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Abstract. We present an interactive and automated theorem prover for
free higher-order logic. Our implementation on top of the Isabelle/HOL
framework utilizes a semantic embedding of free logic in classical higher-
order logic. The capabilities of our tool are demonstrated with first exper-
iments in category theory.
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1 Introduction

Partiality and undefinedness are core concepts in various areas of mathematics.
Modern mathematical proof assistants and theorem proving systems are often
based on traditional classical or intuitionistic logics and provide rather inade-
quate support for these challenge concepts. Free logic [5,6], in contrast, offers
a theoretically and practically appealing solution. Unfortunately, however, we
are not aware of any implemented and available theorem proving system for free
logic.

In this extended abstract we show how free logic can be “implemented” in
any theorem proving system for classical higher-order logic (HOL) [1]. The pro-
posed solution employs a semantic embedding of free (or inclusive logic) in HOL.
We present an exemplary implementation of this idea in the mathematical proof
assistant Isabelle/HOL [4]. Various state-of-the-art first-order and higher-order
automated theorem provers and model finders are integrated (modulo suitable
logic translations) with Isabelle via the Sledgehammer tool [2], so that our solu-
tion can be utilized, via Isabelle as foreground system, with a whole range of
other background reasoners. As a result we obtain an elegant and powerful imple-
mentation of an interactive and automated theorem proving (and model finding)
system for free logic.

To demonstrate the practical relevance of our new system, we report on first
experiments in category theory. In these experiments, theorem provers were able
to detect a (presumably unknown) redundancy in the foundational axiom system
of the category theory textbook by Freyd and Scedrov [3].
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2 Free Logic

Terms in classical logic denote, without exceptions, entities in a non-empty
domain of (existing) objects D, and it are these objects of D the universal and
existential quantifiers do range over. Unfortunately, however, these conditions
may render classical logic unsuited for handling mathematically relevant issues
such as undefinedness and partiality. For example in category theory composition
of maps is not always defined.

Free logic (and inclusive logic) has been proposed as an alternative to rem-
edy these shortcomings. It distinguishes between a raw domain of possibly non-
existing objects D and a particular subdomain E of D, containing only the
“existing” entities. Free variables range over D and quantified variables only
over E. Each term denotes in D but not necessarily in E. The particular notion
of free logic as exploited below has been introduced by Scott [6]. A graphical
illustration of this notion of free logic is presented in Fig. 1.

E: existing objects

values of bound variables

D: raw objects

values of free variables

�
undefined

Fig. 1. Illustration of the semantical domains of free logic

3 Implementing Free Logic in Isabell/HOL

We start out with introducing a type i of individuals. The domain of objects asso-
ciated with this this type will serve as the domain of raw objects D, cf. Fig. 1.
Moreover, we introduce an existence predicate E on type i. As mentioned, E
characterises the subset of existing objects in D. Next, we declare a special con-
stant symbol star �, which is intended to denote a distinguished “non-existing”
element of D.

typedecl i — the type for indiviuals
consts fExistence:: i⇒bool (E) — Existence predicate
consts fStar :: i (�) — Distinguished symbol for undefinedness
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We postulate that � is a “non-existing” object in D.

axiomatization where fStarAxiom: ¬E(�)

The two primitive logical connective we introduce for free logic are negation
(¬) and implication (→). They are identified with negation (¬) and implication
(−→) in the underlying Isabelle/HOL logic. The internal names in Isabelle/HOL
of the new logical connectives are fNot and fImplies (the prefix f stands for
“free”); ¬ and the infix operator → are introduced as syntactical sugar.1

abbreviation fNot :: bool⇒bool (¬)
where ¬ϕ ≡ ¬ϕ
abbreviation fImplies:: bool⇒bool⇒bool (infixr → 49 )
where ϕ→ψ ≡ ϕ−→ψ

The main challenge is to appropriately define free logic universal quantification
(∀ ) and free logic definite description (I). Again, we are interested to relate these
logical operators to the respective operators ∀ and THE in the Isabelle/HOL
logic. Different to the trivial maps for ¬ and → from above, their mappings
are relativized in the sense that the existence predicate E is utilized as guard in
their definitions.

The definition of the free logic universal quantifier ∀ thus becomes:

abbreviation fForall :: (i⇒bool)⇒bool (∀ )
where ∀ Φ ≡ ∀ x . E(x )−→Φ(x )

Apparently, this definitions restricts the set of objects the ∀ -operator is ranging
over to the set of existing objects E. Note that this set can be empty (if desired,
we may of course simply postulate that the domain E is non-empty: ∃ x . E(x )).
The Isabelle framework supports the introduction of syntactic sugar for binding
notations. Here we make use of this option to introduce binding notation for ∀ .
With the definition below we can now use the more familiar notation ∀ x . ϕ(x )
instead of writing ∀ (λx . ϕ(x )) or ∀ ϕ.

abbreviation fForallBinder :: (i⇒bool)⇒bool (binder ∀ [8 ] 9 )
where ∀ x . ϕ(x ) ≡ ∀ ϕ

Definite description I in free logic works as follows: Given an unary set Φ = {a},
with a being an “existing” element in E, I returns the single element a of Φ. In all
other cases, that is, if Φ is not unary or a is not an element of E, IΦ returns the dis-
tinguished “non-existing” object denoted by �. With the help of Isabelle/HOL’s
definite description operator THE, I can thus be defined as follows:

abbreviation fThat :: (i⇒bool)⇒i (I)
where IΦ ≡ if ∃ x . E(x ) ∧ Φ(x ) ∧ (∀ y . (E(y) ∧ Φ(y)) −→ (y = x ))

then THE x . E(x ) ∧ Φ(x )
else �

Analogous to above we introduce binder notation for I, so that we can write
Ix . ϕ(x ) instead of I(λx . ϕ(x )) or Iϕ.
1 The numbers in (infixr → 49 ) and (binder ∀ [8 ] 9 ) (see below) specify structural

priorities and thus help to avoid brackets in formula representations.
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abbreviation fThatBinder :: (i⇒bool)⇒i (binder I [8 ] 9 )
where Ix . ϕ(x ) ≡ I(ϕ)

Further logical connectives of free can now be defined in the usual way (and for
∃ we again introduce binder notation).

abbreviation fOr (infixr ∨ 51 ) where ϕ∨ψ ≡ (¬ϕ)→ψ
abbreviation fAnd (infixr ∧ 52 ) where ϕ∧ψ ≡ ¬(¬ϕ∨¬ψ)
abbreviation fEquiv (infixr ↔ 50 ) where ϕ↔ψ ≡ (ϕ→ψ)∧(ψ→ϕ)
abbreviation fEquals (infixr = 56 ) where x=y ≡ x=y
abbreviation fExists (∃ ) where ∃ Φ ≡ ¬(∀ (λy .¬(Φ y)))
abbreviation fExistsBinder (binder ∃ [8 ]9 ) where ∃ x . ϕ(x ) ≡ ∃ ϕ

4 Functionality Tests

We exemplarily investigate some example proof problems from Scott’s paper [6],
pp. 183–184, where a free logic with a single relation symbol r is discussed.

consts r :: i⇒i⇒bool (infixr r 70 )

The implication x r x → x r x, where x is a free variable, is valid independently
whether x is defined (i.e. “exists”) or not. In Isabelle/HOL this quickly confirmed
by the simplification procedure simp.

lemma x r x → x r x by simp

However, as intended, the formula ∃ y . y r y → y r y is not valid, since set of
existing objects E could be empty. Nitpick quickly presents a respective coun-
termodel.

lemma ∃ y . y r y → y r y nitpick [user-axioms] oops

Consequently, also the implication (x r x → x r x ) → (∃ y . y r y → y r y) has
a countermodel, where E is empty.

lemma (x r x → x r x ) → (∃ y . y r y → y r y) nitpick [user-axioms] oops

If we rule out that E is empty, e.g. with additional condition (∃ y . y = y) in
the antecedent of the above formula, then we obtain a valid implication. Isabelle
trivially proves this with procedure simp.

lemma ((x r x → x r x ) ∧ (∃ y . y = y)) → (∃ y . y r y → y r y) by simp

We analyse some further statements (respectively statement instances) from
Scott’s paper [6], p. 185. Because of space restrictions we do not further com-
ment these statements here. Altogether they provide further evidence that our
implementation of free logic in fact obeys the intended properties.

lemma S1 : (∀ x . Φ(x ) → Ψ(x )) → ((∀ x . Φ(x )) → (∀ x . Ψ(x ))) by auto
lemma S2 : ∀ y . ∃ x . x = y by auto
lemma S3 : α = α by auto
lemma S4 : (Φ(α) ∧ (α = β)) → Φ(β) by auto
lemma UI-1 : ((∀ x . Φ(x )) ∧ (∃ x . x = α)) → Φ(α) by auto
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lemma UI-2 : (∀ x . Φ(x )) → Φ(α) nitpick [user-axioms] oops — Countermodel by
Nitpick
lemma UI-cor1 : ∀ y .((∀ x . Φ(x )) → Φ(y)) by auto
lemma UI-cor2 : ∀ y .((∀ x . ¬(x = y)) → ¬(y = y)) by auto
lemma UI-cor3 : ∀ y .((y = y) → (∃ x . x = y)) by auto
lemma UI-cor4 : (∀ y . y = y) → (∀ y .∃ x . x = y) by simp
lemma Existence: (∃ x . x = α) −→ E(α) by simp
lemma I1 : ∀ y . ((y = (Ix . Φ(x ))) ↔ (∀ x . ((x = y) ↔ Φ(x )))) by (smt fStarAxiom
the-equality)
abbreviation Star (

⊗
) where

⊗ ≡ Iy . ¬ (y = y)
lemma StarTest :

⊗
= � by simp

lemma I2 : ¬(∃ y . y = (Ix . Φ(x ))) → (
⊗

= (Ix . Φ(x ))) by (metis (no-types,
lifting) the-equality)
lemma ExtI : (∀ x . Φ(x ) ↔ Ψ(x )) → ((Ix . Φ(x )) = (Ix . Ψ(x ))) by (smt the1-equality)

lemma I3 : (
⊗

= α ∨ ⊗ = β) → ¬(α r β) nitpick [user-axioms] oops— Coun-
termodel by Nitpick

5 Application in Category Theory

We exemplarily employ our free logic reasoning framework from above for an
application in category theory. More precisely, we study some properties of the
foundational axiom system of Freyd and Scedrov; see their textbook “Categories,
Allegories” [3], p. 3. As expected, the composition x · y, for morphisms x and y,
is introduced by Freyd and Scedrov as a partial operation, cf. axiom A1 below:
the composition x ·y exists if and only if the target of x coincides with the source
of y. This is why free logic, as opposed to e.g. classical logic, is better suited as
a starting point in this mathematical application area.2

In the remainder we identify the base type i of free logic with the raw type
of morphisms. Moreover, we introduce constant symbols for the following oper-
ations: source of a morphism x, target of a morphism x and composition of
morphisms x and y. These operations are denoted by Freyd and Scedrov as �x,
x� and x ·y, respectively. We adopt their notation as syntactic sugar below, even
though we are not particularly fond of the use of � in this context.

consts source:: i⇒i (�- [108 ] 109 )
target :: i⇒i (-� [110 ] 111 )
composition:: i⇒i⇒i (infix · 110 )

Ordinary equality on morphisms is defined as follows:

abbreviation OrdinaryEquality :: i⇒i⇒bool (infix ≈ 60 )
where x ≈ y ≡ ((E x ) ↔ (E y)) ∧ x = y

2 The precise logic setting is unfortunately not discussed in the very beginning of
Freyd’s and Scedrov’s textbook. Appendix B, however, contains a concise formal
definition of the assumed logic. Note the special notion of equality used below (which
is different from Kleene equality) and also remember that we postulated a ‘non-
existing’ entity.
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We are now in the position to model the category theory axiom system of Freyd
and Scedrov.

axiomatization FreydsAxiomSystem where
A1 : E(x ·y) ↔ ((x�) ≈ (�y)) and
A2a: ((�x )�) ≈ �x and
A2b: �(x�) ≈ �x and
A3a: (�x )·x ≈ x and
A3b: x ·(x�) ≈ x and
A4a: �(x ·y) ≈ �(x ·(�y)) and
A4b: (x ·y)� ≈ ((x�)·y)� and
A5 : x ·(y ·z ) ≈ (x ·y)·z
Experiments with our new reasoning framework for free logic quickly showed
that axiom A2a is redundant. For example, as Isabelle’s internal prover metis3

confirms, A2a is implied by A2b, A3a, A3b and A4a.

lemma A2aIsRedundant-1 : (�x )� ≈ �x by (metis A2b A3a A3b A4a)

A human readable and comprehensible reconstruction of this redundancy is pre-
sented below. Our handmade proof employs axioms A2b, A3a, A3b, A4a and A5,
that is, this proof could be further optimized by eleminating the dependency onA5.

lemma A2aIsRedundant-2 : (�x )� ≈ �x
proof −
have L1 : ∀ x . (��x )·((�x )·x ) ≈ ((��x )·(�x ))·x using A5 by metis
hence L2 : ∀ x . (��x )·x ≈ ((��x )·(�x ))·x using A3a by metis
hence L3 : ∀ x . (��x )·x ≈ (�x )·x using A3a by metis
hence L4 : ∀ x . (��x )·x ≈ x using A3a by metis
have L5 : ∀ x . �((��x )·x ) ≈ �((��x )·(�x )) using A4a by auto
hence L6 : ∀ x .�((��x )·x ) ≈ ��x using A3a by metis
hence L7 : ∀ x . ��(x�) ≈ �(��(x�))·(x�) by auto
hence L8 : ∀ x . ��(x�) ≈ �(x�) using L4 by metis
hence L9 : ∀ x . ��(x�) ≈ �x using A2b by metis
hence L10 : ∀ x . ��x ≈ �x using A2b by metis
hence L11 : ∀ x . ��((�x )�) ≈ ��(x�) using A2b by metis
hence L12 : ∀ x . ��((�x )�) ≈ �x using L9 by metis
have L13 : ∀ x . (��((�x )�))·((�x )�) ≈ ((�x )�) using L4 by auto
hence L14 : ∀ x . (�x )·((�x )�) ≈ (�x )� using L12 by metis
hence L15 : ∀ x . (�x )� ≈ (�x )·((�x )�) using L14 by auto
then show ?thesis using A3b by metis
qed

Thus, axiom A2a can be removed from the theory. Alternatively, we could also
eliminate A2b which is implied by A1, A2a and A3a:

lemma A2bIsRedundant : �(x�) ≈ �x by (metis A1 A2a A3a)

3 Metis is a trusted prover of Isabelle, since it returns proofs in Isabelle’s trusted
proof kernel. Initially, however, we have worked with Isabelle’s Sledgehammer tool
in our experiments, which in turn performs calls to several integrated first-order
theorem provers. These calls then return valuable information on the particular proof
dependencies, which in turn suggest the successful calls with metis as presented here.



Automating Free Logic in Isabelle/HOL 49

In fact, by a systematic experimentation within our free logic theorem proving
framework, we can show that Freyd’s and Scedroc’s axiomatic theory can be
reduced to just the following five axioms:

axiomatization FreydsAxiomSystemReduced where
B1 : E(x ·y) ↔ ((x�) ≈ (�y)) and
B2a: ((�x )�) ≈ �x and
B3a: (�x )·x ≈ x and
B3b: x ·(x�) ≈ x and
B5 : x ·(y ·z ) ≈ (x ·y)·z
The dropped axioms can then be introduced as lemmas.

lemma B2b: �(x�) ≈ �x by (metis B1 B2a B3a)
lemma B4a: �(x ·y) ≈ �(x ·(�y)) by (metis B1 B2a B3a)
lemma B4b: (x ·y)� ≈ ((x�)·y)� by (metis B1 B2a B3a)

6 Summary of Technical Contribution and Further Work

We have presented a new reasoning framework for free logic, and we have exem-
plary applied it for some first experiments in category theory. We have shown
that, in our free logic setting, the category theory axiom system of Freyd and
Scedrov is redundant and that three axioms can be dropped.

Our free logic reasoning framework is publicly available for reuse: Sim-
ply download Isabelle from https://isabelle.in.tum.de and initialize it (respec-
tively import) the file FreeFOL.thy from our sources available at www.
christoph-benzmueller.de/papers/2016-ICMS.zip. Our category theory experi-
ments are contained in the file FreydScedrov.thy.

Comparisons with other theorem provers for free logic are not possible at
this stage, since we are not aware of any other existing systems.

We also want to emphasize that this paper has been written entirely within
the Isabelle framework by utilizing the Isabelle “build” tool; cf. [8], Sect. 2. It is
thus an example of a formally verified mathematical document, where the pdf
document as presented here has been generated directly from the verified source
files mentioned above.4

Further work includes the continuation of our formalization studies in cate-
gory theory. It seems plausible that substantial parts of the textbook of Freyd
and Scedrov can now be formalised in our framework. An interesting ques-
tion clearly is how far automation scales and whether some further (previously
unknown) insights can eventually be contributed by the theorem provers. More-
over, we have already started to compare the axiom system by Freyd and Scedrov
with a more elegant set of self-dual axioms developed by Scott. Furthermore, we
plan to extend our studies to projective geometry, which is another area where
free logic may serve as a suitable starting point for formalisation.
4 By suitably adapting the Isabelle call as contained in file runIsabelle.sh in our zip-

package, the verification and generation process can be easily reproduced by the
reader.

https://isabelle.in.tum.de
www.christoph-benzmueller.de/papers/2016-ICMS.zip
www.christoph-benzmueller.de/papers/2016-ICMS.zip
http://runIsabelle.sh
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In addition to our implementation of free logic as a theory in Isabelle/HOL,
we plan to support an analogous logic embedding in the new Leo-III theorem
prover [9]. The idea is that Leo-III can then be envoked with a specific flag
telling it to automatically switch its underlying logic setting from higher-order
classical logic to first-order and higher-order free logic, while retaining TPTP
TH0 [7] as the common input syntax.
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