig. 1.4 DSP fl owgraph

B. Taylor

11

downstream logic until the next clock edge. The use of synchronous operation allows
for pipelined fl ow graphs which process multiple samples in parallel. External digital
communications interfaces use I/O clocks to transfer data to and from the
FPGA. Commonly, interface logic will run at the I/O clock rate (or a multiple of the
I/O clock rate). Chapter 12 covers more on clocking resources available on Xilinx
FPGAs.

1.5.7 I/O Blocks

 One of the key capabilities of FPGAs is that they interface directly to external input
and output (I/O) signals of all types and formats. To support these diverse require-
ments, modern FPGAs contain a special block called the I/O block or IOB . This
block contains powerful buffers to drive external signals out of the FPGA and input
receivers, along with registers for I/O signals and output enables (OE). IOBs typi-
cally support 1.2–3.3 V CMOS as well as LVDS and multiple industry I/O memory
standards such as SSTL3. For a complete list, refer to the device datasheet. I/Os are
abstracted from the user RTL and HDL design and are typically confi gured using a
text fi le to specify each I/O’s signaling standard.

 UltraScale devices also include multiplexing and demultiplexing features in the
I/O block. This feature supports dual data rate (DDR) operation and operation for
4:1 or 8:1 multiplexing and demultiplexing. This allows the device to operate at a
lower clock rate than the I/O clock. For example, Gigabit Ethernet (SGMII) oper-
ates at 1.25 GHz over a single LVDS link, which is too fast for the FPGA fabric to
support directly. The serial signal is expanded to 8/10 bits in the IOB interface to the
fabric allowing the fabric to operate at 125 MHz.

 I/Os are commonly a limited resource, and FPGAs are available in multiple
package sizes to allow the user to use smaller lower-cost FPGAs with lower signal
count applications and larger package sizes for higher signal count applications.
This helps to minimize system cost and board space.

 A primary application of FPGA I/Os is for interfacing to memory systems.
UltraScale devices support high-bandwidth memory systems such as DDR4.

1.5.8 High-Speed Serial I/Os (HSSIO)

 CMOS and LVDS signaling are limited in performance and can be costly in terms
of power and signal count. For this reason, high-speed serial I/Os have been devel-
oped to enable low-cost, high-bandwidth interfaces. This evolution can be seen in
the evolving PCI standard which has moved from low-speed 32-bit CMOS inter-
faces at 33 MHz to PCIe Gen3 with 1–8 lanes at 8 Gb/s lane. An eight-lane PCIe
Gen3 interface can transfer 64 Gb/s of data in each direction. Xilinx UltraScale
devices support up to 128 MGT (Multi-Gigabit Transceivers) at up to 32.75 Gb/s.

1 State-of-the-Art Programmable Logic

http://dx.doi.org/10.1007/978-3-319-42438-5_12

12

 Within the FPGA, the HSSIO are interfaced directly to a custom logic block
which multiplexes and demultiplexes the signals to wide interfaces at lower clock
rates. This block also performs link calibration and formatting.

1.6 System on Chip

 Current generation FPGAs now include an optional system on chip (SoC).
These are available in the Zynq-7000 devices as well as the UltraScale + MPSoC
devices. These SoCs include a state-of-the-art quad core ARM A53 application
processor, an external DDR DRAM interface, internal memory and caching
system, common I/O peripherals, and a set of high-bandwidth interfaces to
the FPGA programmable logic.

 The SoC is built using ASIC technology and is competitive with discrete embedded
processors in cost and performance. It boots when powered up from an external
fl ash memory. The processor is then available to load the FPGA design. While boot-
ing, the CPU boot code is optionally decrypted and authenticated enabling secure
and safe embedded systems. Chapter 6 talks more about using these devices.

1.6.1 Operating System Support

 The SoC system is capable of running bare-bones without an operating system
or running a real-time operating system (RTOS) or embedded OSs such as
 Linux . It also supports asymmetric OSs where, for example, one core runs
Linux and the other core runs an RTOS. This capability is ideal for embedded
systems.

1.6.2 Real-Time OS Support

 The MPSoC also includes a separate dual core ARM R5 processor. This processor
is optimized for real-time applications and can optionally run in lockstep for high-
reliability applications. The combination of the dual core R5 and the quad core A53
enables secure, high-reliability, real-time processing, while the A53 application
processor executes application code. This combination is ideal for embedded,
industrial, and military applications.

B. Taylor

http://dx.doi.org/10.1007/978-3-319-42438-5_6

13

1.7 System Level Functions

 In addition to the SoC and programmable logic array, FPGAs include system level
functions for confi guring and monitoring FPGAs.

1.7.1 System Monitor

 For industrial and embedded applications, it is desirable to be able to monitor the
voltage of system power supplies and various analog signals as well as the internal
temperature of the FPGA. This allows the FPGA to detect if the power rails are
within specifi ed tolerance and allows the FPGA to know it is operating legally. For
this reason and also for security reasons, FPGAs incorporate a small multichannel
ADC (analog-to-digital converter). Chapter 16 covers more on system monitor.

1.7.2 Fabric Power Management

 Before SoCs were introduced, FPGAs operated on a single power domain. Typically
several voltages are required for the FPGA, the logic power supply, the auxiliary
power supply, and the I/O power supplies. The FPGA fabric supports several features
which allow the user to manage and minimize system power. FPGA fabric power
consists of two types of power—static power which exists even if the device is not
operating and dynamic power which is a function of clock rates and data activity.
Static power is quite low at low temperatures but can rise to signifi cant levels at maxi-
mum die temperatures. Additionally some speed and temperature grades have lower
static power than others. The -2L speed grade is designed to operate at lower voltage
levels enabling lower system power. The user has some fl exibility to manage power by
throttling fabric clocks if idle and by lowering die temperature using fan control.

1.7.3 SoC Device Power Management

 The SoC devices introduce some additional fl exibility in power management if the
application allows for sometimes running in reduced functionality or idle modes.
The Zynq-7000 devices support independent PS (processing system) and PL (pro-
grammable logic) power domains. Thus, if the PL is idle, its power supply can be
removed. The MPSoCs support even fi ner-grained power domains and can be placed
into low-power modes with only the R5s operating. This allows system power as
low as 50 mW to be achieved for low-performance modes. Normal operation of the
SoC would be in the 1–3 W range and the PL could be in the 2–20 W range.

1 State-of-the-Art Programmable Logic

http://dx.doi.org/10.1007/978-3-319-42438-5_16

14

1.7.4 Confi guration

 Both the PS SoC and the PL require confi guration data to function. For the PS this
is boot code, and for the PL, it is called the bitstream data. FPGAs will commonly include
a dedicated block to confi gure the FPGA from various sources of bitstream data.
Xilinx supports boot over JTAG, over a dedicated serial or parallel interface and from
dedicated fl ash memory devices. In the SoC devices, confi guration is supported by
a confi guration controller in the SoC. Optionally UltraScale devices can be booted
over a PCIe interface, eliminating the cost of local fl ash storage and simplifying
system level confi guration data management.

1.7.5 Security

 FPGA security is a relatively new concern, but modern devices contain multiple security
features which are used to decrypt, authenticate, and monitor confi guration data.

 Encryption is used to obscure the confi guration data which is stored in external
memory devices. This is valuable to protect user IP (intellectual property) as well as
to provide protection for passwords and keys embedded in the confi guration data.
FPGAs now store one-time programmable encryption key (of up to 256 bits) which
is used to decrypt confi guration data on the fl y.

 Today it is critical for system integrity to check confi guration data for correct-
ness before loading into the PL and SoC. The confi guration controller optionally
does this by fi rst checking to see if the boot code or bitstream can be authenticated.
The MPSoC devices support authentication of up to 4 K bits in hardware. If an
authentication fails, the device cannot be booted. The bitstream is authenticated
against a decryption key stored in external memory.

 Additional features of MPSoC devices include tamper detection circuitry with
clock, power, and temperature monitoring. This can be used to deter attacks based
on operating the device outside of its legal operating conditions.

 Within the Zynq UltraScale + PS , hardware is used to isolate various parts of the sys-
tem. This can prevent the application code from overwriting the secure real-time code.

1.7.6 Safety

 FPGAs are physical devices which are specifi ed to operate under specifi c voltage
and temperature conditions. They have a designed lifetime of 10 years of opera-
tion after which they may fail in various ways. During normal operation cosmic
rays and alpha radiation from radioactive trace elements can upset device regis-
ters. For these reasons circuitry has been built into the FPGA to monitor confi gu-
ration data changes due to upset or other effects. The FPGA confi guration data is

B. Taylor

15

monitored for a digital signature. If this changes unexpectedly, a signal is raised
which can reset the FPGA. Memories are particularly sensitive to upset, and all
PL block RAMs and the large PS memories have added parity bits to detect a
single event upset.

1.7.7 Debug

 Getting a large FPGA to production is a challenging effort. In order to facilitate
debugging a dedicated JTAG interface is provided on the FPGA and PS. This inter-
face has access to the FPGA confi guration system and the PS memory map. It can be
used to download code and to test system level I/O interfaces. Cross-trigger circuitry
is available to debug SoC software and PL hardware simultaneously. The PS also
includes support for standard ICE debugging pods.

1.7.8 Performance Monitoring

 The MPSoC includes a number of performance monitors which can check and measure
traffi c on the AXI interconnect. For the PL these performance monitoring blocks
can be implemented in soft logic to monitor PL AXI events.

1 State-of-the-Art Programmable Logic

17© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_2

 Chapter 2
 Vivado Design Tools

 Sudipto Chakraborty

 The Vivado suite of design tools contain services that support all phases of FPGA
designs—starting from design entry, simulation, synthesis, place and route, bitstream
generation, debugging, and verifi cation as well as the development of software targeted
for these FPGAs.

 You can interact with the Vivado environment in multiple ways. This includes a
GUI-based interface for interactive users, as well as a command-line interface if you
prefer to use batch mode. Vivado also supports a scripting interface with a rich set of
 Tcl commands. These multiple modes of interaction can also be combined in different
ways to suit the exact needs of users. These are explained in detail below.

2.1 Project vs. Non-project Mode

 There are two primary ways to invoke design fl ows in Vivado—using a project or a
 non-project mode. In the fi rst case, you start by creating a project to manage all your
design sources as well as output generated from executing design fl ows. When a
project is created, Vivado creates a predetermined directory structure on disk, which
contains folders for source fi les, your confi gurations, as well as output data. Once a
project has been created, you can enter and leave the Vivado environment as needed,
and each time you can start from where you left off, without having to start from
scratch each time. The project-based environment supports the notion of runs which
allow users to invoke design fl ows like synthesis and implementation. You are allowed
to customize the design environment in multiple ways, and these confi gurations are
also persisted in the project environment in the form of “metadata.”

 S. Chakraborty (*)
 Xilinx , Longmont , CO , USA
 e-mail: sudipto@xilinx.com

mailto:sudipto@xilinx.com

18

 The directory structure created for a project is as follows:

 <project>/
 <project>.xpr : the main project fi le in text format
 <project>.srcs/ : directory for sources local to a project
 <project>.ip_user_fi les/ : directory for user accessible IP fi les
 <project>.runs/ : directory for output data from synth/impl
 <project>.sim/ : directory for output data from simulation
 <project>.hw/ : directory for hardware debug related data
 <project>.cache/ : directory for locally cached data
 <project>.ipdef/ : directory for local IP defi nitions

 Not all of the above mentioned directories will always be created. For example,
a Vivado project supports referring to design sources remotely from their original
location or copying them locally inside the project directory structure, based on user
preference. The <project>.srcs directory is only created if there are such local cop-
ies of source fi les present.

 In the non-project mode, you interact more directly with the Vivado environment
using lower level commands. This mode is called non-project because you do not
directly create a project to get your design fl ows to complete. However, it is important
to note that a project object does exist in this case also; it is created automatically to
manage certain aspects of the design fl ows. This project object exists only in mem-
ory while your session is active and does not create the on-disk structure described
above. Since there is no automatic persistence of data on disk, all data is maintained
only in memory and available only during the current session. Hence, you need to
make sure that all necessary output is generated before you exit the current non-
project session of Vivado.

 One interesting note here is that the project mode of Vivado is actually built on
top of the non-project mode, as explained in Sect. 2.2.1 .

2.2 GUI, Command Line, and Tcl

 Vivado offers a fully interactive graphical user interface to allow you to more easily
manage your design sources and go through all phases of the design fl ow. Vivado
also supports doing all these operations in a non-GUI, command-line environment.
The common connection between these two interfaces is the Tcl commands that
drive Vivado. Almost all operations performed during the GUI mode end up issuing
a Tcl command to the core Vivado engine . These commands are shown in the Tcl
console in the GUI and are also captured in a journal fi le, which is typically located
where Vivado was started from, and the fi le is named vivado.jou . When working in
command-line mode, these Tcl commands can be issued directly without needing
the presence of a GUI.

S. Chakraborty

19

2.2.1 Interaction with Project/Non-Project

 While it is common for GUI-based users to typically use the project mode, it is also
possible to execute the fl ows in non-project mode while being in the GUI. Similarly,
command-line users can choose to use either project mode or non-project mode.

 The Tcl commands supported for project mode are higher level, macro style com-
mands which perform many functionalities under a single command. The Tcl com-
mands for the non-project mode, on the other hand, are more granular WYSIWYG
(what you see is what you get) type of commands which only perform the specifi ed
operation, no more no less. Some project mode commands actually use many
 non-project commands internally to perform the desired operation. This explains the
comment in Sect. 2.1 that project mode in Vivado is actually built on top of the non-
project mode.

 Scripts 1 and 2 are example scripts for project mode and non-project mode,
which both perform the same operation, but the non-project script is more verbose
since it uses more granular commands.

 Script 1: Project mode example Tcl script
 create_project project_1
 add_fi les top.v child.v
 launch_runs -to_step write_bitstream impl_1
 close_project

 Script 2: Non-Project Mode Tcl Script
 read_verilog top.v
 read_verilog child.v
 synth_design -top top
 opt_design
 place_design
 route_design
 report_timing_summary
 write_checkpoint top_routed.dcp
 write_bitstream top.bit

2.2.2 Runs Infrastructure

 In the Script 1 and Script 2 examples, the launch_runs command is a macro command
which is part of the Vivado runs infrastructure . This command internally creates a
 Tcl script which looks similar to the non-project example Script 2 and automatically
launches this script with a new Vivado session to execute the fl ow.

2 Vivado Design Tools

20

 Runs infrastructure allows managing the output products from design fl ow auto-
matically. It also maintains status of the fl ow execution, such that if a design source
fi le changes, it automatically lets you know that the previously generated output
product is now out-of-date and if you relaunch the end step of a run, it automatically
determines which previous steps need to be performed fi rst and executes them
automatically.

 The runs infrastructure also allows parallel execution of independent portions of
the design fl ows to complete the overall fl ow quicker. These parallel runs can be
executed on multiple processors in the same host machine, or if a compute farm like
 LSF or GRID is available, the multiple runs can be executed on different host
machines in the compute farm.

2.3 Overview of Vivado GUI

 This section provides a high level overview of the Vivado GUI and some recom-
mendation for fi rst-time users. Vivado is designed based on a concept of layered
complexity. This means using the tool for common tasks and designs is made as
automated and easy as possible without having to have detailed knowledge of the
tool. However, once you get more familiarized with the tool and want to use
advanced features to control your design fl ows in a customized manner, Vivado
allows you with higher control with fi ner granularity.

 Vivado GUI and project- based mode is highly recommended for fi rst-time users
or those who want to get quickly up and running. Using the GUI makes it easy to use
the various wizards (like New Project wizard) to get started. First-time users can leave
all settings at default and let the tool decide best automatic options. There are several
example projects included with Vivado which you can readily open and use to try out
the design fl ows. If you want to try your own design, the only two minimum required
pieces of input are an HDL fi le to describe the design and a constraint fi le to specify
the timing intent and pin mapping of the in/out signals to specifi c FPGA pins.

 Figure 2.1 shows the screenshot of the Vivado GUI with some of the key areas
highlighted:

 1. This area is called the Flow Navigator . It provides easy, single click access to the
common design fl ow steps and confi guration options.

 2. This area shows the sources in the design. The fi rst tab here shows a graphical
view of the sources with modules and instance relationships. The other tabs in
this area show other key aspects of design sources.

 3. This area shows the properties of the items selected in the GUI.
 4. This area shows the Tcl console in the GUI as well as various reports and design

run related details.
 5. This area shows the built-in text editor, information related to project summary, etc.
 6. This is a view of a design open in the GUI, which is key to all the design

implementation steps.

S. Chakraborty

21

 Starting in the GUI and following the wizards make it easy to get started with the
Vivado design fl ow. At the same time, as the various operations are being performed
in the GUI, Vivado generates equivalent Tcl commands for those operations in the
Tcl console area, as well as in the journal fi le as mentioned in Sect. 2.2 . Using these
Tcl commands, you can later customize the fl ow or build other similar fl ows.

 Fig. 2.1 Overall organization of Vivado GUI

2 Vivado Design Tools

23© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_3

 Chapter 3
 IP Flows

 Cyrus Bazeghi

3.1 Overview

 Intellectual property (IP) cores are fundamental criteria when selecting which
FPGA vendor and specifi c part to choose for a design. IP provides an easy mecha-
nism for incorporating complex logic in your designs, from high-speed gigahertz
transceivers (GTs) to digital signal processors (DSPs) as well as soft microproces-
sors (MicroBlaze) to an embedded ARM system on a chip (SoC). Xilinx-provided
IP have been optimized and tested to work with the FPGA resources including DPS,
block RAM, and IO, greatly accelerating design development.

 Most of the IP provided in the Vivado Design Suite have the license included,
allowing the use of the IP in your designs. Some IP require a license to be purchased
from Xilinx or an Alliance partner. IP licensing information is provided in the IP
Catalog which will direct you to the appropriate web source.

 The Vivado Design Suite includes the IP Catalog to deliver plug-and-play Xilinx
IP as well as some third-party alliance partner IP. The catalog can be expanded with
additional IP from third party IP developers or your own created IP. Your own IP
could be created through:

• C/C++ algorithms compiled using the Vivado high-level synthesis (HLS) tool
(see Chap. 10)

• Modules from system generator for DSP designs (MATLAB ® from Simulink ®
algorithms) (see Chap. 8)

• Designs packaged as IP using the Vivado Design Suite IP Packager

 C. Bazeghi (*)
 University of California Santa Cruz , San Jose , CA , USA
 e-mail: cyrusbazeghi@outlook.com

http://dx.doi.org/10.1007/978-3-319-42438-5_10
http://dx.doi.org/10.1007/978-3-319-42438-5_8
mailto:cyrusbazeghi@outlook.com

24

 The Vivado IP Packager enables you to create plug-and-play IP which can be
added to the extensible Vivado IP Catalog. The IP Packager is based on IP-XACT
(IEEE Standard 1685), Standard Structure for Packaging, Integrating, and Reusing
IP within Tool Flows .

 After you have assembled a Vivado Design Suite project, the IP Packager lets
you turn your design into a reusable IP module that you can then add to the Vivado
 IP Catalog and that others can use as a design source.

 The IP Catalog is available either from within a Vivado Design Suite project or
using a special Managed IP project. Both are available from the start screen.

 The overall fl ow for IP consists of the following stages:

• Use the IP Catalog to fi nd the IP required for the design.
• Customize the IP by specifying confi guration options (produces an IP custom-

ization .xci).
• Generate the IP (Generate Output Products).

 – Copy fi les from the Vivado Design Suite installation area to the user-specifi ed
location or project.

 – By default include synthesizing the IP stand-alone (out-of-context).

• Instantiate the IP in designs (or in an IP integrator block design).
• Simulate.

 – Behavioral
 – Netlist

• Synthesize and implement.

3.2 IP Catalog

 The IP Catalog (Fig. 3.1) provides a central and searchable place for all Xilinx-
delivered IP, third party vendor IP, as well as user-created IP. To package RTL and
constraints into a custom IP, the Vivado IP Packager is provided. The IP is grouped
into categories either as a business segment such as Communication & Networking ,
 Automotive & Industrial , by function such as Digital Signal Processing and Debug
& Verifi cation or by creator Alliance Partner and User Repository .

 You can search by keyword, name, type, or function. You can expand to specify
search options: case sensitivity (default is insensitive), toggle use of wildcards
or use of regular expressions (default is neither), and match from start/match
exactly/match anywhere (default).

 Make sure to read the product guides for the IP cores that you plan to use in your
design. The product guides provide important information on the functionality,
requirements, use cases, and other details such as known issues for the IP which
should be considered. The IP Catalog provides a convenient place to access the
product guide, change log, product website, and any answer records for the IP.

C. Bazeghi

25

3.3 IP Customization

 Each IP has many confi guration options that can be set, for example, for a FIFO,
width and depth, independent read and write clock, etc. (Fig. 3.2). A particular set
of options for an IP is referred to as customization and will have a unique user-
provided name. The customization options are encapsulated in the IP_name. xci fi le.
Once an IP customization has been created, you can instantiate it in your design
using the instantiation template (need to generate the output products to get this; see
Sect. 3.4) as many times as required. Creating an IP customization does not add it
to your design; you must instantiate it in your RTL for it to be used. You can create
multiple customizations of the same IP, each with differing confi guration options
having a unique name.

 There are three ways in which to create an IP customization:

• Managed IP Project (recommended)
• Directly from within a Vivado RTL project
• Using Tcl script

 Fig. 3.1 Vivado IP Catalog

3 IP Flows

26

3.3.1 Managed IP Project

 It is recommended when working with IP that you use a Managed IP project. This
is a special Vivado project specifi cally for creating IP customizations. The same IP
Catalog found in a Vivado RTL Project is provided to search for and customize
IP. Each IP created is kept in its own folder with the user-provided name used during
the customization. If you elect to use the Core Container feature (explained in
Sect. 3.4.3), a single compressed binary fi le with the name given during customiza-
tion with the extension of .xcix will be present. The IP folder or Core Container fi le
are stored outside of the Managed IP Project directory. The IP folder or Core
Container fi le can be copied into a revision control system along with other design
sources. If electing to use a folder for the IP, it is recommended that you place the
entire folder and all contents into revision control.

 From the starting page of Vivado, select Manage IP (Fig. 3.3). You can either
specify a new location on disk for a Managed IP Project or open an existing
location.

 Fig. 3.2 Example of an IP customization GUI

 Fig. 3.3 Icon for creating
or opening a managed IP
project

C. Bazeghi

27

3.3.2 Within a Project

 You can elect to create IP customizations from directly within an RTL project. From
the Flow Navigator , select IP Catalog and search/browse for the desired IP. During
customization, by default the IP and associated fi les will be stored in the Vivado
project directory structure. You can change this by the IP Location button, allowing
you to specify a directory of your choice. This allows you to save the IP and its
associated fi les outside of the Vivado project directory, similar as a Managed IP
Project does. This is recommended when working with revision control systems.

3.3.3 Tcl Script

 When creating an IP customization, Tcl commands are executed to create the IP and
to apply the various options specifi ed during customization. You can add these Tcl
commands to your custom Make or script fl ow to create the IP on the fl y. To compile
your design, you would read in your RTL source, create the IP with Tcl commands,
and proceed to synthesize or implement. The downside to this approach is that each
time you build your project, the IP will have to be created and generated, which can
be time consuming if there are many IP being used. Also, if the script was created
with a previous version of Vivado, the IP might have changed the customization
options which can result in errors being encountered.

3.4 IP Generation

 Once you have customized your IP, it is recommended that you generate all the fi les
that are needed by Vivado to make use of this IP. The generation of many IP can be
done in parallel, including the synthesis of IP.

 Generating output products or generating IP refers to these two stages (Fig. 3.4):

• Copying the IP fi les from the Vivado installation area
• Vivado processing the IP

 – Produce HDL based upon the customization options specifi ed by the user.
 – Synthesize IP stand-alone (default).
 – Create simulation scripts for the IP for all supported simulators.

3.4.1 Synthesis Options

 There are two options for synthesis of the IP at the end of customizing when pre-
sented with the Generate Output Products window (Fig. 3.4):

3 IP Flows

28

• Global : The HDL fi les are created at this stage. However, the IP is synthesized
along with the user HDL each time the design is synthesized.

• Out-of-context per IP (default): The IP is synthesized at this stage, just one time.
During synthesis of the design the IP is seen as a black box. Later, during imple-
mentation, the netlist for all the IP will be combined with the top level netlist.
This can greatly reduce the top level synthesis runtime during development.

 There is no compelling reason to synthesize the IP globally. Since the Vivado
tool places a DONT_TOUCH on the IP during synthesis, there are no cross bound-
ary optimizations performed (explained in Sect. 3.6.2). Any cross boundary
 optimizations, such as propagation of constants, will be performed during
implementation.

3.4.2 Details of Generation

 Xilinx IP source fi les are delivered in the installation directory of the Vivado Design
Suite. The IP consist of HDL (much of it encrypted) as well as scripts. The options
specifi ed during customization are processed by the scripts and HDL fi les are

 Fig. 3.4 Generate output
products

C. Bazeghi

29

produced. Part of generation consists of copying all the static HDL fi les as well as
the script-generated HDL fi les to the IP directory specifi ed during IP
customization.

 Depending on the specifi c IP, different fi les will be copied from the install area
to the user-specifi ed IP folder (or to within the Core Container fi le) during genera-
tion. Possible types of fi les include:

• Static RTL fi les
• RTL fi les produced by scripts
• Instantiation templates
• Constraints
• Simulation fi les
• Testbench fi les
• Change log

 Once this stage is completed, Vivado creates simulation scripts for all the sup-
ported simulators and places these scripts in the ip_user_fi les folder (Managed IP
project) or <project_name>.ip_user_fi les (if IP created in a regular RTL project).

3.4.3 Core Container

 The Core Container is a compressed binary fi le version of the IP folder (. xcix).
Vivado will read directly (not unzip to a temporary location) from the core con-
tainer the fi les needed for synthesis, simulation, and implementation. Using this
feature greatly reduces the number of fi les on disk needed for the IP. The Core
Container is a standard ZIP fi le and can be opened with an appropriate utility,
though modifying any of the contents is not supported and will likely cause issues
with the use of the fi le.

 To enable the Core Container for all new IP, go to the Project Settings → IP→
General tab and check the box Use Core Containers for IP . Alternatively, you can
enable or disable the Core Container feature on a per IP basis. Select the IP in the
 IP Sources view, right click, and select Enable Core Container to enable. If enabled,
you can right click and select Disable Core Container . This will switch between the
IP being a folder on disk or an XCIX fi le and vice versa.

 The Core Container is a complete representative of the IP you customized. All
the fi les needed for Vivado are contained within. If using a project, the view of the
IP will be identical regardless of using Core Container or not. You can open unen-
crypted HDL and constraint fi les, which will be listed in the IP Source view exactly
the same as if not using Core Container. If outside of the Vivado project GUI, sup-
port fi les such as the instantiation template and simulation fi les can be extracted
from the Core Container using the export_ip_user_fi les command. This
will place them in the ip_user_fi les directory.

3 IP Flows

30

3.5 Using IP in Your Design

 Using an IP is straightforward. If the IP was created in an RTL project, then simply use
the provided instantiate template for either VHDL or Verilog to instantiate the IP in
your design. The template is found in the IP Sources tab for the specifi c IP. If not using
the Vivado GUI, the instantiation template can be found in the following locations:

• The IP directory
• In the < project name>.ip_user_fi les (IP created in an RTL project) or the ip_

user_fi les directory (IP created in a Managed IP project)

 If scripting your fl ow, read the IP using the read_ip command and pass the <
ip_name >.xci or <ip_name>xcix . By referencing the XCI/XCIX fi le, Vivado will pull
all required fi les in as needed, including HDL, DCP (if IP synthesized out-of- context),
constraints, etc. If scripting a non-project fl ow, the IP must be fully generated.

 Though you can use the IP DCP fi le in your fl ow, it is strongly recommended you
use the XCI/XCIX . The reasons are:

• You can track the state of the IP going forward and can upgrade if you desire.
• During implementation, the IP XDC fi les will be processed in context of the

entire netlist (see Sect. 3.6 for more details).
• If needed, you can make changes to the IP HDL (e.g., modify clocking resources).

3.6 IP Constraints

 Most Xilinx IP come with constraint fi les (.xdc). They can contain physical constraints
such as setting IO standards or locations and timing constraints, such as false paths.
These two types can be mixed in the same fi le. The constraints are written as if the IP
were the top of the design. The constraints are automatically scoped to IP instance(s).
It is strongly recommended that you do not modify the constraints delivered by an IP.

 There are two sources of constraints used by IP. If you’re a user of IP from the
available catalog, you need not worry about this distinction. However, this distinc-
tion would be of importance, if you are creating an IP of your own:

• XDC fi les created during generation of the IP and contained in the IP directory
or the Core Container

• Constraints created by Vivado automatically during the processing of the IP

3.6.1 IP Delivered

 There are three general types of XDC fi les which IP deliver:

• OOC XDC : This fi le provides the target frequency for any clocks which drive
the IP for use during out-of-context synthesis. The fi le is not used during global

C. Bazeghi

31

synthesis or global implementation. The target frequency of each clock is set
either during the IP customization via the GUI or by setting a property on the
IP after it has been created. This special XDC fi le is always processed before
all other XDC fi les that an IP may deliver. The fi le has an extension of _ooc.
xdc . Only one such fi le is delivered per IP.

• XDC fi les marked with a PROCESSING_ORDER of EARLY : The constraints con-
tained either provide clock objects or do not have any dependence, such as a clock
provided from outside the IP. These fi les are typically named <ip_name>.xdc .

• XDC fi les marked with a PROCESSING_ORDER of LATE . The constraints con-
tained have a dependency on an external clock(s) being provided. The clock(s)
would come from the top level during global synthesis and during global imple-
mentation. During out-of-context synthesis and implementation, the _ooc.xdc
provides the clock defi nition(s). These fi les have the extension of _clocks.xdc .

 With the exception of the _ooc.xdc , not all IP deliver constraint fi les. It
depends on the specifi c IP and its requirements. Typically larger and more complex
IP deliver all three. Some IP may further break their constraints up, for example,
putting the implementation specifi c constraints in one fi le and timing constraints in
another fi le.

3.6.2 Vivado Delivered

 During the processing of the IP, the Vivado tool creates additional constraints as
follows:

• The <ip_name>_ in_context.xdc fi le: This fi le is created for IP when
using the default out-of-context synthesis fl ow, where IP is synthesized
 stand- alone. The _in_context.xdc is used during global synthesis, when the IP is
a black box. After completing synthesis of the IP stand-alone, the IP is scanned
to determine:

 – Does the IP output a clock object? Some IP produce clocks which could be used
by other IP or by the user during global synthesis and implementation. The
clocking wizard is an example of one such IP. The _in_context.xdc pro-
vides these clock defi nitions, which consist of create_clock command(s)
which will put the clock object(s) on the boundary pin(s) of the IP, which will be
a black box during global synthesis. This fi le is stored within the IP DCP fi le.

 – Does the IP contain clock or IO buffers? In this case a property is set on the
respective boundary pin. With this property set on the IP black box, it will pre-
vent global synthesis from unnecessarily inserting an additional one.

• The dont_touch.xdc fi le: Depending on the version of Vivado, this fi le
might be seen being read in the global synthesis log (if the IP is synthesized glob-
ally) or in the IP out-of-context synthesis log (default). This fi le places a DONT_
TOUCH on the boundary of the IP. This serves two purposes, to prevent the IP
boundary pins from being optimized away and to prevent the IP hierarchy from

3 IP Flows

32

being altered. This guarantees any constraints an IP delivers do not get invalidated.
The DONT_TOUCH is removed at the end of synthesis. This allows constant
propagation and cross boundary optimizations to be performed during imple-
mentation after the IP constraints have been applied. In later versions of Vivado,
this may be done without the creation of the dont_touch.xdc fi le though
messaging will be produced.

3.6.3 Processing Order

 Constraints are processed in a specifi c order. For user XDC fi les, they are processed
either in the order they are read using the read_xdc command in a script or in the
order they are placed in the Vivado project (the compile order). IP are automatically
processed along with the user fi les. Synthesis option decides which IP XDC fi les
will be used: out-of-context (default) or global with the user HDL. The processing
order is important, if your design has constraints that impact an IP or your design’s
constraints depend on the constraints of the IP. For such dependence, it is important
that the dependent constraints are read later. Vivado provides you with an ability to
process your XDC fi les before or after any IP delivered XDC by setting the
 PROCESSING_ORDER , though it is not common for users to change the
 PROCESSING_ORDER property for their XDC fi les. IP use this property to cause
their various XDC fi les to come either before or after the user XDC fi les.

 The order of XDC fi les during synthesis of the top level where the IP a black box,
since it was synthesized out-of-context, is (default):

 1. Any <ip_name>_in_context.xdc fi les
 2. User fi les in the compile order set

 The order of XDC fi les when the IP is set to use global synthesis is:

 1. User fi les with the PROCESSING_ORDER property set to EARLY
 2. IP fi les with the PROCESSING_ORDER property set to EARLY
 3. User fi les with the PROCESSING_ORDER property set to NORMAL (default

order for fi les is based upon the compile order)
 4. IP fi les with the PROCESSING_ORDER set to LATE
 5. User fi les with the PROCESSING_ORDER set to LATE

 This is the same order that is used during implementation.
 To see the order in which the XDC as well as the HDL fi les are processed, use

the report_compile_order command. To see just the constraints, use the
 -constraints option. The output is organized into sections:

• HDL used during global synthesis
• HDL used during out-of-context IP synthesis
• Constraints used during global synthesis
• Constraints used during implementation

C. Bazeghi

33

• Constraints used during IP out-of-context synthesis
• Constraints used during IP out-of-context implementation (results for this are for

analysis only; to fully place and route logic for use, see the hierarchical design
document)

3.7 IP Upgrade Decisions

 Typically when moving to a new version of the Vivado Design Suite, the Xilinx IP in
your design will most likely be out-of-date and it will be locked. Each release of
Vivado only delivers one version of each Xilinx IP. Locked IP cannot be re- customized
nor be generated. If you had fully generated your IP as recommended in Sect. 3.4 ,
you can continue to use it as is since all the fi les needed for it are present.

 You can review the change log and product guide for the IP in your design and
determine if you wish to upgrade to the current version or not. The changes can vary
from simple constraint changes, possible bug fi xes, to the addition of new features.
Some upgrades will require changes to your logic as the ports of the IP could change
or the functionality might necessitate logic changes in your design.

 The process of upgrading is straightforward. Select the IP either in the Vivado
RTL project in the IP Sources area or in the Managed IP project, and right click and
select Upgrade IP . Once upgraded, you can proceed to generation of the output
products. For speed and convenience, you can upgrade multiple IP in parallel.

3.8 Simulation of IP

 One of the biggest advantages of the Vivado Design Suite is the Xilinx IP are all deliv-
ered as HDL, enabling fast behavioral simulation. The HDL fi les needed for simula-
tion are created during the generation of the output products. The fi les are all located
in the IP folder or within the Core Container fi le. When using the Core Container , the
simulation-related fi les are copied into the ip_user_fi les directory.

 When using a Vivado RTL project and launching simulations from the GUI, all
fi les required for simulating the IP are automatically sent to the simulator along with
your HDL fi les. In addition to the integrated Vivado simulator (XSIM), Vivado can
launch specifi c simulators from third parties. Chapter 11 covers more on simulation.

 If you elect to simulate outside of the Vivado Design Suite, scripts are provided
in the ip_user_fi les directory for each supported simulator. These scripts will
reference IP fi les either from the IP directory or the ip_user_fi les as applicable
depending on if you are using Core Container or not. The IP scripts can be incorpo-
rated into your own simulation scripts.

 You can also use the export_simulation command to create a script to
simulate your entire design, including the IP. The command can also copy all the
simulation HDL fi les into the directory of your choice. This makes it very easy to
start simulating your design.

3 IP Flows

http://dx.doi.org/10.1007/978-3-319-42438-5_11

35© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_4

 Chapter 4
 Gigabit Transceivers

 Vamsi Krishna

4.1 Introduction to MGT (Multi-Gigabit Transceiver)

 Xilinx ® provides power-effi cient transceivers in their FPGA architectures. Table 4.1
shows the maximum line rate supported by various transceivers for seven-series and
UltraScale architectures. The transceivers are highly confi gurable and tightly inte-
grated with the programmable logic resources of the FPGA. Because of very high
degree of confi gurability of these transceivers, Vivado also comes with GT Wizard ,
which you can use to instantiate the transceivers with the right settings and connec-
tions. It is important to understand various characteristics of the transceivers. This will
allow you to understand the system level implication of the confi guration options that
you chose in the Wizard.

4.1.1 Reference Clocks

 The reference clock input is terminated internally with 50 Ω on each leg to 4/5
 MGTAVCC . Primitives such as IBUFDS_GTE2/IBUFDS_GTE3 are used to instantiate
reference clock buffers. Advanced architectures like GTHE3/GTHE4 support output
mode of operation. The recovered clock (RXRECCLKOUT) from any of the four
channels within the same Quad can be routed to the dedicated reference clock I/O
pins. This output clock can then be used as the reference clock input at a different
location. The mode of operation cannot be changed during run time.

 The reference clock output mode is accessed through one of the two primitives:
 OBUFDS_GTE3 and OBUFDS_GTE3_ADV . The choice of the primitive depends
on your application.

 V. Krishna (*)
 Xilinx , Hyderabad , Telangana , India
 e-mail: vamsik@xilinx.com

mailto:vamsik@xilinx.com

36

 Figure 4.1 shows the detailed view of the reference clock multiplexer structure
within a single GTHE3_COMMON primitive. The QPLL0REFCLKSEL and
 QPLL1REFCLKSEL ports are required when multiple reference clock sources are
connected to this multiplexer. A single reference clock is most commonly used. In
the case of a single reference clock, connect the reference clock to the GTREFCLK00
and GTREFCLK01 pins, and tie the QPLL0REFCLKSEL and QPLL1REFCLKSEL
ports to 3′b001 .

 Figure 4.1 also shows the reference clock multiplexer structure for the GTHE3_
CHANNEL primitive. The CPLLREFCLKSEL port is required when multiple refer-
ence clock sources are connected to this multiplexer. For a single reference clock
(which is the most common scenario), connect the reference clock to the GTREFCLK0
port and tie the CPLLREFCLKSEL port to 3′b001 . Vivado will handle the complexity
of the multiplexers and associated routing.

4.2 PLLs

4.2.1 CPLL

 Each transceiver channel contains one ring-based channel PLL (CPLL). The inter-
nal channel clocking architecture is shown in Fig. 4.2 . The TX and RX clock divid-
ers can individually select the clock from the QPLL or CPLL to allow the TX and

 Table 4.1 Maximum line rate supported by various transceivers

 GTY GTX GTH GTP

 Seven series 12.5 Gb/s 13.1 Gb/s 6.6 Gb/s
 UltraScale 32.75 Gb/s 16.375 Gb/s

 Fig. 4.1 QPLL and CPLL reference clock selection multiplexer

V. Krishna

37

 RX datapaths to operate at asynchronous frequencies using different reference
clock inputs.

 The CPLL outputs feed the TX and RX clock divider blocks, which control the
generation of serial and parallel clocks used by the PMA and PCS blocks. The CPLL
can be shared between the TX and RX datapaths if they operate at line rates that are
integral multiples of the same VCO frequency. Figure 4.3 illustrates a conceptual
view of the CPLL architecture. The input clock can be divided by a factor of M
before feeding into the phase frequency detector. The feedback dividers, N1 and N2 ,
determine the VCO multiplication ratio and the CPLL output frequency. A lock
indicator block compares the frequencies of the reference clock and the VCO feed-
back clock to determine if a frequency lock has been achieved.

4.2.2 QPLL

 Each Quad contains one/two LC-based PLLs, referred to as the Quad PLLs (QPLL0
and QPLL1). Either QPLL can be shared by the serial transceiver channels within the
same Quad but cannot be shared by channels in other Quads . Use of QPLL0/QPLL1
is required when operating the channels at line rates above the CPLL operating range.
The GTHE3_COMMON/GTHE2_ COMMON primitive encapsulates both the GTH
QPLLs and must be instantiated when either QPLL is used. The QPLL0/QPLL1 out-
puts feed the TX and RX clock divider blocks of each serial transceiver channel
within the same Quad , which control the generation of serial and parallel clocks used
by the PMA and PCS blocks.

from QPLL0/1

CPLL
TX

Clock
Dividers

RX
Clock

Dividers

RX PMA

TX PMA

RX PCS

TX PCS

R
E

F
C

LK
 D

is
tr

ib
ut

io
n

 Fig. 4.2 Internal channel clocking architecture

PLL
CLKIN

/ M

/ N2 / N1

Phase
Frequency
Detector

Lock
Indicator

Charge
Pump

Loop
Filter

VCO

PLL
LOCKED

PLL
CLKOUT

 Fig. 4.3 CPLL block diagram

4 Gigabit Transceivers

38

 Figure 4.4 illustrates a conceptual view of the QPLL0/QPLL1 architecture. The
input clock can be divided by a factor of M before it is fed into the phase frequency
detector. The feedback divider N determines the VCO multiplication ratio. The
 QPLL0/QPLL1 output frequency is half of the VCO frequency. A lock indicator
block compares the frequencies of the reference clock and the VCO feedback clock
to determine if a frequency lock has been achieved.

4.3 Power Down

 The transceiver supports a range of power -down modes. These modes support both
generic power management capabilities as well as those defi ned in the standard
protocols. The transceivers offer different levels of power control. Each channel in
each direction can be powered down separately. Independent PLL power-down
controls are also provided in transceiver.

4.4 Loopback

 Loopback modes are specialized confi gurations of the transceiver datapath where
the traffi c stream is folded back to the source. Typically, a specifi c traffi c pattern is
transmitted and then compared to check for errors. Loopback test modes fall into
two broad categories:

• Near-end loopback mode loop transmits data back in the transceiver closest to
the traffi c generator.

• Far-end loopback mode loop received data back in the transceiver at the far end
of the link.

 Loopback testing can be used either during development or in deployed equip-
ment for fault isolation. The traffi c patterns used can be either application traffi c
patterns or specialized pseudorandom bit sequences. Each transceiver has a built-in
 PRBS generator and checker.

PLL
CLKIN

PLL
LOCKED

PLL
CLKOUTPhase

Frequency
Detector

Lock
Indicator

Charge
Pump

Loop
Filter

/ M

/ N

/ 2

Upper Band
VCO

Lower Band
VCO

 Fig. 4.4 QPLL block diagram

V. Krishna

39

4.5 Dynamic Reconfi guration Port (DRP)

 The dynamic reconfi guration port (DRP) allows the dynamic change of parameters
of the transceivers and common primitives. The DRP interface is a processor- friendly
synchronous interface with an address bus (DRPADDR) and separated data buses for
reading (DRPDO) and writing (DRPDI) confi guration data to the primitives. An
enable signal (DRPEN), a read/write signal (DRPWE), and a ready/valid signal
(DRPRDY) are the control signals that implement read and write operations, indicate
operation completion, or indicate the availability of data. Figure 4.5 shows Write and
Read timings. A new transaction can be initiated when DRPRDY is asserted.

4.6 Transmitter

 Each transceiver includes an independent transmitter, which consists of a PCS and
a PMA . Figure 4.6 shows the functional blocks of the transmitter. Parallel data fl ows
from the FPGA logic into the FPGA TX interface, through the PCS and PMA , and
then out of the TX driver as high-speed serial data.

 Fig. 4.5 DRP write operation (left) and DRP read operation (right)

 Fig. 4.6 TX block diagram

4 Gigabit Transceivers

40

 Some of the key elements within the GTX / GTH transceiver TX are:

 1. FPGA TX interface
 2. TX 8B/10B encoder
 3. TX gearbox
 4. TX buffer
 5. TX buffer bypass
 6. TX pattern generator
 7. TX polarity control
 8. TX confi gurable driver

4.6.1 FPGA TX Interface

 The FPGA TX interface is the FPGA’s gateway to the TX datapath of the trans-
ceiver. Applications transmit data through the transceiver by writing data to the
 TXDATA port. The width of the port can be confi gured to be two, four, or eight bytes
wide. The FPGA TX interface includes parallel clocks used in PCS logic. The paral-
lel clock rate depends on the internal datawidth and the TX line rate.

4.6.2 TX 8B/10B Encoder

 Many protocols use 8B/10B encoding on outgoing data. 8B/10B is an industry-
standard encoding scheme that trades two bits overhead per byte for achieved DC
balance and bounded disparity to allow reasonable clock recovery. The trans-
ceiver has a built-in 8B/10B TX path to encode TX data without consuming
FPGA resources. Enabling the 8B/10B encoder increases latency through the TX
path. The 8B/10B encoder can be disabled or bypassed to minimize latency, if
not needed.

4.6.3 TX Gearbox

 Some high-speed data rate protocols use 64B/66B encoding to reduce the overhead
of 8B/10B encoding while retaining the benefi ts of an encoding scheme. The TX
gearbox provides support for 64B/66B and 64B/67B header and payload combin-
ing. The TX gearbox has two operating modes. The external sequence counter oper-
ating mode must be implemented in user logic. The second mode uses an internal
sequence counter. Due to additional functionality, latency through the gearbox
block is expected to be longer.

V. Krishna

41

4.6.4 TX Buffer

 The transceiver TX datapath has two internal parallel clock domains used in the PCS :
the PMA parallel clock domain (XCLK) and the TXUSRCLK domain. To transmit
data, the XCLK rate must match the TXUSRCLK rate, and all phase differences
between the two domains must be resolved. Figure 4.7 shows the XCLK and
 TXUSRCLK domains.

 The transmitter includes a TX buffer and a TX phase alignment circuit to resolve
phase differences between the XCLK and TXUSRCLK domains. The TX phase
alignment circuit is used when TX buffer is bypassed. All TX datapaths must use
either the TX buffer or the TX phase alignment circuit. Table 4.2 shows the trade-off
between buffering and phase alignment.

 Fig. 4.7 TX clock domains

 Table 4.2 TX buffer vs phase alignment

 TX buffer TX phase alignment

 Ease of use The TX buffer is the recommended
default to use when possible. It is
robust and easier to operate

 Phase alignment is an advanced feature
that requires extra logic and additional
constraints on clock sources

 Latency If low latency is critical, the TX
buffer must be bypassed

 Phase alignment uses fewer register in
the TX datapath to achieve lower and
deterministic latency

 TX lane-lane
Deskew

 The TX phase alignment circuit can be
used to reduce the lane skew between
separate transceivers. All transceivers
involved must use the same line rate

4 Gigabit Transceivers

42

4.6.5 TX Buffer Bypass

 Bypassing the TX buffer is an advanced feature of the transceiver. The TX phase align-
ment circuit is used to adjust the phase difference between the PMA parallel clock
domain (XCLK) and the TXUSRCLK domain when the TX buffer is bypassed. It also
performs the TX delay alignment by adjusting the TXUSRCLK to compensate for the
temperature and voltage variations. The combined TX phase and delay alignments can
be automatically performed by the transceiver or manually controlled by the user.

4.6.6 TX Pattern Generator

 Pseudorandom bit sequences (PRBS) are commonly used to test the signal integrity
of high-speed links. These sequences appear random but have specifi c properties
that can be used to measure the quality of a link. The error insertion function is sup-
ported to verify link connection and also for jitter tolerance tests. When an inverted
 PRBS pattern is necessary, TXPOLARITY signal is used to control polarity.

4.6.7 TX Polarity Control

 If TXP and TXN differential traces are accidentally swapped on the PCB, the differ-
ential data transmitted by the transceiver TX is reversed. One solution is to invert the
parallel data before serialization and transmission to offset the reversed polarity on
the differential pair. The TX polarity control can be accessed through the
 TXPOLARITY input from the fabric user interface.

4.6.8 TX Confi gurable Driver

 The transceiver TX driver is a high-speed current-mode differential output buffer.
To maximize signal integrity, it includes these features:

• Differential voltage control
• Precursor and post-cursor transmit preemphasis
• Calibrated termination resistors

4.7 Receiver

 Each transceiver includes an independent receiver, made up of a PCS and a PMA .
Figure 4.8 shows the blocks of the transceiver RX . High-speed serial data fl ows
from traces on the board into the PMA of the transceiver RX , into the PCS , and
fi nally into the FPGA logic.

V. Krishna

43

 Some of the key elements within the transceiver RX are:

 1. RX Analog front end
 2. RX equalizer (DFE and LPM)
 3. RX CDR
 4. RX polarity control
 5. RX pattern checker
 6. RX Byte and Word Alignment
 7. RX 8B/10B decoder
 8. RX buffer bypass
 9. RX elastic buffer
 10. RX clock correction
 11. RX channel bonding
 12. RX gearbox
 13. FPGA RX interface

4.7.1 RX Analog Front End

 The RX analog front end (AFE) is a high-speed current-mode input differential buf-
fer. It has these features:

• Confi gurable RX termination voltage
• Calibrated termination resistors

4.7.2 RX Equalizer (DFE and LPM)

 A serial link bit error rate (BER) performance is a function of the transmitter, the
transmission media, and the receiver. The transmission media or channel is
bandwidth limited and the signal traveling through it is subjected to attenuation and
distortion.

 Fig. 4.8 RX transceiver block diagram

4 Gigabit Transceivers

44

 There are two types of adaptive fi ltering available to the receiver depending on
system level trade-offs between power and performance. Optimized for power with
lower channel loss, the receiver has a power-effi cient adaptive mode named the
low- power mode (LPM), see Fig. 4.9 .

 For equalizing lossy channels, the DFE mode is available. See Fig. 4.9 for the
transceiver. The DFE allows better compensation of transmission channel losses by
providing a closer adjustment of fi lter parameters than when using a linear equalizer.
However, a DFE cannot remove the precursor of a transmitted bit; it only compensates
for the post-cursors. A linear equalizer allows precursor and post- cursor gain. The
 DFE mode is a discrete time-adaptive high-pass fi lter. The TAP values of the DFE are
the coeffi cients of this fi lter that are set by the adaptive algorithm.

 LPM mode is recommended for applications with line rates up to 11.2 Gb/s for
short reach applications, with channel losses of 12 dB or less at the Nyquist fre-
quency. DFE mode is recommended for medium to long-reach applications, with
channel losses of 8 dB and above at the Nyquist frequency. A DFE has the advan-
tage of equalizing a channel without amplifying noise and crosstalk. DFE can also
correct refl ections caused by channel discontinuities within the fi rst fi ve post- cursors
in transceivers. DFE mode is the best choice when crosstalk is a concern or when
refl ections are identifi ed in a single-bit response analysis.

 Both LPM and DFE modes must be carefully considered in 8B/10B applications
or where data scrambling is not employed. To properly adapt to data, the auto adapta-
tion in both LPM and DFE modes requires incoming data to be random. Patterns
with characteristics similar to PRBS7 (or higher polynomial) are suffi ciently random
for auto adaptation to properly choose the correct equalization setting.

4.7.3 RX CDR

 The RX clock data recovery (CDR) circuit in each transceiver extracts the recovered
clock and data from an incoming data stream. The transceiver employs phase rotator
 CDR architecture. Incoming data fi rst goes through receiver equalization stages. The
equalized data is captured by an edge and a data sampler. The data captured by the
data sampler is fed to the CDR state machine and the downstream transceiver blocks.

 Fig. 4.9 LPM mode (left) and DFE mode (right) block diagram

V. Krishna

45

The CDR state machine uses the data from both the edge and data samplers to determine
the phase of the incoming data stream and to control the phase interpolators (PIs).
The phase for the edge sampler is locked to the transition region of the data stream,
while the phase of the data sampler is positioned in the middle of the data eye.

 The PLLs provides a base clock to the phase interpolator. The phase interpolator
in turn produces fi ne, evenly spaced sampling phases to allow the CDR state machine
to have fi ne phase control. The CDR state machine can track incoming data streams
that can have a frequency offset from the local PLL reference clock.

4.7.4 RX Polarity Control

 Similar to Tx Polarity Control (explained in Sect. 4.6.7), RXPLOLARITY (active
 High) input can be used to swap the RXP and RXN differential pins.

4.7.5 RX Pattern Checker

 The receiver includes a built-in PRBS checker. This checker can be set to check for
one of four industry-standard PRBS patterns. The checker is self-synchronizing and
works on the incoming data before comma alignment or decoding. This function
can be used to test the signal integrity of the channel.

4.7.6 RX Byte and Word Alignment

 Serial data must be aligned to symbol boundaries before it can be used as parallel
data. To make alignment possible, transmitters send a recognizable sequence, usu-
ally called a comma . The receiver searches for the comma in the incoming data.
When it fi nds a comma , it moves the comma to a byte boundary so the received
parallel words match the transmitted parallel words.

4.7.7 RX 8B/10B Decoder

 If RX received data is 8B/10B encoded, it must be decoded. The transceiver has a
built-in 8B/10B encoder in the TX and an 8B/10B decoder in the RX. The RX
8B/10B decoder has these features:

• Supports 2-byte, 4-byte, and 8-byte datapath operation
• Provides daisy-chained hookup of running disparity for proper disparity

4 Gigabit Transceivers

46

• Generates K characters and status outputs
• Can be bypassed if incoming data is not 8 B/10 B encoded
• Pipes out 10-bit literal encoded values when encountering a not-in-table error

4.7.8 RX Buffer Bypass

 Bypassing the RX elastic buffer is an advanced feature of the transceiver. The RX
phase alignment circuit is used to adjust the phase difference between the PMA paral-
lel clock domain (XCLK) and the RXUSRCLK domain when the RX elastic buffer is
bypassed. It also performs the RX delay alignment by adjusting the RXUSRCLK to
compensate for the temperature and voltage variations. Figure 4.10 shows the XCLK
and RXUSRCLK domains, and Table 4.3 shows trade-offs between buffering and

 Fig. 4.10 RX phase alignment

 Table 4.3 RX buffer vs phase alignment

 RX elastic buffer RX phase alignment

 Ease of use The RX buffer is the
recommended default to use when
possible. It is robust and easier to
operate

 Phase alignment is an advanced
feature that requires extra logic and
additional constraints on clock
sources

 Clocking options Can use RX recovered clock or
local clock (with clock correction)

 Must use the RX recovered clock

 Initialization Works immediately Must wait for all clocks to stabilize
before performing the RX phase
and delay alignment procedure

 Latency Buffer latency depends on features
use, such as clock correction and
channel bonding

 Lower deterministic latency

 Clock correction and
channel bonding

 Required for clock correction and
channel bonding

 Not performed inside the
transceiver. Required to be
implemented in user logic

V. Krishna

47

phase alignment. The RX elastic buffer can be bypassed to reduce latency when the
RX recovered clock is used to source RXUSRCLK and RXUSRCLK2 . When the RX
elastic buffer is bypassed, latency through the RX datapath is low and deterministic,
but clock correction and channel bonding are not available.

4.7.9 RX Elastic Buffer

 The transceiver RX datapath has two internal parallel clock domains used in the PCS :
the PMA parallel clock domain (XCLK) and the RXUSRCLK domain. To receive data,
the PMA parallel rate must be suffi ciently close to the RXUSRCLK rate, and all phase
differences between the two domains must be resolved.

4.7.10 RX Clock Correction

 The RX elastic buffer is designed to bridge between two different clock domains,
 RXUSRCLK and XCLK , which is the recovered clock from CDR . Even if RXUSRCLK
and XCLK are running at the same clock frequency, there is always a small frequency
difference. Because XCLK and RXUSRCLK are not exactly the same, the difference
can be accumulated to cause the RX elastic buffer to eventually overfl ow or under-
fl ow unless it is corrected. To allow correction, each transceiver TX periodically
transmits one or more special characters that the transceiver RX is allowed to remove
or replicate in the RX elastic buffer as necessary. By removing characters when the
RX elastic buffer is full and replicating characters when the RX elastic buffer is
 empty , the receiver can prevent overfl ow or underfl ow.

4.7.11 RX Channel Bonding

 Protocols such as XAUI and PCI Express combine multiple serial transceiver con-
nections to create a single higher throughput channel. Each serial transceiver con-
nection is called one lane. Unless each of the serial connections is exactly the same
length, skew between the lanes can cause data to be transmitted at the same time but
arrive at different times. Channel bonding cancels out the skew between transceiver
lanes by using the RX elastic buffer as a variable latency block. Channel bonding is
also called channel deskew or lane-to-lane deskew . Transmitters used for a bonded
channel all transmit a channel bonding character (or a sequence of characters)
simultaneously. When the sequence is received, the receiver can determine the skew
between lanes and adjust the latency of RX elastic buffers so that data is presented
without skew at the RX fabric user interface.

4 Gigabit Transceivers

48

4.7.12 RX Gear Box

 The RX gearbox provides support for 64B/66B and 64B/67B header and payload
separation. The gearbox uses output pins RXDATA [63:0] and RXHEADER [2:0] for
the payload and header of the received data in normal mode. RX gearbox operates
with the PMA using a single clock. Because of this, occasionally, the output data is
invalid. The data out of the RX gearbox is not necessarily aligned. Alignment is done
in the FPGA logic. The RXGEARBOXSLIP port can be used to slip the data from the
gearbox cycle by cycle until correct alignment is reached. It takes a specifi c number of
cycles before the bitslip operation is processed and the output data is stable.
Descrambling of the data and block synchronization is done in the FPGA logic.

 The RX gearbox operates the same in either external sequence counter mode or
internal sequence counter mode.

4.7.13 FPGA RX Interface

 The FPGA RX interface is the FPGA’s gateway to the RX datapath of the trans-
ceiver. Applications transmit data through the transceiver by writing data to the
 RXDATA port. The width of the port can be confi gured to be two, four, or eight bytes
wide. The rate of the parallel clock at the interface is determined by the RX line rate,
the width of the RXDATA port, and whether or not 8B/10B decoding is enabled.

4.8 Integrated Bit Error Ratio Tester (IBERT)

 The customizable LogiCORE™ IP Integrated Bit Error Ratio Tester (IBERT) core for
FPGA transceivers is designed for evaluating and monitoring the transceivers. This core
includes pattern generators and checkers that are implemented in FPGA logic and access
to ports and the dynamic reconfi guration port attributes of the transceivers. Communication
logic is also included to allow the design to be run time accessible through JTAG .

 The IBERT core provides a broad-based Physical Medium Attachment (PMA)
evaluation and demonstration platform for FPGA transceivers. Parameterizable to
use different transceivers and clocking topologies, the IBERT core can also be
customized to use different line rates, reference clock rates, and logic widths.
Data pattern generators and checkers are included for each GTX transceiver desired,
giving several different pseudorandom binary sequences (PRBS) and clock patterns
to be sent over the channels. In addition, the confi guration and tuning of the trans-
ceivers are accessible through logic that communicates to the dynamic reconfi gura-
tion port (DRP) of the GTX transceiver, in order to change attribute settings, as well
as registers that control the values on the ports. At run time, the Vivado serial I/O
analyzer communicates to the IBERT core through JTAG, using the Xilinx cables
and proprietary logic that is part of the IBERT core.

V. Krishna

49© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_5

 Chapter 5
 Memory Controllers

 Karthikeyan Palanisamy

5.1 Introduction

 External memory interface is an important component for majority of systems that
are designed today. You have the option to choose various types of external memo-
ries depending upon the system requirements. The external memories required by
you are supported through Xilinx Vivado IP catalog. Vivado provides options for you
to confi gure various memory controllers as per your requirements. The performance
of a memory subsystem would depend upon the access pattern to the memory, the
electrical settings that are available, and the Vivado options. This chapter would go
over the various types of memories that are available for you and the options that are
available to confi gure the memory subsystem to get the required performance.

 The on-chip memory available in an FPGA has increased over generations. The
 FPGA internal memories can be confi gured in various ways as per your require-
ments. The memory available in an FPGA can fully satisfy the memory requi-
rements of a system or partially depending on the system requirements. Systems for
which the memory requirements are more than that is available in an FPGA would
opt for external memory. The type of memory used in a system will vary based on
the system requirements. Various factors like throughput , storage requirements,
power consumption, cost, and memory technology roadmap will go into selecting a
memory interface.

 Typically for an embedded system, a DRAM (dynamic random access memory)
would be used as the external memory. DRAM memories are attractive due to the low
cost per bit ratio, density, and availability. DRAM memories have evolved over time
and the latest memories come with various power-saving features and also available
at high data rates (3200 MT/s). A networking system would have a combination of

 K. Palanisamy (*)
 Xilinx India , Hyderabad , India
 e-mail: karthikeyan@yahoo.com

mailto:karthikeyan@yahoo.com

50

 DRAM memories and fast SRAM (static random access memory) or RLDRAM
(reduced latency dynamic random access memory) memories. RLDRAM and SRAM
memories are also feature rich and reach high data rates. RLDRAM and SRAM mem-
ories are expensive compared to DRAM , but they are attractive for applications that
require low memory access times.

 It is assumed that you have a good understanding of the memory technology, the
roadmap, and the rationale behind choosing a memory for the system. The focus of
the chapter will be on various options available for you and how you can set up the
memory controller to achieve the system performance requirements.

 Every memory IP has a product guide associated with it. The product guide will
describe the IP in detail. You are encouraged to read the product guide for a particu-
lar IP to get in-depth knowledge of the IP. For every FPGA generation, there is also
a PCB design user’s guide which has many details regarding the PCB consider-
ations that has to be taken into account for a memory interface.

5.2 Getting Started

 Xilinx memory solutions are part of Vivado IP catalog. You can generate various
memory controller designs by selecting the IP cores available in the IP catalog. The
following memory IPs are generally available for every generation of FPGAs :

• SDRAM : DDR3 and DDR4
• SRAM : QDRII + and QDRIV
• RLDRAM : RLDRAM -3
• LPDDR : LPDDR3 and LPDDR4

 The variants for memory devices will vary for every generation of FPGAs based
on the memory roadmap and availability. In this chapter only the memory that is
prevalent will be discussed in detail. For example, in SDRAM the chapter will go
into details for DDR4 . Most of the DDR4 concepts are applicable for DDR3 ,
LPDDR3 , and LPDDR4 .

5.2.1 Design Generation

 Through the IP catalog in Vivado, you will be able to invoke the memory wizard
tool for a given IP. The wizard will have multiple options to confi gure the IP. The
options are split into "basic options” and “advanced options.” The basic options
would be used to confi gure the following:

• Controller option : The memory controller is split into two parts: the physical
layer and the controller. The controller converts the user commands into the par-
ticular memory protocol commands. The controller will also have features built

K. Palanisamy

51

in to improve the effi ciency. The physical layer is responsible for initializing the
memory and performing calibration . The main function of calibration is to cap-
ture read data reliably and to send write data with enough margin to the memory.
Calibration is required to make sure the memory interface works reliably over a
range of process voltage and temperature. You can choose to generate a design
with memory controller and physical layer or just the physical layer. Usually a
physical layer-only design is generated for use in cases in which a system
requires a custom controller to be used with the physical layer. The physical
layer-only option is usually only applicable to SDRAM designs which has com-
plex controller functions.

• Clocking option : The memory controller frequency of operation will be chosen
here. There will be an option to select the clock input to the memory controller.

• Memory device : You can choose the memory device as per your requirements.
The menu will have multiple memory devices and confi gurations for you to
choose from. If a particular memory type is not available, the tool provides
options to generate a custom memory part for you. Other options like the data
width, read and write latencies (if applicable), and burst length would be chosen
here. For certain memory types, some pins like chip select or data mask are
optional and that selection would be done here. Finally if applicable for certain
memory types, the option to have ECC will also be provided here.

 With the basic options described above, you can generate a memory controller
that will satisfy your needs. You can use the advanced option to further customize
the memory controller. The advanced options would vary by the memory controller
type. In general there would be options to select the following:

• By default the controller is confi gured for effi ciency based on the default options.
You can select switches that would improve effi ciency for your traffi c pattern.

• Provides advanced option for you to choose the input clock confi guration.
• Option to provide debug hooks and bring the status signals to the Vivado Labtools

Hardware Manager for easy debug. All the memory controllers will come up
with a status viewer from Vivado Labtools by default. The status viewer will
display the calibration status, read/write margin, and other relevant information.

• Advanced options provided to speed up simulation with behavioral models.
• Option to generate additional clocks that is synchronous to the memory control-

ler clock. The additional clocks would be useful for a system that needs to clock
other blocks that are synchronous to the chosen memory controller.

• Options to enable other controller-specifi c advanced features. For example, self-
refresh feature in DDR4 designs.

5.2.2 Pin Planning

 The pin planning for the memory controller would be done in the main Vivado I/O
Pin planner. To access the Vivado I/O planning environment, you would have to
open the elaborated RTL design or the synthesized design. Once the design is

5 Memory Controllers

52

opened, the I/O planning layout option can be chosen from the menu and pin
 selection can be done. A default pin out would be preloaded for the memory control-
ler in the I/O planner. You can go with the default or choose your own custom pin
out. In custom pin out, you have the option to do byte-level or pin- level selections.
You can also read in an existing pin selection through the XDC fi le and use it for the
IP pin out in I/O planner.

5.2.3 Example Design

 The memory controller solutions have an example design associated with it. The
 example design can be invoked by right clicking on the generated IP in the Vivado
console and choosing the option “Open IP Example Design.”

 The example design (apart from the IP fi les that was generated) will have the
necessary fi les for simulation and implementation. The example design is useful for
you to get a quick start with implementation and simulation of the generated mem-
ory controller. The example design can also be used as an instantiation template
when you integrate the memory controller IP in your system. A traffi c generator that
can send in different traffi c patterns depending upon your options will be part of the
example design. The traffi c generator can generate patterns like PRBS23 that
stresses the interface.

 The implementation fl ow requires a top-level module that instantiates your
design portion of the IP and the traffi c generator. This top-level fi le will be present
in the example design. The example design will have all the required constraints for
the implementation of the design. The example design can be taken through the
implementation fl ow and a bit fi le can be generated. You can go through the I/O
planner to customize the pin out of the example design as per your PCB layout. You
can also skip the I/O planner and generate a bit fi le with the default pin out. You can
use the example design to validate the memory interface in your PCB. Memory
interfaces operates at a high data rate. During system bring up, the example design
fl ow is a good way of bringing up the memory interface in the PCB in a unit level
without the other parts of the system.

 The behavioral simulation of example design can be performed by selecting the
 Run Simulation option in Vivado. The Vivado simulator is supported by default and
the option to support various third-party simulators is provided. The simulation
waveform will be opened in the Vivado GUI framework with the relevant signals
that are important for the design. The example design will have a simulation top
level that instantiates the user design, traffi c generator, memory model, clocking,
and reset logic. The example design behavioral simulation provides you with the
waveforms that show the interaction with the user interface and interaction of the
memory interface signals with the controller and provides information on the laten-
cies involved in the design.

K. Palanisamy

53

5.3 Calibration

 Calibration is a very important aspect of the memory controller design. The inter-
face operates at very high data rates and due to that the data valid window will be
very small. Good calibration techniques are required for reading and writing the
data reliably for the memory interface. This section describes the concept of calibra-
tion that would be applicable for all memory interfaces.

 The data is captured from the memory and written to the memory at both the
edges of the clock. A DDR4 operating at 3200 MT/s will have a clock period of
625 ps. With the dual data rate interface, the bit time would be 312 ps. Within the
bit time, various uncertainties will affect the data valid window as shown in Fig. 5.1 .

 The uncertainties shown in Fig. 5.1 will be a combination of variations from
memory, FPGA , and PCB. The goal of calibration is to center the capture clock in
the middle of data valid window during reads and have the write clock in the middle
of the data valid window during writes. For read side the following would add to the
uncertainties at a high level:

• Data valid time from the memory
• Any drift with respect to clock and data from memory that is sent to the FPGA
• Skew between different signals that pass through the PCB
• Board inter symbol interference
• Jitter on the clock that is fed to the memory
• Setup and hold requirements of the capture fl op in the FPGA
• Delay variations over voltage and temperature in elements used for calibration

 Write side would have the following added to the uncertainties at a high level:

• Duty cycle distortion and jitter on the clock that is fed to the memory
• Package skew and clock skew from the FPGA
• Delay variations over voltage and temperature in elements used for calibration
• Board inter symbol interference
• Setup and hold requirements from the memory device

Bit time

Data valid window

Uncertanities Uncertanities

 Fig. 5.1 Data bit time with uncertainties

5 Memory Controllers

54

5.3.1 De-Skew Calibration

 The read and write data from the memory can be skewed based on package skew,
PCB skew, clock skew, internal routing skew, and variations in the delay elements
used during calibration . For the parallel memory interfaces, the data to clock ratio
varies from 4:1 to 36:1. In parallel memory interface where there is one clock per
multiple data bits, the skew within the data bits will affect the effective data valid
window. The skew in the interface will affect the effective data valid window as
shown in Fig. 5.2 .

 The function of the de-skew calibration would be to align all the data bits within
the clock region so that the interface has the maximum data valid window for both
read and write operation. The interface data valid window will be determined by the
common time in which all the interfaces have valid data.

5.3.2 Read Calibration

 The read clock at the output of the memory during read operations will not be center
aligned with the data and will be edge aligned as shown in Fig. 5.3 .

Data valid window

Data_N

Data_N+1

 Fig. 5.2 Data bus with skew

Data_N

Read clock/strobe

 Fig. 5.3 Read data and read clock/strobe from memory

K. Palanisamy

55

 The main function of the read calibration is to fi gure out the read valid window
across all the associated data bits and center the capture clock in the middle of the
data valid window. This stage will usually write a pattern to memory and read from
it continuously. Write calibration might not have been completed before this stage.
The writes to the memory has to be successful for this stage to function properly.
Some memory standards have registers within the device that has predefi ned data
patterns that can be used during this stage and would not require a write to the
memory. For devices that do not have preloaded data pattern, the read calibration
will write a simple data pattern. The simple data pattern will guarantee enough setup
and hold margin to make sure the writes are successful. The calibration algorithms
will start with the simple pattern or preloaded patterns to complete the initial stage.
After the initial calibration, for higher data rate interfaces, a complex data pattern
that mimics the worst case signal integrity effects will be used to further center the
clock accurately in the data valid window.

 Read calibration algorithm using the training pattern will scan the data eye to
fi gure out the uncertainty region and the effective window in which data is valid.
This stage requires multiple samples of the read data to accurately fi gure out the
uncertainty region to account for jitter and other signal integrity effects. Once the
scanning is done, the calibration algorithm will position the capture clock in
the center of the eye as shown in Fig. 5.4 .

 Read calibration in majority of the memory controller designs will include a
stage for estimating the read latency. A read command will be issued by the memory
controller, and it will reach the memory device after going through the delay in the
address path. The memory device will have a spec for read latency, and the read data
will appear on the read data bus after the read latency number of clock cycles from
the time the read command was registered. The read data will have to go through the
read data path delay and any other delay in the read capture stage. In most designs
the read data will be captured using the clock/strobe from the memory and will be
transferred to the controller clock domain for use in the other parts of the design.
The memory interface will have multiple sets of data with its own read clock asso-
ciated with it. All the data sets from the memory need not be aligned when it is
available at the controller clock domain. Optional delay stages have to be added to
align the entire interface when the data is available in the controller clock domain.
The read valid calibration stage will estimate all the delays in clock cycles and
 provide the information on when the read data would be available at the controller
clock domain after the read command is issued.

Data_N

Read clock/strobe

 Fig. 5.4 Read data and read clock/strobe after read calibration

5 Memory Controllers

56

5.3.3 Write Calibration

 The write calibration stage is required to center the write clock/strobe in the center
of the write data. The memory devices have a requirement of having the write clock/
strobe to be in the center during write transactions. For high-speed interfaces in
which every picosecond counts, a precise calibration would be required to center
the clock/strobe in the write data window. The concept behind write calibration is
very similar to read calibration. The calibration algorithm would write a data pattern
into memory and read it back to see if the write was successful. During the write the
write clock/strobe will be moved using fi ne resolution delays across the data bit
time to fi gure out the optimal position.

 Write calibration in most of the controllers will have write latency calibration.
Similar to read latency calibration, this stage is to calibrate out the delays that are in
the write path and estimate the write latency so that the controller can satisfy the
write latency requirements for the memory device. Write calibration depending on
the memory technology will have an additional calibration stage to align the write
clock/strobe with the memory clock. The write clock/strobe will be a point to point
connection. The memory clock will go to multiple components and will have more
than one load. The arrival times of the write clock/strobe and the memory clock will
not be aligned and this stage is to align them both.

5.3.4 VT Compensation

 VT compensation is not necessarily a calibration stage but the logic to compensate
for the voltage and temperature drift that will occur over the period of time. Initial
calibration will calibrate out the process variations; the dynamic variations due to
VT will need compensation. There can be difference in the way variations happen
between the clock path and the data path. In the worst case scenario, the data path
and the clock path can drift in opposite directions. The dynamic variations can
 happen at any rate. The VT compensation logic would have to sense the drift and
correct for it.

 The compensation logic would have to monitor the drift and compensate as and
when the drift happens. If left uncorrected there will be reduction in margin and in
certain conditions data corruption can occur due to too much variations. The com-
pensation logic would have to monitor the FPGA conditions as well as the signals
from memory to detect the movement. The compensation logic would need to mon-
itor the read data and/or read clock/strobe coming from the memory. If the user
traffi c does not have any read commands for a certain period of time, then the
memory controller would issue read commands for maintenance purpose. The read
data from these maintenance commands will not be passed on to the user interface.
The interval between the maintenance commands is determined by the memory
interface design requirements.

K. Palanisamy

57

5.4 Signal Integrity

 Signal integrity effects play a big part in the memory interface performance. Signal
integrity simulations need to be performed for the memory interfaces, and the simu-
lation recommendations need to be used for the PCB design as well as the memory
controller options. For low-frequency interfaces the signal integrity has little effect
on the signal and the interface can work reliably. At high frequencies the signal
integrity effects like ringing, cross talk, ground bounce, and refl ections affect the
signal quality and can result in data integrity problems. Impedance mismatch is one
of the key aspects that needs to be taken care of in the memory interface design.
Impedance mismatch causes signals to refl ect along the transmission line. The
refl ections can subject the signals to ringing, overshoot, and undershoot which in
turn will cause signals to be sampled improperly at the receiver. The source imped-
ance must match with the trace impedance.

 Figure 5.5 shows an example of a driver, transmission line, and receiver setup.
The impedance of the driver, transmission line, and the receiver have to match to
avoid impedance mismatch. Various termination schemes are available for you to
match the impedance. You have the option of terminating on the PCB or use the on-
chip termination that is available in the FPGA and in the memory device. Xilinx
 FPGAs have onboard programmable termination called Digitally Controlled
Impedance (DCI). DCI offers on-chip termination for receivers and drivers across
multiple confi gurations that will satisfy your system requirement. DCI helps you to
leave the termination implementation to the FPGA and simplify the PCB design.
Similar to the FPGAs , the memory devices also have on-chip termination called On
Die Termination. On the FPGA end, various other options are provided to improve
the signal integrity. Vivado provides attributes to control drive strength and slew
rate. Drive strength and slew rate can be used to tune an interface for adequate speed
while not overdriving the signals. The memory wizard tool in Vivado IP catalog will
automatically chose the correct setting for a given memory interface. There are
certain options like ODT that might have multiple choices. You have the choice to
go with default or chose the option that matches your requirements.

Driver Receiver

Transmission Line

 Fig. 5.5 Driver, transmission line, and receiver example

5 Memory Controllers

58

5.5 DDR4 SDRAM

 DDR4 SDRAM (double data rate synchronous dynamic random access memory)
introduced in 2014 is the latest (at the time of writing this book) memory standard
that is widely used in the industry.

 The Vivado tool provides various options for you to customize the memory con-
troller. Based on the system requirements, you can select the options given below:

• Memory device selection: density of the device, DQS to DQ ratio, column
address strobe read and write latency, memory speed grade, component, DIMM,
SODIMM, RDIMM, 3DS, or LRDIMM

• Memory controller options: user interface selection, effi ciency switches, address-
ing options for various payloads, data width, and ODT options

• FPGA options: FPGA banks and pins to be used, FPGA termination options,
VREF options, and clocking options (input clock to the memory controller IP)

 The most important aspect for you would be the throughput of the memory con-
troller and the storage requirements. A 64 bit DDR4 memory operating at 3200 MT/s
will have a theoretical peak bandwidth of 25,600 MB/s. The bandwidth of the mem-
ory subsystem would depend largely on the memory confi guration and the access
pattern. The confi guration is fi xed during the initial selection. The access pattern
varies based on the traffi c in the system. You can take advantage of the memory
controller features which will help in improving the practical bandwidth.

5.5.1 Performance

 Effi ciency of a memory controller is represented by Eq. (5.1):

Efficiency Number of clock cycles DQ bus was busy
Number of memoryc

=
/ llock cycles (5.1)

The effi ciency percentage will determine the bandwidth of the system. A 64 bit
memory operating at 3200 MT/s with 80 % effi ciency will have an effective band-
width of 20,480 MB/s compared to theoretical bandwidth of 25,600 MB/s. The
memory timing parameters and the memory controller architecture have a big effect
on the performance of the memory subsystem. The memory timing parameters are
requirements as per memory protocol, and commands can be scheduled in a way
that the wait times for servicing timing parameters can be hidden or avoided.

 To access a memory to perform a read or write operation, row access commands
are required to open and close rows in the memory. If a row in the bank needs to be
accessed, fi rst the row in the bank has to be opened. Opening of row (activate com-
mand) has wait times associated with it to move the data from the DRAM cell arrays
to the sense amplifi ers and having it ready for read or write operations. To close a
 row in a bank , a precharge command has to be issued. The precharge command has

K. Palanisamy

59

its own timing requirements to reset the sense amplifi ers and get it ready for another
 row access command. At a given time only, one row can be kept open in a bank of
memory. DDR4 memory has 16 banks and at any given time one row in each of the
16 banks can be kept open.

 To get the required performance, the number of row access commands has to be
minimized, and more of column access commands (read or write) have to be issued.
 DDR4 memories also have a concept called bank groups . Each bank group will
have four banks associated with it as shown in Fig. 5.6 .

 The new feature in DDR4 is that access across bank groups has less access time
compared to access within the bank group . In terms of bank access, the example
shown in Fig. 5.7 has less access time which helps in performance. The example
shows write commands; the same is true for read commands as well. The memory
controller will be able to keep multiple banks open and can hide the row access
times between the column commands. The burst length for DDR4 is eight, and due
to the dual data rate for every four memory clock cycles, there will be eight data
transfers. Back to back column commands can be issued only every four memory
clock cycles. Between the column commands, the row commands can be interleaved
to open and close banks. Column access that changes bank groups every four clock
cycles will have the advantage of minimum access time. Access across the bank
groups in most of the scenarios will avoid idle cycles between the column accesses.

 The other access pattern that can hide the row access penalties to a certain extent
is shown in Fig. 5.8 . The performance of this access pattern will not be as good as
the performance of access pattern shown in Fig. 5.7 . By switching to different banks
within the bank groups or across the bank groups gives the fl exibility for controller
to have multiple banks open and schedule commands in such a way that the row
access times can be hidden. Switching of banks within the bank groups is not guar-

bank0

bank2

Bank Group 0

bank3

bank1

bank0

bank2

Bank Group 2

bank3

bank1 bank0

bank2

Bank Group 3

bank3

bank1

bank0

bank2

Bank Group 1

bank3

bank1

 Fig. 5.6 Bank grouping
for four bank group
confi guration

5 Memory Controllers

60

anteed to avoid the idle cycles between column accesses as the access times are
higher in this scenario compared to accesses across bank groups .

 In terms of performance, random access pattern will incur more row access pen-
alties. An example of a pattern that will have low performance is shown in Fig. 5.9 .
In the example shown in Fig. 5.9 , the read commands go to different row addresses
in bank 0 that is present in bank group 2. The accesses are within the bank , and
every time a different row is opened, the existing row in the bank has to be closed
and the new one opened. The controller has to wait for the closing and opening
times before issuing the column commands. The timing requirements for the acti-
vate and precharge commands will be more than the time that is between the two
 column commands. This results in idle cycles between column accesses.

 The data bus for DDR4 is a bidirectional bus. Every time there is a change from
write to read or read to write, it takes time to reverse the direction of the data bus.
Most controllers have reordering functionality built in them to group reads and
writes to minimize the occurrence of turnaround time.

 The memory controller solutions from Xilinx provide options for you to map the
user address to the address bus of the SDRAM . Depending upon the option selected
by you, the user interface in the controller maps the address from the user to the
 SDRAM address bus. Based on your selection, the parts of the address bits would be
assigned to rank , bank group , column , and row bits of the SDRAM . The mapping
can have an impact on the memory controller performance. The controller would be
able to make use of the controller resources and able to keep the data bus busy with
 column commands.

Write to bank group 3 Write to bank group 1 Write to bank group 0 Write to bank group 2

 Fig. 5.7 Access across bank groups

Read to bank 3 in bank
group 2

Read to bank 0 in bank
group 2

Read to bank 1 in bank
group 2

Read to bank 2 in bank
group 2

 Fig. 5.8 Access to different banks within a bank group

Read to bank 0 in bank
group 2

Precharge and activate
commands in between

Precharge and activate
commands in between

Precharge and activate
commands in between

Read to bank 0 in bank
group 2

Read to bank 0 in bank
group 2

Read to bank 0 in bank
group 2

 Fig. 5.9 Access to different rows within a bank

K. Palanisamy

61

 There are also memory maintenance commands like refresh and ZQCS that have
to be issued to the SDRAM periodically. The memory controller by default will issue
the maintenance commands periodically to satisfy the SDRAM requirements. When
the memory controller issues these maintenance commands, a long burst might be
broken up affecting the effi ciency. The maintenance commands also have the
requirement to close all the open banks , and they have to be opened again after the
completion of the maintenance commands. The user can choose to take control of
the maintenance commands and issue it through the user interface signals to improve
effi ciency. Care should be taken to make sure the SDRAM timing requirements
are met when the user takes over the responsibility to issue the maintenance
commands.

 DDR4 has wide use in many applications . DDR4 comes in various form factors
to suit the different system requirements. The common use of the memory is in
desktop, laptop, and servers as the main system memory. DDR4 is highly suited for
processor-based systems and in any application that require mass storage. LPDDR4
memory interface has similar features like DDR4 with additional low- power fea-
tures. LPPDR4 memory is not discussed separately and majority of the concepts
described in DDR4 are applicable to it.

5.6 RLDRAM3

 RLDRAM3 (reduced latency dynamic random access memory), introduced in 2012,
is the latest offering from Micron Technology, Inc., on the reduced latency DRAM
category. RLDRAM3 has the advantage of reduced latency combined with good
storage capacity. Similar to DDR4 the Vivado tool provides various options for you
to confi gure the memory controller.

5.6.1 Performance

 Effi ciency equation mentioned in Eq. (5.1) (Sect. 5.5.1) is applicable to RLDRAM3
as well. The memory timing parameters and the memory controller architecture
have a big effect on the performance of the memory subsystem. RLDRAM3 has two
important timing parameters that affect performance: tRC and tWTR. tRC (row
cycle time) is defi ned as “after a read, write, or auto refresh command is issued to a
 bank , a subsequent read, write, or auto refresh cannot be issued to the same bank
until tRC has passed.” tWTR (write to read to same address) is defi ned as “write
command issued to an address in a bank ; a subsequent read command to the same
address in the bank cannot be issued until tWTR has passed.”

 RLDRAM3 has 16 banks . As shown in Fig. 5.10 , if the access is scheduled in
such a way that the same bank to bank access comes in after tRC time requirement,

5 Memory Controllers

62

then the effi ciency will be high. There will not be any idle cycles between the read
and write commands. If the traffi c pattern is such that the tRC time is not satisfi ed,
then the controller has to pause so that tRC time can be elapsed before issuing the
command. The read to write and write to read turnaround as per specifi cation is one
memory clock cycle. Whenever there is a turnaround requirement, the controller
has to pause for one memory clock cycle. Some memory controllers due to clock
ratios and I/O requirements might end up waiting for more than one clock cycle.

 Write followed by read to the same address in the bank will have a larger wait
time. The tWTR parameter comes into effect when a write is followed by read to the
same address in the bank . The controller would have to pause the traffi c and wait for
tWTR to elapse in this scenario which will have an effect on effi ciency. As shown
in Fig. 5.11 , the write to read to the same address in the bank has to be spaced apart
to satisfy the tWTR requirements. Figure 5.11 also shows an example of write to
read to different addresses within a bank . In this scenario only the turnaround time
and the tRC requirement will come into effect. The same is true for read to write
within a bank for any address; the turnaround time and the tRC requirement will
come into effect.

 The low-latency and high-bandwidth characteristics of RLDRAM-3 are highly
suited for high-bandwidth networking, L3 cache, high-end commercial graphics,
and other applications that require the RLDRAM3 features.

5.7 QDRIV

 QDRIV SRAM (quad data rate IV synchronous random access memory) introduced
in 2014 is the latest offering from Cypress Semiconductor on the synchronous
 SRAM category. QDRIV has lower latency and does not have any timing parameters

bank0 bank2 bank3 bank4bank7 bank9 bank10 bank0…...

bank0 to bank0 access time > tRC

 Fig. 5.10 Access across banks

Bank1,address x,
write

Bank 1,address y,
read

Bank 1,address x,
read

…...…...

bank1 to bank1 different address
access time > tRC

bank1 write to bank1 read same
address time > tWTR

ss bank1 to bank1 different address
access time > tRC

 Fig. 5.11 Bank access with tRC and tWTR

K. Palanisamy

63

that affect effi ciency. The Vivado tool provides various options for you to customize
the memory controller similar to DDR4 .

 QDRIV memory device has two independent bidirectional data ports. Both the
ports operate at DDR data rate and can be used for both read and write transactions.
One common DDR address bus is used to access both the ports; rising edge is used
for accessing one port and the falling edge for the other port. The ports are named
port A and port B . Each port has its independent read and write clocks. Port A
address will be sampled at the rising edge of the address clock, and the port B
address will be sampled on the falling edge of the address clock.

 There are two types of QDRIV parts: XP and HP. HP parts do not have any
restriction on the access between two ports. XP parts have some restrictions and the
 bank access rules are listed below:

• Port A can have any address on rising edge of the address clock. There is no
restriction for port A .

• Port B can access any other bank address on the falling edge of the clock other
than the bank address used by port A on the rising edge.

• Port B can access any address in the falling edge if there was address presented
on rising edge for port A .

• From the rising edge of the input clock cycle to the next rising edge of the input
clock, there is no address restriction.

 The most important aspect for you would be the throughput of the memory con-
troller and the storage requirements. A 36 bit QDRIV memory operating at 1066 MHz
will have a theoretical peak bandwidth of 153.3 GB/s. The bandwidth of the mem-
ory subsystem would depend largely on the memory confi guration and the access
pattern. The confi guration is fi xed during the initial selection. The access pattern
varies based on the traffi c in the system. QDRIV interface does not have any timing
parameter that affects the performance. It has only one restriction on bank access
between the two ports. If the memory is accessed in a way that takes advantage of
the QDRIV features, then 100 % bandwidth can be achieved which is not possible in
other memory technologies.

5.7.1 Performance

 Effi ciency equation mentioned in Eq. 5.1 (Sect. 5.5.1) is applicable to QDRIV as
well. The access pattern of the user will have an effect on performance for XP
 QDRIV devices. In a given clock cycle, port B cannot access the same bank address
as the bank address used by port A . If the traffi c pattern is such that there is banking
violation in port B , then the memory controller would have to pause the traffi c to
take care of the banking restriction. Other than that the only time there will be an
effect on effi ciency would be the read to write and write to read turnaround times.
The user would have to make sure to group the reads and writes to get maximum
effi ciency. Since port A and port B have independent data buses, there is no

5 Memory Controllers

64

restriction on read and write between the ports. The turnaround wait time is within
the port data bus.

 Figure 5.12 shows an example of confl ict when port B accesses the same bank
address as port A . On every memory controller clock cycle, the commands for port
 A and port B can be accepted. The corresponding port commands will be sent on the
rising and falling edge of the memory clock to the QDRIV SRAM device by the
memory controller. Usually the memory controller will be operated at a lower clock
frequency than the memory interface frequency for timing reasons. In this example
it is shown that the memory controller operates at the memory interface frequency.
The controller would have to stall certain number of clock cycles to resolve the
confl ict. In QDRIV case the stalling would be only one clock cycle unless other
 factors come into play.

 QDRIV memory is attractive for applications that would require high effi ciency
for random traffi c. Latency would also be critical for those applications and QDRIV
provides low latency at higher data rates. Typical applications that would use
 QDRIV are high-speed networking, communication, and any application that would
have access that would be random in nature.

Port B address conflict
with Port A

Wait time for resolving
conflict

Port A,
address x,

write

Port A,
address y,

write

Port A,
address z,

write

Port B,
address y,

read

Port B,
address x,

read

Port B,
address z,

read

Port A,
address x,

write

Port A,
address y,

write

Port B,
address x,

read

Memory Controller
clock

Port A address

Port B address

 Fig. 5.12 Port A and Port B access with confl ict

K. Palanisamy

65© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_6

 Chapter 6
 Processor Options

 Siddharth Rele

6.1 Introduction

 FPGAs are great for high performance and parallel computing. Addition of a pro-
cessor enables control path processing which is required for most applications.
Xilinx FPGAs allow you to make use of processors, which could be soft (imple-
mented on fabric), or hard (pre-built). Designing with processors on FPGA has been
made easier through use of Xilinx Vivado IP Integrator and SDK tools. This chapter
will explore the usage of both hard and soft processors within Xilinx FPGAs for
some typical applications.

6.2 Computing on FPGAs

 A basic introduction to FPGAs has been provided in Chap. 1 . Processors and FPGAs
provide similar general processing capabilities but are differentiated by the way you
use them for programming and the type of applications/use cases. Processors use
software methods, while FPGAs were traditionally programmed through use of
hardware design languages such as Verilog and VHDL. Processors are good when
it comes to control fl ow as well as processing based on control, while FPGAs are
preferred when unconditional processing has to be done on a larger data-set.

 There are several benefi ts of combining the control capabilities of a processor
with data-intensive compute of the FPGA. Solutions can be developed by having a

 S. Rele (*)
 Xilinx India Technology Services , Hyderabad , Telangana , India
 e-mail: siddharth.rele@xilinx.com

http://dx.doi.org/10.1007/978-3-319-42438-5_1
mailto:siddharth.rele@xilinx.com

66

multi-chip solution with standard discrete processors connecting to FPGAs over I/O
pins. While these solutions work, they lead to increased latencies which may not be
acceptable for several high-speed applications. Hence, an integrated processor with
FPGA solution would be more apt for most applications. These lead to lower laten-
cies when processor accesses rest of the design as well as leads to reduction in
overall I/O count.

6.3 Processors on FPGAs

 There are two categories of processor solutions possible on Xilinx FPGAs:

• Soft processors
• Hard processors

 You can choose either of these depending on the amount of control processing
and I/O required for your application. The cost of the overall solution will also play
a role in making the decision.

6.3.1 Soft Processors

 Soft processors make use of the FPGA fabric for implementing the processors. For
low speed (200 MHz and below), soft processors are a good option. These come in
multiple fl avors and are user confi gurable. Depending on the nature of the applica-
tion, you can choose to trim down the functionality from the processors.

 At the lowest end, you can implement an 8-bit processor with bare minimal instruc-
tion set. One example of such a processor is PicoBlaze ™ from Xilinx. This processor
is a good replacement for state machines. PicoBlaze does not have a compiler tool
chain and hence requires the program to be written in assembly language. This
program is stored in the local memory available on the FPGA as a memory store.
The simplicity of the architecture enables a processor which can be implemented in
just about 26 slices.

 As a step up, Xilinx introduced a 32-bit highly confi gurable processor named
 MicroBlaze ™ in early 2000. This RISC-based soft processor is capable of achiev-
ing clock speed of around 400 MHz on the UltraScale FPGA architectures. It sup-
ports an option of a three-stage or a fi ve-stage pipeline, confi gurable cache, optional
multiply and divide units, optional barrel shifter, single- and double-precision
fl oating- point unit, and more. Every additional feature selected in hardware will
lead to usage of FPGA resources and can have impact on the max frequency (F max)
possible. The choice can be made based on the needs of the user application. For
example, if there are many multiply operations to be done, it is better to enable a
hard multiplier. It can save over 1000 clock cycles for every multiply operation done
over a software library-based solution (Fig. 6.1).

S. Rele

67

 In addition to the soft processors from Xilinx, you can also build your own
processors or procure one from IP vendors and open source. There have been
implementations of ARM done on Xilinx FPGAs in academia as well as industry.
There have also been implementations of processors with reduced instruction set
targeted toward specifi c applications. MicroBlaze has been optimized for FPGA
implementation and is usually better suited for both resource count as well as F max .

6.3.2 Hard Processors

 While soft processor can cater to the needs of mid-level applications, there are a few
factors that make hardened processors on FPGAs a key requirement. Some applica-
tions require high-speed processing of 1 GHz and above. There are several software
applications which are targeted toward standard processors like ARM. Retargeting
these to other processors specifi c to FPGAs could take up a lot of effort and reveri-
fi cation (Fig. 6.2).

 Xilinx introduced Zynq-7000 ™ family of devices which includes a complete
SoC with two Cortex-A9™ processors along with a confi gurable mix of peripher-
als. These include high-speed peripherals such as GigE and USB and low-speed
peripherals like SPI , I2C , CAN , and UART . The processing system (PS) also includes
controllers for various volatile memories (DDR3 , DDR2 , DDR3L) as well as fl ash
memories (QSPI, NOR and NAND). By hardening the most commonly used blocks
in the SoC, Xilinx has enabled saving FPGA logic for the key acceleration logic
rather than using it for interfacing to components on the board.

Instruction-side
bus interface

Optional MicroBlaze feature

Data-side
bus interface

Memory Management Unit (MMU)

M_AXI_IC

M_AXI_IP

M_AXI_DC

M_ACE_DC

M_AXI_DP

M0_AXIS..
M15_AXIS

S0_AXIS..
S15_AXIS

DLMB

Bus
IF

ITLB UTLB DTLB

ILMB

M_ACE_IC

I-C
ache

D
-C

ache

Program
Counter

Special
Purpose
Registers

ALU

Shift

Barrel Shift

Multiplier

Divider

FPU

Register File
32 X 32b

Instruction
Decode

Instruction
Buffer

Branch
Target
Cache

Bus
IF

 Fig. 6.1 MicroBlaze processor

6 Processor Options

68

 The PS is built such that the SoC can be used even without the programmable
logic (PL) fabric turned on. This enables the software users to be productive even
without the FPGA design has been created. Section 6.5 (Putting It All Together)
talks about some of the ways to use Zynq-like devices.

 The architecture was further extended in the Zynq UltraScale+ MPSoC ™
shown in Fig. 6.3 . Xilinx raised the compute power of the SoC by introducing
four Cortex A-53™ cores and two Cortex-R5™ cores. In addition to these proces-
sors, there is a GPU as part of the SoC as well. With MPSoC, Xilinx has also
introduced a host of high-speed peripherals which include SATA , DisplayPort ,
 PCIe , and USB 3.0 . These are built on top of high-speed SerDes which are part of
the SoC. Xilinx extended the memory support to DDR4 as well. Security and
isolated power domains have been two major advancements in Zynq UltraScale+
MPSoC. The processor and other masters in the SoC can have secure access to
specifi c peripheral/memory through the Xilinx Peripheral Protection Units
(XPPUs) and Xilinx Memory Protection Units (XMPUs). Since the SoC packs a
lot of powerful peripherals, the power consumption has to be controlled. Xilinx
has split the SoC in a lower power domain and full power domain making it easier
for customers to split their application appropriately and shut down peripherals
when not in use.

 Fig. 6.2 Zynq-7000 block diagram (not to scale)

S. Rele

69

6.4 Tool Chains

 While processor architectures are a key factor for designs, it is equally important to
have appropriate tools in order to build systems which can integrate the programma-
bility of FPGAs and processors. These tools include hardware designs tools at a higher
level of abstraction as well as traditional software design and debug tools.

6.4.1 Integration Tools in Vivado

 A completely functional SoC consists of a processor, soft peripherals, as well as
memories. The fi rst step toward building an SoC + FPGA system is to identify the
processor of your choice (primarily MicroBlaze or a Zynq class of SoC). The next
step is to determine the correct memory architecture suitable for your application.
This includes memories internal to the FPGAs (such as block RAMs) and external
memories (Chap. 5) which range from nonvolatile fl ash memories to volatile SRAM
and SDRAM memories.

Processing System

Low Power
Domain

RPU

M
IO

H
S

 M
IO

P
S

-G
T

R

GPU

Full Power Domain

Display Port

PCle

SATAAPU
OCM

GigE(4)
USB(2)

NAND
SD/eMMC

QSPI

SPI(2)
CAN(2)
I2C(2)

UART(2)
GPIO

LPD-DMA

PMU

SYSMON

CSU

BPU
Battery Power Domain

EMIO Config Programmable Logic

General-Purpose I/O High-Speed Transceivers

High-Density HD I/O High-Performance HP I/O GTH GTY DSP
Block
RAM

Customizable
Logic

UltraRAM

ILKN

CMAC

PCle
Gen4

AMS

Video
Codec

ACP

CCI/SMMU

Core
Switch

FPD-DMA

FPD
Switch

DDR Controller

LPD
Switch

ACE

HPC(2)

HPM(2)

HP(4)

PL_LPD
LPD_PL

 Fig. 6.3 Zynq UltraScale+ MPSoC

6 Processor Options

http://dx.doi.org/10.1007/978-3-319-42438-5_5

70

 System building tools like Vivado IP Integrator (Chap. 7) can aid in creating
such designs with relative ease. The fi rst step toward building the SoC design would
be to instantiate the necessary processor and then continue to add memories and
peripherals. It is also important to partition your system into a register-style slow
access (i.e., access to peripherals) and a faster memory access. It is important to
ensure that all peripherals and memories are appropriately connected and address-
able by the processor. This is done through use of an interconnect .

 Once the hardware system is built, you need to export the hardware defi nition to
the software development kit (SDK) for the software user to build their kernels and
applications. Each hardware system is unique, and hence having a mechanism to
communicate the information about the hardware built to the SW BSP is important
for the correct functioning of the overall system. The hardware defi nition contains
the following information which is critical for conveying the details of the system
built for the purpose of software development:

 1. Address map of peripherals as seen by all processors.
 2. Parameters of the IPs used in the design. These parameters are used by the drivers

during BSP generation.
 3. A BMM fi le, which provides the information of the block memories used in the

hardware and their corresponding address map for the peripheral. This is only
used in case of MicroBlaze.

 4. The bitstream which is built in Vivado and can be directly downloaded by the
 SDK during software development.

 All this information is critical for the software BSP to be created. Any changes in the hard-
ware require a reexport of the HW information and a regeneration/recompile of the SW BSP .

6.4.2 Compilers and Debuggers

 Embedded application developers typically write their software programs in a
higher-level language like C and C++. These high-level programs are translated
into assembly-level object code and eventually into an executable and linking for-
mat (ELF) fi le which contains machine-level code. Compilers play an active role in
optimizing the generated code using the context of the processor being used. For
example, in case of MicroBlaze, if the multiplier is implemented as part of the SoC,
the code generated would use the mul instruction. If it is not, it would make a call to
the multiply function from the pre-built libraries.

 Some SoCs such as the MPSoC have more than one processor. These processors
can be made to work as SMP (symmetric multiprocessing) or AMP (asymmetric
 multiprocessing). In case of an SMP system, the software kernel such as Linux will
take care of scheduling processes on appropriate processor based on system load.
With industry standard processors (ARM A9, Cortex A-53, and R5s) on the SoC,
you can fi nd the right software kernels for their systems which can be used as a base.
With AMP system, you need to take care of not just execution on the individual

S. Rele

http://dx.doi.org/10.1007/978-3-319-42438-5_7

71

processors but also have the appropriate communication mechanism between the
various processors.

 Often, programs need to be debugged in order to get to the correct functionality.
Software tool chains such as SDK would be incomplete without a debugger which can
connect to the board and provide helpful information about the program execution.

 There are certain situations where it is important to debug the software processes
running on the processor (PS) in conjunction with the hardware transactions in the
fabric (PL). Xilinx supports cross trigger solution for both soft processors
(MicroBlaze) and hard processors (Zynq-7000 and Zynq UltraScale+ MPSoC). A
conceptual diagram is represented in Fig. 6.4 .

 When a breakpoint is hit in the software debugger, it raises a PS to PL trigger.
This trigger can be connected to a logic debug IP (such as “Integrated Logic
Analyzer” [ILA] IP). The logic analyzer tool which is part of Vivado will then be
used to display the current transactions on the signals being tapped in the hardware.
In a similar fashion, you can generate a trigger from the ILA (i.e., PL) to the PS .
This will stop the processor from executing instructions leading to a breakpoint.
Chapter 17 explains the triggers in hardware.

 The cross trigger capability can be extended to multiple processors and multiple hard-
ware triggers in the PL . It can be an extremely useful way of debugging HW/SW designs.

6.4.3 Device Drivers, Libraries, Kernels, and Board Support
Packages

 For using peripherals in software, it is important to know the exact function and the
register map of the peripheral. Peripheral developers would typically provide a
 device driver which provides the APIs for accessing information at a high level.

 Fig 6.4 Cross trigger (conceptual diagram)

6 Processor Options

http://dx.doi.org/10.1007/978-3-319-42438-5_17

72

 Software applications are not all written from scratch. Many applications are
built using pre-built libraries or libraries obtained from third parties. One good
example of this would be the Light weight IP (LwIP) stack. This provides the
basic Ethernet packet header processing capabilities. Applications can use the
high-level APIs provided by the library in order to get their job done.

 Most applications are written on top of an operating system (also known as
kernels). Linux is the choice for several embedded applications. A device tree is
used to communicate the details of the hardware with the Linux kernel. This includes
the type and width of the devices, interrupt ids, and their addresses.

 All the software components above are put together in a bundle which is called as
a board support package (BSP). BSPs are typically tied to a specifi c board/SoC and
the hardware for which the application is expected to be written. Once the hardware
is fi nalized, the BSP would rarely change. The BSPs would also have standard APIs,
and hence the software developers are free to write their code according to their
requirements and not worry about the basic device accesses.

6.4.4 Beyond Traditional System Design

 FPGA and SoC combination is now helping go beyond the traditional SoC market
and providing useful acceleration techniques. Xilinx is now adding support toward
software-defi ned fl ows. These fl ows enable offl oading of software applications on
hardware through underlying usage of high-level synthesis (HLS) tools. This
enables embedded software application developers to off-load a compute- intensive
complex algorithm to the fabric.

6.5 Putting It All Together

 The best use of FPGAs and processors can be explained through a couple of simple
applications.

6.5.1 Basic Application

 One of the basic usages of soft processors is to act as a microcontroller which moni-
tors a video pipeline engine and responds to interrupts when something unusual is
observed in the video pattern. For example, a security camera can detect moving
patterns and compare faces to a central database. On fi nding a match with a person
of criminal background, it can set an alarm which can notify the right offi cials of the
presence of such a person on premises. A system can be represented in a block dia-
gram as shown in Fig. 6.4 . The block diagram shown in Fig. 6.4 is overly simplifi ed

S. Rele

73

to explain the concept and the role of the processor. In a real system, there would be
an additional requirement of fl ow control as well as more connections.

 Xilinx provides IPs such as HDMI controllers, memory controllers, interrupt
controllers, and MicroBlaze for building systems, while you will have to provide
the special secret sauce such as facial recognition and the database lookup and com-
pare code. The solid arrows show the typical datafl ow from the external camera
image and the memory lookup, while the dashed lines indicate the control fl ow.
The MicroBlaze processor controls all the IPs in the system and is usually respon-
sible for initialization and periodic status checks. This will depend on the software
developed. Without a processor, you would have to write up complex state machines
to ensure that the entire system works in tandem.

6.5.2 Advanced Applications and Acceleration

 You could potentially decide to port the entire application to an SoC family of
devices. The MPSoC has all the peripheral IPs necessary for realizing a system as
shown in Fig. 6.5 . This would require the secret sauce (such as the facial recognition
and database lookup) to be written in a software, which is compiled to the ARM
processor. But even with a 1.5 GHz processor, it is hard to match the performance
of dedicated computation in an FPGA.

 The facial recognition and comparison algorithms could take thousands of clock
cycles to detect an image and compare it to a picture in the database. If the job is
done in a hardware (i.e., programmable logic), the entire algorithm could be paral-
lelized and be done in a few clock cycles. Xilinx tools make it easy for embedded
algorithm developers to take the compute-intensive functions through HLS tool

 Fig. 6.5 Basic application

6 Processor Options

74

chain to create a hardware component which is a faster and a parallel version of
the software. The tool chain also creates the necessary connection with the processor
which can continue to take care of data acquisition and overall control. A simplifi ed
view of the application after running through the tool chain would look similar to
the one shown in Fig. 6.6 .

 Fig. 6.6 Accelerated system with MPSoC

S. Rele

75© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_7

 Chapter 7
 Vivado IP Integrator

 Sagar Raghunandan Gosavi

7.1 Introduction

 Vivado IDE provides the IP integrator (IPI) with graphic connectivity canvas to
select peripheral IPs, confi gure the hardware settings, and stitch together the IP
blocks to create the digital system. Since IPI makes very heavy usage of IPs, it would
be good to have a good understanding of Vivado IP Flows (explained in Chap. 3), in
order to get a full appreciation of workings under the hood as you use IPI.

 IPI offers many useful features that enable you to graphically design their sys-
tem. The following are the main features that ensure ease of complex design
creation:

• Graphical interface called block design (canvas) to construct complex IP-based
designs

• TCL-based complete support for design creation
• Support for auto-connection of key IP interfaces
• One-click IP subsystem generation
• Design rule checks
• Parameter propagation
• Address map generation

 After going through this chapter, you will have a deeper understanding of the
features offered by the IP Integrator fl ow within the Vivado Design Suite and you
will be comfortable in designing and constructing your own systems using the same.
This will include instantiating individual IP components, making necessary connec-
tions between the interfaces, defi ning and connecting clocks and resets, confi guring

 S. R. Gosavi (*)
 Xilinx , Hyderabad , Telangana , India
 e-mail: gosavi.sagar@gmail.com

http://dx.doi.org/10.1007/978-3-319-42438-5_3
mailto:gosavi.sagar@gmail.com

76

the settings of IP, defi ning the address range of slaves for their respective masters
(useful in case of processor-based systems), understanding the parameter propaga-
tion, and thus generating the output products of their system.

7.1.1 Design Reuse

 With the complexity of the systems increasing exponentially, it becomes extremely
important to be able to reuse designs with minor modifi cations to their systems without
the need to completely redo the design. IPI provides the right means to achieve this
wherein it empowers you to confi gure the individual components as per the require-
ment in your design to construct the different fl avors required for the system. It offers
the ability to package your design which can be reused in other projects.

7.2 Terminology

7.2.1 Block Design (BD)

 Vivado IDE provides the capability to create a workspace for you wherein you can
graphically create design systems in an IPI-provided canvas, stitch the design together
using the automation tools, ensure the correctness of the design, and generate the design.
The block design can be created in both project and non-project mode (explained in
Chap. 2). As stated above, one of the major features of the block designs is the graphical
canvas which allows you to instantiate IP blocks from the IP Catalog and construct
designs. Figure 7.1 shows the block design creation and the canvas of the BD.

7.2.2 Automation Notifi cations

 One of the key aspects of IPI is the provision of the connection and board automa-
tion. Whenever IPI identifi es potential interface connections between various IP
blocks, it notifi es you about the possible availability through a hyperlink visible at
the top of the canvas, as shown in Fig. 7.2 . For example, clock, reset, and AXI con-
nections between the AXI-compliant IPs are covered in this automation. Detailed
explanation is covered under Sect. 7.3.2 (Designer Assistance).

7.2.3 Hierarchical IP

 IPI provides a feature where an IP can pack another block design within itself, thus
offering another level of block design inside top level to display the logical confi gu-
ration of the parent. These hierarchical blocks enable you to view the contents of the

S.R. Gosavi

http://dx.doi.org/10.1007/978-3-319-42438-5_2

77

block but do not allow to edit the hierarchy. Changes are permitted only to the top
level exposed parameters available in the confi guration window of the IP.

7.2.4 Packaging

 IPI also provides a feature wherein you can package the entire block design after it
has been validated and functionality has been proven. This allows you to reuse the
IP block design in other projects as well. Figure 7.3 depicts the selection window for
packaging the project.

 Once the block design is packaged, the tool copies the necessary fi les in the speci-
fi ed directory and adds the IP repository to the project locally. The properties associ-
ated with the package can be changed while packaging the design, thus enabling you
to use the block design in other projects.

7.3 IPI Flow

7.3.1 Design Entry Within BD Canvas

 The basic method of design entry in a project mode within IPI relies on instantiating
the IPs from the IP Catalog in the block design canvas. Section 3.2 explains about
 IP Catalog . While creating a design, you need to just drag and drop the IP from the

 Fig. 7.1 BD canvas of IPI

 Fig. 7.2 IPI notifying about automation availability

7 Vivado IP Integrator

http://dx.doi.org/10.1007/978-3-319-42438-5_3

78

catalog in the canvas or can directly add to the canvas by clicking the “+” button.
The IPs instantiated in the design can be individually confi gured based on the design
requirement provided that the IP under work has those options available while it
was being packaged:

• Stitching the design
 Various blocks of IP modules instantiated within the block design canvas can be

respectively connected to structure the system. Block design by default automati-
cally identifi es the AXI interconnect interfaces, clock, and reset connections. This
assists the users in stitching the design together.
• Ports

 Create Port option within IPI provides you with more control in specifying the
input and output, the bit-width, and the type (such as clk, reset, and data). With this
option you can also specify the frequency for clock ports. There is also a provision

 Fig. 7.3 Selection window for packaging

S.R. Gosavi

79

for making the port from the IP external meaning that it would be promoted to the
top level.

7.3.2 Designer Assistance

 Another powerful feature offered by IP integrator is the Designer Assistance which
includes block automation and connection automation. To narrate it in brief, this
feature provides users with suggestions to establish potential connections between
interfaces of the compliant IPs:

• Connection automation
 This feature assists the users in connecting the AXI interfaces, reset/clock ports,

and/or ports of the IPs to external I/O ports. These ports if made external will appear
in the top-level HDL wrapper, and an appropriate XDC constraint would be required
to be defi ned for them.
• Block automation

 This feature is available only when an embedded processor such as the Zynq
7000 Processing System or Zynq MPSoC or MicroBlaze processor or some other
hierarchical IP such as an Ethernet is instantiated in the IP Integrator block design.
This feature allows users to confi gure the related IPs based on their design require-
ments. It comes with a certain set of options, which you can choose from to confi g-
ure the IP, thus bypassing the need to manually confi gure the IP.

 For example, in Fig. 7.4 , once the MicroBlaze processor IP is instantiated in the
design, the block automation becomes available.

 On clicking the Run Block Automation , a pop-up shows up as shown in Fig. 7.5 ,
which allows you to confi gure the MicroBlaze IP.

 Once confi gured, the block design updates to refl ect the changes selected, and a
new set of IPs also appear in block design based on the set of selection.

 Fig. 7.4 Block automation notifi cation

7 Vivado IP Integrator

80

 As seen in Fig. 7.6 , the Connection Automation gets activated as it has identi-
fi ed the potential AXI and/or clock/reset ports for which it can assist you to estab-
lish connection. On clicking the Run Connection Automation , a window as shown
in Fig. 7.7 pops up. You can then choose from the available set of selections for
these ports.

 Fig. 7.5 Block automation confi guration settings for MicroBlaze

 Fig. 7.6 Block design after execution of block automation

S.R. Gosavi

81

7.3.3 Address Editor

 The Address Editor tab provides the slave address mapping corresponding to the
master interface. However, please note that the Address Editor tab only appears if
the block design contains an IP block that functions as an AXI master interface
(such as the MicroBlaze processor) or if an external bus master (outside of IP
Integrator) is present.

 As can be seen in Fig. 7.8 , the data and the instruction cache of the MicroBlaze
are respectively mapped to the block RAM and local memory, the address of whom
is depicted on the offset address.

• Address Map
 Master interfaces reference an assigned memory range container called address

spaces . Slave interfaces reference a requested memory range container called a
memory map. The address space names are related to the usage by the master inter-
face to which it corresponds to. It represents which slaves are mapped to which

 Fig. 7.7 Confi guration settings for connection automation

 Fig. 7.8 Address editor

7 Vivado IP Integrator

82

address space of the master. The entire address map is available in a separate tab
called an Address Editor tab within the IPI layout.

7.3.4 Parameter Propagation

 While designing with IPs in block design, it is important that the confi guration user
parameters are propagated to the IP blocks connected. It enables an IP to auto-
update its parameterization based on how it is connected in the design. For example,
the clock frequency set in one of the IP blocks gets propagated through the design.
IP can be packaged with specifi c propagation rules, and IP Integrator will run these
rules as the block design is generated. However, if the IP cannot be updated to
match properties based on its connection, an error is reported to highlight the poten-
tial issues in the design.

7.3.5 Validate Design

 Validate design enables you to run a comprehensive design rule check as your
design is being consolidated which ensures that the parameter propagation, address
assignment as described above, and other aspects of the design creation are correct.

In short it ensures the completeness of the design. You can click on the icon
available in either the toolbar pane or in the BD canvas pane to run validation
checks.

7.3.6 Generate Design

 In order to generate the necessary source fi les from the various IPs used in the block
design which are to be used by synthesis and implementation runs, IPI provides a
feature to generate the block design called Generate Block Design available in the
fl ow navigator upon successful completion of validation of design. It generates vari-
ous source fi les like the HDLs respective to the IPs, constraints, and register level
fi les (for processor if any in BD) associated with the individual IP components. If
this option is run before validate design , this process will fi rst invoke validate
design ; ensure that there are no DRC in the design and will then generate the respec-
tive output products. These outputs can be seen in the Vivado Sources pane. Based
on the language setting of the project, the output products will be generated accord-
ingly (provided the IP is packaged accordingly).

S.R. Gosavi

83

7.3.7 Top-Level RTL Wrapper

 The block design can be either the topmost level of the design or it can be instanti-
ated in an RTL which then can be the top level of the design. If the block design is
the topmost in the hierarchy of the IPs, IPI provides a way to generate the RTL
wrapper for the same which is used in the synthesis fl ow as shown in Fig. 7.9 .

 Based on whether the project settings have been set to either Verilog or VHDL,
the top-level RTL wrapper will be generated in a respective HDL.

7.3.8 Export Hardware Defi nition

 This feature allows you to transfer the hardware design information to the Software
Development Kit (SDK). It is mainly useful in a hardware-software ecosystem.
Usually in a processor-based system, when there is a programmable logic (PL) also
present in the design, the hardware defi nition is exported after bitstream generation
which thus includes the complete hardware and software confi guration. However, in
some cases when there is no PL present, there is no need to generate bitstream, and
the hardware information can be exported right after generation of output products.

7.3.9 Creating an Example Design

 Vivado provides a way to ensure that you get started with some reference design
created in IPI. It has a predefi ned set of example projects being embedded which
can be created at the beginning to the project.

 Fig. 7.9 Creating an HDL
wrapper

7 Vivado IP Integrator

84

 Figure 7.10 shows availability of reference designs which are available for you.
Based on the selection made, the tool generates an IPI-based design which acts as a
template design for you. You can alter this design, based on your requirements.

7.4 Tcl Support

 One of the powerful aspects of IPI is the extensive backend Tcl support. All the
features of IPI can be accessed using a set of Tcl commands which can be executed
in batch mode as well as in the GUI mode. Section 2.2 explains more about making
use of Tcl support.

 Fig. 7.10 Creating an example design

S.R. Gosavi

http://dx.doi.org/10.1007/978-3-319-42438-5_2

85© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_8

 Chapter 8
 SysGen for DSP

 Arvind Sundararajan

8.1 Introduction

 DSP systems generally transform a stream of sampled inputs to a stream of sampled
outputs. The sampled inputs are usually the result of an analog to digital converter
sampling the output of a sensor. Development of a DSP algorithm involves trans-
forming these input samples using numerous mathematical operations like convolu-
tion or performing Fast Fourier Transform (FFT). The Implementation of these
algorithms requires many visualization aids like plotting the spectra, l density of the
output signal or creating scatter plots of complex signals. Development of these
systems and algorithms on an FPGA using traditional RTL techniques is very labor
intensive due to the lack of libraries to create domain-specifi c stimulus generators
and visualizers. Much of the time would be spent simply creating test benches that
try to emulate the deployment environment (Fig. 8.1).

 MathWorks tools, in particular Simulink , are used for modeling the environments
in which DSP algorithms operate. Ability of the Simulink engine to handle models
that operate on discrete sample time boundaries as well as continuous signals makes
it very easy to graphically model DSP systems and real-world physical signals on
the same canvas. Built-in stimulus generators as well as visualizers alleviate the
laborious task of creating test benches for DSP system. Synergy between the
 MATLAB language and Simulink is particularly highlighted in being able to param-
eterize Simulink blocks and hierarchies using MATLAB expressions.

 System Generator for DSP (introduced in 2001) is a high-level modeling and
design tool used for implementing designs on Xilinx FPGA. System Generator
embeds as a blockset and set of services within MathWorks Simulink. It was the
fi rst product of its kind using which DSP System Designers familiar with MATLAB
and Simulink could implement their algorithms on Xilinx FPGA. For the fi rst time,

 A. Sundararajan (*)
 Xilinx , San Jose , CA , USA
 e-mail: asrajan@gmail.com

mailto:asrajan@gmail.com

86

engineers with no prior FPGA design or RTL experience could get a design running
on an FPGA in a matter of hours using System Generator’s Hardware Co-simulation.

8.2 Designing in System Generator for DSP

 System Generator is different from all other Xilinx tools in that it embeds in a pro-
prietary third-party design environment called Simulink. The access to the tool is
provided through a catalog of blocks available in the Simulink library browser as
shown in Fig. 8.2 . The process of designing is through drag and drop of built-in
blocks on the drawing canvas and connecting input and output ports. All System
Generator blocks can be distinguished from Simulink blocks due to the presence of
the Xilinx logo.

8.2.1 Xilinx System Generator Blockset

 The blocks provided for designing and implementing a system (or a portion thereof)
are organized into libraries. Basic blocks that model mathematical operations like
addition, multiplication, division, etc., are collected together in the Math libraries .
Abstractions of Xilinx DSP IP like FIR Compiler and DDS Compiler are available

 Fig. 8.1 Simulink design environment with visualizer for eye diagram and scatter plot

A. Sundararajan

87

through the DSP Libraries. Blocks that provide rich functionality like Viterbi
decoder help accelerate design creation, while low-level blocks like AddSub allow
users to customize their algorithms. In wireless communication applications, clock
speeds are often as high as 491 MHz. Many of these blocks, therefore, expose
parameters that can be tuned to achieve these speeds. For example, the Mult Block
allows user to tune the latency which helps with pipelining the multiplier. Another
option provided on the Mult Block is to use embedded multipliers (same as DSP48
slice) which help to close timing at higher clock speeds than implementing it on
fabric (Fig. 8.3).

8.2.1.1 Gateway In and Gateway Out

 The Xilinx Blockset contains two special blocks called Gateway In and Gateway
Out that mark the boundary between the portion of the Simulink model that forms
the test bench and the portion of the Simulink model that forms the design under
test. All System Generator blocks must be driven by other System Generator blocks
except Gateway In which is driven by Simulink blocks. All System Generator
blocks can only drive other System Generator blocks except Gateway Out which
can drive a Simulink block

 In Fig. 8.4 , Gateway In brings data from one of Simulink’s stimulus generator
(source) block called Sine Wave , and Gateway Out connects the output of the design
to a Simulink visualizer called the Scope block.

 Fig. 8.2 Xilinx blocks with X watermark to distinguish from Simulink blocks

8 SysGen for DSP

88

8.2.1.2 System Generator Token

 The System Generator token is a special block in the Xilinx Blockset library that
holds information about the System Generator model. It captures project informa-
tion such as compilation targets including IP Catalog and Hardware Co-simulation
(Sect. 8.3.2), the top level HDL (VHDL or Verilog) to be used, Xilinx Part to be
used, Target Directory in which the results of compilation should be placed, etc. The
fi rst tab of the user interface for System Generator has been reproduced in Fig. 8.5 .

8.2.2 Sample Times and Cycle Accuracy

 Simulink provides a generic framework for sample time propagation that can be
used to model a variety of different continuous and discrete time systems . All
System Generator for DSP blocks except the Gateway In only accept and propagate
discrete sample times. A discrete sample time is a double-precision number that
specifi es a time step in seconds. It can either be associated with signals or blocks.
The discrete sample time associated with a block tells the Simulink engine when to
update the outputs and the internal states of the block.

 Most System Generator blocks specify the output sample times as function of
the input sample times and block parameterization. In general (with some nota-

 Fig. 8.3 System Generator blocks can be parameterized to extract maximum performance

A. Sundararajan

89

ble exceptions), the Simulink engine executes blocks at time steps that is a mul-
tiple of the greatest common divisor of the sample times of all the inputs and
outputs. For example, if the sample times of the inputs of a Xilinx AddSub block
are 2 and 4, then the AddSub block will specify the output sample time to be 2.
This means that at least one of the inputs change at 0, 2, 4, 6, 8 … seconds and
output also changes at 0, 2, 4, 6, and 8. Between these times the values on the
signals are held constant. This is a very important abstraction that helps with
hardware design.

 Most digital designs make use of a clock that keeps time. A cycle refers to a unit
of time representing one clock period. The System Generator token has a fi eld called
Simulink System Period (Tsim) which accepts a double-precision number. This
number relates the time in simulation with the time in hardware. An advance in time
in simulation equivalent to Tsim corresponds to an advance in time in hardware of
one clock period.

 Fig. 8.4 Gateway In and
Gateway Out blocks mark
the boundary of the design
under test

 Fig. 8.5 System Generator token and its user interface

8 SysGen for DSP

90

 Going back to the AddSub example, if Tsim was set to 1, a hardware designer’s
interpretation would be that one of the inputs to the AddSub is held constant for two
clock cycles, while the other input to the AddSub is held constant for four clock
cycles. It also follows that Tsim for this particular example cannot be greater than 2 as
any signal in an idealized (ignoring logic delays and clock skews) synchronous clock
design cannot change between rising edges of clocks. In essence, Tsim time steps
represent behavior of the system just after each rising edge of the clock in hardware.
All Xilinx System Generator blocks provide a cycle accurate simulation behavior.

8.2.3 Data Types

 The default built-in data type in Simulink is double , and many of the original built-
 in stimulus generators were only capable of producing double-precision data types
(this has changed since the introduction of Fixed-Point Toolbox now known as
Fixed-Point Designer). However, double precision is unsuitable for implementing
many common DSP algorithms including audio and video signal processing in an
FPGA because of the large number of resources it consumes.

 To address this issue, System Generator introduces two new data types in the
Simulink environment:

• Fixed- point data type
• Floating- point data type

8.2.3.1 Fixed-Point Data Type

 Fixed-point data-type format is characterized by the number of bits and binary-
point location as shown in Fig. 8.6 .

 In many digital designs, interpretation of bits as numbers is important; however,
it is not necessary to have a large dynamic range that double precision offers. For
example, the output of a counter limited to a count of 15 can be represented using

1

22 21 20 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13

1 1 1 1 1 1 10 0 0 01 10 0

Binary Point

Number of bits

 Fig. 8.6 Bit layout of an example fi xed-point number with number of bits set to 16 and binary
point located at 13

A. Sundararajan

91

four bits. Modeling values as fi xed-point data type introduces quantization errors
and loss of dynamic range (when compared to double precision), but the resource
saving afforded by fi xed-point type far outweighs these drawbacks.

 Most of the System Generator blocks operate on fi xed-point data type and on
compilation propagate binary-point alignment as well as bit growth to ensure no
loss in precision. For example, if an AddSub block confi gured as an Adder has two
16 bit inputs with binary points located at 8, by default the output bit width would
be set to 17 with binary-point location at 8. This can have an undesired increase in
resources due to bit growth. Therefore, many of these blocks also have options to
specify what the output type should be to keep the bit growth in check. Figure 8.7
shows the user interface to specify the output type on some of the typical operators
that show bit growth.

8.2.3.2 Floating-Point Data Type

 System Generator also supports fl oating- point data type including double precision
(64 bits), single precision (32 bits), as well as arbitrary precision. This is particularly
useful in converting golden Simulink models to System Generator models as well
as developing applications that require high dynamic range, for example, matrix
inversion. To exploit the fl exibility offered by FPGAs, arbitrary precision fl oating-
point data types are also supported wherein the user can explicitly manage the num-
ber of bits for exponent as well as mantissa .

 Note that the support for fl oating-point data types is not as extensive as fi xed-
point data types (i.e., only the blocks in the Xilinx fl oating-point library actually
support fl oating-point data type), and conversion from fl oating-point block to fi xed-
point block is supported using the convert block.

 Fig. 8.7 Specifying output type on the AddSub block to keep bit growth under check

8 SysGen for DSP

92

8.2.4 Compilation , Code Generation, and Design Flow

 Compilation of a System Generator design refers to the process of validating all the
parameters on all the blocks in the design, performing rate, and type propagation
and validating the results of rate and type propagation. This can be likened to the
elaboration phase in HDL compilers. Compilation of a System Generator design is
invoked anytime the Simulink model containing a System Generator design is simu-
lated or code generation through the System Generator token is invoked. As part of
the compilation process:

• The tool confi rms that a System Generator token is placed at the root of the
System Generator module.

• User parameters on each of the blocks including MATLAB expressions are eval-
uated and validated.

• Connectivity is established and there are no undriven ports in System Generator
module.

• The type and sample time propagation engine is invoked, and sample times of
each block and signals as well as types of the signals are resolved.

 Code generation refers to the process of transforming the Simulink model con-
taining a System Generator subsystem into RTL and IP that can be synthesized.
Following compilation either simulation can be performed or code generation can
be performed. In general, if the compilation is successful, it should be possible to
perform code generation or simulation. The general design fl ow is presented as a
fl owchart in Fig. 8.8 .

8.3 Verifi cation of System Generator Design

8.3.1 RTL Test Bench

 Along with the RTL and IP that represents the System Generator design in Simulink,
you can also optionally generate a self-verifying RTL test bench . On invoking code
generation, the design is simulated in Simulink where Gateway In and Gateway Out
blocks log the data they consume and produce into fi les with .dat extensions.
Running the RTL simulation of the test bench uses the data fi les generated from
 Gateway In s as stimuli and compares the results of RTL simulation on the output
ports of the module with the data fi les generated from Gateway Out . The RTL test
bench can be reused to verify the results of synthesis of the System Generator
 module as well as implementation.

 System Generator modules are generally a submodule of a larger design, typi-
cally a DSP data path. The RTL test bench allows users to verify the System
Generator module in isolation. Also the RTL test bench along with a System

A. Sundararajan

93

.

Compile Design

Fix Design

Simulate Design

Perform Code
Generation

Create Design

Any Errors?

Bit Growth
Acceptable?

Sample Times
to specification?

Behavior
Acceptable?

Close Timing

Timing closed?

Integrate module in a
larger design

 Fig. 8.8 General fl ow to
close on a System
Generator module

8 SysGen for DSP

94

Generator module provides a handoff mechanism to an RTL developer responsible
for integrating the system. This will help the RTL developer to become familiar with
the System Generator submodule of a larger design.

8.3.2 Hardware Co- simulation

 Many DSP algorithms require processing of a very large number of samples for rati-
fi cation. For example, a receiver in a communications pipeline may need to process
millions of samples to generate BER numbers. Often times even cycle accurate
simulation in Simulink may take many days of simulation to verify that the algo-
rithm is correct. To help with reducing the simulation run times, System Generator
also has an important feature called Hardware Co - simulation that accelerates
Simulation by using one of Xilinx’s Hardware Evaluation Boards.

 To use Hardware Co-simulation the design must be compiled for a specifi c target
board. This is done by setting the compilation target for Hardware Co-simulation.

 Invoking code generation compiles the design into a bitstream that includes the
user design as expressed in Simulink and a communication interface to pass data
from the host PC to the FPGA board. Two types of communication interfaces are
supported including JTAG and Ethernet. In general Hardware Co-simulation helps
only if the Simulink simulation time is on the order of 6 h or more. This is because
for each iteration, the design must fi rst be implemented.

8.4 Integrating System Generator Submodule in a System

 System Generator provides facilities and services that enable expression and verifi -
cation of DSP data paths rapidly. However, a system implemented on FPGA includes
more than the DSP data path such as interfacing with memory, bringing data in from
sensors through ADCs and IOs or HDMI interface. Other Xilinx tools such as
Vivado IP Integrator (Chap. 7) or RTL fl ow with Pin Planner are more suitable for
this purpose. To aid with these user fl ows, System Generator provides IP Catalog as
a compilation target as shown in Fig. 8.9 .

 In this compilation mode, in addition to generating products from System
Generator that are synthesizable using Vivado, the output products are also pack-
aged into an IP located in the IP folder under target directory. This IP can be used in
an IPI project or instantiated in an RTL project. More on IPI is covered in Chap. 7 ,
and on using an IP in an RTL project is covered in Chap. 3 .

A. Sundararajan

http://dx.doi.org/10.1007/978-3-319-42438-5_7
http://dx.doi.org/10.1007/978-3-319-42438-5_7
http://dx.doi.org/10.1007/978-3-319-42438-5_3

95

 Fig. 8.9 IP Catalog as a
compilation target

8 SysGen for DSP

97© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_9

 Chapter 9
 Synthesis

 Nithin Kumar Guggilla and Chaithanya Dudha

9.1 Introduction

 Synthesis is the fi rst step, which maps architecture-independent RTL code into
technology- specifi c primitives. Usually, synthesis tools are supposed to isolate the
users from knowing the device details. However, having a good idea of device prim-
itives allows you to fi ne-tune the synthesis behavior. This might be required mainly
for the following reasons:

• Code written for another device might need tweaks in order to get optimal area,
performance, and power on the current device.

• Sometimes, synthesis is done on individual parts of the design. So, what might
appear as a good optimization decision in the context of that small design might
not necessarily be the right decision in the context of the whole design. You
might need to guide the synthesis tool in such cases to alter the optimization
decisions.

• Sometimes, for designs with special purpose application, you might want to
obtain the last bit of performance or area or power—depending on the need—
even at the cost of a few other factors.

 Synthesis behavior can also have an impact on how effi ciently a design can be
taken through the back end place and route tools. In the context of this chapter, any
synthesis behavior refers specifi cally to Vivado synthesis tool, though some other
synthesis tools may also provide similar capabilities.

 N. K. Guggilla (*)
 Xilinx , Hyderabad , Telangana , India
 e-mail: gnithin@gmail.com

 C. Dudha
 Xilinx , San Jose , CA , USA

mailto:gnithin@gmail.com

98

9.2 Designs Migrating from ASIC

9.2.1 Inline Initialization

 Each register or latch in any FPGA device can be individually confi gured to power
up in a known 0 or 1 state. This initial state is independent of any asynchronous
clear or preset signals used to operate the register. The INIT attribute defi nes the
initial power-up state of registers and latches. An initialization in HDL will cause
Vivado synthesis tool to attach the corresponding INIT. The initialization given
below will result in register with INIT value as 1 :

 reg state_bit = 1;

 In ASIC world, there is no such provision. This would imply that while you
need to specifi cally have a reset or set in an ASIC, for FPGAs, you should just
initialize your registers and can get rid of set/reset conditions for the fl ops and
latches.

9.2.2 Memory Initialization

 FPGAs have dedicated memory blocks (distributed/block RAM). These support ini-
tial values which can be used for applications like ROM on power up. Synthesis
tools support inferring these initializations when coded using initial blocks and
using $readmemh/$readmemb to initialize memories:

 reg [31:0] mem [1023:0] ;
 initial begin
 $readmemb("init.dat", mem) ;
 end

9.2.3 MUX Pushing

 For an ASIC, there is not much difference (in timing) between an adder followed by
 MUX and MUX followed by an adder which performs the same functionality. But
FPGA architectures have CARRY chains which are preceded by LUTs. In this con-
text, consider two scenarios:

• An adder followed by a MUX
• MUX followed by an adder

N.K. Guggilla and C. Dudha

99

 The fi rst one results in 1 additional LUT + 1 logic level. The second one can
combine the adder into the same LUT. The RTL code segment below would result
in an adder followed by a MUX, as shown in the schematic of Fig. 9.1 :

 always @ (posedge clk)
 begin
 …..
 if(sel_reg)
 dout <= din_reg + din0_reg;
 else
 dout <= din_reg + din1_reg;
 end

 The critical path in Fig. 9.1 is through the adder and the MUX. This is translated
to 1 LUT + 2 CARRY4 + 1 LUT. The same functionality can be recoded as below to
give a circuit as shown in Fig. 9.2 , where MUX is moved in front of the adder:

 Fig. 9.1 RTL view before MUX pushing

 Fig. 9.2 RTL view after MUX pushing

9 Synthesis

100

 always @ (posedge clk)
 begin
 …;
 dout <= din_reg + dout_tmp;
 end
 dout_tmp = sel_reg ? din0_reg: din1_reg;

 One-bit addition and the MUX can now be combined into the same LUT. So the
critical path is now 1 LUT + 2 CARRY4 .

9.2.4 Clock Gating

 Clock gating is a popularly used technique in ASICs and FPGAs for eliminating
unnecessary switching activity there by reducing dynamic power . Based on the
design functionality, designers will add this gating logic to drive sequential elements
which will disable clock as and when required.

 Since clocking resources on an FPGA are predetermined, gating might have to
be done within the specifi c clocking structures available. A gating logic on clock
path for an FPGA could result in skew and thereby timing violations , especially
 hold violations.

 You can move the gating logic onto clock buffer as shown in Fig. 9.3, specially if the
same gated clock controls a high number of elements. These clock buffers are designed
to prevent spurious clocking, due to change in enable while the clock is in active phase.

 Gating logic on clock path should typically be moved to enable path for fl ip-fl ops
or latches. Vivado synthesis tool will do this automatically (under user option). But
if the structures are too complicated, user intervention might be needed in terms of
altering HDL code.

 FPGAs have dedicated primitives like block RAMs, DSPs which contribute to a
good percentage of the total power. These primitives have clock enables which can
be leveraged similar to fl ip-fl ops if there are clock gating structures on these.

 Fig.9.3 Using BUFGCE
for clock gating

N.K. Guggilla and C. Dudha

101

9.3 Getting the Most of Device Primitives

 FPGA is made up of a fi xed number of different varieties of structures. Having an
understanding of the target architecture and the impact of different mappings will
allow you to obtain a very high QoR , by tweaking the actual inference and resource
mix—depending on your specifi c design care-abouts.

 Same functionality may be realized using different combinations of primitives. If
your design makes excessive use of a specifi c primitive, you might want to imple-
ment some of the functionality onto another type of primitive, where possible, even
if that other primitive type might usually be considered suboptimal for that specifi c
functionality realization.

 This section covers some of the dedicated primitives of Xilinx FPGA and exam-
ples of decision-making process to show the best way to obtain optimal results
through Vivado synthesis.

 The examples given below are w.r.t Xilinx 7 series, UltraScale, and UltraScale+
devices. The basic idea behind providing these is to give a conceptual understanding
which can be adjusted for other architectures, depending on the structure available
in those future architectures.

9.3.1 SRLs

 Xilinx FPGAs contain primitive which is LUTM (LUT memory) which can be con-
fi gured as a sequential element like a shift register (SRL32) or a distributed
RAM. This section covers some examples to illustrate decision-making process
around SRL s.

 Take a simple example of a delay chain of 64 of 1 bit wide. This can be imple-
mented in 64 fl ip-fl ops. These would need at least four slices . Or, they can be imple-
mented in 2 LUTMs—going into a single slice. Each LUT confi gured as an
 SRL32 + an additional fl op for better clock_to_out which can all go into a single
slice.

 On the other hand, consider a design having many delay lines with small depth
(say 3). If these are mapped to SRL , these could cause congestion due to high utili-
zation of SRLs . Based on the design statistics, you should control the SRL threshold
for getting a better trade-off. Vivado synthesis tool provides directives and switches
to change the threshold for SRL inference.

 Structures around SRL also play a role. Consider the following sets of
structures:

• Combo logic followed/preceded by SRL
• Block RAM/distributed RAM followed/preceded by SRL
• DSP followed/preceded by SRL

9 Synthesis

102

 For better clock_to_out , synthesis will pull out the last stage of SRL into a fl ip-
fl op. You can control this behavior using synthesis attributes. You might also con-
sider pulling out the fi rst stage of an SRL into fl op which would provide higher
fl exibility for placement. This can be controlled using synthesis attribute srl_style .
For example, srl_style = reg_srl_reg will force the tool to have SRL s w ith registers
on both sides.

9.3.2 Memories

 Designs typically use memories for storing data, buffering, etc. At a fundamental
level, a memory is a bank of fl ops with decoding logic at the input and MUX logic
at the output .

 FPGAs provide dedicated primitives for implementing memories. These are of
two types. First is distributed memory which is implemented using LUTM s and the
second are block RAMs which are hard blocks of size 18 k/36 k.

 For very smaller memories, the obvious choice is register based, since the num-
ber of fl ops/ glue logic will be less.

 For choosing between distributed and block RAM based, the fi rst requirement is
synchronous nature. An asynchronous read from the memory will be inferred as a
 distributed RAM . A synchronous read which implies either output data is registered
or the read address being registered is a requirement for block RAM to be inferred.

 Since distributed RAM is implemented using a LUT, a six-input LUT can be
confi gured to implement a 64 × 1 single port memory. A block RAM can support 18
k/36 k bits. Choosing a crossover point on where to use a distributed RAM and
block RAM is important. Synthesis tools use thresholds/timing constraints for infer-
ring these memories automatically.

 For highly utilized designs where the design is dominant in one of the primitives,
i.e., distributed RAMs vs. block RAMs, you should guide the tool using attributes/
switches to have a different implementation to get balanced utilization of resources.
This will in turn affect the place and route tools on providing better opportunities for
placement. There is no deterministic optimal ratio of distributed RAMs vs. block
RAMs. The right mix depends on various factors.

 Based on few case studies that we have encountered, we will try to mention some
of the good practices that can be used based on the scenario. Your design may need
its own decision.

9.3.2.1 Distributed RAM Usage

 For a highly utilized design with tighter timing constraints, make sure that the dis-
tributed RAM percentage of the overall slice usage is relatively low. The reason is
that if there are too many distributed RAMs, there would be lot of fabric routing that
would converge at each slice/ CLB which would result in congestion .

N.K. Guggilla and C. Dudha

103

 Look at configurations of smaller depth, wider data bus. Synthesis tools
might look at a combined view of the aspect ratio to decide on inferring distrib-
uted or block RAMs. In cases where depth is small, distributed RAMs are a
better choice.

 For example, depth × width = 32 × 256. This would result in four block RAMs if
used in simple dual port (SDP) mode. In terms of distributed RAM, it would be 256
LUTs. In this example it is better to go with 256 LUTs. If we look at block RAM
bits that are actually inferred, it is 8192 vs. the total capacity of 147,456 (four block
RAMs).

9.3.2.2 Block RAM Pipelining

 For higher frequencies, always use the pipeline registers or else the clock_to_out
of the block RAM would limit the performance that can be achieved. In the follow-
ing situations, synthesis tool might not pull in the register , even if there are
pipelines:

• Feedback path on the register
• Fanout from the fi rst stage of the pipeline

 Use additional register outside the block RAM for higher performance if block
RAM has multi- fanout . Place and route tools would have higher fl exibility in plac-
ing this register, based on its fanout load placement.

9.3.3 DSPs

 DSP blocks come with a number of features. A few to mention are pre-adder, mul-
tiplier, and post-adder/accumulator with pipeline register at each output.

 This section uses examples based on DSP48E2 from Xilinx UltraScale devices.
 DSP48E2 supports a signed multiplier of size 27 × 18, 48-bit post-adder, an input

pre-adder which is connected to the 27-bit multiplier port.

9.3.3.1 Extra DSPs Inferred

 Note that a multiplier of size 27 × 18 will be mapped into a single DSP block only if
the inputs are signed. So the fi rst thing to check is if the inputs are unsigned.

 Adder followed by multiplier when used for full width will not be packed
into a single DSP block. A 27-bit addition would result in 28-bit result and
then this 28 bit should be used for multiplication. So, the operand size has
grown beyond 27—the width of the multiplier. You need to consider the mul-
tiplier input size and calculate the maximum possible at the input of DSP prim-

9 Synthesis

104

itive. For a signed multiplier of 27 × 18, taking the carry into consideration, the
maximum possible adder at the input is 26 bit. If it is unsigned, it would be less
by one more bit.

 Consider a situation, where the multiplier output is tapped/padded with 0 s.
before driving an adder. Multiplier output to adder is hardwired, so if there is some
truncation/padding, it cannot be done within single DSP block.

 To summarize on the above section, DSP is a powerful block, and to use the
capabilities of DSP blocks to fuller extent, make sure you understand the hardwired
connections and the widths of the supported primitives internally.

 You can make use of DSP’s pipeline registers for achieving high performance.
Make sure to use all the pipelines if you have a tighter timing requirement.

9.3.4 MUXFs

 These are 2:1 Muxes that multiplex LUTs which can be used for implementing
wider functions. For example, two LUT6s are muxed by a MUXF7 which pro-
vides a capability for implementing a seven-input function. Similar analogy can
be used for MUXF8 and MUXF9. But note that the MUXF8 would have inputs
as MUXF7s.

 There is always a trade-off of using MUXFs vs. LUT3, for example, to imple-
ment a two-input MUX when used in the context of a complete design. Simply
specifi ed in another way, if a MUXF is driving a register, then it would be advanta-
geous to use it because there is a direct route from MUXF to register. If it is driving
some combo, the LUT3 can be combined with another function which would result
in a reduction of one logic level. Synthesis tools can be directed by switches/attri-
butes to control the behavior.

9.3.5 Carry Chains

 For implementing arithmetic operations like adder, subtractor, or comparators, dedi-
cated carry chains (or, carry look ahead) have faster routes.

 When using carry chains, make sure to exploit the capability of the architecture.
Avoid using an adder and feeding into a combo and then feeding into other adder ,
as shown in Fig. 9.4 . In this case though the adders are implemented using carry
chains, because of the combo, the exit from CARRY to LUT and entry from LUT to
 CARRY will contribute to a larger percentage of the delay. This can be slightly
restructured to have adder, adder, combo or combo, adder, and adder (as shown in
Fig. 9.5) to minimize the delay.

 The other best practice is to use a register at the output of adder so that they can
be packed into the same slice.

N.K. Guggilla and C. Dudha

105

 Fig. 9.4 Adder, logic, adder

 Fig. 9.5 Logic, adder, adder

9.4 Attributes / Directives to Control Synthesis Behavior

 Synthesis tools support directives/attributes which can be used in RTL and or XDC
to provide fi ner control to the user. These can be used to change default mapping by
synthesis and stop/force some optimizations.

 Though a tool could support lot of attributes to control the behavior, an important
point to be noted is the implication of these attributes when used in different con-
texts. Let us look at few examples which illustrate this.

9 Synthesis

106

 Below is a simple RTL which has max_fanout applied on the enable signal which
drives 1024 fl ops:

 module top (
 ….
 output reg [1023:0] dout
);
 (* max_fanout = 10 *) reg en_r;
 always @ (posedge clk)
 …
 if(en_r)
 dout <= din;
 …

 Consider the scenario when the attribute is not used. This RTL will infer 1025
fl ip-fl ops, which would be placed in 65 slices (assuming 16 fl ops being packed per
 slice). All the 1024 registers have the same control signal.

 Now let us consider the case where max_fanout of 10 is used. Synthesis will
 replicate en_r 1024/10 (103) times. So we have 103 control sets now. This will use
103 slices for 1024 registers. Due to replication we have 103 additional fl ops which
need ~seven slices.

 In the above example, though your intention was to reduce the fanout for
improved timing, you can see that control sets played a role which ended up in a
considerable area overhead.

 Let us look at another example of how multiple attributes when used in conjunc-
tion can become nondeterministic. Consider a case where you have an FSM and
want to force the encoding to one-hot and want to debug this using logic analyzer .
To achieve this, fsm_encoding attribute along with mark_debug would be applied.

 At a fi rst glance, it looks correct. But there is a confl ict. mark_debug implies that
the exact signal name be intact. With fsm_encoding as one-hot, there would be addi-
tional fl ops and state name would get changed. So synthesis tool chooses to honor
 mark_debug and fsm_encoding would be ignored. A better way in this case would
be to add mark_debug post-synthesis via XDC so that the encoded FSM state would
be available for debug.

 Look at synthesis log fi le for any message related to attribute being ignored for
some reason. DONT_TOUCH stops optimizations in the complete fl ow. So make
sure that it is intended.

 XDC provides a powerful mechanism which can be used to apply attributes with-
out having the need to change the RTL. Consider a simple example of a module
which describes the memory being instantiated in different hierarchies. If you want
to map few hierarchies to block RAM and few hierarchies to distributed RAM , a
simple Tcl-based XDC can be used, as shown:

 set_property RAM_STYLE distributed [get_cells u/u1]
 set_property RAM_STYLE block [get_cells u/u2]

N.K. Guggilla and C. Dudha

107

9.5 Synthesis vs. Simulation Mismatch: Common Cases

9.5.1 Global Set/Reset

 Vivado netlist simulations do not come out of reset till 100 ns. The reason for this is
there is a global set/ reset (GSR) in Xilinx FPGAs which retains the initial values on
all the fl ops for the fi rst 100 ns of simulation time.

 If you are planning to reuse your testbench from the RTL, ensure that in your
testbench, the reset is at least asserted for 100 ns before pumping in the actual
vectors.

9.5.2 Other Cases

 Memories are one area which might expose a difference in RTL vs. synthesized
netlist. In cases where the RTL description is mapped to a simple dual port or true
dual port block RAM, during address collision , there would be mismatch. Look for
warnings during netlist simulation.

 In addition, other conventional cases of synthesis vs. simulation mismatches apply.

9.6 Synthesis Switches

 Synthesis tools provide switches which act on the complete design. Attributes are
for fi ner control whereas switches are for global control. Let’s take a simple exam-
ple to understand this better. Flatten_hierarchy is a switch which has values like
 full , none , and rebuilt . Let’s say you want to fl atten the complete design except for
few hierarchies. This can be done using the synthesis switch fl atten_hierarchy full
and applying keep_hierarchy yes on the desired hierarchies.

 These global switches play an important role due to the fact that place and route
tools would see a different view of the same design, depending on the switches
used. Though the changes might not be so predominant, factors like control sets ,
 FSM encoding would result in a change in the resource count and hence different
input netlists for place and route tools.

 There are few switches that synthesis tools support to limit the number of inferred
primitives like block RAM and DSP. This control is useful, when you are synthesiz-
ing a part of the design, and want to leave out resources for other portions of the
design. Also for reducing LUT count, the tool can be directed to combine LUTs
which will have an impact on timing. So based on the requirement, you can use
these switches to fi ne-tune the output netlist.

9 Synthesis

108

9.7 Coding Styles for Improved QOR

 RTL coding style plays an important role for getting optimal results. Synthesis tools
support specifi c coding templates for inferring different primitives. Modern tools
understand and map to the desired primitives when the user codes in a slightly dif-
ferent way and maintains the intent, but for getting repeatable results, follow the
usually recommended coding practices.

 Below are few specifi c suggestions:

• Avoid using too many hierarchies. Else different fl attening options will provide
signifi cantly different results.

• A simple code using simple constructs is always better. It helps in understanding
the intent if you have to revisit the code after a while. Plus, however smart a tool
might be, a simpler code would give you the best result always. For example,
instead of using a for-loop to assign individual bits, assign the whole bus.

• Look for cases where the tool might do resource sharing. If you need perfor-
mance, code using parallel structures.

• Avoid instantiation in RTL unless really required. Synthesis tools would not opti-
mize an instantiated primitive.

• Constrain the ranges if the signals/parameters do not need full range evaluation.
For example, signals in vhdl if declared as integer type should be constrained as
 0–15 , if you need only 16 values.

• Avoid logic functionality while port mapping.

 A simple example below illustrates the importance of coding style:

 module top (
 input [3:0] din,
 output dout
);
 sub u (
 .din(din[3:2] | din[1:0]),
 .dout(dout)
);
 endmodule
 module sub (
 input [1:0] din,
 output dout
);
 assign dout = &din;
 endmodule

 In the above example, the output is just a function of four inputs. Synthesizing this
one would expect one LUT4 and one logic level. But this may not happen always.
Consider a DONT_TOUCH on sub or this design is run with fl atten_hierarchy none

N.K. Guggilla and C. Dudha

109

option. In that case, there would be two LUTs and two logic levels. The point to note
here is that coding logic during port mapping can be an easy option for making quick
code changes but the repercussions due to the same should be thought up-front.

9.8 Guidelines to Get Best Results Out of Synthesis

• Understand your target architecture, so that you can fully exploit all its
capabilities.

• Avoid using too many attributes that could hinder synthesis optimizations. Few
of them are like DONT_TOUCH /MARK_ DEBUG . Debug comes with the cost of
additional area/timing penalty. So make sure you understand the intent.

• Look at log fi le for synthesis info/warning messages, mainly on attributes and if
any pipeline registers for block RAM/DSPs are missing.

• There is a misconception that heavy pipelining would make the design meet tim-
ing easily. This might have an adverse impact. The reason is too many registers
would make packing diffi cult. Maintain a good ratio of LUT to register, in the
range of 1.5. If the ratio is less, relook if pipelining is more than needed.

• Look at logic level distribution post-synthesis. If there are too many paths at the
higher side, use a systematic approach to distribute these. Few of the tricks learnt
in this chapter should come handy.

9 Synthesis

111© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_10

 Chapter 10
 C-Based Design

 Duncan Mackay

10.1 Introduction

 Recent advances in design tools have enabled a new approach to FPGA design,
C-based design . Designing in C allows you to specify your designs at higher levels
of abstraction than traditional RTL and obtain the productivity benefi ts of working
at a higher level of abstraction: faster design capture, faster design verifi cation,
faster design changes, and easier design reuse.

 Figure 10.1 provides an overview of the C-based design fl ow. The key steps are
as follows:

• C simulation verifi es that the C function gives the desired behavior.
• High-level synthesis (HLS) is used to synthesize the C function into an RTL

design which satisfi es the specifi ed performance, timing, and resource
requirements.

• RTL verifi cation confi rms the output from HLS matches the functionality of the
original C function.

• During IP integration, the RTL output from HLS is incorporated into an RTL design.
• RTL synthesis and Place & Route then create the bitstream used to program

the FPGA.

 The productivity benefi ts of a C-based design fl ow are achieved at different
stages of the design fl ow. During the initial development, the primary productivity
benefi t is provided by fast C simulation which allows you to quickly verify the
intended functionality. For example, to simulate a full frame of HD video for a typi-
cal video algorithm using C simulation typically takes less than a minute. Simulating
the RTL design to perform the same function typically takes a day, if not longer.

 D. Mackay (*)
 Xilinx , San Jose , CA , USA
 e-mail: duncanm@xilinx.com

mailto:duncanm@xilinx.com

112

 Once the functionality of the C code has been confi rmed, HLS allows you to
quickly create different RTL implementations from the same C source code, allow-
ing you the time to fi nd the most optimal implementation which satisfi es the design
requirements: in some cases it may be a fast design at the cost of size, and in other
cases it may be a smaller design at the cost of speed (or any point in between).

 Once the design is complete, HLS allows the same C code to be easily targeted to
a different technology or to a different clock frequency or to a different set of perfor-
mance characteristics, making design migration and evolution substantially easier.

10.2 C Simulation

 C simulation is the process of compiling and executing the C program and is the
most underappreciated part of a C-based design fl ow. The benefi ts of C simulation
can be summarized as speed, speed, and speed. It is while performing C simulation
that you actually design—create an algorithm, simulate the algorithm, review the
results, refi ne the algorithm, simulate the algorithm, review the results, etc. The fast
compilation and execution times of C simulation allow these design iterations to be
performed quickly and productively.

C Simulation

High-Level Synthesis

RTL Verification

RTL IP Integration

RTL Synthesis

Place & Route

FPGA Bitstream

 Fig. 10.1 C-based design
fl ow

D. Mackay

113

 As highlighted in Fig. 10.2 , the top level of every C program is the main() function.
In a C-based hardware design fl ow, the C program is considered to be two separate
components, the C testbench and the design function to be synthesized into hardware.

 In the example in Fig. 10.2 , the C program contains eight sub-functions, f1–f8 .
Function f3 is the top-level function for synthesis, and everything below function
(including) f3 is the design function to be synthesized (functions f3 , f7 , and f8). The
 C testbench is everything below (including) the level main() excluding the design
functions (functions main() , f1 , f2 , f4 , f5 , and f6). The testbench creates input for the
design function and accepts output from the design function and hence is used to
verify the design function.

 A key part of any productive C-based design fl ow is an intelligent testbench: one
which both analyzes and verifi es the results from the design function. Figure 10.3
shows an example C design and testbench. The design function, shown on the left-
hand side, is a simple design which reads a set of input data from array DataIn and
determines the minimum and maximum values in the data set. The C testbench,
shown on the right-hand side, creates a set of input data, calls the design function,
analyzes the output results from the design function (in this simple example, by
comparing them to the expected results), and sets the return value to main() as zero
only if the results are correct.

 In a more complex design than the example shown in Fig. 10.3 , the input data
may be read from a data fi le on the disk, and the output results may be compared
against golden results also read from a data fi le or from results generated in the
testbench. The concept however is the same. C simulation is used to exhaustively
verify the design and the C testbench is used to exhaustively analyze the results.

main()

f1 f2 f3

f4 f5 f6 f7 f8

C Program

Design Function

Test Bench

 Fig. 10.2 Testbench and design function

10 C-Based Design

114

 A fi nal important point on the topic of the testbench is its re-use later in the
design fl ow. HLS provides an automated RTL verifi cation feature: the HLS tool will
generate an RTL testbench to verify the RTL output. If the C testbench checks the
results, an RTL testbench can be created which automatically checks the results
after RTL simulation .

10.3 Arbitrary Precision Data Types

 An interesting feature of the example shown in Fig. 10.3 is the use of arbitrary pre-
cision data types (the header fi le in Fig. 10.3 defi nes data type data_t as ap_int<12>).
All data types in the C language are defi ned on 8-bit boundaries—a char is 8-bit, a
 short is 16-bit, an int is 32-bit, and the long long data type is 64-bit. When perform-
ing hardware design, it is often desirable to have data widths which are more precise
than those provided in the C language. Arbitrary precision data types are a library of
data types provided with the HLS tool which allow data types to be specifi ed in any
size, from 1-bit up to 4096-bit.

 The most obvious advantage for using arbitrary precision data types is synthesis.
If the design needs to read 18-bit data and perform 18-bit multiplications, it is a
waste of hardware resources to use the next largest data type in the C language, the
 int data type (32-bit) which results in 32-bit multipliers and 32-bit registers.
Arbitrary precision data types allow the hardware designer to accurately size data
values in the C function and ensure the most optimal hardware is created.

 A less appreciated benefi t of arbitrary precision data types is that they allow accu-
rate C simulation to be performed before synthesis. If specifi c (signed or unsigned)
data types are required in the design, they can be both specifi ed and verifi ed in the C
function before synthesis. Fast C simulation is used to confi rm the bit- accurate
behavior.

 Fig. 10.3 Minmax_frame design example

D. Mackay

115

10.4 High-Level Synthesis

 An overview of the HLS process is shown in Fig. 10.4 . A key difference between
RTL design and C-based design is that HLS synthesizes a single top-level C func-
tion into an RTL design which is then incorporated as an IP block into a larger
RTL design. The C function is never the top level of an FPGA design; rather HLS
is used to quickly create RTL IP blocks which are then assembled in an RTL
environment.

 The inputs to HLS are the C design function, a C testbench to verify the behavior
of the C design function, and design constraints and optimization directives to specify
the performance and structure of the RTL design.

 The design constraints are the target technology and the clock frequency. The
target technology specifi es the component delays. Given the component delays and
the clock frequency, HLS creates an RTL design which meets timing after RTL
synthesis. HLS determines how much logic can be executed in each clock cycle and
then creates an FSM to sequence the design operation. It can be expected that when
targeting a newer and faster technology, HLS is able to perform more operations
within a clock cycle, and hence fi nish in fewer clock cycles, than when targeting an
older and typically slower technology.

 Optimization directives may be used to specify the performance and area of the
RTL design. During the synthesis process, the HLS tool will perform some default
optimizations. These defaults are specifi ed in the documentation provided with the
HLS tool. Optimization directives are used to create an RTL design with optimiza-
tions which are different from the default synthesis, e.g., to vary the area- performance
trade-off point.

 The outputs from HLS are an RTL design and reports which detail the perfor-
mance of the design and an estimate of the maximum delays and the resources
required to implement the design. At this point in the design process, only estimates
of the timing and area are reported—the exact details cannot be known until RTL
synthesis and Place & Route are performed—however, the estimates are generally
accurate (±10 %).

 Fig. 10.4 High-level synthesis design fl ow

10 C-Based Design

116

10.5 Interface Synthesis

 C synthesis may be thought of as two separate processes: interface synthesis and
design synthesis (although both are very much intertwined). Interface synthesis is
the process of converting the arguments of the design function from simple data
values to an RTL cycle accurate interface which optionally may include an IO
protocol.

 The minmax_frame example shown in Fig. 10.3 helps demonstrate the concept
of interface synthesis. Figure 10.5 shows the top-level function for synthesis with
arguments DataIn , min , and max . After synthesis, these C arguments may be trans-
formed into RTL interfaces shown (in both Verilog and VHDL) in Fig. 10.5 .

 A clock and reset are added to the RTL design. The tool provides options to con-
trol whether the reset port is active-high, active-low, or if it is present at all.

10.5.1 Port-Level IO Interfaces

 Each of the data arguments from the C function— DataIn , min , and max —are trans-
formed into RTL data ports with associated interface protocol signals. In this particu-
lar case, the array DataIn is transformed into a block RAM interface. This interface
protocol assumes array DataIn is a block RAM outside the design and is therefore
accessed with standard block RAM address, data, and chip-enable signals. In this
case, HLS determined this port is only ever read and hence there is no requirement
for a write-enable (WE) port.

 Similarly, HLS automatically determined arguments min and max are only written
to and hence these are implemented as output ports in the RTL design. In the example
shown in Fig. 10.5 , both ports are implemented with an associated output valid
signal to indicate when the data is valid.

 Fig. 10.5 Interface synthesis

D. Mackay

117

 Interface synthesis provides many options for interfaces. The array DataIn could
also be implemented as an AXI master or AXI-Lite interface. If the array is accessed
in a streaming manner, with each address location accessed in sequential order (as
in this case), the DataIn port may be implemented as an AXI-Stream interface, or a
FIFO interface, or a two-way handshake interface.

 In a C-based design fl ow, it is highly advisable to synthesize the interfaces with
 IO protocols. This allows the fi nal RTL design to be simply connected to other RTL
blocks during the RTL integration phase without you manually trying to determine
when the data may be read or written.

10.5.2 Block-Level IO Interfaces

 In addition to the port-level IO protocols, HLS may optionally add a block-level IO
protocol as shown in Fig. 10.5 . A block-level IO protocol is a protocol which is
associated with the design or block, rather than any particular port. In Fig. 10.5 , the
 ap_start port controls when the block can start its operation, the ap_ready indicates
when the design is ready to accept new input data, and the ap_done and ap_idle
signals indicate when the design has completed its operation and is idle. Block-level
 IO signals may also be implemented as an AXI -Lite interface allowing the RTL IP
to be easily controlled from a CPU or microcontroller.

 The block-level IO and port-level IO protocols also help enable automatic veri-
fi cation of the RTL. Given a handshake protocol on both the design and the IO
ports, it is always possible to automatically generate an RTL testbench. Without
these handshake protocols, it may only be possible to automatically generate a
testbench for certain cases. Even if the IO protocols are not required for the design,
it is worth considering that the small overhead in logic means you do not have to
write an RTL testbench.

 As with synthesis in general, the HLS tool will have a default interface protocols
for each type of C argument (arrays, input pointers, output pointers, etc.). You can
then use directives to specify interface protocols other than the defaults.

10.5.3 Interface Options

 As noted earlier, HLS provides many options for selecting interface protocols.
Figure 10.6 shows some examples of the type of interface which may be created for
the minmax_frame C code example shown in Fig. 10.3 :

 A. This is the case shown in Fig. 10.5 . The array is implemented as a block RAM
interface, and the output ports are implemented with output valid signals.

 B. In this case, the array is partitioned into discrete elements and each is imple-
mented as an AXI-Steam interface. Since N is 8 in the minmax_frame example,

10 C-Based Design

118

there are eight discrete ports for the inputs, allowing all inputs to be read
simultaneously.

 C. In the fi nal case, since all data accesses are sequential in this example, both the
input array and the output ports are implemented as AXI-Stream interfaces.
Also, in this example the block-level IO protocol is implemented as an AXI-Lite
interface.

 Once you have selected the IO protocols, HLS design synthesis then optimizes
the internal logic to maximize the performance of the design.

10.6 Measuring Performance

 Performance in HLS is measured by the design latency and initiation interval (II).
Figure 10.7 shows an example design which takes fi ve clock cycles to complete.
It starts in state S1 where it performs a read on the data port and proceeds through
to state S5 where the output is written.

• The latency is defi ned as the number of cycles it takes to complete all outputs.
In Fig. 10.7 , the latency is fi ve clock cycles.

• The initiation interval (II) is defi ned as the number of cycles before the design can
start to process a new set of inputs. In Fig. 10.7 , the next read is not performed until
the design has completed, and hence the II is six clock cycles.

 Both latency and II may be specifi ed using optimization directives. Typically, the
key performance metric is the II : how quickly the design processes new input data
and produces output data. In most applications, the goal is to create a design which
can read new inputs every clock cycle (II = 1).

 Fig. 10.6 Interface synthesis variations

D. Mackay

119

 The resources used to implement the design may also be considered a perfor-
mance metric. HLS provides reports which specify how many LUTs, fl ip-fl ops,
DSP48, and block RAMs are used. Optimization directives may be used to control
the number of these resources; however, doing so impacts the latency and/or the II .

10.7 Optimizing Your RTL

 When your optimization goals are different from those provided by the default opti-
mizations performed by HLS, you can specify optimization directives to control the
RTL implementation. HLS provides a number of optimizations, and it is diffi cult to
review all of the optimizations here; however, it is worth reviewing a few of the key
optimizations to provide a sense of what is possible. The minmax_frame example
shown in Fig. 10.8 can be used to highlight the key HLS optimizations.

10.7.1 Increasing Data Accesses

 Arrays are a collection of elements accessed through an index and are synthesized
into a block RAM , which is a collection of elements accessed through an address.
If an array is on the top-level interface, it is assumed to be outside the design and a
block RAM interface is created. Conversely, if the array is inside the C function, it
is implemented as a block RAM inside the design.

 Arrays may be partitioned and mapped. Partitioning an array splits it into multi-
ple smaller block RAMs (or block RAM interfaces). Since a block RAM only has a
maximum of two ports, arrays are typically partitioned to improve data access,
allowing more data samples to be accessed in a single clock cycle. Mapping arrays
together implements multiple arrays in the C code into the same block RAM, saving
resource but often reducing data accesses and limiting data throughput.

2 3 4 5 6 7 8 9 10

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

Rd Wr Rd Wr

1

Latency = 5 Clock Cycles

Initiation Interval (II) = 6 Clock Cycles

 Fig. 10.7 HLS performance metrics

10 C-Based Design

120

 In both cases, the array optimizations allow the C code to remain unchanged.
Optimization directives are used to instruct HLS to implement the most ideal RTL
structure without any need to change the source code.

 Loops may be left rolled or they may be unrolled. In a rolled loop, HLS synthe-
sizes one copy of the loop body and then executes it multiple times. Using the min-
max_frame example from Fig. 10.8 , the logic to perform the reads and comparisons
is created and then an FSM will ensure the logic is executed eight times (since
 N = 8 in this example). This ensures the minimum amount of logic is used, but it can
take many clock cycles to complete all operations specifi ed by the loop.

 Loops may be partially or fully unrolled. Using the minmax_frame example from
Fig. 10.8 , if the loop is partially unrolled by a factor of, say, 2, this would create two
copies of the logic in the loop body and the design will execute this logic (8/2 = 4)
four times. This creates more logic than a rolled loop, but now allows more reads
and writes to be performed in parallel, increasing throughput (or in other words,
reducing the II).

 At this point, you can perhaps start to see the interaction between the options for
interface synthesis and design synthesis:

• Completely unrolling the loop in the minmax_frame example creates eight copies of
the hardware and allows all reads and writes to occur as soon as possible: poten-
tially, all in the same clock cycle if the frequency is slow enough (or the target
technology is fast enough).

 Fig. 10.8 Key optimization objects

D. Mackay

121

• However, if the DataIn interface is implemented as a block RAM interface, only
a maximum of two reads can be performed in each clock cycle. Most of the hard-
ware is wasted since it must sit and wait for the data to become available at the
input port.

• To take advantage of all the hardware created by a fully unrolled loop, the
solution here is to also partition the DataIn input port into eight separate ports
(or four separate dual-port block RAM interfaces).

 Similarly, only partitioning the input port does not guarantee greater throughput:
the loop also has to be unrolled to create enough hardware to consume the data.

10.7.2 Controlling Resources

 Functions and loops represent scopes within a C design function and may have
optimization directive applied to the objects within them. A scope in C is any region
enclosed by the braces { and } . Optimization directives may be applied to functions
and loops to control the resources used to implement the functionality. For example,
if the C code contains 12 multiplications, HLS will by default create as many hard-
ware multipliers as necessary to achieve the required performance. In most cases,
this will typically be 12 multipliers.

 Optimization directives may be used to limit the actual number of multipliers in
the RTL design. For example, if an optimization directive is used to limit the number
of multipliers to 1, this will force HLS to allocate only one multiplier in the RTL
design and hence share the same hardware multiplier for all 12 multiplications in the
C code. This will result in a smaller design, but sharing the resource (the multiplier
will have a 12:1 mux in front of it) will mean the design requires more clock cycles
to complete as only one multiplication may be performed in each clock cycle.

10.7.3 Pipelining for Performance

 Functions and loops may also be pipelined to improve the design performance.
Figure 10.9 shows another example of the performance metrics discussed earlier
(in Fig. 10.7). In this example the design is pipelined. States S1 through S5 represent
the number of clock cycles required to implement one execution of a function or one
iteration of a loop. The design completes the read operation in state S1 and starts the
operations in state S2 . While the operations in state S2 are being performed, the next
iteration of the function or loop can be started, and the operations for the next S1 state
can be performed while the operations in the current S2 state are performed.

 As Fig. 10.9 demonstrates, when pipelining is used, there is no change to the
latency, which is still 5 as in the previous example (Fig 10.7). However, the II is
now 1: the design now processes a new data input every clock cycle, for a 5×
increase in throughput. Thus, pipelining resulted in this improved performance

10 C-Based Design

122

with only a minimal increase in resources (typically a few extra LUTs and fl ip-fl ops
in the FSM).

 Pipelining is one of the most used and most important optimizations performed
by HLS.

10.8 Optimization Methodology

 Any methodology for creating an optimal RTL implementation ideally requires
understanding what the requirements of the RTL implementation are. However, the
following methodology assumes you wish to create the highest-performing design.
If this is not the case, skip steps 4 and 5:

 1. Simulate the C design and ensure the results are checked in the testbench.
 2. Synthesize the C code to create a baseline design. This will be the default syn-

thesis performed by HLS and provide you with a starting point for optimization.
 3. Apply the optimizations for interface synthesis. This ensures the interfaces are of

the required type to integrate the design with the rest of the system.
 4. Apply pipeline directives.
 5. Address any structural issues which create bottlenecks and prevent pipelining

achieving the desired II , such as partitioning arrays and unrolling loops.
 6. Use the optimization directives which control the allocation of resources to

improve the area if this is required.
 7. Finally, if the latency is a performance requirement, specify any latency directives.

2 3 4 5 6 7 8 9 10

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

Rd Wr

Rd Wr

1

Latency = 5 Clock Cycles

Initiation Interval (II)1=Clock Cycle

S1 S2 S3 S4 S5

Rd Wr

S1 S2 S3 S4 S5

Rd Wr

 Fig. 10.9 Performance improvement with pipelining

D. Mackay

123

 This methodology can be applied to the minmax_frame function to create three
data points for design comparison. The clock frequency is specifi ed as 4 ns and a
Kintex7 device is targeted.

 The performance and resources for the three examples are shown in Fig. 10.10 .
Remember that this design example has eight input values and therefore the reported
 II is the number of cycles before another eight new inputs can be processed.

 Example 1: Small Design

• Input array DataIn is specifi ed as a block RAM interface.
• Both outputs are specifi ed with an output valid signal.
• A block-level IO protocol is specifi ed.
• The loop is left rolled.

 Leaving the loop rolled ensures the minimum amount of hardware; however, the
latency and II are the highest because HLS creates logic to implement the body of
 Loop1 and then executes the same logic eight times sequentially (calculating each
iteration of the loop before starting to calculate the next iteration).

 Example 2: Fastest Design

• Input array DataIn is completely partitioned into eight separate ports.
• Since the input array DataIn is read in sequential order, it is specifi ed as an AXI-

Stream to reduce resources (no address generation logic) resulting in eight sepa-
rate AXI-Stream interfaces.

• Both outputs are specifi ed as AXI-Stream interfaces.
• A block-level IO protocol is specifi ed.
• The loop is fully unrolled.

 Unrolling the loop creates a design with the largest amount of hardware—eight
copies of the logic required to implement the loop body—and partitioning the input
ports allows parallel reads and writes. This creates the fastest design but also uses
the greatest number of resource. If the clock frequency is reduced, this design can
complete in a single clock cycle.

 Example 3: Pipelined Design

• Since the input array DataIn is read in sequential order, it is specifi ed as an
AXI- Stream to reduce resources.

 Fig. 10.10 Example design implementations

10 C-Based Design

124

• Both outputs are also specifi ed as AXI-Stream interfaces.
• A block-level IO protocol is specifi ed as an AXI-Lite interface.
• Loop1 is pipelined.

 Pipelining the loop keeps the hardware to a minimum while still ensuring the
design is able to process one sample per clock cycle (II = 8: the design can process
eight inputs in eight clock cycles).

 The ability to generate multiple RTL implementations from the same C code is a
large productivity benefi t of using HLS. You are able to explore the design space to
create the most optimum design implementation.

10.9 A Productivity Data Point

 For the minmax_frame example used throughput this chapter:

• Writing the C code, the C testbench, and performing C simulation to verify the
results took approximately 45 min.

• The run time to generate each of the three HLS solutions shown in Fig. 10.10 is
approximately 3 min per solution.

• Between each solution, the time to determine, select, and apply the optimization
directives is approximately 5 min.

• Within approximately 1 h, these solutions represent three unique RTL imple-
mentations and 1500 lines of RTL HDL code.

 Since the clock frequency and target technology are input parameters to HLS,
this design may be targeted to a new target technology or a new clock frequency and
new RTL generated in a matter of minutes. Although this is a small demonstrative
example, the productivity benefi ts scale when working on larger designs.

10.10 RTL Verifi cation

 Automatic RTL verifi cation is a feature of HLS. Since the HLS tool knows the inter-
faces which are created in the RTL, it is possible to automatically create an RTL
testbench to verify the RTL output from HLS. This allows the RTL to be verifi ed
without the requirement to create an RTL testbench.

 Since the RTL verifi cation is based on the C testbench, the amount of verifi cation
which is performed on the RTL is exactly correlated with the effort spent writing a
C testbench which exhaustively verifi es all modes. As stated earlier, spending time
and effort to create a C testbench which exhaustively tests all modes is a productive
investment, since C simulation is fast and productive and the investment in this is
automatically leveraged into the RTL verifi cation.

D. Mackay

125

 RTL verifi cation typically takes substantially longer to complete than any other
part of a C-based design fl ow. It is therefore recommended to only perform RTL
verifi cation when the design exploration process is complete or whenever you wish
to take a representative sample through the remainder of the design fl ow.

 Verifi cation confi rms the behavior of the RTL matches the behavior of the C code
simulation. To verify the RTL in the context of the other RTL blocks in the full FPGA
design, the RTL output must be integrated into the FPGA RTL design project.

10.11 RTL Integration

 The output from HLS is used as RTL input to the remainder of the FPGA design
fl ow. The HLS output is provided in industry standard RTL format (Verilog and
VHDL) and in gate-level format (EDIF). The most productive methodology for
using the outputs of HLS is the one which uses an IP integration fl ow where the RTL
output from HLS is another IP block in the RTL system along with existing RTL IP.

 An IP integration environment allows the IP blocks, including the HLS-generated
RTL design, to be easily integrated into the chip-level design, and is explained in
Chap. 7 . It would typically take more effort to add the HLS IP into the chip-level
RTL design manually (connecting each port in a text editor), than using IPI. Since
IPI uses IPs based on AXI protocol, you are highly encouraged to use AXI interfaces
for your HLS designs, allowing the HLS IP to easily be integrated into your FPGA
RTL design using the IP integration environment.

10.12 Tcl Support

 The fi nal part of any productive C-based design fl ow is the use of a Tcl script to take
advantage of batch processing. Batch processing through Tcl is supported by HLS,
allowing C simulation, C synthesis, RTL verifi cation, and RTL IP integration to be
performed effi ciently in batch mode.

10 C-Based Design

http://dx.doi.org/10.1007/978-3-319-42438-5_7

127© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_11

 Chapter 11
 Simulation

 Saikat Bandopadhyay

11.1 Introduction

 Simulation is a way to verify the functionality of design by creating an HDL model
and putting it through various input conditions and verifying the output. If the FPGA
design doesn’t work as intended, i.e., it has bugs, then the design can be corrected
and the device can be reprogrammed easily. However, most modern circuits are
complex, and it is almost impossible to debug these circuits merely by observing the
outputs. For that purpose, Xilinx provides hardware debug solutions (explained in
Chap. 17). However, the whole process of hardware debug has its own challenges.
Unless the circuit is small and simple, it is prudent to identify and correct all design
issues up-front using simulation. That is, the reason simulation has become an inte-
gral part of current generation of FPGA designs. Xilinx Vivado not only provides its
own simulator, but it also has most of the industry standard simulators (i.e., Questa ,
 NCSim / Incisive , VCS , and Aldec simulators) integrated into its environment. The
actual availability of the third-party simulators will depend on your license agree-
ment with those simulators.

 Vivado makes simulation very easy by providing the same framework for design
and simulation. Once the design (and testbench) is set up in Vivado, it can generate
scripts for seamless simulation—including for external simulators with very little to
no additional change.

 In this chapter we will go through the process of setting up the design for
simulation, running simulation, observing the outputs, and review various tools
available for debugging the design. We will also talk about Vivado’s native simu-
lator and use of C-models to speed up the simulation. As mentioned in Sect. 2.2 ,

 S. Bandopadhyay (*)
 Xilinx , San Jose , CA , USA
 e-mail: saikatb@xilinx.com

http://dx.doi.org/10.1007/978-3-319-42438-5_17
http://dx.doi.org/10.1007/978-3-319-42438-5_2
mailto:saikatb@xilinx.com

128

all GUI actions get logged into vivado.jou , and those Tcl commands can be used
to create a script, for running in batch mode for automation and regression runs.
This chapter will explain some other alternative options for some of these com-
mands. For an exhaustive list of options for these commands, you should use
 <command> -help on the Tcl console of Vivado.

11.2 Setting Up Design for Simulation

 For simulating the design, you need to specify a testbench . The testbench contains
HDL fi le(s) which provides the input to the design for simulation. It also prints and/
or checks the outputs. A more complex testbench may even do white box testing by
performing assertion checks on internal signals of the design.

 You need to add these testbench fi les in addition to the design fi les. While adding
source fi les from the GUI menu (fi le → add sources), Vivado provides an option to
 add or create simulation source . You need to select this option for testbench fi les
that are not part of the design being implemented on the FPGA. These testbench
fi les are used (along with the design fi les) for the purpose of simulation. Vivado
determines the HDL language and variants through the fi le extensions. For example,
fi les with .sv extension are considered as of type SystemVerilog .

 Each simulator provides some options that you need to set appropriately. You can
select the simulator and set the options by clicking on simulation settings. Simulation
is done in three stages Compilation, Elaboration and actual Simulation. Each stage
has its own set of options.

11.2.1 Compilation

 Compilation is the stage where Verilog, VHDL, or System Verilog is read and a
parse tree representing the model is created and stored in the design library. Most of
the language-related errors are detected at this stage. XSIM compilation for Verilog/
SystemVerilog and VHDL is performed by xvlog and xvhdl , respectively. Some of
the options for xvlog/xvhdl are:

• Verilog options: To add and include paths for searching ‘include d fi les and also
for defi ning Verilog macros ’defi ne from command line

• Generics or parameter options: To change the default parameters for top-level
 module or entity

• nosort : To prevent Vivado from trying to auto-determine the dependencies across
HDL fi les to determine the order of parsing

• relax : To show some leniency toward LRM noncompliance but commonly used
styles in HDL

S. Bandopadhyay

129

11.2.2 Elaboration

 Elaboration is the stage where parse trees are combined based on design hierarchy;
parameters are resolved and a simulation kernel code corresponding to the HDL
code is generated inside a design snapshot. XSIM elaboration is performed by xelab
command. Some of the options for xelab are:

• snapshot : To specify the name of design snapshot meant for simulation. Default
name is top-level module/entity .

• debug_level : To specify the level of debug that may be performed. It impacts the
level of optimization that can be performed by the simulation engine. Values
could be:

 – typical : For line tracing, waveform display, and deriver debugging
 – all : All of typical and debug of Xilinx precompiled library
 – off : No debugging. Provides the fastest simulation

• relax : To show some leniency toward LRM noncompliance but commonly used
styles in HDL.

• mt_level : To use multi-threading for faster elaboration.

 – auto : Determined the level automatically, based on machine confi guration.
 – off : No multi-threading
 – <num>: use max of <num> threads

11.2.3 Simulation

 Simulation is the fi nal stage where the simulation kernel corresponding to the design
is verifi ed and debugged by running it. In the context of Vivado’s inbuilt simulator,
 xsim is the command for the actual simulation using the generated design snapshot.
Some of the options for simulation are:

• runtime : Time for which simulation should be run, before stopping. In a typical
simulation, it is the setup time, after which initial simulation stops and control is
returned to Tcl shell. Simulation can continue further from Tcl shell with com-
mands run –all or run <time> .

• wdb : The waveform database fi le that is generated from simulation. This data-
base can be viewed by Vivado waveform viewer.

• saif /saif_all_signals : Used to generate SAIF fi le for power analysis.

 There are also additional options under compilation/elaboration and simulation
tabs which can be used for passing any options to the parser (xvlog/xvhdl), elabora-
tor (xelab), or simulation engine (xsim).

11 Simulation

130

11.3 Simulation and Observing Results

11.3.1 Simulation of Behavioral/RTL Model

 Initially (before synthesis) only RTL design is available, and simulation can be per-
formed on it via selecting run simulation from Flow Navigator window and further
selecting run behavioral simulation . This is the fastest simulation and any issue found at
this stage is the easiest to fi x. After synthesis and implementation, the run simulation will
also let you run post-synthesis functional/timing simulation and post-implementation
functional/timing simulations, respectively. These simulations are more accurate but
considerably slower.

11.3.2 Simulation Steps

 On running simulation, Vivado internally calls launch_simulation command to run
the simulation and displays the initial result. launch_simulation is the command for
not just Vivado simulator but also for other integrated simulators. To select the
appropriate simulator, set the property TARGET_SIMULATOR to one of XSIM ,
 ModelSim , IES , or VCS . The default value is XSIM.

 set_property TARGET_SIMULATOR <name>

 launch_simulation script does the following:

• Determines design sources, including fi les
• Determines the order of parsing (if requested)
• Compiles all Verilog and System Verilog fi les with xvlog
• Compiles all the VHDL fi les with xvhdl
• Elaborates the design into simulation snapshot using xelab command
• Opens up design scope window, objects window, and waveform window to mon-

itor the simulation
• Runs simulation on the snapshot using xsim command for a pre-specifi ed simula-

tion time
• Gives control back to Tcl shell for further simulation commands or for inspec-

tion of design or output

 Some of the options for launch_simulation that might be of interest to you are:

• step : Fine control of simulation stage to perform. Values are compile , elaborate ,
 simulate , and all (default is all).

• scripts_only : Only generate the simulation scripts; don’t actually execute the scripts.
• noclean _ dir : After simulation run, don’t clean up the directory.

 Any error in compilation or elaboration of the HDL fi les will be reported in the
 messages as well as log tab at the bottom of Vivado. The error messages in the mes-
sage tab has hyperlink to the source for speeding development. Output of simulation
can be observed in log window of Vivado.

S. Bandopadhyay

131

 Scope can be browsed on the scope window . On selecting a scope, all the signals
in the scope are displayed in the objects window as in Fig. 11.1 . Once the scope is
changed, the object window will start displaying signals of the new scope. This
 objects window displays the current value of the signal. Vivado picks the default
radix to display the value. This radix can be customized by the pop-up menu on
right click over the signal. To see previous values at specifi c time, waveform viewer
can be used. This is explained in Sect. 11.3.6 .

 Some of the Tcl commands related to scope are:

• current_scope without any argument: Returns the name of the current scope.
• current_scope <name> : The scope is changed to the specifi ed name.
• get_scopes : Lists all the child scopes of the current scope.
• report_scopes Describes all the child scopes of the current scope.

 The following is an example transcript:

 current_scope /counter_tb
 /counter_tb
 get_scopes
 /counter_tb/dut /counter_tb/Initial28_0 /counter_tb/Always35_1 /
counter_tb/Monitor32_6
 report_scopes
 Verilog Instance: {dut}
 Verilog Process: {Initial28_0}
 Verilog Process: {Always35_1}
 Verilog Process: {Monitor32_6}

 Fig. 11.1 Objects window

11 Simulation

132

11.3.3 Observing Simulation Results with Tcl

 The values of signals can be printed by Tcl command. Each signal can be uniquely
identifi ed by a full hierarchical path separated by / or the name relative to the current
scope. The following Tcl session prints the value (28 in this case) for the signal /
counter_tb/dut/i1/r3. If the current scope is set to /counter_tb/dut , the same
signal can also be accessed by the name i1/r3 .

 get_value /counter_tb/dut/i1/r3
 28

 The type of the signal can be queried with the command describe . That is:

 describe /counter_tb/dut/i1/r3
 Port(OUT): {r3[7:0]}
 Path: {/counter_tb/dut/i1/r3}
 Location:{File "C:/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv"
Line 26}

 To print all the signal values in the current scope, Tcl command report_values is
used.

 report_values
 Declared: {count[7:0]} Verilog 28
 Variable: {reset} Verilog 0
 Variable: {clock} Verilog 1

11.3.4 Timing Simulation

 Xilinx maintains libraries with and without timing information. Library without
timing can be used for faster verifi cation of functionality. However, if you want to
also consider the individual gate and wire delays, you should use post-synthesis
timing simulation . In this mode, the simulators will also fl ag if any of the timing
checks as they are violated during simulation. Post-implementation timing simula-
tion uses. SDF fi les generated from Vivado to model more accurate wire delays
and timing checks.

11.3.5 Controlling Simulation from Tcl

 Simulation in Vivado will run for time duration specifi ed in simulation options and
will stop for further commands. Simulation can be continued with the Vivado
command run . run runs the simulation further from the currently stopped time.

S. Bandopadhyay

133

 run 100 #runs simulation for 100 ns (ns is default time unit for simulation)
 run 100 us #runs simulation for 100 micro second (timeunits are ms, us, ns, fs)
 run –all #runs simulation till there are no more process in the design

 Current simulation time can be observed with the command Vivado Tcl com-
mand current_time . To redo the simulation without the overhead of re-compilation,
there is the Vivado Tcl command reset_simulation . This resets the simulation time
to 0 and cleans up any fi les or data generated during simulation. If you are debug-
ging and want to preserve breakpoints and conditions , you will need to use the com-
mand restart instead of reset_simulation .

11.3.6 Waveform Window

 During simulation, Vivado generates a waveform database and displays it in the
waveform window. When simulation is done for the fi rst time, Vivado automatically
displays all the signals at the top level of the design. You can add signals to wave-
form window by dragging signals from the objects window to the waveform win-
dow. Or, you can use the Vivado Tcl command add_wave with hierarchical or
relative signal name. You can customize the waveform being added through the use
of the following switches to add_wave:

• radix : To set the radix for displaying the values. Valid radix types are bin, oct,
hex, dec, unsigned or ascii.

• after_wave/before_wave : To customize the placement of the wave. By default,
the new waveform is added at the bottom of the existing waveforms.

• color : To set the color of the waveform, which can be a standard color name or a
string of the form ##RRGGBB.

• r : Used to add all signals under the specifi ed scope.

 If you have customized your waveform, you can save the customization as
waveform confi guration, to be loaded during future simulation of the same design.
To save a waveform confi guration, select the waveform and press Ctrl-S . The
confi guration gets saved as a *. wcfg fi le . It is possible to save multiple waveform
confi gurations into separate wcfg fi les. For restoring a stored waveform confi gu-
ration, select fi le → open waveform confi guration from the menu and select the
 *.wcfg fi le.

 Waveform viewer also has an ability to display the data in analog form, as shown
in Fig. 11.2 . It can be very useful in visualizing signal processing data. To see analog
wave , right-click on the signal and select waveform style as analog .

11 Simulation

134

11.4 Debugging

 Vivado IDE has easy and intuitive ways of debugging. The fi rst step is to analyze the
waveform and/or the log to get to the simulation time, where the bug fi rst manifests
itself. Once that is identifi ed, you should take the simulator to the specifi c simula-
tion time with run (explained in Sect. 11.3.5) command. Tracing and HDL code
debugging are done further to isolate and identify the bug.

 Fig. 11.2 Analog waveform

 Fig. 11.3 Source window with breakpoints

S. Bandopadhyay

135

11.4.1 Enabling Tracing

 Tracing refers to ability to follow (trace) the fl ow of simulation on your HDL code.
Vivado simulator has two tracing commands: ptrace for process tracing and ltrace
for line tracing. Use ptrace on (or, off) to turn on (or, off) process tracing. An exam-
ple session with process tracing would look like as below:

 run 5
 INFO: /counter_tb/Always35_1
 INFO:
C:/Users/ saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v:35
 INFO: /counter_tb/Forked24_7
 INFO:
C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv:24
 INFO: /counter_tb/Monitor32_6
 INFO:
C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v:32
 INFO: /counter_tb/Always35_1
 INFO:
C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v:35
 4055: clock:0 reset:0 ==> count:10010010

 Similarly line tracing can be turned on or off with the command ltrace on|off .
An example session with line tracing would look like as below:

 run 5
 4060 ns
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v":36
 4060 ns
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v":35
 4060 ns
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v":36
 4060 ns
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv":29
 4060 ns
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv":32
 4060 ns
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv":28
 4060: clock:1 reset:0 ==> count:10010011

11 Simulation

136

 Since there can be a lot of information generated by ltrace or ptrace , it might be
more effective to use tracing with condition (explained in Sect. 11.4.3).

11.4.2 Breakpoint

 HDL source has executable lines on which breakpoint can be applied. Breakpoint
can be set from Vivado GUI or from Tcl Console. In Vivado GUI, the breakable
lines have empty circles in front of them, as shown in Fig. 11.3 . Clicking on this
circle will add the breakpoint. The breakpoints on the GUI are toggle switch. So
clicking them again will remove the breakpoint.

 The Tcl command to add breakpoint is:

 add_bp counter.sv 29

 Running the simulator now will automatically stop on hitting this line. The signal
values can be observed by hovering the mouse over the signals of interest. Values
can also be checked from Tcl shell with get_value or report_value (described in
Sect. 11.3.3) command. Alternately current values can also be observed in the
objects window by selecting the appropriate scope.

 All the currently active breakpoints can be listed by the command report_bps .
The report of active breakpoints will look like:

 report_bps
 bp2:
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v":32
 bp3:
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sim_1/new/counter_tb.v":30
 bp4:
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv":29
 bp5:
"C:/Users/saikatb/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv":32

 Tcl command remove_bp can be used to remove a breakpoint by either specifying
the breakpoint id or fi le and line number. So the following two commands are
equivalent:

 remove_bp bp5
 remove_bp –fi le “C:/AXI_tut/project_3/project_3.srcs/sources_1/new/counter.sv"
–line 32

 To remove all the breakpoints, you can use the option –all .

S. Bandopadhyay

137

11.4.3 Conditions

 Condition is a very powerful debugging concept. It permits an action to be asso-
ciated with a Boolean expression turning true. Whenever the condition is met, the
command associated with the condition is executed. You can make use of this capa-
bility through add_condition from Tcl command. The command associated with
condition can be any valid simulator command. Thus add_condition can be a pow-
erful tool to do white box testing of design without modifying it. For example, to
break simulation if a non-zero data is present with reset, use the following
command:

 add_condition –name ignoredData {reset == 1 && data !=0 } stop

 Here stop is the command that gets executed when (reset==1 && data !=0)
becomes true. On stopping, the other related signal values can be inspected for
debugging. Once inspected simulation can further continue with run command.

 report_conditions reports all the condition objects that are active. remove_condi-
tion just like remove_bp can be used to remove one specifi c or all conditions.

11.4.4 Changing Values of Signals

 For debugging, you may sometimes want to see the impact of a changed value of
signal without changing the design and recompiling it. Vivado simulator provides
with two ways to do that from the Vivado Tcl. They are setting and forcing values.

11.4.4.1 Setting Value

 You can use set_value to update a signal or reg immediately. It however permits the
value to be changed with future signal update events. Example use:

 set_value -radix bin /test/bench_VStatus_pad_0_i[7:0] 1110100101

11.4.4.2 Forcing Value

 Forcing is similar to setting value, except it can be done only for signals, and once
the value is forced, it cannot be changed till the force is on. You can force a signal
to the desired value through add_force . Similarly the force can be removed by the
command remove_force .

 You can also use GUI to force a signal to a constant value and to remove the
 force . Right-click on the signal in the object window and select force constant to

11 Simulation

138

force a signal to a constant value. Similarly select remove_ force from the menu to
remove any force on the signal. You can also force a toggling value to a signal by
selecting force clock and fi lling up the pop-up window with toggle values, start
time(offset), duty cycle, and period.

11.5 Combining C with HDL Using DPI

 With SystemVerilog, you can write a part of design in C or C++ and use it from
SystemVerilog. SystemVerilog can import C functions via import command. Once
a C function is imported, it can be called as a regular SystemVerilog function or task
(depending on the import command syntax). Similarly SystemVerilog function or
 task can be exported to C side. These exported SystemVerilog functions (or tasks)
can be called from C functions. Exported SystemVerilog tasks can be used to mimic
 #delay or @wait from C functions.

 For simulating SystemVerilog with C code, it is important to make sure that they
are compatible. xelab has an option –dpiheader . This generates a C header fi le for
the imported and exported functions. The C function defi nition prototype must
match with this generated header for successful linking of functions.

 Use the Tcl command xsc to compile the C fi les and then link with xelab . Only
simple scalar types are permitted as function return for imported or exported DPI
functions. The permitted data types that can be passed between C and SystemVerilog
are mentioned in Table 11.1 .

 Let us take an example to elaborate. A SystemVerilog fi le hdl.sv (with the design
top name TESTBENCH) calls a C function defi ned in fi le helper.c . The prototype for
the function as defi ned in hdl.sv is:

 Table 11.1 Permitted
data-types between
SystemVerilog and C

 SystemVerilog Matching C type

 bit SVBit
 logic or reg SVLogic
 int int
 byte char
 short short
 long long
 chandle void*
 packed array of bits SVBitVector
 packed array of logic SVLogicVector
 unpacked struct struct

S. Bandopadhyay

139

 typedef struct {
 bit a;
 integer b, c;
 } stType;

 typedef struct {
 reg r;
 stType st;
 } stType1;
 import "DPI-C" function int func(input stType1 in, input stType1 in1);

 To generate the equivalent C prototype for function, you need to elaborate the
design using xelab with the additional command line option –dpiheader . This will
generate a header fi le with the name dpi.h . For this case, the dpi.h will contain the
 C prototype of the equivalent function.

 #include "svdpi.h"
 typedef struct {
 svBit a;
 svLogicVecVal b[SV_PACKED_DATA_NELEMS(32)];
 svLogicVecVal c[SV_PACKED_DATA_NELEMS(32)];
 } stType;

 typedef struct {
 svLogic r;
 stType st;
 } stType1;

 /* Imported (by SV) function */
 DPI_LINKER_DECL DPI_DLLESPEC int func(const stType1* in , const stType1*
in1);

 SV_PACKED_DATA_NELEMS() is defi ned in svdpi.h which is included. SV_
PACKED_DATA_NELEMS rounds the bits into chunks of 32 bits needed to hold. So
number from 1 to 32 will become 1 , 33 – 64 will become 2 , and so on. The C code
needs to have the same prototype for function . The C code can be compiled into a
dynamic library dpi.so with the command xsc as:

 xsc helper.c

 The next step is to create the simulation kernel with xelab command where the
name of the dpi library is specifi ed.

 xelab TESTBENCH –snapshot SIM1 –sv_lib dpi

11 Simulation

140

 Once the kernel is created, the simulation can be run using xsim command. This
will open up a Tcl shell that takes all the simulation commands.

 xsim SIM1

11.6 Generating SAIF File for Power Estimation

 For power analysis, usually functional simulation is performed and Switching
Activity Interchange Format (SAIF) fi le is generated. This SAIF fi le is input to the
power analysis tools. During simulation a SAIF fi le can be opened with Tcl com-
mand open_saif <SAIF_fi le_name>. Only one SAIF fi le can be opened at a time
during simulation. Simulator needs to be then instructed to log signals into SAIF
fi le, which is done via log_saif <signal>+. To log all the signals in the current
scope, log_saif can be used with get_objects as:

 log_saif [get_objects]

 Once logging is done for SAIF, it can be closed with Vivado Tcl command
 close_saif .

S. Bandopadhyay

141© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_12

 Chapter 12
 Clocking

 John Blaine

12.1 Clocking in FPGA Designs

 FPGAs are designed to be used with synchronous design techniques. As such,
understanding clocking structures and their capabilities is vital to be able to realize
a design. Poor understanding will create designs that are unreliable and diffi cult to
meet timing, while good understanding will create reliable designs and allow you to
focus on resolving non-clocking issues.

 FPGA clocking is not a diffi cult subject to understand. Wherever you face a
design decision, opt to prioritize clocking and keep the clocking as simple as pos-
sible. This simple rule will guide you well. Often decisions taken that do not give
optimal clocking performance will result in delays to the project, board respins, etc.

 FPGAs provide low skew clock routing. These are high load distribution net-
works. The network is fully buffered by design. It does not reduce in performance
as you increase the load. One key progression in UltraScale FPGAs is to provide
more clocking fl exibility when compared to older FPGAs. There are many more
available networks to use now.

 Additionally, FPGAs provide PLLs/MMCMs that allow you to do frequency
synthesis and phase shifting. These attributes allow you to interface to external
components and generate internal clocks of almost any frequency up to the maxi-
mum operating range of the FPGA. This allows for effi cient FPGA design as you
can easily change the frequency at which the design operates to be optimal for the
given FPGA and part of the design.

 J. Blaine (*)
 Xilinx , London , UK
 e-mail: john.blaine@xilinx.com

mailto:john.blaine@xilinx.com

142

12.2 Choice of Clock Frequency

 A typical FPGA design has many clock networks, as shown in Fig. 12.1 , because
each of the following may have its own network:

• Each source synchronous interface coming into or leaving the FPGA
• Each transceiver interface
• Internal system FPGA clock network
• Low-speed clocking networks for control like high fanout processor control via

an AXI-Lite interface, external fl ash clocking
• Optional internal fast clock networks for conducting DSP operations

 Most designs do not run at any single clock frequency. Design frequencies are
normally dictated by:

• Bandwidth of incoming data
• Bandwidth of outgoing data
• Resource consumed by a particular function

 The fi rst two points are typically decided by the system. However, the third point
is a design decision, in the sense that there might be multiple combinations of freq
vs. utilization that would be possible. Generating different frequency clocks is easy
in a FPGA. Running something faster will usually save resource. So, you can change
frequency to save FPGA resource like DSP slices.

Ultrascale FPGA

FREQ
CHANGE

F
I
F
O

SYSTEM SYNCHRONOUS I/F

T
R
A
N
S
C
E
I
V
E
R

I
/
F

S
O
U
R
C
E

S
Y
N
C

I
/
F

HIGH
PERFORMANCE

DSP

F
I
F
O

HIGH
PERFORMANCE

DSP

CONTROL

AXI_CLK

SRC_SYNC_CLK SYS_CLK

FWD_CLK REF_CLKRXUSRCLK

 Fig. 12.1 A high level look at a typical clock network

J. Blaine

143

 Wireless radio designs, for example, have parts that run at sweet spot frequency
of 491 MHz. Usually it is only the DSP portions that run at this performance. This
includes fi lters, power monitors, DPD, and crest factor reduction. The designs have
characteristics such as:

• Low load control paths.
• Point-to-point data paths.
• Design can be pipelined without issue.
• Data paths are typically small around 32 bits.

 Wired designs tend to have a lot of switching and wide data paths. Data paths
can be 512/1024/2048 bits. These large data paths represent a challenge to the
FPGA design software. You can help here by selecting a frequency that balances
the diffi culty and data path width. These designs tend to operate in the region of
300–350 MHz. For UltraScale+, there could be benefi t in doubling the frequency
to something like 600 MHz and halving the data width. Smaller data widths are
easier to route for the FPGA software tools.

 For other types of design, you should consider data path sizes , high fanout non-
clock nets, and logic levels required. These are the typical factors that infl uence
 Fmax . Of course, faster device families and speed grades move the window.

 You should also consider productivity against the cost saving of running faster. It
is important to choose the right performance without impacting your productivity
level. For example, closing timing at 400 MHz may take a few extra weeks com-
pared to closing timing at 200 MHz.

12.3 Number of Clocks

 UltraScale provides capability to use up to 24 truly global clocks . Usually designs
require something under 12 truly global lines. The unused networks can be broken
down into many smaller clock networks. This can give hundreds of smaller clock
networks. In practice, there is one smaller clock per interface, and you can use the
additional remaining clocking resources for non-clock (but, high fanout signals)
routing like clock enables or resets.

 Vivado will handle up to 24 clocks without issue. Once you go over 24 clocks,
your intervention could be required. For example, consider a design with 12 global
clocks and 36 interface clocks. The 12 global clocks could be Vivado placed, and
36 regional clocks might require some user fl oor planning to ensure that there are no
overlaps where you might exceed 24 clocks in a region.

 It is possible to have many local clock networks . These are where the clock is
routed on standard FPGA routing. These networks should be kept to a minimum
number of loads. The recommendation would be to keep everything inside a single
slice or two slices, and this would mean under 32 loads. More than this is possible
but you should avoid.

12 Clocking

144

12.4 A Typical Clock Network

 A typical clock network (shown in Fig. 12.2) in a FPGA starts with a pin that is fed
by an external oscillator. If a frequency modifi cation is required, you should feed the
incoming clock to a MMCM/PLL and then into a global clock network via a BUFG.
From this point it can access clock pins of basic logic elements like fl ip- fl ops and
RAMs. There are many variants of this. This chapter explains your choices depend-
ing on your requirements and optimal implementation for UltraScale FPGAs.

12.4.1 Clocks Entering a FPGA

 There are two primary places where a clock source will enter a FPGA. The fi rst is a
global clock IO or GCIO . In UltraScale, there are four P/N pairs per clock region.
For single-ended clock, connect on the P side. From these inputs there is a direct
connection to a PLL and MMCM or BUFGs.

 The other main entry points are gigabit transceivers. Each quad has two clocks
that can enter the FPGA. These clocks can be used in the fabric as is or can be used
with some modifi cation of frequency. Access to MMCMs can be made through
BUFGs. In Zynq MPSoC, there is a third source of clocks and that is the processing
subsystem. These can pass clocks to the FPGA fabric.

12.4.2 Generating Clocks with Different Frequencies

 Designs typically require many different clocks of different frequencies. FPGAs
provide the facility to generate clocks of different frequency and phases using
MMCMs and PLLs. PLLs can be considered as MMCMs with reduced features.
Each MMCM/PLL can generate multiple output clocks at different frequencies
and/or phases, over a wide range of frequencies.

 MMCMs/PLLs are usually driven by (a) clocks that come from external oscillators,
(b) source synchronous IO interface clocks, or (c) other internally generated clocks.

MMCM

Global
clock
input
(GCIO)

CLK

CLK2X

CLK_DIV2

BUFG

FF
DSP

RAMs
OTHER

 Fig. 12.2 A typical clock network

J. Blaine

145

Usually you need to ensure that clocks supplied to these components should not
stop. If they do, you need to reset these components. It is generally advisable to reset
the components before using them.

 Use the Clocking Wizard IP to make use of MMCMs/PLLs. This IP is part of
Vivado IP Catalog , explained in Chap. 3 .

 Zynq MPSoC components also have their own PLLs to change the frequency of
input clocks to the subsystem. Additionally frequency change can be achieved
within a gigabit transceiver, and clock division can be done in BUFGCE_DIVs and
BUFG_GTs which are described next. Detailed analysis of Zynq and transceiver
clocking is not covered here.

12.4.3 Accessing Global Routing

 Clock buffers BUFGCE , BUFGCE_DIV , BUFG_GT, and BUFGCTRL instruct
Vivado to use the special clock routing resources. There are no special requirements
to come off the global routing. Collectively these are called BUFG*. There is a
BUFG primitive, which is inherently a BUFGCE, but without using the enable
function. Vivado can infer BUFG automatically or you can instantiate them.
Alternatively, IP can include them via instantiation. Only BUFG buffers can be
inferred. Other types of clock buffers have to be instantiated in your HDL or in IP.

 The following buffers exist in clock regions that contain IOs:

 – BUFGCE—It offers an enable/disable switch. There are 24 per region. This is
the base primitive.

 – BUFGCE_DIV—This is similar to the above but also can divide the clock
frequency. There are 4 per clock region.

 – BUFGCTRL—This offers muxing capability. This is required for clock switching
or multiplexing. There are 8 per clock region.

 The following buffers exist in clock regions that contain GTs:

 – BUFG_GT—The input has access from any of the transceiver clock sources.
These have dynamic divide capability. There are 24 per region.

 The access to each of the BUFGCEs in each region is independent. Each of the
24 buffers can be accessed on the input side from any MMCM/PLL output, internal
FPGA resource, or IO. However, the output side will drive a particular clock track.
For BUFGCE_DIV and BUFGCTRL, the input sides are shared with BUFGCEs,
but the output side is fl exible. Figure 12.3 shows how BUFGCE uses different
clocking tracks.

 The complex connections of these buffers mean that generally Vivado should
decide the locations of the buffers. You can place them at the clock region level
through the command below, but Vivado will determine the track numbers.

 set_property CLOCK_REGION [get_cells <BUFGCE_CELL>]

12 Clocking

http://dx.doi.org/10.1007/978-3-319-42438-5_3

146

BUFG_CE xmyn

BUFG_CE xmyn+5

BUFG_CE xmyn+4

BUFG_CE xmyn+3

BUFG_CE xmyn+2

BUFG_CE xmyn+1

BUFGCTRL_xmy(n+24)/3-8

BUFGCTRL_ xym(n+24)/3-7

BUFGCE_DIV_xym(n+24)/4-4

Where n is 0, 24, 48….

To track 0

To track 1

To track 2

To track 3

To track 4

To track 5

To any track

To any track

To any track

 Fig. 12.3 BUFGCE output track usage by other buffers

12.4.4 Clock Routing, CLOCK_ROOT, and Clock Distribution

 Due to additional clocking resources, UltraScale has introduced new terms. From
the output of one of the BUFG*, the clocks travel on clock routing . This is new term
to describe the wires after a BUFG. Each clock region has 24 of these tracks. The
point at which the clock signal transfers to distribution resources is termed the
 CLOCK_ROOT . Distribution resources will carry the signal to fl ip-fl op clock pins
and other endpoints. Each clock region has 24 of these too. They are mutually
exclusive in each clock region, except that both will be used in the CLOCK_ROOT
region. Figure 12.4 explains the terminology.

 Clock roots can be seen after place design using the following TCL command:

 report_clock_utilization –clock_roots

 Vivado will approximately choose the geometric mean of the locations of the
load on the clock tree to determine the CLOCK_ROOT. Balancing the clock root is
important as it impacts clock tree skew which impacts timing. When interfacing to

J. Blaine

147

a GT, CLOCK_ROOTS may be placed close to the GT in order to meet a skew
requirement on transceiver clock network. This can mean that the CLOCK_ROOT
is not in the geometric center. You can control the CLOCK_ROOT using the following
constraint:

 set _property USER_CLOCK_ROOT <clock_region> [get_nets <clock net after
BUFG>]

 When two or more clock networks have the same source MMCM, they can go to
different CLOCK_ROOTS. This can mean that there are different delays on the
clock networks, as shown in Fig. 12.5 . Different delays on clock networks will
translate to skew in timing which can make designs diffi cult to close timing.

 If there are paths that are related between these clocks, you should link the two
clock networks using USER_CLOCK_GROUP constraint.

 set_property USER_CLOCK_GROUP <group_name> [get_nets [list <clock after
BUFG1> <clock after BUFG2>]]

 This will ensure that clock paths have roughly similar delay as shown in Fig. 12.6 .
 CLOCK_ROOT impacts the general skew that a network has. Clock skew can be

positive for setup when moving away from the clock root and negative as you move
toward the clock root (Fig. 12.7). Smaller networks will have optimal CLOCK_
ROOT placement with lesser skew. For this reason, it can be benefi cial to break a
larger clock network into two smaller ones if the interface timing can be managed,
e.g., using a FIFO where the networks cross. For this to be effective, there should be
no cross clocking timing.

MMCM

Global
clock
input
(GCIO)

CLK

BUFG

FF
DSP

RAMs
OTHER

CLOCK
ROOT

CLOCK
ROUTING

CLOCK
DISTRIBUTION

 Fig. 12.4 Clocking terminology explained

MMCM

Global
clock
input
(GCIO)

CLK

BUFG
CLOCK
ROOT

CLK2X

CLK_DIV2 FF

FF

FF

 Fig. 12.5 Difference in delay due to clock root placement

12 Clocking

148

12.5 Optimizing Clock Networks to Improve Internal
Timing

 Vivado models the most pessimistic timing. That means for setup analysis, the
source path will have maximum delay, while destination path will have minimal
delays. These confl icting models can signifi cantly reduce timing budget but are
required to generate a design that works in hardware in all devices.

12.5.1 Clock Pessimism Removal and the Common Node

 Clock pessimism removal is compensation in a timing report for the common
segments in the clock paths. It is not possible to have both the best and worst case
occurring at the same time, on any given path segment. Vivado compensates for the
unnecessary pessimism due to delay differential on this common segment. The
point at which the source and destination clocks diverge is termed the common
 node , as shown in Fig. 12.8 . Having the common node as close as possible to both
the source and destination will improve timing margin signifi cantly as signifi cant
portion will be common, from where pessimism would be compensated.

 You can infl uence common node during early clocking decisions, such as clock
frequency to use. If you choose a common clock, the common node will be some-
where after the BUFG. If you choose different clocks, then the common node will

MMCM

Global
clock
input
(GCIO)

CLK

BUFG

FF

CLOCK
ROOT

CLK2X

CLK_DIV2

FF

FF

 Fig. 12.6 Clock roots and length of clock tracks aligned through USER_CLOCK_GROUP

CLOCK
ROOT

POSITIVE
CLOCK SKEW

NEGATIVE
CLOCK SKEW

 Fig. 12.7 Clock tree skew impacted by CLOCK_ROOT

J. Blaine

149

be at the MMCM. If you opt for different clocks, then consider using asynchronous
design techniques to cross the clock boundaries to improve timing. Using, for exam-
ple, a FIFO will mean that timing can be relaxed at this point.

 Minor common node infl uences, such as different slices, are largely controlled by
the placer. However, if manually creating a fl oor plan, keep to clock region boundar-
ies for optimal common nodes. Horizontal fl oor plan shapes are more optimal than
vertical ones but, sometimes, some other considerations (e.g., data fl ow through
DSP chain) may cause you to prefer vertical shapes.

12.5.2 Optimizing Common Node for Synchronous Cross
Domain Crossings

 In UltraScale, the total length of a typical clock network is made up of
MMCM → BUFG → CLOCK_ROOT → LOADs. When crossing between two different
clocks, the common node will be at the MMCM/PLL, as shown in Fig. 12.9 .

COMMON
NODE A => B

COMMON
NODE B => C

A B C

 Fig. 12.8 Common node

FFs

Global
clock
input
(GCIO)

MMCM

FFs

CLK_Y

CLK_X

COMMON
NODE AT
MMCM

FPGA PHYSICAL LAYOUT

 Fig. 12.9 Example circuit with a poor common node

12 Clocking

150

 In the case where the MMCM is not required for IO interfaces, it can be optimal
to move the MMCM/BUFGs as close to CLOCK_ROOT as possible, as shown in
Fig. 12.10 . This has the effect of improving the common node, and hence greater
clock pessimism removal is seen. An initial run through the tools is required to
achieve this optimization.

 In order to do this optimization, you must instruct Vivado as the default is to have
the MMCM next to the global clock input, through the following:

 1. LOCK the MMCM to the clock region close to the CLOCK_ROOT.
 2. Insert a BUFGCE between the IO and the MMCM.

12.5.3 Phase Error

 When two clocks come out of the same MMCM and there are timing paths between
them, a value for phase error is added to both setup and hold times. This value is
120 ps for both windows. Together this creates a window of at least 240 ps that
reduces timing margin. In reality, when common node compensation and hold time
fi xing are added, approximately 1200 ps are lost from the setup window. This should
be taken into account when crossing between related clocks.

12.5.4 Internally Related Clocks Divisible by 2, 4, and 8

 In a special case where the clocks are multiple of each other, use BUFGCE_DIV
from a single output of MMCM/PLL. This will remove phase_error and improve
the common node .

FFs

Global
clock
input
(GCIO)

MMCM

FFs

CLK_Y

CLK_X

COMMON
NODE AT
MMCM

FPGA PHYSICAL LAYOUT

 Fig. 12.10 Optimization of common node

J. Blaine

151

 BUFGCE_DIV primitives can divide the clock by an integer number between
1 and 8. Since there are four BUFGCE_DIVs in a region, you can derive up to four
divided clocks. Consider the example circuit shown in Fig. 12.2 . The clocking can
be improved as shown in Fig. 12.11 . The key steps are:

• Generate an MMCM with just the highest frequency output, in this case
CLK2X. The Clocking Wizard IP should use no buffer as its drives selection

• Connect up 3 BUFGCE_DIV buffers in parallel
• Even for the original clock, insert a BUFGCE_DIV to divide-by 1, which helps

achieve uniform delay in the clock paths

MMCM

Global
clock
input
(GCIO)

CLK

CLK2X

CLK_DIV2

BUFGCE_DIV

FF
DSP

RAMs
OTHER

DIVIDE BY 1

DIVIDE BY 2

DIVIDE BY 4

 Fig. 12.11 Optimized clock network for synchronous clocks

 Fig. 12.12 (a) One combination of output jitter values. (b) Alternate combination of output jitter
values

12 Clocking

152

12.5.5 Jitter Reduction

 Jitter can be reduced by selecting different options in the Clocking Wizard IP. Output
jitter can be minimized at the expense of input jitter fi ltering. It is recommended to
play with these options and evaluate the output under the Port Renaming tab inside
the Clocking Wizard . It is possible to improve each path in the design by up to
±150 ps by selecting optimal settings. Figure 12.12a, b shows two difference values
for peak-to-peak jitter for outputs, using two different settings (balanced and output
jitter optimized , respectively). Be aware that change in these jitter values could
impact power also, because higher frequency of VCO will result in higher power.

12.6 Optimizing Clock Networks for Interfaces

12.6.1 GT Clocking

 GT clocking is generally taken care of by the IP. However, there are use cases where
proprietary protocols need implementing, and in this case clocking should be
understood. In UltraScale, MMCMs and PLLs are generally not required for GTs.
This makes the clocking much more scalable to the GT count. Instead, dividers in
BUFG_GT allow a user to generate the user clocks to interface with the GT. Typically
 USRCLK 1 and USRCLK2 are either frequency matched or USRCLK2 is half the
rate of USRCLK1. The choice of this depends on the protocol.

 Additionally there are some protocols that require a line rate change. Line rate
changes also require a USRCLK change that is in proportion to the line rate change.
 BUFG_GTs provide a user signal divide capability that allows a user to change the
divide ratio of the input/output clock. Synchronization logic is also provided to
allow a seamless clocking change.

12.6.2 IO Interfaces

 Only use a MMCM for system synchronous IO interfaces. PLLs do not provide
clock network deskew. Generally for interfaces, use MMCM CLKOUT0 and set
 compensation to ZHOLD . For source synchronous interfaces, MMCM can be used
but setting for ZHOLD may adversely impact timing. You should play with the
options here to establish good timing. Good constraints are mandatory for this
approach.

J. Blaine

153© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_13

 Chapter 13
 Stacked Silicon Interconnect (SSI)

 Brian Philofsky

 A growing trend in the semiconductor market is to gravitate toward 2.5D and 3D
technologies as a way to extend and improve the growth and integration path that
Moore’s law has paved for more than 50 years. Xilinx has been a forerunner into
this emerging technology entering into this foray in 2011 with the public introduc-
tion of the Xilinx XC7V2000T device utilizing four active die on a passive inter-
poser creating not only the largest FPGA of the time but one of the fi rst commercially
available examples of this new technology. Since the introduction of that device,
several other devices have followed and now are becoming a more mainstream
means to realize large, high-performance devices to address some of the most
demanding FPGA designs. Due to the sheer size and unique construction of these
devices, a new approach to design should be considered in order to facilitate design
entry, implementation, and closure.

13.1 SSI Terminology

 With Xilinx being one of the fi rst companies to release a 2.5D device, no established
terminology for the details of the technology existed prior. So as a means to com-
municate this, several new terms were created by Xilinx to describe the differences
in the 2.5D devices. Figure 13.1 shows a representation of SSI device.

• Monolithic Device : Single-die or non-SSI device
• Super Logic Region (SLR) : An active die in an SSI device construction.
• Stacked Silicon Interconnect (SSI) : The 2.5D structure utilizing multiple active

SLRs attached and connected to a passive interposer

 B. Philofsky (*)
 Xilinx , Longmont , CO , USA
 e-mail: brian.philofsky@xilinx.com

mailto:brian.philofsky@xilinx.com

154

• Interposer : A passive layer in the construction of an SSI device that serves the
purpose of power delivery, confi guration connectivity, and connectivity between
SLRs as well as connects the SLRs to the package substrate via through-silicon
vias (TSVs)

• Super Long Line (SLL) : The active signals used to connect one SLR to an adja-
cent SLR in an SSI device.

• Laguna : The dedicated interface to traverse from one SLR to another via an
SLL. This interface may or may not use a dedicated register.

 The fi rst thing that should be stated is that SSI devices do not require an all new
design methodology. It is possible to target an SSI device using the same top-down
method generally applied to monolithic devices with no difference in design entry,
implementation, and validation. The thing that needs to be realized however is that
ignoring the size and construction of the underlying device may lead to less optimal
results and a longer design cycle.

13.2 Design Partitioning

 One of the fi rst SSI-specifi c decisions is to either chose to manually select or parti-
tion the logic to each underlying SLR in the device or to allow the tools to automati-
cally partition the design into the separate SLRs. Vivado has the ability to take a
single defi nition of the design and decide what portions of the logic should be placed
into which SLR. The primary benefi t of automatic partitioning is the obvious

 Fig. 13.1 Representation of an SSI device (source : Xilinx)

B. Philofsky

155

up-front ease-of-use benefi t of not having to make such a decision, and it is very
possible that you may see better out-of-the-box performance and results from auto-
matic partitioning. Automatic partitioning can also result in higher device utiliza-
tion and can potentially adjust to signifi cant design changes more easily than manual
partitioning. The drawback however is the loss of control of the design placement
in the FPGA which may yield less repeatability and control during timing closure.
In situations where timing closure may prove diffi cult, this may be a very important
trade- off to consider as the added control may allow much quicker timing closure
for diffi cult designs.

 The primary design parameter that often dictates the better fl ow has to do with
performance requirements and how much margin there is in the design to meet those
requirements. For designs that wish to push the limits of the device in terms of per-
formance or for designs in which it is desired to ensure that areas of the design that
remain unchanged to have similar place and route results in future runs, manual
partitioning is generally the better choice. An important thing to note is that perfor-
mance limits are not always dictated by desired clock rate. For instance, for a design
that has low latency or lack of pipelining, several logic levels or high fanout nets
may have a much lower maximum clock rate than one that is highly pipelined. For
this example, a much lower clock frequency may be pushing the performance limits
of the device compared to that of a well-crafted, pipelined version operating in that
same device. Following good overall design practices promotes more performance
margin in the device in general and can lead to more fl exibility in such design deci-
sions. The main thing to consider is how much performance margin is expected for
the design. For designs that have adequate performance margin, either method
(manual fl oor planning or auto derived) may be suitable.

13.3 Pinout Considerations for SSI Designs

 Another important up-front consideration is the pinout selection. Whether using an
automatic or manual partitioning style, selection of which I/O pins are located in
which SLR has a substantial impact on the associated logic placement and routing
of the design. A well thought-out pinout selection will lead to good datafl ow through
the FPGA leading to good implementation results, providing better utilization, tim-
ing, and power. The best approach to determine a good pinout starts with examining
the expected datafl ow of all portions of the design and how that maps to the I/O
resources of the device. All associated control signals such as clocking, enables, and
resets should be considered in conjunction with this data fl ow.

 The data path represented in Fig. 13.2 originates at SLR 0 (bottom SLR), must
go to the SLR 3 (top SLR) in order to buffer the data to an external memory, and
then travel back to SLR 1 to exit the device. This pinout selection has some obvious
drawbacks. First off, the data path is required to traverse six SLRs to complete the
data cycle. This could cause possible timing and resource issues. Also notice that
the clock and reset signals that must drive all of the logic are located in SLR3. Since

13 Stacked Silicon Interconnect (SSI)

156

these are high fanout signals, a better selection would be in the center SLRs so that
the signals can be more evenly distributed improving the overall timing paths of
both signals. Placing the reset in the center would likely reduce the overall delay
from source to destination as the overall distance between these points is mini-
mized. Moving the clock to a more centralized location will also reduce the inser-
tion delay but, more importantly, it balances the overall clock skew as well. With the
clock placed in the top SLR, the data path entering the chip to the external memory
interface must travel against the clock. This increases the amount of negative clock
skew for that portion of the path resulting in reduced timing margin. The best place-
ment for the clock has to do with what portion of the design is expected to have the
least timing margin and placing the clock so that it is either in the same SLR or the
clock travels with the data. Having the clock travel in the same direction as data will
improve setup timing margin by making use of useful (positive) skew.

 Figure 13.3 shows the same data path with the memory interface moved to SLR1
and the clock and reset relocated to SLR0. The benefi ts of this change should be
fairly evident. The overall SLR crossings reduced from 5 to 1. The high fanout reset
now only needs to reach two SLRs rather than all four and is located closer to the
logic it must drive. The clock is placed in SLR 0 so that the overall data path is
traveling with the clock rather than against it, promoting better skew characteristics
for this path. This pinout will likely consume less routing and fewer logic resources
as less pipelining and resource impacting optimizations like logic replication should
be necessary. Such simple pinout changes could have a dramatic impact on the over-
all implementation results of this design.

 Often pinout decisions must weigh a balance between board layout consider-
ations and internal datafl ow optimization. Due to the size of SSI device packages,
often there are numerous high-speed connections that must be routed out of a dense
ball grid array that pose its own diffi culties in PCB routing and power delivery. This

 Fig. 13.2 Simple
representation of clock and
datafl ow through an SSI
device

B. Philofsky

157

often leads to an iterative approach between the digital design team and the printed
circuit board team trying to fi nd the best compromise between internal datafl ow and
external PCB routability. Extra time and effort spent at this point can pay large divi-
dends later in terms of easing design timing closure and reducing the overall design
implementation cycle while also requiring fewer device resources and less power
consumption as once pinout decisions are fi xed, it is very diffi cult to change later.

13.4 Partitioning Considerations

 For automatic partitioning, there is no difference in how you would operate the tools
over targeting a traditional monolithic device. Manual partitioning however involves
more up-front planning. Logical hierarchical boundaries, selected IP, division of
design between different engineering teams, or combination of these factors are
used to decide what logic should be physically placed in which SLR. The mechanics
of manual partitioning is not all that different from fl oor planning, which is a com-
mon design closure technique.

13.4.1 Limit SLR Crossings

 There is a relatively high but hard limit in the number of signals that can cross from
one SLR to another, so ensure that any selected partition does not exceed the avail-
able SLL s for the selected device. Make an effort to understand the number of avail-
able SLLs per-SLR crossing as well as the expected SLLs required by the design as

 Fig. 13.3 Alternative
pinout (compared to
Fig. 13.2)

13 Stacked Silicon Interconnect (SSI)

158

criteria in selecting a partition. The example in Sect. 13.3 showed that the number
of SLR crossings is often dictated by the datafl ow of the design. So, good pinout
selection is important. Once the datafl ow of the design is established, the mapping
of the associated logic to those datapaths is often a much simpler task. After deci-
sions as to which logic hierarchies should be mapped into which SLRs, the number
of SLR crossing required for the design can be tallied and tracked. In general avoid
using more than 60 % of the given SLLs in the device for any given SLR crossing.
The reason behind this is twofold. Higher utilization of SLLs requires more trade-
offs for placement and routing of those SLR crossing, and since the SLR crossing
can often be critical paths in the design, building additional fl exibility for placement
can pay large benefi ts for timing closure. The other reason to reduce utilization is to
allow future design changes and additions without concern for overutilization of
SLL resources.

 Report Design Analysis has a section that provides information on modules that
are contributing to SLR crossings. This can help you in making decisions related to
fl oor planning—by blocking this module to an SLR—if possible.

 On the other hand, keep in mind that trying to reduce the number of SLR cross-
ings could cause you to place more and more logic within an SLR—causing higher
utilization within the SLR. Hence, it is good to maintain a good balance.

13.4.2 Limit Timing Critical Paths Across SLRs

 Where possible, pipeline the data paths for the SLR crossings. If it becomes neces-
sary to have signals that cross multiple SLRs, add additional pipeline stages
accordingly to ensure adequate timing margin for such crossings. Making the deci-
sion up-front as to pipeline these interfaces often makes it much easier to under-
stand and balance the pipeline stages compared to adding it in later stages of the
design. A good practice is to use a common naming convention for registers
intended for SLR interface crossing as it can help with timing analysis and fl oor
planning later. It may also be necessary to add synthesis attributes on these pipeline
registers to prevent synthesis from using shift register LUTs for those structures
when multiple pipeline stages are used in a single SLR. When possible, locate
control logic and the associated control signals from the data paths in the same
SLR. For control logic that must span multiple SLRs, it is often best to place the
logic into a centralized SLR to the partitioned logic in order to allow a more evenly
distributed timing. If it is suspected that timing may still be critical, replication of
the logic may become necessary in order to best manage locating the source logic
to its loads. This is not much different from the process used in monolithic design.
The only difference is that these decisions now have ramifi cation into the partition-
ing decisions for the logic.

B. Philofsky

159

13.4.3 Balance Resource Usage

 Resource management is important whether using automatic partitioning or manual
partitioning; however, manual partitioning adds the extra task of determining a
proper balance of those resources across the different SLRs. It should be planned so
that any one SLR does not become too full as to negatively impact place and route
results. The actual target for maximum resource usage depends on the resource
type, performance requirements, and the interaction between them. For instance, a
design which has a lot of margin for performance may be able to fi ll the SLRs to a
larger capacity than one that can barely meet timing with the current requirements
and design characteristics. Also, often larger blocks such as RAM blocks or DSP
blocks are more diffi cult to get higher utilization within the SLR than more common
blocks like LUTs or registers. An effective strategy for designs requiring a high
percentage utilization of a particular resource is to trade off for another. For instance,
if a particular design requires a high percentage of block memory, utilizing a lesser
amount of LUTs and DSP often helps in the overall place and route results. Another
consideration is future design growth. A good partitioning plan accounts for areas
of the design that may grow so that as the design defi nition changes, the partitioning
does not need to change to account for that.

13.5 SSI Synthesis Techniques

 Once the SLR partitioning has been decided, creation of the design can commence.
Design entry does not have to differ from that of a monolithic design creation.
Functional verifi cation is also no different. Synthesis and implementation may be
augmented to help with this design fl ow. There are three possible approaches to
synthesis for a manually partitioned design. In all of these synthesis approaches, the
common theme is maintaining designated SLR partitions during the design fl ow
which should maintain the intended data paths between SLRs.

13.5.1 Top-Down Synthesis

 One method is to use a standard top-down approach. For the instances at SLR parti-
tion boundaries, place KEEP_HIERARCHY attributes. The KEEP_HIERARCHY
attribute as the name implies instructs synthesis to retain the hierarchy in which it is
applied which limits optimization at and across that hierarchy. Using this attribute
prevents synthesis from moving intended logic from one hierarchy boundary to
another and should retain all logic structures including additional pipelining at that
boundary. Strategically placing this attribute only on the hierarchy instances that
border an SLR allows synthesis to optimize across logical hierarchies contained
solely within an SLR while preventing optimization of logic across designated SLRs.

13 Stacked Silicon Interconnect (SSI)

160

13.5.2 Bottom-Up Synthesis

 This approach generally consists of synthesizing each SLR or portions of SLR logic
in its own separate project. This methodology by design will prevent optimization
of logic across the designated boundaries but also can help facilitate team design by
allowing multiple portions of the design to be implemented and verifi ed in parallel.
This method also does the best job to retain the results of areas of the design that
have not changed from iteration to iteration. There are other benefi ts such as the
ability to apply unique synthesis options for each portion of the design, and often
overall runtime between iterations is reduced with this method. The drawbacks are
that multiple synthesis projects must be maintained, and design coordination and
assembly could become a little more diffi cult compared to the top-down approach.

13.5.3 OOC Synthesis

 Yet another method that you could use is to synthesize the designated SLR parti-
tions out of context with each other. This design methodology is a hybrid approach
in that a single project can be maintained; however, the individual SLR partitions
can be implemented independent of each other and later assembled when the top-
level of the project is implemented.

13.6 SSI Implementation Flow

 Once synthesis is completed, analyze the synthesis results performing utilization,
 DRC, and any other reports indicating the readiness for implementation. You should
also perform timing analysis to ensure adequate timing margin with the unplaced
design prior to starting implementation. Performing such steps is good practice for
any FPGA design but is more crucial for SSI design since implementation runtime
can be much longer due to the overall design size. Once you have verifi ed synthesis
results, you can run implementation or place and route. The place and route fl ow for
SSI implementation is no different than it is for a monolithic design. It is suggested
to implement the design using default options and evaluate the results. If timing and
power requirements are met, then there is nothing more that is needed. Even the best
planned designs may not always be successful the fi rst time they are implemented;
so if timing is not close to being met, then timing analysis should be performed with
appropriate action to the design and/or synthesis settings and attributes. If the criti-
cal timing path crosses an SLR or multiple SLRs, reexamine and evaluate the parti-
tioning. If possible, consider additional pipelining, logic restructuring, or fanout
reduction. If the critical timing paths exist solely inside a single SLR, apply the
same timing closure techniques (refer to Chap. 14) used for monolithic designs. If

B. Philofsky

http://dx.doi.org/10.1007/978-3-319-42438-5_14

161

timing is close to being met, there are some strategies in the Vivado tools that apply
specifi c algorithms for SSI devices. These SSI-specifi c strategies are identifi ed with
either the term SLR or SLLs in them. For instance, the strategy Performance_
ExploreSLLs is a performance-oriented strategy impacting SLR placement and
routing algorithms. Try one or more of these strategies to attempt to fi nd additional
improvement over the default implementation results. If several CPU cores are
available, multiple strategies can be run in parallel on a single or multiple machines
cutting down on the overall implementation runtime in using several strategies.

13.7 Examining SSI Results

 Analysis of the implementation results for an SSI design is largely similar to that of
a monolithic. There are no additional steps or reports to create; however, some of
the existing reports will show additional information pertaining to SSI. When gen-
erating a utilization report for instance, a few additional sections appear for an SSI
device that contains useful information about the implementation run. The fi rst two
SSI-specifi c sections contain information about the SLR crossing and clocking.

 This is a good indicator of how well the design is partitioned in the device. Looking
at the total SLL s and usage percentage ensures that they are within the expectations
and goals for the design. Analyze the clocking to ensure that it is distributed as antici-
pated. Within the SLR connectivity matrix section, the more interesting information
is concerning the number of signals that must cross multiple SLRs, SLR0 to/from
SLR2 for instance. While it is many times impossible to get that number to zero, keep-
ing that number as low as possible is a good indicator of a well-portioned design. The
remaining sections more pertain to SLR resource utilization statistics:

13 Stacked Silicon Interconnect (SSI)

162

 These sections indicate whether per-SLR utilization goals are met as well show-
ing the balance of resources across the different SLRs. You need to consider changes
if a particular resource appears to be close to full utilization in a given SLR that can
impact placement, timing, or future design growth.

 Timing reports are another place where SSI-specifi c information can be found
that is important to understand in terms of analyzing the results of the implementa-
tion run. When analyzing any failing path, look whether the data path crosses one or
more SLRs. This is clearly denoted in that section of the report with an SLR crossing
notation followed by the originating and destination SLR numbers. If this indicates
that more than one SLR is traversed, timing will be diffi cult to meet for that path. If
there are several logic levels or a very high fanout, net is created on an SLR crossing
that may make it diffi cult to meet timing. If any of these situations are encountered,
the more common approach to address the timing issue is to either change the logic
in the failed timing path to reduce depth/fanout, repartition the logic to reduce SLR
crossings, or add additional pipelining .

 For high-speed logic paths that must cross SLRs, clock skew and clock uncer-
tainty due to inter-SLR compensation should also be analyzed for improvement. Due
to the size of SSI devices, clock skew can be a larger impact to timing than in smaller
devices. First you want to ensure that a good clocking topology is used incorporating
proper clock buffer usage and no logic exists in the clock tree as poor clock manage-
ment impacts can be magnifi ed in these larger designs. When crossing SLRs, it is
generally best to not at the same time cross common clock domains as well as that
can introduce additional clock skew to the timing path. Inter- SLR compensation is a
calculation applied to timing paths that the source and destination exist in separate
SLRs to account for uncertainties in the clocking due to PVT (process, voltage, and
temperature) differences between two SLRs. Minimizing clock skew as well as the
distance traveled and thus insertion delay between points crossing the SLR are ways
to better manage the impact of inter-SLR compensation.

 A true benefi t to the manual partitioning approach is that, if done properly, any
critical timing paths found after place and route are typically contained within an

B. Philofsky

163

SLR, and general timing closure techniques can be applied to address them. It is
also often found that, once functional and timing closure is completed on an SLR,
logic changes to other areas of the design have little to no impact on that portion of
the design. This can be less true for general monolithic or automatically partitioned
design strategies.

13.8 Divide and Conquer

 There may seem to be more up-front work to design with SSI and there often is.
However, having a good pinout and partition can result in less overall design cycle
and fewer iterations for design closure. Effectively, a very large design is broken
through a good partition into smaller more manageable pieces. Using good design
practices taking into account the SSI device size and structure can result in less
power, less area, and higher performance, all of which often results in fewer design
iterations and a shorter overall design cycle.

13 Stacked Silicon Interconnect (SSI)

165© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_14

 Chapter 14
 Timing Closure

 Srinivasan Dasasathyan

14.1 Introduction to Timing Concepts

 Timing closure involves modifying constraints, design, or tool fl ow/settings to
meet timing requirements. In Vivado tool, the timing constraints are entered in
 XDC format. XDC constraints are based on the standard Synopsys Design
Constraints (SDC) format.

 For brevity all the constraints that Vivado supports are not explained in this
chapter but only few are given to help understand topics discussed later in this
chapter. For details on XDC constraints and syntax, please refer to UG903 published
by Xilinx.

14.1.1 Creating and Defi ning a Clock

 create_clock Tcl command allows user to defi ne clock on a certain port and also
allows users to specify properties like period, waveform, root, etc. Unless a clock is
defi ned using the create_clock command, static timing analysis is not performed on
the clock. Also, create_clock command defi nes primary clocks, and all derived
clocks are automatically inferred. Usually the derived clocks come from the clock
modifying blocks like MMCM and PLL.

 S. Dasasathyan (*)
 Xilinx Inc. , San Jose , CA
 e-mail: srini.das@gmail.com

mailto:srini.das@gmail.com

166

14.1.2 Defi ning Clock Relationships

 Like all other SDC-based tools, Vivado also does timing analysis on all the cross- clock
paths. However, designers in certain occasions would want to ignore certain paths,
because those paths are either static paths (no signal transition happens) or the paths
are asynchronous and hence should not be timed. In such cases set_clock_groups or
 set_false_path commands are used to preclude certain portions of the designs from
timing analysis. This is an essential step as ISE (the previous Xilinx tool) which
used UCF constraints, assumed the opposite, i.e., unless clock relationship was
specifi ed, timing analysis was not done on cross-clock paths.

14.1.3 Timing Analysis

 Given these basic defi nitions of creating clock constraints and specifying clock relation-
ships, Vivado’s timing analysis engine does several checks under the static timing analy-
sis engine. The timing analysis engine analyzes and reports slack at the timing path
endpoints. The slack is the difference between the data required time and the data arrival
time at the path endpoint. A data is safely transferred between two registers if both the
setup and hold relationships are successfully verifi ed on that path. In other words, if both
setup and hold slacks are positive, the path is considered good from a timing point of
view. The following are the checks performed by Vivado’s timing analysis engine:

• Setup check
• Hold check
• Pulse-width check

14.2 Generating Timing Reports

 The fi rst step in timing closure is to understand whether the design has met all the
timing checks or not. In order to generate timing reports to view failing paths, the
following options are available in Vivado.

14.2.1 Report Timing Summary

 Report timing summary gives an overall picture of timing on the design. It performs
 setup , hold , pulse-width checks, and gives a summary on whether some or all of
these checks have failed. Even if one of the checks has failed, this command reports
that the design has failed to meet timing. Based on this report, it can be decided if
further steps are needed to achieve timing closure. Figure 14.1 gives a sample snap-
shot of the command, where setup , hold , and pulse-width violations are checked.

S. Dasasathyan

167

 Once the design is determined to have not met timing requirements, you can
further analyze failing timing paths in the design by running report timing or slack
histogram command.

14.2.2 Report Timing

 Report timing summary only gives a top-level report on timing failures; however,
 report timing gives details of all the paths that fail timing checks (setup and hold). By
default report timing reports on all path groups and prints the top 10 paths in each
path group and sort it by slack in ascending order. Additional fi lters can be added to
customize timing analysis on different from , through , or to points as well as select
more paths to view. Report timing only works for setup and hold checks. Pulse-width
 checks are reported in Vivado log fi le indicating where the errors are.

14.2.3 Slack Histogram

 Another way to see the failing timing paths is to generate slack histogram . Slack histo-
gram gives a concise view of all the timing paths across all path groups. Figure 14.2
shows a sample slack histogram plot. Slack histogram divides the slacks into different
bins. The X -axis represents different slack bins and the Y -axis represents the number
of paths in each bin. Clicking on each of the bars fi lters the paths in that bin, where
you can examine paths in each of the bin.

 Fig. 14.1 Report timing summary output

 Fig. 14.2 Slack histogram

14 Timing Closure

168

 In both report timing and slack histogram, you can click and double-click any of
the paths to examine each of the timing path in detail, including characteristics of
the path as well as placement and connectivity details.

14.3 Timing Paths and Constraint Correctness

 Timing paths are defi ned by the connectivity between the instances of the design.
In digital designs, timing paths are formed by a pair of sequential elements controlled
by the same clock or by two different clocks.

 In order to debug and fi x the timing paths, it is important to fi rst check whether
these paths are valid or not. Checking constraints is one of the key and easy steps in
getting to timing closure. One of the common issues in writing of XDC constraint
is related to incorrect cross- clock domain crossing paths. Timer takes the worst case
requirements for timing analysis. Hence if cross-clock paths are getting wrongly
timed (very often they needn’t be timed), they might have very tough requirement,
resulting in a big negative slack. Report CDC and report clock interaction are two
very useful commands to check if the interclock paths are being timed correctly.

14.3.1 Clock Interaction

 Report clock interaction gives a matrix and specifi es where all the clock pairs in the
design are considered for interaction. Each entry in the matrix is color coded. All
the entries across the diagonal are the paths within the same clock group. It is impor-
tant to examine if there are any unexpected cross-clock domain paths, and fi x them
by adding proper XDC constraints (set_false_path , set_clock_groups). Xilinx pub-
lished UG903 has more details.

14.3.2 Report Clock Domain Crossing

 Report CDC (clock domain crossing) performs a structural analysis of the clock
domain crossings in your design. You can use this information to identify poten-
tially unsafe CDCs, which will lead to metastability or data coherency issues. While
the CDC report is similar to the clock interaction report, the CDC report focuses on
structures and their timing constraints, but does not provide information related to
timing slack.

 Before generating the CDC report, you must ensure that the design has been
properly constrained and there are no missing clock defi nitions. Report CDC only
analyzes and reports paths where both source and destination clocks have been
defi ned. Report CDC performs structural analysis on:

S. Dasasathyan

169

 1. On all paths between asynchronous clocks
 2. Only on paths between synchronous clocks that have the timing exceptions (e.g.,

clocks coming out of MMCM)

 Synchronous clock paths with no such timing exception are assumed to be safely
timed and are not analyzed by the CDC engine. The report CDC operates without
taking into consideration any net or cell delays.

14.4 Timing Closure Techniques

14.4.1 Critical Path Analysis

 Timing reports can be generated at any stage during the synthesis and/or implemen-
tation phase. You should generate timing reports at each stage after synthesis, place-
ment, and routing and analyze the paths to make sure that the design is converging.
Catching and fi xing issues earlier in the fl ow will save several iterations of the sub-
sequent stages. For example, fi xing issues at synthesis will save time in place and
route stage.

 A timing failure might happen due to multiple different reasons. Based on the
analysis of the timing paths, fi xes may be required at synthesis stage or the place-
ment and routing stage. Hence it is important to study the characteristic of top fail-
ing paths to determine the reasons and fi xes. Below are some of the important
characteristics in the timing paths that can be examined and remedies that can be
taken to mitigate them.

14.4.2 Logic vs. Wire Delay

 Critical path delay can be broken down into logic delay and wire delay . The percent-
age of logic and wire delay in critical path can help to determine where to reduce
delays. A low logic delay component usually means that wire delay is higher, where
potentially fl oor planning the design can help in timing closure. A higher logic
delay component means that there are too many logic levels in the design.

14.4.3 Reducing Logic Levels

 For paths with higher levels of logic, looking at the levels of logic in the top failing
paths can reveal if there are any issues in the RTL or inferring of the logic.

 Synthesis step in Vivado infers structures in optimal way to balance between area
and speed. Different RTL coding styles guide the tool to infer structures that are
sometimes area optimal or performance optimal. By observing the logic levels in

14 Timing Closure

170

critical path, we can identify if we need to change either RTL coding style or guide
the tool to infer for performance as opposed to area. To reduce the levels of logic,
you can return to the RTL and check for the following general issues. In addition,
refer to Chap. 9 for controlling synthesis behavior.

• Use FSM_ENCODING in your RTL to infer ONE_HOT FSM , which are usually
better for speed.

• Use CASE statements instead of nested IF-ELSE statements; though the former
takes more area, it has effi cient inferences of Muxes which leads to better delays.

• Add pipeline registers to the critical path.

 Any change to RTL will require resynthesizing the design. Several iterations
may be needed to get optimal depth of logic.

14.4.4 Clock Skew

 Clock skew is the difference between delays that clock takes from common source to
capture fl op/sequential element and the launch fl op/sequential element. Examining the
magnitude of clock skew can reveal issues in clocking structure. A design with high
clock skew in critical paths usually means that the clocking structure needs to be
revisited. Using MMCMs to multiply/divide clocks is recommended than using LUTs.
UltraScale and newer devices have a very fl exible clock architecture and offer lots of
clocks to the user. To ease the issue of reducing clock skew and to generate H-tree
clocking structures, the device offers CLOCK_ROOT which is the center tap points
from where clock distribution happens. CLOCK_ROOT is chosen by Vivado for set of
clock loads such that clock skew for the set of loads is minimal. However, in some
cases where the paths are legal cross-clock domain paths, clock skew might be higher.
In these cases user can choose CLOCK_ROOT manually to reduce the clock skew.
UG912 from Xilinx explains the mechanism to modify CLOCK_ROOT location.

14.4.5 Reducing High-Fanout Signals

 High-fanout signals typically pose a challenge to the place and route tools, as due to
the very nature they have many connections, and the placement will be spread out.
Due to this, delay on the net would be relatively higher. If the top several critical
paths have some commonality that all of them involve high-fanout signal, some
optimization can be done at RTL level to reduce the fanout coupled with options to
synthesis tool. Some options are:

 Duplicate the driver and tell the synthesis tool not to remove the duplicate logic
(attribute DONT_TOUCH).

 For the signals other than control signals such as reset, set, and clock enable,
using max_fanout in synthesis will direct synthesis to replicate the driver.

S. Dasasathyan

http://dx.doi.org/10.1007/978-3-319-42438-5_9

171

 Another option is to use phys_opt_design (post-placement). This command
performs timing-based logic replication of high-fanout drivers and critical-path
cells. Drivers are replicated, then loads are distributed among the replicated drivers,
and the replicated drivers are automatically placed. This optional command can be
run after placement and before routing.

14.4.6 Control Sets and Control Set Optimization

 In Xilinx FPGA architecture (for 7 series and UltraScale), each slice has eight
fl ip- fl ops (FFs). These eight FFs share control signals, so the FFs that are placed in
the same slice should have same control sets. Hence the fl ops in the same slice have
to share the control set. Placer algorithm honors this constraint by placing FFs of the
same control sets together. Xilinx FPGAs can accommodate several thousand con-
trol sets; however, the higher the number of control sets, the more complex the job
for placer to place fl ops into slices without wasting fl ops. report_control_sets com-
mand can be used to assess the number of unique control sets in the design. Under
verbose options, the command gives details on the distribution of the fanouts of the
control signal.

 Vivado synthesis has an option which is used to specify threshold for synchro-
nous control set optimization to lower number of control sets. The number set to this
value specifi es how large the fanout of a control set should be before it starts using
it as a control set. For example, if control_set_opt_threshold is set to 5, a synchro-
nous reset that only fans out to 5 registers would be moved to the D input’s logic
rather than using the reset line of a register. The default threshold value is currently
set to 4.

 Other ways to reduce control sets is to use resets judiciously. Be selective on the
use of resets by observing the following points:

• Have resets only where they have impact on functionality.
• Use synchronous resets rather than asynchronous reset.

14.4.7 Floor Planning

 Examining the critical path in the Vivado GUI will show the placement of the logic
in the path. Sometimes, placer while trying to optimize several constraints might
yield a suboptimal placement. Examining the top several critical paths in the GUI
will give an idea if the placer indeed did a suboptimal job in placement of critical-
path object. If so, fl oor planning can be done to guide the placer. A hierarchical fl oor
 plan can reduce the route delay in the critical logic. A good starting point when fl oor
planning for the fi rst time is to fl oor plan only the logic that the implementation
tools consider timing critical. Generally start with the lower-level hierarchies that
the place and route stage fi nds to be timing critical. More often it is useful to look at

14 Timing Closure

172

the placement of block RAMs and DSP blocks, as these are not distributed throughout
the FPGA. Floor planning them not only gives better performance but also predic-
tive results in future iterations of the same project. When the design meets timing, it
is also possible to reuse the placement.

 For SSI devices, fl oor planning poses additional requirements to consider, which
are explained in Chap. 13 .

14.4.8 Physical Optimization

 Physical optimization performs optimization on the paths that fail to meet timing.
Optimizations involve replication, retiming, hold fi xing, and placement improve-
ment. Physical optimization is usually run after placement when the timing picture
is reasonably accurate. These optimizations are invoked by explicitly running the
optional phys_opt_design command. This command performs the following physi-
cal optimizations.

 High-Fanout Optimization : High-fanout nets, with negative slack within a per-
centage of the WNS, are considered for replication. The drivers are replicated and
the replicated drivers are placed near to cluster of loads.

 Placement-Based Optimization : Cells on the critical path are replaced to reduce
wire delays.

 Rewire : LUT connections are swapped to reduce the number of logic levels for
critical signals. LUT equations are modifi ed to maintain design functionality.

 Critical-Cell Optimization : Cells in failing paths are replicated. If the loads on a
specifi c cell are placed far apart, the cell may be replicated with new drivers placed
closer to load clusters. High fanout is not a requirement for this optimization to
occur, but the path must fail timing with slack within a percentage of the worst nega-
tive slack.

 DSP Register Optimization : Registers are moved out of the DSP cell into the
logic array or from logic to DSP cells if it improves the delay on the critical path.

 Block RAM Register Optimization : Registers are moved out of the block RAM
cell into the logic array or from logic to block RAM cells if it improves the delay on
the critical path.

 Retiming : Registers are moved across combinational logic to provide better
timing.

 Forced Net Replication : Net drivers are replicated, regardless of timing slack.
Replication is based on load placements and requires manual analysis to determine
if replication is suffi cient. If further replication is required, nets can be replicated
repeatedly by successive commands. Although timing is ignored, the net must be in
a timing-constrained path to trigger the replication.

 The above optimizations are run only during post-placement physical optimization
steps; however, Vivado also allows to run physical optimization at post-route stage
also. Only a subset of the optimizations are run at post-route stage, as the runtime of
physical optimization post-routing is higher.

S. Dasasathyan

http://dx.doi.org/10.1007/978-3-319-42438-5_13

173

14.4.9 Strategy and Directives

 Directives are powerful features that are available with every implementation step
(synthesis, optimize design, placement, physical optimization, and routing).
Directives give the implementation step to direct behavior of the algorithms toward
alternate goal. It changes the implementation step by using:

• Different fl ows
• Different algorithms
• Different objectives

 Directives allow each implementation step to enable more design space exploration
than in the default mode. Directives have different objectives such as reduce area ,
 reduce runtime , improve performance , and improve power.

 Directives are enabled by running any synthesis and implementation step with the
option -directive . Usually the names of the directive are chosen to indicate how dif-
ferent they are compared to the default behavior and their objective. Every imple-
mentation step has the directive explore . Explore allows the implementation step to
work in a high effort mode to meet the timing objective at the expense of runtime. For
designs with very tight requirements, it is recommended to use explore directive for
most of the implementation steps (especially placement and physical optimization).
Directives related to placement usually give the biggest improvement for performance.
Please refer to UG904 from Xilinx for details on the list of directives and what each
of the directive’s objectives is.

 Strategies defi ne the fl ow of Vivado and customize the different implementaiton
steps, and how each of these steps are confi gured. As each synthesis and implemen-
tation step has varieties of options and directives, strategies confi gure the best pos-
sible combination of these switches. You can also defi ne your own custom strategy.
Strategies are categorized into the following:

• Performance
• Area
• Power
• Flow
• Congestion

 Each of the above strategy categories has several strategies which can be used to
extract the last mile performance from the tools. In the context of timing closure,
categories related to performance and congestion are applicable. One way is to run
all the available performance strategies and pick the best results.

14.4.10 Congestion and Congestion Alleviation

 FPGA routing architecture has different kinds of routing resources to service differ-
ent scenarios seen in placement of the design. Congestion can happen when in a
region there is more demand of certain kinds or all kinds of routing resources than

14 Timing Closure

174

their availability. Extent of the congestion regions defi nes whether the congestion
is local or global. Router and placement algorithms, in order to alleviate conges-
tion, introduce white spaces and detours . These changes may impact the routing
delays by worsening them, which impact the timing of the design. There are certain
steps you can take to reduce the effect of congestion on timing. Congested regions
can be determined by running congestion reporting using report design analysis .
Also designs with heavy utilization of block RAMs, MuxF7s, and MuxF8s and
 distributed RAMs have a tendency to have congestion. Care should be taken to
reduce the utilization of any block with high connectivity. Blocks with high connec-
tivity increase number of signals coming in a region where the blocks are placed.
If there are many high connectivity blocks placed in a small region, one can increase
the size of a region by defi ning a pblock . The size of the pblock can be increased to
make it large enough to have enough routing resources to complete routing all nets
and thereby alleviating congestion.

14.4.11 Report Design Analysis

 Report design analysis is a command that summarizes several important details on
the critical paths. Commonly occurring issues in critical paths are summarized in a
tabular format. By looking at the characteristics of several critical paths, issues can
be deduced. Report design analysis has three modes of operation:

• Timing
• Congestion
• Complexity

 Timing mode is used to fi nd out the characteristics of critical paths. For each of
the path, many important characterisitcs are printed. For example, it is easy to
determine if the top critical paths have block RAMs and whether they are regis-
tered or not. Or, if the top several critical paths have LUTs which are combined in
synthesis stage (we can turn this off by using -lc off option). Xilinx published
UG906 provides information on other meaningful information that can be obtained
from this report.

 Congestion mode gives the post-placement and post-routing congestion windows,
and complexity computes the rent’s exponent of the netlist or modules specifi ed.
Congestion combined with complexity can determine whether the netlist itself is
inherently congested, or the congestion is placement induced. Using congestion
mode, you can fi nd the congested window and also determine what modules are
placed in the region. Later you can run complexity on these modules and compute the
 rent’s complexity on them. Rule of thumb says that any rent’s complexity over 0.7
can be considered as an issue in netlist.

S. Dasasathyan

175

14.4.12 Timing Closure and Hold Violation

 The previous section covered several techniques related to closure of timing which
mainly focused on setup violations. Hold violations are also another kind of timing
failures that you need to be aware of. Hold violations are severe, as reducing the clock
frequency will not help in timing closure. Vivado tool is hold aware and tries to miti-
gate the violations by detouring and adding extra delay to the paths failing hold.
However, you should be aware of these requirements and not solely depend on tool to
fi x the issues. Buffers can be added in hold failing path with DONT_TOUCH attribute
so that synthesis tool does not optimize them away. Further post-route physical optimi-
zation and few router directives can also help to reduce the hold violation. Figure 14.3
provides a top-level fl ow chart for achieving timing closure on your design.

 Fig. 14.3 Flow chart for
timing closure

14 Timing Closure

177© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_15

 Chapter 15
 Power Analysis and Optimization

 Anup Kumar Sultania , Chun Zhang , Darshak Kumarpal Gandhi ,
and Fan Zhang

15.1 Introduction

 There are several factors that infl uence the power consumption of a given system
and can be divided into two broad categories—physical and functional. Board
design, packaging, and device selections are examples of physical factors, whereas
functionality is largely related to the RTL design itself. In this chapter, we will
explore the tools available for power estimation and optimization.

 Power estimation can be done at various levels of granularity, and the accuracy
of the estimation is dependent on the amount of information you can provide. The
more information you can provide, the more accurate the estimates will be com-
pared to the power consumption on the fi nal hardware. Xilinx provides three tools
to help analyze and optimize for power (see Fig. 15.1). These are:

 1. Xilinx Power Estimator (XPE): This is used for predesign phase estimation. This
is an Excel-based tool and relies heavily on user-entered information in both
physical and functional categories. While XPE is very helpful in doing power
budgeting in the early phase of a project, it can also be used to do a what-if analysis
for an implemented design.

 2. Vivado Report Power : This is used for post-design phase power analysis. This is
a more accurate tool as it operates on a synthesized, placed, or routed netlist.
While majority of the functional information is obtained from the netlist, you
still need to enter the physical factors and switching activity information to get
an accurate power estimation.

 A. K. Sultania (*) • C. Zhang • D. K. Gandhi • F. Zhang
 Xilinx Inc. , San Jose , CA , USA
 e-mail: anup.sultania@gmail.com

mailto:anup.sultania@gmail.com

178

 3. Vivado Power Optimization : This implements ASIC style clock- gating
technique based on sequential analysis of the designs. It reduces the activity on
portions of the design that do not impact the design output.

 FPGA power can vary from few hundreds of mW to tens of Watts. It depends on
a variety of factors – design function, clock frequency, switching activity, and board
and environmental setup. Power on an FPGA can be broadly divided into four
categories:

• Device Static : This is the power which is consumed even if there is no design
configured into FPGA. This is typically measured by programming a blank
bitstream into the device and is a function of process, voltage, and
temperature.

• Core Dynamic : This is the dynamic power consumed when the FPGA is in use
and does not include I/O and Transceiver power.

• I/O and Transceiver: Power in I/O and Transceivers is categorized separately as
they have a high impact on overall power. The tools provide a capability to
explore various confi gurations to make the best possible decision from power
standpoint.

Logic Synthesis.

Logic
Optimization

Place Design

Route Design

Power
Optimization

Power
Optimization

Bit Stream

Power Analysis

XPE

Export/Import

Flow

 Fig. 15.1 Xilinx power analysis and optimization fl ow

A.K. Sultania et al.

179

15.2 Xilinx Power Estimator (XPE)

 XPE is a predesign phase tool meant to be used early in the project cycle to come
up with power budgets for FPGA. It also helps Xilinx to provide customers an
opportunity to explore power profi les for future devices. In the backend, XPE
implements power models which take in user-entered information and generate a
power number. The power models go through multiple stages— Preview for models
based on early device design specifi cation, Advanced for models based on device
design simulation, Preliminary for models based on measurements on early silicon,
and Production for models based on production silicon measurements.

 XPE being Microsoft Excel-based tool, it retains a majority of Excel capabilities.
It is divided into several sheets; several of them are dedicated to a specifi c resource
type on the FPGA. On Summary sheet, device selection and environment setup can
be explored. It also contains detailed power report. Snapshot sheet allows to com-
pare power reports between different settings. There is also a blank user sheet which
retains all the Excel functionality. It can be used in a variety of ways, from scratch
space to detailed system level block diagram, and can cross-reference data from rest
of the sheets.

 Apart from exploring different device and thermal setup for optimal static power,
it is also important to explore the relative dynamic power impacts across different
confi gurations of various blocks. For example, Transceiver sheet mainly asks for
basic transceiver-related inputs like channel count , data rate , data width , and opera-
tion modes . Besides these, you can do a what-if analysis to see power savings of
choosing low-power mode (LPM) over decision–feedback equalization (DFE). This
sheet can also estimate the additional power of using eye scanning, out of band (OOB)
sequence generation, or any hard IP blocks with a given transceiver.

 One more example is the I/O sheet which asks for basic I/O characteristics like
 data rates , toggle rates , enable rates , and pin confi gurations . It also gives the capa-
bility to do a what-if analysis between high-performance (HP) and high-range (HR)
I/O banks. It gives an extensive and intelligent drop-down list of IO standards
depending on availability in selected I/O bank and device. For more accurate esti-
mation, advanced users can also provide input termination and output impedance
when they are supported by selected I/O standard.

 Manually entering entire design data in XPE can be tedious and confusing at
times. To aid in this, XPE provides various wizards— Quick Estimate , Memory
Interface Confi guration , Memory Generator , and Transceiver Wizard . Quick
Estimate wizard is to do a very quick and coarse power estimation. The remaining
wizards are for ease of design data entry. For example, you can use Transceiver
Wizard to choose from a variety of protocols from the drop-down menu and enter
few key information like data rate , clock , etc., and it will not only populate the
 Transceiver sheet but also add link layer logic information in the Logic sheet. XPE
also allows you to delete the design data added through one of the above wizards by
using Manage IP wizard.

15 Power Analysis and Optimization

180

 As a fi nal note, XPE can only be as accurate as the data entered. Often, it is very
diffi cult to estimate power accurately because accurate switching activity and design
information is not known very early in the design cycle. If suffi cient information is
provided, XPE can estimate device static , I/O , and Transceiver power with reasonable
accuracy. However, it still does not have suffi cient design connectivity information to
accurately estimate core dynamic power. Since power budgets are frozen early in the
design cycle, it is important to account for this uncertainty early on.

15.3 Vivado Report Power

 Report Power is a very detailed power analysis tool and computes power at a fi ne-
grained level. For example, it estimates power for each LUT based on switching
activity and capacitance information present at input and output pins of the LUT .
Similarly, it accounts for the exact routing of each net while estimating power. This
is in contrast to the coarse model present in XPE.

 The Vivado Power Analysis engine uses four types of information as shown
in Fig. 15.2 . It gathers the netlist information and configurations of various
blocks by analyzing the design. It uses hardware characterization data based on
selected device and package. Operating conditions like process, voltage, and
temperature must be set and are typically pre-decided when exploring through
XPE. Finally, power constraints comprising of switching activity constraints
and clock constraints need to be carefully set to get accurate power estimation.
All these are passed as inputs to various algorithms to come up with a detailed
power estimation.

Design Netlist
and Parameters

Device
Characterization

Operating Conditions

Switching Activity
and Clock Constraints

Vivado
Power Analysis

Engine

Power Report

 Fig. 15.2 Vivado power analysis engine

A.K. Sultania et al.

181

15.3.1 Operating Conditions

 Defi ning proper operating conditions are essential for the accuracy of power calcula-
tions. Power engine can use predefi ned typical or calculated values for most of the
operating conditions; however, it is strongly recommended that you overwrite a few
critical values based on the system specifi cations. For example, if you are aware of the
maximum junction temperature, then you should set that in operating conditions.
This will prevent the tool from estimating junction temperature based on environment
and board setup. Similarly, the tool default for the process corner is typical. You
should change this to maximum to get worst-case device static power. You should also
provide exact or worst-case (i.e., maximum) supply voltage values provided by exter-
nal power regulators as power depends signifi cantly on voltage supply values.

15.3.2 Power Constraints

 Similar to static timing analysis (STA) tools, Vivado Power Analysis (report power)
requires you to provide power constraints to guide the tool for accurate power predic-
tion. Power constraints are specifi c to clock frequency and switching activities. For
clocks, the frequency can be constrained using the same SDC timing commands. You
need to guarantee that all the clocks are properly constrained. Switching activity is
represented by a pair of values as (toggle_rate, static_probability). By defi nition,
 toggle_ rate is the probability of a signal in a synchronous design making a ‘0’ → ‘1’
or ‘1’ → ‘0’ transition within a clock cycle. Static_ probability is the probability of a
signal being 1 in any clock cycle. Figure 15.3 shows signal x with toggle_rate of
40 % and static_probability of 0.3 within a ten clock-cycle window.

 Power analysis requires switching activities for all nets. At the fi rst appearance,
this seems like a daunting task for users to provide all switching activity constraints
in brute force. The novel methodology in Vivado Power Analysis requires you to
only provide switching activities for a subset of nets rather than all of them and,
together with the activity propagation engine (see Sect. 15.3.3), greatly minimizes
design effort and at the same time provides accurate results. There are two ways to
provide switching activity information.

 First, you can simulate the design (or its portions) to generate switching activity
constraints. It is recommended that you do simulation on some critical modules of

 Fig. 15.3 Signal toggles four times within ten clock cycles and stays “1” for 3 out of 10 cycles

15 Power Analysis and Optimization

182

the design and generate a Switching Activity Interchange Format (SAIF) fi le. This
fi le can then be used to annotate switching activities on the design. Power results are
greatly impacted by simulation done at different design stages as well as with or
without glitches. For accuracy purpose, simulation at post route stage with delays
will generate switching activities most close to real hardware.

 Second, if simulation results are not available, you can constrain critical control
signals of the design and let activity propagation engine estimate activities on the
remaining nets. The critical control signals are those that can enable or disable a large
portion of the design. Examples of critical control signals include set/reset pins that
drive large fl op fan-outs, block RAM enable pins that switch on/off the data path,
clock selection pins to switch between clocks at clock controller output, pins that
enables the power down or sleep feature of hard IP blocks, etc. Not all control signals
are critical. Control signals that only reset limited number of nonessential fl ops can
be safely ignored without impacting the accuracy of power prediction.

 In addition to critical control signals, another way of guiding the tool is to
provide activities on groups of data path signals, for example, block RAM or GT
data output pins and chip-level input ports. This approach of setting activities en
masse is useful in doing worst-case power estimation.

15.3.3 Activity Propagation

 After constraints are provided to annotate partial design nets with switching activi-
ties, activity propagation engine triggers to propagate activities on the remaining
parts of the design. The activity propagation is a statistical analysis based engine
and, on a large design with a million LUTs and registers, can usually complete
within several minutes. Figure 15.4 demonstrates activity propagation for a simple
AND gate.

 Assume the same static_probability for input a and input b : SP(a) = SP(b) = 0.5.
Those values can be from user constraints or propagated values from previous logic. In
the case of the AND gate, SP(o) is computed to be 0.5 × 0.5 = 0.25. This is under the
assumption that inputs a and b are totally independent of each other. Similarly, activity
propagation engine will also compute output toggle rate. Details of this algorithm are
not necessary for you as a user of these tools. Not just combinational circuits, activity
propagation engine can also propagate activities across sequential circuits.

 Real designs are usually large and complex due to correlations between different
signals. It is infeasible to compute exact switching activity for all the nets within a

a, SP(a) = 0.5

b, SP(b) = 0.5

o, SP(o) = 0.25

 Fig. 15.4 AND gate
activity propagation

A.K. Sultania et al.

183

reasonable amount of time. Report Power activity propagation engine is able to
intelligently solve a subset of correlations in the design and trades off between run-
time and accuracy. With proper constraints on clocks and critical control signals,
 Report Power is able to predict power reasonably close to hardware measurement.
It is to be noted that activity propagation engine does not override user-provided
constraints, rather it uses them as inputs to estimate activities on remaining nets.

 Because of its ease of use over other activity analysis methods like simulation,
activity propagation can be used to effi ciently evaluate relative impact on power
after a design netlist change or switching activity change.

15.3.4 Export– Import Flow with XPE

 Vivado Report Power and XPE are two independent power analysis tools. In Report
Power , majority of the information is gathered directly from the design where as in
 XPE you have to enter all the information. When running Report Power , you can
export all the physical and functional information to an XPE exchange (. xpe) fi le
which can be easily imported into XPE tool. While XPE has very high-level design
information and less model accuracy compared to Vivado, exporting design infor-
mation from Report Power to XPE can be very helpful for multiple use cases.

 One use case for this fl ow is to do a what-if analysis at post synthesis design
stage. When the power reported in Report Power exceeds allocated budget, the
design can be exported to XPE to evaluate power saving ideas without actually
making any RTL changes. For example, you can evaluate how much power reduc-
tion can be achieved by reducing the resource usage or changing confi gurations of
blocks like BRAMs and DSPs. The impact of using different parts or environment
settings and different voltage options can also be studied very easily. Snapshot and
graph features of XPE come in very handy while doing several what-if analysis.

 Another use case is to do a more accurate early estimation for the next generation
of the design, which may reuse some design components from the current design.
For example, if the next-generation design is going to use most of the similar design
elements, then you can import the current .xpe fi le to XPE and make changes to
sheets where the design change is predicted. Often the next generation of Xilinx
FPGAs are supported in XPE relatively earlier than Vivado. In such cases, export–
import fl ow is very helpful to study power profi les on not only existing devices but
also future devices.

15.4 Vivado Power Optimization

 Vivado power optimization exploits a variety of techniques to reduce the dynamic
power consumption of the design. As shown in Fig. 15.5 , it detects the clock cycles
under which certain sequential circuit elements do not contribute to observable

15 Power Analysis and Optimization

184

design functionality, and applies ASIC-like clock- gating techniques to reduce their
activities. Due to the fact that FPGAs have dedicated clock routing resources, the
clock gating is actually applied to the enable port of sequential elements such as a
fl op or block RAM. Compared to the coarse-grained clock gating that requires a non-
trivial amount of design effort, Vivado power optimization is capable of automatically
inferring more fi ne-grained gating conditions across multiple levels of logic and
sequential boundaries.

15.4.1 Optimization Paradigms

 The fundamental of Vivado power optimization is the inference of logic conditions
under which the sequential element can be disabled without disturbing observable
design states and/or functionalities. There are two major paradigms that Vivado
power optimization explores: the output don’t care (ODC) paradigm and the input
don’t toggle (IDT) paradigm. A brief introduction of these paradigms will help in
intuitively understanding the potential netlist-level changes applied by Vivado power
optimization, which is important for designing and analyzing low-power systems.

 The ODC paradigm infers the enable condition by exploring the output side of a
sequential element, with the key idea that the sequential element only needs to be
enabled when its output is consumed by logic in the fan-out cone. As shown in
Fig. 15.6 , the output of FF1 becomes don’t care when FF2 ’s CLR signal is asserted.
Consequently, Vivado power optimization infers that FF1 only needs to be enabled
when FF2 ’s CLR signal is de-asserted and applies that signal to the enable port of
 FF1 through the inverter. Since a fl op’s enable decides its output data availability in
the next clock cycle, the actual enable of the FF1 needs to be traced back by one
clock cycle which is applied through FF3 in the example.

 To infer enable conditions across sequential boundaries, Vivado power optimiza-
tion performs multiple iterations of ODC analysis. This essentially unrolls the time
span and back propagates ODC conditions across multiple levels of fl ops. In the
example shown in Fig. 15.7 , the ODC enable for fl op FF2 is inferred in the fi rst
iteration from its output observability at the MUX, while the ODC enable for FF1
is decided in the second iteration based on FF2 ’s inferred ODC enable.

 On the other hand, the IDT paradigm searches enable condition by exploring the
input side of a sequential element, with the idea that if its input data remains same,

VCC

D

EN

Q D

EN

Q

Enable
Logic

 Fig. 15.5 Vivado power optimization

A.K. Sultania et al.

185

the sequential element can be safely disabled without altering the direct output. In
the example illustrated in Fig. 15.8 , the fl op FF1 ’s input doesn’t toggle when a = 1
and b = 0 since its output is directly fed into its input. Consequently, Vivado power
optimization generates the IDT enable signal of FF1 as the complement of such
disable condition, i.e., EN = ~a + b . Generally speaking, the IDT paradigm is useful
for reducing dynamic power of designs with many feedback loops.

 In addition to the general ODC and IDT paradigms, Vivado power optimization
also takes care of applying specifi c optimization techniques to certain high-power-
consuming components such as block RAMs . To illustrate a few, the following
techniques are deployed:

• Block RAM Structural ODC Optimization—Different from the general ODC
paradigm, this optimization searches the conditions under which the block RAM
is used in write-only manner and thus directly utilizes the write-enable signal as
the block RAM’s global enable control to suppress any unnecessary READ
operations.

• Block RAM Write-Mode Optimization —Write mode defi nes the behavior of the
block RAM’s outputs when data is being written into it, which can be set to NO_
CHANGE to suppress any unnecessary output toggling. To fully utilize this feature,
Vivado power optimization searches the block RAMs whose outputs aren’t
consumed during WRITE operations and sets their write mode to NO_CHANGE .

D

EN

Q D

CLR

Q D

EN

Q D

CLR

Q

D

EN

Q

FF1 FF2 FF1 FF2

FF3
VCC

 Fig. 15.6 ODC optimization paradigm

Iteration 1

D Q

Iteration 2

D Q

1

0

D
EN

Q
EN

Q

FF1 FF2

D

 Fig. 15.7 Multiple iterations of ODC

15 Power Analysis and Optimization

186

• Block RAM Quiescent IDT (QIDT) Optimization—When the block RAM’s
input addresses remain the same in two consecutive READ cycles, Vivado
power optimization safely disables the block RAM without disturbing its
functionality.

• Cascaded Block RAM Optimization—When multiple block RAMs are cascaded,
only one of the block RAM needs to be active at the same time. Consequently,
Vivado power optimization generates the enable signal for each block RAM in
the cascaded chain from most-signifi cant bits (MSBs) of the address bus such
that only the block RAM being accessed is enabled.

 Post Vivado power optimization, you may observe different outputs of certain
sequential elements such as fl ops or block RAMs from simulation. This is expected
since the activities of these elements are reduced by clock gating the EN port. But,
Vivado power optimization guarantees that the design’s observable functionality
remains undisturbed (i.e., from primary outputs), since these sequential elements
are only disabled during the clock cycles when their outputs are not consumed or
remain unchanged.

15.4.2 Suggestions for Low-Power Design

 In addition to automatically reducing the power consumption of the design, some
design level considerations could further improve the power characteristics and/or
create more optimization opportunities for Vivado power optimizer. In this subsec-
tion a few techniques good for low-power design are proposed:

a b
D

EN
Q

FF1

a b
D

EN
Q

FF1

VCC

 Fig. 15.8 IDT optimization paradigm

A.K. Sultania et al.

187

• Cascaded block RAMs—To implement the same memory, block RAMs can be
cascaded in different ways which impact the power and timing of the design. For
example, to implement the 36*8K memory, one option is to have nine 4*8K
block RAMs in parallel, each contributing 4 bits of the data. Although this
achieves the highest speed, it requires all block RAMs to be active concurrently,
which consumes a signifi cant amount of power. On the other hand, the same
memory can be implemented by cascading nine 36*1K block RAMs, which is
power optimal since only one block RAM is active at the same time. Generally,
you shall consider the balance between parallel/cascaded block RAM implemen-
tation to achieve the best power and speed trade-off.

• Distributed RAM vs. block RAM—Similarly, the choice of using distributed
RAM or block RAM to implement the memory could affect the power consump-
tion of a design. For instance, to implement the 32*100 memory, using one block
RAM is functionally correct but wastes a large portion of the data capacity of the
block RAM. On the other hand, the same memory can be implemented by 100
distributed RAMs without wasting any resource or power. Consequently, it is
also a good idea to consider distributed RAM vs. block RAM under certain
power and resource constraints.

• MUX chain design—The structure of the MUX chain decides the way ODC
analysis is being performed by Vivado power optimization. Pushing the high-
power- consuming element such as block RAM to the end of the MUX chain
increases the chance for Vivado power optimization to fi nd the best ODC enable
condition for that element.

• XOR tree design.—While XOR tree is good for implementing arithmetic log-
ics, it has the disadvantage of causing excessive glitches with increased levels
of XOR gates. Consequently for power-centric designs, it is suggested to limit
the logic levels of XOR tree by applying techniques such as inserting pipeline
stages in between.

15 Power Analysis and Optimization

189© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_16

Chapter 16
System Monitor

Sanjay Kulkarni

16.1 Usage and Need

Since the introduction of Virtex5 FPGA devices, the SYSMON (System Monitor) has
been a part of every new FPGA family introduced by Xilinx. The SYSMON allows
you to monitor the critical parameters like on-chip temperature, voltages, power, etc.
With each new generation of FPGA families (6-series, 7-Series, UltraScale, Zynq,
Zynq US+ MPSoC, etc.), Xilinx has improved the capabilities of the SYSMON to
cater to the newer challenges and user design requirements. You may expect similar
trend for SYSMON features in Xilinx future FPGA families.

This chapter provides the details of System Monitor based upon the Xilinx latest
UltraScale FPGA family.

16.2 Overview of SYSMON

The SYSMON functionality is built around the hard silicon block ADC (analog-
to-digital converter) and its interface to various on-chip sensors. When combined
with a number of on-chip sensors, the ADC is used to measure FPGA’s physical
operating parameters like on-chip power supply voltages and on-die temperature.
The ADC provides a general-purpose, high-precision analog interface for a range of
applications. The external analog interface inputs allow the ADC to monitor the
physical environment of the board or enclosure. As soon as the FPGA is powered
up, even before it is configured for any application purpose, the SYSMON is already
activated and starts functioning. At this point, its functionality is restricted to the

S. Kulkarni (*)
Technical Manager - Applications, Microsemi India Pvt. Ltd., Serilingampally Mandal, Kapil
Towers, 13th Floor, Survey No. 115/1, Nanakramguda, Hyderabad, Telangana, 500032, India
e-mail: sanjukulkarni12@gmail.com

mailto:sanjukulkarni12@gmail.com

190

measurement of on-chip parameters only. This data can be accessed through JTAG
or with dedicated I2C interface. Even if the SYSMON is not part of the FPGA-
based design, it is still accessible through these interfaces.

To understand further about SYSMON, let us look at the block diagram as shown
in Fig. 16.1.

Access to external analog world is provided through a dedicated analog input
pair (VP/VN) and 16 user-selectable analog inputs, known as Auxiliary Analog
inputs. The ADC supports differential sampling of unipolar and bipolar analog
input signals. The ADC has different range of operating modes to handle the external
analog inputs. SYSMON block includes a rich set of Configuration Registers. These
registers are classified into different groups like Control Register, Alarm Register,
and Status Register.

SYSMON operates at very low-voltage level in UltraScale FPGA devices either
using the external reference source (1.25 V) or on-chip voltage source (VCCAUX
1.8 V). If the requirement is restricted only to monitor the on-chip temperature and
voltages, then it is always beneficial to use the on-chip voltage source as reference.

16.3 Evolution of SYSMON in Xilinx FPGA

Table 16.1 shows the comparison of SYSMON evolution in Xilinx 7 series through
UltraScale+ FPGA families.

16.4 Using the SYSMON in System Design

As per the requirements for the system design, you can directly instantiate the hard
macro template in the design RTL files and use appropriate interface ports as per the
required configuration. The RTL instantiation template is available in Vivado under
Advanced Device Primitives. Xilinx also provides the SYSMON Wizard IP core under
Vivado IP catalogue, which helps the user to pre-configure the SYSMON for FPGA-
based system applications. Figure 16.2 represents the UltraScale-based SYSMON
primitive level diagram showing ports of different groups and interfaces.

It is expected that you should be familiar with each of the SYSMON ports group
and its intended usage in their application when SYSMON is incorporated in the
design. The Dynamic Reconfigurable Port group is mainly used to access the internal
set of registers. Control and Reset port group is used to control the reset as well as
controlled conversion start access. The External Analog Input ports are the main
ports for you to connect up to 16 external analog channels to be monitored, while
the VP/VN are dedicated input ports. The 16 analog inputs are actually FPGA
general- purpose IOs, while the VP/VN pins are non-shared pins. If VP/VN is not
used, then these pins cannot be used for any other general-purpose IO usage and

S. Kulkarni

191

S
ta

tu
s

R
eg

is
te

rs
C

o
n

tr
o

l
R

eg
is

te
rs

D
R

P
 A

cc
es

s
A

rb
it

er

JT
A

G
 T

A
P

C

o
n

tr
o

lle
r

I2
C

A
cc

es
s

F
P

G
A

 F
ab

ri
c

A
cc

es
s

R
eg

is
te

r
A

cc
es

s

A
D

C

O
n

 C
h

ip
 R

ef
er

en
ce

V

o
lt

ag
es

V
er

f
P

V
er

f
N

T
em

p

S
en

so
r

O
n

 C
h

ip

S
u

p
p

ly
 S

en
so

r

V
P

V
N

A
u

x
0

to
 A

u
x

15
 (

P
)

A
u

x
0

to
 A

u
x

15
 (

N
)

Mux

F
ig

. 1
6.

1
S

im
pl

ifi
ed

 b
lo

ck
 d

ia
gr

am
 o

f
U

lt
ra

S
ca

le
 F

P
G

A
-b

as
ed

 s
ys

te
m

 m
on

it
or

16 System Monitor

192

need to be connected to analog ground. SYSMON also provides indicators for any
adverse conditions through ALARMS group of signal. Your application can connect
this group of signals to the monitoring LEDs on the board. The Status Group of
signals mainly indicates the end of current conversion cycle, which channel is at
present under process, status of JTAG access of registers suit, etc. The I2C DRP
group of signals is used to provide two-wire standard low-cost I2C protocol access
by external I2C master. These are the main peripheral ports you need to be aware
while planning the system-level designs along with SYSMON.

Table 16.1 Evolution of SYSMON in Xilinx family of FPGA devices

Feature
7-Series/Zynq FPGA
(28 nm)

UltraScale FPGA
(20 nm)

UltraScale+ FPGA
(16 nm)

SYSMON primitive
name

XADC SYSMONE1 SYSMONE4

Resolution 12-bit 10-bit 10-bit

Sample rate 1 MSPS 200 KSPS 200 KSPS—In PLa

1 MSPS—In PSb

Analog-to-digital
converters

2 (in PL) 1 (in PL) 2 (1 in PLa, 1 in PSb)

Banks supporting
external analog inputs

1 All IO banks
support analog
inputs

All banks (In PLa
SYSMON only)

Alarm outputs Total 8 Total 16 Total 16

ALM[7:0] ALM[15:0] In PL including
Supplies + Temp +
Analog Bus

Supply sensors System supply
sensors:

System supply
sensors:

System supply sensors:

VCCINT, VCCAUX,
VCCBRAM

VCCINT, VCCAUX,
VCCBRAM

PL: VCCINT, VCCAUX,
VCCBRAM

Zynq: VCCPINT,
VCCPAUX, VCCO_DDR

Zynq: VCC_PSINTLP, VCC_

PSINTFP, VCC_PSAUX

User supply sensors: User supply
sensors:

User supply sensors:

0 4 4 (Vuser[3:0])

PS: many supplies (do
not have the list)

Reconfiguration
interfaces

Fabric DRP, JTAG
TAP

Fabric DRP, JTAG
TAP, I2C DRP

Fabric DRP or dedicated
PS DRP, JTAG TAP,
PMBUS, I2C DRP

Sequence mode Default, single pass,
continuous, single
channel, simultaneous
sampling, independent
ADC

Default, single
pass, continuous,
and single channel

Default, single pass,
continuous, dual
sequence

aPL = programmable logic
bPS = processing system

S. Kulkarni

193

16.5 ADC Capabilities of SYSMON

The heart of UltraScale FPGA-based SYSMON is designed around a 10-bit ADC,
capable of working at 200 KSPS (kilo samples per second). It is commonly used
between the external analog signals as well as on-chip sensors. The SYSMON ADC
has nominal external input voltage range of 0–1 V. Various operating modes of the
ADC, sensors, and analog inputs can be configured using the SYSMON Control
Registers. The ADC supports Unipolar Mode (which is default mode) of operation
for on-chip sensors, while for external channels both the Unipolar and Bipolar
operation modes are supported. The ADC always produces 16-bit conversion result,
out of which the 10 MSB (left most bits) represent the 10-bit transfer function,
which is stored in the Status Registers. The remaining six LSB can be used to
improve the resolution through averaging or filtering.

In case of Unipolar Mode, for input of 0 V, the ADC produces 0x000h code,
while for the highest input of 1 V the ADC produces full-scale code of 0x3FFh.
This shows that the ADC output in Unipolar Mode is straight binary equivalent.
Each bit increase represents 977 μV increase. When external analog inputs are con-
figured as Bipolar Mode, they can accommodate true differential and bipolar analog
signals. The output coding of ADC in Bipolar Mode is two’s complement. In this
case also each of the bit count represents 977 μV. The diagrammatic representation
of the Unipolar and Bipolar Modes transfer function of SYSMON is as shown in
Fig. 16.3 and 16.4. Note the upper range of binary code representation is the same for
Unipolar and Bipolar Mode. The output coding of the ADC in Bipolar Mode is two’s
complement and indicates the sign of the input signal on VP relative to VN.

Fig. 16.2 SYSMONE1 primitive port structure in the UltraScale FPGA devices

DO [15:0]
DI[15:0]
DADDR[7:0]
DEN
DWE
DCLK
DRDY

Dynamic
Reconfiguration
Port Group
Signals (DRP)

RESET
CONVST
CONVSTCLK

Control and
Reset Port Group
Signals

VP
VN
VAUXP[15:0]
VAUXN[15:0]

External Analog
Input Port Group
Signals

SYSMONE1
Primitive Port

Structure In Xilinx
UltraScale FPGA

Devices

I2C_SCLK
I2C_SCLK_TS

I2C_SDA
I2C_SDA_TS

Dynamic
Reconfiguration
Port I2C Group
Signals (I2C DRP)

MUXADDR [4:0]
CHANNEL[5:0]

EOC
EOS

BUSY
JTAGLOCKED

JTAGMODIFIED
JTAGBUSY

STATUS Port
Group Signals

ALM[15:0]
OT

ALARMS Port
Group Signals

16 System Monitor

194

16.6 Transfer Function of Various On-Chip Sensors

16.6.1 Temperature Sensor

The UltraScale based SYSMON has on-chip temperature sensor, which produces the
equivalent output voltage proportionate to the die temperature. The ADC can be
configured to use external as well as internal reference voltage for temperature
conversion. When using an external reference voltage, the transfer function of the
temperature sensor is as given by (16.1). ADC value corresponding to a given tem-
perature can also be obtained by the same equation:

T =

×
−

ADC
bits

502 9098

2
273 8195

.
.

(16.1)

where:

1 2 3 999

3FF

002

001

000

Output Code

Input Voltage (mV)

1
0-

bi
t

O
u

tp
ut

 C
o

de
 (

H
ex

)

Full scale input = 1 V
1 LSB = 1V/1024 = 977 µV

Full Scale
Transi�on

Fig. 16.3 Unipolar transfer function of SYSMON ADC

S. Kulkarni

195

T = Temperature K (Kelvin)
When using the on-chip reference voltage, the transfer function for temperature

sensor is as shown by (16.2):

T =

×
−

ADC
bits

501 3743

2
273 6777

.
.

(16.2)

16.6.2 Power Supply Sensors

The SYSMON also includes on-chip sensors that allow monitoring of the device
power supply voltages using the ADC. The sensors sample and attenuate the power
supply voltages VUSER [3:0], VCCINT, VCCAUX, VCC_PSINTLP, VCC_PSINTFP, VCC_PSAUX, and

Output Code
2's Complement

Coding

Input Voltage(mV)

10
-b

it
 O

u
tp

ut
 C

o
de

 (
H

ex
)

Full scale input=1V
1 LSB= 1V/1024=977µV

Full Scale
Transi�on

-500 -2 -1 0 1 2 4993-3

200h

000h

1FFh

1FEh

001h

3FFh

3FEh

002h

Fig. 16.4 Bipolar transfer function of SYSMON ADC

16 System Monitor

196

VCCBRAM on the package power supply balls. Equation (16.3) gives the power supply
sensor transfer function after digitizing by the ADC. The power supply sensor can
be used to measure voltages in the range 0 V to VCCAUX + 3 % with a resolution of
approximately 2.93 mV. The equation transfer function is related to the HP (High
Performance) IO banks. The power supply measurement results are stored in the
respective Status Registers:

Voltage

ADCCode
V= ×

1024
3

(16.3)

16.7 Controlling the SYSMON Operation

The SYSMON has a rich set of registers which can be accessed in three different
mechanisms of interfaces (Fabric DRP access, I2C access, JTAG TAP access).
Figure 16.5 shows the SYSMON register set. The access for up to 256 registers is
allowed which are of 16-bit wide each, by any of the three interface mechanisms
mentioned above. You need to follow the timing relation of different DRP ports
while accessing these registers through fabric interface. The fabric register access is
referred with respect to the DCLK.

Fig. 16.5 SYSMONE1 register interface

S. Kulkarni

197

16.7.1 SYSMON Control Registers

The Control Registers are used to configure the SYSMON operation. All the
SYSMON functionality is controlled through these registers. These Control Registers
are initialized using the SYSMON attributes when the SYSMON is instantiated in a
design. This means that the SYSMON can be configured to start in a predefined
mode after the FPGA configuration.

The Control Registers are further classified into:

• Configuration Registers (address range 0x40h to 0x43h)
• Sequence Registers (address range 0x46h to 0x4Fh and 0x78h to 0x79h)
• Alarm Registers (address range 0x50h to 0x6Fh)

The Configuration Register has bits associated with operating modes like
Sequence Mode, Single-Channel or External Multiplexer Mode (Auto Channel
Sequencer), Continuous or Event Trigger Mode, Averaging Mode on selected
channel, Channel Sequencing operation, Calibration settings, etc.

Along with the Control Register configuration, there are multiple Sequence
Registers available that need to be configured in order to help SYSMON to operate
in the correct manner. In case of Single-Channel mode, the Control Register needs
to be set to select only one of the available channels. In cases, when multiple chan-
nels need to be monitored, then Auto Channel Sequencer Mode is enabled. Based
upon predefined sequence of channels defined in the Channel Sequence Register
(SEQCHSEL), the sequencer automatically selects the next channel for conversion,
sets the averaging (SEQAVG), configures the analog input channels (SEQINMODE),
sets the required settling time for acquisition (SEQACQ), and stores the results in
the Status Registers.

The ADC Channel Averaging Registers (SEQAVG) enable and disable the averag-
ing of the channel data in a sequence. The result of a measurement on an averaged
channel is generated by using 16 or 64 or 256 samples, which is controlled through
Configuration Register bits. Offset correction enablement is also configurable option
for ADC and supply sensors.

The SYSMON provides mechanism to raise the user intervention for any adverse
condition occurring in the system using Alarm Registers. The Alarm Registers are
used to set up the automatic alarms once the channel input signals crossover the
limits set by you. The alarms are generated on 16-bit ALM port. You can program
the alarm thresholds in the Control Register address range of 0x50h to 0x6Bh.
The alarm for particular input will be set up both for the lower as well as higher
limits. The alarms are reset when a subsequently measured value falls inside the
threshold (min and max) ranges.

The on-chip temperature measurement is used for critical temperature warnings
and also supports automatic shutdown of the FPGA device to help prevent the
device from being permanently damaged. During very high temperature scenarios
beyond 125 °C, the FPGA device is auto shut down; however this option needs to
be enabled separately by you through configuration of the Over Temperature (OT)

16 System Monitor

198

upper Alarm Register. The device auto-shutdown facility is disabled by default.
During FPGA shutdown the SYSMON still maintains its data using the internal
clock oscillator. The auto-shutdown facility is really useful as it prevents the device
from getting permanently damaged. Once the on-chip temperature reduces, it is
necessary to reconfigure the device for further usage.

User application can keep watch on the temperature alarm signals and should
take the necessary action like turning on the cooling system, etc.

16.7.2 SYSMON Status Registers

The SYSMON Status Registers are read-only registers, which have the updates of
all the measurements carried out by the SYSMON ADC. These registers can be
accessed at the address range of 0x00h to 0x3Fh and 0x80h to 0xBFh. For each of
the ADC capabilities, one individual register is provided. It includes parameters like
on-chip temperature, different on-chip voltages (VCCINT, VCCAUX), external
analog channel registers, etc.

There are two more set of Status Registers which are categorized in MAX and
MIN type, which store the maximum and minimum values of these parameters since
the FPGA is powered on or since last reset of SYSMON. The MAX and MIN set of
registers are different than the regular set of registers which stores the latest ADC
conversion values. The Flag Registers (address range 0x3Eh, 0x3Fh) are considered
to be part of Status Registers with each bit indicating the status of parameters for
various alarms and Over Temperature (OT).

SYSMON can be digitally calibrated to phase out any offset as well as the gain
errors in ADC and power supply sensors using the Calibration Registers which are
also part of the Status Registers (address range 0x08h to 0x0Ah). A built-in calibration
function automatically calculates these coefficients.

16.8 Operating Modes of SYSMON

SYSMON provides access mechanism for a range of analog signals such as an on-
chip temperature sensor, on-chip supply sensors, the dedicated analog input (VP/
VN), the auxiliary analog inputs, and the user supplies. It provides multiple operat-
ing modes to select the analog signals used in a design. The default mode of
SYSMON operation is restricted only for the on-chip sensors, which is available
even when the SYSMON is not instantiated in your design. The default mode uses
calibration and on-chip oscillators to automatically measure temperature, VCCINT,
VCCAUX, and VCCBRAM.

S. Kulkarni

199

16.8.1 Single-Channel and Auto Channel Sequence Mode

The single-channel mode uses a Configuration Register (0x41h) to select the analog
channel. By writing to the Configuration Register, a design can select different analog
channels. In application where many channels need to be monitored, to avoid over-
head on the processing system for reconfiguration of the Control Register each time,
Automatic Channel Sequence Mode function can be used. The automatic channel
sequencer sets up a range of predefined operating modes, where a number of channels
(on-chip sensors and external inputs) are used. The sequencer automatically selects
the next channel for conversion, sets the averaging, configures the analog input chan-
nels, sets the required settling time for acquisition, and stores the results in the Status
Registers based on a once off setting. Averaging can also be selected independently
for each channel in the sequence. The sequence mode is further categorized into
Single-Pass Mode and Continuous Sequence Mode. The channel sequencer function-
ality is implemented using a set of 12 Control Registers. Section 16.7.1 contains more
information about the different user configurable registers of the SYSMON.

16.8.2 External Multiplexer Mode

In some applications, where IO resources are limited and need to monitor several
external analog inputs, in such cases the External Multiplexer Mode can be used. The
external multiplexer can be connected to the dedicated analog inputs (like VP/VN
ports) or one of the auxiliary analog inputs. Figure 16.6 shows how you can use
External Multiplexer operation with VP/VN ports.

VAUXP[0]
VAUXN[0]

VAUXP[1]

VAUXP[15]
VAUXN[15]

MUX

ADDR
4

VN

MUX

UltraScale Device
°c

MUXADDR[3:0]

10 bit, .2 MSPS
ADC

VP

Temp.
Sensor

Supply
Sensor

External Analog
Multiplexer 16:1

VAUXN[1]

Fig. 16.6 External multiplexer mode

16 System Monitor

200

16.8.3 Automatic Alarms

The SYSMON also generates an alarm signal on the logic outputs ALM[15:0] when
a sensor measurement exceeds some user-defined thresholds. The Alarm Registers
are classified in to upper and lower alarm threshold control registers. The alarms are
generated when the status register value for the corresponding recently measured
channel goes outside the lower or upper limit mentioned in the Alarm Threshold
Control registers (address range 0x50h to 0x6Bh). The alarms are suppressed auto-
matically when the next new measurement of the channel falls within the range of
upper and lower threshold registers.

16.8.4 Sampling Modes

The SYSMON has two modes of data sampling, namely, Continuous Mode and
Event-Driven Mode. In Continuous Mode, the SYSMON ADC is busy doing the
continuous conversion for the configured channel(s). A dedicated internal clock,
namely, ADCCLK, is used to facilitate this conversion. The ADC takes around 26
ADCCLK clock cycles for any conversion. The maximum operating ADCCLK fre-
quency is 5.2 MHz. The ADCCLK clock is dedicated only for the SYSMON ADC
usage and it cannot be shared with other applications. For the SYSMON to operate
in Event-Driven Mode, user application needs to provide one DCLK-wide active
high pulse on the CONVST port of SYSMON. This pulse triggers the ADC to start
the conversion of selected analog input. The End of Sequence (EOS) or End of
Conversion (EOC) indicates that the current conversion cycle is over, and converted
data is available in the respective Status Register.

The settling time of ADC decides the actual conversion rate. This flexibility
helps the ADC to get 10-bit precise representation of analog conversion.

16.9 Using SYSMON in Standalone Mode

In Standalone Mode, SYSMON continuously monitors the on-chip sensors. Your
application is no longer associated with the SYSMON results. Using the JTAG or
I2C interface, you can also configure some of the external analog inputs. No instan-
tiation is required to access the DRP interface over JTAG.

The JTAG as well as I2C access is slower as compared to the fabric DRP access.
The SYSMON supports transfer up to 400 Kb/s, Standard Mode (SM) and Fast
Mode (FM). For using the JTAG interface to access SYSMON, you need to be
aware of the IEEE 1149.1 standard, while for I2C access, the knowledge of I2C
2-wire protocol is necessary.

The SYSMON could shut down the device operation if the junction temperature
crosses 125 °C (Over Temperature (OT)), where it is still accessible only through
JTAG access.

S. Kulkarni

201

16.10 Disabling the SYSMON

Optionally, in order to save power further or in case your application does not
require the inclusion of SYSMON, you can permanently disable it by connecting
SYSMON’s supply voltages to the ground. This is completed by connecting AVDD,
VREFP, VREPN, and AVSS to ground reference. VP and VN also should be con-
nected to GND. These groundings can be done while designing the PCB for your
application. Alternately, XDC settings can be used during the system building pro-
cess to disable SYSMON. As the SYSMON would not be available to monitor on-
chip crucial parameters, you should carefully design your application to avoid any
damage (like due to Over Temperature, etc.) to the FPGA. Disabling the SYSMON
using external grounding of signals is shown in Fig. 16.7.

16.11 SYSMON Use Cases

The SYSMON can be found in various applications and use cases. Some of the
applications are:

• Vehicle automation systems
• Food preservation systems
• Medical equipments
• Equipments used in harsh industrial atmosphere
• FPGA-centric critical systems

VP

VN
VREFN

VREFP AVDD

AVSS

ADC

Fig. 16.7 Disabling the
SYSMON

16 System Monitor

202

Typical FPGA-based system is as shown in below Fig. 16.8.
In the FPGA-centric system shown in the Fig. 16.8, the SYSMON plays a

crucial role of monitoring the internal parameters like on-chip temperature, volt-
age, etc. It also monitors the external parameters like on pressure, external tem-
perature, incoming analog signals from cooling fan speed rotation control system,
etc. Its Alarm Signals are connected to Audio Control System which controls the
speaker activation. The Alarm Signals are also connected to a series of LEDs,
which will be activated if any parameter under monitoring crosses the minimum
or maximum range of user configurable parameters selected for monitoring pur-
pose. The Alarm Signal also connects to cooling system. If the temperature goes
beyond the limit, then the alarm signal automatically gets asserted and it controls
the rotation speed of the fan. The set of Alarm Signals are connected internally
to GPIO signals, which helps in monitoring these parameters when the system is
in stable condition.

The interrupt signal from the AXI-based wrapper around SYSMON is connected
to the dedicated input port of Interrupt Controller IP. The interrupt actions should
be configured by the user based upon its severity. In critical cases like Over
Temperature (OT) or if the on-chip voltage drops below minimum level, then the
interrupt generated by the core will force the CPU to store the present status of its
registers and application-related information in to nonvolatile SRAM memory. This
can be done by using the nvSRAM controller (or equivalent NAND Flash controller
if NAND memories are used as nonvolatile memories). The nvSRAM controller

Hyper
Terminal

AXI QSPI
Controller

AXI nvSRAM
Controller

AXI Interrupt
Controller

AXI Lite Interface

External
Temp
Sensor

Temp
Sensor

Interface
LED
Indicator

To Audio
Speaker

Fan Speed
Control and
Loopback
System

Audio control
Amplifier
System

AXI Full Interface

AXI GPIO

AXI SYSMON
ADC

External Analog
Interface

Alarm Signal
Interface

User I/P Push
Buttons

AXI DMA AXI DDR
Controller

Typical FPGA Based
System

DDR3
Memory

Bank

AXI
UARTLite

Microblaze
Processor

Local On Chip
Memory

SPI Flash
Serial

Memory

nvSRAM
Parallel

Interface

Fig. 16.8 FPGA-centric system based upon SYSMON functionality

S. Kulkarni

203

stores all the crucial information into nvSRAM, which can be used by the processor
next time when the system reboots.

This system-level operation provides an example usage of SYSMON in FPGA-
centric systems.

16 System Monitor

205© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_17

 Chapter 17
 Hardware Debug

 Brad Fross

 It is often necessary to debug FPGA designs in hardware, for several reasons:

• Problems are visible only when design is run in hardware at system speed.
• It is not feasible to re-create the failure in a simulation environment.
• It is faster to test the design in hardware than in a simulation or emulation

environment.

 This chapter discusses some of the advantages of debugging FPGA designs in
hardware, how debugging complements other methods of verifi cation and valida-
tion, and various techniques for getting the most out of debugging FPGA designs
in hardware.

17.1 Debug Methodologies for FPGA Designs

17.1.1 Iterative Debug Methodology

 Creating and debugging FPGA designs using an iterative design fl ow leverages one
of the key advantages that FPGA devices have over ASICs and ASSPs: FPGAs are
reprogrammable. Adding, modifying, and removing debug instrumentation are an
integral part of the FPGA design cycle, as shown in Fig. 17.1 . Due to their fi xed
nature, it is not possible to add, change, or remove debug instrumentation in
ASIC/ASSP designs after fabrication.

 While you can add debug instrumentation to ASIC/ASSP designs before tape
out, it is typically only done at the block interface level or in key control sections of
the design. It can be diffi cult to predict where bugs will pop up in a design, which

 B. Fross (*)
 Xilinx , Longmont , CO , USA
 e-mail: bkfross@ieee.org

mailto:bkfross@ieee.org

206

means you might not be monitoring the appropriate part of the ASIC/ASSP design.
In FPGA designs, you can add just the right amount of debug instrumentation to the
appropriate part of the design to fi nd the bugs and then remove the instrumentation
when it is no longer needed.

17.1.2 Simulation vs. Debugging in Hardware

 FPGAs are similar to ASICs/ASSPs in that simulation-based verifi cation can be
used to ensure the design meets the specifi cation. The main advantage that simula-
tion has over debugging in hardware is that simulation allows for full visibility of
any node in the design. However, when debugging in hardware, the number of nodes
that can be debugged in any given design iteration is limited to the amount of
resources available to the debug instrumentation.

 An example of debug instrumentation that is used to trigger on hardware events
and capture data of interest is called the Integrated Logic Analyzer (ILA) debug
core. The ILA IP core uses FPGA fabric resources to implement the trigger func-
tions and it uses block RAM to store the captured data samples. Table 17.1 shows a
chart of how many block RAM Tiles in the FPGA device are used for various levels
of design debug visibility. The amount of slice logic used by the ILA core ranges
from 0.81 to 2.61 % of a Kintex-7 XC7K480T device.

 While simulation provides for increased debug node visibility and deeper capture
trace, debugging in hardware has two distinct advantages over simulation:

• Faster test run times, typically at the speed of the system under test
• Testing in a real system environment rather than a simulation testbench

Add/Modify/Remove
Debug Instrumentation

Design Verified

Find Next Bug

Fix Previous Bug

Download & Debug
Design in Hardware

Start Design

Synthesize &
Implement Design

 Fig. 17.1 FPGA design and debug cycle

B. Fross

207

 Simulation and hardware debugging are not mutually exclusive. In fact, it is
often benefi cial to use simulation to verify the functionality of a design before test-
ing it out in hardware. This is especially true if the design consists of signifi cantly
new content that has not been previously verifi ed. After verifying the design using
simulation, you can debug in hardware to fi nd issues that result from design integra-
tion or other system-level considerations, under the environment of real-world traffi c
patterns.

 In some cases, it can be advantageous to skip simulation altogether and verify
the design entirely in hardware. For example, in cases where designs that have
been previously verifi ed in simulation are undergoing small modifi cations or are
being ported from one FPGA device family to another, you may go directly to
hardware.

17.1.3 Debugging a Design That Meets Timing

 Before debugging in hardware, make sure the design meets all timing constraint
requirements. Debugging a design that does not meet timing is typically not a
worthwhile endeavor since any misbehavior could easily be attributed to the failure
to meet timing.

 In addition to ensuring the design on its own meets timing, also ensure that the
design including the debug instrumentation IP (such as the ILA core) meets timing
as well. The ILA core uses FPGA device resources and can exhibit unexpected
behavior if design does not meet timing.

 The ILA core has a clock input that is used to synchronize the measurements to
the design-under-test; therefore all design constraints related to that clock domain
also apply to the ILA core. The ILA core also has its own design constraints that
time the portions of the ILA core not related to the design clock domain. Once all
timing constraints are applied correctly and are met, it is quite likely that any mis-
behaviors that are encountered are due to real functional issues as opposed to
timing- related anomalies.

 Table 17.1 Number of block RAM Tiles used by ILA cores of varying data dimensions

 ILA core dimensions

 Data depth

 1024 2048 4096 8192 16,384 32,768

 Data width 32 1 2 4 7.5 15 30
 64 2 4 7.5 14.5 29 58
 128 4 7.5 14.5 29 57.5 115
 256 7.5 14.5 29 57.5 114.5 229
 512 15 29 57.5 114.5 228.5 457
 1024 29.5 57.5 114.5 228.5 456.5 913

17 Hardware Debug

208

17.2 Instrumenting the Design for Debug

17.2.1 Choosing the Type of Debug Instrumentation

 Deciding what type and amount of debug instrumentation to add to the design
depends on two key factors:

• Type of issue being debugged
• Resources available for debug instrumentation

 The types of design functionality issues can range from simple status and/or
 control issues to complex logic and/or system-level issues. The amount of resources
available in the device (especially block RAM resources) can be the limiting factor
in choosing the appropriate debug instrumentation IP. Table 17.2 shows how the
Xilinx debug instrumentation options address various debug scenarios.

17.2.2 Choosing What Signals to Debug

 It is important to consider two guidelines when choosing signals to debug:

• Select signals that will provide the necessary information to fi nd and fi x the bug
without exceeding device resources

• Select signals that do not degrade the performance and/or functionality of the design

 Table 17.2 Types of Xilinx debug instrumentation

 Debug IP
 Requires
block RAM? Debug scenarios

 Integrated
Logic Analyzer
(ILA)

 Yes a • Useful when capturing samples in multiple consecutive
clock cycles is required

 • Allows for complex triggering to fi nd diffi cult-to- detect
events

 Virtual Input/
Output (VIO)

 No • Useful for low-bandwidth communication with
design-under-test

 • Can replace or augment board-level control and status
indicators such as buttons, LEDs, etc.

 JTAG-to-AXI
Master

 Yes b • Useful for reading/writing AXI-based peripherals

 Integrated Bit
Error Ratio
Tester (IBERT)

 Yes c • Useful for debugging board-level signal integrity issues
with high-speed serial I/O transceivers

 • Also used to determine transmit and receive margin of
high-speed transceivers

 a Amount of block RAM varies with IP port width and data depth parameters. See Table 17.1 for details
 b JTAG-to- AXI Master uses two to six block RAM tiles, depending on IP parameters
 c The number of block RAM depends on the number of transceiver QUADs available in the
target device

B. Fross

209

 When choosing what signals to debug, it is usually best to select signals that are
driven by synchronous elements such as fl ip-fl ops, block RAMs, etc. The act of prob-
ing synchronous elements will not typically change the circuit unless the register
would otherwise be combined into a primitive element (such as a block RAM output
register or I/O block register). If you want to debug the outputs of combinational
logic, it is important to consider how the act of probing the circuit will change its
implementation by preventing the tools from optimizing it.

17.2.3 Choosing How to Add Debug Instrumentation

 Along with deciding what signals to debug, it can be equally important to decide
how to add debug instrumentation to a design. There are two methods for adding
 debug instrumentation :

• Source-level instantiation of debug cores
• Netlist-level insertion of debug cores

 In the source-level instantiation method for adding debug instrumentation to a
design, you directly instantiate the debug IP in the design source (e.g., HDL source
code or IP Integrator block design). The debug IP is generated separately and can
either be synthesized separately (i.e., out of context) or with the design-under-test
(i.e., in context). You can add any of the debug cores described in Table 17.2 using
the source-level instantiation method.

 In the netlist-level insertion method, you add the debug instrumentation to the
post-synthesis design netlist. You choose what signals to debug and how to debug
them and then the Vivado software tools automatically insert the debug IP into the
design-under-test netlist. You can add only the ILA debug core to the design using
the netlist-level insertion method.

 Some of the benefi ts for each method of adding debug instrumentation to a
design are described in Table 17.3 .

 Table 17.3 Benefi ts of two methods for adding debug instrumentation to a design

 Benefi t
 Source-level
instantiation

 Netlist-level
insertion

 Full correlation to source-level signals Yes No
 Source code modifi cation required Yes No a
 Ease of probing across hierarchical boundaries Low High
 Ease of adding, modifying, removing debug instrumentation Moderate High
 Adding, modifying, or removing debug instrumentation
requires design resynthesis

 Yes No

 Adding, modifying, or removing debug instrumentation
requires design re-implementation

 Yes Yes

 a An optional step to improve the preservation of HDL signals during RTL synthesis is to use
 MARK_DEBUG or DONT_TOUCH properties on them

17 Hardware Debug

210

17.3 Interacting with Debug Instrumentation

 Once you have added the debug instrumentation to the design, the design has been
successfully implemented, and the design meets all timing constraints, it is time to
program the design into the device-under-test and debug it. This section describes
several ways to interact with debug instrumentation in a simple example design.
Figure 17.2 shows the simple example design that contains a MicroBlaze micropro-
cessor, a block RAM memory buffer, a UART peripheral, and a GPIO peripheral.

 The example design shown in Fig. 17.2 has been instrumented with the following
debug IP cores:

• An ILA core to monitor the AXI interfaces of the block RAM controller
• A VIO to monitor the inputs and outputs of the GPIO peripheral
• A JTAG-to- AXI Master to read/write the contents of the block RAM

 The example design containing this debug instrumentation is shown in Fig. 17.3 .
The arrows indicate the new IP inserted due to the debug instrumentation.

17.3.1 Connecting to Hardware and Programming the Device

 Before interacting with the debug cores in the design in hardware, you need to con-
nect to the device-under-test via a JTAG cable and program the design into the
device-under-test. In a typical lab environment, the JTAG cable for the target system
is attached to the host machine that is running Vivado. In this case, clicking the Auto
Connect toolbar button of the Hardware window in the Hardware Manager will
connect to the locally attached JTAG cable, as shown in Fig. 17.4 .

 Fig. 17.2 Example design before adding debug instrumentation

B. Fross

211

 Once the connection to the JTAG cable is established, Vivado scans the target
system to detect the devices in the JTAG chain . After Vivado detects the xc7k325t_0
FPGA device, the next step is to program the device with the bitstream fi le and
debug probes fi le that correspond to the design in the current project, as shown in
Fig. 17.5 . The last step before debugging the design involves Vivado automatically
detecting the debug cores in the device-under-test, as shown in Fig. 17.6 .

17.3.2 Taking a Basic Measurement Using the ILA Core

 The ILA core is very useful for triggering and capturing events as they occur in real
time in the design-under-test. In the example design shown in Fig. 17.3 , an ILA core
is used to monitor transactions on the AXI interface of the block RAM controller
peripheral.

 Fig. 17.3 Example design after adding debug instrumentation

 Fig. 17.4 Using Auto Connect to connect to a JTAG cable

17 Hardware Debug

212

 A common measurement to take when monitoring an AXI interface is the start of
 read transaction which is signifi ed by the read address acceptance event
(ARVALID = 1 and ARREADY = 1). The basic trigger setup of the ILA core can be
used to take this measurement, as shown in Fig. 17.7 .

 After arming the ILA core to trigger on the start of an AXI read transaction, the
ILA core waits for the trigger condition to occur. Once the trigger condition occurs,
the captured data is uploaded and displayed in the waveform viewer, as shown in
Fig. 17.8 .

 Fig. 17.5 Programming the device-under-test

 Fig. 17.6 Hardware
window in Vivado showing
device with three debug IP
cores

 Fig. 17.7 ILA basic
trigger setup for start of an
AXI read transaction

B. Fross

213

17.3.3 Maximizing the Usage of the ILA Core Data Capture
Memory

 The ILA core uses on-chip block RAM to store captured data samples. In its default
setup, the ILA core captures a data sample every clock cycle following the trigger
event. In many cases, it is desirable to only capture data samples that satisfy a par-
ticular capture condition. For instance, it might be desirable to only capture data
samples when either the AXI address and/or data is valid. However, in the waveform
shown in Fig. 17.8 , many clock cycles worth of invalid address and/or data were
captured following the burst of read transactions. By fi lling up the ILA’s capture
buffer with invalid data, subsequent bursts of valid data would be missed.

 The following Boolean equation can be used as a capture setup condition
(see Fig. 17.9) to only store only valid address and/or data :

Capture SetupCondition ARVALID or

RVALID or

AWVAL

= ()
()

== 1

== 1

IID or

WVALID or

BVALID

== 1

== 1

== 1

()
()
();

 Using the same basic trigger setup as shown in Fig. 17.7 , the waveform in
Fig. 17.10 shows how many more read transactions can be stored when only valid
address and/or data cycles are captured.

 Fig. 17.8 Waveform showing captured data after fi rst AXI read transaction

 Fig. 17.9 ILA setup for
capturing valid address
and/or data

17 Hardware Debug

214

17.3.4 Taking an Advanced Measurement Using the ILA Core

 Sometimes it is necessary to take a more advanced measurement with an ILA
core than the basic trigger settings used in the previous section, as shown in
Fig. 17.7 . For instance, it is sometimes desirable to trigger when a particular
AXI interface is idle for a certain number of clock cycles following a read trans-
action. This can be useful in detecting data transfer stalls or other throughput/
latency issues.

 You can use the ILA core’s advanced trigger state machine feature to trigger on
such an event, as shown in Fig. 17.11 . You can optionally enable the ILA advanced
trigger state machine feature at compile time and then use at run-time by selecting
the ADVANCED trigger mode in the ILA trigger setup dashboard window. The
 waveform in Fig. 17.12 depicts the trigger occurring 1024 clock cycles after the last
assertion of the RLAST signal.

17.3.5 Using JTAG-to-AXI Master to Access AXI-Based
Registers

 The IP Integrator Block Design AXI Address Editor shown in Fig. 17.13 has two
AXI masters that are capable of initiating AXI transactions: a MicroBlaze micropro-
cessor (microblaze_0) and a JTAG-to-AXI Master (jtag_axi_0). The JTAG-to-AXI
Master debug IP core provides a means to access any register or memory that is in
the AXI address map of the design. The JTAG-to-AXI Master debug IP core can be
very useful for inspecting AXI-based memory contents or checking AXI-based
status registers.

 Fig. 17.10 ILA waveform showing only valid AXI address and/or data cycles

B. Fross

215

 Interacting with the JTAG-to-AXI Master IP involves two steps:

 1. Create a transaction using the create_hw_axi_txn command.
 2. Run the transaction created in step 1 using the run_hw_axi command.

 Below is an example for creating and running a read and a write transaction, both
of which are 32-word bursts starting at address 0xC000_0000 (the axi_bram_ctrl_0
block RAM controller peripheral):

• Create and run a 32-word burst read transaction from address C000000 and confi rm
the data is all 0 ’s:

 create_hw_axi_txn rd [get_hw_axis hw_axi_1] -type read -address C0000000 -len 32
 run_hw_axi [get_hw_axi_txns rd]

 Fig. 17.11 Triggering 1024 clock cycles after last AXI read transaction

17 Hardware Debug

216

 INFO: [Labtoolstcl 44-481] READ DATA is: 0000…

• Create and run a 32-word burst write transaction to address C0000000 that
repeats the four-word pattern of 11111111, 22222222, 33333333, 44444444 :

 create_hw_axi_txn wr [get_hw_axis hw_axi_1] -type write -address C0000000
-len 32 –data {44444444_33333333_22222222_11111111}

 run_hw_axi [get_hw_axi_txns wr]
 INFO: [Labtoolstcl 44-481] WRITE DATA is: 4444…

• Rerun the read transaction:

 run_hw_axi [get_hw_axi_txns rd]
 INFO: [Labtoolstcl 44-481] READ DATA is: 4444…

• Confi rm the data at address C0000000 is the same pattern that was previously
written:

 report_hw_axi_txn [get_hw_axi_txns rd]

 Fig. 17.12 Waveform showing trigger after 1024 idle cycles

 Fig. 17.13 Example design AXI address map

B. Fross

217

 c0000000 11111111 22222222
 c0000008 33333333 44444444
 …
 c0000078 33333333 44444444

 This sequence of AXI read and write transactions confi rms the block RAM
controller peripheral is working as expected.

17.3.6 Using Virtual Input/Output to Debug Design in Hardware

 The Virtual Input/Output (VIO) debug IP core is useful for representing status indicators
and high-level controls such as LEDs and pushbuttons. You can use the VIO core in
situations where the hardware is not physically accessible or there are not suffi cient
interactive controls on the hardware platform.

 The example design in Fig. 17.3 shows how a VIO core can be used to monitor
the inputs to and outputs from an AXI GPIO (General Purpose I/O) peripheral.
The VIO dashboard in the Vivado tool can be used to show the value of the GPIO
outputs (which are inputs to the VIO), as shown in Fig. 17.14 .

 The JTAG-to-AXI Master IP can also be used to write a nonzero value to the
GPIO outputs:

• Create a transaction to write 0x0000000F to the GPIO output register at address
 0x40000008 :

 create_hw_axi_txn gpio_f [get_hw_axis hw_axi_1] -type write -address
40000008 -data {0000000F}

• Run the transaction:

 run_hw_axi [get_hw_axi_txn gpio_f]

 Note that the value of the VIO inputs (GPIO outputs) changed from all zeroes to
all ones, as shown in Fig. 17.15).

 Fig. 17.14 VIO dashboard showing inputs are all zeroes

17 Hardware Debug

218

17.4 Board-Level Debugging

 In addition to debugging system designs internal to the FPGA or the PL portion of
an MPSoC device, you can also use the Vivado hardware debug tools to debug
board-level issues. Below are some of the board-level debug features included in the
Vivado tool:

• Debugging high-speed serial I/O signal integrity issues and measuring the trans-
mitter and receiver margin using the Integrated Bit Error Ratio Tester (IBERT)
 debug feature

• Debugging external memory calibration issues and measuring read and write
margin using the Calibration Debug feature of External Memory Controller

• Measuring on-chip temperature and voltage sensor values using the System
Monitor feature

 Usage of external memory, transceiver, and System Monitor is described in
Chaps. 4 , 5 and 16 , respectively.

 Fig. 17.15 VIO dashboard showing inputs are all ones

B. Fross

http://dx.doi.org/10.1007/978-3-319-42438-5_4
http://dx.doi.org/10.1007/978-3-319-42438-5_5
http://dx.doi.org/10.1007/978-3-319-42438-5_16

219© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_18

 Chapter 18
 Emulation Using FPGAs

 Paresh K. Joshi

18.1 Introduction to Emulation

 For the purpose of this chapter, we will use emulation to include prototyping also—
since underlying challenges and methodologies are common. We read about simula-
tors in Chap. 11 . An emulator is a simulation - specifi c hardware, which is capable of
retaining the parallelism of the blocks of the design, thereby signifi cantly improving
the speed of execution.

 Depending on the capabilities of the emulator, you can get very close to your
design environment. Since emulators are dedicated hardware, the speed advantage
is obtained at the cost of observability and controllability. Emulation also needs
additional setup, which is what this chapter is mostly about. In an ideal scenario, the
emulator must support all the features of simulation at a speed and cost advantage.

18.1.1 Types of Emulators

 1. Array of simulation - specifi c processors (Cadence Palladium series): Array of
processors whose instruction set and software is tailored to simulation tasks. One
set of such arrays is called a board . Each processor on the board can simulate
millions of gates in parallel. Furthermore, each processor on the board talks to
other processors via a fi xed (specifi c) protocol.

 2. Array of FPGAs (Synopsys ZeBu series): Array of FPGAs. Each FPGA can have
mapped gates programmed into it. Each FPGA in the Array usually has dedi-
cated wiring with other FPGAs.

 P. K. Joshi (*)
 Intel Mobile Communications , Bangalore , Karnataka , India
 e-mail: paresh.k.joshi@intel.com

http://dx.doi.org/10.1007/978-3-319-42438-5_11
mailto:paresh.k.joshi@intel.com

220

 3. A hybrid array of both simulation - specifi c processors and FPGAs (Mentor
Veloce series) .

 For large designs boards in an emulator can be cascaded. To better utilize the
components in the emulator, there are partitions possible which enable multiple
users to simultaneously access the resources of the emulator.

 Since emulators comprise of hardware components, it is possible to connect the
emulator to real external targets like JTAG, UART, QSPI, I2C, etc. The JTAG and
UART are used by the software team to do hardware-software co-design and debug
at the programmers view level.

 Figure 18.1 illustrates an FPGA or processor array-based emulator system with
multiple user terminals, standard connectors, IOs, and a backplane to cascade mul-
tiple such boards. Multiple users can then use the emulator boards for improving
resource utilization.

18.1.2 Uses of Emulation/Prototyping

 Substitute for simulation : This is the most obvious usage. In practice, however,
emulation is resorted to only after the RTL design reaches a certain level of matu-
rity. A not-so-mature RTL design will fi nd iterative debug to be diffi cult, due to
limited observability and controllability of emulation.

 Enabling pre-silicon software development : Once the RTL is reasonably mature,
the software teams can use the emulator for developing BOOTROM, Software
(UBOOT, Linux, Android, RTOS, UEFI), Device Drivers (BSP), etc. Doing so pro-
vides several months of lead time to the software teams. This enables the software
components to be available and ready for use, immediately after the device silicon
is available.

 Fig. 18.1 Cascading 4 processors/FPGAs to build a larger emulation system

P.K. Joshi

221

 Place-holder for actual silicon : The fi rst silicon bring-up team designs an evalu-
ation board with sockets for the device. Before the actual silicon is available, the
emulator can behave as a prototype and fi t into the socket using a plug-in board. The
evaluation board along with silicon bring-up test cases can be run on the system as
shown in Fig. 18.2 .

18.2 Emulation Using FPGAs

 System designers and prototyping teams have been using FPGAs to their benefi t.
FPGA tools are available to provide RTL to FPGA mapping. If you have a prototyp-
ing environment, the additional activities for going to emulation include:

 1. Creation of a synthesizable and reconfi gurable testbench.
 2. Addition of instrumentation into design for advance debug purposes.
 3. Mapping of complex design blocks like IOs, SERDES, DSP blocks, and block

RAMs to the FPGA.
 4. Remapping of complex clocking structure of the device to the FPGA-based

PLLs and clock controllers.
 5. Mapping of design IOs to the FPGA IOs to obtain connectivity to the external

targets (JTAG, UART, etc.).
 6. For designs which require multiple FPGAs:

 (a) Logic Partitioning : Partitioning of the design into chunks of logic to fi t into
individual FPGAs. This depends on the size of the design and the size of
placeable gates on the FPGA. The logic and memory closely associated with
the said logic are grouped together into pieces which fi t on the same FPGA.

 (b) Pin Partitioning : Partitioning of the design with appropriate pin count across
FPGAs. This depends on the hardware board design and is usually fi xed for
a particular board.

 The additional activities for going to emulation from a simulation setup include:

CHIP SOCKET FPGA BASED
EMULATOR

SILICON
EVALUATION

BOARD

 Fig. 18.2 Silicon Evaluation Board with a socket being interposed with FPGA-based emulator

18 Emulation Using FPGAs

222

 1. Observability: Simulation allows to see the waveforms for all signals at all
times. The waveforms are directly dumped into a hard disk during runtime. In an
FPGA, there are limited logic and memory resources. So complete runtime
waveform dumping is not possible. Thus, you have to add instrumentation to
 trigger the start of waveform dumping for a known limited number of signals
and for a known limited amount of time. Furthermore, you need to build in a
mechanism to retrieve the waveform data from the FPGA block RAMs. Xilinx
Vivado provides ILA core for doing this—as explained in Chap. 17 .

 2. Controllability : For some tests, a specifi c pin (say: reset) may need to be kept at
a desired value for a specifi c duration. In simulation you can force the signal then
release it. A similar ability needs to be provided when doing emulation using
FPGAs. Xilinx Vivado provides VIO.

 3. Memory initialization : The DUV usually contains BOOTROM which needs to
be programmed (preloaded) with the appropriate bitmapped code. The testbench
could have other memory models of fl ash, DDR, etc. In the simulation environ-
ment, the memory load ($readmemb) and dump can be used. A similar ability is
required for emulation using FPGAs.

 Xilinx FPGAs and the Vivado tool set provide the methods and means to make
all of the above possible.

18.3 Challenges in Emulation Using FPGAs

 The basic challenge is to stitch the hardware, the tool software, and the RTL-
mapping fl ow with the evaluation board and components. This section breaks up the
challenge into multiple parts and sections. Section 18.4 then explains on how to deal
with these challenges.

18.3.1 Design Logic and Memory Size

 The engineering choice is to use one FPGA which fi ts the design. However, some-
times the DUV may be bigger than the largest FPGA available. Even otherwise,
sometimes fi tting the DUV into two smaller FPGAs is cheaper than using the largest
FPGA available. If the design is skewed toward huge memory blocks, the FPGA
tools can map parts of unmapped logic on the FPGA tile for memory blocks. For an
emulator using FPGAs, (since the testbench is embedded into the FPGA) large
memories like fl ash, DDR pose mapping problems. In such scenarios the emulator
is fi tted with large external memories which are then remodeled to behave like fl ash
and DDR. Note that this remodeling is done through custom instrumentation inser-
tion prior to using Vivado P&R tools.

P.K. Joshi

http://dx.doi.org/10.1007/978-3-319-42438-5_17

223

18.3.2 Design Pin Count

 The FPGA (or an array of FPGAs) must be able to support the relevant pin count of the
device being emulated. In general, for emulation purposes a synthesizable testbench is
used, indicating that there are fewer external connections. In certain cases, fl ash mem-
ory can be real components on the board which are then pinned-out to the board.

18.3.3 Clocking

 Clocking between FPGAs and ASIC/ASSP is different. In an ASIC/ASSP there could
be many hundreds of clock domains with multiple PLLs embedded. Each root clock
derived from a PLL can have multiple secondary clock generation logic (say for
dividing clocks, test clocking). Furthermore, sets of fl ip-fl ops or registers in the design
can have clock-gating circuit implemented as part of power-reduction techniques.

 FPGAs usually have a limited number of PLLs and a limited number of balanced
clock channels incident upon a larger cluster of fl ip-fl ops. The challenge is to
straighten up the ASIC clocks to map it easily onto the FPGA clocking.

18.3.4 RTL Constructs and Remodeling

 Several RTL constructs are not FPGA friendly. These need to be modeled appropri-
ately for FPGA. The remodeling has to be done without modifying the functional-
ity. A module RTL makes it easier and scalable since there is a great usage of
common cells in the design.

18.3.4.1 IO Pads Modeling

 IO pads typically have tristate functionality. Usually, these IOs of the DUV are connected
to the BFMs in the testbench. Recent FPGAs do not have built-in tristate gates. For FPGA
usage, you need to remodel the tristates as shown by the example in Fig. 18.3 . The Xilinx
ISE/Vivado toolset automatically transforms internal tristates into logic elements.

18.3.4.2 ADC Module Modeling

 For a module with analog behavior (e.g., ADC/DAC), you need to appropriately
model to ensure that its boundary talking to the digital side of the design is clean.
For example, an ADC module can easily be modeled with a memory and digital

18 Emulation Using FPGAs

224

output. The memory can be preloaded with the kind of analog behavior we expect
out of the design. Alternatively, an ADC can be placed on the FPGA board and the
digital output can be used as an input to the design. If the ADC module is deeply
embedded into the DUV, you need to bring out the wires from the embedded hier-
archies onto the top level of the testbench.

 For Xilinx FPGAs you can use the SYSMON module (explained in Chap. 16).
However, you still need to take care of:

• Performance of the SYSMON for emulator clocking
• The analog stimulus to be fed to the SYSMON
• The appropriate remodeling of the ADC to instantiate the SYSMON into it

18.3.4.3 Memory Modeling

 Typically the RTL has memories which are either ASIC technology memories or
modeled as a memory array. Also, the RTL memory model could have test logic
embedded into it. Remodeling memories for FPGA is typically a four-step process.

 1. Identify the memories in the design. If the memories belong to the same technol-
ogy node, then the entity is usually identical except for the address and data
width. Sometimes, there might be variants (e.g., byte-wise write).

 2. Remodel the memory component with an equivalent FPGA friendly construct.
If you are not interested in test logic, they could be tied to their disabled state.
This remodeled memory component is then verifi ed to be true using simulation.
If the memory needs to have user-defi ned preloading or dynamic preloading,
then explicit instrumentation needs to be added.

 3. One level of FPGA synthesis and run is carried out to fl ush out the fl ow.
 4. Create a scriptware to convert all the fl avors of data and address widths.

 Steps (2), (3), and (4) are true for all types of remodeling done at RTL level, but
it deserves a special mention for memories since there are many types.

X

oen _dut oen _bfm

Weak
pullUp

o_dut o_bfm

sig = ~oen _dut ? o_dut :
~oen _bfm ? o_bfm :
1 'b1;

 Fig. 18.3 Remodeling of typical IO connectivity within testbench between DUV and BFM

P.K. Joshi

http://dx.doi.org/10.1007/978-3-319-42438-5_16

225

18.3.4.4 Standard Cells Modeling

 It is best to have synthesizable view of the technology standard cells in the design.
Most technology libraries provide the synthesizable view of standard cells.

18.3.4.5 Inferred Components Modeling

 Some RTL descriptions infer multipliers, dividers, special Register Files, FIFOs,
etc., during the ASIC synthesis fl ows. These components use compiled models/
descriptions for simulation. Such components will end up as being unresolved. A
way to resolve this problem is to actually do an ASIC synthesis and use the verilog
equivalent for the said component. Thus:

 FPGA RTL view = synthesized netlist from ASIC tool + the synthesizable RTL view
of technology std-cell

18.3.5 FPGA Board Design

 The FPGA-based emulation system is very much dependent on the FPGA board
design. In particular, the number of FPGAs in the array, the capacity of each FPGA
in the array, the external memory connected (for modeling large memories, for
dynamic waveform dumping, and for using memory as Look Up Table for large
pieces of logic with huge fan-in cones), and the external connectors, switches,
GPIOs, and LEDs are provided. Its levels of complexity are higher to move from
one FPGA-based emulator to another than it is to move across simulators from dif-
ferent vendors. The basic complexity is due to the use of hardware for emulation
and so it is fi xed. This complexity makes it diffi cult to make sound design and
fi nancial decisions for the right choice of FPGA-based emulators. FPGA vendors
provide a chart with logic gate count estimates, IOs, memory blocks, SERDES
blocks, and DSP blocks within the FPGA.

18.4 General Methodology

 In this section we provide some known recipes to the challenges explained in
Sect. 18.3 . The recipes below would help design teams to realize their own FPGA-
based emulator. We have assumed (by this chapter, toward the end of the book) a
basic understanding of FPGA-based design.

 Note that you should perform RTL to RTL Logic Equivalence Check after any
RTL transformation.

18 Emulation Using FPGAs

226

18.4.1 RTL-Related Transformations

 PLLs : All technology ASIC libraries contain PLLs. Each PLL consists of basic ref-
erence clock in , clock out , with pins indicating the multiplier factor in terms of
 Numerator and Denominator values. These have to be mapped to the equivalent
PLLs in the selected FPGA. The methodology used is to keep the ASIC PLL entity
identical but to instantiate the FPGA clocking resource in place. If the PLL has
multiple clock outputs, the same are also remapped to the FPGA.

 Clock Dividers : If there are dividers in the design, then it is appropriate to remove
the divider circuits and replace them with the FPGA clock resource outputs as
defi ned in the MMCM clock tile.

 It would be useful to maintain a table similar to Table 18.1 .
 In the Table 18.1 , for (#2) and (#3), the clock frequencies are the same, i.e.,

20 MHz. It would be worthwhile to investigate from an ASIC clocking point of
view, if it is possible to use the same PLL output of 20 MHz driving the clock end
points of both (#2) and (#3). If the clocks are of the same frequency, but asynchro-
nous to each other, it would be OK to reduce the use of a PLL and free up routing
resources and reduce complexity of mapping to the FPGA.

 Programmable Clock Dividers : Usually there is a use of Programmable Clock
Dividers to select a baud rate as it is in the case of UART. In such cases, reconfi gurable
registers of the ASIC need to be remapped to the Dynamic Reconfi guration Data
Input of the Clocking tile. Most emulation designers would put the dynamic recon-
fi guration data input as part of the instrumentation in the testbench, so that they have
better control over the clock.

 Clock Gating Cells : Integrated clock gating cells are instantiated by the RTL
designer to enable dynamic power reduction. This can be a problem with FPGAs
which can get resource limited if there are too many clock gating cells in the design.
A solution is to do a tool-based or hand-scripted transformation to the clock gating
cells. A typical example is provided in Fig. 18.4 .

 Table 18.1 Mapping of ASIC clock frequencies to FPGA clocks

 # ASIC clock ASIC freq
 FPGA clock
resource

 FPGA
freq Comments

 1 Clock.A 400 MHz PLL1.CLKOUT0 40 MHz All clock scaled as div
by 10

 2 Clock.B 200 MHz PLL2.CLKOUT1 20 MHz
 3 Clock.A.div2 200 MHz PLL1.CLKOUT1 20 MHz A divider in the path of

ClockA is remapped to
a clock output
synchronous to div2 of
the PLL1.CLKOUT0

 4 Clock.A.div8 50 MHz PLL1.CLKOUT2 5 MHz Div8 of the PLL1.
CLKOUT0

P.K. Joshi

227

18.4.2 Multiple FPGA Specifi c (The Partitioning Problem)

 Now that the individual pieces of your RTL have been readied for FPGA-based
emulation, the next level of complexity comes if the design cannot be mapped on
one FPGA. For a particular design, it might not fi t into a single FPGA, due to either
of the following:

• Design logic size exceeding the logic that can be mapped onto the FPGA.
• Design logic could be mapped, but it could not be routed.
• Design logic was mapped and routed, but design has more memory than the

block RAMs on the FPGA.
• Design ran out of IO that could be appropriately mapped on the FPGA.

 Irrespective of the situation leading to the use of multiple FPGAs, all of the
above need to be resolved on a per FPGA basis on a MultiFPGA emulation system.
To start with, get a gate, memory, and pin count estimate for the big blocks in the
design. Also, assume that each FPGA may be about 60 % utilized to begin with.
Typically, most big IPs would fall within 5 ~ 6 sub-hierarchical levels of logic. This
exercise would give a rough estimate of the number of FPGAs required to fi t the
design and testbench.

 The exercise is iterative. Start with partitioning through the most constrained of
the three resources (gate count, pin count, memory) and then affect the grouping
changes to see if the other constraints can also fi t. Figure 18.5 depicts the hierarchi-
cal view of the DUV and the testbench BFM components and the Table 18.2 the
tabular view of the same. Both these views (hierarchical and tabular) help in con-
verging to the right partitioning between multiple FPGAs.

RTL implementation:
always @ (posedge clk or negedge resetn) begin
if (~resetn) begin

q <= 1'b0;
end
else if (enable) begin

q <= d;
end

end

D

CLK

Q

RSTN

Integrated
Clock

Gating Cell

d

resetn

clk

enable

ASIC
IMPLEMENTATION

q D

CLK

Q
RSTN

MUX

resetn

FPGA
IMPLEMENTATION

q

clk

d

q

enable

 Fig. 18.4 Typical ASIC and FPGA implementation for a clock gating cell

18 Emulation Using FPGAs

228

18.4.2.1 Partitioning Gate Count Challenge

 Once the gross level partitioning is known through analytical method as per
Table 18.2 , we need to get the same implemented. There are tools which can read in
the RTL fi les and then dump out a regrouped fi le. Such grouping would result in
new hierarchical tables being generated, as shown in Table 18.3 .

 For this example, considering per FPGA gate count of ~100M gates, Table 18.3
shows that FPGA3 is OK, but FPGA1 and FPGA2 are likely challenges to the P&R

 Fig. 18.5 Hierarchical view for embedded synthesizable testbench with DUV and BFM

 Table 18.2 FPGA view for the embedded synthesizable testbench with DUV and BFM

 subHier
Level ModName GateCount PinCount TotalMemory

 Estimate
FPGA

 1 tb_top 250 200 4 Mbits
 2 tb_top.BFM1 12M 100 200 Kbits FPGA1
 2 tb_top.BFM2 24M 50 100 Kbits FPGA2
 2 tb_top.BFM3 14M 125 250 Kbits FPGA3
 2 tb_top.DUV 200M 350 3.5 Mbits
 3 tb_top.DUV.BLOCK1 75M 450 FPGA1
 3 tb_top.DUV.BLOCK2 80M FPGA2
 3 tb_top.DUV.BLOCK3 35M FPGA3
 3 tb_top.DUV.BLOCK4 5M FPGA1
 3 tb_top.DUV.ANA1 5M FPGA3

P.K. Joshi

229

stage. These considerations and iterations go on until there is suffi cient conver-
gence. Table 18.3 is defi cient in terms of pin count and memory as it is for illustra-
tion purpose only.

 However, since the module BLOCK2 and BFM2 are closely knit with each other,
there could be pin count challenge if some readjustments of modules of BLOCK2
are done onto FPGA3 which seems to be least constrained.

18.4.2.2 Partitioning Pin Count

 The MultiFPGA board usually has fi xed pin count which can be summarized in a
template table as in Table 18.4 .

 In Table 18.4 PF12 are the physical IO pins that are available between FPGA1
and FPGA2 (F1 <--> F2) on the FPGA board.

 In Table 18.4 we have a Not Applicable (NA) if the particular FPGA is not used
in the implementation. The implemented pin count across the FPGAs (IPF) should
be less than the provisioned pin count across the FPGAs (PF). Thus, the pin count
criteria can be converged when IPF12 < PF12 and so on.

 If the pin count criteria are not satisfi ed, you could resort to pin muxing for the
IO. This means that another utility RTL needs to be added to send multiple bits of
data over a single IO from one FPGA to another. This utility RTL is inserted prior
to the pin-multiplexed IO. Figure 18.6 shows the circuit for the utility RTL on the
FPGAs for pin multiplexing. There are three main operations done:

• Load: convert from parallel to serial.
• Shift: shift the serial data from FPGA2FPGA.

 Table 18.3 Sorted list of hierarchies on per FPGA basis

 subHier
Level ModName GateCount PinCount TotalMemory

 Estimate
FPGA

 1 tb_top 250M 200 4 Mbits
 2 FPGA1.BFM1 12M 100 200 Kbits FPGA1
 2 FPGA1.BLOCK1 75M FPGA1
 2 FPGA1.BLOCK4 5M FPGA1
 2 FPGA2.BFM2 24M 50 100 Kbits FPGA2
 2 FPGA2.BLOCK2 80M FPGA2
 2 FPGA3.BFM3 14M 125 250 Kbits FPGA3
 2 FPGA3.BLOCK3 35M FPGA3
 2 FPGA3.ANA1 5M FPGA3

 Table 18.4 Actual partitioned pin count vs. available connections between FPGAs

 F1 <--> F2 F1 <--> F3 F1 <--> F4 F2 <--> F3 F2 <--> F4 F3 <--> F4

 PF12 PF13 PF14 PF23 PF24 PF34
 IPF12 IPF13 NA IPF23 NA NA

18 Emulation Using FPGAs

230

• Restore: convert serial data back to parallel.

 EDA Tools like Certify™ from Synopsys ® form a major backbone to enablement
of this convergence.

18.4.2.3 Using SERDES Lanes

 It is also possible to use the FPGA SERDES Lanes as an extension to the pin
multiplexing. SERDES provides a convenient serializer and deserializer over a
two- wire network, which can transmit and receive data Gbps (Giga bits per
second) range. The SERDES lanes are useful in converting FPGA2FPGA IOs
into serial, sending it across at high speed and reconstructing the same at the
other end.

18.4.2.4 Handling Clocks Over Multiple FPGAs

 As soon as we move into using multiple FPGAs, the clocking complexity increases.
One way is to see each hop or evaluation as a phase (a dedicated time slot) and
increase the emulation clock period accordingly. This means that the performance
of the emulator drops every time there is a signal hop.

FPGA1

MUX SELECT

FPGA2

P
A
R
A
L
L

L

2

2

S
E
R

A
L

I

S
E
R

A
L

I

E

P
A
R
A
L
L

L
E

 Fig. 18.6 Pin muxing for IOs over two FPGAs

P.K. Joshi

231

18.5 Instrumenting

 There are ways of achieving some degree of controllability and observability on an
FPGA-based emulator, albeit at the cost of performance, logic area, and memory
requirements. A general observation is that about 10 ~ 40 % (depending on design
specifi cs) of the design overhead on an emulator is attributed to addition of instru-
mentation for controllability and observability. At each step of the instrumentation
addition, exercise care to maintain the equivalence of the design.

 Let us assume that the emulator adds an instrumentation port (say Instrumentation
JTAG or iJTAG) through which it can carry out the functions of observability and
controllability to the design. This instrumentation port provides an interface to the user
using a host computer. Figure 18.7 logically explains the two ports needed for an emu-
lator. Modern emulators like Synopsys ZeBu use the PCIe as an instrumentation port.

18.5.1 Ability to Stop and Start the Emulation

 The emulator start-stop is affected by the clocking. If the clock to the logic blocks
does not tick, the emulator is in stop state. The instrumentation needed to achieve
the purpose are:

 Fig. 18.7 Instrumentation (iJTAG) port connecting host computer and the emulator

18 Emulation Using FPGAs

232

 1. Create a set of clock gates in instrumentation through the use of the BUFGCE ,
 BUFGMUX , etc. The BUFGCE is used for Enable . The BUFGMUX is a mux
between instrumentation mode and functional mode.

 2. Create a set of counters, preferably one per primary clock. It should be possible
to start, stop, and free run the counter. A set of count comparators, then could
gate the clock to the functional logic blocks. Through the iJTAG one can write
into these instrumentation registers which control the counters and clocks.

 3. Using similar control instrumentation, you can also have some DUV internal
signals trigger or stop the emulator clocks.

18.5.2 General Observability of Signals and Registers
in the Design

 The RTL synthesis process for FPGA optimizes out intermediate combinatorial
logic signals. This scenario is in contrast with “array of processor”-based emulators,
where each node can be maintained within the processor database.

• For the registers, using the iJTAG port, and decoding logic-related instrumenta-
tion, it is possible to have full controllability and observability. Figure 18.8 gives
a feel of the instrumentation to be added for a register (fl ip-fl op).

• For intermediate signals (part of combinatorial logic), a monitor fl op and control
mux can be added to gain controllability and observability.

 There are multiple methods to enable these instrumentations:

• Modify the RTL to add pragmas known to Xilinx Vivado tool suite.
• Use a netlist editor tool post functional synthesis.
• Use a dedicated vendor tool for instrumentation insertion. Example Synopsys

ZeBu tool suite does a seamless instrumentation insertion tailored to the ZeBu
FPGA-based emulator.

18.5.3 Instrumentation for DUV Internal Memory

 Often, it is needed to preload internal ROM and SRAMs with the executable code.
The C program for the application is compiled, linked, and loaded into internal mem-
ories. The intent is to release the CPU reset and expect the CPU to execute the code
and data loaded into the respective memories. Instrumentation can be added and
accessed using the iJTAG as per the Fig. 18.8 even for memories. Note that the func-
tional ROMs can also be preloaded using the iJTAG after instrumentation insertion.

 For memories like dual-port memories, the port which has both write and read
ports is chosen for instrumentation. Table 18.5 indicates the typical instrumentation
that needs to be inserted for commonly used memories within the DUV.

P.K. Joshi

233

 If the SP/DP RAM has bit- or byte-wise write and read control (functionally
strobed lanes), then the instrumentation is suitably adjusted so that all the byte lanes
are affected during memory load and dump through iJTAG.

 The typical sequence for the usage would be:

 1. Stop all the clocks to the emulator. This is through iJTAG-based instrumentation
register confi guration.

 2. Preload the memories using external iJTAG:

 (a) Glitch-free selection of the clock to point to iJTAG_TCK.
 (b) Select the memory to be preloaded.
 (c) Preload the memory with the (address, value) pairs.

 3. Apply reset to the DUV.
 4. Start the clocks to the emulator.

D

CLK

Q

RSTN

FUNCTIONAL
COMBINATORIAL

LOGIC

Functional clk

Instrumentation clk

Instrumentation select

MUX

MUX

INSTRUMENTATION
COMBINATORIAL

LOGIC (WRITE PATH)

FUNCTIONAL
SIGNAL PATH

INSTRUMENTATION
READ PATH

Q

 Fig. 18.8 Control and observability for registers using instrumented logic

 Table 18.5 Typical instrumentation needs for memories

 Memory Functional Instrumentation

 ROM Read only (a) Clock muxing
 (b) Write port addition
 (c) Address and data line muxing

 Single-port (SP)
RAM

 Read and write (a) Clock muxing
 (b) Address and data line muxing
 (c) Write/read control signal muxing

 Dual-port (DP)
RAM

 Different types (a) Clock muxing on any one Write Port
 (a) 1 W, 1R (b) Insertion of read port instrumentation for the write

port (if it does not exist)
 (b) 1 W&R, 1R (c) Address and data line muxing (for instrumented

port)
 (c) 1 W&R,

1W&R
 (d) Write/read control signal muxing

18 Emulation Using FPGAs

234

 5. Release reset to the DUV.
 6. Expect the design to run the test (application).
 7. Stop all the clocks to the emulator.
 8. Read the memory (address, value) pairs, and store it to a fi le on host machine.

18.5.4 Adding Signal Observability (Waveforms)

 Observing waveforms is an important part of the debug process and this feature is
integral to any emulator. With regard to waveform, there are a few key concepts that
need to be put in place as below:

 1. Signal List : List of signals and buses (full hierarchical names) that you want to
be added into the debug waveform.

 2. Trigger Signals and Trigger Expression : A set of Trigger signals and the Boolean
expression which would control the start and stop of the waveform capture.

 3. Trace Depth : The maximum number of waveform samples that can be taken
using the appropriate sampling clock.

 4. Trace Window : The period of time when the waveform samples are captured.
You can also have a circular trace buffer, allowing for a % trigger start, i.e., the
trace starts x % prior to the actual trigger event and lasts up to (100 − x)% after the
trigger event. One can also defi ne a pre-trigger percent or a post trigger percent
based on this as is indicated by Fig. 18.9 .

 Chapter 17 explains various debug cores provided by Xilinx that can be used
to capture waveforms. However, often, for deeper level of debug, the ILA is not
suffi cient, and at times the Signal List can span multiple FPGAs. To address this
problem, emulators usually have their own external SRAM/DDR memory which
can go up to 128 GB to enable deep trace. Intuitively, one can see that the instru-
mentation needed for this feature is huge. Some basic components are listed in
Table 18.6 .

100 % ; N-samples

Trigger point

PreTrigger %
PostTrigger %

 Fig. 18.9 Illustration of Trigger Point and “pre- and post trigger percent”

P.K. Joshi

http://dx.doi.org/10.1007/978-3-319-42438-5_17

235

 Table 18.6 Instrumentation components for waveforms using external memory

 Instrumentation
component Usage

 DDR Memory The waveform samples would be written in the DDR memory. The
samples are then read back and stored onto a host fi le

 DDR Controller To adhere to the DDR protocol for writing and reading the DDR
memory

 Signal Funnel An instrumentation logic which converts (packs) the Signal List
into chunks of data for writing and reading to the DDR memory

 Instrumentation clock Addition of an instrumentation clock, which is typically 1× or 2×
the frequency of the sampled signals

 Optional instrumentation
CPU subsystem (iCPU)

 The triggering, capturing of set of signals would need an
instrumentation CPU to control the fl ow. The CPU would control
the traces written to the DDR, and can also help in reading the
traces and formatting for waveform generation by appropriate
usage of iJTAG (host port connection)
 If an iCPU is being added, it can also be confi gured to enable other
instrumentation tasks including complex clock management for
starting and stopping the emulator

18 Emulation Using FPGAs

237© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5_19

 Chapter 19
 Partial Reconfi guration and Hierarchical
Design

 Amr Monawir

 Partial Reconfi guration takes advantage of hierarchical design capabilities available
in the Xilinx Vivado Design Suite. This chapter describes the various designs that
can benefi t from the use of Partial Reconfi guration, as well as the key concepts and
design considerations for Partial Reconfi guration and the other hierarchical design
fl ows available.

19.1 Partial Reconfi guration

 FPGA technology provides the fl exibility of programming and reprogramming a
device with a modifi ed design in the fi eld without the need to go through re-
fabrication. Partial Reconfi guration takes this one step further, allowing the dynamic
modifi cation of part of an operating FPGA design without impacting the rest of the
design.

19.1.1 Applications

 Any system with functions that can be time-multiplexed stands to benefi t from tak-
ing advantage of Partial Reconfi guration . Using Partial Reconfi guration allows
functions to be switched on hardware, similar to a microprocessor’s ability to switch
between tasks in software.

 A. Monawir (*)
 Xilinx Ireland , Dublin , Ireland
 e-mail: aye20@hotmail.com

mailto:aye20@hotmail.com

238

19.1.1.1 Multi-protocol Networking

 In optical transport network (OTN), client side ports need to support multiple
interface protocols. To ensure this, every possible interface protocol has to be
independently implemented for each port. This is resource intensive and ineffi -
cient, especially considering that only one protocol will be used per port at any
one time. Partial Reconfi guration allows the different protocols for each port to be
dynamically loaded on demand. This removes redundant logic and provides a
more effi cient use of resource to implement the same functionality. Figure 19.1
shows the same 100G Muxponder system implemented with and without Partial
Reconfi guration.

19.1.1.2 SW-Controlled HW Coprocessing

 Hardware coprocessing is achieved by off-loading compute-intensive functions
from the central processor to a coprocessor or dedicated hardware, which executes
the function with lower power and latency. Image and video coprocessing is a typi-
cal example of this approach.

 Having dedicated hardware for each function is an ineffi cient use of resources.
 Partial Reconfi guration allows a library of hardware functions to be partially
reconfi gured onto the same set of FPGA resources as and when required.
Figure 19.2 gives an example of a processor system, with an array of dedicated
hardware coprocessing functions, implemented with and without the use of Partial
Reconfi guration.

 Fig. 19.1 100G Muxponder design implemented without and with partial reconfi guration

A. Monawir

239

 Fig. 19.2 A microprocessor system with dedicated hardware coprocessors implemented without
partial reconfi guration on the left and with partial reconfi guration on the right

19.1.1.3 Security and Encryption

 Encryption and public-private asymmetric key cryptography are widely used as a
means of protecting sensitive or proprietary data. Partial Reconfi guration can be
combined with asymmetric key cryptography to provide secure encrypted bitstream
or data transfer. The encryption key generation and/or decryption engine on the
FPGA is part of the initial or static part of the design. The encrypted partial bit-
stream containing the proprietary data is then sent to the decryption engine,
decrypted inside the FPGA, and programmed via the internal confi guration access
port (ICAP), thus ensuring that the partial bitstream is never unencrypted outside
the FPGA.

 Figure 19.3 gives an example of how a decryption engine can be used in conjunc-
tion with Partial Reconfi guration .

19.1.2 Key Concepts

 All Partial Reconfi guration designs consist of three basic parts. The Static is the
portion of the design that does not change and is expected to continue to function at
all times. The Reconfi gurable Partition is the instance or level of hierarchy within
which multiple Reconfi gurable Modules are defi ned and implemented. Each
 Reconfi gurable Module represents one of the time-multiplexed functions that will
be switched in and out of the FPGA (Fig. 19.4).

19 Partial Reconfi guration and Hierarchical Design

240

 Fig. 19.4 Basic partial reconfi guration concept and terminology

 Fig. 19.3 Delivery of encrypted bitstreams using partial reconfi guration

 Partial Reconfi guration designs can contain one or more Reconfi gurable Partitions ,
each of which must occupy a mutually exclusive physical area of the FPGA. The
physical area for a given Reconfi gurable Partition must contain the aggregated
resources required to individually implement each of the Reconfi gurable Modules
associated with it. The resource types and granularity of the physical area within the
FPGA that can be reconfi gured at any given time vary by device family.

 Both the Static and the interface points between the Static and the Reconfi gurable
Partition need to be identical for all the Reconfi gurable Modules in the design.

A. Monawir

241

Vivado achieves this by preserving the Static implementation and reusing it to
implement subsequent Reconfi gurable Modules . An additional innovation in Vivado
is the creation of virtual I/O for each of the interface port called a Partition Pin .
 Partition Pins can be locked to specifi c anchor points within the routing tiles and
maintained across Reconfi gurable Modules . This consumes no LUTs or fl ip-fl ops,
thus reducing resource overhead and timing delays at the interface.

 Vivado generates a partial bitstream fi le for each Reconfi gurable Module in each
 Reconfi gurable Partition as well as a full bitstream which contains the data for both
the Static and the Reconfi gurable Module(s) being implemented. The full bitstream
is used for initial confi guration of the FPGA, while the partial bitstreams are used
for switching in and out the various Reconfi gurable Modules . Loading of partial
bitstreams into the FPGA is generally performed via the FPGA’s standard external
confi guration ports or via the internal confi guration ports which can be incorporated
into the Static portion of the design.

 Partial Reconfi guration takes advantage of the FPGA’s addressable confi guration
infrastructure which allows specifi c areas of the FPGA to be reconfi gured. The
smallest addressable segment of the FPGA is known as a Confi guration Frame .
Each frame typically corresponds to a single column of resources which is a clock
region in height. As such each frame contains a single resource type, for example,
DSP, block RAM, CLB, or routing interconnect; the actual number of resources in
each frame depends on the resource type and varies by device family.

19.1.3 Design Considerations

 In order to take full advantage of the potential benefi ts of Partial Reconfi guration for
a given application, you need to take on board a number of considerations prior to
starting the design. These are divided into three different categories:

• FPGA device family
• Design structure
• Support functions for Partial Reconfi guration

19.1.3.1 FPGA Device Family

 Vivado currently supports Partial Reconfi guration for all production devices for all
families starting with 7-Series.

 Starting with the UltraScale device family, all resources except the confi guration
block can be partially reconfi gured, while support in 7-Series is limited to CLBs,
DSPs, and block RAMs. As UltraScale devices allow IOs, BUFGs, MMCMs, and
other clocking components to reside inside the Reconfi gurable Partition , different
clocking structures can now be supported inside any Reconfi gurable Module . It
should be noted that clocks sourced from within the Reconfi gurable Module may

19 Partial Reconfi guration and Hierarchical Design

242

only be used to clock logic inside that same Reconfi gurable Module. Reconfi gurable
Module clocks cannot be used to clock logic in Static . The addition in UltraScale
silicon of more granular control of global reset after Partial Reconfi guration has
removed the 7-Series requirement for clock-region alignment for Reconfi gurable
Partition fl oorplans. It is, however, still recommended that the Reconfi gurable
Partition fl oorplan be a regular rectangle which aligns to device clock regions. With
changes in the stacked silicon interconnect (SSI) in UltraScale, Reconfi gurable
Partitions and Reconfi gurable Modules are now able to span multiple super logic
regions (SLRs) and are no longer restricted to a single die as is the case with 7-Series
 SSI devices.

19.1.3.2 Design Structure

 The most important design consideration is the choice of an appropriate instance on
which a Reconfi gurable Partition is set. This instance should be defi ned to incorpo-
rate the full functionality that is being reconfi gured at a given time under a single
hierarchical block. If the function being reconfi gured is made up of several hierar-
chical blocks, these must all be merged under a single hierarchical block.

 Ensure that the resources required by all the Reconfi gurable Modules are recon-
fi gurable for the device family being used. Therefore, the design should be struc-
tured in a way—such that resources that cannot be reconfi gured reside in the Static
portion of the design—outside the Reconfi gurable Partition .

 The ports of the instance selected will be the Partition Pins of the Reconfi gurable
Partition . These should be the union of the pins of all the Reconfi gurable Modules
associated with that Reconfi gurable Partition .

 Partial Reconfi guration is designed to support unconnected input and output
 Partition Pins . Unconnected output Partition Pins will be tied high by default. If
you need to tie them to the ground , you need to do so explicitly in the Reconfi gurable
Module . However, it is worth noting that explicitly tying to the ground is resource
ineffi cient. Creating a Reconfi gurable Module where all inputs and outputs are
unconnected results in a black-box module which can be used to turn off functional-
ity inside the Reconfi gurable Partition .

 Optimization across the Reconfi gurable Partition boundary is prohibited in order
to avoid optimization of Static to suit one Reconfi gurable Module at the expense of
another. Therefore, ensure that the design does not rely on optimizations across
 Reconfi gurable Partition boundary. In addition, logic upstream and downstream of
unconnected Partition Pins does not get optimized away by Vivado.

 As with any FPGA design, achieving timing closure is key, it is recommended
that registers are inserted on both sides of each Partition Pin . Registers on both
sides of the Reconfi gurable Partition boundary allow the Vivado tools to maximize
the timing budget when implementing the Static and each of the Reconfi gurable
Modules .

A. Monawir

243

19.1.3.3 Support Functions for Partial Reconfi guration

 In order to allow the Partial Reconfi guration process to operate correctly, a number
of support functions need to be added to the design. These can reside in the Static
design, the board or with the system in which the FPGA is being used. These include
storing of partial bitstreams, triggering the Partial Reconfi guration process, deliver-
ing of the partial bitstreams to the FPGA’s confi guration memory, as well as decou-
pling the Static design from the Reconfi gurable Partition during the Partial
Reconfi guration process.

 Xilinx provides a Partial Reconfi guration Decoupler IP which can be used to
decouple the Static from the Reconfi gurable Partitions and can be driven by the
user’s Static design. An alternative is to use an enable signal on the timing registers
on the Static side of the design to decouple the design during Partial Reconfi guration.

 The more Reconfi gurable Partitions and Reconfi gurable Modules a design con-
tains, the more storage would be required to store the partial bitstreams generated
by Vivado. Partial bitstreams can be stored in on-board nonvolatile memory or off-
board on an external storage location. Regardless of where it is stored, the design
requires a means of transferring these partial bitstreams from their storage location
into FPGA’s confi guration memory.

 The Xilinx Partial Reconfi guration Controller IP can be used to help manage the
transfer of partial bitstreams into the FPGA’s confi guration memory. Section 19.1.5
gives more insight into partial bitstream handling, the FPGA’s internal and external
confi guration ports, and the means by which the FPGA can be confi gured.

19.1.4 Design Tool Flow

 The Vivado Partial Reconfi guration tool fl ow involves a number of simple steps:

 1. Synthesize the Static with Reconfi gurable Partitions as black boxes .
 2. Synthesize each of the Reconfi gurable Modules separately in out-of-context

 mode. Out-of-context mode synthesis results in a design being synthesized
without IOB insertion, which allows it to be stitched into the rest of the design
at a later stage. If IOBs are required inside a Reconfi gurable Module , then these
must be explicitly instantiated.

 3. Create a physical area constraint or pblock to defi ne the Reconfi gurable Region
for each Reconfi gurable Partition . This area should contain all the resources
required for each of the Reconfi gurable Modules and will be used to contain all
 Reconfi gurable Module routing. Static logic is excluded, while Static routing
can enter this area.

 4. Set HD.RECONFIGURABLE property on each Reconfi gurable Partition .
 5. Implement the Static with one Reconfi gurable Module per Reconfi gurable

Partition . Save a copy of the fully routed design.

19 Partial Reconfi guration and Hierarchical Design

244

 6. Remove Reconfi gurable Modules from this design and save a static-only copy
of the design. This copy will allow black-box partial bitstreams to be generated
and used to remove logic from the Reconfi gurable Partitions on the FPGA.

 7. Lock the static placement and routing.
 8. Add a different Reconfi gurable Module to static-only design to each

 Reconfi gurable Partition , implement, and save the fully routed design.
 9. Repeat Step 8 until all Reconfi gurable Modules are implemented.
 10. Run Partial Reconfi guration verifi cation utility on all routed designs.
 11. Generate bitstreams for each routed design; this generates Full Bitstreams and

 partial bitstreams for each Reconfi gurable Module .

 Any of the Full Bitstreams generated can be used to initially confi gure the FPGA;
the choice should be determined by the functionality required at the start of the
system. The partial bitstreams for the Reconfi gurable Modules that are generated
are compatible across confi gurations; therefore, the partial bitstreams generated
can be used with any full bitstream even if they were not generated as part of the
same confi guration.

19.1.5 Confi guration Management

 Storing and managing partial bitstreams is key to the success of Partial Reconfi -
guration in a design. Storage of partial bitstreams is typically outside the FPGA,
either on a nonvolatile fl ash memory on the board or on another remote medium,
and accessible to the FPGA via PCIe, Ethernet, or other data transfer protocol.
Managing these partial bitstreams can be done using an external processor or an
internal state machine or processor within the Static region of the FPGA. The pro-
cessor or state machine determines which Reconfi gurable Module should be loaded,
where the partial bitstream for that Reconfi gurable Module resides as well as when
and how it will be downloaded into the FPGA’s confi guration memory. The Xilinx
 Partial Reconfi guration Controller IP can also be used to help manage partial bit-
stream confi guration.

 Depending on the location of the partial bitstreams and the management engine
used, various confi guration ports can be used to confi gure the FPGA. The following
are the available confi guration ports:

• ICAP (internal confi guration access port): The primary choice where confi gura-
tion management is being done internally to the FPGA. This requires a controller
as well as logic to drive the ICAP interface.

• MCAP (media confi guration access port): Provides access to confi guration
memory from one specifi c PCIe block only in UltraScale devices.

• PCAP (processor confi guration access port): The primary confi guration mecha-
nism for Zynq-7000 SoC designs.

• JTAG : Test and debug port. Mainly driven by the Vivado Hardware Manager.

A. Monawir

245

• Slave SelectMAP or slave serial : A good choice to perform full and partial recon-
fi guration, especially when using an external processor.

19.2 Tandem and Field Update

 The PCI Express specifi cation requires the PCIe link to be ready to link train with a
peer within 120 ms after power is stable. This is nominally referred to as the 100 ms
boot time . Meeting this requirement is a challenge for large FPGAs due to the size
of the bitstream and typical confi guration rates available. Tandem support in 7-Series
and UltraScale allows the PCIe to be up and ready to link train within the required
timeframe.

19.2.1 Key Concepts

 The Tandem fl ow allows the PCIe block in the FPGA to meet the 120 ms boot-up
requirement by splitting the confi guration into two stages:

• Stage 1 : The minimum PCIe functionality needed to ensure device discovery is
confi gured. This stage requires a very small bitstream that can be confi gured in
much less than 120 ms and is capable of handling all transactions during enu-
meration time.

• Stage 2 : The rest of the FPGA is confi gured with the user design after the PCIe
block becomes active.

 There are two tandem confi guration methods supported, Tandem PCIe and
 Tandem PROM . Both methods employ the two-stage bitstream confi guration
principle outlined above. In both cases, Stage 1 is confi gured via an on-board
PROM which resides on the board, in order to meet the 120 ms start-up time. The
main difference is in the delivery of the Stage 2 bitstream; Tandem PROM uses
the same on-board PROM, while in Tandem PCIe , the PCIe interface is used.
Unlike Partial Reconfi guration , the Tandem approach never reconfi gures a frame.
Every frame in the device is confi gured only once. If dynamic updates to the user
application are required, Partial Reconfi guration or the Field Update fl ow should
be used.

 The tandem with Field Update fl ow was introduced starting with the UltraScale
architecture; Tandem confi guration methods are used to initially confi gure the
device when the power is turned on, followed by Partial Reconfi guration of the full
 Stage 2 logic. Thus, the Field Update fl ow allows multiple Stage 2 bitstreams to be
downloaded on demand, without the need to reconfi gure the Stage 1 , thus maintain-
ing the PCIe linkup throughout. Figure 19.5 shows how the Tandem PROM , Tandem
PCIe, and Tandem with Field Update fl ows operate.

19 Partial Reconfi guration and Hierarchical Design

246

19.2.2 Design Tool Flow

 The support for the tandem and tandem with Field Update fl ows is embedded within
the PCIe core. The PCIe core and example design should be used as the foundation
of any applications that utilize these fl ows. The following steps outline the tool fl ow
to be followed by you:

 1. Select the type of tandem fl ow required and generate the core.
 2. Open the example project, and implement the example design.
 3. Use the IP and XDC from the example project as the basis of your project.
 4. Synthesize and implement your design.
 5. If using tandem with Field Update , follow steps 6–10 from Sect. 19.1.4 .
 6. Generate bitstream and PROM fi les required.

19.2.3 Confi guration Management

 Tandem PROM and Tandem PCIe fl ows both rely on initial PROM confi guration of
 Stage 1 followed by Stage 2 being confi gured via the external confi guration pins in
Tandem PROM or via the PCIe link in Tandem PCIe.

 In Tandem PCIe, the PCIe IP provides an internal interface to the confi guration
memory. In 7-Series this is achieved by an explicit connection to the ICAP (internal
confi guration access port). This connection is disabled after Stage 2 confi guration.
In UltraScale the connection to the confi guration memory is made via the MCAP

 Fig. 19.5 Tandem PROM , Tandem PCIe, and tandem with Field Update confi guration fl ows

A. Monawir

247

(media confi guration access port) which is embedded inside the PCIe block. This
connection remains enabled even after Stage 2 confi guration is complete. Access to
the MCAP after Stage 2 is the key enabler for the Tandem Field Update fl ow.

19.3 Hierarchical Design (HD) Preservation

 Hierarchical design (HD) fl ows enable you to partition a design into smaller mod-
ules that can be implemented independently, before choosing whether or not to
reuse the results at the top level of the design.

19.3.1 Key Concepts

 Hierarchical design fl ow provides the ability to take a given module, synthesize and
implement it independently, and then reuse the results in an overall design. There
are two parts of the hierarchical design fl ow: Module Analysis and Module Reuse .

 In Module Analysis you can synthesize, implement, and conduct resource or tim-
ing analysis on a module without the need of special wrappers. The implementation
is done with no IOs or clocks . These need to be explicitly specifi ed if needed. The
implementation results can then be saved for reuse.

 In Module Reuse you take the results of an implemented Module Analysis run,
lock-down, and reuse them in a top-level design. There are two variants of Module
Reuse : bottom up and top down .

 Bottom-up reuse is where you ran the Module Analysis fl ow without prior knowl-
edge of the top-level design. This allows you to reuse the same Module Analysis
results for multiple top-level designs on the same device.

 Top-down reuse is where you use a top-level design and fl oorplan to generate
 out-of-context constraints, to be used by independent Module Analysis runs, before
reusing the results to assemble the top-level design. This fl ow allows a team to work
simultaneously on portions of the same design.

19.3.2 Design Tool Flow

 The Vivado tool fl ow for hierarchical design is split into Module Analysis and
 Module Reuse . To run the Module Analysis , use the following steps:

 1. Synthesize the module or IP in out-of- context or bottom-up synthesis.
 2. Set the HD.PARTITION property on the module.
 3. Add clock and timing constraints specifi c to that module.
 4. Floorplan the area into which the module will be placed.

19 Partial Reconfi guration and Hierarchical Design

248

 5. Add out-of-context constraints including HD.CLK_SRC property as well as par-
tition pin locks and optimization constraints.

 6. Implement the module and save the placed and routed module results.

 To run the Module Reuse fl ow, use the following steps:

 1. Synthesize the top level with black boxes for module instances.
 2. Set HD.PARTITION property on the module instances.
 3. Read in results from Module Analysis run, into the relevant instances.
 4. Lock the implementation results of the modules that have just been read in. This

can be done at either logical, placement, or routing level.
 5. Implement the remainder of the design.

19.4 Isolation Design Flow

 The Isolation Design fl ow was developed to allow independent functions to operate
on a single chip with the suffi cient level of isolation required for various certifi ca-
tions. Applications of this fl ow include redundant type I cryptographic modules or
resident safety-critical functions.

19.4.1 Key Concepts

 There are a few unique design details that you must adhere to, in order to achieve an
FPGA-based isolation design fl ow solution. The requirements that a design needs to
meet in order to take advantage of the isolation design fl ow are shown in Fig. 19.6 and
include:

• Isolated Module : Each function to be isolated must be in its own level of hierar-
chy and reside within its own physical region of the FPGA.

• Fence : This is a set of unused tiles with no logic or routing used—to separate the
 isolated modules . This has to be a minimum of one non-routing tile in depth.

• Trusted Routing : On-chip communication between isolated functions is achieved
through the use of trusted routing . Vivado chooses one to one routes along the
coincident physical borders of isolated modules .

• Top Level : Only global logic including BUFG and MMCM is allowed at the top
level. All other logic must reside inside an isolated module .

• IOBs : IOBs can be instantiated or inserted inside the isolated modules .

A. Monawir

249

19.4.2 Design Tool Flow

 The isolation design fl ow relies on you logically partitioning the design such that
each isolated module resides in a different hierarchical block directly under the top
level of the design. Once this is achieved, there are a few steps that you need to
follow:

 1. Set the HD.ISOLATED property on each isolated module .
 2. Set the HD.ISOLATED_EXEMPT property on any logic at the top level.
 3. Synthesize the design.
 4. Floorplan the isolated modules .
 5. Run isolation verifi cation on the fl oorplan to ensure adequate fencing.
 6. Implement the design.
 7. Run isolation verifi cation on routed design to ensure correct isolation.
 8. Generate bitstream.

 Fig. 19.6 Isolated design fl ow fl oorplan with trusted routes and fences shown

19 Partial Reconfi guration and Hierarchical Design

251© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5

 References

 (A) Xilinx User Guides, Tutorials, Product Guides, Application Notes, White
Papers etc.
 Xilinx keeps updating its documents based on the last released version of the
Vivado software tool. You should refer to the document corresponding to the
version number of the Vivado software being used for your design. Similarly,
you should refer to the documents for the specifi c Silicon architecture that you
are using.

 (1) UltraScale Architecture-Based FPGAs Memory Interface Solutions
LogiCORE IP Product Guide (PG150)

 (2) LogiCORE IP UltraScale FPGAs Gen3 Integrated Block for PCI Express
(PG156)

 (3) LogiCORE IP System Management Wizard Product Guide (PG185)
 (4) Equalization for High-Speed Serial Interfaces in Xilinx 7 Series for 7 Series

FPGA Tranceivers (WP419)
 (5) Leveraging 7 Series FPGA Transceivers for High Speed Serial I/O

Connectivity (WP431)
 (6) Xilinx Power Estimator User Guide (UG440)
 (7) Leveraging UltraScale Architecture Transceivers for High Speed Serial

I/O Connectivity (WP458)
 (8) 7 Series FPGAs GTH/GTX Transceivers User Guide (UG476)
 (9) 7 Series FPGAs GTP Transceivers User Guide (UG482)
 (10) UltraScale Architecture Clocking Resources User Guide (UG572)
 (11) UltraScale Architecture Memory Resources (UG573)
 (12) UltraScale Architecture Confi gurable Logic Block User Guide (UG574)
 (13) UltraScale Architecture GTH Transceivers User Guide (UG576)
 (14) UltraScale Architecture DSP Slice User Guide (UG579)
 (15) UltraScale Architecture System Monitor (UG580)
 (16) Zynq-7000 All Programmable SoC Technical Reference Manual (UG585)
 (17) Driving the Xilinx Analog-to-Digital Converter (XAPP795)

252

 (18) Vivado Design Suite User Guide: Vivado TCL Commands (UG835)
 (19) Vivado Design Suite Tutorial: High-Level Synthesis (HLS) (UG871)
 (20) UltraScale Architecture and Product Overview (DS890)
 (21) Vivado Design Suite User Guide: Design Flows Overview (UG892)
 (22) Vivado Design Suite User Guide: Using the Vivado IDE (UG893)
 (23) Vivado Design Suite User Guide: Using Tcl Scripting (UG894)
 (24) Vivado Design Suite User Guide: System-Level Design Entry (UG895)
 (25) Vivado Design Suite User Guide: Designing with IP (UG896)
 (26) Vivado Design Suite User Guide: Model-based DSP Design using System

Generator (UG897)
 (27) Vivado Design Suite User Guide: Embedded Hardware Design (UG898)
 (28) Vivado Design Suite User Guide: Logic Simulation (UG900)
 (29) Vivado Design Suite User Guide: Synthesis (UG901)
 (30) Vivado Design Suite User Guide: High-Level Synthesis (HLS) (UG902)
 (31) Vivado Design Suite User Guide: Using Constraints (HLS) (UG903)
 (32) Vivado Design Suite User Guide: Hierarchical Design (UG904)
 (33) Vivado Design Suite User Guide: Design Analysis and Closure Techniques

(UG906)
 (34) Vivado Design Suite User Guide: Power Analysis and Optimization

(UG907)
 (35) Vivado Design Suite User Guide: Programming and Debugging (UG908)
 (36) Vivado Design Suite User Guide: Partial Reconfi guration (UG909)
 (37) Vivado Design Suite User Guide: Getting Started (UG910)
 (38) Vivado Design Suite Tutorial: Programming and Debugging (UG936)
 (39) UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)
 (40) Vivado Design Suite Quick Reference Guide (UG975)
 (41) MicroBlaze Processor Reference Guide (UG984)
 (42) Vivado Design Suite User Guide: Designing IP Subsystems Using IP

Integrator (UG994)
 (43) Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085)
 (44) Using Tandem Confi guration for PCIe in the Kintex-7 Connectivity TRD

(XAPP1179)
 (45) UltraFast High Level Productivity Design Methodology Guide (UG1197)
 (46) Isolation Design Flow for Xilinx 7 Series FPGAs or Zynq-7000 AP SoCs

(Vivado Tools) (XAPP1222)

 (B) Other References

 (1) Virtual Wires: Overcoming Pin Limitations in FPGA based Logic emulators.
 http://www.princeton.edu/~mrm/ee470/fccm93.pdf

 (2) High-Speed Serial I/O Made Simple: A Designers’ Guide, with FPGA
Applications. http://www.xilinx.com/publications/archives/books/serialio.pdf

 (3) Synopsys Certify tool Overview. http://www.synopsys.com/Prototyping/
FPGABasedPrototyping/Pages/Certify.aspx

References

http://www.princeton.edu/~mrm/ee470/fccm93.pdf
http://www.xilinx.com/publications/archives/books/serialio.pdf
http://www.synopsys.com/Prototyping/FPGABasedPrototyping/Pages/Certify.aspx
http://www.synopsys.com/Prototyping/FPGABasedPrototyping/Pages/Certify.aspx

253

 (4) FPGA-based Prototyping Methodology Manual: Best Practices in
Design-for-Prototyping. Synopsys and Xilinx

 (5) Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA
Technology: By Stephen M. (Steve) Trimberger, Fellow IEEE; Vol. 103,
No. 3, March 2015 | Proceedings of the IEEE

 (6) DSP: Designing for Optimal Results High-Performance DSP Using Virtex- 4
FPGAs; http://www.xilinx.com/publications/archives/books/dsp.pdf

 (7) Field-Programmable Gate Array Technology; Stephen M. Trimberger –
Editor; Springer Science & Business Media, Jan 31, 1994; http://www.
springer.com/in/book/9780792394198

 (8) DDR4 documentation from JEDED. Registration required. https://www.
jedec.org/standards-documents/results/jesd79-4%20ddr4

 (9) RLDRAM-3 spec from Micron. https://www.micron.com/products/dram/
rldram-memory

 (10) QDRIV spec from Cypress. http://www.cypress.com/products/qdr-iv
 (11) Simulink and MATLAB product descriptions. www.mathworks.com
 (12) Constraining Designs for Synthesis and Timing Analysis; Gangadharan

Sridhar, Churiwala Sanjay; Springer Science and Business Media, 2013;
 http://www.springer.com/us/book/9781461432685

References

http://www.xilinx.com/publications/archives/books/dsp.pdf
http://www.springer.com/in/book/9780792394198
http://www.springer.com/in/book/9780792394198
https://www.jedec.org/standards-documents/results/jesd79-4 ddr4
https://www.jedec.org/standards-documents/results/jesd79-4 ddr4
https://www.micron.com/products/dram/rldram-memory
https://www.micron.com/products/dram/rldram-memory
http://www.cypress.com/products/qdr-iv
http://www.mathworks.com/
http://www.springer.com/us/book/9781461432685

255© Springer International Publishing Switzerland 2017
S. Churiwala (ed.), Designing with Xilinx® FPGAs,
DOI 10.1007/978-3-319-42438-5

 A
 Acceleration , 4–5
 Activity propagation , 192–193
 add_bp , 146
 add_condition , 147
 add_force , 147
 Address collision , 117
 Address Editor , 91–92
 Address map , 80 , 91
 add_wave , 143
 Advanced trigger , 224
 Alarm , 207 , 210
 Analog , 143 , 200
 Analog front end (AFE) , 53
 Analog-to-digital converter (ADC) , 199
 Arbitrary precision , 124
 Arrays , 129
 Asymmetric multi-processing (AMP) , 80
 Attributes , 115–117
 Auto refresh , 71
 Averaging Registers , 207
 AXI , 127

 B
 Bipolar Mode , 203
 Bit error rate (BER) , 53
 Bitslip , 58
 Bitstream , 17
 Block Automation , 86 , 89
 Black-box , 253
 Block design (BD) , 86–89
 Block RAM , 7 , 112 , 129 , 182 , 195
 BMM , 80
 Board support package (BSP) , 80 , 82
 Bottom-up reuse , 257

 Bottom-up synthesis , 170
 Breakpoint , 81
 Buffer , 52 , 56 , 57
 BUFG , 155
 BUFGCE , 110 , 155
 BUFGCE_DIV , 155 , 161
 BUFGCTRL , 155
 BUFG_GT , 155 , 162
 Burst , 71

 C
 Calibration , 61 , 63–66 , 228
 Canvas , 87–89
 Capture setup , 223
 CARRY , 6 , 108 , 114
 CASE statements , 180
 C based design , 121
 Channel bonding , 57
 Channel PLL (CPLL) , 46 , 47
 Clock common node , 158
 Clock data recovery (CDR) , 54
 Clock distribution , 156
 Clock domain crossing , 159–160 , 178
 Clock gating , 110 , 188 , 194 , 236
 Clocking Wizard , 155 , 162
 CLOCK_ROOT , 156 , 180
 Clock routing , 156
 Clock skew , 166 , 172 , 180
 close_saif , 150
 Code generation , 102
 Comma , 55
 Compilation , 102
 Confi gurable logic block (CLB) , 6
 Confi guration , 14
 Confi guration Frame , 251

 Index

256

 Confi guration Registers , 207
 Congestion , 112 , 183–184
 Connection Automation , 89 , 90
 Constraints , 40–43 , 112 , 125
 Control set , 116 , 181
 control_set_opt_threshold , 181
 Core Container , 39 , 43
 Core dynamic power , 188
 CPLLREFCLKSEL , 46
 create_clock , 175
 Create Port , 88
 Cross trigger , 81
 Cryptography , 249 , 258
 C simulation , 122
 C testbench , 123
 current_scope , 141
 current_time , 143
 Cycle accurate , 100

 D
 Data path , 153
 Data types , 124
 DCP , 40 , 41
 DDR3 , 60
 DDR4 , 60 , 61 , 63 , 68 , 73 , 78
 DDS Compiler , 96
 Debug , 15 , 81 , 116 , 119 , 215 , 228

 core insertion , 219
 core instantiation , 219
 instrumentation , 219

 debug_level , 139
 Decision–feedback equalization (DFE) , 54
 Describe , 142
 Designer Assistance , 89–91
 Design Re-use , 86
 Deskew , 57
 Device driver , 81
 Device static power , 188
 Digitally Controlled Impedance (DCI) , 67
 Digital signal processing (DSP) , 10 , 95 , 113
 Directive , 111 , 115–117 , 125 , 129 , 183
 Discrete time systems , 98
 Distributed RAM , 3 , 7 , 112 , 116 , 184 , 197
 DONT_TOUCH , 41 , 42 , 118 , 119 , 180 , 185
 dont_touch.xdc , 41
 DRC , 170
 DRP . See Dynamic reconfi guration port (DRP)
 DSP Register Optimization , 182
 Dual data rate (DDR) , 7 , 73
 Dynamic random access memory (DRAM) ,

 59 , 60 , 68
 Dynamic range , 100
 Dynamic reconfi guration port (DRP) , 49 , 58 ,

 200 , 206

 E
 EDIF , 135
 8B/10B , 50 , 55
 Empty , 57
 Emulation , 229–231
 Example design , 62 , 93–94
 Executable and linking format (ELF) , 80
 Exponent , 101
 Export Hardware defi nition , 93
 export_simulation , 43

 F
 Fabric , 5
 Fanout , 113 , 166 , 170 , 172
 Fence , 258
 Field Update , 255–257
 FIFO , 7
 FIR Compiler , 96
 Fixed point , 100
 Floating point , 100 , 101
 Floorplan , 167 , 179 , 181
 Flow Navigator , 20
 FSM , 116 , 180
 Full , 57

 G
 Gateway In , 97–98
 Gateway Out , 97–98
 Gearbox , 50 , 58
 Generate , 34 , 92
 get_scopes , 141
 get_value , 142
 Global clock input (GCIO) , 154
 Global clocks , 153
 Global set reset , 117
 Glue logic , 4 , 112
 GRID , 20
 GT_COMMON , 47
 GT Wizard , 45

 H
 Hard processors , 76
 Hardware co-processing , 248
 Hardware CoSimulation , 104
 Hardware Manager , 220
 HD.CLK_SRC , 258
 HD.ISOLATED , 259
 HD.ISOLATED_EXEMPT , 259
 HD.PARTITION , 257 , 258
 HD.RECONFIGURABLE , 253
 Hierarchical design , 247 , 257–258
 Hierarchical IP , 86–87

Index

257

 High-Fanout Optimization , 182
 High fanout signals , 180
 High level synthesis (HLS) , 33 , 82 , 83 , 121 , 125
 High-Speed Serial I/Os (HSSIO) , 11–12
 HLS . See High level synthesis (HLS)
 Hold violations , 110 , 185

 I
 I2C , 206
 IBERT . See Integrated Bit Error Ratio Tester,

(IBERT)
 IES , 140
 II . See Initiation interval (II)
 ILA . See Integrated Logic Analyzer (ILA)
 import C , 148
 in_context.xdc , 41
 Initialization , 108
 Initiation interval (II) , 128
 Input Don’t Toggle (IDT) , 194
 Instrumentation , 216 , 218–228 , 241
 Integrated Bit Error Ratio Tester, (IBERT) , 58 ,

 218 , 228
 Integrated Logic Analyzer (ILA) , 81 ,

 216–218 , 220–224
 Intellectual property (IP) , 33

 catalog , 33
 customization , 35–37
 generation , 37–39
 integrator , 80 , 135
 packaging , 33 , 87
 Upgrade , 43

 Interconnect , 6 , 80
 Interface , 4
 Interface synthesis , 126
 Internal Confi guration Access Port (ICAP) ,

 249 , 254
 Interposer , 164
 I/O block (IOB) , 11
 IO interfaces , 126–127
 IPI TCL support , 94
 ip_user_fi les , 43
 IP-XACT , 34
 Isolated module , 258 , 259
 Isolation design fl ow , 258–259

 J
 Jitter , 162
 Journal , 18 , 21
 JTAG , 58 , 104 , 254

 cable , 220 , 221

 chain , 221
 TAP , 206

 JTAG-to-AXI Master , 218 , 220 , 224–227
 Junction temperature , 191

 K
 KEEP_HIERARCHY , 117 , 169

 L
 Laguna , 164
 Latency , 128
 launch_runs , 19
 launch_simulation , 140
 Linux , 12
 Local clock networks , 153
 Lock , 48
 Logic cell , 7
 Logic delay , 179
 Logic level , 119 , 179
 Logic Partitioning , 231
 log_saif , 150
 Log window , 140
 Lookup table (LUT) , 6
 Loopback , 48
 Loops , 130
 Low power design , 196–197
 Low-power mode (LPM) , 54
 LPDDR , 60
 LPDDR3 , 60
 LPDDR4 , 60 , 71
 LSF , 20
 Ltrace , 145
 LUTRAM . See Distributed RAM

 M
 Managed IP Project , 35
 Mantissa , 101
 Math libraries , 96
 MATLAB , 95
 max_fanout , 116 , 180
 Media confi guration access port (MCAP) ,

 254 , 257
 Memory , 7–10

 bank , 69–71 , 73
 column , 69 , 70
 initialization , 108 , 232
 row , 68 , 70 , 71

 MicroBlaze , 76
 ModelSim , 140

Index

258

 Module Analysis , 257 , 258
 Module Reuse , 257 , 258
 Monolithic device , 163
 MPSoC , 83
 Multi-threading , 139
 MUX , 108–110 , 114

 N
 Noclean_dir , 140
 Non-project , 17–19
 Nosort , 138

 O
 Objects window , 141
 ODT , 67 , 68
 ONE_HOT FSM , 180
 OOC Synthesis , 170
 OOC XDC , 40
 open_saif , 150
 Operating conditions , 191
 Optical transport network (OTN) , 248
 Optimization , 129 , 132–134
 Out-of-context , 34 , 38 , 40 , 41 , 219 , 253 , 257
 Output don’t care (ODC) , 194
 Over Temperature (OT) , 211

 P
 Parameter propagation , 92
 Partial bitstream , 251 , 253 , 254
 Partial Reconfi guration , 247–255
 Partial Reconfi guration Controller IP , 253
 Partial Reconfi guration Decoupler IP , 253
 Partitioning , 164–165 , 237–240
 Partition Pin , 251 , 252 , 258
 PCIe , 255
 PCS , 49 , 50 , 52
 Performance , 107 , 133
 Performance monitoring , 15
 Pessimism removal , 158
 Phase error , 160
 Physical Medium Attachment (PMA) , 49 , 52 ,

 56 , 58
 Physical optimization , 182
 phys_opt_design , 181 , 182
 PicoBlaze , 76
 Pinout , 165 , 166
 Pin Partitioning , 231
 Pipelining , 113 , 131–132 , 172 , 180
 Place and route , 170
 PLL , 46
 Polarity , 55

 Port-mapping , 118
 Power , 13 , 48 , 54 , 110

 constraints , 191–192
 optimization , 188 , 193
 supply sensor , 205–206

 Precharge , 68 , 70
 Pre-silicon software , 230
 Processing order , 42–43
 Processing system (PS) , 13–15 , 77 , 81 , 202
 Processor confi guration access port (PCAP) , 254
 Programming , 222
 Project , 17–20
 Pseudorandom bit sequences (PRBS) , 48 , 52 ,

 55 , 58 , 62
 Ptrace , 145
 Pulse width checks , 177

 Q
 QDRII , 60
 QoR , 111
 Quad , 47
 Quad data rate IV (QDRIV) , 60 , 72–74
 Quad PLLs (QPLL) , 47
 Quantization , 101

 R
 Real-time operating system (RTOS) , 12
 Reconfi gurable Module , 249–254
 Reconfi gurable Partition , 249–253
 Reduced latency dynamic random access

memory (RLDRAM) , 60
 Reference clock , 45 , 46
 Refresh , 71
 Register , 7 , 113
 Relax , 138 , 139
 remove_bp , 146
 remove_condition , 147
 remove_force , 147
 Rent’s exponent , 184
 Replication , 116
 report_bps , 146
 report_conditions , 147
 report_control_sets , 181
 Reports , 125

 CDC , 178
 clock interaction , 178
 design analysis , 168 , 184
 power , 187 , 190–193
 timing summary , 176 , 177

 report_scopes , 141
 report_values , 142
 reset_simulation , 143

Index

259

 Resource management , 169
 Resources , 133
 Resource-sharing , 118
 Restart , 143
 RLDRAM3 , 71–72
 RTL , 125

 testbench , 102
 wrapper , 93

 Run , 17 , 19 , 142
 RXN , 55
 RXP , 55
 RXUSRCLK , 56 , 57

 S
 Safety , 14–15
 Sample time , 98
 Scope window , 141
 Security , 14
 Sequence mode , 202
 Sequence Registers , 207
 set_clock_groups , 176 , 178
 set_false_path , 176 , 178
 set_value , 147
 Shift register , 7 , 111
 Simulation , 62 , 124
 Simulation of IP , 43
 Simulink , 95
 64B/66B , 50 , 58
 64B/67B , 50 , 58
 Skew , 110 , 157
 Slack , 176
 Slack histogram , 177
 Slave SelectMAP , 255
 Slave serial , 255
 Slice , 111
 Snapshot , 139
 Soft Processors , 76
 Software development kit (SDK) , 80 , 81 , 93
 Stacked Silicon Interconnect (SSI) , 252
 Stage 1 , 255 , 256
 Stage 2 , 255 , 256
 Static , 249–254
 Static probability , 191
 Static random access memory (SRAM) , 60 ,

 72 , 74
 Status Registers , 208
 Strategies , 171 , 183
 Stream processing , 4
 Super Logic Region (SLR) , 163 , 171 , 252

 compensation , 172
 Super Long Line (SLL) , 164 , 167 , 171

 SVBit , 148
 SVBitVector , 148
 SVLogic , 148
 SVLogicVector , 148
 Switch , 4
 Switching activity , 191
 Switching Activity Interchange Format

(SAIF) , 139 , 192
 Symmetric multi-processing (SMP) , 80
 Synchronous dynamic random access memory

(SDRAM) , 60 , 61 , 68
 Synchronous resets , 181
 Synthesis , 102
 Synthesizable testbench , 233
 System Monitor (SYSMON) , 13 , 199
 System on chip (SoC) , 12
 System Period , 99
 System synchronous , 162
 SystemVerilog , 138

 T
 Tandem , 255–257

 PCIe , 255 , 256
 PROM , 255 , 256

 TARGET_SIMULATOR , 140
 Tcl , 17 , 19 , 20
 Temperature sensor , 204–205
 Testbench , 124 , 138
 Throughput , 59 , 68 , 73
 Timing analysis , 170 , 176
 Timing exception , 179
 Timing paths , 178
 Timing reports , 172
 Timing violation , 110 , 176
 Toggle rate , 191
 Top-down reuse , 257
 Top-Down Synthesis , 169
 Trigger , 222 , 223
 Trusted routing , 258
 2.5D , 163
 TXN , 52
 TXP , 52
 TXPOLARITY , 52
 TXUSRCLK , 51 , 52

 U
 Unipolar Mode , 203
 USER_CLOCK_GROUP , 157
 USRCLK , 162
 Utilization report , 171

Index

260

 V
 Validate design , 92
 VCO , 47 , 48
 VCS , 140
 Verifi cation , 134
 Virtual Input/Output (VIO) , 218 , 220 , 227 , 228
 Viterbi decoder , 97
 Vivado IP Integrator , 80
 VP/VN , 209

 W
 Waveform , 222–224
 wcfg fi le , 143
 wdb , 139
 Wire delay , 179
 Write-mode optimization , 195

 X
 xci , 35
 xcix , 39

 XCLK , 51 , 52 , 56 , 57
 XDC , 116
 Xelab , 140 , 148
 Xilinx Memory Protection Units ((XMPUs) , 78
 Xilinx Peripheral Protection Units , 78
 Xilinx Power Estimator (XPE) , 189–190

 export-import fl ow , 193
 snapshot , 189
 wizards , 189

 xsc , 148
 xsim , 140
 xvhdl , 140
 xvlog , 140

 Z
 ZHOLD , 162
 Zynq-7000 , 12 , 77 , 78 , 81
 Zynq UltraScale+ MPSoC , 78 , 79 , 81

Index

	Preface
	Acknowledgments
	Contents
	Chapter 1: State-of-the-Art Programmable Logic
	1.1 Introduction
	1.2 The Evolution of Programmable Logic
	1.3 Current Applications for FPGAs
	1.4 Application Level System Architectures
	1.4.1 Glue Logic and Custom Interface IP
	1.4.2 Communications Switch
	1.4.3 I/O Stream Processing
	1.4.4 Software Acceleration

	1.5 FPGA Architecture
	1.5.1 FPGA Architecture Overview
	1.5.2 Programmable Interconnect
	1.5.3 Programmable Logic Block
	1.5.4 Memory
	1.5.5 DSP Blocks
	1.5.6 Clock Management
	1.5.7 I/O Blocks
	1.5.8 High-Speed Serial I/Os (HSSIO)

	1.6 System on Chip
	1.6.1 Operating System Support
	1.6.2 Real-Time OS Support

	1.7 System Level Functions
	1.7.1 System Monitor
	1.7.2 Fabric Power Management
	1.7.3 SoC Device Power Management
	1.7.4 Configuration
	1.7.5 Security
	1.7.6 Safety
	1.7.7 Debug
	1.7.8 Performance Monitoring

	Chapter 2: Vivado Design Tools
	2.1 Project vs. Non-project Mode
	2.2 GUI, Command Line, and Tcl
	2.2.1 Interaction with Project/Non-Project
	2.2.2 Runs Infrastructure

	2.3 Overview of Vivado GUI

	Chapter 3: IP Flows
	3.1 Overview
	3.2 IP Catalog
	3.3 IP Customization
	3.3.1 Managed IP Project
	3.3.2 Within a Project
	3.3.3 Tcl Script

	3.4 IP Generation
	3.4.1 Synthesis Options
	3.4.2 Details of Generation
	3.4.3 Core Container

	3.5 Using IP in Your Design
	3.6 IP Constraints
	3.6.1 IP Delivered
	3.6.2 Vivado Delivered
	3.6.3 Processing Order

	3.7 IP Upgrade Decisions
	3.8 Simulation of IP

	Chapter 4: Gigabit Transceivers
	4.1 Introduction to MGT (Multi-Gigabit Transceiver)
	4.1.1 Reference Clocks

	4.2 PLLs
	4.2.1 CPLL
	4.2.2 QPLL

	4.3 Power Down
	4.4 Loopback
	4.5 Dynamic Reconfiguration Port (DRP)
	4.6 Transmitter
	4.6.1 FPGA TX Interface
	4.6.2 TX 8B/10B Encoder
	4.6.3 TX Gearbox
	4.6.4 TX Buffer
	4.6.5 TX Buffer Bypass
	4.6.6 TX Pattern Generator
	4.6.7 TX Polarity Control
	4.6.8 TX Configurable Driver

	4.7 Receiver
	4.7.1 RX Analog Front End
	4.7.2 RX Equalizer (DFE and LPM)
	4.7.3 RX CDR
	4.7.4 RX Polarity Control
	4.7.5 RX Pattern Checker
	4.7.6 RX Byte and Word Alignment
	4.7.7 RX 8B/10B Decoder
	4.7.8 RX Buffer Bypass
	4.7.9 RX Elastic Buffer
	4.7.10 RX Clock Correction
	4.7.11 RX Channel Bonding
	4.7.12 RX Gear Box
	4.7.13 FPGA RX Interface

	4.8 Integrated Bit Error Ratio Tester (IBERT)

	Chapter 5: Memory Controllers
	5.1 Introduction
	5.2 Getting Started
	5.2.1 Design Generation
	5.2.2 Pin Planning
	5.2.3 Example Design

	5.3 Calibration
	5.3.1 De-Skew Calibration
	5.3.2 Read Calibration
	5.3.3 Write Calibration
	5.3.4 VT Compensation

	5.4 Signal Integrity
	5.5 DDR4 SDRAM
	5.5.1 Performance

	5.6 RLDRAM3
	5.6.1 Performance

	5.7 QDRIV
	5.7.1 Performance

	Chapter 6: Processor Options
	6.1 Introduction
	6.2 Computing on FPGAs
	6.3 Processors on FPGAs
	6.3.1 Soft Processors
	6.3.2 Hard Processors

	6.4 Tool Chains
	6.4.1 Integration Tools in Vivado
	6.4.2 Compilers and Debuggers
	6.4.3 Device Drivers, Libraries, Kernels, and Board Support Packages
	6.4.4 Beyond Traditional System Design

	6.5 Putting It All Together
	6.5.1 Basic Application
	6.5.2 Advanced Applications and Acceleration

	Chapter 7: Vivado IP Integrator
	7.1 Introduction
	7.1.1 Design Reuse

	7.2 Terminology
	7.2.1 Block Design (BD)
	7.2.2 Automation Notifications
	7.2.3 Hierarchical IP
	7.2.4 Packaging

	7.3 IPI Flow
	7.3.1 Design Entry Within BD Canvas
	7.3.2 Designer Assistance
	7.3.3 Address Editor
	7.3.4 Parameter Propagation
	7.3.5 Validate Design
	7.3.6 Generate Design
	7.3.7 Top-Level RTL Wrapper
	7.3.8 Export Hardware Definition
	7.3.9 Creating an Example Design

	7.4 Tcl Support

	Chapter 8: SysGen for DSP
	8.1 Introduction
	8.2 Designing in System Generator for DSP
	8.2.1 Xilinx System Generator Blockset
	8.2.1.1 Gateway In and Gateway Out
	8.2.1.2 System Generator Token

	8.2.2 Sample Times and Cycle Accuracy
	8.2.3 Data Types
	8.2.3.1 Fixed-Point Data Type
	8.2.3.2 Floating-Point Data Type

	8.2.4 Compilation, Code Generation, and Design Flow

	8.3 Verification of System Generator Design
	8.3.1 RTL Test Bench
	8.3.2 Hardware Co-simulation

	8.4 Integrating System Generator Submodule in a System

	Chapter 9: Synthesis
	9.1 Introduction
	9.2 Designs Migrating from ASIC
	9.2.1 Inline Initialization
	9.2.2 Memory Initialization
	9.2.3 MUX Pushing
	9.2.4 Clock Gating

	9.3 Getting the Most of Device Primitives
	9.3.1 SRLs
	9.3.2 Memories
	9.3.2.1 Distributed RAM Usage
	9.3.2.2 Block RAM Pipelining

	9.3.3 DSPs
	9.3.3.1 Extra DSPs Inferred

	9.3.4 MUXFs
	9.3.5 Carry Chains

	9.4 Attributes/Directives to Control Synthesis Behavior
	9.5 Synthesis vs. Simulation Mismatch: Common Cases
	9.5.1 Global Set/Reset
	9.5.2 Other Cases

	9.6 Synthesis Switches
	9.7 Coding Styles for Improved QOR
	9.8 Guidelines to Get Best Results Out of Synthesis

	Chapter 10: C-Based Design
	10.1 Introduction
	10.2 C Simulation
	10.3 Arbitrary Precision Data Types
	10.4 High-Level Synthesis
	10.5 Interface Synthesis
	10.5.1 Port-Level IO Interfaces
	10.5.2 Block-Level IO Interfaces
	10.5.3 Interface Options

	10.6 Measuring Performance
	10.7 Optimizing Your RTL
	10.7.1 Increasing Data Accesses
	10.7.2 Controlling Resources
	10.7.3 Pipelining for Performance

	10.8 Optimization Methodology
	10.9 A Productivity Data Point
	10.10 RTL Verification
	10.11 RTL Integration
	10.12 Tcl Support

	Chapter 11: Simulation
	11.1 Introduction
	11.2 Setting Up Design for Simulation
	11.2.1 Compilation
	11.2.2 Elaboration
	11.2.3 Simulation

	11.3 Simulation and Observing Results
	11.3.1 Simulation of Behavioral/RTL Model
	11.3.2 Simulation Steps
	11.3.3 Observing Simulation Results with Tcl
	11.3.4 Timing Simulation
	11.3.5 Controlling Simulation from Tcl
	11.3.6 Waveform Window

	11.4 Debugging
	11.4.1 Enabling Tracing
	11.4.2 Breakpoint
	11.4.3 Conditions
	11.4.4 Changing Values of Signals
	11.4.4.1 Setting Value
	11.4.4.2 Forcing Value

	11.5 Combining C with HDL Using DPI
	11.6 Generating SAIF File for Power Estimation

	Chapter 12: Clocking
	12.1 Clocking in FPGA Designs
	12.2 Choice of Clock Frequency
	12.3 Number of Clocks
	12.4 A Typical Clock Network
	12.4.1 Clocks Entering a FPGA
	12.4.2 Generating Clocks with Different Frequencies
	12.4.3 Accessing Global Routing
	12.4.4 Clock Routing, CLOCK_ROOT, and Clock Distribution

	12.5 Optimizing Clock Networks to Improve Internal Timing
	12.5.1 Clock Pessimism Removal and the Common Node
	12.5.2 Optimizing Common Node for Synchronous Cross Domain Crossings
	12.5.3 Phase Error
	12.5.4 Internally Related Clocks Divisible by 2, 4, and 8
	12.5.5 Jitter Reduction

	12.6 Optimizing Clock Networks for Interfaces
	12.6.1 GT Clocking
	12.6.2 IO Interfaces

	Chapter 13: Stacked Silicon Interconnect (SSI)
	13.1 SSI Terminology
	13.2 Design Partitioning
	13.3 Pinout Considerations for SSI Designs
	13.4 Partitioning Considerations
	13.4.1 Limit SLR Crossings
	13.4.2 Limit Timing Critical Paths Across SLRs
	13.4.3 Balance Resource Usage

	13.5 SSI Synthesis Techniques
	13.5.1 Top-Down Synthesis
	13.5.2 Bottom-Up Synthesis
	13.5.3 OOC Synthesis

	13.6 SSI Implementation Flow
	13.7 Examining SSI Results
	13.8 Divide and Conquer

	Chapter 14: Timing Closure
	14.1 Introduction to Timing Concepts
	14.1.1 Creating and Defining a Clock
	14.1.2 Defining Clock Relationships
	14.1.3 Timing Analysis

	14.2 Generating Timing Reports
	14.2.1 Report Timing Summary
	14.2.2 Report Timing
	14.2.3 Slack Histogram

	14.3 Timing Paths and Constraint Correctness
	14.3.1 Clock Interaction
	14.3.2 Report Clock Domain Crossing

	14.4 Timing Closure Techniques
	14.4.1 Critical Path Analysis
	14.4.2 Logic vs. Wire Delay
	14.4.3 Reducing Logic Levels
	14.4.4 Clock Skew
	14.4.5 Reducing High-Fanout Signals
	14.4.6 Control Sets and Control Set Optimization
	14.4.7 Floor Planning
	14.4.8 Physical Optimization
	14.4.9 Strategy and Directives
	14.4.10 Congestion and Congestion Alleviation
	14.4.11 Report Design Analysis
	14.4.12 Timing Closure and Hold Violation

	Chapter 15: Power Analysis and Optimization
	15.1 Introduction
	15.2 Xilinx Power Estimator (XPE)
	15.3 Vivado Report Power
	15.3.1 Operating Conditions
	15.3.2 Power Constraints
	15.3.3 Activity Propagation
	15.3.4 Export–Import Flow with XPE

	15.4 Vivado Power Optimization
	15.4.1 Optimization Paradigms
	15.4.2 Suggestions for Low-Power Design

	Chapter 16: System Monitor
	16.1 Usage and Need
	16.2 Overview of SYSMON
	16.3 Evolution of SYSMON in Xilinx FPGA
	16.4 Using the SYSMON in System Design
	16.5 ADC Capabilities of SYSMON
	16.6 Transfer Function of Various On-Chip Sensors
	16.6.1 Temperature Sensor
	16.6.2 Power Supply Sensors

	16.7 Controlling the SYSMON Operation
	16.7.1 SYSMON Control Registers
	16.7.2 SYSMON Status Registers

	16.8 Operating Modes of SYSMON
	16.8.1 Single-Channel and Auto Channel Sequence Mode
	16.8.2 External Multiplexer Mode
	16.8.3 Automatic Alarms
	16.8.4 Sampling Modes

	16.9 Using SYSMON in Standalone Mode
	16.10 Disabling the SYSMON
	16.11 SYSMON Use Cases

	Chapter 17: Hardware Debug
	17.1 Debug Methodologies for FPGA Designs
	17.1.1 Iterative Debug Methodology
	17.1.2 Simulation vs. Debugging in Hardware
	17.1.3 Debugging a Design That Meets Timing

	17.2 Instrumenting the Design for Debug
	17.2.1 Choosing the Type of Debug Instrumentation
	17.2.2 Choosing What Signals to Debug
	17.2.3 Choosing How to Add Debug Instrumentation

	17.3 Interacting with Debug Instrumentation
	17.3.1 Connecting to Hardware and Programming the Device
	17.3.2 Taking a Basic Measurement Using the ILA Core
	17.3.3 Maximizing the Usage of the ILA Core Data Capture Memory
	17.3.4 Taking an Advanced Measurement Using the ILA Core
	17.3.5 Using JTAG-to-AXI Master to Access AXI-Based Registers
	17.3.6 Using Virtual Input/Output to Debug Design in Hardware

	17.4 Board-Level Debugging

	Chapter 18: Emulation Using FPGAs
	18.1 Introduction to Emulation
	18.1.1 Types of Emulators
	18.1.2 Uses of Emulation/Prototyping

	18.2 Emulation Using FPGAs
	18.3 Challenges in Emulation Using FPGAs
	18.3.1 Design Logic and Memory Size
	18.3.2 Design Pin Count
	18.3.3 Clocking
	18.3.4 RTL Constructs and Remodeling
	18.3.4.1 IO Pads Modeling
	18.3.4.2 ADC Module Modeling
	18.3.4.3 Memory Modeling
	18.3.4.4 Standard Cells Modeling
	18.3.4.5 Inferred Components Modeling

	18.3.5 FPGA Board Design

	18.4 General Methodology
	18.4.1 RTL-Related Transformations
	18.4.2 Multiple FPGA Specific (The Partitioning Problem)
	18.4.2.1 Partitioning Gate Count Challenge
	18.4.2.2 Partitioning Pin Count
	18.4.2.3 Using SERDES Lanes
	18.4.2.4 Handling Clocks Over Multiple FPGAs

	18.5 Instrumenting
	18.5.1 Ability to Stop and Start the Emulation
	18.5.2 General Observability of Signals and Registers in the Design
	18.5.3 Instrumentation for DUV Internal Memory
	18.5.4 Adding Signal Observability (Waveforms)

	Chapter 19: Partial Reconfiguration and Hierarchical Design
	19.1 Partial Reconfiguration
	19.1.1 Applications
	19.1.1.1 Multi-protocol Networking
	19.1.1.2 SW-Controlled HW Coprocessing
	19.1.1.3 Security and Encryption

	19.1.2 Key Concepts
	19.1.3 Design Considerations
	19.1.3.1 FPGA Device Family
	19.1.3.2 Design Structure
	19.1.3.3 Support Functions for Partial Reconfiguration

	19.1.4 Design Tool Flow
	19.1.5 Configuration Management

	19.2 Tandem and Field Update
	19.2.1 Key Concepts
	19.2.2 Design Tool Flow
	19.2.3 Configuration Management

	19.3 Hierarchical Design (HD) Preservation
	19.3.1 Key Concepts
	19.3.2 Design Tool Flow

	19.4 Isolation Design Flow
	19.4.1 Key Concepts
	19.4.2 Design Tool Flow

	References
	Index

