
Gert-Martin Greuel · Thorsten Koch
Peter Paule · Andrew Sommese (Eds.)

 123

LN
CS

 9
72

5

5th International Conference
Berlin, Germany, July 11–14, 2016
Proceedings

Mathematical
Software – ICMS 2016

Lecture Notes in Computer Science 9725

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Gert-Martin Greuel • Thorsten Koch
Peter Paule • Andrew Sommese (Eds.)

Mathematical
Software – ICMS 2016
5th International Conference
Berlin, Germany, July 11–14, 2016
Proceedings

123

Editors
Gert-Martin Greuel
Universität Kaiserslautern
Kaiserslautern
Germany

Thorsten Koch
Zuse Institute Berlin
Berlin
Germany

Peter Paule
Johannes Kepler University Linz
Hagenberg
Austria

Andrew Sommese
University of Notre Dame
Notre Dame, IN
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-42431-6 ISBN 978-3-319-42432-3 (eBook)
DOI 10.1007/978-3-319-42432-3

Library of Congress Control Number: 2016944479

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The 5th International Congress on Mathematical Software (ICMS 2016) was held
during July 11–14, 2016, at the Zuse Institute in Berlin, Germany. There were four
invited plenary talks and 139 contributed talks. From the submitted extended abstracts,
68 were accepted for the present proceedings.

The scope of mathematics is as broad as human thought. With the ever-increasing
power and pervasiveness of technology, computation has emerged as a tool of math-
ematics rivaling (and many would say surpassing) proof. Many problems and models
of wide interest in engineering and science are too complicated for step-by-step human
solution in any reasonable time frame, but require solution immediately (although often
not completely certain). We agree with the following statement in the preface to the
ICMS 2014 volume:

We in the International Conference of Mathematical Software believe that the appearance of
mathematical software is one of the most important modern developments in mathematics, and
this phenomenon should be studied as a coherent whole. Our vision for ICMS is to serve as the
major forum for mathematicians, scientists, programmers, and developers who are interested in
software. Software is not static: Anyone who uses software knows that its typical “halflife” is
frustratingly short: But it compiled properly just last year! There is constant renewal, devel-
opment, and disruptive changes. It is partly caused by new mathematical advances, but often the
pressure is from technological changes, e.g., the appearance of graphics processing units
(GPUs).

Jack Dongarra in his invited paper discusses the major (and disruptive) changes that
moving to “extreme scale” computing will cause. Exoscale computing and the
importance of locality are leading to a new generation of algorithms and software.

Computation is a tool not only for applications to other subjects, but also for the
modern development of mathematics. As in the wider world of engineering and sci-
ence, computation that forms a proof as well as computation that constructs objects and
reaches conclusions that are not completely certain have important roles. In his plenary
talk, Wolfram Decker discusses the challenges to and progress in the integration of a
number of powerful open source computer algebra software packages into a
next-generation computer algebra system.

The knowledge base of mathematics, including theorems, precise definitions of
objects, and a huge constellation of examples, is the bedrock for the development of
new algorithms and software. Stephen Watt described in his plenary talk the progress
toward the goal of an international mathematical knowledge base useable by individ-
uals and software systems alike.

But computational mathematics and software goes even deeper, right down to the
roots of the logical and constructive foundations of mathematics. In 2009 Vladimir
Voevodsky added the concept of h-level (homotopy level) and the “univalence axiom”
to homotopy type theory, where the basic objects are homotopy types and which

replaces set-theoretic formalizations of mathematics. This so-called univalent founda-
tion had far-reaching consequences. It can be regarded as a new foundation for
mathematics in general but it also allows mathematical proofs to be formalized, i.e.,
translated into the formal language that can be processed by a computer proof assistant,
much more easily than before. In his plenary talk, Voevodsky explained how “uni-
valent models” of type theories allow for the direct formalization of constructive
mathematics and the formalization of classical mathematics by adding the axiom of
excluded middle and the axiom of choice for types of certain h-levels. A considerable
amount of mathematics has been formalized in the Coq library UniMath using the
univalent point of view.

We are thankful to all the individuals whose effort and support made ICMS 2016
possible: the plenary speakers, all the contributors of abstracts and extended abstracts,
the special session organizers, and the LNCS team at Springer under the leadership of
Alfred Hofmann. We benefited from the experience of the ICMS Advisory Board
chaired by Professor Nobuki Takayama and from Professors Chee Yap, Hoon Hong,
and Deok-Soo Kim. Last but not least, we acknowledge the work of the local chair,
Professor Thorsten Koch, and his committee at the Zuse Institute.

May 2016 Gert-Martin Greuel
Thorsten Koch

Peter Paule
Andrew Sommese

VI Preface

Bylaws of ICMS

The motivation for these bylaws is to guide the future directions and governance of the
International Congress of Mathematical Software (ICMS). Ultimately, we hope to build
a community of researchers and practitioners centered around the aims of the previous
ICMSs, namely “mathematical software” viewed as a scientific activity. Such a
community is closely allied with areas such as algorithms and complexity, software
engineering, computational sciences, and of course all of constructive mathematics
including computer algebra and numerical computation. But mathematical software has
unique (evolving) characteristics, which ICMS aims to foster and support. To build
such a community, we need continuity and some rules governing the central activity of
any research community, namely, the ICMS conference. The following proposal is
based on, and consistent with, the historical patterns observed in the first four ICMSs
(2002, 2006, 2010, 2014). The proposal is deliberately minimal and under-specified.
Therefore, their interpretations should be guided by historical patterns.

Bylaw 1: Composition of Organizers

Each ICMS Conference shall have the following organizational positions:

1. Advisory Board
2. General Chair
3. Program Chair
4. Local Chair
5. Secretary
6. Program Committee
7. Local Committee

Chair could also mean Co-chairs.

Bylaw 2: Appointments

1. The Advisory Board shall consist of the General Chair, Program Chair, and Local
Chair of the previous two conferences, and any other members that they shall
appoint. The General Chair of the last-but-one ICMS shall serve as the chair for the
current Advisory Board. All appointments to the Advisory Board last two ICMS
conferences.

2. The Advisory Board appoints the Secretary.
3. The Advisory Board appoints the General Chair for the next conference.
4. The General Chair, in consultation with the Advisory Board, appoints the Program

Chair and Local Chair.

5. The Program Chair, in consultation with the General Chair and the Advisory Board,
appoints the Program Committee members.

6. The Local Chair, in consultation with the General Chair, appoints the Local
Committee members.

Bylaw 3: Duties

1. The Advisory Board Chair will hold an ICMS business meeting during each
conference.

2. The Secretary shall maintain a permanent ICMS website for past activities, and also
a list of names and e-mails of attendees of past ICMS conferences.

Bylaw 4: Amendments

1. The bylaws can be amended by ballot, either at the ICMS business meeting or by
email.

2. Persons who have registered for at least one of the three preceding ICMS Con-
ferences are eligible to vote.

Appendix: Remarks on the Bylaws

1. The bylaw is self-described as minimal and under-specified; both are viewed as
positive qualities. This appendix will comment on the bylaws using their historical
(nonbinding) interpretations. It will also motivate the exclusion of certain items in
the bylaw.

2. Historically, ICMS was organized as a satellite of ICM. Like ICM, ICMS is held
every 4 years. But even in our short history, there was a break in this pattern in
2010. Looking forward, there are good arguments to have biennial meetings (e.g.,
this is better for community building).

3. We do not specify the format of ICMS, believing it to be the prerogative of the
General Chair and the Program Chair to shape it to best serve the community.
Historically, the program has centered around plenary speakers and special sessions
organized by experts in the area of interest.

4. The term “software” is a unique characteristic of ICMS that distinguishes it from the
allied areas mentioned in the bylaw. We are not only interested in “paper algo-
rithms” but also in their implementation and in their software environment.
We want to foster software development as a scientific activity, to promote the
publication of software like paper publications, and to establish standards for such
activities. Past ICMSs have an important component of software tutorial and
demonstrations and distribution of free software (e.g., Knoppix CD).

5. The ICMS positions listed in the bylaw do not exclude additional positions: the
positions of a treasurer and a “documentation chair” for software have been sug-
gested. But we refrain from mandating such positions in the bylaw.

VIII Bylaws of ICMS

6. Term limit for appointments to ICMS posts is generally a good thing. Again, we do
not encode this into the bylaw, as we recognize many good reasons to take
exceptions, e.g., a competent “document chair” should probably be given a life
appointment.

7. The idea of a permanent repository for ICMS is assumed in the bylaw. Nobuki
Takayama has a website that might be considered as the starting point. The General
Chair and Program Chair should each deposit a report for the activities of their
particular ICMS in this repository.

8. The database swMATH is a freely accessible information service for mathematical
software, currently maintained by the research campus MODAL, Zuse Institute
Berlin (ZIB), and FIZ Karlsruhe. With its philosophy to provide access to an
extensive database of information on mathematical software together with a sys-
tematic linking of software packages with relevant mathematical publications, it
meets the needs of the mathematical software community.

Bylaws of ICMS IX

Organization

Executive Committee

General Chair

Gert-Martin Greuel University of Kaiserslautern, Germany

Program Chairs

Peter Paule Johannes Kepler University Linz and RISC, Austria
Andrew Sommese University of Notre Dame, USA

Local Chair

Thorsten Koch Zuse Institute Berlin, Germany

Program Committee

Mohamed Barakat University of Siegen, Germany
Moulay A. Barkatou University of Limoges, France
Daniel Bates Colorado State University, USA
Johannes Bluemlein DESY, Germany
Daniel Brake University of Notre Dame, USA
Bruno Buchberger Johannes Kepler University Linz and RISC, Austria
Thomas Cluzeau University of Limoges, France
Wolfram Decker University of Kaiserslautern, Germany
Claus Fieker University of Kaiserslautern, Germany
Ambros M. Gleixner Zuse Institute Berlin, Germany
Gert-Martin Greuel University of Kaiserslautern, Germany
Jonathan Hauenstein University of Notre Dame, USA
Max Horn University of Giessen, Germany
Tudor Jebelean Johannes Kepler University Linz and RISC, Austria
Fredrik Johansson Inria and Institut de Mathématiques de Bordeaux, France
Michael Joswig TU Berlin, Germany
Mastaka Kaneko Toho University, Japan
Christian Kirches IWR Heidelberg and TU Braunschweig, Germany
Michael Kohlhase Jacobs University Bremen, Germany
Ulrich Kortenkamp University of Potsdam, Germany
Christoph Koutschan RICAM, Austria
Temur Kutsia Johannes Kepler University Linz and RISC, Austria
Suzy S. Maddah Fields Institute, Canada
John Mitchell Rensselaer Polytechnic Institute, USA
Chenqi Mou Beihang University, China

Peter Paule (Chair) Johannes Kepler University Linz and RISC, Austria
Marc Pfetsch TU Darmstadt, Germany
Gerhard Pfister University of Kaiserslautern, Germany
Ted Ralphs Lehigh University, USA
Carsten Schneider Johannes Kepler University Linz and RISC, Austria
Andrew Sommese

(Chair)
University of Notre Dame, USA

Wolfram Sperber FIZ Karlsruhe, Germany
Setsuo Takato Toho University, Japan
Olaf Teschke FIZ Karlsruhe, Germany
Vladimir Voevodsky IAS Princeton, USA
Dongming Wang Beihang University, China
Stephen Watt University of Waterloo, Canada
Wolfgang Windsteiger Johannes Kepler University Linz and RISC, Austria

Topical Session Organizers

1. Univalent Foundations and Proof Assistants
(Vladimir Voevodsky)

2. Software for Mathematical Reasoning and Applications
(Bruno Buchberger, Tudor Jebelean, Temur Kutsia, and Wolfgang Windsteiger)

3. Computational Number Theory Meets Computational Algebraic Geometry
(Wolfram Decker and Claus Fieker)

4. Algebraic Geometry in Applications
(Gerhard Pfister)

5. Computational Aspects of Homological Algebra, Group,
and Representation Theory
(Mohamed Barakat and Max Horn)

6. Software of Polynomial Systems
(Chenqi Mou and Dongming Wang)

7. Software for the Symbolic Study of Functional Equations
(Moulay A. Barkatou, Thomas Cluzeau, and Suzy S. Maddah)

8. Symbolic Integration
(Christoph Koutschan)

9. Symbolic Computation and Elementary Particle Physics
(Carsten Schneider and Johannes Bluemlein)

10. Software for Numerically Solving Polynomial Systems
(Daniel Bates, Jonathan Hauenstein, and Daniel Brake)

11. High-Precision Arithmetic, Effective Analysis, and Special Functions
(Fredrik Johansson)

12. Mathematical Optimization
(Ambros M. Gleixner, Christian Kirches, John Mitchell, and Ted Ralphs)

13. Interactive Operation to Scientific Artwork and Mathematical Reasoning
(Setsuo Takato, Mastaka Kaneko, and Ulrich Kortenkamp)

XII Organization

14. Information Services for Mathematics: Software, Services, Models, and Data
(Wolfram Sperber and Michael Kohlhase)

15. SemDML: Towards a Semantic Layer of a World Digital Mathematical Library
(Michael Kohlhase, Olaf Teschke, and Stephen Watt)

16. Polyhedral Methods in Geometry and Optimization
(Michael Joswig and Marc Pfetsch)

17. General Session
(Gert-Martin Greuel, Peter Paule, and Andrew Sommese)

Local Committee

Thorsten Koch (Chair) Zuse Institute Berlin, Germany
Wolfgang Dalitz Zuse Institute Berlin, Germany
Ambros M. Gleixner Zuse Institute Berlin, Germany
Winfried Neun Zuse Institute Berlin, Germany

Advisory Board

Nobuki Takayama
(Chair)

Kobe University, Japan

Chee Yap NY University, USA
Komei Fukuda ETH Zurich, Switzerland
Joris Van der Hoeven École Polytechnique, France
Michael Joswig TU Berlin, Germany
Hoon Hong NC State University, USA
Masayuki Noro Kobe University, Japan
Deok-Soo Kim Hanyang University, South Korea

Sponsoring Institutions

Research Center Matheon – Mathematics for key technologies
MODAL - Mathematical Optimization and Data Analysis Laboratories
GAMS Development Corporation
Gurobi Optimization
MOSEK ApS
Springer

Organization XIII

Abstracts of the Invited Talks

Invited Plenary Speakers and Talks

Invited Plenary Speakers

Wolfram Decker University of Kaiserslautern, Germany
Jack Dongarra University of Tennessee, USA
Vladimir Voevodsky IAS Princeton, USA
Stephen Watt University of Waterloo, Canada

Abstracts of Invited Plenary Talks

1. Current Challenges in the Development of Open Source Computer Algebra Software
Wolfram Decker (University of Kaiserslautern)

Computer algebra is facing new challenges as more and more of the abstract
concepts of pure mathematics are made constructive, with interdisciplinary methods
playing a significant role. On the mathematical side, while we wish to provide
cutting-edge techniques for applications in various areas, the implementation of an
advanced and more abstract computational machinery often depends on a long chain
of more specialized algorithms and efficient data structures at various levels. On the
software development side, for cross-border approaches to solving mathematical
problems, the efficient interaction of systems specializing in different areas is
indispensable. In this talk, I will report on ongoing collaboration between groups of
developers of several well-established open source computer algebra system
specializing in commutative algebra and algebraic geometry, group and represen-
tation theory, convex and polyhedral geometry, and number theory. The ultimate
goal of this collaboration is to integrate the systems, together with other packages
and libraries, into a next generation computer algebra system surpassing the
combined mathematical capabilities of the underlying systems.

2. With Extreme Scale Computing the Rules Have Changed
Jack Dongarra (University of Tennessee)

In this talk we will look at the current state of high performance computing and look
at the next stage of extreme computing. With extreme computing there will be
fundamental changes in the character of floating point arithmetic and data
movement. In this talk we will look at how extreme scale computing has caused
algorithm and software developers to changed their way of thinking on how to
implement and program certain applications.

3. UniMath - a library of mathematics formalized in the univalent style
Vladimir Voevodsky (IAS Princeton)

The univalent style of formalization of mathematics in the type theories such as the
ones used in Coq, Agda or Lean is based on the discovery in 2009 of a new class of
models of such type theories. These “univalent models” led to the new intuition that
resulted in the introduction into the type theory of the concept of h-level (homotopy
level). This most important concept implies in particular that to obtain good intuitive
behavior one should define propositions as types of h-level 1 and sets as types of
h-level 2. Instead of syntactic Prop one then defines a type hProp(U) - the type of
types of h-level 1 in the universe U and the type hSet(U) - the type of types of
h-level 2 in U. With types of h-level 1 and 2 one can efficiently formalize all of the
set-theoretic mathematics. With types of h-level 3 one can efficiently formalize
mathematics at the level of categories etc. Univalent style allows to directly
formalize constructive mathematics and to formalize classical mathematics by
adding the excluded middle axiom for types of h-level 1 and the axiom of choice for
types of h-level 2. UniMath is a growing library of constructive mathematics
formalized in the univalent style using a small subset of Coq language.

4. Toward an International Mathematical Knowledge Base
Stephen Watt (University of Waterloo)

The notion of a comprehensive digital mathematics library has been a dream for
some decades. More than in many other areas, results in mathematics have lasting
value – once proven, always true. It is not uncommon for a research article to have
primary references to work decades earlier. Another quality of mathematics is its
precision; there is a clarity to mathematical definitions and results. This makes
mathematics an ideal subject for mechanized treatment of knowledge. This talk shall
outline the challenges and opportunities in transforming the complete mathematical
literature into a knowledge base to be used by mathematicians and software systems
alike.

XVIII Invited Plenary Speakers and Talks

Contents

Invited Talk

With Extreme Scale Computing the Rules Have Changed 3
Jack Dongarra

Univalent Foundations and Proof Assistants

Some Wellfounded Trees in UniMath: Extended Abstract 9
Benedikt Ahrens and Anders Mörtberg

Exercising Nuprl’s Open-Endedness . 18
Vincent Rahli

Formalizing Double Groupoids and Cross Modules in the Lean
Theorem Prover . 28

Jakob von Raumer

Software for Mathematical Reasoning and Applications

Towards the Automatic Discovery of Theorems in GeoGebra 37
Miguel Abánades, Francisco Botana, Zoltán Kovács, Tomás Recio,
and Csilla Sólyom-Gecse

Automating Free Logic in Isabelle/HOL. 43
Christoph Benzmüller and Dana Scott

Efficient Knot Discrimination via Quandle Coloring with SAT and #-SAT. . . 51
Andrew Fish, Alexei Lisitsa, David Stanovský, and Sarah Swartwood

Interactive Proving, Higher-Order Rewriting, and Theory Analysis
in Theorema 2.0 . 59

Alexander Maletzky

Automated Deduction in Ring Theory . 67
Ranganathan Padmanabhan and Yang Zhang

Agent-Based HOL Reasoning . 75
Alexander Steen, Max Wisniewski, and Christoph Benzmüller

An Automated Deduction and Its Implementation for Solving Problem
of Sequence at University Entrance Examination. 82

Yumi Wada, Takuya Matsuzaki, Akira Terui, and Noriko H. Arai

http://dx.doi.org/10.1007/978-3-319-42432-3_1
http://dx.doi.org/10.1007/978-3-319-42432-3_2
http://dx.doi.org/10.1007/978-3-319-42432-3_3
http://dx.doi.org/10.1007/978-3-319-42432-3_4
http://dx.doi.org/10.1007/978-3-319-42432-3_4
http://dx.doi.org/10.1007/978-3-319-42432-3_5
http://dx.doi.org/10.1007/978-3-319-42432-3_6
http://dx.doi.org/10.1007/978-3-319-42432-3_7
http://dx.doi.org/10.1007/978-3-319-42432-3_8
http://dx.doi.org/10.1007/978-3-319-42432-3_8
http://dx.doi.org/10.1007/978-3-319-42432-3_9
http://dx.doi.org/10.1007/978-3-319-42432-3_10
http://dx.doi.org/10.1007/978-3-319-42432-3_11
http://dx.doi.org/10.1007/978-3-319-42432-3_11

Algebraic and Toric Geometry

Bad Primes in Computational Algebraic Geometry 93
Janko Böhm, Wolfram Decker, Claus Fieker, Santiago Laplagne,
and Gerhard Pfister

The Subdivision of Large Simplicial Cones in Normaliz 102
Winfried Bruns, Richard Sieg, and Christof Söger

Extending Singular with New Types and Algorithms 110
Hans Schönemann

Algebraic Geometry in Applications

3D Printing Dimensional Calibration Shape: Clebsch Cubic 117
Janko Böhm, Magdaleen S. Marais, and André F. van der Merwe

Decomposing Solution Sets of Polynomial Systems Using Derivatives. 127
Daniel A. Brake, Jonathan D. Hauenstein, and Alan C. Liddell Jr.

Calibration of Accelerometers and the Geometry of Quadrics 136
Laurent Evain

On the Feasibility of Semi-algebraic Sets in Poisson Regression 142
Thomas Kahle

Combinatorial and Geometric View of the System Reliability Theory 148
Fatemeh Mohammadi

Software of Polynomial Systems

Need Polynomial Systems Be Doubly-Exponential?. 157
James H. Davenport and Matthew England

On the Implementation of CGS Real QE . 165
Ryoya Fukasaku, Hidenao Iwane, and Yosuke Sato

Common Divisors of Solvable Polynomials in JAS 173
Heinz Kredel

An Online Computing and Knowledge Platform for Differential Equations. . . 181
Yinping Liu, Ruoxia Yao, Zhibin Li, Le Yang, and Zhian Zhang

Software for Numerically Solving Polynomial Systems

SIROCCO: A Library for Certified Polynomial Root Continuation 191
Miguel Ángel Marco-Buzunariz and Marcos Rodríguez

XX Contents

http://dx.doi.org/10.1007/978-3-319-42432-3_12
http://dx.doi.org/10.1007/978-3-319-42432-3_13
http://dx.doi.org/10.1007/978-3-319-42432-3_14
http://dx.doi.org/10.1007/978-3-319-42432-3_15
http://dx.doi.org/10.1007/978-3-319-42432-3_16
http://dx.doi.org/10.1007/978-3-319-42432-3_17
http://dx.doi.org/10.1007/978-3-319-42432-3_18
http://dx.doi.org/10.1007/978-3-319-42432-3_19
http://dx.doi.org/10.1007/978-3-319-42432-3_20
http://dx.doi.org/10.1007/978-3-319-42432-3_21
http://dx.doi.org/10.1007/978-3-319-42432-3_22
http://dx.doi.org/10.1007/978-3-319-42432-3_23
http://dx.doi.org/10.1007/978-3-319-42432-3_24

An Implementation of Exact Mixed Volume Computation 198
Anders Nedergaard Jensen

Primary Decomposition in SINGULAR . 206
Hans Schönemann

Border Basis for Polynomial System Solving and Optimization. 212
Philippe Trébuchet, Bernard Mourrain, and Marta Abril Bucero

High-Precision Arithmetic, Effective Analysis and Special Functions

Recursive Double-Size Fixed Precision Arithmetic 223
Alexis Breust, Christophe Chabot, Jean-Guillaume Dumas,
Laurent Fousse, and Pascal Giorgi

CAMPARY: Cuda Multiple Precision Arithmetic Library and Applications . . . 232
Mioara Joldes, Jean-Michel Muller, Valentina Popescu,
and Warwick Tucker

On the Computation of Confluent Hypergeometric Functions for Large
Imaginary Part of Parameters b and z . 241

Guillermo Navas-Palencia and Argimiro Arratia

Mathematical Optimization

Parallelization of the FICO Xpress-Optimizer . 251
Timo Berthold, James Farmer, Stefan Heinz, and Michael Perregaard

PolySCIP . 259
Ralf Borndörfer, Sebastian Schenker, Martin Skutella, and Timo Strunk

Advanced Computing and Optimization Infrastructure for Extremely
Large-Scale Graphs on Post Peta-Scale Supercomputers 265

Katsuki Fujisawa, Toshio Endo, and Yuichiro Yasui

DSJM: A Software Toolkit for Direct Determination of Sparse
Jacobian Matrices . 275

Mahmudul Hasan, Shahadat Hossain, Ahamad Imtiaz Khan,
Nasrin Hakim Mithila, and Ashraful Huq Suny

Software for Cut-Generating Functions in the Gomory–Johnson Model
and Beyond . 284

Chun Yu Hong, Matthias Köppe, and Yuan Zhou

Mixed Integer Nonlinear Program for Minimization of Akaike’s
Information Criterion . 292

Keiji Kimura and Hayato Waki

Contents XXI

http://dx.doi.org/10.1007/978-3-319-42432-3_25
http://dx.doi.org/10.1007/978-3-319-42432-3_26
http://dx.doi.org/10.1007/978-3-319-42432-3_27
http://dx.doi.org/10.1007/978-3-319-42432-3_28
http://dx.doi.org/10.1007/978-3-319-42432-3_29
http://dx.doi.org/10.1007/978-3-319-42432-3_30
http://dx.doi.org/10.1007/978-3-319-42432-3_30
http://dx.doi.org/10.1007/978-3-319-42432-3_31
http://dx.doi.org/10.1007/978-3-319-42432-3_32
http://dx.doi.org/10.1007/978-3-319-42432-3_33
http://dx.doi.org/10.1007/978-3-319-42432-3_33
http://dx.doi.org/10.1007/978-3-319-42432-3_34
http://dx.doi.org/10.1007/978-3-319-42432-3_34
http://dx.doi.org/10.1007/978-3-319-42432-3_35
http://dx.doi.org/10.1007/978-3-319-42432-3_35
http://dx.doi.org/10.1007/978-3-319-42432-3_36
http://dx.doi.org/10.1007/978-3-319-42432-3_36

PYSCIPOPT: Mathematical Programming in Python with the SCIP
Optimization Suite . 301

Stephen Maher, Matthias Miltenberger, João Pedro Pedroso,
Daniel Rehfeldt, Robert Schwarz, and Felipe Serrano

A First Implementation of ParaXpress: Combining Internal and External
Parallelization to Solve MIPs on Supercomputers . 308

Yuji Shinano, Timo Berthold, and Stefan Heinz

Interactive Operation to Scientific Artwork and Mathematical Reasoning

CindyJS: Mathematical Visualization on Modern Devices 319
Martin von Gagern, Ulrich Kortenkamp, Jürgen Richter-Gebert,
and Michael Strobel

CindyJS Plugins: Extending the Mathematical Visualization Framework 327
Martin von Gagern and Jürgen Richter-Gebert

Generating Data for 3D Models . 335
Naoki Hamaguchi and Setsuo Takato

The Actual Use of KETCindy in Education . 342
Masataka Kaneko

Cooperation of KeTCindy and Computer Algebra System 351
Shigeki Kobayashi and Setsuo Takato

CindyGL: Authoring GPU-Based Interactive Mathematical Content 359
Aaron Montag and Jürgen Richter-Gebert

Theoretical Physics, Applied Mathematics and Visualizations 366
Haiduke Sarafian

What is and How to Use KETCindy – Linkage Between Dynamic
Geometry Software and LATEX Graphics Capabilities – 371

Setsuo Takato

How to Generate Figures at the Preferred Position of a TeX Document 380
Hisashi Usui

The Programming Style for Drawings from KETpic to KETCindy 386
Satoshi Yamashita

XXII Contents

http://dx.doi.org/10.1007/978-3-319-42432-3_37
http://dx.doi.org/10.1007/978-3-319-42432-3_37
http://dx.doi.org/10.1007/978-3-319-42432-3_38
http://dx.doi.org/10.1007/978-3-319-42432-3_38
http://dx.doi.org/10.1007/978-3-319-42432-3_39
http://dx.doi.org/10.1007/978-3-319-42432-3_40
http://dx.doi.org/10.1007/978-3-319-42432-3_41
http://dx.doi.org/10.1007/978-3-319-42432-3_42
http://dx.doi.org/10.1007/978-3-319-42432-3_43
http://dx.doi.org/10.1007/978-3-319-42432-3_44
http://dx.doi.org/10.1007/978-3-319-42432-3_45
http://dx.doi.org/10.1007/978-3-319-42432-3_46
http://dx.doi.org/10.1007/978-3-319-42432-3_46
http://dx.doi.org/10.1007/978-3-319-42432-3_46
http://dx.doi.org/10.1007/978-3-319-42432-3_46
http://dx.doi.org/10.1007/978-3-319-42432-3_46
http://dx.doi.org/10.1007/978-3-319-42432-3_47
http://dx.doi.org/10.1007/978-3-319-42432-3_48

Information Services for Mathematics: Software, Services, Models, and Data

The Software Portal swMATH: A State of the Art Report and Next Steps . . . 397
Hagen Chrapary and Yue Ren

The polymake XML File Format . 403
Ewgenij Gawrilow, Simon Hampe, and Michael Joswig

Semantic-Aware Fingerprints of Symbolic Research Data. 411
Hans-Gert Gräbe

Linking Mathematical Software in Web Archives . 419
Helge Holzmann, Mila Runnwerth, and Wolfram Sperber

Mathematical Models: A Research Data Category? 423
Thomas Koprucki and Karsten Tabelow

Mathematical Research Data and Information Services. 429
Wolfram Sperber

SemDML: Towards a Semantic Layer of a World Digital
Mathematical Library

Stam’s Identities Collection: A Case Study for Math Knowledge Bases 437
Bruno Buchberger

The GDML and EuKIM Projects: Short Report on the Initiative 443
Bruno Buchberger

Math-Net.Ru Video Library: Creating a Collection of Scientific Talks 447
Dmitry Chebukov, Alexander Izaak, Olga Misyurina, and Yuri Pupyrev

The SMGloM Project and System: Towards a Terminology and Ontology
for Mathematics . 451

Deyan Ginev, Mihnea Iancu, Constantin Jucovshi, Andrea Kohlhase,
Michael Kohlhase, Akbar Oripov, Jürgen Schefter, Wolfram Sperber,
Olaf Teschke, and Tom Wiesing

The Effort to Realize a Global Digital Mathematics Library 458
Patrick Ion

Formula Semantification and Automated Relation Finding in the On-Line
Encyclopedia for Integer Sequences. 467

Enxhell Luzhnica and Michael Kohlhase

Mathematical Videos and Affiliated Supplementaries in TIB’s AV Portal 476
Mila Runnwerth

Contents XXIII

http://dx.doi.org/10.1007/978-3-319-42432-3_49
http://dx.doi.org/10.1007/978-3-319-42432-3_50
http://dx.doi.org/10.1007/978-3-319-42432-3_51
http://dx.doi.org/10.1007/978-3-319-42432-3_52
http://dx.doi.org/10.1007/978-3-319-42432-3_53
http://dx.doi.org/10.1007/978-3-319-42432-3_54
http://dx.doi.org/10.1007/978-3-319-42432-3_55
http://dx.doi.org/10.1007/978-3-319-42432-3_56
http://dx.doi.org/10.1007/978-3-319-42432-3_57
http://dx.doi.org/10.1007/978-3-319-42432-3_58
http://dx.doi.org/10.1007/978-3-319-42432-3_58
http://dx.doi.org/10.1007/978-3-319-42432-3_59
http://dx.doi.org/10.1007/978-3-319-42432-3_60
http://dx.doi.org/10.1007/978-3-319-42432-3_60
http://dx.doi.org/10.1007/978-3-319-42432-3_61

Miscellanea

Complexity of Integration, Special Values, and Recent Developments 485
James H. Davenport

An Algorithm to Find the Link Constrained Steiner Tree
in Undirected Graphs. 492

Luigi Di Puglia Pugliese, Manlio Gaudioso, Francesca Guerriero,
and Giovanna Miglionico

The Pycao Software for 3D-Modelling. 498
Laurent Evain

Normal Forms for Operators via Gröbner Bases in Tensor Algebras 505
Jamal Hossein Poor, Clemens G. Raab, and Georg Regensburger

Robust Construction of the Additively-Weighted Voronoi Diagram
via Topology-Oriented Incremental Algorithm . 514

Mokwon Lee, Kokichi Sugihara, and Deok-Soo Kim

Mathematical Font Art . 522
Joris van der Hoeven

Author Index . 531

XXIV Contents

http://dx.doi.org/10.1007/978-3-319-42432-3_62
http://dx.doi.org/10.1007/978-3-319-42432-3_63
http://dx.doi.org/10.1007/978-3-319-42432-3_63
http://dx.doi.org/10.1007/978-3-319-42432-3_64
http://dx.doi.org/10.1007/978-3-319-42432-3_65
http://dx.doi.org/10.1007/978-3-319-42432-3_66
http://dx.doi.org/10.1007/978-3-319-42432-3_66
http://dx.doi.org/10.1007/978-3-319-42432-3_67

Invited Talk

With Extreme Scale Computing
the Rules Have Changed

Jack Dongarra1,2,3(B)

1 University of Tennessee, Knoxville, USA
dongarra@icl.utk.edu

2 Oak Ridge National Laboratory, Oak Ridge, USA
3 The University of Manchester, Manchester, UK

1 Challenges

Science priorities lead to scientific models, and models are implemented in the
form of algorithms. Algorithm selection is based on various criteria, such as accu-
racy, verification, convergence, performance, parallelism, and scalability. Models
and associated algorithms are not selected in isolation but must be evaluated
in the context of the existing computer hardware environment. Algorithms that
perform well on one type of computer hardware may become obsolete on newer
hardware, so selections must be made carefully and may change over time. Mov-
ing forward to exascale will put heavier demands on algorithms in at least two
areas: the need for increasing amounts of data locality in order to perform com-
putations efficiently, and the need to obtain much higher factors of fine-grained
parallelism as high-end systems support increasing numbers of compute threads.
As a consequence, parallel algorithms must adapt to this environment, and new
algorithms and implementations must be developed to exploit the computational
capabilities of the new hardware. The transition from current sub-petascale and
petascale computing to exascale computing will be at least as disruptive as the
transition from vector to parallel computing in the 1990’s.

We now describe some of the particular challenges ahead in the use of high
performance computers.

1.1 New Algorithms for Multicore Architectures

Multicore processors, in which a single chip contains two or more independent
processing units called cores, are now ubiquitous on the desktop through to HPC
systems. Scalable multicore systems bring a growing cost of communication rel-
ative to computation. Within a node (a single multicore processor) data transfer
between cores is relatively inexpensive, but across nodes the cost of data trans-
fer is becoming very large. This trend is addressed by new approaches such as
communication-avoiding algorithms, algorithms that support simultaneous com-
putation and communication, and algorithms that vectorize well and have a large
volume of functional parallelism.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 3–6, 2016.
DOI: 10.1007/978-3-319-42432-3 1

4 J. Dongarra

1.2 Adaptive Response to Load Imbalance

Adaptive multiscale algorithms are an important part of many applications
because they apply computational power precisely where it is needed. However,
they introduce dynamically changing computation that results in load imbal-
ances from a static distribution of tasks. As we move towards systems with
billions of processors, even naturally load-balanced algorithms on homogeneous
hardware will present many of the same daunting problems with adaptive load
balancing that are observed in today’s adaptive codes. For example, software-
based recovery mechanisms for fault-tolerance or energy-management will create
substantial load-imbalances as tasks are delayed by rollback to a previous state
or correction of detected errors. Scheduling based on a directed acyclic graphs
(DAGs) also requires new approaches to optimize resource utilization without
compromising spatial locality. These challenges require development and deploy-
ment of sophisticated software approaches to rebalance computation dynamically
in response to changing workloads and conditions of the operating environment.

1.3 Multiple Precision Algorithms and Software

One instance of the increasingly adaptive nature of libraries is the capability
to recognize and exploit the presence of mixed precision arithmetic. Motiva-
tion comes from the fact that, on modern architectures, 32-bit (single precision)
floating-point operations can execute at least twice as fast as 64-bit (double
precision) operations. The performance of algorithms for solving linear systems
or computing eigenvalues or singular values can be significantly enhanced by
applying a given method in single precision then using a few steps of in double
precision to elevate the accuracy of the result from single to double precision.
This technique can be applied not only to conventional processors but also to
other technologies such as graphics processing units (GPUs), and so can more
effectively utilize heterogeneous hardware. The use of mixed precision exploits
not only the greater speed of single precision arithmetic but also the reduce
storage and memory traffic of single versus double precision arrays.

1.4 Communication Avoiding Algorithms

Algorithmic complexity is usually expressed in terms of the number of operations
performed rather than the quantity of data movement within memory. However,
in modern systems memory movement is increasingly expensive compared with
the cost of computation. It is therefore necessary to develop algorithms that
reduce communication to a minimum while not unduly increasing the amount
of computation. A general approach is to derive bandwidth and latency lower
bounds for various dense and sparse linear algebra algorithms on parallel and
sequential machines, e.g., by extending the well-known lower bounds for the
usual O(n3) matrix multiplication algorithm, and then to seek new algorithms
that (nearly) attain these lower bounds. The study of communication-avoiding
algorithms is in it infancy, but it is already leading to new algorithmic ideas and
approaches.

With Extreme Scale Computing the Rules Have Changed 5

1.5 Auto-Tuning

Numerical libraries need to have the ability to adapt to the possibly hetero-
geneous environment in which they have to operate in order to achieve good
performance, energy efficiency, load balancing, and so on. The objective is to
provide a consistent library interface that remains the same for users indepen-
dent of scale and processor heterogeneity, but which achieves good performance
and efficiency by binding to different underlying code, depending on the con-
figuration. In addition, the auto-tuning has to be extended to frameworks that
go beyond library limitations, and are able to optimize data layout (such as
blocking strategies for sparse matrix kernels), stencil auto-tuners (since stencil
kernels, which update array elements according to a fixed pattern, are diverse
and not amenable to library calls) and even tuning of the optimization strategy
for multigrid solvers (optimizing the transition between the multigrid coarsening
cycle and course grid solver to minimize run time). Adding heuristic search tech-
niques and combining them with traditional compiler techniques will enhance
the ability to address generic problems extending beyond linear algebra.

1.6 Fault Tolerance and Robustness for Large-Scale Systems

Modern PCs may run for weeks without rebooting and most data servers are
expected to run for years. However, because of their scale and complexity, today’s
supercomputers run for only a few days before a reboot is needed. The major
challenge in fault tolerance is that faults in extreme scale systems, with their
millions of processors, will be continuous rather than exceptional events. This
requires a major shift from today’s software infrastructure. On today’s super-
computers every failure kills the application running on the affected resources.
These applications have to be restarted from the beginning or from their last
checkpoint. The checkpoint/restart technique will not scale to highly parallel
systems because a new fault may occur before the application can be restarted,
causing the application to become stuck in a state of constant restarts. New fault
tolerant paradigms need to be developed and integrated into both the system
software and user applications.

1.7 Building Energy Efficiency into Algorithm Foundations

Energy consumption is becoming a major issue in HPC, with energy costs for
the some of the largest machines already exceeding a million dollars per year.
Power and energy consumption must now be added to the traditional goals of
algorithm design, namely correctness and performance. The emerging metric of
merit is performance per watt. Energy reduction depends on software as well as
hardware., so it is essential to build power and energy awareness, control and
efficiency into the foundations of numerical libraries.

6 J. Dongarra

1.8 Sensitivity Analysis

As the high fidelity solution of models becomes possible, the next challenge is
to study the sensitivity of the model to parameter variability and uncertainty
and to seek an optimal solution over a range of parameter values. The most
basic form, the forward method for either local or global sensitivity analysis,
simultaneously runs many instances of the model or its linearization, leading to
an embarrassingly parallel execution model. Such high-throughput computing
tasks are well suited to using spare cycles on pools of PCs, for example running
at night or weekends.

2 Outlook

The move to extreme-scale computing will require collaboration between hard-
ware architects, systems software experts, designers of programming models, and
implementers of the science applications that provide the rationale for these sys-
tems. The various issues discussed in this article will need to be considered from
a whole system perspective, and the different tools will need to interoperate. As
new ideas and approaches are identified and pursued, some will fail. As with past
experience, there may be breakthroughs in hardware technologies that result in
different micro and macro architectures becoming feasible and desirable, and
these will require rethinking of algorithms and system software.

Univalent Foundations
and Proof Assistants

Some Wellfounded Trees in UniMath

Extended Abstract

Benedikt Ahrens(B) and Anders Mörtberg

Institute for Advanced Study, Princeton, USA
{ahrens,amortberg}@ias.edu

Abstract. UniMath, short for “Univalent Mathematics”, refers to both
a language (a.k.a. a formal system) for mathematics, as well as to a
computer-checked library of mathematics formalized in that system. The
UniMath library, under active development, aims to coherently inte-
grate machine-checked proofs of mathematical results from many dif-
ferent branches of mathematics.

The UniMath language is a dependent type theory, augmented by the
univalence axiom. One goal is to keep the language as small as possible,
to ease verification of the theory. In particular, general inductive types
are not part of the language.

In this work, we partially remedy this lack by constructing some
inductive (families of) sets. This involves a formalization of a standard
category-theoretic result on the construction of initial algebras, as well
as a mechanism to conveniently use the inductive sets thus obtained.

The present work constitutes one part of a construction of a frame-
work for specifying, via a signature, programming languages with binders
as nested datatypes. To this end, we are going to combine our work with
previous work by Ahrens and Matthes (itself based on work by Matthes
and Uustalu) on an axiomatisation of substitution for languages with
variable binding. The languages specified via the framework will auto-
matically be equipped with the structure of a monad, where the monadic
operations and axioms correspond to a well-behaved substitution opera-
tion.

Keywords: Proof assistant · Univalent type theory · Inductive
datatypes · UniMath · Initial algebras

1 Introduction

The term “UniMath”, short for “Univalent Mathematics”, refers to both a lan-
guage (a.k.a. a formal system) for mathematics, as well as to a computer-checked
library of mathematics formalized in that system.

The UniMath language is meant to be a “core” univalent type theory, in
the sense that its set of basic, primitive, constructions is minimal. In short,
it is an intensional Martin-Löf type theory with dependent sums, dependent
products, identity types, natural numbers, and a universe U of types for which
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 9–17, 2016.
DOI: 10.1007/978-3-319-42432-3 2

10 B. Ahrens and A. Mörtberg

the univalence axiom is assumed. For a precise description, we refer to [12] and
[4, Sect. 2.1]. We only point out one important definition: among all types of U ,
some can be shown to satisfy a principle called “uniqueness of identity”. This
principle can be defined (and, for some types, proved) within type theory as

uip(X) :=
∏

(x:X)

∏

(p:x=x)

p = refl(x) .

The type of all types that satisfy uip forms a “subuniverse” of the universe U .
This subuniverse is the type of objects of a category Set where arrows are given
by type-theoretic functions; this category will be of interest in the following.

The purpose of minimality of the underlying theory of UniMath is twofold:

– any construction in the UniMath language should embed directly into any other
computer proof assistant implementing a univalent type theory, in particular,
into the newly developed cubical type theory [6,8];

– the verification of the consistency of UniMath should be as easy as possible.

One language feature that has been deliberately omitted from UniMath, but
which is usually present in other proof assistants, is general inductive and coin-
ductive datatypes.

Inductive datatypes are finite data structures that can be used to store infor-
mation in a systematic manner. Examples include the data structures of lists
(over a given base type) and n-ary trees, but also more complicated, hetero-
geneous families of data types, used to represent programming languages with
variable binding such as the lambda calculus—see [7] for such a representation.

Coinductive datatypes are not necessarily finite data structures. An example
of such a datatype is the type of streams (a.k.a. infinite lists) of elements of a
given base type.

In the semantics of type theory, inductive and coinductive types correspond to
intial algebras and terminal coalgebras in a suitable sense: the usual 1-categorical
notions only apply to types that are discrete, that is, to types that satisfy unique-
ness of identity, or, equivalently, Axiom K. Indeed, the “subuniverse” of discrete
types of a fixed universe of types constitutes a category (as defined in [3]), and
inductive and coinductive sets are reasonably defined as initial algebras and
terminal coalgebras of endofunctors on that category.

The present work is only concerned with such discrete types, and we do not
attempt to construct types that are not sets.

The characterisation of inductive and coinductive types as initial algebras
and terminal coalgebras is completely dual; this suggests that their syntactic
behaviour is dual as well. However, that impression is somewhat deceptive:

As for coinductive datatypes—in the principled formulation of (indexed) M-
types—, those are derivable in the UniMath language [2]. However, the expected
computation rules only hold up to propositional identity, not judgmentally, due
to the implementation of function extensionality as an axiom. We expect the
computation rules to hold judgmentally for the same construction done in cubical

Some Wellfounded Trees in UniMath 11

type theory, a type theory where function extensionality is provable instead of
an axiom.

As for inductive types, the construction of a class of them is the subject of the
work we report on in this extended abstract: In the present work, we show that
a class of inductive “sets” is derivable in UniMath from just the “prototypical”
inductive set of natural numbers. This is done by combining two results:

– a classical category-theoretic result saying that an initial algebra of an ω-
cocontinuous functor can be constructed as colimit of a certain chain [1]

– the constructibility of colimits in the category of sets (a.k.a. discrete types) in
UniMath as a consequence of the constructibility of set quotients.

The construction of set level quotients was done by Voevodsky [12]. It is a
prime example of the new possibilities that the univalence axiom and its con-
sequences provide for the formalization of (set-level) mathematics compared to
the type theories implemented by Coq or Agda without the univalence axiom.

Our contribution consists of a formalization of

– some well-known theorems in category theory about existence and preservation
of (co)limits

– the construction of colimits from quotients in the category of sets
– proofs that various functors are ω-cocontinuous.

and combining those results in order to obtain some inductive sets in UniMath.
As such, the results presented in this article are not surprising at all—it is

our hope, however, that their formalization will be useful.

1.1 Related work

We do not give, in this extended abstract, a full description of the univalent
foundations; instead, we point to Voevodsky’s article [12]. A brief introduction
to univalent foundations is also given in [4, Sect. 2.1].

Most of the mathematics formalized in this project concerns category theory;
category theory in univalent foundations has been studied in [3]. The distinc-
tion between precategories and (univalent) categories emphasized there is not of
importance in our project.

A characterisation of inductive types in type theory with function exten-
sionality (not necessarily with the univalence axiom) has been studied in [5].
In contrast to the present work, their goal is not the construction of inductive
sets, but a proof of equivalence of several different definitions, given within type
theory, of inductive types.

In [4], the authors formalize, in UniMath, the notion of “heterogeneous substi-
tution system”, a categorical notion axiomatizing substitution for programming
languages with variable binding. One of the main results formalized there says
that any initial algebra of a given functor gives rise to a monad. The existence
of inductive sets (or, more generally, existence of initial algebras for a given
functor) is taken as a hypothesis in that result. We can plug our construction of
inductive sets into that theorem and thus, e.g., obtain a monad structure on the
lambda calculus, see the example below.

12 B. Ahrens and A. Mörtberg

2 Overview of the Mathematics Formalized
in This Project

In this section we give an overview of the mathematical results that we have
formalized in the course of this project. It is outside the scope of this extended
abstract to give a complete list; for details follow the pointers given in Sect. 3.

We also explain how those results help in the construction of inductive sets.
We are not concerned here with giving a general definition of inductive types,

nor do we give a precise specification of the class of inductive types that we
construct. This is due to the fact that the class is easily extensible by extending
the library of mathematical theorems formalized in our library, a statement that
we illustrate with the examples in this section.

2.1 Inductive Sets as Initial Algebras

In the present work, we do not attempt to construct general inductive types, but
only inductive sets. We thus define

Definition 1. The inductive set generated by an endofunctor F : Set → Set is
the initial algebra of F .

This definition is expressible within type theory, we refer to [3] for details. The
use of the definite article (“the initial algebra”) is justified by the fact that any
two initial algebras are isomorphic, and hence their carriers are propositionally
equal as a consequence of the univalence axiom.

Here, the category Set is the category the objects of which are discrete types
of a fixed universe. It would thus be more precise to call the category Set(U),
where U is the fixed universe.

An example of an inductive set is the set of natural numbers, which is an
initial algebra of the functor F (X) := 1 + X.

Another example is the inductive set of lists of elements of a fixed base set
A. The defining endofunctor is given by

FA(X) := 1 + A × X .

There are more complicated inductive definitions, examples of which are
used to model programming languages with variable binding [7]. We call those
inductive families:

Definition 2. The inductive family of sets generated by an endofunctor F :
[Set,Set] → [Set,Set] is the initial algebra of F .

An example of an inductive family is given by the datatype of untyped lambda
terms with an algebraic variant of De Bruijn variables—see [7] for an explanation.
The functor Λ : [Set,Set] → [Set,Set] specifying this datatype is given by

Λ(G) := Id + G × G + G ◦ option .

Here, the functor option : Set → Set is defined on objects by option(X) := 1+X.

Some Wellfounded Trees in UniMath 13

2.2 Existence of Initial Algebras

Obviously, not every functor as above gives rise to an initial algebra. The follow-
ing theorem, due to Adámek [1], is our main tool for the construction of initial
algebras.

Theorem 1. (existence of initial algebras of ω-cocontinuous functors).
Let F : C → C be an ω-cocontinuous endofunctor, i.e., an endofunctor that
preserves colimits of chains A0 → A1 → A2 → Then, provided its existence,
the colimit of

0 !−→ F0 F !−→ F 20 F 2!−→ . . .

is an initial algebra of F .

The above theorem is applicable to construct inductive sets as in Definition 1
as per the following lemma:

Lemma 1. The category Set has all colimits.

The colimits in the category Set are given by the usual formula: For a diagram
D, its colimit is given by ⎛

⎝
∑

g:G

D(g)

⎞

⎠ / ∼

with ∼ being the smallest equivalence relation containing the relation

(g, x) ∼′ (g′, y) iff ∃e : g → g′ with D(e)(x) = y .

It is in the definition of this colimit that the univalence axiom helps: as shown
by Voevodsky [12], set-level quotients of arbitrary types, but in particular of sets,
modulo an equivalence relation, can be constructed in univalent type theory.

The construction of inductive families as in Definition 2 is helped by the
lifting of colimits to functor categories:

Lemma 2. If A has all colimits, then also [C,A] has all colimits.

However, Theorem 1 only guarantuees the existence of initial algebras of ω-
cocontinuous functors. This is discussed in the next section.

2.3 Preservation of Colimits

While Theorem 1 is crucial for us, its formulation and proof do not constitute the
bulk of work necessary for the construction of inductive sets. Instead, it is the
proof that various functors are ω-cocontinuous—hypothesis of Theorem1—that
requires most of our time and efforts.

Fortunately, there is a class of endofunctors on categories with binary prod-
ucts and coproducts that is built from a small set of constructions, where each

14 B. Ahrens and A. Mörtberg

construction is, or preserves, ω-cocontinuity. This class consists of “finite poly-
nomials” of the general form

F (X) = B0 + B1X + B2X
2 + . . . + BnXn .

Our first example, the datatype of natural numbers, is given by such a finite
polynomial, as is the second example of lists of elements of a given set A.

In order to show that such functors are ω-cocontinuous, it is sufficient to
show that F + G and F × G are ω-cocontinuous whenever F and G are, and
that constant functors and the identity functor are ω-cocontinuous. We omit the
precise statements, and pass to the more interesting situation of heterogeneous
datatypes.

Heterogeneous datatypes are specified by endofunctors on functor categories.
More specifically, what makes them heterogeneous is a “summand” of the form

FK(X) := X ◦ K

for an endofunctor K. In the case of the example of the lambda calculus, K =
option is the addition of a distinguished variable in the “context”.

The ω-cocontinuity of the functor FK is ensured as long as the target category
has limits. More precisely:

Theorem 2 [10, Sect. X.3]. Let K : M → C be a functor, and let A be a category
with (specified) limits. Then the functor

AK : [C,A] → [M,A] , F �→ F ◦ K

is a left adjoint (a.k.a., global right Kan extensions along K exist).

Theorem 3 [10, Sect. V.5]. If F : C → A is a left adjoint, then it preserves
any colimit.

Combining those two results, we obtain that the functor FK preserves colim-
its, in particular, it is ω-cocontinuous. This result hence allows the construction
of heterogeneous datatypes in UniMath.

We note that a more direct proof of the fact that FK preserves colimits is
also possible. However, the construction of right Kan extensions is important
also in the context of the related project [4].

Every summand of the functor Λ above corresponds to one language con-
structor. Note that a generalization to infinitely many summands is straightfor-
ward, so that languages with infinitely many language constructors can also be
modeled by our inductive families of sets.

2.4 Connection to Work on Heterogeneous Substitution Systems

Matthes and Uustalu [11] introduce the notion of (heterogeneous) substitution
system in order to give a categorical axiomatisation of substitution for languages
with variable binding, such as the lambda calculus. Ahrens and Matthes [4]

Some Wellfounded Trees in UniMath 15

extend the axiomatisation by devising a notion of morphism of substitution
systems, and formalize results of [11] as well as some new results in UniMath. One
main result formalized in [4] equips a given initial algebra—whose existence is
assumed—of an endofunctor on functor categories with a substitution structure
[4, Theorem 28], and shows that the resulting substitution system is initial in a
suitable category [4, Theorem 29].

We instantiate Theorem 28 of [4] with inductive families of sets, e.g., the
lambda calculus specified by the functor Λ, and thus obtain a monad structure
on that inductive family for free. Afterwards, we implement a convenient way of
specifying languages via a syntactic notion of signature, where, e.g., the lambda
calculus is specified by the signature {[0, 0], [1]}. Here, the numbers indicate
the number of variables bound in each argument of the corresponding language
constructor. We hence obtain a framework which allows to concisely specify
a programming language with binders, and which, from such a specification,
automatically produces a certified formalization of that language.

While the property of being an initial algebra is for free and automatic for
the languages obtained via the machinery we have formalized, we do not know at
the moment of an automated way to generate, from initiality, the type-theoretic
constructors and suitable recursion schemes. Doing this automatically probably
requires some engineering on the meta-level of the proof assistant Coq, e.g.,
writing a plugin to that program.

Details about the project sketched in this section will be explained in a
forthcoming article.

3 Some Details on the Formalization

In practice, the UniMath language is given by a subset of the language imple-
mented in the proof assistant Coq. It is up to the formalizers to make sure that
they respect this restriction—there is no mechanic check at the moment. Formal-
izing in UniMath hence consists in writing Coq files, using only the constructions
mentioned in the introduction as being part of the UniMath language. At the
time of writing, the UniMath library of formalized mathematics consists of about
46k lines of code. The library of formalized mathematics written for this project
consists of approximately 4500 lines of code. The code has been integrated into
an already existing library of category theory in UniMath.

In general, there are two ways of implementing a language construct:
Firstly, it can be internal to the language, as in the present work. Then, the

construct is merely an abbreviation for its expansion into the primitive notions.
Secondly, the implementation can be external, i.e., on the meta-level. This

option allows to refer to concepts that cannot be referred to within the language,
such as convertibility (a.k.a. judgmental equality). For instance, the native induc-
tive types of the Coq proof assistant are implemented on the meta-level.

Our approach has two disadvantages compared to an implementation on the
meta-level of inductive sets:

16 B. Ahrens and A. Mörtberg

– the inductive sets we construct will generally not satisfy computation rules
judgmentally, but only propositionally

– the inductive sets we construct will generally not have a normal form.

The lack of judgmental computation rules is reminiscent of the deliberate block-
ing of computation in the SSReflect [9] extension of the Coq proof assistant.

On the other hand, the advantage of our approach to inductive sets is clear:
since it does not extend the language, its consistency is immediate.

4 Conclusions

In this work, we report on a construction of some inductive sets in UniMath. The
inductive sets we construct suffer from some defects, but have the advantage of
not requiring any language extension. It remains to be seen if the defects get in
the way when doing proofs involving inductive sets—the fact that SSReflect
deliberately imposes a similar restriction indicates that the practical implications
of the defects will be minor.

Acknowledgments. We thank Dan Grayson, Ralph Matthes, Paige North and
Vladimir Voevodsky for helpful discussions on the subject matter.

This material is based upon work supported by the National Science Foundation
under agreement Nos. DMS-1128155 and CMU 1150129-338510. Any opinions, find-
ings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.

References

1. Adámek, J.: Free algebras and automata realizations in the language of categories.
Comment. Math. Univ. Carol. 15(4), 589–602 (1974)

2. Ahrens, B., Capriotti, P., Spadotti, R.: Non-wellfounded trees in homotopy type
theory. In: Altenkirch, T. (ed.) 13th International Conference on Typed Lambda
Calculi and Applications, TLCA, Warsaw, Poland, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 1–3 July 2015. LIPIcs, vol. 38, pp. 17–30 (2015)

3. Ahrens, B., Kapulkin, K., Shulman, M.: Univalent categories and the Rezk com-
pletion. Math. Struct. Comput. Sci. 25, 1010–1039 (2015)

4. Ahrens, B., Matthes, R.: Heterogeneous substitution systems revisited. CORR,
abs/1601.04299 (2016)

5. Awodey, S., Gambino, N., Sojakova, K.: Inductive types in homotopy type the-
ory. In: Proceedings of the 27th Annual IEEE Symposium on Logic in Computer
Science, LICS 2012, Dubrovnik, Croatia, 25–28 June 2012, pp. 95–104. IEEE Com-
puter Society (2012)

6. Bezem, M., Coquand, T., Huber, S.: A model of type theory in cubical sets. In:
Matthes, R., Schubert, A. (eds.) 19th Conference on Types for Proofs and Pro-
grams, TYPES 2013, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. LIPIcs,
vol. 26, pp. 107–128 (2013)

7. Bird, R.S., Paterson, R.: De Bruijn notation as a nested datatype. J. Funct. Prog.
9(1), 77–91 (1999)

Some Wellfounded Trees in UniMath 17

8. Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical Type Theory: a con-
structive interpretation of the univalence axiom (2015, Preprint)

9. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J.
Formaliz. Reason. 3(2), 95–152 (2010)

10. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics, vol. 5, 2nd edn. Springer, New York (1998)

11. Matthes, R., Uustalu, T.: Substitution in non-wellfounded syntax with variable
binding. Theor. Comput. Sci. 327(1–2), 155–174 (2004)

12. Voevodsky, V.: An experimental library of formalized mathematics based on the
univalent foundations. Math. Struct. Comput. Sci. 25, 1278–1294 (2015). http://
arxiv.org/pdf/1401.0053.pdf

http://arxiv.org/pdf/1401.0053.pdf
http://arxiv.org/pdf/1401.0053.pdf

Exercising Nuprl’s Open-Endedness

Vincent Rahli(B)

SnT, University of Luxembourg, Luxembourg City, Luxembourg
vincent.rahli@gmail.com

Abstract. Nuprl is an interactive theorem prover that implements an
extensional constructive type theory, where types are interpreted as par-
tial equivalence relations on closed terms. Nuprl is both computationally
and type-theoretically open-ended in the sense that both its computa-
tion system and its type theory can be extended as needed by checking a
handful of conditions. For example, Doug Howe characterized the com-
putations that can be added to Nuprl in order to preserve the congruence
of its computational equivalence relation. We have implemented Nuprl’s
computation and type systems in Coq, and we have showed among other
things that it is consistent. Using our Coq framework we can now easily
and rigorously add new computations and types to Nuprl by mechan-
ically verifying that all the necessary conditions still hold. We have
recently exercised Nuprl’s open-endedness by adding nominal features
to Nuprl in order to prove a version of Brouwer’s continuity principle, as
well as choice sequences in order to prove truncated versions of the axiom
of choice and of Brouwer’s bar induction principle. This paper illustrate
the process of extending Nuprl with versions of the axiom of choice.

Keywords: Nuprl · Coq · Semantics · Open-Endedness · Axiom of
choice · Choice sequences · Bar induction · Continuity

1 Introduction

Nuprl. The Nuprl interactive theorem prover [3,13] implements a dependent type
theory called Constructive Type Theory (CTT), which is based on an untyped
functional programming language. It has a rich type theory including identity (or
equality) types, a hierarchy of universes, W types, quotient types [14], set types,
union and (dependent) intersection types [28], image types [32], partial equiva-
lence relation types [4], approximation and computational equivalence types [35],
and partial types [16,38]. CTT “mostly” differs from other similar construc-
tive type theories such as the ones implemented by Agda [1,10], Coq [8,15],
or Idris [11,26], in the sense that CTT is an extensional theory (i.e., proposi-
tional and definitional equality are identified [20]) with types of partial func-
tions [16,38]. For example, the fixpoint fix(λx.x) diverges. It is nonetheless a

V. Rahli—Partially supported by the SnT and by the National Research Fund
Luxembourg (FNR), through PEARL grant FNR/P14/8149128.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 18–27, 2016.
DOI: 10.1007/978-3-319-42432-3 3

Exercising Nuprl’s Open-Endedness 19

member of many types such as Z, which is the type of integers and diverging
terms (essentially the integer type of ML-like programming languages such as
OCaml). In Nuprl, type checking is undecidable but in practice this is mitigated
by type inference and type checking heuristics implemented as tactics.
Formalization of Nuprl’s Metatheory in Coq. Following Allen’s semantics [2],
CTT types are interpreted as Partial Equivalence Relations (PERs) on closed
terms. We have formalized Nuprl’s metatheory in Coq [5,6]. Our implementation
includes: (1) an implementation of Nuprl’s computation system; (2) an imple-
mentation of Howe’s computational equivalence relation [22], and a proof that it
is a congruence; (3) a definition of Allen’s PER semantics of CTT [2,16]; (4) def-
initions of Nuprl’s derivation rules, and proofs that these rules are valid w.r.t.
Allen’s PER semantics; (5) and a proof of Nuprl’s consistency [5,6]. Our imple-
mentation is available at https://github.com/vrahli/NuprlInCoq, and additional
information can be found at http://www.nuprl.org/html/Nuprl2Coq/.
Exploring Type Theory. Using our implementation of CTT in Coq, we are explor-
ing type theory. For example, (1) we are reformulating CTT using a smaller core
of primitive types, by allowing the theory to directly represent PERs as types [4].
We conjecture that dependent product and sum types will be definable in this
new theory. (2) We have proved the validity of truncated (or squashed—see
Sect. 2.2 for a discussion of truncation/squashing) versions of Brouwer’s continu-
ity principle [12,17,27,37,40,41,44]. w.r.t. Nuprl’s PER semantics [34]. For that,
following Longley’s method [31], we used named exceptions as a probing mecha-
nism to compute the modulus of continuity of a function. (3) We have proved the
validity of versions of Brouwer’s bar induction principle [12,17,21,27,37,41,43],
which we are using to build parametrized families of W types from parametrized
families of co-W types [9]. For that we added “choice sequences” to Nuprl’s term
language [36]. A choice sequence of type T is a Coq function from natural num-
bers to terms of type T . They are similar to the infinite sequences in [7], which
are used to prove that the negative translation of the Axiom of Choice (AC) is
realizable. They are also similar to Howe’s set-theoretical functions in [23–25],
which he used to provide a set-theoretical semantics of both Nuprl and HOL,
allowing the shallow embedding of HOL in Nuprl. (4) We have proved the validity
of truncated versions of AC [34, Sect. 5.3].
Open-Endedness. Because Nuprl was designed to be open-ended, i.e., theorems
about computations and types “hold for a broad class of extensions to the sys-
tem” [19], adding new features to the system often did not require much modifi-
cations to the existing properties of its computation system or to the statements
and proofs of its inference rules. We illustrate this here with AC. Sect. 4 presents
true and false versions of AC, which we have proved by extending CTT’s com-
putation and type systems.

https://github.com/vrahli/NuprlInCoq
http://www.nuprl.org/html/Nuprl2Coq/

20 V. Rahli

2 Background on Nuprl

2.1 Constructive Type Theory

Nuprl’s programming language is an untyped (à la Curry), lazy and applied
(with pairs, injections, a fixpoint operator,. . .) λ-calculus. Its term language is
open-ended in the sense that it contains all possible terms that follow a given
structure described, for example, in [22], and mentioned below. Therefore, most
terms do not have any operational semantics according to Nuprl’s computation
system. A type is a value of the computation system. Among other things, Allen’s
PER semantics associates PERs to these values, i.e., types are interpreted as
partial equivalence relations (PERs) on closed terms [2]. As illustrated in [6,
Fig. 6], Allen’s PER semantics can be seen as an inductive-recursive definition of:
(1) an inductive relation T1 ≡ T2 that expresses type equality; and (2) a recursive
function a ≡ b∈ T that expresses equality in a type.

Type equality is mostly intentional in the sense that two types that are
interpreted by the same PER are not necessarily equal. Most notably, identity
types of the form a =T b, which expresses that a and b are equal members of
the type T , can only be inhabited by the constant �, i.e., they do not have any
computational content as opposed to HoTT [42]. However, the two types 0 =N 0
and 1 =N 1 are not equal, even though they have the same PER. Note that
Uniqueness of Identify Proofs (UIP) is true by definition in Nuprl. As mentioned
above, because of this treatment of equality, Nuprl is also extensional in the sense
that propositional and definitional equality are identified [20]. Also, function
extensionality is true by definition of dependent product (function) types.

It turns out that Nuprl’s type system is not only closed under computation
but more generally under Howe’s computational equivalence ∼, which he proved
to be a congruence [22]. For example, one can prove that λx.(x+1)+0 ∼ λx.x+1
without requiring one to infer a type for x. In any context C, when t ∼ t′ we can
rewrite t into t′ without having to prove anything about types. We rely on this
relation to prove equalities between programs (bisimulations) without concern
for typing [35]. See Sect. 2.3 below for more details.

As mentioned above, we have implemented Nuprl’s term language, its com-
putation system, Howe’s ∼ relation, and Allen’s PER semantics in Coq [5,6].
We have also showed that Nuprl is consistent by (1) proving that Nuprl’s infer-
ence rules are valid w.r.t. Allen’s PER semantics, and (2) proving that False
is not inhabited. Using these two facts, we derive that there cannot be a proof
derivation of False, i.e., Nuprl is consistent (see [5,6,33, Appendix A] for more
details). We are using our Coq formalization to prove the validity of all the
inference rules of Nuprl, and have already verified a large number of them.

2.2 Squashing

It is sometimes necessary to truncate or squash types for them to be true or
consistent with Martin-Löf-like type theories such as Nuprl. For example, the

Exercising Nuprl’s Open-Endedness 21

non-truncated version of Brouwer’s continuity principle, i.e., where the existen-
tial quantifier is interpreted constructively, is false in type theories such as Agda
or Nuprl [18,29,34,36,39], while its truncated version is true in Nuprl [34]. Sim-
ilar results hold about AC as discussed in Sect. 4, as well as about Brouwer’s bar
induction principle [36].

In Nuprl, there are various ways of squashing or truncating a type. The most
widely used squashing operator in Nuprl throws away the evidence that a type
is inhabited and squashes it down to a single inhabitant using, e.g., set types:
↓T = {Unit | T} (as defined in [13, p. 60]). The only member of this type is
the constant �, which is Unit’s single inhabitant, and which is similar to () in
languages such as OCaml, Haskell or SML. The constant � inhabits ↓T if T is
true/inhabited, but we do not keep the proof that it is true. See [33, Appendix F]
for more information regarding squashing. Using the HoTT terminology, we also
sometimes truncate types at the propositional level [42, p. 117]. In Nuprl propo-
sitional truncation corresponds to squashing a type down to a single equivalence
class, i.e. all inhabitants are equal, using, e.g., quotient types [14]: �T = T//True.
�T is a proof-irrelevant type. Its members are the members of T , and they are
all equal to each other in �T because if x, y ∈ T then (x =T y ⇐⇒ True). Note
that the implication �T → ↓T is true because it is inhabited by λx.�, but we
cannot prove the converse because to prove �T we have to exhibit an inhabitant
of T , which ↓T does not give us because only � inhabits ↓T .

2.3 Howe’s Computational Equivalence

Howe’s computational equivalence is defined on closed terms as follows: t ∼ u
if t � u ∧ u � t. Howe coinductively defines the approximation (or simulation)
relation � as the largest relation R on closed terms such that R ⊂ [R], where
[·] is the following closure operator (also defined on closed terms): t [R] u if
whenever t computes to a value θ(b), then u also computes to a value θ(b′) such
that b R b′. We write θ(b) for the term with outer operator θ and subterms b,
where each subterm is essentially a pair of a list of binding variables and a term.
For example λx.x has one subterm that has one binding variable x. See [5,6,22]
for details. By definition, one can derive, e.g., that ⊥ � t for all closed term t.

To prove that ∼ is a congruence, Howe first proves that � is a congruence [22].
Unfortunately, this is not easy to prove directly. Howe’s “trick” was to define
another inductive relation �∗, which is a congruence and contains � by defin-
ition. To prove that �∗ and � are equivalent and therefore that � and ∼ are
congruences, it suffices to prove that �∗ respects computation, i.e., given that
t �∗ u, if t computes to a value of the form θ(b) then u also computes to a
value θ(b′) such that b �∗ b′. Howe defined a condition called extensionality [22,
Definition 5] that non-canonical (i.e., non-values) operators of lazy computation
systems have to satisfy for �∗ to imply �. Essentially, a non-canonical operator
is extensional if it never reduces a term by making a decision based on non-
canonical subterms, which is the case about Nuprl’s non-canonical operators.
For example, the following “bad” non-canonical operator is not extensional: if
we allow bad(f(a)), where f(a) is the application of f to a, to reduce to a, and

22 V. Rahli

bad(v), where v is a value, to reduce to v, then bad((λx.x + 1) 1) would reduce
to 1, and (λx.x + 1) 1 would reduce to 2, while bad(2) would reduce to 2, which
is different from 1.

3 Open-Endedness and Exploration

One can extend CTT by either adding new computations, new types, or new
inference rules. Typically, to add a new computation, one simply has to prove
that it satisfies various preservation properties such as: if a term t1 computes to
a term t2 then the free variables of t2 are included in the free variables of t1 and
t1[x\u] (the substitution of x for u in t1) computes to t2[x\u]. Also, in the case
of non-canonical operators, one has to prove that they are extensional.

We have recently added several operators to Nuprl: (1) named exceptions [34];
(2) a try/catch operator [34]; (3) a fresh operator to generate fresh names [34];
(4) choice sequences; (5) an eager application operator; as well as (6) various val-
ues denoting types such as our PER types [4]. In the case of exceptions, which
are some sorts of values in the sense that they do not compute further, we had
to modify one inference rule [33, Appendix C]. The proofs that our try/catch
and eager application operators are extensional were standard. However, prov-
ing that our fresh operator is extensional required modifying the definition of �∗

as discussed in [34, Sect. 4.2]. Adding choice sequences made us loose the decid-
ability of several relations such as α-equality or even syntactic equality, which it
turned out we did not need [36, Sect. 4.1]. We also had to modify one inference
rule. Because types are values of the computation system, when adding a type we
usually do not have to modify theorems and proofs about computations. How-
ever, we have to (1) provide an interpretation for the type: essentially a PER.
(2) Then, because a type system has to satisfy some properties, as explained
in [6, Sect. 6.3], such as: PERs respect computation, we have to prove that the
new type constructor satisfies these properties. We can then start stating and
proving the validity of type inference rules regarding the new type constructor.

4 The Axiom of Choice

We now illustrate the process of extending Nuprl’s computation system and type
theory in order to validate axiom of choice type inference rules.

4.1 Squashed or Non-squashed?

The axiom of choice (where A and B are types, and P is of type A → B → P)

Πa:A.Σb:B.P a b ⇒ Σf :BA.Πa:A.P a f(a)

follows from the usual inference rules of the universal (dependent product)
and existential (dependent sum) quantifiers [34, Sect. 5.3]. However, this non-
squashed version of AC is not always enough because existential quantifiers

Exercising Nuprl’s Open-Endedness 23

cannot always be interpreted as Σ but sometimes as truncated Σ’s (see for
example [18,34,36]). Therefore, we sometimes need instances of AC where Σ is
either �-squashed or ↓-squashed. In that case it is not obvious anymore which
instances of AC are consistent with or provable in Nuprl. This section provides
some answers.

We showed in [34, Sect. 5.3] that we can directly prove in Nuprl the following
�-squashed versions of AC0,B and AC1,B, where B = N

N:

Πn:N.�Σf :B.P n f ⇒ �Σf :BN.Πn:N.P n f(n)

Πn:B.�Σf :B.P n f ⇒ �Σf :BB.Πn:B.P n f(n)

We mentioned in [36, Appendix B] that we have proved the validity of the
following ↓-squashed version of AC0,NBase in our Coq framework using classical
logic and choice sequences of terms of type NBase = {t : Base | (t : Base)#},
where (t : T)# says that the term t is in the type T and does not contain any
name, and Base is the type of closed terms with ∼ as its equality:

Πn:N.↓Σf :NBase.P n f ⇒ ↓Σf :NBaseN.Πn:N.P n f(n)

We showed in [36, Appendix B] that the �-squashed version of Brouwer’s weak
continuity principle (WCP) and the negation of its unsquashed version, which are
provable in Nuprl, imply the negation of the following �-version of AC2,0 (where
T is a non-empty type):

ΠP :NB → T → P.
(Πf :NB.�Σn:N. P f n) ⇒ �ΣN :NB → T. Πf :NB.P f (N f)

Let us repeat the proof here. It suffices to prove that N
B does not have the

following choice principle (while B and N do):

ChoicePrinciple(T) = ΠP :T → P.(Πt:T.�P (t)) ⇐⇒ (�Πt:T.P (t))

which follows easily from both the facts that the �-version of WCP is true in Nuprl
and its unsquashed version is false. Let us prove ¬ChoicePrinciple(NB), i.e.,
assuming the hypothesis ChoicePrinciple(NB) we have to prove False. We
instantiate this hypothesis with the following function, which we call C (where
Nk is the type of natural numbers strictly less than k):

λF.ΣM :NB.Πf, g:B.f =(NM(f)→N) g → F (f) =N F (g)

We now get to assume (Πt:NB.�C(t)) ⇐⇒ (�Πt:NB.C(t)). Because the �-
squashed version of WCP is true in Nuprl, we also get to assume Πt:NB.�C(t).
From the above double implication, we obtain �Πt:NB.C(t). Because we are
proving False, we can unsquash this new hypothesis, i.e., we get to assume
Πt:NB.C(t), which is the unsquashed version of WCP, which is false.

24 V. Rahli

4.2 Choice Sequences

As mentioned above, in order to prove the validity of AC0,NBase, a ↓-squashed
version of AC, we added choice sequences of terms to Nuprl’s term syntax:

Inductive Term := vterm (v : Var) | sterm (s : nat → Term) | oterm (op : Opid) (bs : list BTerm)
with BTerm := bterm (vs : list Var) (t : Term).

Our choice sequences are Coq functions from natural numbers to Nuprl terms.
Additionally, we require that such choice sequences do not contain free variables
or names [36, Sect. 4.2]. This addition had interesting consequences such as: most
relations on terms became undecidable such as syntactic equality and α-equality.
Also, because of this additional limit constructor in the definition of terms, the
return types of functions that are recursively applied to choice sequences had
to be turned into W-like types with limit constructors. For example, we had to
change the statement of our general induction principle on terms. Originally,
this lemma went by induction on the size of term, which was simply a natural
number. With choice sequences, the size of a term is now an ordinal number
with a limit operator for the size of sequences:

Fixpoint osize (t : Term) : ord :=
match t with
| vterm ⇒ OS OZ
| sterm f ⇒ OS (OL (fun x ⇒ osize (f x)))
| oterm op bterms ⇒ OS (oaddl (map osize bterm bterms))
end

with osize bterm (bt : BTerm) : ord := match bt with bterm lv nt ⇒ osize nt end.

where oaddl is an addition operation on lists of ordinals, which are defined as
follows: Inductive ord := OZ | OS (o : ord) | OL (s : nat → ord). We also had
proved equalities between terms, where now in order to still prove an equality,
we need to use in addition the function extensionality axiom to prove that two
choice sequences are equal. We leave for future work the investigation of whether
we can do without additional axioms using custom equality relations.

5 Conclusion

Much remains to be done to bridge the gap between our Coq implementation and
Nuprl’s current implementation. Following the footsteps of [30], we would like to
synthesize a version of Nuprl from our implementation. Nevertheless, our Coq
implementation of CTT already turned out to be very useful to investigate exten-
sional type theory on a large scale, which often was made relatively easy by the
fact that Nuprl is open-ended in many ways. However, we are sometimes making
decisions that limit Nuprl’s open-endedness. For example, because we have now
added exceptions to Nuprl, it is not clear how or even whether we could add
a parallel operator to Nuprl as mentioned in [34, Sect. 8]. As another example,
we have often used the fact that Nuprl’s computation system is deterministic in
our implementation, which will prevent us from adding non-deterministic oper-
ators. It is not clear yet whether we can do without this property, and most
importantly it is not clear how to avoid such accidental limitations.

Exercising Nuprl’s Open-Endedness 25

References

1. The Agda Wiki. http://wiki.portal.chalmers.se/agda/pmwiki.php
2. Allen, S.F.: A non-type-theoretic semantics for type-theoretic language. Ph.D. the-

sis, Cornell University, (1987)
3. Allen, S.F., Bickford, M., Constable, R.L., Eaton, R., Kreitz, C., Lorigo, L., Moran,

E.: Innovations in computational type theory using Nuprl. J. Appl. Logic 4(4),
428–469 (2006). http://www.nuprl.org/

4. Anand, A., Bickford, M., Constable, R.L., Rahli, V.: A type theory with partial
equivalence relations as types. Presented at TYPES 2014 (2014)

5. Anand, A., Rahli, V.: Towards a formally verified proof assistant. Technical report,
Cornell University (2014). http://www.nuprl.org/html/Nuprl2Coq/

6. Anand, A., Rahli, V.: Towards a formally verified proof assistant. In: Klein, G.,
Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 27–44. Springer, Heidelberg
(2014)

7. Berardi, S., Bezem, M., Coquand, T.: On the computational content of the axiom
of choice. J. Symb. Log. 63(2), 600–622 (1998)

8. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004). http://www.labri.fr/perso/casteran/CoqArt

9. Bickford, M., Constable, R.: Inductive construction in Nuprl type theory using
bar induction. Presented at TYPES 2014 (2014). http://nuprl.org/KB/show.php?
ID=723

10. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – a functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009)

11. Brady, E.: IDRIS: systems programming meets full dependent types. In: PLPV
2011, pp. 43–54. ACM (2011)

12. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. London Math-
ematical Society Lecture Notes Series. Cambridge University Press, Cambridge
(1987)

13. Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F.,
Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki,
J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall Inc, Upper Saddle River (1986)

14. Constable, R.L.: Constructive mathematics as a programming logic I: some prin-
ciples of theory. In: Karpinski, M. (ed.) Fundamentals of Computation Theory.
LNCS, vol. 158, pp. 64–77. Springer, London (1983)

15. The Coq Proof Assistant. http://coq.inria.fr/
16. Crary, K.: Type-theoretic methodology for practical programming languages.

Ph.D. thesis, Cornell University, Ithaca, NY, August 1998
17. Dummett, M.A.E.: Elements of Intuitionism, 2nd edn. Clarendon Press, Oxford

(2000)
18. Escardó, M.H., Chuangjie, X.: The Inconsistency of a Brouwerian Continuity prin-

ciple with the curry-howard interpretation. In: TLCA 2015, vol. 38, pp. 153–164.
LIPIcs. Schloss Dagstuhl - Leibniz- Zentrum fuer Informatik (2015)

19. Allen, S.F., Constable, R.L., Howe, D.J.: Reflecting the open-ended computation
system of constructive type theory. In: Bauer, F.L. (ed.) Logic, Algebra and Com-
putation. NATO ASI Series, vol. 79, pp. 265–280. Springer, Heidelberg (1990)

20. Hofmann, M.: Extensional concepts in intensional type theory. Ph.D. thesis,
University of Edinburgh (1995)

http://wiki.portal.chalmers.se/agda/pmwiki.php
http://www.nuprl.org/
http://www.nuprl.org/html/Nuprl2Coq/
http://www.labri.fr/perso/casteran/CoqArt
http://nuprl.org/KB/show.php?ID=723
http://nuprl.org/KB/show.php?ID=723
http://coq.inria.fr/

26 V. Rahli

21. Howard, W.A., Kreisel, G.: Transfinite induction and bar induction of types zero
and one, and the role of continuity in intuitionistic analysis. J. Symb. Log. 31(3),
325–358 (1966)

22. Howe, D.J.: Equality in lazy computation systems. In: LICS 1989, pp. 198–203.
IEEE Computer Society (1989)

23. Howe, D.J.: Importing mathematics from HOL into Nuprl. In: von Wright, J.,
Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 267–282.
Springer, Heidelberg (1996)

24. Howe, D.J.: On computational open-endedness in Martin-Löf’s type theory. In:
LICS 1991, pp. 162–172. IEEE Computer Society (1991)

25. Howe, D.J.: Semantic foundations for embedding HOL in Nuprl. In: Nivat,
M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 85–101. Springer,
Heidelberg (1996)

26. Idris. http://www.idris-lang.org/
27. Kleene, S.C., Vesley, R.E.: The Foundations of Intuitionistic Mathematics, Espe-

cially in Relation to Recursive Functions. North-Holland Publishing Company,
Amsterdam (1965)

28. Kopylov, A.: Type theoretical foundations for data structures, classes, and objects.
Ph.D. thesis, Cornell University, Ithaca, NY (2004)

29. Kreisel, G.: On weak completeness of intuitionistic predicate logic. J. Symb. Logic
27(2), 139–158 (1962)

30. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: Self-formalisation of higher-
order logic - semantics, soundness, and a verified implementation. J. Autom. Rea-
son. 56(3), 221–259 (2016)

31. Longley, J.: When is a functional program not a functional program? In: ICFP
1999, pp. 1–7. ACM (1999)

32. Nogin, A., Kopylov, A.: Formalizing type operations using the “Image” type con-
structor. Electr. Notes Theor. Comput. Sci. 165, 121–132 (2006)

33. Rahli, V., Bickford, M.: A nominal exploration of intuitionism. Extended ver-
sion of our CPP. 2016 paper (2015). http://www.nuprl.org/html/Nuprl2Coq/
continuity-long.pdf

34. Rahli, V., Bickford, M.: A nominal exploration of intuitionism. In: CPP,
pp. 130–141. ACM (2016)

35. Rahli, V., Bickford, M., Anand, A.: Formal program optimization in Nuprl using
computational equivalence and partial types. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 261–278. Springer, Heidelberg
(2013)

36. Rahli, V., Bickford, M., Constable, R.L.: A story of bar induction in Nuprl (2015).
Extended version http://www.nuprl.org/html/Nuprl2Coq/bar-induction-long.pdf

37. Rathjen, M.: Constructive set theory and brouwerian principles. J. UCS 11(12),
2008–2033 (2005)

38. Smith, S.F.: Partial objects in type theory. Ph.D. thesis, Cornell University, Ithaca,
NY (1989)

39. Troelstra, A.S.: A note on non-extensional operations in connection with continuity
and recursiveness. Indagationes Mathematicae 39(5), 455–462 (1977)

40. Troelstra, A.S.: Aspects of constructive mathematics. In: Barwise, J. (ed.) Hand-
book of Mathematical Logic, pp. 973–1052. North-Holland Publishing Company,
Amsterdam (1977)

41. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics an Introduc-
tion. Studies in Logic and the Foundations of Mathematics, vol. 121. Elsevier,
North Holland (1988)

http://www.idris-lang.org/
http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf
http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf
http://www.nuprl.org/html/Nuprl2Coq/bar-induction-long.pdf

Exercising Nuprl’s Open-Endedness 27

42. The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study (2013). http://
homotopytypetheory.org/book

43. Veldman, W.: Brouwer’s real thesis on bars. Philosophia Scientiæ CS6, 21–42
(2006)

44. Veldman, W.: Understanding and using Brouwer’s Continuity principle. In:
Schuster, P., Berger, U., Osswald, H. (eds.) Reuniting the Antipodes Constr-
uctive and Nonstandard Views of the Continuum. Synthese Library, vol. 306, pp.
285–302. Springer, Netherlands (2001)

http://homotopytypetheory.org/book
http://homotopytypetheory.org/book

Formalizing Double Groupoids and Cross
Modules in the Lean Theorem Prover

Jakob von Raumer(B)

University of Nottingham, Nottingham, UK
psxjv4@nottingham.ac.uk

http://www.cs.nott.ac.uk/∼psxjv4/

Abstract. Lean is a new open source dependently typed theorem prover
which is mainly being developed by Leonardo de Moura at Microsoft
Research. It is suited to be used for proof irrelevant reasoning as well
as for proof relevant formalizations of mathematics. In my talk, I will
present my experiences doing a formalization project in Lean. One of
the interesting aspects of homotopy type theory is the ability to perform
synthetic homotopy theory on higher types. While for the first homotopy
group the choice of a suitable algebraic structure to capture the homo-
topic information is obvious – it’s a group –, implementing a structure to
capture the information about both the first and the second homotopy
group (or groupoid) of a type and their interactions is more involved.
Following Ronald Brown’s book on Nonabelian Algebraic Topology, I
formalized two structures: Double groupoids with thin structures and
crossed modules on groupoids. I furthermore attempted to prove their
equivalence. The project can be seen as a usability and performance test
for the new theorem prover.

Keywords: Formalization of mathematics · Algebraic topology

1 Introduction

Making mathematical definitions and theorem proofs readable and verifiable by
computers has become increasingly important in the last years, not only since
there are proofs that are hard or impossible to be checked by a single person due
to their size (one example being Tom Hales’ proof of the Kepler conjecture). With
the rise of formally verified software, one also wants the same level of trust for
the mathematical theories whose soundness guarantee the correct functionality
of the program. Fields where formal verification has been successfully used to
certify computer programs include cryptography and aerospace industry. These
rely heavily on results from algebra and calculus and differential equations.

Homotopy type theory (HoTT) can serve as a foundation of mathematics that
is better suited to fit the needs of formalizing certain branches of mathematics,
especially the ones of topology. In traditional, set-based approaches to formaliz-
ing the world of mathematical knowledge, topological spaces and their properties

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 28–33, 2016.
DOI: 10.1007/978-3-319-42432-3 4

Double Groupoids and Cross Modules in Lean 29

have to be modeled with much effort by referring to the type of real numbers.
In contrast to this, homotopy type theory, in a certain sense, contains topolog-
ically motivated objects like fibrations and homotopy types as primitives. This
makes it much easier and more natural to reason about topological properties
of these objects. Homotopy type theory is a relatively new field but it already
has produced several useful implementations and libraries in interactive theorem
provers like Agda and Coq. One important feature of homotopy type theory is
that it is constructive and thus allows to extract programs from definitions and
proofs.

Homotopy type theory is proof relevant which means that there can be dis-
tinct (and internally distinguishable) proofs for one statement. This leads to the
fact that types in HoTT bear the structure of a higher groupoid in their identi-
ties. The essential problem in the field of homotopy is to analyze this structure
of paths and iterated paths between paths in topological spaces or, in the world
of HoTT, in higher types. This happens by considering the algebraic properties
of the homotopy groups or homotopy groupoids of the spaces resp. types.

In his book “Nonabelian Algebraic Topology” [1], Ronald Brown introduces
the notion of double groupoids with thin structures and crossed modules over
groupoids to describe the interaction between the first and the second homotopy
groupoid of a space algebraically. Brown’s approach, preceding the discovery of
homotopy type theory by a few decades, is formulated entirely classically and
set-based.

I will describe how I translated some of the central definitions and lemmas
from his book to dependently typed algebraic structures in homotopy type the-
ory, made them applicable to the analysis of 2-truncated types by creating the
notion of a fundamental double groupoid of a presented 2-type, and then formal-
ized them in the newly built interactive theorem proving system Lean [2].

2 Double Categories and Double Groupoids

Seeing a (small) category as a tuple of object set, morphism set, domain and
codomain functions, identity function and composition, Brown defines double
categories similar to the following:

A double category D is given by the following data: Three sets D0, D1, and
D2, the elements of which are respectively called 0-, 1- and 2-cells, together
with maps ∂−, ∂+, ε, ◦D, ∂−

1 , ∂+
1 , ε1, ◦1, ∂−

2 , ∂+
2 , ε2, and ◦2 that make these

sets form three categories:

– a category (D0,D1, ∂
−, ∂+, ε, ◦D) on D0, often called the (1-)skeleton of the

double category,
– a vertical category (D1,D2, ∂

−
1 , ∂+

1 , ε1, ◦1), and
– a horizontal category (D1,D2, ∂

−
2 , ∂+

2 , ε2, ◦2).

30 J. von Raumer

The mentioned maps are required to satisfy the following cubical identities:

∂− ◦ ∂+
1 = ∂− ◦ ∂−

2 ,
∂− ◦ ∂+

1 = ∂+ ◦ ∂−
2 ,

∂+ ◦ ∂−
1 = ∂− ◦ ∂+

2 ,
∂+ ◦ ∂+

1 = ∂+ ◦ ∂+
2 ,

∂−
1 ◦ ε2 = ε ◦ ∂−,

∂+
1 ◦ ε2 = ε ◦ ∂+,

∂−
2 ◦ ε1 = ε ◦ ∂−,

∂+
2 ◦ ε1 = ε ◦ ∂+, and
ε1 ◦ ε = ε2 ◦ ε =: 0.

The boundary and degeneracy maps of the vertical category are furthermore
assumed to be a homomorphism with respect to the composition of the horizontal
category, and vice versa:

∂−
2 (v ◦1 u) = ∂−

2 (v) ◦D ∂−
2 (u),

∂+
2 (v ◦1 u) = ∂+

2 (v) ◦D ∂+
2 (u),

∂−
1 (v ◦2 u) = ∂−

1 (v) ◦D ∂−
1 (u),

∂+
1 (v ◦2 u) = ∂+

1 (v) ◦D ∂+
1 (u),

ε2(g ◦D f) = ε2(g) ◦1 ε2(f), and
ε1(g ◦D f) = ε1(g) ◦2 ε1(g),

for each f, g ∈ D1 and u, v ∈ D2 where the compositions are defined.
A last condition, called the interchange law, has to be fulfilled: For each

u, v, w, x ∈ D2,

(x ◦2 w) ◦1 (v ◦2 u) = (x ◦1 v) ◦2 (w ◦1 u)

has to hold wherever it is well-defined.

∂−(∂−
1 (u)) = ∂−(∂−

2 (u)) ∂+(∂−
1 (u)) = ∂−(∂+

2 (u))

∂−(∂−
1 (u)) = ∂−(∂−

2 (u)) ∂+(∂+
1 (u)) = ∂+(∂+

2 (u))

∂−
1 (u)

∂+
2 (u)

∂+
1 (u)

∂−
2 (u) u

Fig. 1. A square u ∈ D2, its faces, and its corners.

In more pictorial words, double categories do not only contain objects and
morphisms (lines), but also square-shaped two cells (see Fig. 1). These can be

Double Groupoids and Cross Modules in Lean 31

f

ε(∂+(f))

f

ε(∂−(f)) ε1(f)

ε(∂−(f))

f

ε(∂+(f))

f ε2(f)

Fig. 2. Degenerate squares of the vertical and horizontal category for a given line
f ∈ D1. Degenerate lines are drawn as double lines.

u v

w x

Fig. 3. The grid we use to illustrate the composition (x ◦2 w) ◦1 (v ◦2 u) as well as
(x ◦1 v) ◦2 (w ◦1 u), which are identical by the interchange law.

composed vertically or horizontally, given that their edges match. There are
squares which act as the identity with respect one of the composition (see Fig. 2),
and when composing in a 2-by-2 grid, it doesn’t matter whether we give prece-
dence to vertical or to horizontal composition (see Fig. 3) To prevent the neces-
sity of the composition of a partial function, we make the the type of two-cells
depend on its boundary when we translate the definition to one in type theory:

We define a double category to be a record containing the following:

– The object set D0 : Set,
– A precategory (here, “pre” means that isomorphic in that category are not

necessarily equal) on D0, consisting of:
• A type family of morphisms D1 :

∏
(a,b:D0)

Set.
• The composition of morphisms

◦ :
∏

a,b,c:D0

D1(b, c) → D1(a, b) → D1(a, c).

• An identity operator id :
∏

(a:D0)
D1(a, a).

• A witness ensuring associativity for all morphisms:
∏

a,b,c,d:D0

∏

h:D1(c,d)

∏

g:D1(b,c)

∏

f :D1(a,b)

h ◦ (g ◦ f) = (h ◦ g) ◦ f

32 J. von Raumer

• Witnesses that the identity morphisms are neutral with respect to compo-
sition from the left and from the right:

∏

a,b:D0

∏

f :D1(a,b)

(id(b) ◦ f = f) × (f ◦ id(a) = f)

– A set family of two-cells:

D2 :
∏

a,b,c,d:D0

∏

f :D1(a,b)

∏

g:D1(c,d)

∏

h:D1(a,c)

∏

i:D1(b,d)

Set

We will always leave the first four parameters implicit and write
D2(f, g, h, i) for the type of two-cells with f as their upper face, g as their
bottom face, h as their left face, and i as their right face.

– The vertical composition operation: For all a, b, c1, d1, c2, d2 : D0 and f1 :
D1(a, b), g1 : D1(c1, d1), h1 : D1(a, c1), i1 : D1(b, d1), g2 : D1(c2, d2), h2 :
D1(c1, c2), and i2 : D1(d1, d2) the composition of two cells

v ◦1 u : D2(g1, g2, h2, i2) → D2(f, g1, h1, i1) → D2(f1, g2, h2 ◦ h1, i2 ◦ i1).

– The vertical identity id1 :
∏

(a,b:D0)

∏
(f :D1(a,b)) D2(f, f, id(a), id(b)).

– For all w : D2(g2, g3, h3, i3), v : D2(g1, g2, h2, i2), and u : D2(f, g1, h1, i1) a
witness for the associativity of the vertical composition assoc1(w, v, u) in

assoc(i3, i2, i1)∗(assoc(h3, h2, h1)∗(w ◦1 (v ◦1 u))) = (w ◦1 v) ◦1 u,

where assoc is the associativity proof in the 1-skeleton. The transport is
required since the cells at the left and right side of the equation do not defin-
itionally have the same set of faces.

– Horizontal composition ◦2 and horizontal identity id2.
– Finally, we need witnesses that the axioms of a double category, as stated in

the definition above, hold. Note that there are only four of these rules which
are not yet expressed by the types of composition and identity.

3 The Fundamental Double Groupoid

How can we now use this structure to characterize types in homotopy type
theory? The role of the basepoint in the consideration of the fundamental group
of a type or a set of basepoints for the fundamental double groupoid, we need a
presentation relative to which we express the fundamental double groupoid:

We define a presented 2-type to be a triple (X,A,C) of types X,A,C : U
together with functions ι : C → A and ι′ : A → X where X is a 2-type, A is a
1-type, and C is a set.

From each presented 2-type (X,A,C) we receive its fundamental double
category G by defining

G0 :≡ C

G1(a, b) :≡ ι(a) =A ι(b)
G2(f, g, h, i) :≡ apι′(h) � apι′(g) =X apι′(f) � apι′(i)

for all a, b : C, f : ι(a) = ι(b), g : ι(c) = ι(d), h : ι(a) = ι(c), and i : ι(b) = ι(d).

Double Groupoids and Cross Modules in Lean 33

Omitted from this abstract, we can then account for the symmetry of the
identity relation by extending the definition to the one of a (weak) double
groupoid and for the fact that each commuting square boundary gives rise to
a homotopically degenerate square filler by equipping the double groupoid with
a thin structure or, equivalently, connections. From the category of double
groupoids we can then switch to a more “flat” representation by transforming
these into crossed modules. Future work will include a formulation of the state-
ment and proof of a Seifert-van Kampen theorem which yields the fundamental
double groupoid of certain pushouts of types.

References

1. Brown, R., Higgins, P.J., Sivera, R.: Nonabelian algebraic topology: filtered spaces,
crossed complexes, cubical homotopy groupoids. European Mathematical Society
(2011)

2. de Moura, L., Kong, S., van Doorn, F., von Raumer, J.: The lean theorem prover
(system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE-25. LNCS, vol.
9195, pp. 378–388. Springer International Publishing, Switzerland (2015)

Software for Mathematical Reasoning
and Applications

Towards the Automatic Discovery of Theorems
in GeoGebra

Miguel Abánades1, Francisco Botana2(B), Zoltán Kovács3, Tomás Recio4,
and Csilla Sólyom-Gecse5

1 Universidad Rey Juan Carlos, Móstoles, Spain
miguelangel.abanades@urjc.es

2 Universidad de Vigo, Vigo, Spain
fbotana@uvigo.es

3 The Private University College of Education of the Diocese of Linz, Linz, Austria
zoltan@geogebra.org

4 Universidad de Cantabria, Santander, Spain
tomas.recio@unican.es

5 Babeş-Bolyai University, Cluj-Napoca, Romania
solyom csilla@yahoo.com

http://webs.uvigo.es/fbotana/, http://sites.google.com/site/kovzol,

http://www.recio.tk, http://www.geogebra.org/solyom-gecse+csilla

Abstract. Considerable attention and efforts have been given to the
implementation of automatic reasoning tools in interactive geometric
environments. Nevertheless, the main goal in such works focused on the-
orem proving, cf. Java Geometry Expert or GeoGebra. A related issue,
automatic discovery, remains almost unexplored in the field of dynamic
geometry software.

This extended abstract sketches our initial results towards the incor-
poration into GeoGebra, a worldwide spread software with tenths of mil-
lions of users, of automatic discovery abilities. As a first result, currently
available in the official version, we report on a new command allowing the
automatic discovery of loci of points in diagrams. Besides the standard
mover-tracer locus finding, the approach also deals with loci constrained
by implicit conditions. Hence, our proposal successfully automates a kind
of bound dragging in dynamic geometry, the ‘dummy locus dragging’. In
this way, the cycle of conjecturing-checking-proving will be accessible for
general learners in elementary geometry.

Keywords: Automatic discovery · Dynamic geometry · GeoGebra ·
Computational algebraic geometry

1 Introduction

We present and discuss the implementation of a new command, included in
the most recent version of the dynamic geometry program GeoGebra, for the
automatic discovery of elementary geometry statements. While the command is
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 37–42, 2016.
DOI: 10.1007/978-3-319-42432-3 5

38 M. Abánades et al.

currently limited to discovery situations where there is, at most, an unknown
point constrained by single conditions, our findings show that it can deal with
a huge number of elementary geometric constructions. Furthermore, the under-
lying protocol used for discovery is transparent with respect to the number of
points or conditions, thus being theoretically simple its extension to more general
constructions. Our LocusEquation command is ready for use under real condi-
tions (say, school context), and, although featured just on the last GeoGebra
version, there are already examples of its use by teachers1.

Section 2 shortly recalls the main concepts and issues related to automatic
deduction in geometry, with particular emphasis in dynamic geometry. The pro-
tocol for automatic discovery is sketched, addressing the reader to appropriate
references. The specific GeoGebra command for discovery is described in Sect. 3,
and a canonical example is discussed for illustration. Finally, Sect. 4 lists current
shortcomings related to discovery in GeoGebra, and points out some lines of
future work.

2 Automatic Deduction in Geometry

Along this note, when we refer to automatic proving of elementary geometry
theorems, we restrict ourselves to the theorem proving approach through com-
putational algebraic geometry methods, as initiated, forty years ago, in the pio-
neer work of Wu [9], carefully described and disseminated by the popular book
of Chou [3].

The goal of this particular approach to automatic proving is to provide algo-
rithms, using computer algebra methods, for confirming (or refuting) the truth
of some given geometric statement. More precisely, the goal is to decide if a given
statement is generally true or not, i.e. true except for some degenerate cases, to
be described by the algorithm. Hundreds of highly non trivial theorems in ele-
mentary geometry have been successfully—and almost instantaneously—verified
by a variety of symbolic computation methods, see [3] for an early collection of
examples.

Briefly—and very roughly—this approach proceeds by translating geometric
facts, say hypotheses H and theses T , into systems of polynomial equations, say
SH , ST , and, then, considering geometric statements (H ⇒ T) as inclusion tests
SH ⊆ ST between the solutions of the system of equations SH , translating the
geometry described by H, and those of the corresponding system ST , expressing
the theses T . Such inclusion tests are, then, elucidated by some computer algebra
tools deciding if a polynomial f is or not an algebraic combination of some given
collection of polynomials S, which is—approximately—a way to show if the roots
of f form or not a superset of the solutions of the system S = 0.

Let us add—because it will be important in what follows—that in this app-
roach to automatic proving it is often the case that the inclusion test SH ⊆ ST

does not fully happen because of the extended, often unexpected, meaning of

1 E.g. http://tube.geogebra.org/m/DCSFzaph.

http://tube.geogebra.org/m/DCSFzaph

Automatic Discovery in GeoGebra 39

the algebraic translation of geometric facts. Rather, it might be the case that
there is a ‘negligible’ portion of the solution set for SH that is not included in
the solution set for ST : elements in that portion represent the, so called, degen-
erate cases. ‘Negligible’ means—and it has been crucial to arrive to a precise
expression of this concept—that the solutions for SH not included in ST have to
verify some non-trivial system of equations in the free variables of the geometric
hypotheses H.

A closely related, albeit different, issue is that of the automatic discovery of
theorems (see [6] for a large collection of references on this topic). Yet, let us
remark that the term ‘discovery’ is already used in [7] or [8], where it is written
(on page 292), under the specific section with title ‘Discovering Theorems’, that
‘a typical example is the automatic discovery of Quin-Heron’s formula that rep-
resents the area of a triangle in terms of its three sides’. We should remark that
automatic discovery (in this particular sense of automatic derivation of state-
ments) is being currently of particular interest, associated to different techniques
for ‘recognizing’ (we would say, ‘deriving’) geometric facts contained in a dia-
gram (from textbooks, pdf’s, human sketches . . .) after translating the graphic
information into geometric data by means of the Hough transform, see [2].

Roughly speaking, automatic proving deals with establishing (or denying)
that some statement holds in most instances, while automatic discovery –in its
most general conception– addresses the case of statements H ⇒ T that are
false in most relevant cases. In fact, it aims to automatically produce additional,
necessary, hypotheses H ′ for the statement (H&H ′) ⇒ T to be correct; and,
then testing, by automatic proving methods, if adding these extra hypotheses is
also sufficient.

One must remark that the search for complementary hypotheses should be
done in terms of the free variables for the construction. For example, suppose
that for a given triangle and an arbitrary point P we state that the projections
of P on the sides of the triangle are always aligned. It is, obviously, false; what
we will like is to discover restrictions on the coordinates of the vertices of the
triangle and on the coordinates of P , which are free variables in this formulation,
so that the thesis will hold true.

Describing the implicit geometric locus of a point subject to some geometric
constraints, say, finding the locus of a point P when its projection on the three
sides of a given, determined triangle form a triangle of given constant area ([3],
Chapter IV, Example 5.8) can be considered as a variant of this ‘automatic
discovery’ approach. In fact, the steps in the construction of the projections of P
can be considered as the hypotheses H, while the given constraints over the point
P (e.g. requiring that the area of the triangle described by the three projections
of P over the sides of the given triangle must be constant) can be considered as
the proposed thesis T , one that is false for arbitrary positions of P ; finally, the
description H ′ of the locus (for point P to verify that its three projections form
a triangle of fixed area) can be understood as the extra, necessary hypotheses
required for the given statement to hold true, so that (H&H ′) ⇒ T .

40 M. Abánades et al.

While automatic proving using computer algebra methods has been used
in dynamic geometric software2, similar automatic discovery abilities are not
present in software ready for universal use. Following our goal towards the pop-
ularization of tools for automatic reasoning in geometry, we have cooperated with
other authors providing automatic proving resources to GeoGebra [1]. Continu-
ing this trend, our recent work focuses on GeoGebra discovery capabilities based
on the computational approach described in [4,5].

3 The GeoGebra Command LocusEquation

Automatic discovery in GeoGebra requires that the user first constructs a geo-
metric diagram with GeoGebra’s drawing tools or drawing commands. Although
theoretically all algebraic constructions (i.e. those composed of elements that
can be expressed by polynomial equations) can serve as initial data for GeoGe-
bra’s discovery tool, technical reasons, mainly related to computational time
limitations, restrict the applicability of the tool for some involved constructions.
Moreover, it is important to note that non-algebraic elements, such as the graph
of a sine function, fall out of the scope of the method, algebraic in nature.

After constructing a geometric diagram the user needs to type the command
LocusEquation3 with two parameters: the sought thesis T (which must be an
atomic Boolean expression) and a free point P ‘supporting’ the discovery. The
Boolean expression defining the discovery plays the part of the extra condition
that we require our diagram to satisfy. The free point P , second parameter of the
command LocusEquation, is the point over which the sought extra hypothesis
will verse. In algebraic terms, the symbolic coordinates of P will be the variables
of the polynomials conforming the necessary conditions obtained as a result of
the discovery process. As a result, LocusEquation[T,P] will produce a set V
(providing its implicit equation) such that “if T is true then P ∈ V ”. It should be
noted that the basic points of the construction—other than P—are fixed, that
is, their numerical coordinates will be used in the discovery computation. Recall
that P has always symbolic coordinates. Thus, we are discovering on a specific
instance of the general construction, and, then, it could happen that we discover
some incidental property only related to this particular model. For instance, if we
intend to construct a general triangle but we actually draw—without noticing
it—an isosceles one, we can find out statements which are true just for this
particular kind of triangles. Of course, this confusion will be clarified in the
proving phase, when intending to check the validity, in general, of the obtained
result.

As a simple illustrative example we pose the discovery of Wallace-Simson
theorem, a particular case of the implicit locus recalled in the previous Section:

2 See Java Geometry Expert, JGEX, http://www.cs.wichita.edu/∼ye/gex.html, for a
paradigmatic example.

3 The command LocusEquation was introduced in GeoGebra version 5.0.213.0, dis-
tributed since March 12, 2016. Note that the software has at least one new published
version every week.

http://www.cs.wichita.edu/~ye/gex.html

Automatic Discovery in GeoGebra 41

Given a triangle ABC a point P on its plane, find the locus of points P such
that their perpendicular projections on the triangle sides are collinear.

As said above, the user constructs an instance of the configuration (Fig. 1)
and imposes the collinearity of projections D,E, F in order to find conditions on
P for it through the command LocusEquation[AreCollinear[D,E,F],P]. The
result shows the triangle circumcircle, graphically and providing its equation (see
implicit equation in Fig. 1). Let us insist on the fact that points A,B,C are not
generally considered, but their numerical coordinates are used in computations.
This implementation decision tries to imitate the traditional inductive process,
reasoning at a first step on concrete situations. Furthermore, the discovery is not
disturbed by the need of studying degenerate conditions (as they will appear
for the case where P coincides with a vertex). Once the system has returned
the conjecture, the user can test it by dragging any basic element, the triangle
vertices in this construction. A final step will allow redefining point P to lie on
the circle, and then check the truth of the general statement.

Fig. 1. Discovering Wallace-Simson property for a particular triangle

4 Further Work

Currently, the last statement concerning generalization of the discovered prop-
erty is not fully implemented in GeoGebra. Ideally, once the conjectural neces-
sary condition is found (i.e. that P lies in the discovered locus) a user should be

42 M. Abánades et al.

able to bind the point P to the locus curve and then check for the sufficiency of
this condition for the statement correctness, either numerically or formally [1].
Nevertheless, the fully integration of formal proving and discovery subsystems
is yet ongoing work. In order to check that correctness with the actual version,
the user must repeat the whole construction from the beginning, including—
say—the construction of the circumcircle and then verify the Wallace-Simson
theorem for a point on this circle. The main obstacle is technical: the locus
output is not an acceptable input for the current GeoGebra Prove command.
Future GeoGebra versions will eliminate this redundant approach.

Another severe limitations deal with the atomic character of Boolean condi-
tions (i.e. we can deal just with one thesis at a time) and the number of discovery
points. While none of them introduce theoretical difficulties for discovery, the
size and types of uses of GeoGebra require careful considerations before modi-
fying its data structure. For instance, accepting non atomic Boolean conditions
implies extending the output of LocusEquation to more general data types.

Acknowledgment. First, second and fourth authors partially supported by the Span-
ish Ministerio de Economı́a y Competitividad and by the European Regional Develop-
ment Fund (ERDF), under the Project MTM2014–54141–P.

References

1. Botana, F., Hohenwarter, M., Janičić, P., Kovács, Z., Petrović, I., Recio, T.,
Weitzhofer, S.: Automated theorem proving in GeoGebra: current achievements.
J. Autom. Reasoning 55, 39–59 (2015)

2. Chen, X., Song, D., Wang, D.: Automated generation of geometric theorems from
images of diagrams. Ann. Math. Artif. Intell. 74, 333–358 (2015)

3. Chou, S.-C.: Mechanical Geometry Theorem Proving, in Mathematics and its Appli-
cations. D. Reidel Publ. Comp, Dordrecht (1988)

4. Dalzotto, G., Recio, T.: On protocols for the automated discovery of theorems in
elementary geometry. J. Autom. Reasoning 43, 203–236 (2009)

5. Recio, T., Vélez, M.P.: Automatic discovery of theorems in elementary geometry. J.
Autom. Reasoning 23, 63–82 (1999)

6. Recio, T., Vélez, M.P.: An introduction to automated discovery in geometry through
symbolic computation. In: Langer, U., Paule, P. (eds.) Numerical and Symbolic
Scientific Computing: Progress and Prospects. Texts and Monographs in Symbolic
Computation, pp. 25–271. Springer, Vienna (2011)

7. Wang, D.: A new theorem discovered by computer prover. J. Geom. 36, 173–182
(1989)

8. Wang, D.: Gröbner bases applied to geometric theorem proving and discovering. In:
Buchberger, B., Winkler, F. (eds.) Gröbner Bases and Applications. London Math-
ematical Society Lecture Notes Series, vol. 251, pp. 281–301. Cambridge University
Press (1998)

9. Wen-Tsün, W.: On the decision problem and the mechanization of theorem-proving
in elementary geometry. In: Bledsoe, W.W., Loveland, D.W. (eds.) Automated The-
orem Proving: After 25 years, pp. 213–234. AMS, Providence (1984)

Automating Free Logic in Isabelle/HOL

Christoph Benzmüller1,2(B) and Dana Scott3

1 Freie Universität Berlin, Berlin, Germany
c.benzmueller@fu-berlin.de

2 Visiting Scholar at Stanford University, Stanford, USA
3 Visiting Scholar at University of California, Berkeley, USA

dana.scott@cs.cmu.edu

http://www.christoph-benzmueller.de, http://www.cs.cmu.edu/~scott/

Abstract. We present an interactive and automated theorem prover for
free higher-order logic. Our implementation on top of the Isabelle/HOL
framework utilizes a semantic embedding of free logic in classical higher-
order logic. The capabilities of our tool are demonstrated with first exper-
iments in category theory.

Keywords: Free logic · Interactive and automated theorem proving ·
Model finding · Application to category theory

1 Introduction

Partiality and undefinedness are core concepts in various areas of mathematics.
Modern mathematical proof assistants and theorem proving systems are often
based on traditional classical or intuitionistic logics and provide rather inade-
quate support for these challenge concepts. Free logic [5,6], in contrast, offers
a theoretically and practically appealing solution. Unfortunately, however, we
are not aware of any implemented and available theorem proving system for free
logic.

In this extended abstract we show how free logic can be “implemented” in
any theorem proving system for classical higher-order logic (HOL) [1]. The pro-
posed solution employs a semantic embedding of free (or inclusive logic) in HOL.
We present an exemplary implementation of this idea in the mathematical proof
assistant Isabelle/HOL [4]. Various state-of-the-art first-order and higher-order
automated theorem provers and model finders are integrated (modulo suitable
logic translations) with Isabelle via the Sledgehammer tool [2], so that our solu-
tion can be utilized, via Isabelle as foreground system, with a whole range of
other background reasoners. As a result we obtain an elegant and powerful imple-
mentation of an interactive and automated theorem proving (and model finding)
system for free logic.

To demonstrate the practical relevance of our new system, we report on first
experiments in category theory. In these experiments, theorem provers were able
to detect a (presumably unknown) redundancy in the foundational axiom system
of the category theory textbook by Freyd and Scedrov [3].

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 43–50, 2016.
DOI: 10.1007/978-3-319-42432-3 6

44 C. Benzmüller and D. Scott

2 Free Logic

Terms in classical logic denote, without exceptions, entities in a non-empty
domain of (existing) objects D, and it are these objects of D the universal and
existential quantifiers do range over. Unfortunately, however, these conditions
may render classical logic unsuited for handling mathematically relevant issues
such as undefinedness and partiality. For example in category theory composition
of maps is not always defined.

Free logic (and inclusive logic) has been proposed as an alternative to rem-
edy these shortcomings. It distinguishes between a raw domain of possibly non-
existing objects D and a particular subdomain E of D, containing only the
“existing” entities. Free variables range over D and quantified variables only
over E. Each term denotes in D but not necessarily in E. The particular notion
of free logic as exploited below has been introduced by Scott [6]. A graphical
illustration of this notion of free logic is presented in Fig. 1.

E: existing objects

values of bound variables

D: raw objects

values of free variables

�
undefined

Fig. 1. Illustration of the semantical domains of free logic

3 Implementing Free Logic in Isabell/HOL

We start out with introducing a type i of individuals. The domain of objects asso-
ciated with this this type will serve as the domain of raw objects D, cf. Fig. 1.
Moreover, we introduce an existence predicate E on type i. As mentioned, E
characterises the subset of existing objects in D. Next, we declare a special con-
stant symbol star �, which is intended to denote a distinguished “non-existing”
element of D.

typedecl i — the type for indiviuals
consts fExistence:: i⇒bool (E) — Existence predicate
consts fStar :: i (�) — Distinguished symbol for undefinedness

Automating Free Logic in Isabelle/HOL 45

We postulate that � is a “non-existing” object in D.

axiomatization where fStarAxiom: ¬E(�)

The two primitive logical connective we introduce for free logic are negation
(¬) and implication (→). They are identified with negation (¬) and implication
(−→) in the underlying Isabelle/HOL logic. The internal names in Isabelle/HOL
of the new logical connectives are fNot and fImplies (the prefix f stands for
“free”); ¬ and the infix operator → are introduced as syntactical sugar.1

abbreviation fNot :: bool⇒bool (¬)
where ¬ϕ ≡ ¬ϕ
abbreviation fImplies:: bool⇒bool⇒bool (infixr → 49)
where ϕ→ψ ≡ ϕ−→ψ

The main challenge is to appropriately define free logic universal quantification
(∀) and free logic definite description (I). Again, we are interested to relate these
logical operators to the respective operators ∀ and THE in the Isabelle/HOL
logic. Different to the trivial maps for ¬ and → from above, their mappings
are relativized in the sense that the existence predicate E is utilized as guard in
their definitions.

The definition of the free logic universal quantifier ∀ thus becomes:

abbreviation fForall :: (i⇒bool)⇒bool (∀)
where ∀ Φ ≡ ∀ x . E(x)−→Φ(x)

Apparently, this definitions restricts the set of objects the ∀ -operator is ranging
over to the set of existing objects E. Note that this set can be empty (if desired,
we may of course simply postulate that the domain E is non-empty: ∃ x . E(x)).
The Isabelle framework supports the introduction of syntactic sugar for binding
notations. Here we make use of this option to introduce binding notation for ∀ .
With the definition below we can now use the more familiar notation ∀ x . ϕ(x)
instead of writing ∀ (λx . ϕ(x)) or ∀ ϕ.

abbreviation fForallBinder :: (i⇒bool)⇒bool (binder ∀ [8] 9)
where ∀ x . ϕ(x) ≡ ∀ ϕ

Definite description I in free logic works as follows: Given an unary set Φ = {a},
with a being an “existing” element in E, I returns the single element a of Φ. In all
other cases, that is, if Φ is not unary or a is not an element of E, IΦ returns the dis-
tinguished “non-existing” object denoted by �. With the help of Isabelle/HOL’s
definite description operator THE, I can thus be defined as follows:

abbreviation fThat :: (i⇒bool)⇒i (I)
where IΦ ≡ if ∃ x . E(x) ∧ Φ(x) ∧ (∀ y . (E(y) ∧ Φ(y)) −→ (y = x))

then THE x . E(x) ∧ Φ(x)
else �

Analogous to above we introduce binder notation for I, so that we can write
Ix . ϕ(x) instead of I(λx . ϕ(x)) or Iϕ.
1 The numbers in (infixr → 49) and (binder ∀ [8] 9) (see below) specify structural

priorities and thus help to avoid brackets in formula representations.

46 C. Benzmüller and D. Scott

abbreviation fThatBinder :: (i⇒bool)⇒i (binder I [8] 9)
where Ix . ϕ(x) ≡ I(ϕ)

Further logical connectives of free can now be defined in the usual way (and for
∃ we again introduce binder notation).

abbreviation fOr (infixr ∨ 51) where ϕ∨ψ ≡ (¬ϕ)→ψ
abbreviation fAnd (infixr ∧ 52) where ϕ∧ψ ≡ ¬(¬ϕ∨¬ψ)
abbreviation fEquiv (infixr ↔ 50) where ϕ↔ψ ≡ (ϕ→ψ)∧(ψ→ϕ)
abbreviation fEquals (infixr = 56) where x=y ≡ x=y
abbreviation fExists (∃) where ∃ Φ ≡ ¬(∀ (λy .¬(Φ y)))
abbreviation fExistsBinder (binder ∃ [8]9) where ∃ x . ϕ(x) ≡ ∃ ϕ

4 Functionality Tests

We exemplarily investigate some example proof problems from Scott’s paper [6],
pp. 183–184, where a free logic with a single relation symbol r is discussed.

consts r :: i⇒i⇒bool (infixr r 70)

The implication x r x → x r x, where x is a free variable, is valid independently
whether x is defined (i.e. “exists”) or not. In Isabelle/HOL this quickly confirmed
by the simplification procedure simp.

lemma x r x → x r x by simp

However, as intended, the formula ∃ y . y r y → y r y is not valid, since set of
existing objects E could be empty. Nitpick quickly presents a respective coun-
termodel.

lemma ∃ y . y r y → y r y nitpick [user-axioms] oops

Consequently, also the implication (x r x → x r x) → (∃ y . y r y → y r y) has
a countermodel, where E is empty.

lemma (x r x → x r x) → (∃ y . y r y → y r y) nitpick [user-axioms] oops

If we rule out that E is empty, e.g. with additional condition (∃ y . y = y) in
the antecedent of the above formula, then we obtain a valid implication. Isabelle
trivially proves this with procedure simp.

lemma ((x r x → x r x) ∧ (∃ y . y = y)) → (∃ y . y r y → y r y) by simp

We analyse some further statements (respectively statement instances) from
Scott’s paper [6], p. 185. Because of space restrictions we do not further com-
ment these statements here. Altogether they provide further evidence that our
implementation of free logic in fact obeys the intended properties.

lemma S1 : (∀ x . Φ(x) → Ψ(x)) → ((∀ x . Φ(x)) → (∀ x . Ψ(x))) by auto
lemma S2 : ∀ y . ∃ x . x = y by auto
lemma S3 : α = α by auto
lemma S4 : (Φ(α) ∧ (α = β)) → Φ(β) by auto
lemma UI-1 : ((∀ x . Φ(x)) ∧ (∃ x . x = α)) → Φ(α) by auto

Automating Free Logic in Isabelle/HOL 47

lemma UI-2 : (∀ x . Φ(x)) → Φ(α) nitpick [user-axioms] oops — Countermodel by
Nitpick
lemma UI-cor1 : ∀ y .((∀ x . Φ(x)) → Φ(y)) by auto
lemma UI-cor2 : ∀ y .((∀ x . ¬(x = y)) → ¬(y = y)) by auto
lemma UI-cor3 : ∀ y .((y = y) → (∃ x . x = y)) by auto
lemma UI-cor4 : (∀ y . y = y) → (∀ y .∃ x . x = y) by simp
lemma Existence: (∃ x . x = α) −→ E(α) by simp
lemma I1 : ∀ y . ((y = (Ix . Φ(x))) ↔ (∀ x . ((x = y) ↔ Φ(x)))) by (smt fStarAxiom
the-equality)
abbreviation Star (

⊗
) where

⊗ ≡ Iy . ¬ (y = y)
lemma StarTest :

⊗
= � by simp

lemma I2 : ¬(∃ y . y = (Ix . Φ(x))) → (
⊗

= (Ix . Φ(x))) by (metis (no-types,
lifting) the-equality)
lemma ExtI : (∀ x . Φ(x) ↔ Ψ(x)) → ((Ix . Φ(x)) = (Ix . Ψ(x))) by (smt the1-equality)

lemma I3 : (
⊗

= α ∨ ⊗ = β) → ¬(α r β) nitpick [user-axioms] oops— Coun-
termodel by Nitpick

5 Application in Category Theory

We exemplarily employ our free logic reasoning framework from above for an
application in category theory. More precisely, we study some properties of the
foundational axiom system of Freyd and Scedrov; see their textbook “Categories,
Allegories” [3], p. 3. As expected, the composition x · y, for morphisms x and y,
is introduced by Freyd and Scedrov as a partial operation, cf. axiom A1 below:
the composition x ·y exists if and only if the target of x coincides with the source
of y. This is why free logic, as opposed to e.g. classical logic, is better suited as
a starting point in this mathematical application area.2

In the remainder we identify the base type i of free logic with the raw type
of morphisms. Moreover, we introduce constant symbols for the following oper-
ations: source of a morphism x, target of a morphism x and composition of
morphisms x and y. These operations are denoted by Freyd and Scedrov as �x,
x� and x ·y, respectively. We adopt their notation as syntactic sugar below, even
though we are not particularly fond of the use of � in this context.

consts source:: i⇒i (�- [108] 109)
target :: i⇒i (-� [110] 111)
composition:: i⇒i⇒i (infix · 110)

Ordinary equality on morphisms is defined as follows:

abbreviation OrdinaryEquality :: i⇒i⇒bool (infix ≈ 60)
where x ≈ y ≡ ((E x) ↔ (E y)) ∧ x = y

2 The precise logic setting is unfortunately not discussed in the very beginning of
Freyd’s and Scedrov’s textbook. Appendix B, however, contains a concise formal
definition of the assumed logic. Note the special notion of equality used below (which
is different from Kleene equality) and also remember that we postulated a ‘non-
existing’ entity.

48 C. Benzmüller and D. Scott

We are now in the position to model the category theory axiom system of Freyd
and Scedrov.

axiomatization FreydsAxiomSystem where
A1 : E(x ·y) ↔ ((x�) ≈ (�y)) and
A2a: ((�x)�) ≈ �x and
A2b: �(x�) ≈ �x and
A3a: (�x)·x ≈ x and
A3b: x ·(x�) ≈ x and
A4a: �(x ·y) ≈ �(x ·(�y)) and
A4b: (x ·y)� ≈ ((x�)·y)� and
A5 : x ·(y ·z) ≈ (x ·y)·z
Experiments with our new reasoning framework for free logic quickly showed
that axiom A2a is redundant. For example, as Isabelle’s internal prover metis3

confirms, A2a is implied by A2b, A3a, A3b and A4a.

lemma A2aIsRedundant-1 : (�x)� ≈ �x by (metis A2b A3a A3b A4a)

A human readable and comprehensible reconstruction of this redundancy is pre-
sented below. Our handmade proof employs axioms A2b, A3a, A3b, A4a and A5,
that is, this proof could be further optimized by eleminating the dependency onA5.

lemma A2aIsRedundant-2 : (�x)� ≈ �x
proof −
have L1 : ∀ x . (��x)·((�x)·x) ≈ ((��x)·(�x))·x using A5 by metis
hence L2 : ∀ x . (��x)·x ≈ ((��x)·(�x))·x using A3a by metis
hence L3 : ∀ x . (��x)·x ≈ (�x)·x using A3a by metis
hence L4 : ∀ x . (��x)·x ≈ x using A3a by metis
have L5 : ∀ x . �((��x)·x) ≈ �((��x)·(�x)) using A4a by auto
hence L6 : ∀ x .�((��x)·x) ≈ ��x using A3a by metis
hence L7 : ∀ x . ��(x�) ≈ �(��(x�))·(x�) by auto
hence L8 : ∀ x . ��(x�) ≈ �(x�) using L4 by metis
hence L9 : ∀ x . ��(x�) ≈ �x using A2b by metis
hence L10 : ∀ x . ��x ≈ �x using A2b by metis
hence L11 : ∀ x . ��((�x)�) ≈ ��(x�) using A2b by metis
hence L12 : ∀ x . ��((�x)�) ≈ �x using L9 by metis
have L13 : ∀ x . (��((�x)�))·((�x)�) ≈ ((�x)�) using L4 by auto
hence L14 : ∀ x . (�x)·((�x)�) ≈ (�x)� using L12 by metis
hence L15 : ∀ x . (�x)� ≈ (�x)·((�x)�) using L14 by auto
then show ?thesis using A3b by metis
qed

Thus, axiom A2a can be removed from the theory. Alternatively, we could also
eliminate A2b which is implied by A1, A2a and A3a:

lemma A2bIsRedundant : �(x�) ≈ �x by (metis A1 A2a A3a)

3 Metis is a trusted prover of Isabelle, since it returns proofs in Isabelle’s trusted
proof kernel. Initially, however, we have worked with Isabelle’s Sledgehammer tool
in our experiments, which in turn performs calls to several integrated first-order
theorem provers. These calls then return valuable information on the particular proof
dependencies, which in turn suggest the successful calls with metis as presented here.

Automating Free Logic in Isabelle/HOL 49

In fact, by a systematic experimentation within our free logic theorem proving
framework, we can show that Freyd’s and Scedroc’s axiomatic theory can be
reduced to just the following five axioms:

axiomatization FreydsAxiomSystemReduced where
B1 : E(x ·y) ↔ ((x�) ≈ (�y)) and
B2a: ((�x)�) ≈ �x and
B3a: (�x)·x ≈ x and
B3b: x ·(x�) ≈ x and
B5 : x ·(y ·z) ≈ (x ·y)·z
The dropped axioms can then be introduced as lemmas.

lemma B2b: �(x�) ≈ �x by (metis B1 B2a B3a)
lemma B4a: �(x ·y) ≈ �(x ·(�y)) by (metis B1 B2a B3a)
lemma B4b: (x ·y)� ≈ ((x�)·y)� by (metis B1 B2a B3a)

6 Summary of Technical Contribution and Further Work

We have presented a new reasoning framework for free logic, and we have exem-
plary applied it for some first experiments in category theory. We have shown
that, in our free logic setting, the category theory axiom system of Freyd and
Scedrov is redundant and that three axioms can be dropped.

Our free logic reasoning framework is publicly available for reuse: Sim-
ply download Isabelle from https://isabelle.in.tum.de and initialize it (respec-
tively import) the file FreeFOL.thy from our sources available at www.
christoph-benzmueller.de/papers/2016-ICMS.zip. Our category theory experi-
ments are contained in the file FreydScedrov.thy.

Comparisons with other theorem provers for free logic are not possible at
this stage, since we are not aware of any other existing systems.

We also want to emphasize that this paper has been written entirely within
the Isabelle framework by utilizing the Isabelle “build” tool; cf. [8], Sect. 2. It is
thus an example of a formally verified mathematical document, where the pdf
document as presented here has been generated directly from the verified source
files mentioned above.4

Further work includes the continuation of our formalization studies in cate-
gory theory. It seems plausible that substantial parts of the textbook of Freyd
and Scedrov can now be formalised in our framework. An interesting ques-
tion clearly is how far automation scales and whether some further (previously
unknown) insights can eventually be contributed by the theorem provers. More-
over, we have already started to compare the axiom system by Freyd and Scedrov
with a more elegant set of self-dual axioms developed by Scott. Furthermore, we
plan to extend our studies to projective geometry, which is another area where
free logic may serve as a suitable starting point for formalisation.
4 By suitably adapting the Isabelle call as contained in file runIsabelle.sh in our zip-

package, the verification and generation process can be easily reproduced by the
reader.

https://isabelle.in.tum.de
www.christoph-benzmueller.de/papers/2016-ICMS.zip
www.christoph-benzmueller.de/papers/2016-ICMS.zip
http://runIsabelle.sh

50 C. Benzmüller and D. Scott

In addition to our implementation of free logic as a theory in Isabelle/HOL,
we plan to support an analogous logic embedding in the new Leo-III theorem
prover [9]. The idea is that Leo-III can then be envoked with a specific flag
telling it to automatically switch its underlying logic setting from higher-order
classical logic to first-order and higher-order free logic, while retaining TPTP
TH0 [7] as the common input syntax.

References

1. Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.,
Gabbay, D., Woods, J. (eds.) Handbook of the History of Logic, vol. 9. Logic and
Computation, Elsevier (2014)

2. Blanchette, J., Böhme, S., Paulson, L.: Extending sledgehammer with SMT solvers.
J. Autom. Reason. 51(1), 109–128 (2013)

3. Freyd, P.J., Scedrov, A.: Categories, Allegories. North Holland, Amsterdam (1990)
4. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-

Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
5. Nolt, J.: Free logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy.

Winter 2014 edn. (2014)
6. Scott, D.: Existence and description in formal logic. In: Schoenman, R., Russell,

B. (eds.) Philosopher of the Century, pp. 181–200. George Allen & Unwin, London
(1967). Reprinted with additions. In: Lambert, K. (ed.) Philosophical Application
of Free Logic, pp. 28–48. Oxford Universitry Press, 1991

7. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the
TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010)

8. Wenzel, M.: The isabelle system manual, February 2016. https://www.cl.cam.ac.
uk/research/hvg/Isabelle/dist/Isabelle2016/doc/system.pdf

9. Wisniewski, M., Steen, A., Benzmüller, C.: LeoPARD — a generic platform for the
implementation of higher-order reasoners. In: Kerber, M., Carette, J., Kaliszyk, C.,
Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS, vol. 9150, pp. 325–330. Springer,
Heidelberg (2015)

https://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2016/doc/system.pdf
https://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2016/doc/system.pdf

Efficient Knot Discrimination via Quandle
Coloring with SAT and #-SAT

Andrew Fish1, Alexei Lisitsa2(B), David Stanovský3, and Sarah Swartwood1

1 School of Computing, Engineering and Mathematics,
University of Brighton, Brighton, UK

2 Department of Computer Science, The University of Liverpool, Liverpool, UK
a.lisitsa@liverpool.ac.uk

3 Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Abstract. We apply SAT and #-SAT to problems of computational
topology: knot detection and recognition. Quandle coloring can be viewed
as associations of elements of algebraic structures, called quandles, to
arcs of knot diagrams such that certain algebraic relations hold at each
crossing. The existence of a coloring (called colorability) and the number
of colorings of a knot by a quandle are knot invariants that can be used
to distinguish knots. We realise coloring instances as SAT and #-SAT
instances, and produce experimental data demonstrating that a SAT-
based approach to colorability is a practically efficient method for knot
detection and #-SAT can be utilised for knot recognition.

Keywords: Computational topology · Knot detection and equivalence ·
SAT and #-SAT solving · Quandle coloring

1 Introduction

Advances in methods for detecting knotting or entangling, or distinguishing
various forms of knotting, have potential for impact across scientific disci-
plines, in relation to molecules, interacting particles, DNA strands, or any other
objects that can be knotted [Sum90,FN97,BF09]. The longstanding computa-
tional topology problem of unknot detection asks: given a knot K (i.e. a closed
loop without self-intersection embedded in 3-dimensional Euclidean space R3), is
it ambient isotopic to the unknot? More generally, the knot recognition problem
asks: given two knots, are they ambient isotopic?

In computational terms, it is unknown whether unknot detection is in
PTIME, but it does lie in NP [HLP99] and in co-NP if the generalized Rie-
mann hypothesis holds [Kup14]. Most practically fast algorithms are incomplete,
in the sense that they do not recognize all non-trivial knots. A typical exam-
ple is use of the Alexander polynomial, which can be calculated in PTIME
(and very quickly in practice). Many other classical invariants do not have

D. Stanovský—Partially supported by the GAČR grant 13-01832S.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 51–58, 2016.
DOI: 10.1007/978-3-319-42432-3 7

52 A. Fish et al.

fast algorithms: for instance, calculating the Jones polynomial is known to be
#P -hard [JVW90]. The algorithms based on monotone simplifications [Dyn03]
provide practically fast recognition of unknots but do not necessarily yield a
decision procedure. Several implementations for unknot detection, with varying
functionalities, exist. Most notably, algorithms based on normal surface theory
were implemented in Regina system [BO12]. Another software capable of knot
recognition is SnapPy [CDW], which also has a random link generator that we
utilise.

In [FL14], a new theorem proving/disproving approach to knot recognition
was proposed, based on algebraic objects called involutory quandles. In [FLS15],
the unknot certification technique was re-interpreted in terms of quandle color-
ings of knots [CESY14], leading to a decision procedure for unknot detection,
fairly efficient in practice. A reduction of the colorability of a knot by a given
quandle to the Boolean Satisfiability Problem, SAT, was proposed to address
the unknot detection problem.

In the present paper, we build significantly on the initial ideas in [FLS15],
providing substantial experimental data and exploring more sophisticated SAT
and #-SAT solving techniques, in order to gain insight into and potentially
improve performance of our unknot detection and knot recognition methods.
In order to certify the in-equivalence of knots, as opposed to just detect knot-
tedness, one can utilise a smarter invariant, the number of colorings by a given
quandle, which can be encoded via #-SAT. This confirms the indication provided
by experiments in [CESY14] that computing quandle colorings is a promising
avenue.

2 Knots, Quandles and Colorings

A self-contained introduction into quandle coloring and its application to knot
recognition can be found in [FLS15]. We refer there for all details and further
information, only summarizing the critical concepts here.

Definition 1. A set Q equipped with a binary operation � is called a quandle
if the following conditions hold:

Q1 x � x = x for all x ∈ Q.
Q2 For all x, y ∈ Q, there is a unique z ∈ Q such that x = z � y.
Q3 For all x, y, z ∈ Q, we have (x � y) � z = (x � z) � (y � z).

Fig. 1. A labeled crossing. Any coloring f must satisfy f(γ) = f(β) � f(α). (Color
figure online)

Efficient Knot Discrimination via Quandle Coloring with SAT and #-SAT 53

Let D be a knot diagram and let Q be a quandle. A coloring of D by Q is
a mapping f assigning to every arc (a continuous segment in the diagram) a
color from Q such that for every crossing with arcs labeled α, β, γ, as in Fig. 1,
f(γ) = f(β) � f(α) holds. A coloring is called trivial if it only uses one color.
Let colQ(D) denote the number of non-trivial colorings of the diagram D by the
quandle Q. Then colQ(D) is invariant with respect to the Reidemeister moves,
and therefore is a knot property, invariant with respect to ambient isotopy. A
knot K is non-trivial if and only if colQ(K) > 0 for some quandle Q.

Given a quandle Q, and a knot diagram D, one formulates the following
problems:

Q-colorability. Is colQ(D) > 0, i.e., is there a non-trivial Q-coloring of D?
Q-coloring number. Compute colQ(D).

In computational terms, Q-colorability is in the complexity class NP: given
an assignment of colors to arcs, it is easy to check whether it is a non-trivial
Q-coloring. Correspondingly, calculating the coloring numbers is in the complex-
ity class #P. To find a non-trivial coloring (all colorings, respectively), one has
to solve a system of equations over the quandle Q: for every crossing, as in Fig. 1,
we have the equation xβ �xα = xγ , where xα, xβ , xγ are variables that determine
the colors of the arcs α, β, γ.

In [FLS15] a natural reduction of coloring to SAT was proposed. Fix a con-
nected quandle Q = ({1, . . . , q}, �) and a knot diagram D with |D| = n, with
arcs numbered α1, . . . , αn. We consider nq boolean variables vi,c that determine
whether the arc αi has the color c. A SAT instance specifies all required con-
straints: every arc has a unique color, not all arcs have the same color and
colorings of all arcs crossing as in Fig. 1 satisfy quandle condition.

If the quandle Q is homogeneous (i.e., its automorphism group is transitive
on Q), we can assume that the arc α1 has color 1, i.e., add the clause v1,1. Since
the color of α1 can be chosen arbitrarily from Q, we have colQ(D) = |Q| · m,
where m is the number of solutions to the SAT problem.

Proposition 1. Let D be a knot diagram and Q a homogeneous quandle. Then
colQ(D) = |Q| · m, where m is the number of solutions to the SAT problem
described above.

We say that D has m essential colorings by Q, and we will record essential
colorings as output from the #-SAT solvers.

3 Experimental Set-Up

For our experiments, the following families of quandles and knots were used:

SQ. All 354 simple quandles of size ≤ 47, indexed in accordance to size.
CQ. 26 quandles (each of size ≤ 182), indexed as per Clark et al. [CESY14].
SQ1, SQ2, QQ. Small sets of quandles used for knot recognition (with #-SAT),

described in Sect. 5.

54 A. Fish et al.

K10–K12. All 249, 801 and 2977 prime knots (up to reverse and mirror image)
with crossing numbers not exceeding 10, 11 and 12 respectively.

A13. All 34659 alternating minimal projections of prime knots with crossing
numbers not exceeding 13.

R. 52 randomly generated diagrams with 25, 50, 75, 100 and 125 crossings.

These choices were influenced by practical concerns of the availability and
accessibility of input sources to use in the experiments.

Knot diagrams can be represented by various codes, and the KnotInfo
library [CL] provides more than a dozen discrete representations of tabulated
knots. The Planar Diagram (PD) notation was used, since it is readily available
for all prime knots up to 12 crossings K12, and it is straightforward to pro-
duce the crossing conditions of Fig. 1 from it (i.e. the quandle presentation). For
A13 [FR], a conversion from Gauss codes was also necessary. For R we repeat-
edly used the random link generator of SnapPy [CDW], only recording results
when knots were produced.

MiniSat 2.2.0 and #-SAT 12.08, driven by Perl/Prolog scripts running on
Debian Linux VM, hosted on Windows 7 system, were used for the experiments.

4 Experimental Results: Running Time

4.1 Knottedness Certification with MiniSat

In the first series of experiments the knot detection algorithm based on quandle
colorability was performed. Given a (PD code of a) knot, a procedure iterates
over all quandles from SQ, converts the quandle colorability task into a SAT
instance and checks its satisfiability by MiniSAT. The iteration proceeds until
the first satisfiable case is found. This is a solution to the Q-colorability problem,
giving witness to the non-triviality of the knot. For all knots from the K12 family
the detection time was in the interval 0.013–3.31 s with the vast majority of knots
being detected under 1 s. Figure 2 presents the cumulative frequency of running
times for this case.

Fig. 2. Cumulative frequency of run-
ning times (s) for knot detection for the
K12 family.

Fig. 3. Cumulative frequency of run-
ning times (s) for knot detection for the
A13 family.

Efficient Knot Discrimination via Quandle Coloring with SAT and #-SAT 55

This compares extremely favourably with the claim of the efficiency of the
same set of cases by Regina’s algorithm (see [BO12]), which computed each indi-
vidual case in under 5 min (as compared to 3.31 s). In fact, we also observe that
the total time for the completion of the set of all cases, following our approach,
was only 3 min and 54 s. For the case of A13 family the range of times was
0.015–5.654 s, with a mean time of 0.087 s and a median time of 0.039 s. The
cumulative frequency graph of running times is presented in Fig. 3. Recognition
of knottedness in R was virtually instant (much less than 1 s) for 49 of the cases,
whilst for the other 3 cases (all of size 125) it took just under 290 s. The size of
the smallest quandle by which the knot is colorable has a critical effect on the
running time.

For a regular family of torus knots (3, n) in T3 running time for Q-colorability
averaged over all quandles in SQ is roughly linear in n, and for the case n = 602
it is around 13 s.

4.2 Knot Recognition with #-SAT

We give details of the use of #-SAT for quandle colorings for one particular
setup: coloring all knots from the K12 family by each quandle from SQ. The
histogram shown in Fig. 4 demonstrates the distribution of running times for the
K12 family of knots, where for each knot the time is averaged over all of the
354 quandles. The range of times is 0.006–11.5 s, with a mean time of 0.57 s and
a median time of 0.51 s.

The histogram shown in Fig. 5 demonstrates the experimental data from
another perspective, focussing on the time taken, on average, to count the num-
ber of colorings by a given quandle over the whole family of knots. The range
of these average times was found to be 0.095–2.65 s, whilst the mean time was
0.57 s and the median time was 0.27 s. The experimental data for the #-SAT-
based quandle coloring of the same knot family K12 but a different quandle

Times

0 2 4 6 8 10 12

0
20

0
40

0
60

0

Fig. 4. Distribution of running times
(s) for counting Q-colorings for the
K12 family, averaged over all quandles
in SQ.

Times

Fr
eq

ue
nc

y

0.0 0.5 1.0 1.5 2.0 2.5

0
5

10
15

20
25

30

Fig. 5. Distribution of running times
(s) for counting Q-colorings for the SQ
family, averaged over all knots in K12.

56 A. Fish et al.

family CQ, demonstrates similar features. Further details can be found online
at [col15].

5 Experimental Results: Small Set of Distinguishing
Quandles

In [CESY14], they calculated a family CQ of 26 quandles whose coloring num-
bers distinguish all knots in K12. Most pairs of knots can be distinguished using
a fairly small quandle, and therefore relatively quickly, but some pairs require
fairly large quandles: the largest one used in CQ has 182 elements.

Table 1. Proportion of knots distinguished by quandle colourings, for various sets of
quandles.

K10 K11 K12

Total number 249 801 2977

Proportion recognised by colouring numbers in SQ with
|SQ|= 354

100 % 97.8 % 96.2 %

Proportion recognised by colouring numbers in SQ1 with
|SQ1|= 30

100 % 94.4 % 89.9 %

Proportion recognised by colouring numbers in SQ2 with
|SQ2|= 15

100 % 92.3 % 85.2 %

Proportion recognised by colouring numbers in QQ with
|QQ|= 17

100 % 100% 100 %

Proportion recognised by colouring numbers in CQ with
|CQ|= 26

100 % 100% 100 %

In [FLS15, Sect. 3.3], we argued that for certification of knottedness, one can
restrict to colorability by simple quandles. A natural question is, to what extent
this is true for the (more general) problem of knot recognition, using the actual
number of colorings. The first row in Table 1 shows the proportion of pairs of
knots with up to 10, 11 and 12 crossings distinguished by the family SQ: we see
that knots with up to 10 crossings are distinguished completely, but not so for
larger knots. Presumably, this is because quandles in SQ are too small.

We will consider two small subsets of SQ which distinguish all knots in K10:
let SQ1 and SQ2 be subsets of SQ consisting of quandles with indices:

SQ1. 100, 119, 120, 136, 148, 16, 184, 185, 1, 222, 223, 263, 264, 265, 26, 307,
308, 309, 38, 39, 75, 76, 77, 78, 186, 101, 121, 130, 23, 69.

SQ2. 100, 136, 148, 223, 263, 264, 265, 26, 38, 76, 101, 121, 130, 23, 69.

We used the number of essential colorings as a basic heuristic of recognition
power of a quandle. The set SQ1 contains all 25 quandles from SQ with 4 or

Efficient Knot Discrimination via Quandle Coloring with SAT and #-SAT 57

more essential colorings over K10; this is insufficient for distinguishing all pairs
in K10, hence we added 5 additional quandles from SQ, distinguishing the
remaining pairs. Then we picked SQ2 to be a minimal subset of SQ1 (minimal
with respect to inclusion) that solves the recognition problem for K10. Table 1
shows their performance on larger knots.

To investigate the potential of simple quandles for knot recognition, we
extended SQ2 by adding a small subset of quandles from CQ so that the union
solves the knot recognition problem for K12, and then took a minimal subset
that does the job. The result, to be refered as QQ, consists of the following 17
quandles:

– from SQ, take quandles with indices 23, 26, 38, 69, 100, 148, 223, 263, 264;
– from CQ, take quandles with indices 7, 19, 20, 21, 22, 23, 25, 26.

The running times of the knot recognition problem for K12 using #-SAT are
6511 min using the family QQ, compared to 6855 min using CQ. In [CESY14],
they report that the running time of their implementation is “months” of serial
time, but only about 100 min for a parallelized version of their algorithm. This
suggests that parallelization could significantly improve coloring by #-SAT.

Our #-SAT experiments also produced coloring data for K12 with the family
CQ, which allows for cross-validation with the data computed by [CESY14].
There are some differences in experimental set-up: our #-SAT encoding takes a
PD code list from KnotInfo, whilst [CESY14] uses a braid-based input code list.
Upon translation of the input format, the coloring numbers match exactly, except
for the cases of quandles with indices 16 and 17, and 23 and 24. Here the values
on a given knot either coincide, or they are switched on both pairs. The latter
cases indicate instances when KnotInfo gives the PD and braid codes for the
knot representatives with reversed orientations (see [CESY14, Lemma 3.2(3)]).

6 Conclusion

We have provided evidence that SAT and #SAT can be used for efficient com-
putation of topological invariants of knots, by the means of quandle coloring.
The SAT procedure can be used for fast detection of non-trivial knots, and we
demonstrated that: (i) it outperforms existing algorithms (Regina on K12 with
SQ); (ii) reasonably efficient performance for alternating knots with up to 13
crossings; (iii) scalability – efficient detection for random large knots, and also
for torus knots [FLS15]. Furthermore we have shown that #-SAT can be used
for reasonably efficient computation of quandle colourings, and we have provided
experimental data for the #-SAT tasks for K12 with SQ. Experimental data
will be made available online at [col15].

We found a small set of simple quandles that distinguish all prime knots
(up to reverse and mirror image) of up to 10 crossings, and a new set of 17
quandles that distinguish all prime knots (up to reverse and mirror image) of
up to 12 crossings, compared to the previous record of 26 quandles [CESY14].
We demonstrated that the new set is more efficient with respect to running time
using #-SAT.

58 A. Fish et al.

References

[BF09] Buck, D., Flapan, E. (eds.): Applications of Knot Theory. American Math-
ematical Society Short Course, San Diego, CA, USA, 4–5 January 2008.
American Mathematical Society (AMS), Providence, RI (2009)

[BO12] Burton, B.A., Özlen, M.: A fast branching algorithm for unknot recognizion
with experimental polynomial-time behaviour (2012). http://arxiv.org/abs/
1211.1079v3

[CDW] Culler, M., Dunfield, N.M., Weeks, J.R.: SnapPy, a computer program for
studying the topology of 3-manifolds. http://snappy.computop.org

[CESY14] Clark, W.E., Elhamdadi, M., Saito, M., Yeatman, T.: Quandle colorings of
knots and applications. J. Knot Theory Ramif. 23, 1450035 (2014)

[CL] Cha, J.C., Livingston, C.: Knotinfo: table of knot invariants. http://www.
indiana.edu/∼knotinfo. Accessed Jan 2015

[col15] Quandle colouring data (2015). http://cgi.csc.liv.ac.uk/∼alexei/quandle
colourings

[Dyn03] Dynnikov, I.A.: Recognition algorithms in knot theory. Uspekhi Mat. Nauk
58(6(354)), 45–92 (2003)

[FL14] Fish, A., Lisitsa, A.: Detecting unknots via equational reasoning, I: explo-
ration. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J.
(eds.) CICM 2014. LNCS, vol. 8543, pp. 76–91. Springer, Heidelberg (2014)

[FLS15] Fish, A., Lisitsa, A., Stanovský, D.: A combinatorial approach to knot recog-
nition. In: Horne, R. (ed.) EGC 2015. CCIS, vol. 514, pp. 64–78. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-25043-4 7

[FN97] Faddeev, L., Niemi, A.J.: Stable knot-like structures in classical field theory.
Nature 387, 58–61 (1997)

[FR] Flint, O., Rankin, S.: Gauss codes for the distinct minimal diagrams for
the primealternating knots of 13 crossings. http://www-home.math.uwo.
ca/∼srankin/knots/knotprint.html. Accessed Jan 2016

[HLP99] Hass, J., Lagarias, J.C., Pippenger, N.: The computational complexity of
knot and link problems. J. Assoc. Comput. Mach. 46, 185–211 (1999)

[JVW90] Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity
of the Jones and Tutte polynomials. Math. Proc. Camb. Philos. Soc. 108,
35–53 (1990)

[Kup14] Kuperberg, G.: Knottedness is in NP, modulo GRH. Adv. Math. 256, 493–
506 (2014)

[Sum90] Sumners, D.: Untangling DNA. Math. Intelligencer 12, 71–80 (1990)

http://arxiv.org/abs/1211.1079v3
http://arxiv.org/abs/1211.1079v3
http://snappy.computop.org
http://www.indiana.edu/~knotinfo
http://www.indiana.edu/~knotinfo
http://cgi.csc.liv.ac.uk/~alexei/quandle_colourings
http://cgi.csc.liv.ac.uk/~alexei/quandle_colourings
http://dx.doi.org/10.1007/978-3-319-25043-4_7
http://www-home.math.uwo.ca/~srankin/knots/knotprint.html
http://www-home.math.uwo.ca/~srankin/knots/knotprint.html

Interactive Proving, Higher-Order Rewriting,
and Theory Analysis in Theorema 2.0

Alexander Maletzky(B)

Doctoral Program “Computational Mathematics” and RISC,
Johannes Kepler University, Linz, Austria
alexander.maletzky@dk-compmath.jku.at

https://www.dk-compmath.jku.at/people/alexander-maletzky/

Abstract. In this talk we will report on three useful tools recently
implemented in the frame of the Theorema project: a graphical user inter-
face for interactive proof development, a higher-order rewriting mecha-
nism, and a tool for automatically analyzing the logical structure of
Theorema-theories. Each of these three tools already proved extremely
useful in the extensive formal exploration of a non-trivial mathemati-
cal theory, namely the theory of Gröbner bases and reduction rings, in
Theorema 2.0.

Keywords: Computer-assisted mathematical theory exploration ·
Interactive theorem proving · Theorema

1 Introduction

Theorema1 is a so-called mathematical assistant system supporting its users
in all aspects of mathematical theory exploration: inventing new notions and
problems, implementing and experimenting with algorithms, making conjectures,
and finally proving or disproving them. Theorema 2.0 [1] is the latest version of
the system, released roughly two years ago in 2014; as its predecessor, it is still
based on Mathematica.

The present paper reports on three tools we recently developed for mak-
ing working with the system more attractive and efficient: a versatile interac-
tive proof strategy giving the user full control over proving and complementing
the existing automatic strategies, a powerful rewriting mechanism for trans-
lating first- and higher-order formulas into Mathematica transformation rules
for rewriting other formulas in proofs, and a simple but nonetheless extremely
helpful tool for analyzing the logical structure of Theorema-theories. The devel-
opment of each of these three tools was motivated by our extensive formal treat-
ment of the theory of Gröbner bases and reduction rings in Theorema, see [3]
for details.

This research was funded by the Austrian Science Fund (FWF): grant no. W1214-
N15, project DK1.

1 http://www.risc.jku.at/research/theorema/software/.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 59–66, 2016.
DOI: 10.1007/978-3-319-42432-3 8

http://www.risc.jku.at/research/theorema/software/

60 A. Maletzky

Please note that the tools have not been integrated into the official version
of Theorema 2.0 yet, but they are expected to be in the near future. Still, they
can easily be installed manually, relying on Mathematica’s comfortable package-
system.

Small parts of this paper are also contained in [3].

2 Interactive Proving

The first of the three tools we present in this paper is an interactive proof strat-
egy (IPS) that, as its name suggests, can be used for developing proofs in The-
orema 2.0 fully interactively, in the sense that the human user has full control
over what happens at each stage of a proof. This is in contrast to the automatic,
or, at least, semi-automatic proof strategies typically available in the system.

As can be seen in a concrete example below, the IPS in Theorema 2.0 is not
text-based, as in most other proof assistants, but dialog-oriented. This means
that whenever a user interaction is required, a dialog window displaying the cur-
rent proof situation pops up, asking the user to perform an action (by clicking on
a button, typing in some text, etc.; see Fig. 1). This, in fact, follows the tradition
of interactive proving in Theorema 1, the predecessor version of Theorema 2.0,
where the environment for interactive proving developed in [5] is dialog-oriented
as well. Note that we did not just migrate said environment from Theorema 1
to Theorema 2.0, but really implemented the new IPS completely from scratch;
this seemed to be the more reasonable approach, as the internal architecture of
Theorema 2.0 differs considerably from the one of Theorema 1.

Before explaining how the IPS can be used in practical applications, some
words on its implementation are in place: the IPS is implemented simply as a
Theorema proof strategy, meaning that it essentially is a function taking a proof
situation (characterized by the current proof goal and a list of assumptions) as
input and returning a list of new, ideally simpler proof situations as output; the
logical relation between in- and output obviously is that the validity of the input-
situation follows from the validity of all of the output-situations. The output is
constructed by applying inference rules that are themselves independent of the
IPS and could well be used together with any other (automatic) proof strategy
installed in the system. The main task of the IPS is only to guide the application
of the inference rules, by specifying which rules shall be applied and how they
shall be applied.

2.1 How the Interactive Proof Strategy Works in Practice

Once the IPS is properly installed, it can be selected as the proof strategy
of choice just as any other, pre-defined proof strategy when initiating a proof
attempt; no further setup by the user is required. Then, whenever a new proof
situation p arises during the proof search, the IPS proceeds as follows:

– First, it automatically tries to apply an available high-priority inference rule
to p. If this is possible, the respective rule is applied and the proof search
continues.

New Tools in Theorema 2.0 61

– Otherwise, if no high-priority rule is applicable to p, it asks the user how to
proceed by displaying a graphical dialog window.

Every inference rule in Theorema has a priority attached to it. Automatic
proof strategies usually fall back on these priorities for determining the order
they try to apply inference rules in. The IPS takes rule priorities into account
solely for filtering out the high-priority rules, i. e. those rules whose priorities are
above a certain, user-adjustable threshold.2

Assume now that no high-priority rule could be applied to p. The user now
has a range of possibilities how to proceed, including

– choosing another inference rule to apply to p (or, more precisely, to try, since
non-applicable rules are not automatically filtered out),

– choosing a different pending proof situation where to continue,
– adjusting various settings, like the current set of inference rules and even the

proof strategy (making it possible to switch to an automatic strategy at some
point during the proof development),

– inspecting the so-far constructed proof in a nicely-formatted proof document,
– inspecting the internal representation of p as a plain Mathematica expression

for debugging purposes,
– saving the current proof status to an external file, for creating a “secure point”

the proof may be resumed from later, and
– aborting the proof attempt.

Before choosing an inference rule the user may also activate and deactivate
formulas appearing in p by marking check-boxes in the dialog window (see Fig. 1).
This might affect how the chosen rule is applied, e. g. if several cases based on
a disjunction in the knowledge base shall be distinguished, but more than one
disjunctions appear among the assumptions, the user can specify exactly which
one to consider simply by deactivating all others. It must be noted, though,
that the information about whether a formula is activated or not might well be
ignored by the chosen inference rule; this cannot be influenced by the IPS.

2.2 An Example

As an example, let us consider the interactive proof of the well-known drinker
paradox : “In every non-empty pub there is someone such that, if he is drinking,
everyone else is drinking as well.” This is actually no paradox but a theorem in
classical logic and may hence be proved in Theorema.

Figure 1 depicts two dialog windows of the IPS arising in the interactive proof
of the drinker paradox. The first one corresponds to the case where someone who
does not drink is assumed to be in the pub (Formula (A#1)), and where the
next action to be taken, as specified by the user, is to eliminate the existential
quantifier in Formula (A#1) by introducing a new constant that witnesses this
person. The resulting proof situation is displayed in the second window.
2 A typical example of a high-priority rule is the inference rule that proves implications

by assuming their premises and proving their conclusions.

62 A. Maletzky

Fig. 1. Two dialog windows arising in the interactive proof of the drinker paradox.

The interactive dialogs display the current proof situation in the bottom part
of the respective windows, on light-brown background. In each case, the top-most
formula (above the black line) is the current goal, whereas the formulas below
the black line are the assumptions. The check-boxes next to the formulas indicate
whether the respective formulas have been activated or deactivated by the user.
Above the proof situation, the name of inference rule to be applied next, as
chosen by the user, is displayed; it is applied by simply hitting the Enter-key.

3 Higher-Order Rewriting

Rewriting constitutes one of the core components of theorem proving in The-
orema as well as many other proof assistants: assumptions (equalities, equiva-
lences, implications) are transformed into rewrite-rules which may then be used
to rewrite other formulas in the current proof situation. By default, Theorema
can only deal with first-order formulas and rewrite-rules, respectively, in the
sense that the left-hand-side of a rewrite-rule has to match an expression syn-
tactically in order to be applicable; no αβη-equivalence is taken into account.
However, a lot of formulas one frequently encounters in mathematical theories

New Tools in Theorema 2.0 63

are not first- but higher-order (typical examples are induction rules), and should
be treated as such for efficiently working in the respective theories in Theorema.

The higher-order rewriting mechanism we describe in this section serves
exactly said purpose: it is able to translate (potentially higher-order) rewrite-
rules ρ : l �→ r originating from Theorema formulas into Mathematica trans-
formation rules p :> b that can later be applied by simply calling the standard
rule-application-functions from Mathematica’s algorithm library (ReplaceAll,
ReplaceList, etc.), such that the correctness condition

e′ ∈ ReplaceList[e, p :> b] ⇒ e →ρ e′ (1)

is met (where e →ρ e′ means that expression e can be rewritten into e′ by
rule ρ modulo αβη-equivalence). The other direction of (1), though desirable in
principle, is out of reach in general if ρ is a higher-order rule: whether higher-
order matching (which is one of the key ingredients of rewriting) is decidable
or not is still an open problem.3 Hence, if ρ is higher-order, the Mathematica
transformation rule p :> b cannot be expected to fully reflect the higher-order
nature of ρ in any case.

3.1 Main Idea

Sometimes, the strategy to tackle problems related to (possibly) undecidable,
infinitary matching in concrete implementations is to restrict the class of left-
hand-sides of rewrite-rules to so-called higher-order patterns; for instance, the
simplifier in the Isabelle proof assistant by default can only handle rules falling
into this category (see [7], pp. 205–206). The main idea behind our mecha-
nism is similar but less restrictive: if the compiler (i. e. the function that turns
rewrite-rules into Mathematica transformation rules) can infer that the match-
ing problem associated to the left-hand-side of a given rule ρ is unitary, because
bound variables appearing among the arguments of free higher-order variables
can be used to uniquely determine the instances of these variables when match-
ing an expression, then ρ is “accepted” and turned into a transformation rule
that exactly corresponds to ρ. Otherwise, if the compiler cannot infer that the
matching problem is unitary (maybe because it simply is not), some free higher-
order variables have to be treated just like first-order variables that need to
match syntactically, meaning that the resulting transformation rule does not
correspond to ρ exactly.

Example 1. The left-hand-side of the rewrite-rule (with P , T and S being free
variables)

∀i=1,...,|T |+|S| P (join(T, S)i) �→ ∀i=1,...,|T | P (Ti) ∧ ∀i=1,...,|S| P (Si)

is no higher-order pattern, but can still be handled without much ado by our
mechanism because the occurrence of the bound variable i in the argument of
3 Higher-order matching is known to be decidable under certain restrictions on the

types involved [6], as well as for general problems below order five [4].

64 A. Maletzky

P on the left-hand-side uniquely determines the instance of P when matched
against a concrete expression. In contrast, the free variable P in the (non-
sense) rule

P (0) �→ ∃xP (x)

must be treated like a first-order variable by the compiler, for otherwise the
instance of P would not be unique in general: matching 0 < 1 could be accom-
plished by instantiating P either by λx 0 < 1 or by λx x < 1, leading to
fundamentally different instances of the right-hand-side.

3.2 Implementation Details

The compiler translates rewrite-rules into ordinary Mathematica transformation
rules. Hence, since Mathematica only supports syntactic matching, all possible
higher-order aspects (αβη-equivalence, automatic instantiation by λ-terms, etc.)
have to be encoded explicitly in the pattern p and the body b of the resulting
transformation rules, e. g. by means of Mathematica’s Condition function.

Example 2. Consider the higher-order rewrite-rule
∑

i=1,...,n+1

F (i) −
∑

i=1,...,n

F (i) �→ F (n + 1)

Ignoring syntactical details of the internal representation of Theorema expres-
sions and technicalities related to capture-avoiding substitutions, the Mathe-
matica transformation rule automatically generated by the compiler reads as
something like

Sum[{i1 , 1, n +1}, F1] - Sum[{i2 , 1, n }, F2] :>

substFree[F1, {i1 -> n + 1}] /;

alphaEquiv[substFree[F1, {i1 -> i2}], F2]

As can be seen, higher-order variables (like F in the previous example)
are actually never instantiated by concrete λ-terms, but rather the instances
of the right-hand-sides of rules are constructed by directly replacing certain
sub-expressions (like the bound variable i above). This saves expensive (capture-
avoiding) substitutions and explicit β-reductions and, for that reason, is a general
principle the compiler adheres to. Moreover, apparently there is no hard-coded,
general-purpose higher-order matching algorithm that is attached to every trans-
formation rule, but rather every single transformation rule is equipped with its
very own, tailor-made, dynamically generated, optimized algorithm that does not
perform any redundant operations. In the example above, only the α-equivalence
of two expressions has to be checked in addition to the default syntactic match-
ing carried out by Mathematica—a fact the compiler detects and exploits fully
automatically when generating the transformation rule.

New Tools in Theorema 2.0 65

3.3 More Features

Due to the lack of space, the preceding sections could only provide a glimpse of
the higher-order rewriting mechanism, and in particular of the transformation
rule compiler; more detailed information can be found in our forthcoming PhD
thesis [2]. Still, we want to briefly mention two further features also here:

– Conditional rules, n-ary higher-order variables, and sequence variables are
supported as well (to a certain extent). Conditional rules do not cause any
difficulties at all, but the presence of free higher-order variables with arity > 1
or free sequence variables complicates matters considerably.

– The compiler by default applies a range of optimizations to the rules it gen-
erates for increasing efficiency.

– The condition on matching problems associated to the left-hand-sides of rules
being unitary can be relaxed in some situations.

4 Theory Analysis

The third an last tool presented in this paper, called TheoryAnalyzer, enables the
automatic analysis of the logical structure of one or several Theorema-theories
(i. e. content notebooks together with external proof files). The main idea behind
the TheoryAnalyzer is simple enough: read the proof files, and from each proof
file store the proof goal and the list of assumptions as the nodes of a graph G
that eventually reflects the dependencies between all the formulas thus collected.
Namely, a formula ϕ depends on another formula ψ iff ψ is used as an assumption
in a proof of ϕ; in such a case, G contains a directed edge from ψ to ϕ.

Once G has been constructed, it can easily be analyzed by means of well-
known graph-theoretic functions (like exhaustive search); in particular, it is
possible to

– inspect all direct/indirect assumptions/consequences of a given node (corre-
sponding to a formula in the theory),

– detect cycles in the graph, corresponding to circular arguments in the theory,
– find the logical relation between two nodes/formulas, and
– visualize theory dependency graphs and formula statistics diagrams (the latter

display the numbers of formulas in each theory); see Fig. 2.

The development of the TheoryAnalyzer was mainly triggered by the practi-
cal experience we gained from formalizing Gröbner bases theory in Theorema:
it turned out that quite frequently it becomes necessary to re-structure existing
parts of formalizations, e. g. by slightly modifying formulas that have already
been used as assumptions in proofs. In such situations, the responsibility for
maintaining the coherence the formalization exclusively is with the user of The-
orema; the system itself does not automatically initiate the re-proving of exist-
ing theorems affected by changes in the background theory. Therefore, knowing
which theorems are affected is of utmost importance—and this is exactly where
the TheoryAnalyzer comes into play.

66 A. Maletzky

Fig. 2. The theory dependency graph and formula statistics diagram of the Gröbner
bases formalization, as automatically generated by the TheoryAnalyzer.

5 Conclusion

In the preceding sections we gave account on three new tools for Theorema 2.0
that already proved extremely useful in practice and are expected to be inte-
grated into the official version of the system in the near future.

There are several directions for further improving the tools: for instance,
the dialog-oriented interactive proof strategy could be enhanced by a text-based
interface, making it more attractive for people used to such interfaces.

References

1. Buchberger, B., Jebelean, T., Kutsia, T., Maletzky, A., Windsteiger, W.: Theo-
rema 2.0: computer-assisted natural-style mathematics. J. Formaliz. Reason. 9(1),
149–185 (2016)

2. Maletzky, A.: Computer-Assisted Exploration of Gröbner Bases Theory in Theo-
rema. Ph.D. thesis, Research Institute for Symbolic Computation, Johannes Kepler
University Linz, Austria (2016, to appear)

3. Maletzky, A.: Mathematical Theory Exploration in Theorema: Reduction Rings. In:
CICM 2016 (2016). Preprint on http://arxiv.org/abs/1602.04339

4. Padovani, V.: Filtrage d’ordre supérieure. Ph.D. thesis, Université Paris 7, Paris,
France (1996)

5. Piroi, F., Kutsia, T.: The theorema environment for interactive proof development.
In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp.
261–275. Springer, Heidelberg (2005)

6. Stirling, C.: Decidability of higher-order matching. Log. Methods Comput. Sci. 5(3),
1–52 (2009)

7. Wenzel, M.: The Isabelle/Isar Reference Manual (2016), part of the Isabelle docu-
mentation. https://isabelle.in.tum.de/documentation.html

http://arxiv.org/abs/1602.04339
https://isabelle.in.tum.de/documentation.html

Automated Deduction in Ring Theory

Ranganathan Padmanabhan and Yang Zhang(B)

Department of Mathematics, University of Manitoba, Winnipeg R3T 2N2, Canada
{Ranganathan.Padmanabhan,Yang.Zhang}@umanitoba.ca

http://www.math.umanitoba.ca/people/faculty.php?id=22

http://www.math.umanitoba.ca/people/faculty.php?id=Yang Zhang

Abstract. Pover9/Mace4 or its predecessor Otter is one of the powerful
automated theorem provers for first-order and equational logic. In this
paper we explore various possibilities of using Prover9 in ring theory
and semiring theory, in particular, associative rings, rings with invo-
lutions, semirings with cancellation laws and near-rings. We code the
corresponding axioms in Prover9, check some well-known theorems, for
example, Jacobson’s commutativity theorem, give some new proofs, and
also present some new results.

Keywords: Prover9 · Otter · Commutativity · Associative rings

1 Introduction

It is well-known that automated reasoning tools have been widely used in many
areas such as lattice theory, loop algebra, group theory, which provide powerful
methods to check or simplify the proofs, prove or construct counter-examples
for conjectures, and discover the new theorems, see, for example, McCune and
Padmanabhan [11] and Phillips and Stanovsky [13].

Pover9/Mace4 [10] or its predecessor Otter [9] is one of the powerful
automated theorem provers for first-order and equational logic. To our best
knowledge, only few papers considered how to use Prover9 in ring theory. In
non-commutative rings, one of significant difficult points is to construct some
conter-examples, which is almost impossible to do that by hand. Now using
Mace4, many examples can be constructed quickly.

The purpose of this paper is to explore various possibilities of using Prover9
in ring theory, in particular, associative rings, rings with involutions, rings
with derivations and near-rings. We code the corresponding axioms in Prover9,
check some well-known theorems, give some new proofs, and also discuss some
conjectures.

This paper is self-contained in that we do not assume that the reader is
familiar with ring theory or Prover9. We provide some Prover9 commands in
ring theory, and expect that other researchers can use Prover9 in their research
works easily.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 67–74, 2016.
DOI: 10.1007/978-3-319-42432-3 9

68 R. Padmanabhan and Y. Zhang

In Sect. 2, we first code the axioms of associative rings in Prover9, and then
prove Jacobson’s commutativity theorem, as well as other commutativity the-
orems. The similar theorems in rings with involutions and derivations as well
as near-rings are discussed in Sect. 3. Finally some new results in semirings are
presented in Sect. 4.

All results in this paper are tested in iMac 3.06 GHz. Prover9’s default term-
ordering is LPO but KBO (Knuth-Bendix) is sometimes preferable. For asso-
ciative rings, KBO usually finds direct proofs (instead of indirect proofs via
contradictions).

2 Commutativity in Associative Rings

When we study polynomial identities in non-commutative rings, one interesting
question is that a ring will be commutative if its elements satisfy a polynomial
identity. The summary of early work can be found in Herstein’s books [2,3].
Since then, many people have worked in this area and various identities have
been found.

The first famous result was given by Jacobson [6]: Let R be a ring. If for any
x ∈ R, there exists an integer n(x) > 1 such that xn(x) = x, then R is com-
mutative. The proof of this theorem is difficult, and one has to use some deep
structure theory in non-commutative rings, not a constructive proof. In past two
decades, how to prove this kind of commutativity theorems by a computational
point of view has become a challenge question in computer science. Various meth-
ods have been explored, for example, by computing GCD (Zhang [16]), Gröbner
bases method (Wavrik [15]), and the first-order logic method (Prover9 [10] and
Otter [9]).

In the early versions of Otter, it was easy to find the proof of Jacobson’s
theorem for n = 2 but out of the memory for n = 3 or bigger. Prover9 has largely
improved the performance. In this section, we start from Jacobson theorem, and
give more discussions in this direction. In Prover9, “1 = 0” could be true and it
may induce some unexpected cancellations. Therefore, usually one should add
“1 != 0” as an assumption.

For n = 2 and n = 3, Prover9 produces proofs within 3 s. When n = 4,
Prover9 gives out a proof of length 174 and given clauses 707 with the input
file in the proof of Theorem1. Under the weaker condition, Prover9 derived a
smart proof which only uses the multiplicative semigroup aspect of the ring as
following:

Theorem 1. If for any x ∈ R, x4 = x and x2 belongs to the center of R, then
R is commutative.

Proof.

\% -------- Comments from original proof --------
\% Proof 1 at 0.00 (+ 0.00) seconds: commutativity.
\% Length of proof is 9.

Automated Deduction in Ring Theory 69

\% Level of proof is 4.
\% Maximum clause weight is 13.
\% Given clauses 10.

Input Clauses:

10 (x * y) * z = x * (y * z). [assumption].

14 (x * x) * y = y * (x * x). [assumption].

15A x * (x * y) = y * (x * x). [para(10(a,1),14(a,1))].

15 x * (y * y) = y * (y * x). [copy(15A),flip(a)].

16 x * (x * (x * x)) = x # label("hypothesis x^4=x"). [assumption].

17 c2 * c1 != c1 * c2 # label(commutativity) # answer(commutativity).

Goal:

x * y = y * x # label(commutativity) # label(goal).

Output Clauses:

44A x * (y * (y * (y * y))) = (y * y) * ((y * y) * x).

[para(15(a,1),15(a,1,2))].

44B x * y = (y * y) * ((y * y) * x). [para(16(a,1),44A(a,1,2))].

44C x * y = (y * y) * (y * (y * x)). [para(10(a,1),44B(a,2,2))].

44D x * y = y * (y * (y * (y * x))). [para(10(a,1),44C(a,2))].

44 x * (x * (x * (x * y))) = y * x. [copy(44D),flip(a)].

48A x * y = x * ((x * (x * x)) * y). [para(16(a,1),10(a,1,1))].

48B x * y = x * (x * ((x * x) * y)). [para(10(a,1),48A(a,2,2))].

48C x * y = x * (x * (x * (x * y))). [para(10(a,1),48B(a,2,2,2))].

48 x * y = y * x. [para(44(a,1),48C(a,2))].

49 $F # answer(commutativity). [resolve(48,a,17,a)].

Also Prover9 gives a proof for the following result with 0.70 s and 103 clauses.
It is possible for people to pick up necessary clauses and write down a proof by
hand.

Theorem 2. If for any x ∈ R, x4 = x, then x3 is in the center of R.

When n = 5, no result came out within half hour. Therefore people need to
add some hints to allow Prover9 to prove it within a reasonable time. How to
choose hints is an interesting open question.

One directly generalized version of Jacobson’s theorem is to prove that R
is commutative if xn − x belongs to the center of R for some positive integer
n > 1. When n = 2, we use

(x * x + -x) * y = y * (x * x + -x).

for the condition in Prover9. The result can be proved for n = 2, 3 within 2 min.
No result came out for n = 4 within 30 min.

Another version is that for any x ∈ R there exists an n such that xn = −x.
Clearly if n is even number, it is equivalent to Jacobson theorem. Using Prover9,
we have

70 R. Padmanabhan and Y. Zhang

Theorem 3. R is commutative if xn = −x for n = 2, 3, 4, 5, 6, 7.

The interesting point is that Prover9 can find the proofs for n = 2, 3 within
one second, for n = 4, 5, 6 about 38 s and for n = 7 about 288 s. From above
results, we guess the following new result is true, and in fact Porver9 produces
a very short proof.

Theorem 4. R is commutative if for any x ∈ R, x3 + x2 + x = 0. Moreover
xy = 0 for any x, y ∈ R.

Also we can prove the following other versions:

Theorem 5. If R satisfies x3 −x2 +x = 0 or x3 −x2 −x = 0, then xy = 0 and
R is commutative.

For higher degree, we have already tested some identities, for example,
x8 + x2 − x = 0, x6 + x5 − x = 0. They all produce xy = 0. One may guess
that “xy = 0” is true for all these kinds of identities. But for x2 + x = 0,
Mace4 gives the following example to show that xy �= 0.

-: 0 1
0 1

+: 0 1
0 0 1
1 1 0

*: 0 1
0 0 0
1 0 1

This naturally leads to the following open problem: For what kind of identi-
ties, for example, if R satisfies xn1 + (−1)m2xn2 + · · · + (−1)mlxnl = 0, then R
is commutative or xy = 0.

Herstein [4] extended Jacobson’s theorem to a more general case:

Theorem 6. R is commutative if (xy − yx)n = xy − yx for any x, y ∈ R.
More general, R is commutative if (xy − yx)n − (xy − yx) belongs to the center
of R.

We proved it for n = 2, 3 cases within 5 min. On the other hand, MacHale [7]
proved so-called anti-commutativity theorem as following:

Theorem 7. If for any x, y ∈ R, there exists n > 0 such that (xy + yx)n =
xy + yx, then R is anti-commutative, that is, xy = −yx.

Prover9 can prove n = 2, 3 cases within 20 min. One interesting question
is that if for any x, y ∈ R, there exists an n > 0 such that (xy + yx)n = xy −
yz or (xy − yx)n = xy + yz, then what happen for R, commutative or anti-
commutative? To our best knowledge, no answer was published for this question.

Due to noncommutative property, it is very difficult to construct some exam-
ples by hands. Now we are working on this questions, either prove it or give some
counter-examples by Mace4. We also use Mace4 to disprove some conjectures.
The following theorem is well-known:

Theorem 8. R is commutative if for any x, y ∈ R there exists an integer n
such that (xy)n = xynx.

Automated Deduction in Ring Theory 71

One intuition is that if one swaps the positions of x and y on the right
side, that is, (xy)n = yxny, then R is anti-commutative. But Mace4 gives us a
counter-examples for n = 2 as follows:

-: 0 1 2
0 2 1

+: 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

*: 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

This example also provides a counter-example for “(xy)2 = y2x2 implies R
is anti-commutative”.

3 Rings with Some Operations

In this section, we discuss the commutativity properties in rings with some
additional conditions. Recall the a ring R is called a prime ring if for
x, y ∈ R, xRy = 0 implies x = 0 or y = 0, and R is called semiprime if
xRx = 0 implies x = 0. The axioms of a prime ring can be coded in Prover9 as

all z ((x*z)*y = 0) -> x = 0 | y = 0.

In prime or semiprime rings, more commutativity theorems can be proved,
for example,

Theorem 9. Let R be a semiprime ring. R is commutative if for any x, y ∈ R
there exists an integer n such that (xy)n = (yx)n(or (xy)n = xnyn).

Rings with involutions is an old but still active research area in associative
ring theory and there are many applications in other areas. Let R be a ring. A
mapping ′ : R → R is called an involution of R if for any x, y ∈ R,

(x + y)′ = x′ + y′, (xy)′ = y′x′, (x′)′ = x.

Some elementary properties can be found in Herstein [5]. Usually people use
“*” for the involution. In Prover9, “*” has already declared as the symbol of
multiplication. Therefore we use “′” for the involution. The symmetric element
set in R is defined as S = {s ∈ R | s′ = s}, and the skew-symmetric set is
K = {k ∈ R | k′ = −k}. Both of them play important roles in rings with
involutions. Studying commutativity in rings with involutions start from division
rings. Hence we have to code the axioms of division rings. In Prover9, we can
declare “@” for the inverse of one element. Open “Language Options” and add:

op(450, postfix,"@"). redeclare(implication, IMPLIES).

and the division ring assumptions are:

x != 0 -> x@ * x = 1. x != 0 -> x * x@ = 1.

72 R. Padmanabhan and Y. Zhang

or one may use

x != 0 -> exists y (y*x = 1). x != 0 -> exists y (x*y = 1).

Some commutativity theorems in rings with involutions can be proved:

Theorem 10. Let D be a division ring with an involution.

(i) If sn = s, n > 1, for every s ∈ S. Then D is commutative.
(ii) If kn = k, n > 1, for every k ∈ K. Then D is commutative.

For rings with derivations, the first paper was written by Posner [14] including
the important theorem so-called Posner’s theorem now. We proved some results
using Prover9. For example,

Theorem 11. Let R be a ring with derivation δ and a∈R. If aδ(x) = 0 for all
x ∈ R, then a = 0 or δ = 0.

Finally, the axioms defining near-rings can be easily coded in Prover9 by
deleting some conditions from the axioms of associative rings, and some well-
known theorems can be proved, for example, the famous Zassenhaus-Neumann
theorem (for examples, see, [12,17]).

Theorem 12. The additive group of a division near-ring is abelian.

4 Commutativity Theorems in Semirings

In this section, we present some complete new results by using Prover9. We
remove the identities 1 and 0 from the definition of semirings, and define a class
of weak semirings called cancellation-laws semiring as following:

Definition 1. A cancellation-laws semiring (CL-semiring hereafter) is a
set R equipped with two binary operations “+” and “* ”, such that: for any
a, b, c ∈ R,

(1) commutative law: a + b = b + a.
(2) associative laws: (a + b) + c = a + (b + c) and (a ∗ b) ∗ c = a ∗ (b ∗ c).
(3) distributive laws: (i) a∗(b+c) = (a∗b)+(a∗c) (ii) (a+b)∗c = (a∗c)+(b∗c).
(4) cancellation laws:

(i) a + b !=a + c | b = c;

(ii) a ∗ b !=a ∗ c | a = 0 | b = c; (iii) a ∗ b !=c ∗ b | b = 0 | a = c.

Next we give a series of theorems to show when a CL semiring is commutative,
that is, a∗b = b∗a for any a, b ∈ R. The commutative theorems in CL-semirings
are much more complicate than ones in usual associative rings. We list some new
theorems as following:

An one-sided additive commutator c(x, y) in a CL-semiring R is defined as
xy + c(x, y) = yx, where x, y ∈ R.

Automated Deduction in Ring Theory 73

Theorem 13. Let R be a CL-semiring. For any x, y ∈ R,

(i) x ∗ c(x, y) = c(x, y) ∗ x implies x ∗ y = y ∗ x.
(ii) c(x, y) ∗ c(x, y) = c(x, y) implies x ∗ y = y ∗ x.
(iii) c(x, y) ∗ c(x, z) = c(x, z) ∗ c(x, y) implies x ∗ y = y ∗ x.

For the commutativity of additive group, we can prove more general results:

Theorem 14. Let R be a set with operations “+” and “*” and satisfy

(i) (R,+) is a cancellative semigroup.
(ii) (R, ∗) is distributive over addition.

Then (x ∗ y) + (z ∗ u) = (z ∗ u) + (x ∗ y), for any x, y, z, u ∈ R.
Furthermore, if there exists a left identity, 1 ∗ x = x, then the additive group
(R,+) is abelian.

Theorem 15. If additive commutators are central in a semiring with cancella-
tion then its multiplication is commutative.

Now we define the additive commutator C(x, y) ∈ R satisfying:

xy + C(x, y) = yx, x C(y, z) = C(y, z) x,

for all x, y, z ∈ R. After proving several results by Prover9, we can prove that
C(x, y) = 0.

Theorem 16. Suppose that R is a semiring with cancellation laws. For any
x, y, z ∈ R, the following statements hold:

(i) x + C(y, y) = x, C(y, y) + C(y, y) = C(y, y).
(ii) x + y = y implies C(z, z) = x, C(x, x) = 0.
(iii) C(x, C(y, z)) = 0.
(iv) C(x, y C(z, u)) = C(z, u) C(x, y).
(v) C(xy, x) = x C(y, x).

Theorem 17. In a semiring with cancellation laws, the additive commutator
C(x, y) = 0.

5 Conclusion

Prover9 is very useful in discovering new results in the equational logic of fun-
damental algebraic systems like semigroups, groups, rings and lattices. It can
also handle any number of fundamental operations, relational systems, Skolem
functions, implications and, of course, identities. In this paper, we use all the
aspects of the software. Prover9 successfully proved the Robbin’s conjecture, an
open problem in the area of Boolean algebras for some 40+ years (see, [1,8]).
Also, Prover9 was successfully employed in finding new single axioms for groups
and lattices even though there is no known decision procedure to test whether
a specific equation is a single axiom for a given theory. Here we formulate and

74 R. Padmanabhan and Y. Zhang

prove several commutativity theorems in semirings and near-rings generalizing
some of the well-known theorems.

Prover9 works in tandem with MACE (models and counter-examples). The
so-called “ring-models” were incorporated into the MACE to decide whether
a given single axiom defines group theory. We use MACE to disprove certain
conjectures in semirings and near-rings.

We use the Knuth-Bendix algorithm in Prover9 to prove new commutativity
theorems for rings with involutions and also rings admitting derivatives. Additive
commutators are defined without the presence of the unary negative operation
and prove several results for additive commutators in this new set-up.

Acknowledgements. This research was partially supported by the grants from the
Natural Sciences and Engineering Research Council of Canada (NSERC).

References

1. Fitelson, B.: Using Wolfram’s mathematica to understand the computer proof of
Robbin’s conjecture. Math. Educ. Res. 7(1), 17–26 (1998)

2. Herstein, I.K.: Noncommutative rings, No. 15. In: Carus Mathematical Mono-
graphs. American Mathematical Society (1968)

3. Herstein, I.K.: Topics in Algebra, 2nd edn. Wiley, Toronto (1975). Copyright: Xerox
Corporation (1975)

4. Herstein, I.K.: A condition for the commutativity of rings. Canad. J. Math. 9,
583–586 (1957)

5. Herstein, I.K.: Rings with Involution. University of Chicago, Chicago (1976)
6. Jacobson, N.: Structure theory for algebraic algebras of bounded degree. Ann.

Math. 46(2), 695–707 (1945)
7. MacHale, D.: An anticommutativity consequence of a ring commutativity theorem

of Herstein. Amer. Math. Monthly 94(2), 162–165 (1987)
8. McCune, W.: Solution of Robbin’s problem. J. Automat. Reason 19, 263–276

(1997)
9. McCune, W.: Otter 3.3 Reference Manual and Guide, Argonne National Labora-

tory Technical Memorandum ANL/MCS-TM-263 (2003)
10. McCune, W.: Prover9, automated reasoning software, and Mace4, finite model

builder, Argonne National Laboratory (2005). https://www.cs.unm.edu/∼mccune/
mace4/

11. McCune, W., Padmanabhan, R. (eds.): Automated Deduction in Equational Logic
and Cubic Curves. LNCS (LNAI), vol. 1095. Springer, Heidelberg (1996)

12. Neumann, B.H.: On the commutativity of addition. J. London Math. Soc. 15,
203–208 (1940)

13. Phillips, J.D., Stanovsky, D.: Automated theorem proving in loop theory. In: Pro-
ceedings of ESARM 2008, pp. 42–54 (2008)

14. Posner, E.C.: Derivations in prime rings. Proc. Amer. Soc. 8(6), 1093–1100 (1957)
15. Wavrik, J.J.: Commutativity theorems: examples in search of algorithms. In: Pro-

ceedings of 1999 International Symposium on Symbolic and Algebraic Computa-
tions, pp. 31–36. ACM (1999)

16. Zhang, H.: Automated proof of ring commutativity problems by algebraic methods.
J. Symbolic Comput. 9, 423–427 (1990)

17. Zemmer, J.L.: The addition group of an infinite near-field is abelian. J. London
Math. Soc. 44, 65–67 (1969)

https://www.cs.unm.edu/~mccune/mace4/
https://www.cs.unm.edu/~mccune/mace4/

Agent-Based HOL Reasoning

Alexander Steen1(B), Max Wisniewski1, and Christoph Benzmüller1,2

1 Institute of Computer Science, Freie Universität Berlin, Berlin, Germany
{a.steen,m.wisniewski,c.benzmueller}@fu-berlin.de

2 CSLI, Stanford University, Stanford, USA

Abstract. In the Leo-III project, a new agent-based deduction system
for classical higher-order logic is developed. Leo-III combines its prede-
cessor’s concept of cooperating external specialist systems with a novel
agent-based proof procedure. Key goals of the system’s development
involve parallelism on various levels of the proof search, adaptability for
different external specialists, and native support for reasoning in expres-
sive non-classical logics.

Keywords: Higher-order logic · Automated theorem proving · Reason-
ing · Non-classical logics

1 Introduction

We present the automated theorem prover Leo-III and its associated system
platform. In the DFG funded project a novel agent-based deduction system for
classical higher-order logic (HOL) is developed which aims at exploiting massive
parallelism at various levels in the reasoning process. The system allows ad-hoc
inclusion of independent specialist agents that add advanced functionality to the
proof search such as consistency checks of the input axiomatization using model
finders or augmented deduction processes for non-classical logics. The latter, very
powerful, capability is enabled by semantical embedding of the desired goal logic
in HOL. Several of such embeddings will be included in Leo-III, yielding an out-
of-the-box automation tool for a great number of (quantified) non-classical logics
relevant in mathematics (e.g. inclusive/free logic as used in projective geometry),
philosophy (e.g. modal logics) and computer science (e.g. many-valued logics,
paraconsistent logics).

In its current state, Leo-III is based on an ordered paramodulation calculus
for typed lambda-terms, augmented with special means of extensionality treat-
ment. The employment of agents allows parallelism on the search level by intro-
ducing and-/or-splits of the search space. The scheduling of the agents’ actions
is realized as optimization procedure using combinatorical auction games.

This work has been supported by the DFG under grant BE 2501/11-1 (Leo-III).

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 75–81, 2016.
DOI: 10.1007/978-3-319-42432-3 10

76 A. Steen et al.

2 Classical Higher-Order Logic

Simple type theory, also referred to as classical higher-order logic (HOL), is an
expressive logic formalism that allows for higher-order quantification [Fre79],
that is quantification over arbitrary set and function variables. It is based on
the simply typed λ-calculus and was, in its current formulation, developed by
Church [Chu40]. In the following, we briefly introduce the syntax and semantics
of HOL. For thorough discussions we refer to the literature1.

HOL is a typed logic. The set of simple types T is thereby freely generated
using the binary function type constructor → and the set of base types T . We
assume that T consists of at least two elements {o, ι} ⊆ T , where o and ι denote
the type of Booleans and some non-empty domain of individuals, respectively.

The terms of HOL are then given by the following grammar (τ, ν ∈ T):

s, t ::= cτ | Xτ | (λXτ . sν)τ→ν | (sτ→ν tτ)ν (1)

where cτ denotes a typed constant from the signature Σ and Xτ is a variable.
The remaining two cases are called abstraction and application. The type of a
term is explicitly stated as subscript but may be dropped for legibility reasons
if obvious from the context. Terms so of type o are formulas.

We require Σ to contain a complete logical signature. To that end, we choose
Σ to consist at least of the primitive logical connectives for disjunction, nega-
tion, and, for each type, equality and universal quantification. Hence, we have
{∨o→o→o,¬o→o,=τ

τ→τ→o Πτ
(τ→o)→o} ⊆ Σ for all τ ∈ T . The remaining logical

connectives can be defined as usual, e.g. s ∧ t := ¬(¬s ∨ ¬t).
The semantics of HOL is now briefly addressed. A frame {Dτ}τ∈T is a col-

lection of non-empty sets Dτ such that Do = {T, F} (for truth and falsehood,
respectively) and Dτ→ν ⊆ Dν

Dτ is a collection of functions from Dτ to Dν . An
interpretation is a pair M = ({Dτ}τ∈T , I) where {Dτ}τ∈T is a frame and I
is a function mapping each constant cτ to some denotation in Dτ . We assume
that the primitive logical connectives are assigned their usual denotation. Given
a variable assignment σ we can define a valuation ‖.‖M,σ by

‖cτ‖M,σ = I(cτ)
‖Xτ‖M,σ = σ(Xτ)

‖sτ→ν tτ‖M,σ = ‖sτ→ν‖M,σ ‖tτ‖M,σ

‖λXτ . sν‖M,σ =
(
f : z �−→ ‖s‖M,σ[z/Xτ]

) ∈ Dτ→ν

(2)

A formula so is called valid, iff ‖so‖M,σ = T for every variable assignment
σ and every interpretation M. We call M a standard model iff Dτ→ν is the
complete set of total functions, i.e. Dτ→ν = DDτ

ν . As a consequence of Gödel’s
Incompleteness Theorem [God31], HOL with standard semantics is necessarily
incomplete. However, if we allow Dτ→ν to be a proper subset of DDτ

ν with the
constraint that ‖.‖ remains total, a meaningful notion of completeness can be
achieved [Hen50]. We assume this so-called Henkin semantics in the following.
1 Detailed information about typed λ-calculi and formal aspects of HOL can e.g. be

found in [BDS13,BM14,Ben15a,BBK04] and references therein.

Agent-Based HOL Reasoning 77

3 Extensional Paramodulation for HOL

The proof search of Leo-III is guided by a refutation-based calculus which uses
the fact that A1, . . . , An 	 C if and only if {A1, . . . , An,¬ C} is inconsistent.
To that end, the initial set of formulas is transformed into equational clausal
normal form and saturated until the empty clause is found. A popular method
for saturating a given set of clauses is resolution, i.e. as employed by LEO-
II [BPST15]. In first-order theorem proving, many successful systems use calculi
based on ordered paramodulation [BG94] (or its even more restricted form, super-
position), which improves naive resolution not only by an appropriate handling
of equality, but also by using ordering constraints to restrict the number of pos-
sible inferences. In HOL, however, finding appropriate term orderings is more
involved and only few such orderings exist.

We now sketch a (unordered) paramodulation rule for HOL and then briefly
discuss, how ordering restrictions can be employed for the paramodulation-based
calculus of Leo-III.

An equation is a pair s
 t of terms. A literal is a signed equation, written
[s
 t]α where α ∈ {tt, ff} is the polarity of the literal. A clause C is a multiset
of literals, denoting its disjunction. For brevity, if C and D are clauses and l is
a literal, we write C ∨ l and C ∨ D for the multi-union of C ∪ {l} and C ∪ D,
respectively. The paramodulation inference can then be stated as

C ∨ [l
 r]tt D ∨ [s
 t]α
(Para)

C ∨ D ∨ [s[r]π
 t]α ∨ [s|π
 l]ff

where negative equality literals encode postponed unification tasks, s|π is the
subterm of s at position π, and s[r]π denotes the term that is created by replacing
the subterm of s at position π by r. Intuitively, paramodulation is a conditional
rewriting step that is justified if the unification tasks can be solved. Further
calculus rules include equality factoring, unification handling and clausification.

The above rule (Para) is unordered and will, especially in a higher-order
setting, produce a lot of irrelevant (redundant) clauses in the search space. In
order to restrict the inference rules such as (Para), we are employing a higher-
order term ordering primarily investigated for automated termination proofs,
called computability path ordering (CPO) [BJR15].

In its current state, we successfully use CPO to orient equations and pre-
select maximal literals eligible for paramodulation and factorization inferences.
However, the employment of full ordered paramodulation constraints, that addi-
tionally discard generated clauses that do not match the ordering constraints
after unification, is not yet implemented. This is partly due to the complicated
nature of higher-order unification where, in general, there exists no most general
unifier between two terms. Nevertheless, already at this point, the use of CPO
seems promising as a candidate ordering towards a fully ordered paramodulation
calculus for HOL.

In addition to the usual paramodulation inference rules above, extensionality
aspects need to be considered explicitly as well. This is because equalities in HOL

78 A. Steen et al.

Fig. 1. Leo-III’s agent-based proof search cooperation

can occur between terms of any type, in particular between terms of Boolean type
or function type. The mere addition of extensionality axioms for each relevant
symbol does not suffice, as it leads to a massive explosion of the search space.
Hence, we include special means of calculus-level treatment similar to the rules
used by LEO-II [BPST15], and combine them with extensionality handling in
adequate preprocessing steps [WSKB16].

The overall saturation procedure consisting of the above sketched ingredients
is, at the moment, organized as a sequential loop using a variant of the given-
clause algorithm.

4 Agent-Based Refutation

An agent is a software component that can be executed independently of others.
Moreover, an agent is given the ability to decide on its own when to execute its
functionality. This high amount of autonomy is a key feature of agents [Wei13].
In the Leo-III system, agents are employed as specialists for some aspects of the
proof search. The underlying architecture of Leo-III is designed as a blackboard
which the agents use to collaboratively find a proof. The work of the agents is
thereby divided in transactional tasks and organized in auctions, in which it is
decided which tasks are performed next in case of interference.2

In its current state, Leo-III employs agents in three different scenarios: During
the preprocessing phase of the overall proof procedure each agent is responsible
(i.e. a specialist) for one sort of normalization to be applied to a formula. Here,
the overall goal is to exhaustively apply all normalization procedures [WSKB16]
to all clauses. Since normalization is a local problem, an agent can judge solely
by observing a particular formula whether it wants to act on it. Due to only
little existing interference between the normalization methods, the execution of
the different normalization routines can easily be distributed among the agents.

2 Further information can e.g. be found in [WB16,Wis14].

Agent-Based HOL Reasoning 79

As a second employment scenario, a relevance filter (cf. [MP09]) is implemented
that prunes the search space prior to preprocessing. Relevance filtering can be
performed similarly to the preprocessing, except that the problem is not local in
the above sense since information about other formulas have to be considered as
well. As most of the agents of Leo-III will have this kind of non-local dependen-
cies, a reasonable coordination of those agents is one of the main goals of further
development. The last employment of the agents is to parallelize heavy weighted
proof procedures. Here, the agent-based approach can be applied on the calculus
level, e.g. for single clauses, but also for parallelizing one or more (sequential)
proof procedures (so-called multi search). In Leo-III, the calculus sketched in
Sect. 3 is distributed among multiple agents. Additionally, HOL theorem proving
systems such as LEO-II and Satallax [Bro12] are included as external specialists.

In Fig. 1 the connections among the components of Leo-III are visualized. The
focus in the current state relies mostly on the last of the three above described
cases. We employ sequential proof procedures and external provers to solve the
input problem in parallel and wait for the first positive result. These tasks either
differ in some parameters of the proof search or in previously applied normal-
ization techniques. For further work, we will experiment with different granu-
larities for the generated tasks and different means of agent coordination. The
task sizes can hereby vary from the execution of whole proof procedures to very
fine-grained responsibilities (e.g. the application of single inference steps). The
coordination is at the lowest level bound to the auction system. On top of that
however, additional mechanisms (such as fixed execution priorities, or coalitions
and coalition games [CEW11]) can be added.

5 The Leo-III System

In its core, Leo-III is a new higher-order automated theorem prover based on the
associated system platform LeoPARD [WSB15]. LeoPARD is a framework for
deduction systems (implemented in Scala) providing sophisticated term, search,
and indexing data structures for typed λ-terms, as well as an generic agent-based
blackboard architecture. Leo-III makes use of these supported data structures
and implements the concrete agents as described in Sect. 4 on top of the pro-
vided blackboard architecture. The internal reasoning agents implement a proof
procedure realizing the calculus depicted in Sect. 3.

During the development of Leo-III, special care was given to providing maxi-
mal compatibility with existing systems and conventions of the application area.
As input language, for instance, Leo-III supports every standard dialect of the
TPTP syntax [Sut09] (including THF, TFF and FOF). For best possible exter-
nal utilization, Leo-III can output a proof object used for proof reconstruction
pointers (e.g. in Isabelle [NPW02]) or proof verification tools (e.g. IDV [Sut09]).

One major goal of Leo-III is to provide native means of reasoning within (and
about) non-classical logics including free logic, (quantified) conditional logic, and

80 A. Steen et al.

(quantified) modal logic3. Such logics are of strong interest in many different
fields of research, for example in mathematics, artificial intelligence, and phi-
losophy. In its current state, our system is already capable of reasoning in that
embedded logics and even – with a few modifications – of parsing the syntax
representation of these formalisms. The automated transformation of an input
problem stated in such a specialized syntax representation into an equivalent
HOL formulation is still in development, but can easily be added to Leo-III as
a new preprocessing procedure.

6 Conclusion

In this paper, we have presented a new automated theorem prover for HOL,
called Leo-III. A rough sketch of its underlying paramodulation calculus and
its extensionality handling has been given. A proof procedure based on that
calculus is included in the presented agent-based blackboard architecture. Addi-
tionally, external deduction systems can be included as agents. Leo-III is, on
the long perspective, intended as a platform for universal reasoning, offering not
only support for reasoning in classical higher-order logics, but also for reasoning
within further expressive, non-classical logics such as modal logics, conditional
logics or even many-valued logics. This enables our system to serve as a reasoning
tool for a wide spectrum of formal scientific disciplines.

A native out-of-the-box automation of input problems stated in specialized
syntax of corresponding non-classical logics is further work. Additionally, we will
develop and include further specialized agents to allow a more fine-grained paral-
lelization of the proof search. To that end, experiments with various parameters
and heuristics for the guidance of the proof search and the organization of the
agents will be conducted.

References

[BBK04] Benzmüller, C., Brown, C., Kohlhase, M.: Higher-order semantics and
extensionality. J. Symbolic Logic 69(4), 1027–1088 (2004)

[BDS13] Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with Types.
Perspectives in Logic. Cambridge University Press, Cambridge (2013)

[Ben15a] Benzmüller, C.: Higher-order automated theorem provers. In: Delahaye, D.,
Woltzenlogel Paleo, B. (eds.) All About Proofs, Proof for All. Mathematical
Logic and Foundations, pp. 171–214. College Publications, London (2015)

[Ben15b] Benzmüller, C.: Invited talk: on a (quite) universal theorem proving
approach and its application in metaphysics. In: De Nivelle, H. (ed.)
TABLEAUX 2015. LNCS, vol. 9323, pp. 213–220. Springer, Heidelberg
(2015)

[BG94] Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving
with selection and simplification. J. Logic Comput. 4(3), 217–247 (1994)

3 The reasoning in such non-classical logics is enabled by a semantical embedding of
the target logic into HOL. Detailed information about this approach can be found,
e.g. in [Ben15b] and the references therein.

Agent-Based HOL Reasoning 81

[BJR15] Blanqui, F., Jouannaud, J.-P., Rubio, A.: The computability path ordering
(2015). CoRR, abs/1506.03943

[BM14] Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Gabbay,
D.M., Siekmann, J.H., Woods, J. (eds.) Handbook of the History of Logic.
Computational Logic, vol. 9, pp. 215–254. Elsevier, North Holland (2014)

[BPST15] Benzmüller, C., Paulson, L.C., Sultana, N., Theiß, F.: The higher-order
prover LEO-II. J. Autom. Reasoning 55(4), 389–404 (2015)

[Bro12] Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117.
Springer, Heidelberg (2012)

[CEW11] Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of
Cooperative Game Theory. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, San Rafael (2011)

[Chu40] Church, A.: A formulation of the simple theory of types. J. Symbolic Logic
5(2), 56–68 (1940)

[Fre79] Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. Verlag von Louis Nebert, Halle (1879)

[God31] Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme. Monatshefte für Mathematik und Physik 38(1),
173–198 (1931)

[Hen50] Henkin, L.: Completeness in the theory of types. J. Symbolic Logic 15(2),
81–91 (1950)

[MP09] Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-
generated resolution problems. J. Appl. Logic 7(1), 41–57 (2009)

[NPW02] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

[Sut09] Sutcliffe, G.: The TPTP problem library and associated infrastructure. J.
Autom. Reasoning 43(4), 337–362 (2009)

[WB16] Wisniewski, M., Benzmüller, C.: Is it reasonable to employ agents in theo-
rem proving? In: van den Heerik, J., Filipe, J. (eds.) Proceedings of the 8th
International Conference on Agents and Artificial Intelligence (ICAART),
Rome, Italy, 2016, vol. 1, pp. 281–286. SCITEPRESS - Science and Tech-
nology Publications, Lda (2016)

[Wei13] Weiss, G. (ed.): Multiagent Systems. MIT Press, Cambridge (2013)
[Wis14] Wisniewski, M.: Agent-based Blackboard Architecture for a Higher-Order

Theorem Prover. Master’s thesis, Freie Universität Berlin (2014)
[WSB15] Wisniewski, M., Steen, A., Benzmüller, C.: LeoPARD — a generic platform

for the implementation of higher-order reasoners. In: Kerber, M., Carette,
J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS, vol. 9150,
pp. 325–330. Springer, Heidelberg (2015)

[WSKB16] Wisniewski, M., Steen, A., Kern, K., Benzmüller, C.: Effective normaliza-
tion techniques for HOL. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016.
LNCS, vol. 9706, pp. 362–370. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-40229-1 25

http://dx.doi.org/10.1007/978-3-319-40229-1_25
http://dx.doi.org/10.1007/978-3-319-40229-1_25

An Automated Deduction and Its
Implementation for Solving Problem of Sequence

at University Entrance Examination

Yumi Wada1, Takuya Matsuzaki2, Akira Terui1(B), and Noriko H. Arai3

1 University of Tsukuba, Tsukuba, Japan
wada.yumi.ww@alumni.tsukuba.ac.jp, terui@math.tsukuba.ac.jp

2 Nagoya University, Nagoya, Japan
matuzaki@nuee.nagoya-u.ac.jp

3 National Institute of Informatics, Tokyo, Japan
arai@nii.ac.jp

http://researchmap.jp/aterui/,
http://researchmap.jp/mtzk/,

http://researchmap.jp/arai noriko/

Abstract. “Todai Robot Project” is a project of artificial intelligence
launched by National Institute of Informatics for re-unifying the artificial
intelligence field subdivided in 1980s and afterwards. We focus towards
attaining a high score in National Center Test for University Admis-
sions, and use Quantifier Elimination (QE) over the real closed fields
as a main tool for solving problems in mathematics. However, it is not
applicable for several kinds of problems such as one with sequence. In
this article, we propose an algorithm for solving problems of sequence at
the National Center Test for University Admissions.

Keywords: Automated deduction · Recurrence relations · Sequences

1 Introduction

“Todai Robot Project” is a project of artificial intelligence launched by National
Institute of Informatics for re-unifying the artificial intelligence field subdivided
in 1980s and afterwards [2]. Our research team has been working since 2011
on the mechanical solving of university entrance examination problems, which
includes towards attaining a high score in National Center Test for University
Admissions, abbreviated as the “National Center Test”. We are working on each
subject (Japanese, Mathematics, English, Physics, Japanese history, World his-
tory) of examinations by developing solvers independently.

In solving problems in mathematics, first we translate digitalized and anno-
tated texts of a question written in natural language (Japanese) into logical

Y. Wada—Current affiliation: Atlas Co., Ltd., Tokyo, Japan. http://www.atlas.jp/
en.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 82–89, 2016.
DOI: 10.1007/978-3-319-42432-3 11

http://www.atlas.jp/en
http://www.atlas.jp/en

An Automated Deduction for Solving Problem of Sequence 83

formulas over Zermelo-Fraenkel (ZF) set theory by natural language process-
ing (NLP). Then, by symbolic computation, we re-translate the problem for use
by various solvers for calculating the final answer by computer algebra, where
we use Quantifier Elimination (QE) over real closed fields as a main tool [3,5].
However, it is not applicable for some problems such as ones with sequence.

As related research on solving problems of sequences, there are previous
works on (1) solving recurrence relations and/or difference equations [1] and
(2) automated theorem proving [4]. For solving the most problems of sequence
in National Center Test, we need to solve recurrence relations and algebraic
equations which are given as constraints for the sequence. Although functions
for solving recurrence relations and algebraic equations are available in popular
computer algebra systems, it is not easy to find an answer because we need to
use these functions for solving the given recurrence relations and equations in
appropriate order. In this paper, we propose an algorithm for solving problems
of sequence at the National Center Test.

2 Preliminaries

Let N be the set of positive integers. Given a set S, denote its cardinality and
power set to #S and P(S), respectively. Define a sequence as a univariate map
from the set of positive integers to the set of real numbers, denoted to a(n). For
m unknown sequences a1, . . . , am, a non-negative number k and a real-valued
function of m(k + 1) + 1 variables f , define a recurrence relation of order k
of a1, . . . , am with an equation f(n, a1(n), . . . , a1(n + k), . . . , am(n), . . . , am(n +
k)) = 0.

The National Center Test consists of multiple choice questions and grid-in
questions. Mathematics section of the test consists of grid-in questions with
answering alphabetical symbols or numerical answers. Since the most of ques-
tions require numerical answers in mathematics section, we assume that the test
has only questions with numerical answers in mathematics section.

Answer columns in mathematics questions have the following format.

1. An answer column is expressed with one or more letters of Japanese Katakana
alphabet,1 each letter of which corresponds to a single digit non-negative
integer. If an answer column consists of more than one letter, the leftmost
letter corresponds to either the negative sign or a single digit non-negative
integer.

2. Answer columns with the same letter are filled with the same number.

For example, an answer column A corresponds to a single digit non-negative
integer (such that x ∈ {0, . . . , 9}), while an answer column BC corresponds
to either a double digits positive integer (such that x ∈ {10, 11, . . . , 99}) or a
negative integer x ∈ {−9,−8, . . . ,−1}.

1 In this paper, for ease of understanding, we express an answer column with English
alphabet.

84 Y. Wada et al.

3 Calculating Inputs for Solving Problems of Sequence

3.1 Characteristics of Questions of Sequence in the National Center
Test

Remark 1. By analyzing questions in the real and mock exams in the past, we
see that the most of questions of sequence in the National Center Test can be
transferred to logical formula(s) with the following properties.

1. Functions appearing in the logical formula consist of sequences, arithmetic
operations, exponential functions, finite sum and/or product of sequences
(denoted to Σ and Π, respectively), and the maximum and/or the minimum
values of a sequence (denoted to “max” and “min”, respectively), with the
following restrictions.
(a) No more than two variables (arguments) appear in a sequence.
(b) Σ and Π are defined as bivariate functions. For example, Σ(a, n) is defined

as
∑n

k=1 a(k), where a(k) is a sequence.
(c) “max” and “min” are defined as trivariate functions with a sequence,

a variable and the conjunction of atomic formulas as the variables (the
arguments). For example, max(a, n, n > 1) returns the maximum value
of a set {a(n) | n > 1} for a given sequence a(n).

2. A logical formula may have the following predicates.
(a) Relational operators: =, <, ≤ and �=.
(b) “N” defined as N (n) means that “n is a positive integer (a natural num-

ber)”.
(c) “R” defined as R(n) means that “n is a real number”.
(d) “S” defined as S(a) means that “a is a sequence”.

3. Logical operators appearing in the logical formula consist of ∧ (conjunction),
→ (imply) and ∀ (for all).

Example 1. (A question in the National Center Test in 2007). An applicant
must fill in the grid-in answer sections in the following paragraph.

Let (an) be a sequence defined with the recurrence relation an+1 =
3an + 60 for n = 1, 2, 3, . . . , and with the initial term −27. Then, we
have an = A

n − BC . Furthermore, let Sn = Σn
k=1ak. Then, we have

Sn =
D
E

(
F

n − G
)

− BC n, and the least positive integer n satisfying

Sn > 0 is equal to H .

The above paragraph can be translated into a logical formula as

∀a(S(a) → (a(1) = −27 ∧ ∀n(N(n) → a(n + 1) = 3a(n) + 60)) →
(∀n(N (n) → a(n) = A

n − BC) ∧ (∀n(N (n) → S(n) = Σ(a, n)) →
(∀n(N (n) →

S(n) =
D

E
(F

n − G) − BC n) ∧ H = min(n, S(n) > 0))))). (1)

Note that logical formula (1) satisfies all the properties in Remark 1.

An Automated Deduction for Solving Problem of Sequence 85

Remark 2. From logical formula (1), we have the following conventions.

1. Quantifiers appeared in the formula is only ∀, thus it can be omitted.
2. We can omit predicate symbols R, N and S because they are used only

for specifying scope of variables bounded by quantifiers and we can distin-
guish whether each variable represents a number or a sequence from the form
of formula (for example, positive integers appear only in the arguments in
sequences). Let VR, VN and VS be the set of variables appeared in a logi-
cal formula for real numbers, natural numbers and sequences, respectively.
Then, we see that the variables appeared in the logical formula belong to
VR ∪ VN ∪ VS with VR ∩ VN ∩ VS = ∅.

3. Let P , Q and R be logical formulas. Then, with equivalences P → (Q∧R) ≡
(P → Q) ∧ (P → R) and P → (Q → R) ≡ (P ∧ Q) → R, we can transfer
logical formula of the form as in Eq. (1) into a logical formula of the form

∧

i

(
∧

j

Ai,j →
∧

k

Ci,k), (2)

where Ai,j and Ci,k are propositions without containing logical operators.

Example 2. By Remark 2, logical formula (1) can be transferred into a logical
formula as follows.

((a(1) = −27 ∧ a(n + 1) = 3a(n) + 60) → a(n) = A
n − BC)

∧ ((a(1) = −27 ∧ a(n + 1) = 3a(n) + 60 ∧ S(n) = Σ(a, n)) →

(S(n) =
D

E
(F

n − G) − BC n ∧ H = min(n, S(n) > 0))). (3)

Remark 3. We see that many questions in the National Center Test and its mock
exams that have been transformed into logical formula of the form as in Eq. (2)
have the following characteristics (see Eq. (3) for its example).

1. The first argument in functions max and min is usually monotone sequence.
2. Ai,j usually contains only equations from which we can derive a closed form

of the sequence and/or values of variables.
3. Ci,j contains only an equation.
4. If Ai,j contains an answer column, then there exist i′ and k satisfying i′ < i

and Ci′,k contains the same answer column.
5. For every i, integers corresponding to answer columns in Ci,k can be derived

by putting variables and/or closed form of the sequence calculated from∧
j Ai,j into corresponding variables in Ci,k.

3.2 Constructing Input Logical Formula

From a logical formula ϕ of ZF set theory obtained by the Natural Language
Processing (NLP), we construct an input logical formula for a sequence solver,
as follows. Since, in the NLP process, some clause in the questions are translated

86 Y. Wada et al.

directly, the NLP output may contain a logical formula with predicates and/or
functions different from those we have introduced in Remark 1. Thus, before
constructing input logical formula, we translate such sentences into functions
and/or predicates in Remark 1 with assigning appropriate variables (we omit its
detail due to lack of space here). Let the resulting logical formula be ϕ′.

After that, we construct an input for the solver from ϕ′ using the followings:

1. Set V̄ and S̄ consisting of the elements in VR and VS , respectively, which
appear in ϕ′,

2. Set Z consisting of the answer columns which appear in ϕ′,
3. Ai,js and Ci,ks after transferring ϕ′.

Example 3. By preprocessing in the above, logical formula (3) is translated into
the following input for a solver, where Ai,j and Ci,k are defined as in Eq. (2).

V̄ = {}, S̄ = {a, S}, Z = {A,BC,D,E,F,G,H},

A1,1 ≡ a(1) = −27, A1,2 ≡ a(n + 1) = 3a(n) + 60, C1,1 ≡ a(n) = An − BC,

A2,1 ≡ a(1) = −27, A2,2 ≡ a(n + 1) = 3a(n) + 60, A2,3 ≡ S(n) = Σ(a, n)),

C2,1 ≡ S(n) =
D
E

(Fn − H) − BCn, C2,2 ≡ H = min(n, S(n) > 0).

4 Algorithms for the Sequence Solver

We first discuss for an algorithm for finding values and a sequence satisfying Ai,j

with the following strategy.

1. Calculate a closed form of the sequence by solving recurrence relation(s).
2. Then, by solving equation(s) with regarding recurrence relation(s) as identity,

find values for the variables.

Let rsolve be an algorithm for solving recurrence relations. Solution of recur-
rence relation(s) may have free variables depending on choice of initial value(s).
Thus, let Vst be the set of free variables found every time solving recurrence
relations(s). Similarly, let solve be an algorithm for solving equations. Let Fr be
a set of free variables in equations if they have. Note that the sets VR, VN , VS ,
Vst, Fr, Z are pairwisely relatively prime.

For a proposition A, let I(A) be the set of variables appearing in A. For a set
of variables B, let IB(A) = I(A)∩B. Let R be a map from variables in equations
and recurrence relations to their solutions and/or answers in the answer columns.
Then, we can regard R as a function from a certain subset of S ∪V ∪Vst ∪Fr ∪Z
to R

N∪R. Furthermore, for proposition A, let R(A) be a logical formula obtained
by substituting x ∈ Idom(R)(A) to R(x), where dom(R) represents the domain
of R. For example, for A ≡ a(n + 1) + b(n) = n and a solution of a recurrence
relation given as a(n) = 2n, then we have R(A) ≡ 2(n+1)+ b(n) = n by setting
R(a) = (a(n) �→ 2n).

We try to solve recurrence relations which has just one sequence. If we can
find the solution, then we add it to R and try to solve another recurrence relation,
and so on. We show this computation as in the following algorithm.

An Automated Deduction for Solving Problem of Sequence 87

Algorithm 1 (GetGeneralTerms (GGT)).

Inputs: A: a set of recurrence relations, S: a set of sequences, V : a set of
variables, R: a map;

Outputs: A′ ⊂ A: a set of recurrence relations that have not been used to solve
for sequences, S′ ⊂ S: a set of sequences whose closed form has not been
solved, V ∪ F ′ with F ′ ⊂ F is a set of variables representing the initial term
in a sequence, R ∪ R′ with R′ is a map from a sequence in S, of which we
have solved closed form, to its closed form;

1. P ← P(S)\{∅};
2. Sort the sets in P with smaller cardinality first;
3. for P ∈ P do

(a) for A′′ ∈ {A′′ ⊂ A | ⋃
A∈A′′ IS(R(A)) = P ∧ #A′′ = #P} do

i. if rsolve({R(A) | A ∈ A′′}, P) calculates a closed form R′, then
A. V ′ ← ⋃

A∈ran(R′) IVst(A), where ran(R′) is the range of R′;
B. return GGT(A\A′′, S\P, V ∪ V ′, R ∪ R′);

4. return A, S, V , R;

We show an algorithm for solving equations for values of variables in V .

Algorithm 2 (GetValues (GV)).

Inputs: AIN: a set of equations, S: a set of sequences, V : a set of variables, R:
a set of substitutions;

Outputs: A′ ⊂ A: a set of equations never used for evaluation of variables,
V ′ ⊂ V : a set of variables whose value has not been obtained, R ∪ R′: where
R′ are substitutions found for (some) elements in V ;

1. P ← P(V)\{∅};
2. Sort the sets in P with smaller cardinality first;
3. for P ∈ P do

(a) for A′′ ∈ {A′′ ⊂ A | ⋃
A∈A′′ IV (R(A)) = P ∧ ⋃

A∈A′′ IS(R(A)) = ∅} do
i. if solve({R(A) | A ∈ A′′}, P) found k solutions R′

1, . . . , R
′
k (k ∈ N)

then
A. for R′ ∈ {R′

1, . . . , R
′
k} do

A-1. R′′ ← R ∪ R′;
A-2. if {R′′(A) | A ∈ AIN} does not have false then

A-2-1. V ′ ← ⋃
A∈ran(R′) IFr(A);

A-2-2. return GV(A\A′′,AIN, S, (V ∪ V ′)\P,R′′);
4. return A, V , R;

With combining Algorithms 1 and 2, we give an algorithm for calculating a
closed form of a sequence and solving for variables from {Ai,j}j , as follows.

Algorithm 3 (GetGeneralTermsAndValues (GGTV)).

Inputs: A = {Ai,j}j : a set of conditions, S: a set of sequences, V : a set of
variables, R: substitutions from a subset of Z to Z;

88 Y. Wada et al.

Output: R∪R′: substitutions found for (some) elements in S ∪V from {Ai,j}j ;

1. AIN ← {A ∈ A | A : inequalities};
2. A′ ← A \ AIN; S′ ← S; V ′ ← V ; R′′ ← R;
3. repeat

(a) ARE ← {A ∈ A′ | A : recurrence relations};
(b) A′ ← A′ \ ARE; Stmp ← S′;
(c) ARE, S′, V ′, R′′ ← GGT(ARE, S′, V ′, R′′);
(d) changed ← Stmp �= S′;
(e) A′ ← ARE ∪ A′; Vtmp ← V ′;
(f) A′, V ′, R′′ ← GV(A′,AIN, S′, V ′, R′′);
(g) changed ← changed ∨ Vtmp �= V ′;

4. until changed = false;
5. return R′′;

Next, by using R derived in the above, we calculate integers satisfying the
answer columns in {Ci,k}k. Though it may be solved by a brute-force attack,
it may be inefficient for a case with the number of combination of integers for
seeking solution in IZ(Ci,k) becomes up to more than 109, thus we must develop
more sophisticated method for finding an answer.

For z ∈ Z, let n(z) ∈ Z be a set consisting of integers that are fit in z.
For example, for z = A , n(z) = {1, . . . , 9}, while, for z′ = BC , n(z′) =
{−9, . . . ,−1, 10, . . . , 99}. Furthermore, for an equation A, let Ie(A) ⊂ Z be a set
of answer columns (which are elements in Z) appearing as exponents.

Before showing an algorithm for finding integers that satisfy {Ci,k}k, we show
a subsidiary algorithm as follows.

Algorithm 4 (IntSolve).

Inputs: R: a set of substitutions, C: an equation satisfying Ie(R(C)) = ∅;
Output: R′: a set of substitutions for the variables in C if C is solved; otherwise,

an empty set;

1. Z ′ ← IZ(R(C));
2. R ← {R′ : Z ′ → R | R′ : solutions of R(C) regarding as identity w.r.t

variables which do not belong to Z ′};
3. R ← {R′ ∈ R | ∀z ∈ Z ′, R′(z) ∈ n(z)};
4. if R �= ∅ then take a R′ ∈ R; else R′ ← ∅;
5. return R′;

Now we show an algorithm for finding integers that satisfy {Ci,k}k.
Algorithm 5 (FindAnswers).

Inputs: C = {Ci,k}k: a set of equations; R: a set of substitutions;
Output: C′: a set of equations that were not solved, R ∪ R′ with R′ is a set of

substitutions for variables for which we have solved equations in C;

An Automated Deduction for Solving Problem of Sequence 89

1. C′ ← ∅; R′′ ← R;
2. for C ∈ C do

(a) Z ′ ← IZ(R(C));
(b) if Z ′ �= ∅ then

i. Ze ← Ie(R(C));
ii. if Ze = ∅ then P ← ∅; Q ← IntSolve(C,R′′);
iii. else

A. for P ∈ ∏
z∈Ze n(z) do

A-1. Q ← IntSolve(C,R′′ ∪ P);
A-2. if Z ′ = Ze ∨ Q �= ∅ then break; else P ← ∅;

iv. if Q ∪ P = ∅ then C′ ← C′ ∪ {C}; else R′′ ← R′′ ∪ P ∪ Q;
3. return C′,R′′;

Summarizing the above, we give an algorithm for the solver, as follows.

Algorithm 6 (SequenceSolver).

Inputs: {(Ai, Ci)}i: a set of pairs of propositions obtained as in Eq. (2), S: a set
of variables for sequences, V : a set of variables for those are not sequences;

Output: R: a set of substitutions from a subset of Z to Z;

1. R ← ∅; unsolved ← ∅;
2. for (A, C) ∈ {(Ai, Ci)}i do

(a) R ← GetGeneralTermsAndValues(A, S, V,R);
(b) C′, R ← FindAnswers(C, R);
(c) if C′ �= ∅ then unsolved ← unsolved ∪ {(R, C′)};
(d) R ← R ∩ (Z × Z);

3. for (R′, C′) ∈ unsolved do
(a) for C ∈ C′ do

i. R′′ ← R ∪ R′; C ← R′′(C);
ii. if IZ(C) �= ∅ then

A. solves ← {P ∈ ∏
z∈IZ(C) n(z) | P (C) = true};

B. if solves �= ∅ then take an element P ∈ solves; R ← R ∪ P ;
4. return R;

References

1. Agarwal, R.P.: Difference Equations and Inequalities: Theory, Methods, and Appli-
cations, 2nd edn. Marcel Dekker, New York (2000)

2. Arai, N.H.: The impact of AI: can a robot get into the University of Tokyo? Natl.
Sci. Rev. 2(2), 135–136 (2015)

3. Arai, N.H., Matsuzaki, T., Iwane, H., Anai, H.: Mathematics by machine. In: Pro-
ceedings of the 39th International Symposium on Symbolic and Algebraic Compu-
tation – ISSAC 2014, pp. 1–8. ACM, New York (2014)

4. Bundy, A.: The automation of proof by mathematical induction. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, 2nd edn, pp. 845–911.
North-Holland, Amsterdam (2001)

5. Matsuzaki, T., Iwane, H., Anai, H., Arai, N.H.: The most uncreative examinee: a
first step toward wide coverage natural language math problem solving. In: Pro-
ceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp.
1098–1104 (2014)

Algebraic and Toric Geometry

Bad Primes in Computational
Algebraic Geometry

Janko Böhm1(B), Wolfram Decker1, Claus Fieker1, Santiago Laplagne2,
and Gerhard Pfister1

1 University of Kaiserslautern, 67663 Kaiserslautern, Germany
{boehm,decker,fieker,pfister}@mathematik.uni-kl.de
2 Universidad de Buenos Aires, Buenos Aires, Argentina

slaplagn@dm.uba.ar

Abstract. Computations over the rational numbers often suffer from
intermediate coefficient swell. One solution to this problem is to apply
the given algorithm modulo a number of primes and then lift the modular
results to the rationals. This method is guaranteed to work if we use a
sufficiently large set of good primes. In many applications, however, there
is no efficient way of excluding bad primes. In this note, we describe a
technique for rational reconstruction which will nevertheless return the
correct result, provided the number of good primes in the selected set of
primes is large enough. We give a number of illustrating examples which
are implemented using the computer algebra system Singular and the
programming language Julia. We discuss applications of our technique
in computational algebraic geometry.

Keywords: Modular computations · Algebraic curves · Adjoint ideal

1 Introduction

Many exact computations in computer algebra are carried out over the rationals
and extensions thereof. Modular techniques are an important tool to improve the
performance of such algorithms since intermediate coefficient growth is avoided
and the resulting modular computations can be done in parallel. For this, we
require that the algorithm under consideration is also applicable over finite fields
and returns a deterministic result. The fundamental approach is then as follows:
Compute the result modulo a number of primes. Then reconstruct the result
over Q from the modular results.

Example 1. To compute
1
2

+
1
3

=
5
6

using modular methods, the first step is to apply Chinese remainder isomor-
phism:

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 93–101, 2016.
DOI: 10.1007/978-3-319-42432-3 12

94 J. Böhm et al.

Z/5 × Z/7 × Z/101 ∼= Z/3535
1
2 �−→ (3 , 4 , 51)

+
1
3 �−→ (2 , 5 , 34)

�

(0 , 2 , 85) �−→ 590

The second step is to reconstruct a rational number from 590.

2 Rational Reconstruction

Theorem 1 [8]. For every integer N , the N -Farey map
{

a
b ∈ Q

∣∣∣∣
gcd(a, b) = 1

gcd(b,N) = 1 |a| , |b| ≤ √
(N − 1)/2

}
−→ Z/N

a
b �−→ a · b

−1

is injective.

There are efficient algorithms for computing preimages of the Farey map,
see, for example, [8, Sect. 5].

Example 2. We use the computer algebra system Singular [6] to compute the
preimage of the Farey map the setting of Example 1:
> ring r = 0, x, dp;

> farey(590,3535);

5/6

The basic concept for modular computations is then as follows:

1. Compute the result over Z/pi for distinct primes p1, . . . , pr.
2. Use the Chinese remainder isomorphism

Z/N ∼= Z/p1 × . . . × Z/pr

to lift the modular results to Z/N where N = p1 · · · pr.
3. Compute the preimage of the lift with respect to the N -Farey map.
4. Verify the correctness of the lift.

This will yield the correct result, provided N is large enough (that is, the
Q-result is contained in the domain of the N -Farey map), and provided none of
the pi is bad.

Definition 1. A prime p is called bad (with respect to a fixed algorithm and
input) if the result over Q does not reduce modulo p to the result over Z/p.

By convention, this includes the case where, modulo p, the input is not defined
or the algorithm in consideration is not applicable.

Bad Primes in Computational Algebraic Geometry 95

3 Bad Primes

3.1 Bad Primes in Gröbner Basis Computations

Consider a set of variables X = {x1, . . . , xn} and a monomial ordering > on the
monomials in X. For a set of polynomials G, write LM(G) for its set of lead
monomials. For G ⊂ Z[X] and p prime, write Gp for the image of G in Z/p[X].

Theorem 2 [2]. Suppose F = {f1, ..., fr} ⊂ Z[X] with all fi primitive and
homogeneous. Let G be the reduced Gröbner basis of 〈F 〉 ⊂ Q[X], G(p) the
reduced Gröbner basis of 〈Fp〉, and GZ a minimal strong Gröbner basis of
〈F 〉 ⊂ Z[X]. Then p does not divide any lead coefficient in GZ ⇔ LM(G) =
LM(G(p)) ⇔ Gp = G(p).

Example 3. Using Singular, we determine the bad primes for a Gröbner basis
computation of the Jacobian ideal of a projective plane curve. We compute a
minimial strong Gröbner basis over Z:
> option("redSB");

> ring R = integer,(x, y, z),lp;

> poly f = x7y5 + x2yz9 + xz11 + y3z9;

> ideal I = groebner(ideal(diff(f, x), diff(f, y), diff(f,z)));

> apply(list(I[1..size(I)]),leadcoef);

13781115527868730344777310464613260 83521912290113517241074608876444 60

12 4 12 12 45349632 12 1473863040 12 22674816 12 3888 12 12 12 13608 12

108 54 6 2 27 3 1 4 2 2 1 216 1 2 3 1 540 12 108 27 3 1 9 3 1 1 1 1 1 7 1

5 1 1

The bad primes, that is, the primes p with Gp �= G(p), are then the prime factors

p = 2, 3, 5, 7, 11, 13, 257, 247072949, 328838088993550682027

of the lead coefficients. In contrast, the lead coefficients of the Gröbner basis
over Q involve only the prime factors 2, 3, 5, 7, 13, and hence not all bad primes.
As shown by the following computation, 257 is indeed a bad prime:
> ring R0 = 0,(x, y, z),lp;

> size(lead(groebner(fetch(R,I))));

15

> ring R1 = 257,(x, y, z),lp;

> size(lead(groebner(fetch(R,I))));

14.

3.2 Classification of Bad Primes

Bad primes can be classified as follows, see [3, Sect. 3] for details:

– Type 1: The input modulo p is not valid (this poses no problem).
– Type 2: There is a failure in the course of the algorithm (for example, a matrix

may not be invertible modulo p; this wastes computation time if it happens).

96 J. Böhm et al.

– Type 3: A computable invariant with known expected value (for example, a
Hilbert polynomial) has a wrong value in a modular computation (to detect
this we have to do expensive tests for each prime, although the set of bad
primes usually is finite, and hence bad primes rarely occur).

– Type 4: A computable invariant with unknown expected value (for example,
the lead ideal in a Gröbner basis computation) is wrong (this can be handled
by a majority vote, however we have to compute the invariant for each modular
result and store the modular results).

– Type 5: otherwise.

The Type 5 case in fact occurs, as is shown by the following example. For an
ideal I ⊂ Q[X] and a prime p define Ip = (I ∩ Z[X])p.

Example 4. Consider the algorithm I �→ √
I + Jac(I) computing the radical of

the Jacobian ideal for the curve

I =
〈
x6 + y6 + 7x5z + x3y2z − 31x4z2 − 224x3z3 + 244x2z4 + 1632xz5 + 576z6

〉
.

Note that, with respect to the degree reverse lexicographic order, LM(I) =〈
x6

〉
= LM(I5), that is, 5 is not bad with respect to the input. The following

computation in Singular first determines the minimal associated primes of
U(0) =

√
I + Jac(I) and U(5) =

√
I5 + Jac(I5).

> LIB "primdec.lib";

> ring R0 = 0, (x, y, z), dp;

> poly f = x6+y6+7x5z+x3y2z-31x4z2-224x3z3+244x2z4+1632xz5+576z6;

> ideal U0 = radical(ideal(f, diff(f, x), diff(f, y), diff(f, z)));

> minAssGTZ(U0);

[1]: [1]=y [2]: [1]=y

[2]=x+6z [2]=x-4z

> ring R5 = 5, (x, y, z), dp;

> poly f =imap(R0,f);

> ideal U5 = radical(ideal(f, diff(f, x), diff(f, y), diff(f, z)));

> minAssGTZ(U5);

[1]: [1]=y [2]: [1]=y

[2]=x-z [2]=x+z

> minassGTZ(imap(R0,U0));

[1]: [1]=y

[2]=x+z

This shows that U(0)5 �= U(5), but LM(U(0)) =
〈
y, x2

〉
= LM(U(5)).

4 Error-Tolerant Reconstruction

Our goal is to reconstruct the Q-result a
b from the modular result r ∈ Z/N in

the presence of bad primes. Our basic strategy will be to find an element (x, y)
with x

y = a
b in the lattice

Bad Primes in Computational Algebraic Geometry 97

Λ = 〈(N, 0), (r, 1)〉 ⊂ Z2.

Lemma 1 [3, Lemma 4.2]. All (x, y) ∈ Λ with x2 + y2 < N are collinear.

Now suppose N = N ′ · M with gcd(N ′,M) = 1. We assume that N ′ is the
product of the good primes with correct result s, and M is the product of the
bad primes with wrong result t.

Theorem 3 [3, Lemma 4.3]. If

r �→ (s, t) with respect to Z/N ∼= Z/N ′ × Z/M

and
a

b
mod N ′ = s

then (aM, bM) ∈ Λ. So if (a2 + b2)M < N ′, then (by Lemma 1)

x

y
=

a

b
for all (x, y) ∈ Λ with (x2 + y2) < N

and such vectors exist. Moreover, if gcd(a, b) = 1 and (x, y) is a shortest
vector �= 0 in Λ, we also have gcd(x, y)|M .

Hence, if N ′ M , the Gauss-Lagrange-Algorithm for finding a shortest
vector (x, y) ∈ Λ gives a

b independently of t, provided x2 + y2 < N . We use the
programming language Julia1, to illustrate the resulting algorithm.

function ErrorTolerantReconstruction(r::Integer, N::Integer)

a1 = [N, 0]

a2 = [r, 1]

while dot(a1, a1) > dot(a2, a2)

q = dot(a1, a2)//dot(a2, a2)

a1, a2 = a2, a1 - Integer(round(q))*a2

end

if dot(a1, a1) < N

return a1[1]//a1[2]

else

return false

end

end

The following table shows timings (in seconds), for r and N of bit-length 500,
comparing the Julia-function with implementations in the Singular-kernel
(optimized C/C++ code) and the current Singular-interpreter:

Singular-kernel Julia Singular-interpreter
0.001 0.005 0.055

Building on Julia as a fast mid-level language, a backwards-compatible just-in-
time compiled Singular-interpreter is under development.
1 See http://julialang.org/.

http://julialang.org/

98 J. Böhm et al.

Example 5. In the setting of Example 1, we obtain 5
6 from 590 ∈ Z/3535 by

julia> ErrorTolerantReconstruction(590, 3535)

5//6

which computes the sequence

(3535, 0) = 6 · (590, 1) + (−5,−6),
(590, 1) = −48 · (−5,−6) + (350,−287).

Example 6. Now we introduce an error in the modular results:

Z/5 × Z/7 × Z/101 ∼= Z/3535

(1 , 2 85) �→ 2711

Error tolerant reconstruction computes

(3535, 0) = 1 · (2711, 1) + (824,−1),
(2711, 1) = 3 · (824,−1) + (239, 4)
(824,−1) = 3 · (239, 4) + (107,−13)

(239, 4) = 2 · (107,−13) + (25, 30)
(107,−13) = 1 · (25, 30) + (82,−43)

hence yields
25
30

=
5 · 5
5 · 6

=
5
6
.

Note that
(52 + 62) · 5 = 305 < 707 = 7 · 101.

5 General Reconstruction Scheme for Commutative
Algebra

For a given ideal I ⊂ Q[X], we want to compute some ideal (or module) U(0)
associated to I by a deterministic algorithm. We proceed along the following
lines:
1. Over Z/p compute U(p) from Ip for p in a suitable finite set P of primes.
2. Replace P by a subset according to a majority vote on LM(U(p)) (see also

[3, Remark 5.7]).
3. For N =

∏
p∈P p compute the coefficient-wise CRT–lift U(N) to Z/N , iden-

tifying generators by their lead monomials.
4. Lift U(N) by error tolerant rational reconstruction to U .
5. Test Up = U(p) for some random extra prime p.
6. Verify U = U(0).
7. If the lift, test or verification fails, then enlarge P and repeat.

Theorem 4 [3, Lemma 5.6]. If the bad primes form a Zariski closed proper
subset of SpecZ, then this strategy terminates with the correct result.

Bad Primes in Computational Algebraic Geometry 99

6 Computing Adjoint Ideals

We discuss an application from algebraic geometry. The goal is to compute
adjoint curves, that is, curves which pass with sufficiently high multiplicity
through the singularities of a given curve, see Fig. 1. We consider an integral,
non-degenerate projective curve Γ ⊂ Pr with normalization map π : Γ → Γ, and
a saturated homogeneous ideal I with I(Γ) � I ⊂ k[x0, ..., xr]. We write Sing(Γ)
for the singular locus of Γ. Let H be the pullback of a hyperplane, and Δ(I) the
pullback of Proj(S/I). Then the exact sequence

0 → ĨOΓ → π∗(ĨOΓ) → F → 0

induces, for m 0, an exact sequence

0 → Im/I(Γ)m
�m→ H0

(
Γ,OΓ (mH − Δ(I))

) → H0 (Γ,F) → 0.

Definition 2. The ideal I is an adjoint ideal of Γ if �m is surjective for m 0.

Since h0 (Γ,F) =
∑

P∈Sing(Γ) length(IP OΓ,P /IP), we obtain:

Theorem 5 [1]. With notation as above:

I is an adjoint ideal of Γ ⇐⇒ IP OΓ,P = IP for all P ∈ Sing(Γ).

The conductor COΓ,P
of OΓ,P ⊂ OΓ,P is the largest ideal of OΓ,P which is also

an ideal in OΓ,P .

Definition 3. The Gorenstein adjoint ideal of Γ is the largest homogeneous
ideal G ⊂ K[x0, . . . , xr] with

GP = COΓ,P
for all P ∈ Sing(Γ).

Fig. 1. Degree 3 adjoint curve of a rational curve of degree 5

The Gorenstein adjoint ideal has many applications in the geometry of curves.

Example 7. If Γ be an irreducible plane algebraic curve of degree n, then Gn−3

cuts out the canonical linear series.

100 J. Böhm et al.

Example 8. If Γ is a rational plane curve of degree n, then Gn−2 maps Γ to a
rational normal curve of degree n − 2 in Pn−2.

Example 9. The Gorenstein adjoint ideal can be used in the Brill-Noether-
Algorithm to compute Riemann-Roch spaces for singular curves.

The Gorenstein adjoint ideal can be computed via a local-to-global strategy.

Definition 4. The local adjoint ideal of Γ at P ∈ SingΓ is the largest homo-
geneous ideal G(P) ⊂ k[x0, . . . , xr] with G(P)P = COΓ,P

.

Lemma 2 [5, Proposition 5.4]. With notation as above,

G =
⋂

P∈Sing Γ
G(P).

Definition 5. Let A be the coordinate ring of an affine model C = Spec A of Γ
and let P ∈ Sing(A). A ring A ⊂ B ⊂ A ⊂ Quot(A) is called a minimal local
contribution to A at P if BP = AP and BQ = AQ for all P �= Q ∈ C.

The minimal local contribution to A at P is unique and can be computed
using Grauert-Remmert-type normalization algorithms, see [4,7]. It can be writ-
ten as B = U

d with an ideal U ⊂ A and a common denominator d ∈ A.

Algorithm 6 [5, Algorithm4]. With notation as above, G(P) ⊂ k[x0, . . . , xr]
is the homogenization of the preimage of (d : U) under k[x1, . . . , xr] →
k[x1, . . . , xr]/I = A.

7 Modular Version of the Algorithm

Applying the general modular strategy gives an algorithm which is two-fold par-
allel (taking Lemma 2 into account). We use primes p such that the algorithm is
applicable to the variety Γp defined by I(Γ)p. Efficient verification can be real-
ized through a semi-continuity argument, see [5, Theorem 8.14]. Table 1 gives
timings (in seconds on a 2.2 GHz processor) for plane curves fn of degree n with(
n−1

2

)
singularities of type A1. Rows LA and IQ refer to global computations of

the Gorenstein adjoint ideal via linear algebra [9] and ideal quotients, respec-
tively. The row Maple-IB shows timings for the normalization of the curve via
a computation of an integral basis in Maple [10]. The row locIQ gives timings
for the local-to-global (Lemma 2), and modLocIQ for the modular local-to-global
strategy. In square brackets, the number of primes in the modular strategy is
shown, in round brackets the number of cores used simultaneously in a paral-
lel computation. We also give timings for the modular probabilistic algorithm
obtained by omitting the verification. Observe that, in the example, a local-to-
global strategy does not give any benefit when computing over the rationals,
since the singular locus does not decompose. However, by Chebotarev’s density
theorem, the singular locus is likely to decompose when passing to a finite field,
as illustrated by the last two rows of the table.

Bad Primes in Computational Algebraic Geometry 101

Table 1. Timings

Parallel Probabilistic f5 f6 f7

Maple-IB 5.1 47 318

LA 98 4400 -

IQ 1.3 54 3800

locIQ � 1.3 (1) 54 (1) 3800 (1)

modLocIQ 6.4 [33] 19 [53] 150 [75]

� 6.2 [33] 18 [53] 104 [75]

� .36 (74) 1.6 (153) 51 (230)

� � .21 (74) 0.48 (153) 5.2 (230)

References

1. Arbarello, E., Ciliberto, C.: Adjoint hypersurfaces to curves in P
r following Petri.

In: Commutative Algebra. Lecture Notes in Pure and Applied Mathematics, vol.
84, pp. 1–21, Dekker, New York (1983)

2. Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symb. Comput.
35, 403–419 (2003)

3. Böhm, J., Decker, W., Fieker, C., Pfister, G.: The use of bad primes in rational
reconstruction. Math. Comp. 84, 3013–3027 (2015)

4. Böhm, J., Decker, W., Laplagne, S., Pfister, G., Steenpaß, A., Steidel, S.: Parallel
algorithms for normalization. J. Symb. Comp. 51, 99–114 (2013)

5. Böhm, J., Decker, W., Pfister, G., Laplagne, S.: Local to global algorithms for the
Gorenstein adjoint ideal of a curve. Preprint (2015). arXiv:1505.05040

6. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-0-2 - A com-
puter algebra system for polynomial computations (2015). http://www.singular.
uni-kl.de

7. Greuel, G.-M., Laplagne, S., Seelisch, S.: Normalization of rings. J. Symb. Comp.
45(9), 887–901 (2010)

8. Kornerup, P., Gregory, R.T.: Mapping integers and Hensel codes onto Farey frac-
tions. BIT 23, 9–20 (1983)

9. Mnuk, M.: An algebraic approach to computing adjoint curves. J. Symb. Comput.
23(2–3), 229–240 (1997)

10. van Hoeij, M.: An algorithm for computing an integral basis in an algebraic function
field. J. Symb. Comput. 18(4), 353–363 (1994)

http://arxiv.org/abs/1505.05040
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de

The Subdivision of Large Simplicial
Cones in Normaliz

Winfried Bruns, Richard Sieg(B), and Christof Söger

University of Osnabrück, Osnabrück, Germany
{wbruns,risieg,csoeger}@uos.de

http://www.home.uni-osnabrueck.de/wbruns/,

http://www.math.uni-osnabrueck.de/normaliz/

Abstract. Normaliz is an open-source software for the computation of
lattice points in rational polyhedra, or, in a different language, the solu-
tions of linear diophantine systems. The two main computational goals
are (i) finding a system of generators of the set of lattice points and
(ii) counting elements degree-wise in a generating function, the Hilbert
Series. In the homogeneous case, in which the polyhedron is a cone, the
set of generators is the Hilbert basis of the intersection of the cone and
the lattice, an affine monoid.

We will present some improvements to the Normaliz algorithm by
subdividing simplicial cones with huge volumes. In the first approach
the subdivision points are found by integer programming techniques.
For this purpose we interface to the integer programming solver SCIP
to our software. In the second approach we try to find good subdivision
points in an approximating overcone that is faster to compute.

Keywords: Hilbert basis · Hilbert series · Rational cone · Polyhedron

1 Introduction

Normaliz [3] is a software for the computation of lattice points in rational polyhe-
dra. These are exactly the solutions of linear diophantine systems of inequalities,
equations and congruences. It pursues two main computational goals: (i) find-
ing a minimal generating system of the set of lattice points in a polyhedron;
(ii) counting elements degree-wise in a generating function, the Hilbert series. In
the homogeneous case, in which the polyhedron is a cone, the set of generators
is the Hilbert basis of the intersection of the cone and the lattice, which is an
affine monoid by Gordan’s lemma. For the mathematical background we refer
the reader to [2]. The Normaliz algorithms are described in [4,5]. The second
paper contains extensive performance data.

Normaliz (present public version 3.1.1) is written in C++ (using Boost and
GMP/MPIR), parallelized with OpenMP, and runs under Linux, MacOs and
MS Windows. It is based on its C++ library libnormaliz which offers the full
functionality of Normaliz. There are file based interfaces for Singular, Macaulay

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 102–109, 2016.
DOI: 10.1007/978-3-319-42432-3 13

The Subdivision of Large Simplicial Cones in Normaliz 103

2 and Sage, and C++ level interfaces for CoCoA, polymake, Regina and GAP.
A C++ level interface to Sage should be available in the near future. There is
also the GUI interface jNormaliz.

Normaliz has found applications in commutative algebra, toric geometry,
combinatorics, integer programming, invariant theory, elimination theory, group
theory, mathematical logic, algebraic topology and even theoretical physics.

2 Hilbert Basis and Hilbert Series

We will first describe the main functionality of Normaliz. For simplicity we
restrict ourselves to homogeneous linear systems in the following, or, geometri-
cally speaking, to the intersections of lattices L ⊂ Z

d and rational cones C ⊂ R
d.

Definition 1. A (rational) polyhedron P is the intersection of finitely many
(rational) halfspaces. If it is bounded, then it is called a polytope. If all the
halfspaces are linear, then P is a cone.

The dimension of P is the dimension of the smallest affine subspace aff(P)
containing P .

An affine monoid is a finitely generated submonoid of Zd for some d.

By the theorem of Minkowski-Weyl, C ⊂ R
d is a (rational) cone if and only if

there exist finitely many (rational) vectors x1, . . . , xn such that

C = cone(x1, . . . , xn) = {a1x1 + · · · + anxn : a1, . . . , an ∈ R+}.

If x1, . . . , xn are linearly independent, we call C simplicial. For Normaliz, cones
C and lattices L can either be specified by generators x1, . . . , xn ∈ Z

d or by con-
straints, i.e., homogeneous systems of diophantine linear inequalities, equations
and congruences. Normaliz also offers to define an affine monoid as the quotient
of Zn

+ modulo the intersection with a sublattice of Zn.
Normaliz puts no restriction on the rational cone C. In the following we will

however assume that C is pointed, i.e. x,−x ∈ C ⇒ x = 0. This is justified since
computations in non-pointed cones are done via the projection to the quotient
modulo the maximal linear subspace, which is pointed.

By Gordan’s lemma the monoid M = C ∩ L is finitely generated. This
affine monoid has a (unique) minimal generating system called the Hilbert basis
Hilb(M), see Fig. 1 for an example. The computation of the Hilbert basis is the
first main task of Normaliz.

One application is the computation of the normalization of an affine monoid
M ; this explains the name Normaliz. The normalization is the intersection of
the cone generated by M with the sublattice gp(M) generated by M . One calls
M normal, if it coincides with its normalization.

The second main task is to compute the Hilbert (or Ehrhart) series of a
graded monoid. A grading of a monoid M is simply a homomorphism deg :
M → Z

g where Z
g contains the degrees. The Hilbert series of M with respect

to the grading is the formal Laurent series

104 W. Bruns et al.

Fig. 1. A cone with the Hilbert basis (circled points) and grading.

H(t) =
∑

u∈Zg

#{x ∈ M : deg x = u}tu1
1 · · · tug

g =
∑

x∈M

tdeg x,

provided all sets {x ∈ M : deg x = u} are finite. At the moment, Normaliz can
only handle the case g = 1, and therefore we restrict ourselves to this case. We
assume in the following that deg x > 0 for all nonzero x ∈ M and that there
exists an x ∈ gp(M) such that deg x = 1. (Normaliz always rescales the grading
accordingly.)

Assume that M is a normal and affine monoid. By a theorem of Hilbert and
Serre [2, Theorem 6.37], H(t) in the Z-graded case is the Laurent expansion of
a rational function at the origin:

H(t) =
R(t)

(1 − te)r
, R(t) ∈ Z[t],

where r is the rank of M and e is the least common multiple of the degrees of
the extreme integral generators of cone(M). As a rational function, H(t) has
negative degree.

A rational cone C and a grading together define the rational polytope Q =
C ∩ A1 where A1 = {x : deg x = 1}. In this sense the Hilbert series is nothing
but the Ehrhart series of Q.

3 The Primal Algorithm

The primal Normaliz algorithm is triangulation based. Normaliz contains a sec-
ond, dual algorithm for the computation of Hilbert bases that implements ideas
of Pottier [6]. The dual algorithm is treated in [4], and has not changed much in
the last years and we do not discuss it in this article.

The primal algorithm starts from a pointed rational cone C ⊂ R
d given by a

system of generators x1, . . . , xn and a sublattice L ⊂ Z
d that contains x1, . . . , xn.

Other types of input data are first transformed into this format. The algorithm
is composed as follows:

1. Initial coordinate transformation to E = L ∩ (Rx1 + · · · + Rxn);
2. Fourier-Motzkin elimination computing the support hyperplanes of C;

The Subdivision of Large Simplicial Cones in Normaliz 105

3. computation of a triangulation, i.e. a face-to-face decomposition into simpli-
cial cones;

4. evaluation of the simplicial cones in the triangulation;
5. collection of the local data;
6. reverse coordinate transformation to Z

d.

The algorithm does not strictly follow this chronological order, but inter-
leaves steps 2–5 in an intricate way to ensure low memory usage and efficient
parallelization.

3.1 Simplicial Cones

We will now focus on step 4 of the primal algorithm, the evaluation of simplicial
cones. Let x1, . . . , xd ∈ Z

d be linearly independent and S = cone(x1, . . . , xd).
Then the integer points in the fundamental domain of S

E = {q1x1 + · · · + qdxd : 0 ≤ qi < 1} ∩ Z
d

together with x1, . . . , xd generate the monoid S ∩ Z
d (Fig. 2).

Fig. 2. A cone with a fundamental domain

Every residue class in the quotient Z
d/U , where U = Zx1 + · · · + Zxd, has

exactly one representative in E. Representatives of residue classes can be quickly
computed via the elementary divisor algorithm and from an arbitrary represen-
tative we obtain the one in E by division with remainder. The integer points of
the fundamental domain are candidates for the Hilbert basis of the cone. After
their computation they are shrunk to the Hilbert basis by successively discard-
ing elements x which are reducible, i.e. there exists an y ∈ E, y �= x such that
x − y ∈ C. Also the computation of the Hilbert series uses the set E and a
Stanley decomposition based on it; see [5].

The number of elements in E is given by the (lattice normalized) volume of
the simplex:

|E| = vol(S) = det(x1, . . . , xd).

Therefore the determinant of the generators of the simplicial cone has an enor-
mous impact on the runtime of the Normaliz algorithm. The algorithms pre-
sented in this paper try to decompose a simplex with big volume into simplices

106 W. Bruns et al.

such that the sum of their volumes is considerably smaller. For this purpose we
compute integer points from the cone and use them for a new triangulation.

Theoretically the best choice for these points are the vertices of the bottom
B(S) of the simplex which is defined as the union of the bounded faces of the
polyhedron conv((S∩Zd)\{0}). In practice, the computation of the whole bottom
would equalize the benefit from the small volume or even make it worse.

Therefore, we determine only some points from the bottom. Normaliz
employs two methods for this purpose:

(1) computation of subdivision points by integer programming methods,
(2) computation of candidate subdivision points by approximation of the given

simplicial cone by an overcone that is generated by vectors of “low denomi-
nator”.

4 Methods from Integer Programming

For each simplex S = cone(x1, . . . , xd) in the triangulation with large enough
volume we try to compute a point x that minimizes the sum of determinants:

d∑

i=1

det(x1, . . . , xi−1, x, xi+1, . . . , xd),

which can also be expressed as NTx, where N is a normal vector on the affine
hyperplane spanned by x1, . . . , xd. Such a point can be found by solving the
following integer program:

min{NTx : x ∈ S ∩ Z
d, x �= 0, NTx < NTx1}. (�)

If the problem has a solution x̂, we form a stellar subdivision of the simplex with
respect to x̂: For every support hyperplane Hi (not containing xi) which does
not contain x̂ we form the simplex

Ti = cone(x1, . . . , xi−1, x̂, xi+1, . . . , xd).

If the volume of Ti is larger than a particular bound, we repeat this process and
continue until all simplices have a smaller volume than this bound or the corre-
sponding integer problems have no solutions. Figure 3 illustrates the algorithm.

After computing a set of integer points B, we triangulate the bottom of
conv(B ∪ {x1, . . . , xd}) and continue by evaluating this triangulation with the
usual Normaliz algorithm.

4.1 Implementation and Results

We use the mixed integer programming solver SCIP [1] via its C++ interface.
The algorithm runs in parallel with one SCIP environment for every thread using

The Subdivision of Large Simplicial Cones in Normaliz 107

Fig. 3. The integer programming algorithm for a cone

OpenMP. Moreover each SCIP instance has its own time limit (log(vol(S))2 sec)
and feasibility bounds.

The condition that x �= 0 could be implemented by the inequality NTx ≥ 1.
However this approach is prone to large numbers in N . Therefore we first check,
whether all generators are positive in one entry i and thus require xi ≥ 1. If this
is not the case we make a bound disjunction of the form (xi ≤ −1 ∨ xi ≥ 1).

Table 1 presents example data computed on a SUN xFire 4450 with four Intel
Xeon X7460 processors, using 20 threads and solving integer programs only for
simplices with a volume larger than 106.

Table 1. Runtime improvements using integer programming methods

Hickerson-16 Hickerson-18 Knapsack 11 60

Simplex volume 9.83 × 107 4.17 × 1014 2.8 × 1014

Volume under bottom 8.10 × 105 3.86 × 107 2.02 × 107

Volume used 3.93 × 106 5.47 × 107 2.39 × 107

Integer programs solved 4 582016 11621

Improvement factor 25 7.62 × 106 1.17 × 107

Runtime without subdivision 2 s >12d >8d

Runtime with subdivision 0.5 s 46 s 5.1 s

The bound on the volume to stop the calculation of a single simplex has a
significant effect on the runtime of the algorithm. A smaller bound means that
more integer programs have to be solved by SCIP, whereas a large bound prevents
a major improvement of the respective volume. Running several experiments, it
turns out that 106 is a good value in between these two extreme cases. Figure 4
shows a runtime graph illustrating the effect of different choices for this bound.
The measured time is a single thread computation of hickerson-18.

108 W. Bruns et al.

103 104 105 106 107 108 109 1010 1011

0

1,000

2,000

3,000

4,000

5,000

our choice

BOUND

R
u
n
ti

m
e

(s
ec

)
overall

Normaliz

SCIP

Fig. 4. Runtime graph showing different choices for the bound

5 Approximation

SCIP cannot be employed in all environments. Especially if Normaliz is bundled
with another software package it may be undesirable or even impossible to force
the link to SCIP.

Our second approach is completely implemented within Normaliz. It first
approximates the simplicial cone S by a (not necessarily simplicial) overcone C
for which the sets E in a triangulation of C are significantly faster to compute.
Then these points are used to decompose the original simplex as before. It is clear
that the efficiency depends crucially on the intersection of the sets E with S.

For this purpose we look at the polytope given by the cross section of the
simplex at height one, where the height function comes from the normal vector
N on the affine hyperplane spanned by the generators. For every vertex of this
polytope we triangulate the lattice cube around it using the braid hyperplane
arrangement {xi = xj}. We continue by detecting the minimal face containing
the vertex and collect its vertices, which are at most d. The approximating
cone C is then generated by all vertices found in that way. Figure 5 illustrates
the choice of the approximation for a 3-dimensional cone (with a 2-dimensional
cross section).

Fig. 5. Approximating cone

As in the usual Normaliz algorithm we create a candidate list for the exte-
rior cone, but keep only those points which lie inside the original simplex S.

The Subdivision of Large Simplicial Cones in Normaliz 109

The remaining candidates are then reduced as before, which results in a list B
which is used for a recursive decomposition of the simplex as in Sect. 4. Figure 6
illustrates this process for the previous example.

Fig. 6. Decomposition of a simplex after approximation

It might happen for both algorithms that no decomposition point can be
found, although the volume of the simplex is still quite large (>109) and subdi-
vision points exist. In this case, the approximation method is applied again with
a higher level of approximation.

Table 2 contains performance data for the examples in Sect. 4.

Table 2. Runtime improvements using the approximation method

Hickerson-16 Hickerson-18 Knapsack 11 60

Volume used 3.93 × 106 8.42 × 107 9.36 × 107

Improvement factor 25 4.95 × 106 2.99 × 104

Runtime with subdivision 0.4 s 50 s 2 m 30 s

At present we are working on improvements of the approximation method.

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Com-
put. 1, 1–41 (2009). http://mpc.zib.de/index.php/MPC/article/view/4

2. Bruns, W., Gubeladze, J.: Polytopes, Rings and K-Theory. Springer, New York
(2009)

3. Bruns, W., Ichim, B., Römer, T., Sieg, R., Söger, C.: Normaliz. Algorithms for
rational cones and affine monoids. http://www.math.uos.de/normaliz

4. Bruns, W., Ichim, B.: Normaliz: algorithms for affine monoids and rational cones.
J. Algebra 324, 1098–1113 (2010)

5. Bruns, W., Ichim, B., Sger, C.: The power of pyramid decompositions in Normaliz.
J. Symb. Comp. 74, 513–536 (2016)

6. Pottier, L.: The Euclide algorithm in dimension n. Research report, ISSAC 1996.
ACM Press (1996)

http://mpc.zib.de/index.php/MPC/article/view/4
http://www.math.uos.de/normaliz

Extending Singular with New Types
and Algorithms

Hans Schönemann(B)

Department of Mathematics, University of Kaiserslautern, Kaiserslautern, Germany
hannes@mathematik.uni-kl.de

http://www.singular.uni-kl.de/

Abstract. Singular is a comprehensive and steadily growing computer
algebra system, with particular emphasis on applications in algebraic
geometry, commutative algebra, and singularity theory. Singular can eas-
ily be extended by other tools provided as C or C++ library: gfan and
polymake will be discussed as an example.

1 Introduction

Singular [DGPS] is a comprehensive and steadily growing computer algebra sys-
tem, with particular emphasis on applications in algebraic geometry, commuta-
tive algebra, and singularity theory.

As for most other computer algebra systems, Singular is organized in two
levels. At the lower level, the Singular kernel provides the core algorithms and
data types such as the Gröbner basis engine and multivariate polynomial factor-
ization respectively polynomials, ideals, modules, free resolutions. It is written
in C/C++, which makes it fast but difficult to extend. At the higher level, more
advanced mathematical concepts are realized as libraries, written in the Singu-
lar user language. A general concept for more abstract data type which could
accompany the abstraction in functions is also needed.

Infrastructure for user-defined data-types (at the level of the Singular lan-
guage) and easy integration of data-types of external systems (at the kernel
level) in Singular has been created: blackbox an the C/C++-level, newstruct
(which is based on blackbox) at the level of the Singular language.

2 Extending the Functionality of Singular

For a project dealing with computations with P-divisors (polyhedral formal sums
of divisors (P-divisors) where the coefficients are assumed to be polyhedra with
fixed tail cone) the need to use the functionality of Singular and polymake
at the same time arose. This is only one example for the need to combine these
functionality of special purpose computer algebra systems. In this talk I describe
the general mechanism to include C/C++ libraries into Singular in order to
provide new data types and new functionality.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 110–113, 2016.
DOI: 10.1007/978-3-319-42432-3 14

Extending Singular 111

As an example (solving the problem given above) the integration of gfanlib
of Anders Jensen is described, and, based on that the integration of (parts of)
polymake for more operations resp. different algorithms with cones, fans and
polytopes.

Another project which required the functionality of Singular for Gröbner
base computations and the type fan (provided by gfanlib) is the computation
of GIT-fans, torus orbits and GKZ-fans.

3 Gfanlib

This binary library is an interface to the C++ library gfanlib [J] by Anders
Jensen, which is distributed together with Singular.

It contains a basic implementation of convex geometry, featuring polyhedral
cones, polyhedral fans and polytopes as well as elemental functions on them.
For a full list of functions available on the objects, please check the respective
documentation on the type.

Moreover, it contains features for computing the Groebner fan, the Groebner
complex and the tropical varieties.

4 Integrating Gfanlib

Adding new data types and/or functionality to Singular required many changes
of interpreter and at many different places. The main idea behind the introduc-
tion of the type blackbox and its associated operations was the automating of
this process.

Data organized by blackbox are represented by a pair: a void* pointer and
a type identifier. Registering a new type works by filling struct with function
pointers for the relevant function for the new type and passing that and the
name of the new type to setBlackboxStuff. For some functions useful defaults
are provided:
Required functions:

– create a default object
– destroy an object
– convert an object to a string
– copy an object.

Optional functions:

– print an object (default: print the string representation)
– assign objects of other types to an object (default: raise an error)
– operations where this object is the first operand (default: raise an error)
– serialization (for distributed computations/storing data) (default: raise an

error).

112 H. Schönemann

gfanlib contains a basic implementation of convex geometry, featuring poly-
hedral cones, polyhedral fans and polytopes as well as elemental functions on
them. It provides a part of the functionality of gfan and is based on the same
ideas but share only parts of its code: it is designed as C++-library while gfan
is a (set of) stand alone programs.

The interface to gfanlib is organized as a dynamic module, i.e. an optional
loadable part of Singular. Its initialization routine creates via the interface of
blackbox the types cone, fan and polytope as well as a large list on functions
on them. The data are simply pointer to the corresponding classes of gfanlib.
The integration with the data types of Singular is provided by conversion
routines to resp. from matrices of integers.

5 Integrating Polymake

polymake is a computer algebra system for the combinatorics and the geometry
of convex polytopes and polyhedra. It is also deals with simplicial complexes,
matroids, polyhedral fans, graphs, tropical objects, and other objects.

The interface from Singular currently uses only parts of this functionality:
the functions dealing cones,fans and polytopes. Since gfan 0.3 the main data
types (cone, fan, polytope) are compatible with polymake: the components
of the corresponding C++ classes correlate. Therefore, for the definitions of these
types in Singular and the conversion routines from the interface to gfanlib
can be used to provide simple conversions.

6 Technical Problems of the Integration

6.1 Data Conversion

One problem of the integration was the use of different data types. As integers
(respectively matrices of integers) are the only data types which gfanlib and
Singular share, this was relatively easy. gfanlib and polymake share the
same general representation for cone, fan and polytope: conversion routines
were straight forward.

6.2 Memory Management

Singular uses omalloc as its memory manager which is optimized for many
small memory blocks of only a few sizes. This memory manager can coexist
with others: allocation and deallocation of memory blocks have to use the same
manager. This can be a problem at places where the call to them is not explicit,
for example with a garbage collector or the automatic call to the destructor of
a C++ object.

Extending Singular 113

6.3 Common Libraries

gfanlib and polymake both use cddlib which contains an initialization part.
gfanlib, polymake and Singular uses gmp for operations on large integers
which allows an initialization: setting the memory management routines. These
setting must not be changed and must be done before any use of these libraries:
global C++ objects are initialized in an undefined order, but before the start of
main.

6.4 Alternative Solution

An alternative solution to combine the functionality of Singular and poly-
make is the integration of Singular into polymake as C++ library
libSingular which is also possible.

References

[DGPS] Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: SINGULAR 4-0-3 –
a computer algebra system for polynomial computations (2016). http://www.
singular.uni-kl.de

[GJ] Gawrilow, E., Joswig, M.: POLYMAKE: a framework for analyzing con-
vex polytopes. In: Polytopes Combinatorics and Computation, Oberwolfach,
1997. DMV Seminar, vol. 29, pp. 43–73. Birkhäuser, Basel. MR1785292
(2001f:52033) (2000). https://polymake.org/

[J] Jensen, A.: GFAN (2011). http://home.math.au.dk/jensen/software/gfan/
gfan.html

http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
https://polymake.org/
http://home.math.au.dk/jensen/software/gfan/gfan.html
http://home.math.au.dk/jensen/software/gfan/gfan.html

Algebraic Geometry in Applications

3D Printing Dimensional Calibration Shape:
Clebsch Cubic

Janko Böhm1(B), Magdaleen S. Marais2, and André F. van der Merwe3

1 Department of Mathematics, University of Kaiserslautern, Kaiserslautern, Germany
boehm@mathematik.uni-kl.de

2 Department of Mathematics and Applied Mathematics,
University of Pretoria, Pretoria, South Africa

magdaleen.marais@up.ac.za
3 Department of Industrial Engineering,

Stellenbosch University, Stellenbosch, South Africa
andrevdm@sun.ac.za

Abstract. 3D printing and other layer manufacturing processes are
challenged by dimensional accuracy. Various techniques are used to val-
idate and calibrate dimensional accuracy through the complete building
envelope. The validation process involves the growing and measuring of
a shape with known parameters. The measured result is compared with
the intended digital model. Processes with the risk of deformation after
time or post-processing may find this technique beneficial. We propose
to use objects from algebraic geometry as test shapes. A cubic surface
is given as the zero set of a degree 3 polynomial in 3 variables. A class
of cubics in real 3D space contains exactly 27 real lines. These lines can
be used for dimensional calibration. Due to the thin shape geometry the
material required to produce an algebraic surface is minimal. We provide
a library for the computer algebra system Singular which, from 6 given
points in the plane, constructs a cubic and the lines on it.

Keywords: Clebsch cubic · 3D printing · Applied algebraic geometry

1 Introduction

This paper is the first in a series to investigate whether cubic surface shapes, and
specifically the Clebsch cubic, can be used in 3D printing build volume accuracy.
A surface shape derived from a cubic offers simplicity to the dimensional com-
parison process, in that it contains finitely many lines and many other features
that can be analytically determined and easily measured using non-digital equip-
ment. For example, the surface contains so-called Eckardt points, in each of which
three of the lines intersect, and also other intersection points of pairs of lines. In
this initial paper the phases of development are proposed and the mathematical
background for calculating with cubic surfaces is described. Various build vol-
umes, growing techniques and materials may require slight adjustments due to
its unique characteristics. However, the basic shape and mathematical approach
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 117–126, 2016.
DOI: 10.1007/978-3-319-42432-3 15

118 J. Böhm et al.

remains the same for all variants. The ultimate aim is to have a standard cubic
shape which can be grown on any platform in any material, and in any build
volume size. The research phases proposed are an initial analytical mathematical
model, then an engine which converts from the analytical model to a point cloud,
then a digital domain simulated growth, followed by an actual hardware printing
phase, and lastly a reverse engineering phase. The initial mathematical model is
developed from ground rules to provide the fundamental information for parallel
development. The input to the mathematical model, based on the mathematical
formulations found by Clebsch and others, is the extent of the build volume. The
open source computer algebra system Singular is used for this conversion. The
output from the mathematical model is a three-dimensional shape in analyti-
cal mathematical formulation, the formulas for 27 lines, the coordinates of the
points where the lines cross, and the angles between the lines. After printing,
the line straightness is one indicator of the dimensional accuracy. Another indi-
cator is given by the angles between lines and the distances of the cross points.
This model is developed in the second part of this paper. The engine which con-
verts the analytical mathematical formulation to a printable point cloud would
typically be programmed in Matlab and later in C++. The inputs are the three-
dimensional mathematical shape of the Clebsch cubic, and the formulas of the
27 lines that we want to use as part of the dimensional accuracy measurement.
Note that the lines will have to be highlighted in some way for the reverse engi-
neering process to pick it up. Several ways could be used to highlight the lines:
generating cylinders around the lines with diameter larger than the thickness
of the cubic’s surface shape, thinning along the lines, or perforating along the
lines, are examples. The output of this engine would be a point cloud in an STL
format or similar. In phase three of this project we will compare the point cloud
with the initial analytical line formulas. This comparison can be done on a CAD
platform, but would typically be a manual process. Several alternatives of the
previous phases will be evaluated for accuracy. All work up to this point is in the
digital domain. This phase is to ensure accuracy and robustness of self-developed
tools by comparison with trusted commercially available CAD platforms. The
output of this phase is a report which defines constraints and extents within
which these techniques are deemed accurate in the digital domain. Phase four
will involve the growing of hard copies in various materials on various platforms.
This phase will report on any manufacturing issues on any of the platforms using
the extent of materials chosen. Phase five will reverse engineer hardware shapes
to compare with the initial intended analytical shape. In this phase it will be
determined to what extent the use of the 27 lines and their angles are an indica-
tion of dimensional accuracy of the process. This phase will seek to propose an
economical method of measuring dimensional accuracy of the complete building
envelope. This paper starts with the mathematical setup on which the descrip-
tion of the cubic and the lines are based. Then a reference to the mathematical
origins of the cubic surfaces is made, followed by the derivation of the surface
equation and the lines. Finally an example output from the computer algebra
library is given.

3D Printing Dimensional Calibration Shape: Clebsch Cubic 119

2 Algebraic Varieties

We first set the mathematical framework used to describe the cubic and the lines
on it. Let K be either the real numbers R or the complex numbers C. The set of
lines through the origin in Kn+1 is called projective space and is denoted P

n
K .

We will write (x0 : . . . : xn) for the line with direction (x0, . . . , xn) �= 0. There is
an inclusion of usual n-space to projective space

Kn −→ P
n
K , (x1, . . . , xn) �−→ (1 : x1 : . . . : xn).

This map is referred to as an affine chart. The complement of the image is
called the plane at infinity (the horizon in a perspective drawing). An algebraic
variety V (f1, . . . , fr) ⊂ P

n
K is the common zero set of homogeneous polynomials

fi ∈ K[x0, . . . , xn].
Algebraic varieties are studied in algebraic geometry, which forms a central

branch of classical mathematics. It has important applications, e.g., in cryptogra-
phy, robotics, and computational biology. Algebraic varieties have the advantage
over zero sets of non-polynomial equations that they can easily be handled by
the means of computer algebra. For computing with polynomials we make use of
the open-source computer algebra system Singular [8]. Using projective space
in the development of the theory, avoids the problem that some features of an
algebraic variety (e.g. a line on it) may be contained in the plane at infinity. For
an introduction to algebraic geometry, computer algebra, and its applications
see, e.g. [6].

3 Historic Overview and Derivation of the Fundamental
Properties of Cubic Hypersurfaces

Starting in the second half of the 19th century, Clebsch, Klein, Salmon, Coble
and many other mathematicians investigated cubic surfaces in P

3
C
. These surfaces

are given by a single degree three polynomial. In 1849, Arthur Cayley [2] and
George Salmon [11] found:

Theorem 1. Every smooth cubic surface in P
3
C
contains exactly 27 lines.

Here smooth means, that C has in every point a well-defined tangent plane.
In algebraic geometry there is a process, called blowup, which replaces in a
variety a given point by a line and is a 1 : 1 map everywhere else. In 1871 Alfred
Clebsch [4] proved (see also [3]):

Theorem 2. Every smooth cubic surface in P
3
C
is the blowup of P2

C
in 6 points.

In the following, let P1, . . . , P6 ∈ P
2
K be points in general position, that is,

no three are on a line and not all of them on a conic.

120 J. Böhm et al.

Remark 1. The homogeneous linear polynomial

li,j(t) := det (Pi, Pj , t) := det

⎛

⎝
Pi,0 Pj,0 t0
Pi,1 Pj,1 t1
Pi,2 Pj,2 t2

⎞

⎠ ∈ K[t0, t1, t2]

defines in P
2
K the line through Pi and Pj .

Proposition 1 [5]. The blowup C = C(P1,...,P6) of P2
K in the points Pi is the

smallest algebraic variety (with respect to inclusion) containing the image of

ϕ(P1,...,P6) : P2
K\{P1, . . . , P6} −→ P

5
K

(t0 : t1 : t2) �−→ (ϕ0(t) : . . . : ϕ5(t))

(defined on P
2
K except at the points P1, . . . , P6), where

ϕ0 = l2,5l1,3l4,6 + l5,1l4,2l3,6 + l1,4l3,5l2,6 + l4,3l2,1l5,6 + l3,2l5,4l1,6
ϕ1 = l5,3l1,2l4,6 + l1,4l2,3l5,6 + l2,5l3,4l1,6 + l3,1l4,5l2,6 + l4,2l5,1l3,6
ϕ2 = l5,3l4,1l2,6 + l3,4l2,5l1,6 + l4,2l1,3l5,6 + l2,1l5,4l3,6 + l1,5l3,2l4,6
ϕ3 = l4,5l3,1l2,6 + l5,3l2,4l1,6 + l4,1l2,5l3,6 + l3,2l1,5l4,6 + l2,1l4,3l5,6
ϕ4 = l3,1l2,4l5,6 + l1,2l5,3l4,6 + l2,5l4,1l3,6 + l5,4l3,2l1,6 + l4,3l1,5l2,6
ϕ5 = l4,2l3,5l1,6 + l2,3l1,4l5,6 + l3,1l5,2l4,6 + l1,5l4,3l2,6 + l5,4l2,1l3,6.

Remark 2. The Clebsch cubic, given in [4, Ch. 16], is obtained by applying
this construction to the points in general position

P1 = (0 : 1 : −g) P3 = (1 : g : 0) P5 = (0 : 1 : g)
P2 = (g : 0 : 1) P4 = (1 : −g : 0) P6 = (−g : 0 : 1),

where g = 1+
√
5

2 is the golden ratio. These points correspond to the diagonals in
an icosahedron. The Clebsch cubic with K = R contains 27 real lines.

Remark 3. The number

|i, j; k, l;m,n| = det
(

det (Pi, Pj , Pm) det (Pi, Pj , Pn)
det (Pk, Pl, Pm) det (Pk, Pl, Pn)

)
,

vanishes if the lines defined by li,j(t), lk,l(t) and lm,n(t) in P
2
K meet in one point.

Theorem 3 [5,7]. Consider the skew-symmetric matrix A ∈ K6×6 with

(Ai,j) =

⎛

⎜⎜⎜⎜⎜⎝

0 |1, 5; 2, 4; 3, 6| |1, 4; 3, 5; 2, 6| |1, 2; 4, 3; 5, 6| |2, 3; 4, 5; 1, 6| |1, 3; 5, 2; 4, 6|
0 |2, 5; 3, 4; 1, 6| |1, 3; 5, 4; 2, 6| |1, 2; 3, 5; 4, 6| |1, 4; 2, 3; 5, 6|

0 |1, 5; 3, 2; 4, 6| |1, 3; 2, 4; 5, 6| |1, 2; 4, 5; 3, 6|
0 |1, 4; 5, 2; 3, 6| |2, 4; 3, 5; 1, 6|

0 |1, 5; 3, 4; 2, 6|
0

⎞

⎟⎟⎟⎟⎟⎠

where the entries are defined as in Remark 3, and write for the sum of the entries
of the i-th row

ai =
6∑

j=1

Ai,j.

3D Printing Dimensional Calibration Shape: Clebsch Cubic 121

Then C is given by the equations

x3
0 + . . . + x3

5 = 0
x0 + . . . + x5 = 0

a0 · x0 + . . . + a5 · x5 = 0.

Remark 4. Using the ordering of the Pi from Remark 2, we obtain for the Clebsch
cubic surface a0 = a1 = a2 = a3 = a4 = 1 and a5 = −5.

Remark 5. For a subset S ⊂ P
n
C

we define I(S) as the ideal of all f ∈
C[x0, . . . , xn] with f(x) = 0 for all x ∈ S. So V (I(S)) is the smallest alge-
braic variety (with respect to inclusion) containing S. The ideal generated by
the ϕi is

〈ϕ0, . . . , ϕ5〉 = I(P1) ∩ . . . ∩ I(P6).

With the ring homomorphism

ψ(P1,...,P6) : C[x0, . . . , x5] −→ C[t0, t1, t2]
xi �−→ ϕi

we have

I(C) = kerψ(P1,...,P6) =
〈
x3
0 + . . . + x3

5, x0 + . . . + x5, a0x0 + . . . + a5x5

〉
.

Remark 6. Eliminating two variables by the two linear equations, C can be con-
sidered as a subset of P3

K .

Note that a plane intersects C in an irreducible plane cubic, a union of a
conic and a line, or in three lines.

Definition 1. A tritangent plane H to C is a plane, such that H∩C consists
out of three lines.

Remark 7. A tritangent plane H to C is called generic if the three lines pairwise
intersect in three distinct points. Then H is tangent to C in each of the three
points.

If H is not generic, then the three lines on C intersect in a single point. This
point is called an Eckardt point of C.

Since in an Eckardt point the three lines are tangent to C, they are copla-
nar, hence, lie on a tritangent plane. So, the Eckardt points are in one-to-one
correspondence to the non-generic tritangent planes.

Theorem 4 [2,5]. There are 45 tritangent planes to C:

1. Of these, 15 are given by the equations

xi + xj = 0

for 0 ≤ i < j ≤ 5.

122 J. Böhm et al.

2. Write M for the set of 2-element subsets of {1, . . . , 6}, and S(M) for the set
of permutations of M . The remaining 30 tritangent planes are then

(mi,j − d2) · (xi + xj) − (mk,l + d2) · (xk + xl) = 0

where

{i,j}

{k,l} {m,n}
∈ S(M)

is a 3-cycle of pairwise disjoint elements of M ,

d2 = det
(

det (P3, P4, P1) · det (P5, P6, P1) det (P5, P3, P1) · det (P4, P6, P1)
det (P3, P4, P2) · det (P5, P6, P2) det (P5, P3, P2) · det (P4, P6, P2)

)

and
mi,j =

∑

s<t

asat + 2(a2
i + a2

j + aiaj),

where ai is as defined in Theorem 3.

Remark 8. Possible numbers for Eckardt points are 1, 2, 3, 4, 6, 9, 10, 18. The
Clebsch cubic is the unique cubic with 10 Eckardt points. The Fermat cubic
V (x3

0 + . . . + x3
3) is the unique cubic with the maximum possible number of 18

Eckardt points, however, only 3 of the lines on the Fermat cubic are defined
over R.

Remark 9. Every line on C lies on 5 tritangent planes. Hence, any line on C is
the intersection of the planes x0 + . . . + x5 = 0, a0x0 + ... + a5x5 = 0 and two
tritangent planes (see Remark 6).

Remark 10. After permuting the coordinates we may assume that a5 �= 0. Then
by eliminating x4 and x5 via the two linear equations of C, we obtain C ′ =
V (F) ⊂ P

3
K with a homogeneous cubic polynomial F ∈ K[x0, x1, x2, x3].

Example 1. The Clebsch Cubic is then given by

F = x3
0 + x3

1 + x3
2 + x3

3 − (x0 + x1 + x2 + x3)
3 .

Remark 11. For the Clebsch cubic, as well as cubics “close” to it in the sense of
the position of P1, . . . , P6, the transformation

x0 = y0 − y3 − √
2y1 x2 = y0 + y3 +

√
2y2

x1 = y0 − y3 +
√

2y1 x3 = −y0 − y3 +
√

2y2

of the coordinate system with inverse

y0 = x0 + x1 + x2 − x3 y2 =
√

2(x2 + x3)
y1 =

√
2(−x0 + x1) y3 = −x0 − x1 + x2 − x3

3D Printing Dimensional Calibration Shape: Clebsch Cubic 123

achieves that all 27 lines, for K = R, are visible in the affine chart

K3 −→ P
3
K , (y1, y2, y3) �−→ (1 : y1 : y2 : y3).

Moreover, they all pass through a ball with radius 6 around 0. In the affine
chart we obtain a so-called affine cubic hypersurface C ′′ ⊂ K3 given by a single,
non-homogeneous degree three polynomial f ∈ K[y1, y2, y3].

4 Implementation in Singular

We have implemented the constructions above in the library cubic.lib [1] for
the open-source computer algebra system Singular [8]. For an introduction
to the language of Singular see [10]. Specifically, from 6 points in general
position (with coordinates in Q or an algebraic extension thereof), we give a
function to obtain the cubic C ⊂ P

5
K , its projection C ′ ⊂ P

3
K and the affine

cubic hypersurface C ′′ ⊂ K3. Moreover, we compute the parametrizations

P
2
K\{P1, . . . , P6} −→ C −→ C ′

and an affine parametrization

P
2
K\V (ϕ0 + ϕ1 + ϕ2 − ϕ3) −→ C ′′.

Finally, we compute the lines on C,C ′ and C ′′ in implicit and parametric form, as
well as the Eckardt points. We demonstrate key parts of our library, considering
the Clebsch cubic as an example:

Example 2. Our library can be loaded in Singular by:
> LIB"cubic.lib";
We first create a polynomial ring in 4 variables over the field Q[

√
5]:

> ring R = (0,a),(x0,x1,x2,x3),dp;
> minpoly = a^2-5;
We specify a list P with the points P1, . . . , P6:
> number g = (1 + a)/2;
> list P = vector(0,1,-g), vector(g,0,1), vector(1,g,0),

vector(1,-g,0), vector(0,1,g), vector(-g,0,1);
We compute the equation of C ′:
> poly f = cubic(P);
> f;
-3*x0^2*x1-3*x0*x1^2-3*x0^2*x2-6*x0*x1*x2-3*x1^2*x2-3*x0*x2^2
-3*x1*x2^2-3*x0^2*x3-6*x0*x1*x3-3*x1^2*x3-6*x0*x2*x3-6*x1*x2*x3
-3*x2^2*x3-3*x0*x3^2-3*x1*x3^2-3*x2*x3^2
The following command returns a list of all lines on C ′, each specified by 2 linear
equations:
> list L = lines(P);
> L[1];
[1] = x0 + x1
[2] = x2 + x3

124 J. Böhm et al.

We compute a list of Eckardt points, each specified by 3 linear equations:
> list E = EckardtPoints(P);
> E[1];
[1] = x0
[2] = x1
[3] = x2 + x3

By the commands affineCubic, affineLines and affineEckardtPoints,
one can also obtain the affine cubic C ′′ and the corresponding lines
and Eckardt points, respectively. Moreover, the functions paramLines and
affineParamLines compute parametrizations of the lines on C ′ and C ′′, respec-
tively.

If, in addition to Singular, the program Surf [9] is installed, C ′′ can be
visualized by:
> LIB "surf.lib";
> plot(affineCubic(P));
Surf can also plot hyperplane sections of a surface. Hence, we can visualize the
lines on the cubic by intersecting with tritangent planes, see Fig. 1.

Fig. 1. Lines on the Clebsch cubic,

3D Printing Dimensional Calibration Shape: Clebsch Cubic 125

5 Explicit Data for the Clebsch Cubic

In this section we give the explicit data required for the dimensional comparison
process for the Clebsch cubic. In the following let a =

√
5 and c =

√
2. The cubic

C ′′ is the zero set in K3 of the equation

2cy32 + 2y21y3 − 8y22y3 + 3cy2y
2
3 − y33 − 2y21 + 8y22 − 10cy2y3 + 3y23 + 3cy2 − 3y3 + 1 = 0.

The lines on C ′′ given in implicit form (by two linear equations each) as well as
their parametrizations (specified as maps K → K3, s �→ (ψ1(s), ψ2(s), ψ3(s)))
are listed in Table 1.

Table 1. Lines on the Clebsch cubic in implicit and parametric form

The 10 Eckardt points on C ′ have projective coordinates

(−1 : 1 : 0 : 0) (−1 : 0 : 1 : 0) (0 : −1 : 1 : 0) (−1 : 0 : 0 : 1) (0 : −1 : 0 : 1)
(0 : 0 : −1 : 1) (1 : 0 : 0 : 0) (0 : 1 : 0 : 0) (0 : 0 : 1 : 0) (0 : 0 : 0 : 1).

Hence (after applying the transformation of Remark 11 and passing to the affine
chart), the cubic C ′′ contains 7 of them with affine coordinates

(−1

c
,−1

c
, 0) (

1

c
,−1

c
, 0) (0, 0, 1) (−2

c
, 0,−1) (

2

c
, 0,−1) (0,

2

c
, 1) (0,−2

c
, 1),

the remaining three of them lying at the plane at infinity y0 = 0 with projective
coordinates (0 : 1 : 0 : 0), (0 : 1 : 1 : c), (0 : −1 : 1 : c).

126 J. Böhm et al.

References

1. Böhm, J., Marais, M.S., van der Merwe, A.F.: cubic.lib, a Singular library for
contructing cubic surfaces and the lines thereon (2016)

2. Cayley, A.: On the triple tangent planes to a surface of the third order. Camb.
Dublin Math. J. IV, 118–132 (1849)

3. Clebsch, A.: Die Geometrie auf den Flächen dritter Ordnung. J. für reine und
angew. Math. 65, 359–380 (1866)

4. Clebsch, A.: Ueber die Anwendung der quadratischen Substitution auf die Glei-
chungen 5-ten Grades und die geometrische Theorie des ebenen Fünfseits. Math.
Ann. 4(2), 284–345 (1871)

5. Coble, A.B.: Point sets and allied Cremona groups I. Trans. Am. Math. Soc. 16(2),
155–198 (1915)

6. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate
Texts in Mathematics, 3rd edn. Springer, New York (2007)

7. Cremona, L.: Über die Polar-Hexaheder bei den Flächen dritter Ordnung. Math.
Ann. 13, 301–304 (1878). (Opere, t. 3, pp. 430–433)

8. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4.0.2 – A com-
puter algebra system for polynomial computations (2016)

9. Endrass, S.: Surf. A program for drawing curves and surfaces (2010). http://surf.
sourceforge.net/

10. Greuel, G.M., Pfister, G.: A Singular Introduction to Commutative Algebra,
extended edn. Springer, Berlin (2008). With contributions by Bachmann, O.,
Lossen, C., Schönemann, H., With 1 CD-ROM (Windows, Macintosh and UNIX)

11. Salmon, G.: On the triple tangent planes to a surface of the third order. Camb.
Dublin Math. J. IV, 252–260 (1849)

http://surf.sourceforge.net/
http://surf.sourceforge.net/

Decomposing Solution Sets of Polynomial
Systems Using Derivatives

Daniel A. Brake, Jonathan D. Hauenstein(B), and Alan C. Liddell Jr.

Department of Applied and Computational Mathematics and Statistics,
University of Notre Dame, Notre Dame, IN, USA

{dbrake,hauenstein,aliddel1}@nd.edu

Abstract. A core computation in numerical algebraic geometry is the
decomposition of the solution set of a system of polynomial equations
into irreducible components, called the numerical irreducible decompo-
sition. One approach to validate a decomposition is what has come to be
known as the “trace test.” This test, described by Sommese, Verschelde,
and Wampler in 2002, relies upon path tracking and hence could be called
the “tracking trace test.” We present a new approach which replaces
path tracking with local computations involving derivatives, called a
“local trace test.” We conclude by demonstrating this local approach
with examples from kinematics and tensor decomposition.

Keywords: Numerical algebraic geometry · Trace test · Numerical irre-
ducible decomposition

1 Introduction

Numerical algebraic geometry uses numerical methods to compute and manipu-
late the solution set to a given system of polynomial equations. Such a solution
set can be decomposed into finitely many components yielding the irreducible
decomposition. In numerical algebraic geometry, irreducible components are rep-
resented via a witness set with a numerical irreducible decomposition consisting
of a witness set for each irreducible component. See [3,12] for a general overview
of witness sets and computing a numerical irreducible decomposition.

The focus of this article is the pure-dimensional decomposition step in com-
puting a numerical irreducible decomposition. Let X be a pure k-dimensional
component of the solution set of f , namely V(f) = {x | f(x) = 0}, and let L
be a general linear space of codimension k. That is, X is a union of irreducible
components of V(f) each having dimension k, say X = X1 ∪ · · · ∪ Xm. Given
the finitely many points W = X ∩ L, called a witness point set for X, the pure-
dimensional decomposition step partitions W into X1 ∩ L, . . . , Xm ∩ L yielding
witness point sets for the irreducible components of X.

All authors supported in part by NSF ACI 1460032, Sloan Research Fellowship, and
Army Young Investigator Program (YIP).

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 127–135, 2016.
DOI: 10.1007/978-3-319-42432-3 16

128 D.A. Brake et al.

There are two tools commonly used for pure-dimensional decomposition.
First, random monodromy loops [10] aim to determine subsets of points in W
contained in the same irreducible component. This relies on the fact that the set
of smooth points of an irreducible algebraic set is connected.

Second, given Z ⊂ W , the trace test of [11] is used to verify that Z is a witness
point set for some algebraic set, i.e., there exists J ⊂ {1, . . . , m} such that

Z =
⋃

j∈J
Xj ∩ L.

There are two ways to show that |J | = 1, i.e., Z is a witness point set for
an irreducible component. If Z was constructed as a result of using random
monodromy loops, then each point in Z must lie on the same irreducible com-
ponent. Another approach is to show that the trace test does not hold for any
nonempty and proper subset of Z.

Since the trace test of [11] uses only path tracking, we will refer to this as the
tracking trace test. We show that this test is the first in a family of three methods,
which are based on the zeroth, first, and second derivatives, respectively. The
third of these methods, which is built on computing second derivatives, computes
these derivatives locally at each point in Z and hence we call it a local trace test.

The remainder is organized as follows. In Sect. 2, we describe linear traces
in numerical algebraic geometry and present three computational approaches.
Section 3 considers the extension to parameterized algebraic sets. We demon-
strate the methods on two examples in Sect. 4 and conclude in Sect. 5.

2 Trace Test

Let f : C
N → C

n be a polynomial system with X ⊂ V(f) ⊂ C
N a pure k-

dimensional set. Let � : CN → C
k be a general linear system with L = V(�) and

W = X ∩ L. If X1, . . . , Xm are the irreducible components of X, the goal is to
partition W into the m sets W1 = X1 ∩ L, . . . ,Wm = Xm ∩ L.

We first reduce to the multiplicity-one case as follows. Since the deflation
sequence [9] with respect to f is the same for each w ∈ Wi = Xi ∩ L, we can
first partition W based on deflation sequences. So, without loss of generality, we
may assume that each point in W has the same deflation sequence. In particular,
a byproduct of this computation is a polynomial system, which without loss of
generality we call f , such that each irreducible component has multiplicity one.

We next reduce to the “square” case using Bertini’s Theorem (see, e.g., [12,
Theorem A.8.7] and [3, Theorem 9.3]). In particular, for a general U ∈ C

(N−k)×n,
each Xi is an irreducible component of V(U ·f). Hence, without loss of generality,
we may assume that f : CN → C

N−k such that X ⊂ V(f) is pure k-dimensional
and each irreducible component of X has multiplicity one with respect to f .

Suppose that d = deg X = |W | and W = {w1, . . . , wd}. For a general v ∈
C

k, consider the family of parallel slices Mt = V(� − t · v) for t ∈ C, so that
M0 = L = V(�). For i = 1, . . . , d, consider the paths xi(t) defined by

xi(t) ∈ X ∩ Mt and xi(0) = wi. (1)

Decomposing Solution Sets Using Derivatives 129

The following forms the basis of traces in numerical algebraic geometry.

Theorem 1 [11]. With the setup as above, let I ⊂ {1, . . . , d} be nonempty with
Z = {wi | i ∈ I} ⊂ W . Then, there exists J ⊂ {1, . . . , m} such that

Z =
⋃

j∈J
Xj ∩ L

if and only if

trI(t) =
∑

i∈I
xi(t) is a vector of linear functions of t. (2)

This theorem can be used to create a trace test for images of algebraic
sets using pseudowitness sets [8] (we consider a simple coordinate projection
in Sect. 4.1), and for multihomogeneous witness sets [7].

Example 1. Consider the parabola X = V(f) where f(α, β) = β − α2. For illus-
trative purposes, we consider the L = V(�) where �(α, β) = 2α + β − 3 and take
v =

√−1. If W = X ∩ L = {w1, w2} = {(−3, 9), (1, 1)}, then

tr{1}(t) =

[
−1 −

√
4 + t

√−1

5 + t
√−1 + 2

√
4 + t

√−1

]

and tr{2}(t) =

[
−1 +

√
4 + t

√−1

5 + t
√−1 − 2

√
4 + t

√−1

]

are not linear in t, whereas

tr{1,2}(t) =

[
0

2
√−1

]

· t +

[−2
10

]

is indeed linear in t confirming that X is irreducible of degree 2.

Example 2. For each subsequent method, we will use the twisted cube curve

X = {(s, s2, s3) | s ∈ C} ⊂ C
3.

For illustrative purposes, we consider

f(α, β, γ) =

[
β − α2

γ − α3

]

, �(α, β, γ) = 2α − 3β − γ + 2, and v = 1.

With W = X ∩ V(�) where |W | = 3 and I = {1, 2, 3}, Newton’s identities yield

trI(t) =

⎡

⎣
0
0

−3

⎤

⎦ · t +

⎡

⎣
−3
13

−39

⎤

⎦ (3)

which is linear in t.

The following three tests determine if trI(t) is a linear function, i.e., there
exists a, b ∈ C

N such that trI(t) = a · t + b. They are derived using the fact
that trI(t) is linear if and only if ṫrI(t) is constant if and only if ẗrI(t) is zero
corresponding with the zeroth, first, and second derivatives of trI(t). The zeroth
derivative trace test is the tracking test of [11].

130 D.A. Brake et al.

2.1 Zeroth Derivative Trace Test

The tracking trace test of [11] determines if trI(t) is a linear function by evalu-
ating it at 3 distinct sufficiently general values of t, say t1, t2, t3 ∈ C facilitated
by path tracking. Due to the genericity of L and v, one could take t1 = 0, t2 = 1,
and t3 = −1. That is, one needs to compute

trI(tj) =
∑

i∈I
xi(tj)

where xi(t) defined in (1) are solution curves of H : CN × C → C
N with

H(x, t) =

[
f(x)

�(x) − t · v

]

= 0. (4)

With this setup, trI(t) is linear in t if and only if

trI(t2) − trI(t1)

t2 − t1
=

trI(t3) − trI(t1)

t3 − t1
=

trI(t3) − trI(t2)

t3 − t2
.

In the linear case, trI(t) = a · t + b where

a =
trI(t2) − trI(t1)

t2 − t1
and b = trI(t1) − a · t1.

Example 3. With the setup from Example 2 and t1 = 0, t2 = 1, and t3 = −1,
the following table lists approximations of xi(tj) for i = 1, 2, 3 and j = 1, 2, 3:

t1 = 0 t2 = 1 t3 = −1

x1(tj)
1.0000
1.0000
1.0000

0.8342
0.6960
0.5806

1.1284
1.2733
1.4368

x2(tj)
−0.5858
0.3431

−0.2010

−0.3434
0.1179

−0.0405

−0.7984
0.6374

−0.5089

x3(tj)
−3.4142
11.6569

−39.7990

−3.4909
12.1861

−42.5401

−3.3301
11.0893

−36.9280

so that

trI(0) =

⎡

⎣
−3
13

−39

⎤

⎦ , trI(1) =

⎡

⎣
−3
13

−42

⎤

⎦ , trI(−1) =

⎡

⎣
−3
13

−36

⎤

⎦ (5)

which one can use to easily recover (3).

2.2 First Derivative Trace Test

Since trI(t) is linear if and only if ṫrI(t) is constant, this can be decided by
evaluating ṫrI(t) at 2 distinct sufficiently general values of t, say t1, t2 ∈ C,
facilitated by path tracking and derivative computations. Due to the genericity
of L and v, one could take t1 = 0 and t2 = 1. Due to the relationship between
the paths xi(t) in (1) and the homotopy H(x, t) in (4),

ẋi(t) = −JxH(xi(t), t)
−1 · JtH(xi(t), t) =

[
Jf(xi(t))
J�(xi(t))

]−1

·
[

0
v

]

(6)

Decomposing Solution Sets Using Derivatives 131

with corresponding Jacobian matrices JxH(x, t), JtH(x, t), Jf(x), and J�(x) so

ṫrI(t) =
∑

i∈I
ẋi(t) =

∑

i∈I

[
Jf(xi(t))
J�(xi(t))

]−1

·
[

0
v

]

.

Therefore, trI(t) is a linear function of t if and only if

ṫrI(t1) = ṫrI(t2) =
trI(t2) − trI(t1)

t2 − t1
.

In the linear case, trI(t) = a · t + b where

a = ṫrI(t1) and b = trI(t1) − a · t1.

Thus, the first derivative trace test replaces evaluating trI(t3), a path tracking
computation, with evaluating ṫrI(t1) and ṫrI(t2), a linear algebra computation.
We emphasize here that finding ṫrI(t1) does involve path tracking, but the cost
incurred due to tracking paths is half that of the zeroth derivative trace test.

Example 4. With the setup from Example 2, we consider t1 = 0 and t2 = 1 with
the values of xi(tj) listed in Example 3. The following table lists approximations
of the six values of ẋi(tj) for i = 1, 2, 3 and j = 1, 2 computed using (6):

t1 = 0 t2 = 1

ẋ1(tj)
−0.1429
−0.2857
−0.4286

−0.1963
−0.3276
−0.4099

ẋ2(tj)
0.2230

−0.2612
0.2295

0.2698
−0.1853
0.0954

ẋ3(tj)
−0.0801
0.5469

−2.8009

−0.0735
0.5129

−2.6855

so that

ṫrI(0) = ṫrI(1) =

⎡

⎣
0
0

−3

⎤

⎦ (7)

which, together with trI(0) in (5), one can easily recover (3).

2.3 Second Derivative Trace Test

Since trI(t) is linear if and only if ẗrI(t) ≡ 0, this can be decided by evaluating
ẗrI(t) at a sufficiently general t1 ∈ C facilitated by derivative computations. Due
to the genericity of L and v, we take t1 = 0. Hence, xi(0) = wi by (1) and ẋi(0)
as in (6) so that

trI(0) =
∑

i∈I
xi(0) =

∑

i∈I
wi and ṫrI(0) =

∑

i∈I
ẋi(0) =

∑

i∈I

[
Jf(wi)
J�(wi)

]−1

·
[

0
v

]

.

132 D.A. Brake et al.

Due to the structure of H(x, t) in (4), ∂2H
∂x∂t = 0 and

ẍi(0) = −
[

Jf(wi)
J�(wi)

]−1

·

⎡
⎢⎢⎢⎢⎣

ẋi(0)
T · Hessian(f1)(wi) · ẋi(0)

.

.

.

ẋi(0)
T · Hessian(fn)(wi) · ẋi(0)

0

⎤
⎥⎥⎥⎥⎦ (8)

where Hessian(fj)(wi) is the Hessian matrix of fj evaluated at wi. Hence, trI(t)
is a linear function of t if and only if

ẗrI(0) =
∑

i∈I
ẍi(0) = 0.

In the linear case, trI(t) = a · t + b where

a = ṫrI(0) and b = trI(0).

Thus, the second derivative trace test replaces all path tracking with second
derivative computations performed locally and hence we call it a local trace test.

Example 5. With the setup from Example 2, we consider t1 = 0 with the values
of xi(0) and ẋi(0) listed in Examples 3 and 4, respectively. Approximations of
ẍi(0) for i = 1, 2, 3 computed using (8) are

ẍ1(0) =

⎡
⎣−0.0350

−0.0292
0.0175

⎤
⎦ , ẍ2(0) =

⎡
⎣ 0.0275

0.0671
−0.1464

⎤
⎦ , ẍ3(0) =

⎡
⎣ 0.0074

−0.0380
0.1289

⎤
⎦

so that ẗrI(0) = 0. Thus, trI(0) and ṫrI(0) computed in (5) and (7) yield (3).

3 Parameterizations

In Sect. 2, we considered pure-dimensional X ⊂ V(f), i.e., X was contained in
the solution set of f = 0. In this section, we consider pure-dimensional sets which
arise as the image of an algebraic set under an algebraic map. For simplicity,
we only consider X = {p(y) | y ∈ Ck} ⊂ C

N where p : Ck → C
N has rank k,

i.e., rank Jp(y) = k for generic y ∈ C
k, as more general situations follow using

similar computations. With this setup, X is irreducible with dimX = k so
that the main question is to determine deg X via a trace test. That is, given
Z ⊂ W = X ∩ L where � : CN → C

k is a general linear system and L = V(�),
one aims to decide if Z = W so that d = deg X = |W | = |Z|.

Since we are given Z ⊂ W , let Z = {z1, . . . , zq}. Since X = p(Ck) and L
is general, we know that there exists y1, . . . , yq ∈ C

k such that zi = p(yi). Let
v ∈ C

k be general and Mt = V(� − t · v). For each i = 1, . . . , q, we consider the
paths xi(t) ∈ X and ui(t) ∈ C

k defined by

xi(t) = p(ui(t)) ∈ X ∩ Mt and ui(0) = yi. (9)

In particular, ui(t) ∈ C
k satisfies the k equations �(p(ui(t)) = t · v.

Decomposing Solution Sets Using Derivatives 133

With I = {1, . . . , q}, the trace tests in Sect. 2 involve the computation of
trI(t) =

∑q
i=1 xi(t), ṫrI(t) =

∑q
i=1 ẋi(t), and ẗrI(t) =

∑q
i=1 ẍi(t). Thus, all that

remains is to compute ẋi(t) and ẍi(t), namely

u̇i(t) = (J�(xi(t)) · Jp(ui(t)))
−1 · v, ẋi(t) = Jp(ui(t)) · u̇i(t) (10)

and

ẍi(t) =
(

I − Jp(ui(t)) · (J�(xi(t)) · Jp(ui(t))
)−1 · J�(xi(t))

)
⎡
⎢⎢⎢⎢⎣

u̇i(t)T · Hessian(p1)(ui(t)) · u̇i(t)

.

.

.
u̇i(t)T · Hessian(pN)(ui(t)) · u̇i(t)

⎤
⎥⎥⎥⎥⎦ (11)

where I ∈ C
N×N is the identity matrix.

Example 6. We again illustrate using the twisted cubic curve from Example 3
using the same � and v. In this case, we have xi(tj) = p(ui(tj)) where ui(tj) =
(xi(tj))1, i.e., the first coordinate, and p(s) =

[
s, s2, s3

]T . Via (10) and (11), we
have u̇i(tj) = (2 − 6ui(tj) − 3ui(tj)2)−1,

ẋi(tj) = u̇i(tj) ·
⎡

⎣
1

2ui(tj)
3ui(tj)

2

⎤

⎦ , and ẍi(tj) = u̇i(tj)
3 ·
⎡

⎣
6ui(tj) + 6
6ui(tj)

2 + 4
12ui(tj) − 18ui(tj)

2

⎤

⎦

which produces the values listed in the tables in Examples 4 and 5.

4 Examples

The following compares the zeroth, first, and second derivative trace tests on two
large examples. These examples utilized Bertini [2] for the path tracking and
used Python with NumPy [13] to perform the linear algebra computations. For
simplicity in our comparison, we utilize serial computations for all three trace
tests but note that all three tests could be easily parallelized.

4.1 A Curve from Kinematics

One problem solved in [4] is the so-called 8 path-point synthesis problem for four-
bar linkages derived from classical work of [1,5]. That is, one aims to compute
all four-bar planar linkages whose coupler curve passes through 8 given general
points in the plane. Since one can freely set the orientation at one point, the
8 path-point synthesis problem is the one-pose and 7 path-point Alt-Burmester
problem solved in [4] which defines a curve in C

8 of degree 10,858. Following [4],
we consider the system of 21 polynomials f(x, y) where x ∈ C

8 and y ∈ C
14. Since

the curve of interest is the natural projection of a solution curve in V(f) into C
8,

following [8], we take �(x) as a random linear polynomial and v ∈ C random.
With this setup and I = {1, . . . , 10858}, we used the zeroth, first, and second

derivative trace tests from Sect. 2 to verify that the degree of this curve in C
8

is indeed 10,858 by showing that the first 8 coordinates of trI(t) are linear in t.
Using serial computations on an Intel Core i7, the zeroth derivative trace test
took 21.6 min, the first derivative test took 9.5 min, and the second derivative
test took 1.4 min.

134 D.A. Brake et al.

4.2 A Secant Variety

In order to consider the border rank of the tensor corresponding to 2× 2 matrix
multiplication, the secant variety X = σ6(C4 × C

4 × C
4) ⊂ C

64 was considered
in [6] which showed that dimX = 60 and deg X = 15, 456. After selecting 60
random linear polynomials � and random v ∈ C

60, we performed the zeroth,
first, and second derivative trace tests based on parameterizations in Sect. 3
which verified that the degree is indeed 15,456. Using serial computations on an
AMD Opteron 6378 processor, the zeroth derivative test took 84.1 h, the first
derivative test took 42.2 h, and the second derivative test took 0.2 h. The vast
difference in computation time is due to the use of adaptive precision during
tracking; larger systems such as this, having 60 variables, often require higher
precision than hardware types provide.

5 Conclusion

Decomposition of a pure-dimensional algebraic set into its irreducible compo-
nents is fundamental to computational algebraic geometry. In numerical alge-
braic geometry, the pure-dimensional decomposition is performed using random
monodromy loops verified by a trace test. By replacing path tracking with local
derivative computations, we have developed a local trace test which examples
show is computationally advantageous. Due to these results, we are in the process
of developing a robust, high-performance, and parallel implementation.

References

1. Alt, H.: Über die Erzeugung gegebener ebener Kurven mit Hilfe des Gelenkvierecks.
ZAMM 3(1), 13–19 (1923)

2. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: software
for numerical algebraic geometry. https://bertini.nd.edu

3. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically solv-
ing polynomial systems with Bertini. Software, Environments, and Tools, vol. 25.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2013)

4. Brake, D.A., Hauenstein, J.D., Murray, A.P., Myszka, D.H., Wampler, C.W.: The
complete solution of Alt-Burmester synthesis problems for four-bar linkages. J.
Mech. Robot. 8(4), 041018 (2016)

5. Burmester, L.: Lehrbuch der Kinematic. Verlag Von Arthur Felix, Leipzig (1886)
6. Hauenstein, J.D., Ikenmeyer, C., Landsberg, J.M.: Equations for lower bounds on

border rank. Exp. Math. 22(4), 372–383 (2013)
7. Hauenstein, J.D., Rodriguez, J.I.: Numerical irreducible decomposition of multi-

projective varieties (2015). arXiv:1507.07069
8. Hauenstein, J.D., Sommese, A.J.: Witness sets of projections. Appl. Math. Com-

put. 217(7), 3349–3354 (2010)
9. Hauenstein, J.D., Wampler, C.W.: Isosingular sets and deflation. Found. Comput.

Math. 13(3), 371–403 (2013)

https://bertini.nd.edu
http://arxiv.org/abs/1507.07069

Decomposing Solution Sets Using Derivatives 135

10. Sommese, A.J., Verschelde, J., Wampler, C.W.: Using monodromy to decompose
solution sets of polynomial systems into irreducible components. In: Ciliberto, C.,
Hirzebruch, F., Miranda, R., Teicher, M. (eds.) Applications of Algebraic Geometry
to Coding Theory, Physics and Computation, pp. 297–315. Springer, Netherlands
(2001)

11. Sommese, A.J., Verschelde, J., Wampler, C.W.: Symmetric functions applied to
decomposing solution sets of polynomial systems. SIAM J. Numer. Anal. 40(6),
2026–2046 (2002)

12. Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials
Arising in Engineering and Science. World Scientific Publishing Co. Pte. Ltd.,
Hackensack (2005)

13. van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for
efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)

Calibration of Accelerometers and the Geometry
of Quadrics

Laurent Evain(B)

University of Angers, Angers, France
laurent.evain@univ-angers.fr

http://www.math.univ-angers.fr/∼evain/

Abstract. We study a method of calibration of accelerometers usable on
field. No tools are required except a computer. Since the method is purely
mathematical, free from measurement tools errors, it is both precise and
affordable. We prove that the calibration of an accelerometer with three
axis is possible with 9 random measurements exactly when the sphere is
the unique quadric containing the nine directions of measurements.

Keywords: Accelerometer · Calibration · Quadrics

1 Introduction

Calibration of accelerometers in laboratories are expensive when accuracy is
needed. In contrast, on field methods are usually simple and affordable, at the
price of precision. Mathematical methods, i.e. methods using only mathematical
algorithms and well documented universal constants, fill the gap between the two
approaches: Since a large number of decimals are computable on a small personal
computer, mathematical methods are both very precise and usable on field.

The precision of mathematical formulas compared to methods involving phys-
ical devices is not new. It was known long ago before the development of com-
puters. For, instance, Mohr in 1672 and Mascheroni in 1797 proved that points
constructed with compass and straightedge can be constructed with compass
only. In the preface of his book, Mascheroni explains how superior in precision
is the compass compared to the straightedge. He hoped he could compute tables
of sinus and cosinus using compass [7, p. 20]. However, in practice, a better pre-
cision for the tables can be obtained using rapidly converging series, for instance
with the usual series expansion, a consequence of the Euler formula. Of course
the advantage of mathematical methods is now even bigger with the advent of
computers.

Here are some orders of magnitude for the readers not familiar with metrol-
ogy. Consider the problem of measurement of the length of a perfect cylinder
with a micrometer. We assume that the length of the cylinder is approximately
10−2 meters. To get an error of 0.01%, a micrometer with errors at most 10−6

m is required, whose price exceeds 1000 euros. Misalignment must be controlled,
since the axis of the cylinder is not exactly parallel to the axis of measurement
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 136–141, 2016.
DOI: 10.1007/978-3-319-42432-3 17

Calibration of Accelerometers and the Geometry of Quadrics 137

of the micrometer. An error of one degree in the parallelism induces an error
of 0.01523%. This means that an other investment to check the position the
cylinder is needed.

By comparison, for the C99 format the rounding error on a number is about
10−16%. Even with cumulative errors in the calculations, there are several orders
of magnitude in favor of the computer for a lower price.

We propose a method of calibration of accelerometers free from any mea-
surement tools or any physical device. It uses only computers and the well doc-
umented value of the gravitational constant g. To simplify the presentation and
avoid normalization constants, we suppose that we have chosen units so that the
gravitational constant is equal to 1.

The strategy is the following. We introduce a frame F that we call the cal-
ibrated frame. The calibration function CF with respect to the frame F has
to be compatible with the geometry of quadrics. This compatibility determines
completely the calibration function CF .

According to the semiconductor application notes [1], “the standard model
used for the original factory calibration of a consumer grade digital accelerom-
eter” assumes that the axis of the accelerometer are orthogonal before the cali-
bration process. In this simpler context, pure mathematical methods have been
proposed [4,5]. For the most general linear calibration presented here, the exist-
ing methods that we involve some external frame or external device and adjust
relativly to that other frame/device using a large variety of distinct tools (GPS,
static placement, dynamic placement...) [2,3,6]. The method proposed in the
present note could easily be implemented in factory calibration.

Since the audience is composed mostly of mathematicians, the focus will be
on the theoretical aspects, forgetting the practical noise considerations that spoil
the theoretical model. These noise considerations are of course important, but
they will be treated elsewhere.

2 Functionality and Applications

The output of an accelerometer at time t is by definition the vector d(t) with
three coordinates computed by the accelerometer. It may be displayed on a
computer after a wifi connection, or processed in a computer to guide a robot
for instance.

We put the accelerometer at rest on a table, in a random position. Let S
be the unit sphere around the center p0 of the accelerometer. The direction of
measurement is a point p ∈ S encoding the direction of the force exerted on the
accelerometer. It is defined as follows.

Definition 1. Let Δ be the half line starting at p0 with vector −g, the opposite
of the gravitational vector. The direction of measurement p ∈ S in this random
position is the intersection S∩Δ. The output when the direction of measurement
is p ∈ S is denoted d(p).

138 L. Evain

To calibrate an accelerometer, the steps followed by the user are the following:

– Put the accelerometer at rest in 9 different positions so that the sphere S is
the unique quadric containing the 9 directions of measurement p1, . . . , p9 (
details below). Note the outputs d(p1), . . . , d(p9) of the accelerometer,

– Run the software with d(p1), . . . , d(p9) as input. The output of the software is
an affine function C which is the calibration function (details below),

– Use the accelerometer to make the measurements: if the display of the
accelerometer at time t is d(t), the correct acceleration after calibration cor-
rection is C(d(t)).

In Step 1, the nine directions of measurements must be on a unique quadric.
Usually, random positions are appropriate since the locus of bad positions is
closed and has measure zero. However, one can prescribe a more detailed proce-
dure to guarantee this step, according to the following proposition.

Proposition 2. Let p1, . . . , p9 be directions of measurements such that:

– p1, . . . , p5 are coplanar in a plane P .
– p6, . . . , p9 are not in the plane P .
– p6, . . . , p9 are not coplanar.

Then the sphere S is the unique quadric containing the points p1, . . . , p9.

To compute the calibration function C in Step 2, the software applies the
following algorithm:

– There exists a unique quadric Q containing the points d(pi) and Q is an
ellipsoid,

– Using the standard Gauss reduction of quadratic forms, one finds a change of
coordinates C that transforms the equation of the quadric to the equation of
the sphere,

– The function C is the calibration function.

3 Background on Accelerometers

An accelerometer measures the proper acceleration of general relativity, or
in other words, the non gravitational acceleration. This means that if the
accelerometer has an acceleration (in the usual sense) R, decomposed formally
as R = g + a, where g is the gravitational vector, the output of the accelerom-
eter is a. In particular, at rest on a table, the usual acceleration R = 0 and
the output of a perfectly calibrated accelerometer is the proper acceleration −g.
This corresponds to our bodily sensations: sit on a chair, we experience the force
below which pushes in a direction opposed to gravity.

Using an affine frame F = (p0, . . . , p3) composed of 4 points in R
3, we may

encode a proper acceleration a as a vector aF . The thought experiment which
transforms the acceleration a into a vector aF ∈ R

3 is the following. A small
ball is attached using springs to the center p0 of the frame. The acceleration

Calibration of Accelerometers and the Geometry of Quadrics 139

pushes the ball to a position p. The three components of the vector p0p in the
base p0p1,p0p2,p0p3 are the components of aF . The vector p0p is well defined
up to a normalizing positive constant depending on the stiffness of the spring. To
fix the normalization, we adjust the stiffness so that ||p0p|| = ||a|| (the equality,
hence the stiffness of the spring depends on the units used).

Definition 3. Let F be an orthonormal frame. The calibration function CF :
R

3 → R
3 of the frame F is defined by the relation CF (d) = aF , where d is the

output of the accelerometer.
An accelerometer is calibrated with respect to F if the output d displayed

by the accelerometer is aF , or equivalently if the calibration function CF is the
Identity.

Suppose that the accelerometer is infinitely small. Then there is a canonical
choice for the origin p0 of the frame, namely the material point supporting the
accelerometer. We may then vectorialize the affine situation by considering that
p0 is the zero of the vector space, and all base changes between orthonormal
frames are elements of the orthogonal group. A frame change F1 → F2 induces a
change CF1 → CF2 for calibration functions, given by an action of the orthogonal
group. To put the things more formally, we have the following proposition:

Proposition 4. Consider the right action of the orthogonal group O := O3(R)
on the space T of functions f : R

3 → R
3 where an element g ∈ O acts as

f.g = f ◦ g. Then the set of calibration functions is an orbit of the action of O
on S.

An easy corollary is that the linearity of the output of the accelerometer is
equivalent to the linearity of the calibration function. To be more precise:

Corollary 5. The following conditions are equivalent:

– There exists a calibration function CF which is affine,
– All calibration functions are affine,
– There exists a frame F such that aF is an affine function of the output d of

the accelerometer,
– For every frame F , aF is an affine function of d.

4 Strategy of Calibration

We suppose that the hypothesis of the last corollary apply, i.e. that for every
frame F , the display aF is an affine function of d. For small values of the accel-
eration, this is a mild assumption since we may keep only the linear part in
the Taylor development of the output. This is usually the data sheet of the
accelerometer which indicates the range of utilization of the accelerometer.

The accelerometer is calibrated if the affine function is linear orthogonal.
Obstructions to orthogonality may appear from the distortion caused during
the welding process. The offset may be due to springs which do not follow the

140 L. Evain

prescribed stiffness. The list of potential problems is a priori infinite, but this
does not impact our approach. We suppose that the output is linear, whatever
the reasons.

In this context, the accelerometer carries a special frame that we call the
geometrical frame. We may define it mathematically or physically. The physical
definition is the following. Put the accelerometer in a free fall. The ball attached
to the springs is at the center p0 and the display is (d1, d2, d3). An acceleration is
applied on the accelerometer so that the display is (d1+1, d2, d3) (resp. (d1, d2+
1, d3) (d1, d2, d3 + 1)). This acceleration moves the ball from p0 to a position p1
(resp. p2, p3). Then F = (p0, p1, p2, p3) is the geometrical frame.

In mathematical terms, the geometrical frame of the accelerometer is the
frame F such that the acceleration aF coincides with the output d. The frame
F is the result of the physical construction of the accelerometer. It is not ortho-
normal because of the defaults of the construction.

Definition 6. The calibrated frame associated to an accelerometer is the Gram-
Schmidt orthonormalization of the geometrical frame.

The physical definition of the geometrical frame includes a thought exper-
iment which is hardly practical. It follows that the geometrical frame, and its
orthonormalization the calibrated frame, exist in theory but they are difficult to
determine in practice.

We are going to compute the calibration function C = CF when F is the
calibrated frame. To proceed, we remark that the calibration function C should
respect the form of the base change given by Gram-Schmidt. Moreover, if we
put the accelerometer at rest at any position p and if we read the display d(p)
in this position p, then ||C(d(p))|| = ||aF (p)||. Since the accelerometer is at rest,
the acceleration aF (p) is opposite to the gravitational vector. It follows that
||C(d(p))|| = ||g|| = 1 according to our normalization. Mathematically, C may
be determined by these conditions as we will see in the next section.

To summarize this argument in a precise statement, the calibration function
C is compatible with the outputs in the sense of the following definition.

Definition 7. Let d1, . . . , dn be outputs read on the accelerometer at n different
positions. A calibration function C compatible with the outputs d1, . . . , dn is a
function C : R3 → R

3, such that:

– C is affine
– the linear part C is represented by an upper triangular matrix with positive

diagonal elements
– For every output di, then C(di) is on the unitary sphere.

Remark 8. It may be surprising that it is possible to compute the calibration
function with respect calibrated frame, whereas the calibrated frame is unknown.
In fact, what we determine via the calibration function is the base change between
the calibrated frame and the geometrical frame. Both frames are unknown, but
the transfer matrix is known.

Calibration of Accelerometers and the Geometry of Quadrics 141

5 The Results

Definition 9. A set of points pi on the unit sphere S is called affinely rigid if
the only affine transformations φ of R3 satisfying φ(pi) ∈ S are the orthogonal
transformations.

Theorem 10. Let pi be points on S. The following conditions are equivalent:

– The points pi are affinely rigid
– S is the unique quadric containing the points pi.

The first condition of the theorem is the condition that arises naturally when
we try to determine if the measurements determine the calibration. The refor-
mulation given by the second condition is the key to transform a theoretical
possibility of calibration into a practical calibration using the classification of
quadrics.

As a corollary of the theorem, we obtain:

Corollary 11. Let {pi} be an affinely rigid set on S and let {di = d(pi)} be the
corresponding set of outputs of the accelerometer for measurements at rest with
direction pi. Then

– there exists a unique quadric Q containing the points di, namely Q = d(S).
– An affine function C : R

3 → R
3 with upper triangular linear part C is a

calibration function compatible with the outputs if and only if C(Q) ⊂ S.

Theorem 12. Let {pi} be a set of directions on S and let {di = d(pi)} be
the corresponding outputs of the accelerometer for measurements at rest with
direction pi. There is a unique calibration function C compatible with the outputs
di if and only if the set of directions pi is affinely rigid. When the calibration
is unique, it is the unique affine function C, with C upper triangular such that
C(Q) = S.

References

1. http://cache.freescale.com/files/sensors/doc/app note/AN4399.pdf
2. Hall, J.J., Williams II, R.L.: Inertial measurement unit calibration platform. J. Rob.

Syst. 17(11), 623–632 (2000)
3. Axelsson, P., Norrlf, M.: Method to estimate the position and orientation of a triaxial

accelerometer mounted to an industrial manipulator. In: Proceedings of the 10th
IFAC Symposium on Robot Control, pp. 283–288 (2012)

4. Won, S.P., Golnaraghi, F.: A triaxial accelerometer calibration method using a
mathematical model. IEEE Trans. Instrum. Meas. 59(8), 2144–2153 (2010). doi:10.
1109/TIM.2009.2031849

5. Grip, N., Sabourova, N.: Simple non-iterative calibration for triaxial accelerometers.
Meas. Sci. Technol. 22(12), 13 p. (2011)

6. Forsberg, T., Grip, N., Sabourova, N.: Non-iterative calibration for accelerometers
with three non-orthogonal axes, reliable measurement setups and simple supplemen-
tary equipment. Meas. Sci. Technol. 24(3), 14 p. (2013)

7. Mascheroni, L.: La Geometria del Compasso (1797)

http://cache.freescale.com/files/sensors/doc/app_note/AN4399.pdf
http://dx.doi.org/10.1109/TIM.2009.2031849
http://dx.doi.org/10.1109/TIM.2009.2031849

On the Feasibility of Semi-algebraic Sets
in Poisson Regression

Thomas Kahle(B)

Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
thomas.kahle@ovgu.de

https://www.thomas-kahle.de

Abstract. Designing experiments for generalized linear models is diffi-
cult because optimal designs depend on unknown parameters. The local
optimality approach is to study the regions in parameter space where
a given design is optimal. In many situations these regions are semi-
algebraic. We investigate regions of optimality using computer tools such
as yalmip, qepcad, and Mathematica.

Keywords: Algebraic statistics · Optimal experimental design · Poisson
regression · Semi-algebraic sets

1 Introduction

Generalized linear models are a mainstay of statistics, but optimal experimental
designs for them are hard to find, as they depend on unknown parameters of the
model. A common approach to this problem is to study local optimality, that
is, determine an optimal design for each fixed set of parameters. In practice,
this means that appropriate parameters have to be guessed a priori, or fixed by
other means. In [12] the authors approached this problem from a global per-
spective. They study the regions of optimality of fixed designs and demonstrate
that these are often defined by semi-algebraic constraints. Their main tool is a
general equivalence theorem due to Kiefer and Wolfowitz, which directly yields
polynomial inequalities in the parameters. This makes these problems amenable
to the toolbox of real algebraic geometry. In this extended abstract we pursue
this direction for the Rasch Poisson counts model which is used in psychome-
try [6] in the design of mental speed tests. Analyzing saturated designs for this
model amounts to studying the feasibility of polynomial inequality systems. We
examine the state of computer algebra tools for this purpose and find that there
is room for improvement.

2 Polynomial Inequality Systems in Statistics

For brevity we omit any details of statistical theory and focus on mathemati-
cal and computational problems. The interested reader should consult [12] and
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 142–147, 2016.
DOI: 10.1007/978-3-319-42432-3 18

Semi-algebraic Sets in Poisson Regression 143

its references. We also stick to that paper’s notation. Throughout, fix a positive
integer k, the number of rules, and another positive integer d ≤ k, the interaction
order. A rule setting is a binary string x = (x1, . . . , xk) ∈ {0, 1}k. The regression
function of interaction order d is the function f : {0, 1}k → {0, 1}p whose com-
ponents are all square-free monomials of degree at most d in the indeterminates
x1, . . . , xk. The value p equals the number of square-free monomials of degree at
most d and depends on d and k. For any β ∈ R

p, the intensity of the rule setting
x ∈ {0, 1}k is

λ(x, β) = ef(x)T β .

The information matrix of x at β is the rank one matrix

M(x, β) = λ(β, x)f(x)f(x)T .

The information matrix polytope is

P (β) = conv{M(x, β) : x ∈ {0, 1}k}.

The case d = 1 and k arbitrary is known as the model with k independent rules.
In this case f(x) = (1, x1, . . . , xk) and p = 1 + k. Then P (0) is known as the
correlation polytope, a well studied polytope in combinatorial optimization. This
case is particularly well-behaved, well-studied, and relevant for practitioners. It
was investigated in depth in [7–9,12].

The pairwise interaction model arises for d = 2, where

f(x) = (1, x1, . . . , xk, x1x2, x1x3, . . . , xk−1xk)

and p = 1+k+
(
k
2

)
. This situation is already so intricate that neither an algebraic

description of the model (the set of vectors (λ(x, β))x∈{0,1}k parametrized by
β ∈ R

p) nor an explicit description of the polytope P (β) are known.
An approximate design is a vector (wx)x∈{0,1}k ∈ [0, 1]2

k

of non-negative
weights with

∑
x wx = 1. To each approximate design there is a matrix

M(w, β) =
∑

x wxM(x, β) ∈ P (β). The main problem of classical design theory
is to find designs w that are optimal with regard to some criterion. We limit
ourselves to D-optimality, where the determinant ought to be maximized. To
simplify the problem, we also only consider maximizing the determinant over
P (β), and not finding explicit weights w that realize an optimal matrix in P (β).
In non-linear regression, such as the Poisson regression considered here, this
optimal solution depends on β (in linear regression it does not). Our approach
is to consider the set of optimization problems for all β and subdivide them into
regions where the optima are structurally similar. These regions of optimality
are semi-algebraic.

In our setting, there are always matrices with positive determinant in P (β).
Since the vertices are rank one matrices, the optimum cannot be attained on
any face that is the convex hull of fewer than p vertices. A design w is saturated
if it achieves this lower bound, that is, | supp(w)| = p.

144 T. Kahle

As the logarithm of the determinant is concave, for each given β, the opti-
mization problem can be treated with the tools of convex optimization. The
design problem is to determine the changes in the optimal solution as β varies.

A special design, relevant for practitioners and studied in [12], is the corner
design w∗

k,d. It is the saturated design with equal weights wx = 1/p for all
x ∈ {0, 1}k with |x|1 ≤ d. For example, for k = 3 rules and interaction order
d = 2 the regression function is f(x1, x2, x3) = (1, x1, x2, x3, x1x2, x1x3, x2x3)
and there are p = 7 parameters. The corner design has weight 1/7 on the seven
binary 3-vectors different from (1, 1, 1).

Saturated designs are mathematically attractive due to their combinatorial
nature. It is reflected in the following classical theorem of Kiefer and Wolfowitz
which is a main tool in the theory of optimal designs. See [15, Sect. 9.4] or [13]
for details and proofs.

Theorem 1. Let X ⊂ {0, 1}k be of size p. There is a matrix with optimal
determinant in the face conv{M(x, β) : x ∈ X} if and only if for all x ∈ {0, 1}k

λ(x, β)(F−T f(x))T ψ−1(β)(F−T f(x)) ≤ 1.

where F is the (p×p)-matrix with rows f(x), x ∈ X and ψ is the diagonal matrix
diag(eβ1 , . . . , eβp). If this is the case, then the optimal point is 1

p

∑
x∈X M(x, β),

the geometric center of the face.

After changing the scale by the introduction of parameters μi = eβi , Theo-
rem 1 yields a system of rational polynomial inequalities in the μi. Together with
the requirements μi > 0, we find a semi-algebraic characterization of regions of
optimality for saturated designs.

For example, the inequalities corresponding to the corner design are the topic
of [12]. It can be seen that there always exist parameters β1, . . . , βp that satisfy
the inequalities in Theorem 1. A good benchmark for our understanding of the
semi-algebraic geometry of the Rasch Poisson counts model is to understand the
other saturated designs, raised as [12, Question 3.7].

Question 1. When βi < 0, for all i = 1, . . . , p, is the corner design the only
saturated design w that admits parameters β such w is D-optimal for β?

For d = 1, k = 3, Question 1 has been answered by Graßhoff et al. They have
shown that, up to fractional factorial designs at β = 0, only the corner design
yields a feasible system [9]. Using computer algebra, the case d = 1, k = 4 can
be attacked.

3 Non-optimality of Saturated Designs for Four
Predictors

Our benchmark problem for computational treatment of inequality systems is
an extension of the content of [9] to the case d = 1 and k = 4. Together with
Philipp Meissner, at the time of writing a master student, we have undertaken

Semi-algebraic Sets in Poisson Regression 145

computational experiments. In this situation p = 5 and a saturated design is
specified by a choice of its support X ⊂ {0, 1}4 with |X| = 5. A number of
reductions applies. For example, if all 5 points lie in a three-dimensional cube,
the determinant can be seen to be equal to zero throughout the face, so that
optimality is precluded from the beginning. The hyperoctahedral symmetry acts
on the designs and the inequalities. Therefore only one representative of each
orbit has to be considered. After these reductions we are left with 17 systems
of inequalities, one for each orbit of supports of saturated designs. One orbit
corresponds to the corner design for which there always exist parameters at
which it is optimal. It is conjectured that the remaining 16 saturated designs
admit no parameters under which they are optimal. Theorem 1 translates this
conjecture into the infeasibility of 16 inequality systems. The most complicated
looking among them is the following.

4μ1μ2μ3μ4 + μ1μ3 + μ1μ2 + 4μ2μ3 + μ4 − 9μ2μ3μ4 ≤ 0
4μ1μ2μ3μ4 + μ2μ3 + μ1μ2 + 4μ1μ3 + μ4 − 9μ1μ3μ4 ≤ 0
4μ1μ2μ3μ4 + μ2μ3 + μ1μ3 + 4μ1μ2 + μ4 − 9μ1μ2μ4 ≤ 0
μ1μ2μ3μ4 + μ2μ3 + μ1μ3 + μ1μ2 + μ4 − 9μ1μ2μ3 ≤ 0
μ1μ2μ3μ4 + μ1μ3 + μ2μ3 + 4μ1μ2 + 4μ4 − 9μ3μ4 ≤ 0
μ1μ2μ3μ4 + μ1μ2 + 4μ1μ3 + μ2μ3 + 4μ4 − 9μ2μ4 ≤ 0
μ1μ2μ3μ4 + μ1μ2 + 4μ2μ3 + μ1μ3 + 4μ4 − 9μ1μ4 ≤ 0
μ1μ2μ3μ4 + 4μ1μ3 + 4μ2μ3 + μ1μ2 + μ4 − 9μ3 ≤ 0
μ1μ2μ3μ4 + 4μ1μ2 + μ1μ3 + 4μ2μ3 + μ4 − 9μ2 ≤ 0
μ1μ2μ3μ4 + 4μ1μ2 + μ2μ3 + 4μ1μ3 + μ4 − 9μ1 ≤ 0
4μ1μ2μ3μ4 + μ1μ2 + μ1μ3 + μ2μ3 + 4μ4 − 9 ≤ 0

μ1 > 0, μ2 > 0, μ3 > 0, μ4 > 0.

The interested reader is invited to try her favorite method of showing infeasibility
of this system. We have first tried SDP methods. In the best situation, they would
yield an Positivstellensatz infeasibility certificate (maybe for a relaxation). For
this we used yalmip [14] together with the mosek solver [2] to set up moment
relaxations. While in general this method works and is reasonably easy to set
up, it is not applicable here as the infeasibility of the system seems to depend on
the strictness of the inequalities μi > 0. Since spectrahedra are closed, the SDP
method only works with closed sets. Tricks like introducing a new variables which
represents the inverses of the μi lead to unbounded spectrahedra. Bounding these
is equivalent to imposing an arbitrary bound μi ≥ ε. With this the degrees of
the Positivstellensatz certificate for infeasibility grow (quickly) when ε → 0. In
total, the numerical method can give some intuition, but it is not feasible to
yield proofs for the benchmark problem.

Our second attempt was to use qepcad [4], a somewhat dated open source
implementation of quantifier elimination. The system is very easy to use,
but unfortunately it seems to have problems already with small polynomial
inequality systems due to a faulty memory management in the underlying

146 T. Kahle

library saclib. There have been attempts to rectify the situation [17], but their
source code is unavailable and the authors are unreachable.

Finally, we tried the closed source implementation of quantifier elimination
in mathematica [16] and were positively surprised about its power. Its function
Reduce quickly yields that FALSE is equivalent to the existence of μ1, . . . , μ4

satisfying some of the 17 inequality systems. However, the benchmark system
above seems out of reach. From here, the road is open to trying various semi-
automatic tricks. For example, Mathematica can confirm within a reasonable
time frame that there is no solution to the above inequality system when μ3 = μ4

is also imposed. A summary of our findings will appear in the forthcoming master
thesis of Philipp Meissner.

4 Outlook

Whoever takes an experimental stance towards mathematics will, from time to
time, be faced with polynomial systems of equations and inequalities. We have
shown one such a situation coming from statistics here and there are more to be
found from the various equivalence theorems in design theory [15].

Deciding if such a system has a solution is a basic task. The technology to
solve it should be developed to a degree that a practitioner can just work with off
the shelf software to study their polynomial systems. For systems of equations
this is a reality. There are several active open source systems that abstract
Gröbner bases computations to a degree that one can simply work with ideals [1,
10,11]. For systems of polynomial inequalities, the situation is not so nice. The
method to exactly decide feasibility of general polynomial inequality systems
is quantifier elimination [3, Chapter 14]. The only viable open source software
for quantifier elimination is qepcad which appears unmaintained for about a
decade. There do exist closed implementations that seem to work much better,
for example in Mathematica. Whether one accepts a proof by computation in
a closed source system is a contentious matter.

Problem 1. Develop a fast and user-friendly open source tool to study the feasi-
bility of polynomial inequality systems with quantifier elimination.

We shall not fear the complexity theory. The documentation and use cases
of qepcad demonstrate that many interesting applications were in the reach of
quantifier elimination already a decade ago. Gröbner bases were deemed imprac-
tical in view of their complexity theory, yet they are an indispensable tool now.
We hope that in the future exact methods in semi-algebraic geometry can be
developed to the same extend as exact methods in algebraic geometry are devel-
oped.

Finally, for experimentation one can always resort to numerical methods. Via
the Nullstellensatz and the various Positivstellensätze the optimization commu-
nity has developed very efficient methods to deal with polynomial systems of
equations and inequalities [5].

Semi-algebraic Sets in Poisson Regression 147

Acknowledgement. The author is supported by the Research Focus Dynamical Sys-
tems (CDS) of the state Saxony-Anhalt.

References

1. Abbott, J., Bigatti, A.M., Lagorio, G.: CoCoA-5: a system for doing Computations
in Commutative Algebra. http://cocoa.dima.unige.it

2. MOSEK ApS, The MOSEK optimization toolbox for MATLAB. Version 7.1 (revi-
sion 28) (2015)

3. Basu, S., Pollack, R.D., Roy, M.-F.: Algorithms in Real Algebraic Geometry, vol.
10. Springer, Heidelberg (2006)

4. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using
CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003)

5. De Loera, J.A., Malkin, P.N., Parrilo, P.A.: Computation with polynomial equa-
tions and inequalities arising in combinatorial optimization. In: Lee, J., Leyffer,
S. (eds.) Mixed Integer Nonlinear Programming, pp. 447–481. Springer, New York
(2012)

6. Doebler, A., Holling, H.: A processing speed test based on rule-based item genera-
tion: an analysis with the Rasch Poisson counts model. In: Learning and Individual
Differences (2015). doi:10.1016/j.lindif.2015.01.013

7. Graßhoff, U., Holling, H., Schwabe, R.: Optimal design for count data with binary
predictors in item response theory. In: Ucinski, D., Atkinson, A.C., Patan, M.
(eds.) Advances in Model-Oriented Design and Analysis, pp. 117–124. Springer,
Switzerland (2013)

8. Graßhoff, U., Holling, H., Schwabe, R.: Optimal design for the Rasch Poisson counts
model with multiple binary predictors, Technical report (2014)

9. Graßhoff, U., Holling, H., Schwabe, R.: Poisson model with three binary predictors:
when are saturated designs optimal? In: Steland, A., Rafaj�lowicz, E., Szajowski,
K. (eds.) Stochastic Models, Statistics and Their Applications, pp. 75–81. Springer
International Publishing, Switzerland (2015)

10. Grayson, D.R., Stillman, M.E.: Macaulay2, a software systemfor research in alge-
braic geometry. http://www.math.uiuc.edu/Macaulay2/

11. Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3.0 – a computer algebra
system for polynomial computations. In: Kerber, M., Kohlhase, M. (eds.) Symbolic
Computation and Automated Reasoning, The Calculemus-2000 Symposium, pp.
227–233. A. K. Peters Ltd., Natick (2001)

12. Kahle, T., Oelbermann, K.-F., Schwabe, R.: Algebraic geometry of Poisson regres-
sion. J. Algebraic Stat. (2015, to appear). arXiv:1510.05261

13. Kiefer, J., Wolfowitz, J.: The equivalence of two extremum problems. Can. J. Math.
12(5), 363–365 (1960)

14. Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In:
Proceedings of the CACSD Conference, Taipei, Taiwan (2004)

15. Pukelsheim, F.: Optimal design of experiments. In: Classics in Applied Mathemat-
ics, vol. 50. SIAM (2006)

16. Wolfram Research, Mathematica 10.4.1 (2016)
17. Richardson, D.G., Krandick, W.: Compiler-enforced memory semantics in the

SACLIB computer algebra library. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov,
E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 330–343. Springer, Heidelberg (2005)

http://cocoa.dima.unige.it
http://dx.doi.org/10.1016/j.lindif.2015.01.013
http://www.math.uiuc.edu/Macaulay2/
http://arxiv.org/abs/1510.05261

Combinatorial and Geometric View
of the System Reliability Theory

Fatemeh Mohammadi(B)

Institut für Mathematik, Technische Universität Berlin, 10623 Berlin, Germany
fatemeh.mohammadi@math.tu-berlin.de,

http://page.math.tu-berlin.de/~mohammad/

Abstract. Associated to every coherent system there is a canonical ideal
whose Hilbert series encodes the reliability of the system. We study vari-
ous ideals arising in the theory of system reliability. Using ideas from the
theory of orientations, and matroids on graphs we associate a polyhedral
complex to our system so that the non-cancelling terms in the reliability
formula can be read from the labeled faces of this complex. Algebraically,
this polyhedron resolves the minimal free resolution of these ideals. In
each case, we give an explicit combinatorial description of non-cancelling
terms in terms of acyclic orientations of graph and the number of regions
in the graphic hyperplane arrangement. This resolves open questions
posed by Giglio-Wynn and develops new connections between the the-
ory of oriented matroid, the theory of divisors on graphs, and the theory
of system reliability.

Keywords: System reliability · Betti numbers · Polyhedral cellular
complex · Orientations

1 Introduction

Inspired by the work of Naiman-Wynn [NW92] and Giglio-Wynn [GW04] con-
necting system reliability to Hilbert functions of their associated ideals, we study
reliability of networks through the lens of polyhedral geometry. We apply the
syzygy tool from commutative algebra to encode the (non-cancelling) terms in
the reliability formula for various systems. This gives a more clear insight into
the structure of our systems.

The starting point of this paper is to study the following network flow relia-
bility problem. Let G = (V,E) be a graph. Assume that the vertices are reliable
but each edge may fail (with the probability 1 − pe). A popular game in system
reliability theory is to compute the probability of the union of certain events
under various restrictions. The classical method to compute the system relia-
bility is to apply the inclusion-exclusion principle of probability theory which
is computationally expensive. On the other hand, the system reliability formula
is equal to the numerator of Hilbert series of a certain ideal associated to the
network. The special networks have been studied in [GW04], and the general
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 148–153, 2016.
DOI: 10.1007/978-3-319-42432-3 19

Combinatorial and Geometric View of the System Reliability Theory 149

case was stated as an open problem. We recommend [Doh03, Sect. 6] and the
survey articles [AB84] by Agrawal-Barlow, and [JMM88] by Johnson-Malek for
an overview of the subject.

2 Source-to-Multiple-Terminal (SMT) System

A well-known example in the theory of system reliability is the SMT system.
We fix a pointed graph (G, s) with the edge set E(G), and the oriented edge set
E(G). We study the probability that there exists at least one (oriented) path
from s to every other vertex of G. We let R = k[x] be the polynomial ring in
the variables {xe : e ∈ E(G)}. The ideal corresponding to the SMT system is
the spanning tree ideal of G. For each spanning tree T of G, let OT denote
the orientation of T with a unique source at s (i.e. the orientation obtained
by orienting all paths away from s). Any spanning tree T of G gives rise to a
monomial xT =

∏
e∈E(T) xe. We define the spanning tree ideal TG as

TG = 〈xT : T is a spanning tree of G〉.

2.1 Reliability of the SMT System

Let I ⊂ R be an ideal generated by monomials I = 〈m1,m2, . . . ,m�〉. A graded
free resolution of I is an exact sequence of the form

F : 0 → · · · → Fi → ϕiFi−1 → · · · → F0 → ϕ0I → 0

where all Fi’s are free R-modules and all differential maps ϕi’s are graded. The
resolution is called minimal free resolution (MFR) if ϕi+1(Fi+1) ⊆ mFi for all
i ≥ 0, where m is the ideal generated by all variables in R. The i-th Betti number
βi(I) of I is the rank of Fi. The i-th graded Betti number in degree j ∈ Z

m,
denoted by βi,j(I), is the rank of the degree j part of Fi. These integers encode
very subtle numerical information about the ideal (e.g. its Hilbert series). For
the spanning tree ideal TG, we express the numerator of its multigraded Hilbert
function as

HTG
(x) = 1 −

d∑

i=1

(−1)i+1(
∑

j∈Nn

βi,j(TG)xj) = 1 − RG(x),

and we call the polynomial RG(x) the reliability polynomial of its corresponding
system. The evaluation of the reliability polynomial in pe’s gives us the probabil-
ity that the system works and its evaluation in 1 − pe’s gives us the probability
that the system fails. If pe = p for all edges, then the reliability formula of the
SMT system can be expressed in terms of the Tutte polynomial T (x, y) of G by

RG(p) = (1 − p)|E(G)|−|V (G)|+1p|V (G)|−1T (1,
1

1 − p
).

The following special class of acyclic partial orientations of G arises naturally
in our setting, where g denotes the genus of the graph, i.e. g = |E(G)|−|V (G)|+1.

150 F. Mohammadi

Definition 2.1. Fix a pointed graph (G, s) with the (oriented) edge set E(G).
For each integer 0 ≤ k ≤ g, an oriented k-spanning tree T of (G, s) is a connected
subgraph of G on V (G) with a unique source at s such that

– E(T) ⊂ E(G) with |E(T)| = n − 1 + k,
– T is acyclic.

The set of all oriented k-spanning trees of (G, s) will be denoted by Sk(G, s).
The set S0(G, s) corresponds to the set {OT : T is a spanning tree of G}.
Theorem 2.2. There is a bijection between non-cancelling terms in the reliabil-
ity polynomial RG(x), and the set of multigraded Betti numbers of the spanning
tree ideal, and the set of oriented k-spanning trees.

2.2 Dual of the SMT System

For a system, its dual is defined such that a path set in a system is a cut set of
its dual. In fact for the SMT system, the ideal corresponding to the dual system
is the Alexander dual of TG. We denote this ideal by CG and we call it the cut
ideal of graph. Hence by Alexander inversion formula [MS05, Theorem 5.14]

RG(x) = HCG
(1 − x).

This connection enables us to obtain many numerical and intrinsic information
about a network by looking instead at its dual arising in a different setting.

One natural way to describe a resolution of an ideal is through the construc-
tion of a polyhedral complex whose faces are labeled by monomials in such a
way that the chain complex determining its cellular homology realizes a graded
free resolution of the ideal. The study of cellular resolutions was initiated by
Bayer-Sturmfels in [BS98].

We fix a pointed graph (G, s) on the vertex set [n] with the edge set
E(G). Following [GZ83], we define the graphic hyperplane arrangement as fol-
lows. This arrangement lives in the Euclidean space C0(G,R), i.e. the vector
space of all real-valued functions on V (G) endowed with the bilinear form
〈f1, f2〉 =

∑
v∈V (G) f1(v)f2(v). Let C1(G,R) be the vector space of all real-

valued functions on E(G), and let ∂∗ : C0(G,R) → C1(G,R) denote the usual
coboundary map. For each edge e ∈ E(G) let He ⊂ C0(G,R) denote the hyper-
plane

He = {f ∈ C0(G,R) : (∂∗f)(e) = 0}.

Consider the arrangement H′
G = {He : e ∈ E(G)} in C0(G,R). Since G is con-

nected, we know
⋂

e∈E(G) He is the 1-dimensional space of constant functions on
V (G). We define the graphic arrangement corresponding to G, denoted by HG, to
be the restriction of H′

G to the hyperplane {f ∈ C0(G,R) :
∑

v∈V (G) f(v) = 0}.
There is a one-to-one correspondence between acyclic orientations of G and

the regions of HG (see [GZ83, Lemma 7.2]). In particular, the connected cuts
of G are corresponding to the lowest dimensional regions of HG. We are mainly

Combinatorial and Geometric View of the System Reliability Theory 151

interested in acyclic orientations of G with a unique source at s ∈ V (G). For
this purpose, we define Hs = {f ∈ C0(G,R) : f(s) = −1}. The restriction
of the arrangement HG to Hs will be denoted by Hs

G. We denote the bounded
complex (i.e. the polyhedral complex consisting of bounded cells) of Hs

G by Bs
G.

The restriction of HG to Hs coincides with the restriction of HG to

(Hs)′ = {f ∈ C0(G,R) :
∑

v �=q

f(v) = 1}.

The regions of Bs
G are corresponding to acyclic orientations with a unique source

at s (see e.g., [GZ83, Theorem 7.3]). Fixing an orientation O of the graph G will
fix the linear forms (df)(e) = f(e+) − f(e−) for e ∈ O and gives an orientation
to the hyperplane arrangement Hs

G. The oriented matroid ideal associated to
this oriented hyperplane arrangement Hs

G is called the graphic oriented matroid
ideal (see [NPS02,MS15] for more details).

Theorem 2.3. The polyhedral cell complex Bs
G supports a minimal free resolu-

tion for CG. In particular, the reliability polynomial RG can be read from the
faces of Bs

G.

2.3 Signature Analysis of the SMT System

While system reliability has been studied using Hilbert series of monomial ideals,
this is not enough to understand in a deeper sense the behavior of the sys-
tem under multiple simultaneous failures. In [MSdCW15] we introduce the lcm-
filtration of a monomial ideal, and we study the Hilbert series of the ideals
corresponding to multiple failures of the SMT system.

The Lcm-Filtration of Ideals. Let I ⊆ R be a monomial ideal and
{m1, . . . ,mr} be a minimal monomial generating system of I. Let Ij be the
ideal generated by the least common multiples of all sets of j distinct monomial
generators of I,

Ij = 〈lcm({mi}i∈σ) : σ ⊆ {1, . . . , r}, |σ| = j〉.
We call Ij the j-fold lcm-ideal of I. The ideals Ij form a descending filtration

I = I1 ⊇ I2 ⊇ · · · ⊇ Ir,

which we call the lcm-filtration of I.
Persistent homology (see e.g., [EH10,Wei11]) computes the topological fea-

tures of a space presented as a simplicial complex. In this set-up there is a
sequence of simplicial complexes as a filtration of the original space. The main
objective is to compute the topological Betti numbers of the filtered space (a
sequence of simplicial complexes). Based on Stanley-Reisner theory, in an ongo-
ing work [MSdCW], we have defined a new filtration and we have computed all
the topological Betti numbers of the space by algebraic methods. Since algebraic
Betti numbers (of Stanley-Reisner ideals) contain topological Betti numbers as
a subset, we look forward to pursue some applications in persistent homology.

152 F. Mohammadi

2.4 Multiple Failures

Let S be a coherent system in which several minimal failures can occur at the
same time. Let Y be the number of such simultaneous failures. The event {Y ≥
1} is the event that at least one elementary failure event occurs, which is the same
as the event that the system fails. If xα and xβ are the monomials corresponding
to two elementary failure events, then lcm(xα, xβ) = xα∨β corresponds to the
intersection of the two events and we have Y ≥ 2. The corresponding ideal is
〈xα〉 ∩ 〈xβ〉. The full event Y ≥ 2 corresponds to the ideal generated by all
such pairs. The argument extends to Y ≥ k and to study the tail probabilities
prob{Y ≥ k}.

Let Kn be the complete graph on n vertices. We are interested to compute
the probability RKn,j(x) of having at least j failures in the network. Note that
RKn,1(x) is the reliability polynomial of Kn. We let In be the cut ideal of Kn.
For integer j, 1 ≤ j ≤ n, we let In,j be the j-fold lcm-ideal of In.

We denote by Pn,k the set of k-partitions of [n]. For any k-partition of [n], we
associate a monomial whose support is the set of edges between distinct blocks
of the partition. For example for the partition σ = 12|3|4 of K4 we associate
the monomial mσ = x13x14x23x24x34. We let Pn,k be the ideal generated by the
monomials associated to the partitions in Pn,k.

Theorem 2.4. For all integers k and n, 1 ≤ k ≤ n we have

In,2k−1 = In,2k−1+1 = · · · = In,2k−1 = Pn,k+1.

In particular RKn,j(x) = 1−HPn,k+1(x) for all indices 2k−1 ≤ j ≤ 2k −1, where
HPn,k+1 denotes the numerator of Hilbert series of Pn,k+1.

2.5 Failure Distributions and Signatures

We finish this section by applying the above considerations on the lcm-filtration
lof system ideals to probability analysis. We have a tool for computing moments
of the probability distribution of the number of elementary cuts (failures) of a
given system.

Lemma 2.5. Let C be the set of elementary cuts for a network reliability prob-
lem, and let Y be the number of elementary cuts. Then under the Erdös-Rényi
independence model with probability p, the expectation of Y considered as a ran-
dom variable, is given by

E(Y) =
∑

α∈C
p|α|,

where |α| is the degree of α.

For the complete networks, the computation of the moment of the distribu-
tion of Y , the number of elementary cuts, is straightforward.

Combinatorial and Geometric View of the System Reliability Theory 153

Theorem 2.6. For the complete graph K2r+1 the mean value is:

μ2r+1 =
r∑

k=1

(
2r

k

)
pk(2r−k)

and for K2r the mean value is

μ2r =
r−1∑

k=1

(
2r

k

)
pk(2r−k) +

1
2

(
2r

r

)
pr2

.

References

[AB84] Agrawal, A., Barlow, R.E.: A survey of network reliability and domina-
tion theory. Oper. Res. 32(3), 478–492 (1984)

[BS98] Bayer, D., Sturmfels, B.: Cellular resolutions of monomial modules. J.
Reine Angew. Math. 502, 123–140 (1998)

[Doh03] Dohmen, K.: Improved Bonferroni Inequalities via Abstract Tubes:
Inequalities and Identities of Inclusion-Exclusion Type. Lecture Notes
in Mathematics, vol. 1826. Springer, Berlin (2003)

[EH10] Edelsbrunner, H., Harer, J.: Computational topology: an introduction.
Am. Math. Soc. (2010)

[GW04] Giglio, B., Wynn, H.P.: Monomial ideals and the Scarf complex for
coherent systems in reliability theory. Ann. Statist. 32, 1289–1311
(2004)

[GZ83] Greene, C., Zaslavsky, T.: On the interpretation of Whitney numbers
through arrangements of hyperplanes, zonotopes, non-Radon partitions,
and orientations of graphs. Trans. Amer. Math. Soc. 280(1), 97–126
(1983)

[JMM88] Johnson Jr., A.M., Malek, M.: Survey of software tools for evaluating
reliability, availability, and serviceability. ACM Comput. Surv. (CSUR)
20(4), 227–269 (1988)

[MS05] Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Gradu-
ate Texts in Mathematics, vol. 227. Springer-Verlag, New York (2005)

[MS15] Mohammadi, F., Shokrieh, F.: Divisors on graphs, binomial and mono-
mial ideals, and cellular resolutions. Mathematische Zeitschrift, pp. 1–44
(2015)

[MSdCW] Mohammadi, F., Sáenz-de Cabezón, E., Wynn, H.P.: Persistent homol-
ogy based on lcm-filtration for monomial ideals. in preparation

[MSdCW15] Mohammadi, F., Sáenz-de Cabezón, E., Wynn, H.P.: Types of signa-
ture analysis in reliability based on Hilbert series. arXiv preprint 2015.
arXiv:1510.04427

[NPS02] Novik, I., Postnikov, A., Sturmfels, B.: Syzygies of oriented matroids.
Duke Math. J. 111(2), 287–317 (2002)

[NW92] Naiman, D.Q., Wynn, H.P.: Inclusion-exclusion-Bonferroni identities
and inequalities for discrete tube-like problems via Euler characteris-
tics. Ann. Statist. 20, 43–76 (1992)

[Wei11] Weinberger, S.: What is. persistent homology? Not. AMS 58(1), 36–39
(2011)

http://arxiv.org/abs/1510.04427

Software of Polynomial Systems

Need Polynomial Systems
Be Doubly-Exponential?

James H. Davenport1(B) and Matthew England2(B)

1 Department of Computer Science, University of Bath, Bath BA2 7AY, UK
J.H.Davenport@bath.ac.uk

2 Faculty of Engineering, Environment and Computing, School of Computing,
Electronics and Maths, Coventry University, Coventry CV1 5FB, UK

Matthew.England@coventry.ac.uk

http://people.bath.ac.uk/masjhd/,
http://computing.coventry.ac.uk/~mengland/

Abstract. Polynomial Systems, or at least their algorithms, have the
reputation of being doubly-exponential in the number of variables (see
the classic papers of Mayr & Mayer from 1982 and Davenport & Heintz
from 1988). Nevertheless, the Bezout bound tells us that number of zeros
of a zero-dimensional system is singly-exponential in the number of vari-
ables. How should this contradiction be reconciled?

We first note that Mayr and Ritscher in 2013 showed the doubly expo-
nential nature of Gröbner bases is with respect to the dimension of the
ideal, not the number of variables. This inspires us to consider what
can be done for Cylindrical Algebraic Decomposition which produces a
doubly-exponential number of polynomials of doubly-exponential degree.

We review work from ISSAC 2015 which showed the number of polyno-
mials could be restricted to doubly-exponential in the (complex) dimen-
sion using McCallum’s theory of reduced projection in the presence of
equational constraints. We then discuss preliminary results showing the
same for the degree of those polynomials. The results are under primi-
tivity assumptions whose importance we illustrate.

Keywords: Computer algebra · Cylindrical algebraic decomposition ·
Equational constraint · Gröbner bases, Quantifier elimination

1 Introduction

We consider the title question for two of the main tools for polynomial systems:
Gröbner Bases (GB) and Cylindrical Algebraic Decomposition (CAD). For both
the common claims of “doubly exponential”, refers to “doubly exponential in
the number of variables n”. All other dependencies, on polynomial degrees d,
polynomial coefficient length l, or number of polynomials m, are themselves
polynomial in these quantities (albeit with the exponent of d and m possibly
exponential in n).

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 157–164, 2016.
DOI: 10.1007/978-3-319-42432-3 20

158 J.H. Davenport and M. England

In Sect. 2 we recall recent improvements to the analysis for GB which inspires
us to revisit the complexity of CAD in Sect. 3. Here we describe how recent work
for CAD in the presence of equational constraints (equations logically implied by
the input) allows for a more subtle analysis. The progress is under the assumption
of primitive equational constraints and in Sect. 4 we elaborate on the importance
of this.

2 Gröbner Bases

A Gröbner Basis (GB) is a particular generating set of an ideal I (defined with
respect to a monomial ordering). One definition is that the ideal generated by
the leading terms of I is generated by the leading terms of the GB. GB theory
allows properties of the ideal to be deduced such as dimension and number
of zeros and so are one of the main practical tools for working with polynomial
systems. Introduced by Buchberger in his PhD thesis of 1965 [10]; there has been
much research to improve and optimise GB calculation, with the F5 algorithm
[21] perhaps the most used approach currently.

It is common (and the authors have done this, to write) “[31] shows that the
computation of Gröbner bases is doubly exponential in the number of variables”.
It is unfortunately also common simply to write “[31] shows that the computation
of Gröbner bases is doubly exponential”, which while strictly correct if one counts
the number of bits in a suitable encoding, is not particularly helpful.

However, we have known for a long time that the complexity of a Gröbner
base of a zero-dimensional ideal is “only” singly-exponential in n [27]. These
days, a much better reference is [32], which establishes both upper and lover
bounds which are singly exponential in n, but doubly exponential in r, the actual
dimension of the ideal. Clearly r ≤ n, and only in the worst case is r = n.

Though we are currently unable to capitalise on the fact, we note that the
examples of [31,32] are of non-radical ideals. The effective Nullstellensatz of
[26] is only singly-exponential in the number of variables for membership in
the radical of an ideal, giving us reason to believe it may be possible to prove
a singly-exponential bound for radical ideals. GB technology is also needed to
realise similar improvements to the complexity bound of CAD, as discussed next.

3 Cylindrical Algebraic Decomposition

3.1 Background

A cylindrical algebraic decomposition (CAD) is a decomposition of Rn into cells.
The cells are arranged cylindrically, meaning the projections of any pair with
respect to the given ordering are either equal or disjoint. We assume vari-
ables labelled according to their ordering (so the projections considered are
(x1, . . . , x�) → (x1, . . . , xk) for k < �) with the highest ordered variable present
said to be the main variable. Finally, by algebraic we mean semi-algebraic: each
cell can be described with a finite sequence of polynomial constraints.

Need Polynomial Systems Be Doubly-Exponential? 159

A CAD is produced to be invariant for input; originally sign-invariant for
a set of input polynomials (so on each cell each polynomial is positive, zero or
negative), and more recently truth-invariant for input Boolean-valued formulae
built from the polynomials (so on each cell each formula is either true or false).
Unlike Gröbner Bases we may now consider general polynomial systems instead
of just equations.

CAD usually involves two phases. The first projection, applies operators
recursively on polynomials, each time producing a set with one less variable
which together define the projection polynomials. These are used in the second
phase, lifting, to build CADs incrementally by dimension. First a CAD of the
real line is built according to the real roots of the univariate polynomials. Next,
a CAD of R

2 is built by repeating the process over each cell in R
1 with the

bivariate polynomials evaluated at a sample point of the cell in R
1. We call the

cells where a polynomial vanishes sections and those regions in-between sectors,
which together form the stack over the cell. Taking the union of these stacks
gives the CAD of R2. The process is repeated until a CAD of Rn is produced. In
each lift we extrapolate the conclusions drawn from working at a sample point
to the whole cell requiring validity theorems for the projection operator used.

CAD was originally introduced by Collins for quantifier elimination (QE) in
real closed fields [1] with applications since ranging from parametric optimisa-
tion [22] and epidemic modelling [9], to reasoning with multi-valued functions
[15] and the derivation of optimal numerical schemes [20]. There has been much
work on improving Collins’ original approach most notably refinements to the
projection operator [6,23,28]; early termination of lifting [14,35]; and symbolic-
numeric schemes [25,33]. Some recent advances include dealing with multiple
formulae [3,4]; local projection [7,34]; decompositions via complex space [2,12];
and the development of heuristics for CAD problem formulation [5,17,36] includ-
ing machine learning approaches [24].

3.2 Complexity

CAD has long been known to have worst case complexity doubly exponential
[8,16]. Suppose the input consists of m polynomials (perhaps derived from for-
mulae) in n variables of maximum degree d in any one variable. Section 2.3 of
[4] describes in detail how the complexity of CAD algorithms may be measured
in terms of a bound on the total number of cells produced (closely correlated to
the timings but allowing for simpler implementation independent comparisons)
based on improvements to techniques introduced by McCallum’s thesis. In par-
ticular, the dominant term in that bound for a sign-invariant CAD produced
using the algorithm of [28] is

(2d)2
n−1m2n−122

n−1−1. (1)

I.e. the CAD grows doubly exponentially with the number of variables n. The
analysis shows that by the end of the projection stage we have M polynomials
in R

1, each of degree D, where D = d2
O(n)

and M = m2O(n)
. However, [8,16]

160 J.H. Davenport and M. England

respectively find lower bounds with D = d2
Ω(n)

and M = m2Ω(n)
with the under-

lying polynomials all simple, showing that the doubly-exponential difficulty of
CAD resides in the complicated number of ways simple polynomials can interact.

So Need CAD Be Doubly Exponential? Given the previous discussion
the answer is yes, but as with GB we need not settle for “doubly exponential
in the number of variables n”. We might hope for “doubly exponential in the
dimension”, but this is thwarted by the fact that the examples of [8,16] are
in fact zero-dimensional. Nevertheless, we can take advantage of certain dimen-
sional reductions when made explicit through the identification of equational
constraints (ECs), polynomial equations logically implied by formulae.

The presence of an EC restricts the dimension of the solution space and so
we may expect the CAD to be doubly exponential in n−� where � is the number
of ECs taken advantage of. Of course, we would no longer be building CADs
sign-invariant for polynomials but ones truth-invariant for formulae. The present
authors have demonstrated this first for the part of the bound dependent on m
(number of polynomials) in [18] and then for the part dependent on d (maximum
degree) in [19] (work recently accepted for publication).

3.3 CAD with Multiple ECs

Collins noticed that in the presence of an EC a truth-invariant CAD need only
be sign-invariant throughout for the defining polynomial of the EC with other
polynomials sign-invariant only on the sections of that polynomial [13]. This led
McCallum to develop restrictions to his projection operator from [28] in [29] (for
the first projection) and [30] (for subsequent projections). See [18, Section 2.1]
for a more detailed summary of this theory. These operators work with a single
EC and so the CAD algorithm may take advantage of only one in each main
variable. However, [30] also introduced a process to derive ECs in lower main
variables based on the observation that the resultant of the polynomials defining
two ECs itself defines an EC.

In [18] the present authors reviewed the theory of reduced projection oper-
ators. In particular we introduced two refinements to the lifting phase of CAD
which follow from McCallum’s theory of reduced projection operators:

1. Minimising lifting polynomials: When lifting to R
k if there exists an EC with

main variable k then we need only lift with respect to (isolate roots of) this.
2. Minimising real root isolation: When lifting over R

k if there exists an EC with
main variable k then we need only isolate real roots over sections (allowing
sectors to be trivially lifted to a cylinder).

These refinements require us to discard two embedded principles of CAD:

– That the projection polynomials are a fixed set: we now differ the polynomials
used in projection from lifting and keep track of which relate to ECs.

Need Polynomial Systems Be Doubly-Exponential? 161

– That the invariance structure of the final CAD can be expressed in terms
of sign-invariance of polynomials: The final CAD may not no longer be sign-
invariant for any one polynomial polynomials, even ECs, but is still guaranteed
to be truth invariant for the formula.

In [18, Section 5] we used the complexity analysis techniques of [4] to show
that a CAD in which the first � projections had a designated EC had dominant
term complexity bound of the form (2d)O(2n)(2m)O(2n−�). I.e. we have reduced
the number of polynomials involved accordingly but not their degree.

The present authors considered what could be done with respect to the degree
recently in [19]. The theory of iterated resultants as considered by Busé and
Mourrain [11] suggested that the iterated univariate resultants produced by CAD
(and in particular in the identification of ECs for subsequent projections) were
more complicated than the information they needed to encode. The true multi-
variate resultants were contained as a factor and grow in degree exponentially
rather than doubly exponentially. The key result had to be adapted from [11] to
change the arguments from total degree in all variables to the degree in at most
one variable required for bounding the number of CAD cells produced.

The authors proposed using GB technology for the generation of the ECs in
subsequent projections to realise this limit in degree growth. This leads to the
other projection polynomials growing exponentially in O(�2) but remember that
these are not used during lifting ([18] improvement (1) from above) and thus not
counted towards the cell count bounds (although they do boost the degree of
polynomials involved in projections without ECs). The outcome of this approach
is a dominant term complexity bound of the form (�d)O(2n−�)(2m)O(2n−�).

Restrictions. There are some restrictions to the work as acknowledged in [18,
19]. First, the analysis assumes the designated ECs are in strict succession at the
start of projection. This restrictions was made to ease the complexity analysis
(with the formal algorithm specification and implementations not adhering).

The substantial restriction is that the theory of CAD with multiple ECs
is only developed for primitive ECs. Possibilities to remove this restriction are
discussed in [18] and could involve leveraging the TTICAD theory of [3,4]. A
TTICAD (truth-table invariant CAD) allows for savings from ECs when building
a CAD for multiple formulae at once. Currently the theory is only developed
for ECs in the main variable of the system and so an analogous extension to
subsequent projections is first required for TTICAD itself.

4 The Primitivity Restriction

We finish by considering the classic complexity results of [8,16] in light of the
above recent progress. We see the importance of the aforementioned primitivity
restriction.

162 J.H. Davenport and M. England

The examples in both [8,16] rest on the following construction. Let Pk(xk, yk)
be the statement xk = f(yk) and then define recursively

Pk−1(xk−1, yk−1) := (2)

∃zk∀xk∀yk︸ ︷︷ ︸
Qk

((yk−1 = yk ∧ xk = zk) ∨ (yk = zk ∧ xk−1 = xk))︸ ︷︷ ︸
Lk

⇒ Pk(xk, yk).

This is ∃zk (zk = f(yk−1) ∧ xk−1 = f(zk)), i.e. xk−1 = f(f(yk−1)). It is repeated
nesting of this procedure that builds the doubly-exponential growth, so that

Qk−1Lk−1 ⇒ (QkLk ⇒ Pk(xk, yk)) , (3)

gives xk−2 = f(f(f(f(yk−2)))) etc. Rewriting (3) in prenex form gives

Qk−1Qk¬Lk−1 ∨ ¬Lk ∨ Pk(xk, yk). (4)

The negation of (4) is therefore

Qk−1QkLk−1 ∧ Lk ∧ ¬Pk(xk, yk), (5)

where the operator interchanges ∀ and ∃.
Now, Lk can be rewritten as

Lk = (yk−1 = yk ∨ yk = zk) ∧ (yk−1 = yk ∨ xk−1 = xk)
∧ (xk = zk ∨ yk = zk) ∧ (xk = zk ∨ xk−1 = xk) (6)

and further

Lk = (yk−1 − yk)(yk − zk) = 0 ∧ (yk−1 − yk)(xk−1 − xk) = 0
∧ (xk − zk)(yk − zk) = 0 ∧ (xk − zk)(xk−1 − xk) = 0, (7)

which shows Lk to be a conjunction of (imprimitive) equational constraints. This
is true for any Li, hence the propositional part of (5) is a conjunction of eight
equalities, mostly imprimitive, and ¬Pk(xk, yk). Furthermore there are equalities
whose main variables are the first variables to be projected if we try to produce
a quantifier-free form of (5). But the quantifier-free form of (5) describes the
complement of the semi-algebraic varieties in [8] or [16] (depending which Pk we
take) and these have doubly-exponential complexity in n.

The discussion of this section shows the relevance of the primitivity restriction
discussed at the end of the previous section and imposed in the work of [18,19].
It may be more than a technicality to remove it.

Acknowledgements. This work was originally supported by EPSRC grant:
EP/J003247/1 and is now supported by EU H2020-FETOPEN-2016-2017-CSA project
SC2 (712689). We are also grateful to Professor Buchberger for reminding JHD that
Gröbner Bases were applicable to CAD complexity.

Need Polynomial Systems Be Doubly-Exponential? 163

References

1. Arnon, D., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I: The
basic algorithm. SIAM J. Comput. 13, 865–877 (1984)

2. Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson,
D.: Truth table invariant cylindrical algebraic decomposition by regular chains. In:
Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS,
vol. 8660, pp. 44–58. Springer, Heidelberg (2014)

3. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Cylindrical
algebraic decompositions for boolean combinations. In: Proceedings of the ISSAC
2013, pp. 125–132. ACM (2013)

4. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Truth
table invariant cylindrical algebraic decomposition. J. Symbolic Comput. 76, 1–35
(2015)

5. Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem for-
mulation for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D.,
Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp.
19–34. Springer, Heidelberg (2013)

6. Brown, C.W.: Improved projection for cylindrical algebraic decomposition. J. Sym-
bolic Comput. 32(5), 447–465 (2001)

7. Brown, C.W.: Constructing a single open cell in a cylindrical algebraic decompo-
sition. In: Proceedings of the ISSAC 2013, pp. 133–140. ACM (2013)

8. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylin-
drical algebraic decomposition. In: Proceedings of the ISSAC 2007, pp. 54–60. ACM
(2007)

9. Brown, C.W., El Kahoui, M., Novotni, D., Weber, A.: Algorithmic methods for
investigating equilibria in epidemic modelling. J. Symbolic Comput. 41, 1157–1173
(2006)

10. Buchberger, B.: Bruno Buchberger’s PhD thesis (1965): An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial ideal.
J. Symbolic Comput. 41(3–4), 475–511 (2006)

11. Busé, L., Mourrain, B.: Explicit factors of some iterated resultants and discrimi-
nants. Math. Comput. 78, 345–386 (2009)

12. Chen, C., Maza, M.M., Xia, B., Yang, L.: Computing cylindrical algebraic decom-
position via triangular decomposition. In: Proceedings of the ISSAC 2009, pp.
95–102. ACM (2009)

13. Collins, G.E.: Quantifier elimination by cylindrical algebraic decomposition - 20
years of progress. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and
Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Compu-
tation, pp. 8–23. Springer, Heidelberg (1998)

14. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symbolic Comput. 12, 299–328 (1991)

15. Davenport, J.H., Bradford, R., England, M., Wilson, D.: Program verification in
the presence of complex numbers, functions with branch cuts etc. In: Proceedings
of the SYNASC 2012, pp. 83–88. IEEE (2012)

16. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symbolic Comput. 5(1–2), 29–35 (1988)

17. England, M., Bradford, R., Chen, C., Davenport, J.H., Maza, M.M., Wilson, D.:
Problem formulation for truth-table invariant cylindrical algebraic decomposition
by incremental triangular decomposition. In: Watt, S.M., Davenport, J.H., Sexton,
A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 45–60. Springer,
Heidelberg (2014)

164 J.H. Davenport and M. England

18. England, M., Bradford, R., Davenport, J.H.: Improving the use of equational con-
straints in cylindrical algebraic decomposition. In: Proceedings of the ISSAC 2015,
pp. 165–172. ACM (2015)

19. England, M., Davenport, J.H.:The complexity of cylindrical algebraic decomposi-
tion with respect to polynomial degree. In: Proceedings of CASC 2016. Springer
(2016, to appear). Preprint available at http://arxiv.org/abs/1605.02494

20. Erascu, M., Hong, H.: Synthesis of optimal numerical algorithms using real quan-
tifier elimination (Case Study: Square root computation). In: Proceedings of the
ISSAC 2014, pp. 162–169. ACM (2014)

21. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the ISSAC 2002, pp. 75–83. ACM (2002)

22. Fotiou, I.A., Parrilo, P.A., Morari, M.: Nonlinear parametric optimization using
cylindrical algebraic decomposition. In: 2005 European Control Conference Deci-
sion and Control, CDC-ECC 2005, pp. 3735–3740 (2005)

23. Han, J., Dai, L., Xia, B.: Constructing fewer open cells by GCD computation in
CAD projection. In: Proceedings of the ISSAC 2014, pp. 240–247. ACM (2014)

24. Huang, Z., England, M., Wilson, D., Davenport, J.H., Paulson, L.C., Bridge, J.:
Applying machine learning to the problem of choosing a heuristic to select the vari-
able ordering for cylindrical algebraic decomposition. In: Watt, S.M., Davenport,
J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp.
92–107. Springer, Heidelberg (2014)

25. Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of
a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination.
In: Proceedings of the SNC 2009, pp. 55–64 (2009)

26. Kollár, J.: Sharp effective Nullstellensatz. J. Am. Math. Soc. 1, 963–975 (1988)
27. Lazard, D.: Gröbner Bases, Gaussian elimination and resolution of systems of alge-

braic equations. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983.
LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)

28. McCallum, S.: An improved projection operation for cylindrical algebraic decom-
position. In: Caviness, B., Johnson, J. (eds.) Quantifier Elimination and Cylindrical
Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp.
242–268. Springer, Heidelberg (1998)

29. McCallum, S.: Factors of iterated resultants and discriminants. J. Symbolic Com-
put. 27(4), 367–385 (1999)

30. McCallum, S.: On propagation of equational constraints in CAD-based quantifier
elimination. In: Proceedings of the ISSAC 2001, pp. 223–231. ACM (2001)

31. Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative
semigroups and polynomial ideals. Adv. Math. 46(3), 305–329 (1982)

32. Mayr, E.W., Ritscher, S.: Dimension-dependent bounds for Gröbner bases of poly-
nomial ideals. J. Symbolic Comput. 49, 78–94 (2013)

33. Strzeboński, A.: Cylindrical algebraic decomposition using validated numerics. J.
Symbolic Comput. 41(9), 1021–1038 (2006)

34. Strzeboński, A.: Cylindrical algebraic decomposition using local projections. In:
Proceedings of the ISSAC 2014, pp. 389–396. ACM (2014)

35. Wilson, D., Bradford, R., Davenport, J.H., England, M.: Cylindrical algebraic sub-
decompositions. Math. Comput. Sci. 8, 263–288 (2014)

36. Wilson, D., England, M., Davenport, J.H., Bradford, R.: Using the distribution of
cells by dimension in a cylindrical algebraic decomposition. In: Proceedings of the
SYNASC 2014, pp. 53–60. IEEE (2014)

http://arxiv.org/abs/1605.02494

On the Implementation of CGS Real QE

Ryoya Fukasaku1(B), Hidenao Iwane2, and Yosuke Sato3

1 Tokyo University of Science, Tokyo, Japan
fukasaku@rs.tus.ac.jp

2 Fujitsu Laboratories LTD/National Institute of Informatics, Tokyo, Japan
iwane@jp.fujitsu.com

3 Tokyo University of Science, Tokyo, Japan
ysato@rs.kagu.tus.ac.jp

Abstract. A CGS real QE method is a real quantifier elimination (QE)
method which is composed of the computation of comprehensive Gröbner
systems (CGSs) based on the theory of real root counting. Its fundamen-
tal algorithm was first introduced by Weispfenning in 1998. We further
improved the algorithm in 2015 so that we can make a satisfactorily prac-
tical implementation. For its efficient implementation, there are several
key issues we have to take into account. In this extended abstract we
introduce them together with some important techniques for making an
efficient CGS real QE implementation.

Keywords: Comprehensive Gröbner systems · Real quantifier
elimination

1 Introduction

Study of real quantifier elimination (QE) is an important research topic of many
areas such as mathematics, computer science, engineering, etc. The cylindrical
algebraic decomposition (CAD) algorithm introduced in [5] has been the most
efficient real QE method up to the present date together with the improvements
by many successive works. For a special type of real QE problems, however, we
may have a more practical method. For a quantified formula containing many
equalities, we have an alternative real QE method composed of the computations
of comprehensive Gröbner systems (CGSs) based on the theory of real root
counting, which is called a CGS real QE method in this extended abstract. The
first CGS real QE algorithm was introduced by V. Weispfenning in [15]. It is
implemented in Redlog [12] as the command rlhqe [6]. Unfortunately, however,
we cannot say that it achieves pre-eminent performance over CAD based real
QE implementations even for quantified formulas with many equalities. In [7] a
simpler and more intuitive CGS real QE algorithm was introduced by us. Our
algorithm enables us to have a satisfactorily practical implementation of CGS
real QE. We have implemented our algorithm in the computer algebra system
Maple as a subcommand of SyNRAC [14] and released as free software in [2].
Though our program is a prototype, according to our computation experiments,
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 165–172, 2016.
DOI: 10.1007/978-3-319-42432-3 21

166 R. Fukasaku et al.

it is superior to other implementations for many examples which contain many
equalities. For an efficient implementation of our algorithm there are several key
issues we have to take into account. In this extended abstract we introduce them
together with some important techniques for making an efficient CGS real QE
implementation such as the simplification method reported in [8]. Some of them
are embedded in our latest CGS real QE program [3] which achieves much better
performance than the previous one.

The extended abstract is organized as follows. In Sect. 2, we give a minimum
description of CGS real QE. The reader is referred to [7] for more detailed
description. In Sect. 3, we describe the simplification method introduced in [8] in
more detail together with some computation data we have obtained by our new
implementation [3]. In Sect. 4, we introduce our new theoretical result which is
an easy consequence of the main result of [10] but enables us to have a more
efficient method to deal with strict inequalities than the original method given
in [7], although it has not been implemented in [3] yet.

2 Preliminary

In the rest of the extended abstract Q, R and C denote the field of rational
numbers, real numbers and complex numbers respectively. X̄ denotes some vari-
ables X1, . . . , Xn. T (X̄) denotes a set of terms in X̄. For an ideal I ⊂ R[X̄],
VR(I) and VC(I) denote the varieties of I in R and C respectively (i.e., VR(I) =
{c̄ ∈ R

n|∀f ∈ I f(c̄) = 0} and VC(I) = {c̄ ∈ C
n|∀f ∈ I f(c̄) = 0}). Let I be a

zero dimensional ideal in a polynomial ring R[X̄]. Considering the residue class
ring R[X̄]/I as a vector space over R, let t1, . . . , td be its basis. For an arbitrary
h ∈ R[X̄]/I and each i, j (1 ≤ i, j ≤ d) we define a linear map θh,i,j from R[X̄]/I
to R[X̄]/I by θh,i,j(f) = htitjf for f ∈ R[X̄]/I. Let qh,i,j be the trace of θh,i,j
and M I

h be a symmetric matrix such that the (i, j)-th component is given by
qh,i,j . The characteristic polynomial of M I

h is denoted by χI
h(x). The dimension

of R[X̄]/I is denoted by dim(R[X̄]/I). For a polynomial f(x) ∈ R[x], the sig-
nature of f(x), denoted σ(f(x)), is an integer which is equal to ‘the number of
positive real roots of f(x) = 0’ - ‘the number of negative real roots of f(x) = 0’,
that is, σ(f(x)) = #({c ∈ R|f(c) = 0, c > 0}) − #({c ∈ R|f(c) = 0, c < 0}).
The signature of M I

h , denoted σ(M I
h), is defined as the signature σ(χI

h(x)) of its
characteristic polynomial. The real root counting theorem found independently
in [1,10] is the following assertion.

Theorem 1. σ(M I
h) = #({c̄ ∈ VR(I)|h(c̄) > 0}) − #({c̄ ∈ VR(I)|h(c̄) < 0}).

We have the following corollary.

Corollary 2. σ(M I
1) = #(VR(I)).

Using an obvious relation h ≥ 0 ⇔ ∃z z2 = h, we have the following fact.

Lemma 3. Let h1, . . . , hl be polynomials in R[X̄] and Z̄ = Z1, . . . , Zl be new
variables. Using the same notations as above, let J be an ideal in R[X̄, Z̄] defined

On the Implementation of CGS Real QE 167

by J = I + 〈Z2
1 − h1, . . . , Z

2
l − hl〉. Then the following equation holds for some

l′ (0 ≤ l′ ≤ l):

#(VR(J)) = 2l
′
#({c̄ ∈ VR(I)|h1(c̄) ≥ 0, . . . , hl(c̄) ≥ 0}).

The next theorem plays an important role in our CGS real QE method of [7].

Theorem 4. Let I be a zero dimensional ideal of R[X̄] and J = I + 〈Z2
1 −

h1, . . . , Z
2
l −hl〉 be an ideal of R[X̄, Z̄] with polynomials h1, . . . , hl ∈ R[X̄]. Let k

be a dimension of R[X̄]/I and {t1, . . . , tk} ⊂ T (X̄) be a basis of the vector space
R[X̄]/I, then {t1Z

e1
1 Ze2

2 · · · Zel
l , . . . , tkZ

e1
1 Ze2

2 · · · Zel
l |(e1, e2, . . . , el) ∈ {0, 1}l}

forms a basis of the vector space R[X̄, Z̄]/J . Let MJ
g denote a symmetric matrix

and χJ
g denote its characteristic polynomial for a polynomial g ∈ R[X̄] induced

by the above basis of R[X̄, Z̄]/J . Let M I
g denote a symmetric matrix and χI

g

denote its characteristic polynomial for a polynomial g ∈ R[X̄] induced by the
above basis of R[X̄]/I. Then we have the following equation for some non-zero
constant c:

χJ
g (2lx) = cΠ(e1,e2,...,el)∈{0,1}lχI

gh
e1
1 h

e2
2 ···hel

l
(x).

As an easy consequence of this theorem, we have the following fact.

Theorem 5. {c̄ ∈ VR(I)|h1(c̄) ≥ 0, . . . , hl(c̄) ≥ 0} �= ∅ ⇔ σ(χJ
1 (x)) > 0 ⇔

σ(Π(e1,e2,...,el)∈{0,1}lχI
h
e1
1 h

e2
2 ···hel

l

(x)) > 0.

Based on this theorem we can eliminate quantifiers from the following basic
formula by the computation of a CGS:

φ(Ȳ)∧∃X̄(f1(X̄, Ȳ)=0∧· · ·∧fk(X̄, Ȳ)=0∧h1(X̄, Ȳ)≥0∧· · ·∧hl(X̄, Ȳ)≥0) (1)

where fi, hj ∈ Q[X̄, Ȳ] for each i,j and φ(Ȳ) is a quantifier free formula with
free variables Ȳ = Y1, . . . , Ym such that the ideal I = 〈f1(X̄, ā), . . . , fk(X̄, ā)〉 in
R[X̄] is zero dimensional for each ā ∈ R

m satisfying φ(ā).
Let S be the subset of R

m defined by S = {ā ∈ R
m|φ(ā)}.

Regarding Ȳ as parameters, compute a minimal CGS G = {(S1, G1),
. . . , (Ss, Gs)} of {f1(X̄, Ȳ), . . . , fk(X̄, Ȳ)} over S. For values ā ∈ S, let
I = 〈f1(X̄, ā), . . . , fk(X̄, ā)〉 be an ideal in R[X̄] and h1, . . . , hl be polynomials
h1(X̄, ā), . . . , hl(X̄, ā) in R[X̄]. The ideal J and the characteristic polynomial
χJ
1 (x) are defined as in the above theorems. By the properties of a minimal CGS

we can have a uniform representation form of χJ
1 (x) for ā in a segment Si. That

is, it has a uniform representation χJ
1 (x) = xt + pt−1(ā)

qt−1(ā)
xt−1 + · · ·+ p1(ā)

q1(ā)
x+ p0(ā)

q0(ā)

for every ā ∈ Si where pt−1(Ȳ), . . . , p0(Ȳ), qt−1(Ȳ), . . . , q0(Ȳ) are polynomials
in Q[Ȳ] such that qt−1(ā) �= 0, . . . , q0(ā) �= 0 for any ā ∈ Si. The above the-
orem together with Descartes’ rule of signs and this representation enables us
to compute a quantifier free formula ψi(Ȳ) such that it is equivalent to (1) for
each specialization Ȳ = ā for any ā ∈ Si. Using the defining formula θi(Ȳ) of
Si, we can have a quantifier free formula (θ1(Ȳ)∧ψ1(Ȳ))∨ · · · ∨ (θs(Ȳ)∧ψs(Ȳ))
equivalent to (1).

Our CGS real QE algorithm introduced in [7] eliminates all quantifiers from
an arbitrary quantified formula by applying the above computation recursively.

168 R. Fukasaku et al.

3 Simplification

Consider the following first order formula:

φ(Ȳ) ≡ ∃X(X = f(Ȳ) ∧ h1(X, Ȳ) ≥ 0 ∧ h2(X, Ȳ) ≥ 0).

Considering Ȳ as parameters, let I = 〈X − f(Ȳ)〉 be the zero dimensional ideal
of R[X] and J be the ideal I + 〈Z2

1 − h1(X, Ȳ), Z2
2 − h2(X, Ȳ)〉 of R[X,Z1, Z2]

with new variables Z1, Z2. The corresponding characteristic polynomial χJ
1 (x)

has the following form with H1 = h1(f(Ȳ), Ȳ) and H2 = h2(f(Ȳ), Ȳ):

χJ
1 (x) = (x − 1)(x − H1)(x − H2)(x − H1H2).

By the first assertion of Theorem 5, the following relation holds:

φ(Ȳ) ⇔ σ(χJ
1 (x)) > 0.

If we directly apply Descartes’ rule of signs to the expanded quartic polynomial
of χJ

1 (x) we have the following quantifier free formula equivalent to φ(Ȳ):

(A0 ≤ 0 ∧ A1 �= 0) ∨ (0 ≤ A1 ∧ 0 ≤ A2 ∧ 0 < A3) ∨ (A1 ≤ 0 ∧ 0 ≤ A2 ∧ A3 < 0)

where A3, A2, A1, A0 are the coefficients of χJ
1 (x), i.e., χJ

1 (x) = x4 + A3x
3 +

A2x
2 + A1x + A0. So A3 = −(H1H2 + H1 + H2 + 1), A2 = H2

1H2 + H1H
2
2 +

2H1H2 + H1 + H2, A1 = −(H2
1H2

2 + H2
1H2 + H1H

2
2 + H1H2) and A0 = H2

1H2
2 .

Since the given formula φ(Ȳ) is obviously equivalent to H1 ≥ 0 ∧ H2 ≥ 0,
the method is certainly inefficient even though we can get the above formula by
some simplification technique. This unpleasant situation can be resolved by the
following equation derived from the second assertion of Theorem 5:

σ(χJ
1 (x)) = σ(x − 1) + σ(x − H1) + σ(x − H2) + σ(x − H1H2).

Using this equation we can easily have the following relation:

σ(χJ
1 (x)) > 0 ⇔ σ(x − H1) ≥ 0 ∧ σ(x − H2) ≥ 0 ⇔ H1 ≥ 0 ∧ H2 ≥ 0.

By the second assertion of Theorem 5, we also have the following relation:

σ(χJ
1 (x)) > 0 ⇔

∑

(e1,e2,...,el)∈{0,1}l

σ(χI
h
e1
1 h

e2
2 ···hel

l
(x)) > 0.

Using it we can obtain much simpler representation formula of σ(χJ
1 (x)) > 0

for arbitrary m = dim(R[X̄]/I) and l than the one introduced in [7] obtained
directly applying Descartes’ rule of signs to the expanded polynomial of χJ

1 (x).

Example 6. Let m = 2, l = 2. Note first that σ(χJ
1 (x)) ≥ 0 and σ(χI

1(x)) ≥ 0
hold by Corollary 2. Secondly, σ(χJ

1 (x)) = 0, σ(χJ
1 (x)) = 4 or σ(χJ

1 (x)) = 8
by Lemma 3. Thirdly, 2 ≥ σ(χI

1(x)), σ(χI
h1

(x)), σ(χI
h2

(x)), σ(χI
h1h2

(x)) ≥ −2
because all of them are quadratic polynomials. So the following holds:

σ(χJ
1 (x)) > 0 ⇔ σ(χI

h1
(x)) + σ(χI

h2
(x)) + σ(χI

h1h2
(x)) > 0.

On the Implementation of CGS Real QE 169

For arbitrary m and l we can similarly compute much simpler representation
formula of σ(χJ

1 (x)) > 0 than the ones reported in [7]. Those representation
formulas are employed in our new CGS real QE implementation [3].

We have computed many real QE problems. In the following, we show some
computation data of 5 problems among them. We also give several data of our
computation experiments using other real QE implementations for each problem.

Table 1 indicates the computation time of a problem measured in seconds
(truncated after the decimal point) for each implementation. ‘0’ means that the
computation time is within 1 second, ‘>’ means that the computation does not
terminate within 1 hour, ‘E’ means the computation was crashed with some
error. Tables 2 and 3 are for measuring the simplicity of output quantifier free
formulas. Table 2 indicates the number of atomic formulas contained in the out-
put formula which can be considered as a barometer of the complexity of its
logical structure. Table 3 indicates the number of occurrence of the symbols ‘+’
and ‘–’ in the output formula which can be considered as a barometer of the
size of all polynomials contained in the output formula. cgs is our new imple-
mentation of [3], cgs-15 is our previous implementation of [2], syn is a CAD
based QE program of SyNRAC in Maple 18 [14], rc is a real QE program in
RegularChains package (Version 2015-10-27) in Maple 18 [4], red and res are
Resolve and Reduce of Mathematica 10.3 [9], rl and rlh are the regular QE rlqe
of Redlog and the CGS real QE rlhqe of Redlog [12], qep is QEPCAD (Version
B-1.69) [11]. All the computations were done by the same computer environment
with an Intel CORE i7 CPU 2.60 GHz with 8 GB memory OS Ubuntu 14.10.

Problem 1. ∃v5 ((−v1)v2
5 +v3

5 −1 = 0∧v4v
2
5 +v3

5 +v3v5+v2 = 0∧v1 ≤ v5∧0 <
v3).

Problem 2. ∃x (ax4+x5+bx3+cx2+x+1 = 0∧4ax3+5x4+3bx2+2cx+1 =
0 ∧ 12ax2 + 20x3 + 6bx + 2c = 0 ∧ 0 ≤ x).

Problem 3. ∃x∃y∃z (xy + axz + yz − 1 = 0 ∧ xyz + xz + xy = a ∧ xz + yz −
az − x − y − 1 = 0 ∧ axy = byz ∧ ayz = bzx ∧ c < x + y + z).

Problem 4. ∃x∃y∃z (axyz+yz −1 = 0∧xyz +x+1 = 0∧xz +yz −z −x−b =
0 ∧ 0 ≤ ay).

Problem 5. ∃c2∃s2∃c1∃s1 (r−c1 + l(s1s2 +c1c2) = 0∧z −s1 − l(s1c2 −s2c1) =
c1 ∧ s21 + c21 = 1 ∧ s22 + c22 = 1 ∧ 0 < 4c1r + 2c1z + 2c2l + 5s21).

Our previous implementation cgs-15 based on the old representation may
produce a quantifier free formula slightly faster than our new one. However, the
obtained quantifier free formula is more complicated in general. Problem 4 and
5 are among such typical examples.

4 How to Deal with Strict Inequalities

In order to eliminate quantifiers from an arbitrary first order formula, we also
need to deal with the following basic formula with strict inequalities:

φ(Ȳ)∧∃X̄(f1(X̄, Ȳ)=0∧· · ·∧fk(X̄, Ȳ)=0∧h1(X̄, Ȳ)>0∧· · ·∧hl(X̄, Ȳ)>0) (2)

170 R. Fukasaku et al.

Table 1. Computation time

1 2 3 4 5

cgs 0 0 0 2 1

cgs-15 0 0 10 1 1

syn > > > 49 E

rc 3 > > 6 >

red > > > 1120 >

res > > > 0 >

rl > > > 0 >

rlh 1 1 E E >

qep E E > 604 >

Table 2. Number of
atomic formulas

1 2 3 4 5

cgs 35 26 25 50 30

cgs-15 98 51 256 93 144

syn – – – 10091 –

rc 74 – – 273 –

red – – – 13 –

res – – – 230 –

rl – – – 76 –

rlh 32 108 – – –

qep – – – 13 –

Table 3. Number of +, –

1 2 3 4 5

cgs 224 148 146 320 459

cgs-15 666 452 1585 1245 31697

syn – – – 103024 –

rc 588 – – 308 –

red – – – 39 –

res – – – 1384 –

rl – – – 481 –

rlh 2651 5310 – – –

qep – – – 27 –

with the same conditions of (1). Our algorithm introduced in [7] computes the
CGS of {f1(X̄, Ȳ), . . . , fk(X̄, Ȳ), Z2

1h1(X̄, Ȳ)−1, . . . , Z2
l hl(X̄, Ȳ)−1} regarding

Ȳ as parameters with new variables Z̄ = Z1, . . . , Zl w.r.t. a term order such that
X̄ � Z̄, i.e. each variable Xi is lexicographically greater than any variable Zj .
For a segment Si such that Gi �= {1}, Gi has the following form:

Gi = {g1(X̄, Ȳ), . . . , gt(X̄, Ȳ), Z2
1 − p1(X̄, Ȳ), . . . , Z2

l − pl(X̄, Ȳ)}
where 〈g1, . . . , gt〉 is the saturation ideal 〈f1, . . . , fk〉 : (h1 · · · hl)∞ in R[X̄] and
each pj is a inverse of hj in the residue class ring R[X̄]/〈g1, . . . , gt〉 for any
specialization of Ȳ by elements ā in Si. Since we have the following relation:

f1(X̄, ā)=0∧· · ·∧fk(X̄, ā)=0∧h1(X̄, ā)>0∧· · ·∧hl(X̄, ā)>0
⇔ g1(X̄, ā)=0∧· · ·∧gt(X̄, ā)=0∧p1(X̄, ā)>0∧· · ·∧pl(X̄, ā)>0
⇔ g1(X̄, ā)=0∧· · ·∧gt(X̄, ā)=0∧p1(X̄, ā)≥0∧· · ·∧pl(X̄, ā)≥0.

On the Implementation of CGS Real QE 171

We can apply the method described in Sect. 2 to eliminate quantifiers.
Computation of a saturation ideal, however, is very heavy in general. This is

another reason that our previous program can not deal with many inequalities.
If we somehow know that the saturation ideal 〈f1, . . . , fk〉 : (h1 · · · hl)∞ is equal
to the original ideal 〈f1, . . . , fk〉, which is equivalent to that h1 �= 0 ∧ · · · ∧ hl �=
0 for any zero of 〈f1, . . . , fk〉, before the computation of the saturation ideal,
we can avoid this heavy computation. The following theorem which is an easy
consequence of the main result of [10] is useful for this purpose.

Theorem 7. Let I be a zero dimensional ideal in R[X̄]. Let dim(R[X̄]/I) = m.
Hence, deg(χI

h(x)) = m for any h ∈ R[X̄]. Let dim(R[X̄]/
√

I) = m′, then
each characteristic polynomial χI

h(x) has a factor xm−m′
and σ(χ

√
I

h (x)) =
σ(χI

h(x)/xm−m′
). Furthermore, h(ā) �= 0 for any ā ∈ VC(I) if and only if the

factor of x in χI
h(x) is exactly xm−m′

.

Example 8. Let us consider ∃X(X2 + AX + B = 0 ∧ X > 0). For the ideal
I = 〈X2+AX+B〉 ⊂ Q[X] with parameters A and B, we have the characteristic
polynomials χI

1(x) = x2 + (−A2 + 2B − 2)x + A2 − 4B and χI
X(x) = x2 + (A3 +

A−3AB)x+A2B −4B2. When B �= 0, both of them has an exactly same factor
of x and we have

∃X(X2 + AX + B = 0 ∧ X > 0) ⇔ ∃X(X2 + AX + B = 0 ∧ X ≥ 0).

We need to compute the saturation ideal I : X∞ only when B = 0. It is much
lighter computation than the one for arbitrary A and B.

5 Conclusion and Remarks

We have improved our previous CGS real QE software using the technique
described in Sect. 3. While the previous software achieves better performance
than the other real QE implementations for many formulas containing many
equalities, it has a weak point for formulas containing many inequalities. Our
new software achieves much better performance for such formulas than the pre-
vious one. The another technique described in Sect. 4 has not been implemented
yet. We expect that we can further improve the software.

References

1. Becker, E., Wörmann, T.: On the trace formula for quadratic forms. In: Recent
Advances in Real Algebraic Geometry and Quadratic Forms, Berkeley, CA,
1990/1991; San Francisco, CA, 1991, pp. 271–291. Contemporary Mathematics,
vol. 155, American Mathematical Society Providence, RI (1994)

2. The first prototype CGS real QE program released (2015). http://www.mi.kagu.
tus.ac.jp/∼fukasaku/issac2015

3. The latest prototype CGS real QE program released (2016). http://www.mi.kagu.
tus.ac.jp/∼fukasaku/CGSQE2016

http://www.mi.kagu.tus.ac.jp/~fukasaku/issac2015
http://www.mi.kagu.tus.ac.jp/~fukasaku/issac2015
http://www.mi.kagu.tus.ac.jp/~fukasaku/CGSQE2016
http://www.mi.kagu.tus.ac.jp/~fukasaku/CGSQE2016

172 R. Fukasaku et al.

4. Chen, C., Maza, M.M.: Quantifier elimination by cylindrical algebraic decompo-
sition based on regular chains. In: Proceedings of International Symposium on
Symbolic and Algebraic Computation (ISSAC 2014), pp. 91–98. ACM (2014)

5. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages.
LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

6. Dolzmann, A., Gilch, L.A.: Generic hermitian quantifier elimination. In:
Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp.
80–93. Springer, Heidelberg (2004)

7. Fukasaku, R., Iwane, H., Sato, Y.: Real quantifier elimination by computation of
comprehensive Gröbner systems. In: Proceedings of International Symposium on
Symbolic and Algebraic Computation (ISSAC 2015), pp. 173–180. ACM (2015)

8. Fukasaku, R., Iwane, H., Sato, Y.: Improving a CGS-QE algorithm. In: Kotsireas,
I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 231–235.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-32859-1 20

9. Mathematica Tutorial (RealPolynomialSystems). http://reference.wolfram.com/
language/tutorial/RealPolynomialSystems.html

10. Pedersen, P., Roy, M.-F., Szpirglas, A.: Counting real zeroes in the multivariate
case. In: Proceedings of the Effective Methods in Algebraic Geometry, pp. 203–224
(1993)

11. QEPCAD-Quantifier elimination by partial cylindrical algebraic decomposition.
http://www.usna.edu/CS/qepcadweb/B/QEPCAD.html

12. Redlog: an integral part of the interactive computer algebra system reduce. http://
www.redlog.eu/

13. Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases
using Gröbner bases. In: Proceedings of International Symposium on Symbolic and
Algebraic Computation (ISSAC 2006), pp. 326–331. ACM (2006)

14. SyNRAC: a software package for quantifier elimination. http://www.fujitsu.com/
jp/group/labs/en/resources/tech/freeware/synrac/

15. Weispfenning, V.: A new approach to quantifier elimination for real algebra. In:
Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Alge-
braic Decomposition, pp. 376–392. Springer, Vienna (1998)

http://dx.doi.org/10.1007/978-3-319-32859-1_20
http://reference.wolfram.com/language/tutorial/RealPolynomialSystems.html
http://reference.wolfram.com/language/tutorial/RealPolynomialSystems.html
http://www.usna.edu/CS/qepcadweb/B/QEPCAD.html
http://www.redlog.eu/
http://www.redlog.eu/
http://www.fujitsu.com/jp/group/labs/en/resources/tech/freeware/synrac/
http://www.fujitsu.com/jp/group/labs/en/resources/tech/freeware/synrac/

Common Divisors of Solvable Polynomials
in JAS

Heinz Kredel(B)

University of Mannheim, Mannheim, Germany
kredel@rz.uni-mannheim.de

http://www.uni-mannheim.de

Abstract. We present generic, type safe (non-unique) common divi-
sors of solvable polynomials software. The solvable polynomial rings are
defined with non-commuting variables, moreover, in case of paramet-
ric (solvable) coefficients the main variables may not commute with the
coefficients. The interface, class organization is described in the object-
oriented programming environment of the Java Algebra System (JAS).
The implemented algorithms can be applied, for example, in solvable
extension field and root construction. We show the design and feasibility
of the implementation in the mentioned applications.

Keywords: Generic multivariate solvable polynomials · Common
divisors

1 Introduction

We are interested in computations in solvable polynomial rings with coefficients
from a (solvable) skew field. For example (notation see Sect. 2)

Q(x, y, z, t;Qx)/I{r;Qr},

where Qx = {z ∗ y = yz + x, t ∗ y = yt + y, t ∗ z = zt − z} with I =
(t2 + z2 + y2 + x2 + 1), Qr is eventually empty. Elements from the quotient
skew field Q(x, y, z, t;Qx) are constructed as fractions, that is, pairs of (nomi-
nator, denominator), of solvable polynomials from the solvable polynomial ring
Q{x, y, z, t;Qx}. The nominator and denominator are then checked if they reduce
to zero modulo the ideal I, and if they do, the respective number is replaced by
zero. Note, it is not possible to replace the respective polynomial by the reduced
normal form by the ideal, since this is a different fraction.

The implementation of this example in the Java Algebra System (JAS),
[7], requires the generic classes GenSolvablePolynomial<BigRational> for the
solvable polynomials over a coefficient field, here the rational numbers Big-
Rational, next the class SolvableIdeal<BigRational> for a twosided ideal in
the solvable polynomial ring, and class SolvableLocalResidue<BigRational>
for elements from the solvable quotient ring.
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 173–180, 2016.
DOI: 10.1007/978-3-319-42432-3 22

174 H. Kredel

These elements can be created with the help of a corresponding ‘factory’,
a means to construct them as Java objects. In the example, first, a solvable
polynomial ring mfac is constructed, then the relations from Qx in rel are
added. The factory mfac provides a method parse() to read a polynomial p
from a string. Then a a twosided ideal id is created from the polynomial p.
With this ideal a solvable local residue ring efac is constructed.

String[] vars = new String[] { "x", "y", "z", "t" };

BigRational cfac = new BigRational(1);

GenSolvablePolynomialRing<BigRational> mfac;

mfac = new GenSolvablePolynomialRing<BigRational>(cfac,

TermOrderByName.INVLEX, vars);

GenSolvablePolynomial<BigRational> p;

List<GenSolvablePolynomial<BigRational>> rel;

rel = new ArrayList<GenSolvablePolynomial<BigRational>>();

// add relations to Q_x

//z, y, y * z + x,

p = mfac.parse("z"); rel.add(p);

p = mfac.parse("y"); rel.add(p);

p = mfac.parse("y * z + x"); rel.add(p);

//t, y, y * t + y,

//t, z, z * t - z

...

mfac.addSolvRelations(rel);

p = mfac.parse("t^2 + z^2 + y^2 + x^2 + 1"); F.add(p);

SolvableIdeal<BigRational> id;

id = new SolvableIdeal<BigRational>(mfac, F,

SolvableIdeal.Side.twosided);

id.doGB(); // compute twosided GB

SolvableLocalResidueRing<BigRational> efac;

efac = new SolvableLocalResidueRing<BigRational>(id);

The construction of elements a and b of the solvable local residue ring is by
reading the polynomial with method parse() and then constructing it using
factory efac. Now, in this ring, a is invertible and its inverse is computed as c.
Next f is computed as b.multiply(c).multiply(a).

SolvableLocalResidue<BigRational> a, b, c, d, e, f;

p = mfac.parse("t + x + y + 1");

a = new SolvableLocalResidue<BigRational>(efac, p);

p = mfac.parse("z^2+x+1");

b = new SolvableLocalResidue<BigRational>(efac, p);

c = a.inverse();

f = b.multiply(c).multiply(a);

b.equals(f); // --> true, since (b * 1/a) * a == b

Now b equals (b ∗ a−1) ∗ a and in the sample program b equals f, but f is a
fraction consisting of 150 polynomial terms in the nominator and denominator,
whereas b consists only of 4 polynomial terms. This exemplifies the importance
of simplification of such fractions.

Solvable GCD in JAS 175

In case of commutative polynomial rings, which are unique factorization
domains, one can compute greatest common divisors of any two polynomials.
This can then be used in quotient fields to divide the nominator and the denom-
inator to reduce the fraction to lowest terms. In the non-commutative (solvable)
case, solvable polynomial rings are also factorization domains, however, the fac-
torization may not be unique. Moreover, we must distinguish the order of the
factors as multiplication is no more commutative, and consequently distinguish
left common divisors and right common divisors. The developed algorithms are
of utmost importance for the performance of computations in quotients and
localizations of solvable polynomial rings.

In this paper we present as work in progress an experimental first step in
the computation of common divisors. The implementation is discussed in the
Java computer algebra system (called JAS). It provides generic multivariate
solvable polynomials in an object oriented, type safe and thread safe approach
to computer algebra, see [7,8,10]. It provides a well designed software library
implemented in Java, thus leveraging software and hardware improvements over
time. For an introduction to JAS see the cited articles.

Other computer algebra systems with implementations of non-commutative
polynomials rings are FELIX [1], Plural in Singular [11,12] or NCPOLY in
Reduce [3], to name a few. For more related work see the discussion in [9],
for example [4,13] or [2].

Outline. In the next section we summarize some definitions from [9] and in
Sect. 3 we will sketch some generic left and right common divisor implementa-
tions. In the last section we will draw some conclusions.

2 Solvable Polynomial Rings

Recall from [5] the concept of solvable polynomial rings with commutator rela-
tions between variables and from [6] the concept of solvable polynomial rings
with additional commutator relations between variables and coefficients. Solv-
able polynomials rings S are associative rings (S, 0, 1,+,−, ∗), with

S = K{X1, . . . , Xn;Q;Q′}, (1)

characterized as polynomial rings over skew fields K in variables X1, . . . , Xn, n ≥
0, together with a new non-commutative product ‘∗’, defined by means of commu-
tator relations Q = {Xj ∗Xi = cijXiXj + pij : 0 �= cij ∈ K,XiXj > pij ∈ S, 1 ≤
i < j ≤ n} between the variables with respect to a ∗-compatible term order
> on S × S (extended from the order > on the set of terms), and commutator
relations Q′ = {Xi ∗ a = caiaXi + pai : 0 �= cai ∈ K, pai ∈ K, 1 ≤ i ≤ n, a ∈ K}
between the variables and the coefficients. In case, the commutator relations Q
or Q′ are empty, the respective relations are treated as commutative, and if K
is commutative, S is a commutative polynomial ring S = K[X1, . . . , Xn].

176 H. Kredel

2.1 Parametric Solvable Polynomial Coefficient Rings

Recall from [9] the definition of parametric solvable polynomial rings with coef-
ficients from solvable polynomials and commutator relations between variables
of the ‘main’ ring and the coefficient ring.

S = R{U1, . . . , Um;Qu}{X1, . . . , Xn;Qx;Q′
ux} (2)

The coefficients are from a solvable polynomial ring R = R{U1, . . . , Um;Qu} in
the variables U1, . . . , Um, together with commutator relations Qu between the U
variables, Qu = {Uj ∗ Ui = cuijUiUj + puij : 0 �= cuij ∈ R, UiUj > puij ∈ R, 1 ≤
i < j ≤ m }. Q′

u is assumed to be empty, i.e. the elements of R commute with the
U variables. For the main solvable polynomial ring S = R{X1, . . . , Xn;Qx;Q′

ux}
in the variables X1, . . . , Xn over R, there are commutator relations between the
X variables Qx and between the U and X variables Q′

ux, Qx = {Xj ∗ Xi =
cxijXiXj + pxij : 0 �= cxij ∈ R,XiXj > pxij ∈ S, 1 ≤ i < j ≤ n } and Q′

ux =
{Xj ∗ Ui = cijUiXj + pij : 0 �= cij ∈ R, UiXj > pij ∈ S, 1 ≤ i ≤ m, 1 ≤ j ≤ n }.
The pij are allowed to lie in S, and not only in R, provided that pij < UiXj . It
is assumed that the elements of R commute with the U and X variables. The
term orders < are assumed to be ∗-compatible in the respective rings.

2.2 Recursive Solvable Polynomial Rings

The solvable polynomial ring from equation (2) does not completely match the
situation of the ring from (1) as it still does not allow commutator relations
between arbitrary base coefficients and main variables. However, it models recur-
sive solvable polynomial rings, where main variables can be shifted to coefficient
variables and vice versa as desired by an application.

Sk = R{X1, . . . , Xk;Qk}{Xk+1, . . . , Xn;Qn;Q′
kn}, 0 ≤ k ≤ n (3)

The cases k = 0 and k = n recover the usual non-parametric cases: S0 = Sn =
R{X1, . . . , Xn;Q}.

The implementation of the recursive solvable polynomials is discussed
in [9]. They are implemented in classes RecSolvablePolynomial<C> and
RecSolvablePolynomialRing<C>. This classes extend the recursive solv-
able polynomials GenSolvablePolynomial<GenPolynomial<C>> and inherit
most methods, except for the new multiplication according to Q′

ux.
The factory class extends the recursive solvable polynomial ring
GenSolvablePolynomialRing<GenPolynomial<C>>. It contains the two com-
mutator tables for the variable relations Qx and Qu, and additionally there is
a relation table coeffTable, which contains the commutator relations of Q′

ux.
The implementation of the ∗-multiplication is described in detail in [9].

These polynomials are used in the next session to compute common divisors.

Solvable GCD in JAS 177

3 Generic Common Divisors

In this section we explain the implementation of the generic common divisors.

3.1 Recursive Algorithm

With the help of the recursive solvable polynomials it is possible to design recur-
sive common divisor algorithms. From a generic multivariate solvable polyno-
mial from S′ = R{X1, . . . , Xn;Qn;Q′

kn}, in class GenSolvablePolynomial<C>
one constructs a univariate solvable polynomial with coefficients from multivari-
ate solvable polynomials in S = R{X1, . . . , Xn−1;Qk}{Xn;Qn;Q′

kn} in class
GenSolvablePolynomial<GenPolynomial<C>>. In this class the relations Q′

kn

are empty as they can not be expressed. So we convert the ring and the polyno-
mials to class RecSolvablePolynomial and add the missing relations between
the main variable and the coefficient variables to the coeffTable relation table
so that finally S′ = S.

The main idea for the recursive common divisor algorithm is as in the com-
mutative case (see e.g. [8]): for a univariate solvable polynomial with (multi-
variate) solvable polynomial coefficients compute the (left, right) content of the
coefficients by recursion. Remove the content by division to obtain a primitive
(univariate) polynomial. For such polynomials compute a greatest common divi-
sor by taking successive pseudo remainders until a zero remainder appears. Note,
the computation of pseudo remainders require the computation of (left, right)
Ore conditions to match the coefficients to be eliminated.

3.2 Class Design

Part of the algorithm relations and the interface and class layout is depicted in
Fig. 1. It shows an interface GreatestCommonDivisor which defines the methods
leftGcd() and rightGcd() to compute left or right common divisors. Further
methods are leftContent() and rightContent() to compute a left or right
common divisor of the coefficients, as well as methods leftPrimitivePart()
and rightPrimitivePart() to divide a polynomial by the respective content.
Moreover there are methods to compute common multiples and construct lists
of polynomials with mutually common divisor one leftCoPrime().

The interface is parametrized by a type C, which is restricted to implement
the GcdRingElem interface. The GcdRingElem interface is itself parametrized
by the type C. This allows for recursive coefficient types. The GcdRingElem
interface defines all methods needed for ring arithmetic. It includes also a method
inverse() to compute inverses of ring elements if they exist.

The class GreatestCommonDivisorAbstract implements all methods of the
interface GreatestCommonDivisor and defines abstract methods for univariate
polynomials leftBaseGcd() and rightBaseGcd(), and for univariate recursive
polynomials leftRecursiveUnivariateGcd() and rightRecursiveUnivari-
ateGcd(). These are to be provided by the concrete classes, currently only
GreatestCommonDivisorSimple and GreatestCommonDivisorPrimitive.

178 H. Kredel

Fig. 1. UML diagram of common divisor classes.

Solvable GCD in JAS 179

As in the commutative case we have a class SGCDFactory with static meth-
ods getImplementation() or getProxy() to obtain suitable implementations
of GreatestCommonDivisor based on the type of the coefficients [8]. Class
SGCDParallelProxy will run two implementations in parallel and return the
result of the fastest computation (using invokeAny() of ExecutorService in
java.util.concurrent).

3.3 Example Continued

We are now able to use these algorithms in various settings and explore the
performance and feasibility. In the example from Sect. 1, we can compute a left
common divisor p and right divide the nominator and the denominator by it, to
construct the new fraction e, which is z**2 + x + 1.

GreatestCommonDivisorAbstract<BigRational> engine;

engine = new GreatestCommonDivisorSimple<BigRational>(cfac);

p = engine.leftGcd(f.num,f.den);

// p = (x**2 * z * t**2 + 3 * x * z * t**2 + 2 * z * t**2 + x**2 *

// ..

// + 26 * x * y + 11 * y + 4 * x**4 + 19 * x**3 + 36 * x**2 + 31 * x + 7)

GenSolvablePolynomial<BigRational>[] qr;

qr = FDUtil.<BigRational> rightBasePseudoQuotientRemainder(f.num, p);

fn = qr[0]; // (z**2 + x + 1), qr[1] == 0

qr = FDUtil.<BigRational> rightBasePseudoQuotientRemainder(f.den, p);

fd = qr[0]; // 1, qr[1] == 0

e = new SolvableLocalResidue<BigRational>(efac, fn, fd);

// e = (z**2 + x + 1)

e.equals(b); // --> true

In a next step we make use of the common divisor in the constructor of class
SolvableLocalResidue to reduce the fraction to lower terms. In a first step with
left gcd computation and right division and in a second step by right gcd com-
putation and left division. There are two utility methods leftGcdCofactors and
rightGcdCofactors in class FDUtil to do this in a combined operation. Similar
adjustments are incorporated in the constructors of classes SolvableLocal and
SolvableQuotient. This shows the feasibility of the common divisor computation
for the improvement of the computation in solvable quotient rings. It reduces the
size of the fractions and so improves the performance of such computations.

4 Summary and Conclusions

With the recursive solvable polynomial rings, the definition of commutator rela-
tions between polynomial variables and coefficient variables is possible. This
enabled the construction of recursive algorithms, like the computation of (left,
right) common divisors. With the insight gained from this implementation, the
classes need a redesign and need to be reimplemented. The common divisors
improve the computation in quotient and other local solvable rings by the ability
to reduce fractions to lower terms. Using these more efficient implementations

180 H. Kredel

as coefficient rings of solvable polynomial rings makes computations of roots,
common divisors and ideal constructions over skew fields more feasible. The
algorithms have been implemented in JAS in a type-safe, object oriented way
with generic coefficients. This gives more efficient simplifiers to reduce interme-
diate expression swell in such fields. Still, the solvable multiplication has high
complexity and only small examples are practical to compute.

Acknowledgments. We thank Thomas Becker for discussions on the implementation
of a generic polynomial library and Raphael Jolly for the fruitful cooperation. We
thank moreover our colleagues Wolfgang K. Seiler, Thomas Sturm, Axel Kramer, Victor
Levandovskyy, Joachim Apel, Markus Aleksy and others for various discussions on the
design and the requirements for JAS and its mathematical foundations. Thanks also
for helpful suggestions from the reviewers.

References

1. Apel, J., Klaus, U.: FELIX - an assistant for algebraists. In: Proceedings of the
1991 International Symposium on Symbolic and Algebraic Computation, ISSAC
1991, Bonn, Germany, 15–17 July 1991, pp. 382–389 (1991)

2. Apel, J., Lassner, W.: Computation and simplification in Lie fields. In: EUROCAL
1987, pp. 468–478 (1987)

3. Apel, J., Melenk, H.: NCPOLY: computation in non-commutative polynomial
ideals. Technical report (2004). http://www.reduce-algebra.com/docs/ncpoly.pdf

4. Bueso, J.L., Gómez-Torrecillas, J., Verschoren, A.: Algorithmic Methods in Non-
Commutative Algebra: Applications to Quantum Groups. Kluwer Academic Pub-
lishers, Dordrecht (2003)

5. Kandri Rody, A., Weispfennning, V.: Non-commutative Gröbner bases in algebras
of solvable type. J. Symbol Comput. 9(1), 1–26 (1990)

6. Kredel, H.: Solvable Polynomial Rings. Dissertation, Universität Passau, Passau
(1992)

7. Kredel, H.: On a Java computer algebra system, its performance and applications.
Sci. Comput. Program. 70(2–3), 185–207 (2008)

8. Kredel, H.: Unique factorization domains in the Java computer algebra system. In:
Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS, vol. 6301, pp. 86–115. Springer,
Heidelberg (2011)

9. Kredel, H.: Parametric solvable polynomial rings and applications. In: Gerdt, V.P.,
Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301,
pp. 275–291. Springer, Heidelberg (2015)

10. Kredel, H.: The Java Algebra System (JAS). Technical report, since 2000. http://
krum.rz.unimannheim.de/jas/

11. Levandovskyy, V.: Plural, a non–commutative extension of singular: past, present
and future. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp.
144–157. Springer, Heidelberg (2006)

12. Levandovskyy, V., Schönemann, H.: Plural: a computer algebra system for non-
commutative polynomial algebras. In: Proceedings of the Symbolic and Algebraic
Computation, International Symposium ISSAC 2003, Philadelphia, USA, pp. 176–
183 (2003)

13. Mora, T.: An introduction to commutative and noncommutative Gröbner bases.
Theor. Comput. Sci. 134(1), 131–173 (1994)

http://www.reduce-algebra.com/docs/ncpoly.pdf
http://krum.rz.unimannheim.de/jas/
http://krum.rz.unimannheim.de/jas/

An Online Computing and Knowledge Platform
for Differential Equations

Yinping Liu1(B), Ruoxia Yao2(B), Zhibin Li1, Le Yang3, and Zhian Zhang3

1 Institute of Systems Science, East China Normal University,
Shanghai, People’s Republic of China

ypliu@cs.ecnu.edu.cn
2 Department of Computer Science, Shaanxi Normal University,

Xi’an, People’s Republic of China
rxyao2@hotmail.com

3 Department of Computer Science, East China Normal University,

Shanghai, People’s Republic of China

Abstract. A Web-based knowledge database and computing platform
for nonlinear differential equations is presented, which could provide com-
puting and graphing based on symbolic computing system Maple and
some of its built-in packages. Users can not only calculate specific types
of analytical solutions of nonlinear differential systems by calling the
packages, but also carry out any symbolic computations associated with
equations and other kinds of simple computations in an interactive mode
with visual output. The knowledge database of differential equations has
all functions of the general database. Furthermore, each equation has a
web page to show its properties and research results. In addition, each
mathematica formula is stored in its infix form in the knowledge database
and can be displayed visually.

Keywords: Nonlinear differential equation · Symbolic computation ·
Online · Computing platform · Knowledge database

1 Introduction

The expansion of Internet led to high development of online computing, teaching
and learning. It is extremely valuable to make mathematical computing and online
education easier over the Internet. In recent years, online developing of comput-
ing software is becoming a public focus, and some symbolic computation software
companies have released more and more online computing softwares or education
applications. Related online scientific computing softwares or applications include
Web-enabled systems [1–7], Parallel and Distributed CAS (Computer Aided Sys-
tems) computing projects [8–10], Grid-enabled systems [11–17], Scientific com-
puting in the cloud [18,19] and online computing apps for mobile devices [20,21].
The related online mathematics education softwares or applications include Maple
T.A. [22], computational knowledge engine Wolfram|Alpha [2], DMAS [23], Math-
Pass [24], Mathway.com [25,26], MEGA [27], E-GEMS [28], etc.
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 181–188, 2016.
DOI: 10.1007/978-3-319-42432-3 23

182 Y. Liu et al.

Differential equation is one of the most widely applied branches in modern
mathematics, and it is also one of the most active branches in the field of math-
ematical physics. From natural science to social science almost all subject areas,
more and more people prefer to solve problems using differential equation meth-
ods. Many algorithms and techniques have been born to solve differential equa-
tions and to analyze the properties of differential equations. As a consequence,
more new research results are emerging constantly. However, Many researchers,
engineers and technicians can not make good use of those new results due to the
lack of knowledge of mathematics and physics. There are already two specialized
equation websites [29], where the equation is stored in the format of picture. To
our knowledge, there is not any online differential equation database or knowl-
edge database so far. Therefore, developing an online knowledge database for
differential equations is really meaningful and valuable.

In the last 10 years, the research interests of our group are mainly concen-
trated on symbolic computation and related software development of differential
equations. Around solving and integrability analysis of mathematical physics
equations, we have developed a dozen different offline related softwares based
on Maple. However, the utilization rate of these offline softwares is rather low.
In the past two years, an online symbolic computation platform for nonlinear
differential equations is proposed and implemented. Furthermore, we are devel-
oping an online knowledge database of differential equations which is connected
with this computing platform.

2 The Computing Platform

The computing platform named NDEmathema is an online B/S computing plat-
form. Users could use NDEmethema via a Web browser (Chrome, Firefox, IE,

Fig. 1. The functional diagram of NDEmathema

An Online Computing and Knowledge Platform for Differential Equations 183

Safari, Opera etc.). Figure 1 illustrates the functional diagram of NDEmethema.
NDEmathema could be accessed not only from desktop/laptop computers or
supercomputers, but also by tablet PCs, smart phones and other mobile devices.
Most of our programs have been embedded in the platform. Therefore, users
could use it to solve different types of nonlinear differential systems. For the
convenience of usage, each embedded package not only has an Independent User
Interface, but also has been integrated in the Integrated User Interface of NDE-
mathema. All results are displayed visually in this platform. Furthermore, users
can export visual outputs as Maple Worksheet file or HTML file. In this way,
the exported Maple Worksheet file could be downloaded and to be used later.
In addition, in each Independent User Interface, users could use the correspond-
ing Maple package easily without needing to learn any syntax of any symbolic
computing software; in the Integrated User Interface, users could input the com-
mands according to the APIs of the related Maple package.

In the following a sample of the embedded package is given to show the
Independent User Interface and the Integrated User Interface of the computing
platform, respectively.

The Elliptic equation method is widely applied because of its simplicity. The
basic idea of the method applied to a single PDE in u(x, t) works as follows: In
a travelling frame of reference, ξ = kx + ct, one transforms a PDE into an ODE
in the new independent variable T . Since T is a solution of the Elliptic equation
T ′ =

√
a0 + a1T + a2T 2 + a3T 3 + a4T 4, all the derivatives of T are polynomials

or radical expression of itself. Therefore, via a chain rule, a polynomial PDE in
u(x, t) is transformed into an ODE in U(T), which has polynomial coefficients in
T or

√
a0 + a1T + a2T 2 + a3T 3 + a4T 4. One then seeks for polynomial solutions

of the ODE, and thus generate a subset of the set of all solutions for the original
PDE. As the Elliptic equation has a series of different function solutions for dif-
ferent parameters (ai, i = 1, 2, 3, 4) constraints. The program RAEEM [30] is a
complete implementation of the Elliptic equation method. RAEEM can automat-
ically deliver a series of possible different types of function expansion solutions,
which include polynomial, rational function, exponential function, trigonometric

Fig. 2. The independent user interface of the package RAEEM

184 Y. Liu et al.

Fig. 3. Output web page of the example

function, hyperbolic function, elliptic function types of solutions, etc. RAEEM
has been embedded in the platform NDEmathema (Fig. 2).

The Independent User Interface of RAEEM is shown as follows:
The related visual outputs on the Web are shown in Fig. 3.
By clicking the buttons “Export as Maple Worksheet” in the upper right

corner of the resulting page. The related Maple Worksheet is shown in Fig. 4.
For this example, the corresponding Integrated Input Interface is shown in

Fig. 5. More details of the platform will be reported at the conference.

Fig. 4. Maple worksheet file of the example

An Online Computing and Knowledge Platform for Differential Equations 185

Fig. 5. The Integrated user interface of the NDEmathema

3 The Knowledge Database of Differential Equation

The knowledge database of differential equations is an online and open system.
This facilitates the distributed development by the advanced users in different
regions. The homepage of the database is shown below. It should be noted that
we just have Chinese version now, the English version will be developed next
year. The following pictures are only for the conference demonstration (Fig. 6).

For each equation, there is an equation page to show its properties and
research results. Some achievements are shown by connecting as many as possible
relevant documents or web sites (the maximum numbers of documents and web
sites are both 50). In particular, a Maple worksheet is established and hyper-
linked to demonstrate step by step some of the main results of the equation. The
equation page of the KdV equation is shown in Fig. 7. All of the different types
of equations are stored in a database. Then users can establish a sub database by

Fig. 6. The homepage of the knowledge database

186 Y. Liu et al.

Fig. 7. The equation page of the KdV equation

Fig. 8. A sample of sub database

An Online Computing and Knowledge Platform for Differential Equations 187

a keyword query. Users can carry out any database operations on a sub database.
A sample sub database is shown in Fig. 8.

Each mathematica formula is stored in its infix form in the database and
can be displayed visually in the form of two-dimensional mathematical formula.
More details will be shown at the conference.

References

1. Wang, P., Gray, S., Kajler, N., Lin, D., Liao, W., Zou, X.: IAMC architecture
andprototyping: a progress report. In: Proceedings of the 2001 International Sym-
posium on Symbolic and Algebraic Computation, pp. 337–344. ACM (2001)

2. Hoy, M.B.: Wolfram|Alpha: a brief introduction. Med. Ref. Serv. Q. 29, 67–74
(2010)

3. Wolfram Research Inc. webMathematica. http://www.wolfram.com/products/
webmathematica

4. Perez, F., Granger, B.E.: IPython: a system for interactive scientific computing.
Comput. Sci. Eng. 9, 21–29 (2007)

5. Zimmer, J., Kohlhase, M.: System description: the MathWeb software bus for
distributed mathematical reasoning. In: Voronkov, A. (ed.) CADE 2002. LNCS
(LNAI), vol. 2392, pp. 139–143. Springer, Heidelberg (2002)

6. Maxima-online.org. Maxima-online. http://maxima-online.org
7. McGettrick, M.: Online Gröbner basis [OGB]. ACM SIGSAM Bull. 38, 19–21

(2004)
8. Schreiner, W., Mittermaier, C., Bosa, K.: Distributed maple: parallel computer

algebra in networked environments. J. Symbolic Comput. 35, 305–347 (2003)
9. Pau, C., Schreiner, W.: Distributed mathematica-User and Reference Manual.

RISC Report 00–25, RISC, JK University, Linz, Australia (2000)
10. Almasi, G., Cascaval, C., Padua, D.A.: Mat marks: a shared memory environment

for matlab programming. In: Proceedings of the 8th IEEE International Sympo-
sium on High Performance Distributed Computing, p. 21 (1999)

11. Agrawal, S., Dongarra, J., Seymour, K., Vadhiyar, S.: Netsolve: past, present, and
future-a look at a grid enabled server. In: Grid Computing: Making the Global
Infrastructure a Reality, pp. 615–624 (2003)

12. Wu, Y., Liao, W., Wang, P., Lin, D., Yang, G.: An internet accessible gridcomput-
ing system: Grid-elimino. In: Proceedings of IAMC, pp. 1–8 (2003)

13. Tanaka, Y., Nakada, H., Sekiguchi, S., Suzumura, T., Matsuoka, S.: Ninf-G: a refer-
ence implementation of RPC-based programming middleware for grid computing.
J. Grid Comput. 1, 41–51 (2003)

14. Cox, S., Keane, A.: Grid enabled optimisation and design search for engineering
(geodise). In: NeSC Workshop on Applications and Testbeds on the Grid, pp. 20–33
(2002)

15. Pound, G.E., Eres, M.H., Wason, J.L., Jiao, Z., Keane, A.J., Cox, S.J.: A grid-
enabled problem solving environment (PSE) for design optimisation within matlab.
In: Proceedings of Parallel and Distributed Processing Symposium. International,
pp. 50–57 (2003)

16. Petcu, D., Dubu, D., Paprzycki, M.: Extending maple to the grid: design and
implementation. In: Third International Symposium on Algorithms, Models and
Tools for Parallel Computing on Heterogeneous Networks, pp. 209–216 (2011)

http://www.wolfram.com/products/webmathematica
http://www.wolfram.com/products/webmathematica
http://maxima-online.org

188 Y. Liu et al.

17. Amestoy, P., Pantel, M.: Grid-TLSE: a web expertise site for sparse linear algebra.
In: Sparse Days and Grid Computing at St. Girons Workshop, p. 192 (2003)

18. Srirama, S., Batrashev, O., Vainikko, E.: Scicloud: scientific computing on the
cloud. In: Proceedings of the 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, pp. 579–580 (2010)

19. Rehr, J.J., Vila, F.D., Gardner, J.P., Svec, L., Prange, M.: Scientific computing in
the cloud. Comput. Sci. Eng. 12, 34–43 (2010)

20. MathWorks, Inc. Matlab mobile. http://www.mathworks.com/products/matlab-
mobile

21. Wolfram Research Inc. Wolframalpha mobile. http://products.wolframalpha.com/
mobile

22. Maplesoft Inc. Mapleta. http://www.maplesoft.com.cn/products/mapleta
23. Al-shomrani, S., Wang, P.: DMAS: a web-based distributed mathematics assess-

ment system. In: International Conference on Learning, pp. 3–6 (2008)
24. Su, W., Wang, P.S., Li, L.: Mathpass: a remedial mathematics system with concept

checking. In: CICM (Conferences on Intelligent Computer Mathematics), pp. 11–12
(2010)

25. Mathway. https://mathway.com
26. Siekmann, J., Benzmller, C., Autexier, S.: Computer supported mathematics with

mega. J. Appl. Logic 4, 533–559 (2006)
27. Team Members of E-GEMS Project, E-gems. http://www.cs.ubc.ca/nest/egems/

index.html
28. Lopez-Morteo, G., Lpez, G.: Computer support for learning mathematics: a

learning environment based on recreational learning objects. Comput. Educ. 48,
618–641 (2007)

29. Polyanin, A.D.: EqWorld (The World of Mathematical Equations). http://eqworld.
ipmnet.ru

30. Li, Z.-B., Liu, Y.-P.: RAEEM: a Maple package for finding a series of exact traveling
wave solutions for nonlinear evolution equation. Comput. Phys. Commun. 163,
191–201 (2004)

http://www.mathworks.com/products/matlab-mobile
http://www.mathworks.com/products/matlab-mobile
http://products.wolframalpha.com/mobile
http://products.wolframalpha.com/mobile
http://www.maplesoft.com.cn/products/mapleta
https://mathway.com
http://www.cs.ubc.ca/nest/egems/index.html
http://www.cs.ubc.ca/nest/egems/index.html
http://eqworld.ipmnet.ru
http://eqworld.ipmnet.ru

Software for Numerically Solving
Polynomial Systems

SIROCCO: A Library for Certified Polynomial
Root Continuation

Miguel Ángel Marco-Buzunariz1,3(B) and Marcos Rodŕıguez2,3

1 Universidad of Zaragoza, Zaragoza, Spain
mmarco@unizar.es

2 Centro Universitario de la Defensa de Zaragoza, Zaragoza, Spain
marcos@unizar.es

3 IUMA. Instituto Universitario de Matemáticas y Aplicaciones, Zaragoza, Spain
https://riemann.unizar.es/∼mmarco,

http://www.imark.es

Abstract. The classical problem of studying the topology of a plane
algebraic curve is typically handled by the computation of braid
monodromies. The existence of arithmetic Zariski pairs implies that
purely algebraic methods cannot provide those braids, so we need
numerical methods at some point. However, numerical methods usu-
ally have the problem that floating point arithmetic introduces round-
ing errors that must be controlled to ensure certified results. We
present SIROCCO (The source code and documentation is available
in: https://github.com/miguelmarco/sirocco), a library for certified
polynomial root continuation, specially suited for this task. It computes
piecewise linear approximations of the paths followed by the roots. The
library ensures that there exist disjoint tubular neighborhoods that con-
tain both the actual path and the computed approximation. This fact
proves that the braids corresponding to the approximation are equal to
the ones corresponding to the actual curve. The validation is based on
interval floating point arithmetic, the Interval Newton Criterion and aux-
iliary lemmas. We also provide a SageMath interface and auxiliary rou-
tines that perform all the needed pre and post-processing tasks. Together
this is an “out of the box” solution to compute, for instance, the funda-
mental group of the complement of an affine complex curve.

Keywords: Validated numerics · Interval arithmetic · Homotopy ·
Algebraic curves

1 Introduction

The problem of studying the topology of the embedding of a curve C in
the complex projective plane CP

2 is a classical one in algebraic geometry.
One of the most important tools in this theory is the braid monodromy. It
is defined as follows. Consider C be a degree d curve in CP

2. Fix a point
p ∈ CP

2 \C. The set of lines going through p forms a CP
1. So we have a fibration

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 191–197, 2016.
DOI: 10.1007/978-3-319-42432-3 24

192 M.Á. Marco-Buzunariz and M. Rodŕıguez

C CP
2 \ {p}

CP
1

π

Generically, the fibres intersect the curve C in d distinct points. However, there
is a finite set Δ of points of CP1 such that their preimages contains less than
d points. This set Δ will be called the discriminant of π. Consider Symd(C)
the d’th symmetric product of C. This is the configuration space of d different
points in C. It is well known that its fundamental group π1(Symd(C)) is the
braid group in d strands Bd. As we have seen before, we have a well defined map

CP
1 \ Δ → Symd(C)

which induces a map of fundamental groups

π1(CP1 \ Δ) → Bd

This map is called the braid monodromy of the curve with respect to the projec-
tion π. It is usually presented as a list of braids, corresponding to the images of
a good system of generators of π1(CP1 \Δ). VanKampen gave in [6] a method to
compute the fundamental group of CP2\C from the braid monodromy. Moreover,
Carmona [3] proved that the braid monodromy itself determines the topology
of the pair (CP2, C). The previous paragraphs show the interest of computing
the braid monodromy. However, the existence of pairs of curves, defined by
polynomials whose coefficients are Galois conjugated in some number field, but
with nonhomeomorphic embeddings (the so-called Zariski pairs, see [1] for a sur-
vey on the subject), shows us that this braids cannot be computed by purely
algebraic methods. In the following sections we will present a numerical (yet
certified) method to compute them. Our approach will consist of computing a
piecewise linear approximation of the strands of each braid. This approxima-
tion must produce the same braid as the original strands. In order to ensure
this, we propose a method that certifies that the approximations live inside dis-
joint tubular neigbourhoods of the actual strands (See Fig. 2). The method is
based on a homotopic continuation of the roots via a predictor–corrector scheme,
plus a validation step using interval arithmetic and interval Newton Operator.
In fact the final scheme is “predictor–validator–corrector”. The predictor uses
implicit differentiation and linear extrapolation. The corrector is just the classical
Newton Method.

2 Validated Numerics

In the following we will need the concepts of complex interval, interval polyno-
mial and interval evaluation.

SIROCCO: A Library for Certified Polynomial Root Continuation 193

CP
2 \ {p}

π

CP
1

Fig. 1. Braid over a path

Definition 1. A complex interval is a set of the form {x + i · y | a ≤ x ≤ b, c ≤
y ≤ d} for some a, b, c, d ∈ R, a ≤ b, c ≤ d. The set of complex intervals will be
denoted as IC.

Given S ⊆ C, its interval closure (that is, the smallest element of IC that
contains S) will be denoted by [S]. Note that complex numbers are a particular
case of complex intervals. IC is not a ring, however, by abuse of notation, we will
talk about polynomials over this set. For example, if If = Ia0+Ia1x+ ·Ianxn ∈
IC[x], it can be thought of as a way to represent the set S(If) = {a0 + a1x +
· · · anxn ∈ C[x] | ai ∈ Iai∀i}.

Definition 2. An evaluation scheme is a map

E : IC[x] × IC �→ IC

such that for every f ∈ S(If), and every z ∈ Iz, the evaluation f(z) is in
E(If, Iz).

Analogously, we can define interval polynomials of two variables and their cor-
responding evaluation schemes. For example, the usual interval arithmetic is an
evaluation scheme. From now on we will assume that we have fixed evaluation
schemes E1, E2 for univariate and bivariate interval polynomials respectively. By
abuse of notation, E1(If, Iz) will be denoted by If(Iz), and E2(If, Ix, Iy) will
be denoted by If(Ix, Iy).

2.1 Newton Method

A basic tool to prove statements with a computer which cannot be proved in
a symbolic way is the Interval Newton Method [7,9]. Among all its possible

194 M.Á. Marco-Buzunariz and M. Rodŕıguez

Fig. 2. Tubular neigbourhoods of the strands. The piecewise linear approximations live
inside them.

formulations, we present here the one for complex univariate polynomials, since
it is the one we need.

Theorem 1. Let f : Ω → C, Ω ⊆ C an open set, f ∈ C∞(Ω). Let Y ∈ IC,
y0 ∈ Y ⊂ Ω. Let us assume that 0 /∈ [f ′(Y)]. We call the Interval Newton
Operator:

N(y0, Y, f) = y0 + f(y0)/[f ′(Y)].

Then:

– If y1, y2 ∈ Y such that f(y1) = f(y2), then y1 = y2.
– If N(y0, Y, f) ⊆ Y , then ∃|y∗ ∈ Y such that f(y∗) = 0.
– If y1 ∈ Y such that f(y1) = 0, then y ∈ N(y0, Y, f).
– If N(y0, Y, f) ∩ Y = ∅, then f(y) �= 0, ∀y ∈ Y .

A detailed proof of this Theorem can be found in reference [10]. Further details on
validation methods can be found in [7]. Note that, in the same way we defined an
evaluation scheme for polynomials, we can also define an evaluation scheme for
the Newton operator. Again, let us assume that we have fixed such an evaluation
scheme.

Corollary 1 (Newton method for interval polynomials). Consider If ∈
IC[x, y] a complex intervalar polinomial. Let y0 ∈ C, Ix, Iy ∈ IC such that y0 ∈
Iy. Consider IfIx the univariate intervalar polynomial resulting from evaluating
If at x = Ix. If N(y0, Iy, IfIx) ⊆ Iy, then for every f ∈ If and every x ∈ Ix,
there exists a unique root (counted with multiplicity) of fx in Iy. Moreover, this
root lies in N(y0, Iy, IfIx).

3 The SIROCCO Library

In this section we present a C library developed for the purpose described in the
Introduction. The core function provided by the library is called homotopyPath.

SIROCCO: A Library for Certified Polynomial Root Continuation 195

It takes as input a polynomial f(x, y) (as a list of its coefficients) and an approx-
imation y0 of a root f(0, y). Its output is a list with the points that determine a
good (as explained in the Introduction) approximation of the path followed by
y0 as x moves from 0 to 1. A simple change of variable allows us to translate
any other linear path to this one. In the following of this section we will briefly
present the method implemented in SIROCCO. First we set a trivial Lemma to
ensure that the neighbourhoods we use will be disjoint. The description of the
method will follow the notation set in this lemma.

Lemma 1. Let C1, C2 be two concentric squares with horizontal and vertical
sides, being C2 three times bigger than C1. Let C ′

1, C
′
2 another pair of squares

with the same properties. If there exists points x ∈ C1 \C ′
2 and y ∈ C ′

1 \C2, then
C1 and C ′

1 are disjoint.

3.1 The Validated Continuation Algorithm

The basic outline of the method consists on the following: Start with a polyno-
mial f0(x, y) ∈ C[x, y], an interval polynomial If(x, y) ∈ IC[x, y] that contains
it (can be f0 itself), and yinp ∈ C an approximate root of f(0, y). Set x0 = 0,
y0 = yinp For each step we want to compute two boxes Ix × IY1 and Ix × IY2

such that ∀x ∈ Ix,∀f ∈ If , fx(y) has a unique root in IY1 and in IY2. IY1 and
IY2 are both centered in y0. IY2 will be three times wider than IY1 (and they
will play the roles of C1 and C2 in Lemma 1). Then:

1. Estimate1 an initial value δ > 0 to be the radius of IY1.
2. Apply Corollary 1 to If with Ix = [x0], Iy = Ci as in Lemma 1 (i = 1, 2).

Keep reducing δ until Corollary 1 is satisfied.
3. Estimate2 h > 0 to be the stepsize for the predictor.
4. Apply Corollary 1 to If with Ix = [x0, x0 + h], Iy = Ci. Keep reducing h

until the Corollary is satisfied.
5. Apply classical Newton method to correct y0 for polynomial fx0+h. Use cor-

rected value to update y0. Set x0 to x0 + h.

Stages 1 to 5 shall be repeated until x0 reaches 1. In order to obtain longer
steps in the validation, in stages 3 and 4 we use the following trick. We define
an auxiliar polynomial.

g(x, y) = f(x + x0, y + a(x + x0))

This change of variables sends the point (x0, y0) to (0, y0) and transform the
implicit curve given by f(x, y) = 0 into a curve whose implicit derivative at the
translated point vanishes (see Fig. 3). The validation of this new polynomial in a
rectangular interval box implies the validation of the original polynomial in the
box transformed by the change of variables. In practice, the longer stepsizes that
this trick allows compensates the computation effort of the change of variables.
Experimental evidence shows an important speedup.
1 This estimation is derived from the degree 2 Taylor expansion of the polynomial.
2 This estimation is derived from the degree 2 Taylor expansion of the implicit function

defined by f(x, y) = 0.

196 M.Á. Marco-Buzunariz and M. Rodŕıguez

f(x, y) = 0

(x0, y0)

(x0 + h, y0 + a · h)

g(x, y) = 0
(0, y0)

(h, y0)

Fig. 3. Neighborhoods related through the change of variables φ.

4 6 8 10 12 14

degree

10−2

10−1

100

101

102

c
p
u

ti
m
e

1 fail

1 fail

2 fail

5 fail

6 fail 5 fail 6 fail 5 fail
8 fail

9 fail

Macaulay2

Sirocco

Fig. 4. Timing comparison. CPU-time vs degree of validated polynomial using soft-
wares SIROCCO and Macaulay2

4 Comparison and Timimgs

Up to the authors’s knowledge, there are several software packages able to per-
form validated homotopy continuation, such as pss5 [8], Cadenza [5] or the
NumericalAlgebraicGeometry package [2] of Macaulay2 [4]. However, they have
different objectives. We will now compare the performance of our implementa-
tion with the one by Leykin in the NumericalAlgebraicGeometry package. We
remark again that the purpose of NumericalAlgebraicGeometry package is not
to compute braid monodromies, but to find solutions of polynomial systems. In
that sense this comparison is not fully fair. Our comparison consisted in timing
the computation of the strand starting at one root y0 of a polynomial f(x, y)
from x = 0 to x = 1 for several polynomials. The polynomials were chosen ran-
domly among the polynomials of degree 4 to 14 (10 polynomials of each degree).
All measurements were made by averaging 5 runs of the program on the same
input. The test platform has an Intel Core i5-4570 CPU running at 3.20 GHz,
with 8GB of RAM. Both softwares are configured to throw an error message
when they are not able to validate a step (those timings are not taken into
account in the average) All timings are expressed in seconds. In Fig. 4 we can

SIROCCO: A Library for Certified Polynomial Root Continuation 197

see that our implementation is consistently faster (as we could expect) than the
one in Macaulay2. Moreover, it is also more robust, since it gives the right answer
in cases where Macaulay2 could not guarantee the correctness. The difference in
timings varies greatly, but, on average, our implementation is about an order of
magnitude faster.

References

1. Bartolo, E.A., Cogolludo, J.I., Tokunaga, H.: A survey Zariski pairs. Adv. Stud.
Pure Math. 50, 1–100 (2008)

2. Beltrán, C., Leykin, A.: Robust certified numerical homotopy tracking. Found.
Comput. Math. 13(2), 253–295 (2013)

3. Ruber, J.C.: Monodroma de trenzas de curvas algebraicas planas. Ph.D. thesis,
Universidad de Zaragoza (2003)

4. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in alge-
braic geometry. http://www.math.uiuc.edu/Macaulay2/

5. Hauenstein, J.D., Haywood, I., Liddell Jr., A.C., Cadenza: certifying homotopy
paths for polynomial systems. http://www.nd.edu/aliddel1/research/cadenza

6. Van Kampen, E.R.: On the fundamental group of an algebraic curve. Am. J. Math.
55(1–4), 255–260 (1933)

7. Krawczyk, R., Neumaier, A.: An improved interval newton operator. J. Math. Anal.
Appl. 118(1), 194–207 (1986)

8. Malajovich, G.: Polynomial System Solver. https://sourceforge.net/projects/pss5/
9. Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)

10. Zgliczyński, P.: Interval krawczyk and newton method, February 2007, Lecture
notes. http://ww2.ii.uj.edu.pl/∼zgliczyn/cap07/krawczyk.pdf

http://www.math.uiuc.edu/Macaulay2/
http://www.nd.edu/aliddel1/research/cadenza
https://sourceforge.net/projects/pss5/
http://ww2.ii.uj.edu.pl/~zgliczyn/cap07/krawczyk.pdf

An Implementation of Exact Mixed
Volume Computation

Anders Nedergaard Jensen(B)

Technische Universität Kaiserslautern, Kaiserslautern, Germany
jensen@math.au.dk

http://home.math.au.dk/jensen/

Abstract. Mixed volumes of lattice polytopes play a central role in
numerical and tropical algebraic geometry. We present an implementa-
tion of a new algorithm for their computation based on tropical homotopy
continuation, which is a combinatorial procedure using ideas from numer-
ical algebraic geometry. While the mathematical aspects of the algorithm
are presented elsewhere, here we mainly address technical details of the
implementation, in particular how it was made fast and reliable. The
implementation is distributed as part of the library gfanlib.

Keywords: Tropical geometry · Mixed volumes · Numerical algebraic
geometry

1 Introduction

Given n convex bounded sets P1, . . . , Pn ⊆ R
n the function f : Rn

≥0 → R≥0 given
by (λ1, . . . , λn) �→ Volumen(λ1P1 + · · · + λnPn) turns out to be a polynomial
function and the coefficient of λ1 · · · λn in the corresponding polynomial is called
the mixed volume of P1, . . . , Pn. Mixed volumes were studied by Minkowski, but
due to their appearance in the BKK Theorem, they have in recent years played
important roles in enumerative, tropical and numerical algebraic geometry.

Theorem 1 (Bernstein, Khovanskii, Kushnirenko, 1975). Let f1, . . . ,
fn ∈ C[x1, . . . , xn] be polynomials. Then the number of isolated solutions to
the polynomial system f1(x) = · · · = fn(x) = 0 with (x1, . . . , xn) ∈ (C \ {0})n is
(counting multiplicities) bounded by the mixed volume of the Newton polytopes
of f1, . . . , fn.

There have been many attempts to implement effective1 algorithms for mixed
volume computation, i.e. [6–8]. Indeed the available software is capable of com-
puting mixed volumes of systems whose numerical solutions cannot be deter-
mined — simply because there are too many. Thus for the immediate purpose
of solving, faster algorithms may not seem particularly important. However, for
the human interaction process, being able to quickly determine mixed volumes
1 Mixed volume computation, just as volume computation, is #P-hard [2].

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 198–205, 2016.
DOI: 10.1007/978-3-319-42432-3 25

Exact Mixed Volume Computation 199

****************** CLING ******************

* Type C++ code and press enter to run it *

* Type .q to exit *

[cling]$ #include "gfanlib_circuittableint.cpp"

[cling]$ #include "gfanlib_paralleltraverser.cpp"

[cling]$ #include "gfanlib_mixedvolume.cpp"

[cling]$ using namespace std;

[cling]$ using namespace gfan;

[cling]$ using namespace gfan::MixedVolumeExamples;

[cling]$ auto s={cyclic(2),cyclic(3),cyclic(5),cyclic(7)};

[cling]$ for(auto v:s)cout<<mixedVolume(v)<<" ";cout<<endl;

2 6 70 924

[cling]$.q

Fig. 1. A session with the C++ “interpreter” CLING demonstrating how we can turn
gfanlib into a simple interactive computer algebra system capable of computing mixed
volume. We ran CLING with options -l /usr/lib/libgmp.so.3.5.2 -std=c++0x.

will allow choosing the right approach more quickly. There are other cases where
speed of mixed volume computation is important. For example, when we don’t
need one big, but rather many small mixed volumes, such as when we wish to
determine the multiplicities in a stable intersection of a set of tropical hypersur-
faces.

Correctness is another issue. In [6] the authors write:

“However, for many polynomial systems in real applications, listed in Table
B1 and Table B2 in Sect. 4, MixedVol-2.0 produced the same mixed volume
for all different sets of random liftings, whereas DEMiCs failed to provide
a unique mixed volume with respect to different liftings.”

comparing the implementation in [6] to that of [8]. However, it seems that there
has been no serious attempt in recent implementations to eliminate the possibil-
ity of round-off errors. This may in practise not be a problem for many systems,
but it is a problem if the software is used in a mathematical proof.

Finally, memory usage is an issue – not so much because we will run out of
RAM on conventional machines, but rather because memory accesses slow down
computation and limits what exotic architectures our software may run on.

We address these three issues with our new implementation. Distributed as
part of the C++ library gfanlib [4], other systems can benefit from it. How to
use the library is demonstrated in Figs. 1 and 2. The algorithm itself, which uses
no linear programming, was proposed at MEGA 2015 and is a variant of the
algorithm in [7]. The mathematical details are described in [5], while we here
address some software engineering aspects. We hope that a general audience will
find the discussion interesting.

200 A.N. Jensen

#include <iostream>

#include "gfanlib.h"

using namespace std;

using namespace gfan;

int main(){

try{

cout << mixedVolume(MixedVolumeExamples::cyclic(12),16) << endl;

cout << mixedVolume(MixedVolumeExamples::gaukwa(7),8) << endl;

}

catch (...){

cerr << "Error - most likely an integer overflow." << endl;

return 1;

}

return 0;

}

Fig. 2. A sample C++ program demonstrating how to run the mixed volume compu-
tation with 16 or 8 threads and catch possible exceptions.

2 A Brief Description of the Algorithm

We briefly describe the tropical homotopy approach to finding mixed volumes.
The main object of study is overlays of tropical hypersurfaces.

Definition 1. Given a matrix A ∈ Z
n×m and a vector ω ∈ R

m, the tropical
hypersurface T (A,ω) is defined as

T (A,ω) := {x ∈ R
n : maxi(ωi +A1ix1 + · · ·+Anixn) is attained at least twice}.

A tropical hypersurface is a polyhedral complex of codimension 1. We will
consider n such hypersurfaces with a total of m = m1 + · · · + mn terms.
We let A = (A1, . . . , An) be the tuple of matrices with Ai ∈ Z

n×mi and
ω ∈ R

m = R
m1 × · · · × R

mn be the concatenated vector of coefficients.

Example 1. The tropical hypersurfaces defined by ω = ((0,−1, 0, 0), (0, 0, 1, 0))
and

Fig. 3. Different overlays of tropical hypersurfaces defined by the same pair of matrices.
As coefficients change in the tropical homotopy one intersection point splits into two.

Exact Mixed Volume Computation 201

A =
((

0 1 2 1
0 0 0 1

)
,

(
1 0 1 2
0 1 1 1

))

are shown in Fig. 3 (left). The right picture is for ω′ = ((0,−1, 0, 3
2), (0, 0, 1, 0)).

In the case of generic coefficients, given an intersection point, for each hyper-
surface, the maximum in Definition 1 is attained exactly twice. That is, to each
intersection point p we may associate a tuple M = ((a1, b1), . . . , (an, bn)) ∈
{1, . . . , m1}2 × · · · × {1, . . . , mn}2 containing the indices to the columns of the
Ai where the maximum was attained. We call M the mixed cell dual to p.

The purpose of the tropical homotopy algorithm is to keep track of the mixed
cells as ω changes along a straight line � towards some ω′ ∈ R

m. To prevent �
from passing through low dimensional cones, ω is perturbed symbolically, by
letting ω ∈ (R(ε))m with ε > 0 symbolic and small. We give the specifications:

Algorithm 2 (Tropical homotopy).
Input: A tuple A, coefficients ω and ω′ and the mixed cells dual to ∩iT (Ai, ωi).
Output: The mixed cells dual to ∩iT (Ai, ω

′
i + εωi).

2.1 A Mixed Cell Cone

The tropical homotopy attempts to treat each mixed cell independently. There-
fore it is relevant to know the set of ω’s for which a particular cell appears.

Theorem 3. The set CM of all ω ∈ R
m giving rise to a particular M appearing

as a dual mixed cell is an m-dimensional cone with m − 2n facets.

The facet normals are in the null space of the Cayley matrix of A. In Example 1

Cayley(A1, A2) =

⎛

⎜⎜⎝

0 1 2 1 1 0 1 2
0 0 0 1 0 1 1 1
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

⎞

⎟⎟⎠

and the four marked columns constitute the center mixed cell in Fig. 3 (left).
Each of the other columns together with those indexed by M forms a matrix of
rank 2n. Each non-zero vector v in the null space is a facet normal of CM . In the
indicated case v = (1, 0, 1,−2, 0,−2, 0, 2, 0), and we may check that v separates
ω and ω′. What happens to M after ω crosses the facet is encoded in v.

We may assign multiplicities to each intersection point, namely the absolute
value of the determinant of the submatrix of the Cayley matrix indexed by the
mixed cell. The multiplicities happen to sum to MixVol(New(f1), . . . ,New(fn)).
Consequently, the mixed volume can be found by finding any generic tropical
intersection

⋂
i T (Ai, ωi). Next we discuss how to build up such intersection.

202 A.N. Jensen

2.2 Tropical Regeneration

In numerical regeneration [3], to solve f1 = · · · = fn = 0, one starts with the
solution to a linear system consisting of n equations in n unknowns. Succes-
sively each linear equation is first replaced by a product of linear equations and
thereafter the desired fi. During this process, the solutions to the intermediate
systems are tracked. The tropical regeneration process is its tropicalisation.

We start with the configuration (L1, . . . , Ln) where the Li denote n× (n+1)
matrices with a zero vector and the standard basis vectors as columns. Then we
replace L1 by the configuration B1 which is just L1 scaled so that the columns
of A1 are in the convex hull of the columns of B. Solutions to a system with
matrices

((A1, B1), L2, . . . , Ln)

are known for coordinates of the coefficients associated to A1 being very small.
As we instead make coefficients of L1 small via tropical homotopy, we obtain a
set of mixed cells for the tuple (after deleting solutions going to infinity):

(A1, L2, . . . , Ln).

Repeating this process for the other Ai we eventually reach the set of solutions
to a system with exponent matrices (A1, . . . , An). The mixed volume is obtained
by summing the multiplicities, i.e. the absolute values of the determinants.

Starting out from one solution to the linear system, the solution point splits
up into many that may later join, go to infinity or split up further as the regen-
eration proceeds. Using reverse search [1], the graph of all these homotopy paths
may be turned into a tree, allowing easy organisation of a memoryless traversal.

3 Technical Implementation Details

A comparison to other implementations can be found in Fig. 4. Note that those
are running on different hardware and using different algorithms, with the algo-
rithm of [7] begin closest to ours. Our timings are roughly 50 times faster than
the first arXiv.org version of [5]. Moreover, the new version achieves this while
still catching overflows, should any arise. In this section we will describe how
this performance gain was obtained and address a few other technical details.

Example n Mixed volume 1 thread 16 threads Ratio [7] 8 threads [6] 1 thread

Cyclic-15 15 35243520 461.3 35.8 12.9 4070 36428
Noon-20 20 3486784361 59.0 4.8 12.4 6460 1109
Chandra-21 21 1048576 151.6 11.5 13.2 7580 1067
Katsura-17 18 131070 4.5 0.5 9.5 5310 75619
Eco-22 22 1048576 102.7 8.5 12.1 8750

Fig. 4. Timings in seconds for our implementation compared to timings reported
in [6,7]. Our timings are for a dual Intel Xeon E2670 CPU system, while a “2.4 GHz
Intel Core 2 Quad CPU” was used in [6] and a “SGI Altix ICE 8400” system in [7].
For Gaukwa-7 our implementation had integer overflows, while [6,7] had no problems.

http://arXiv.org

Exact Mixed Volume Computation 203

Profiling. To improve performance of software it is important to measure any
possible progress. We found the Linux command line tool perf convenient, alter-
natingly doing perf record ./a.out and perf report to find the hotspots.

3.1 The Circuit Table

Given a tuple (A1, . . . , An) and a mixed cell M = ((a1, b1), . . . , (an, bn)), we
may use Theorem 3 to find out which circuits of the Cayley matrix give the
irredundant inequalities of CM . The tuple M selects columns of the Cayley
matrix that form an invertible (2n) × (2n) matrix D. Our first attempt was to
keep D−1 around to easily produce the desired circuits. The drawback of this
approach is that D need not be invertible over Z and we had to resolve to floating
point arithmetic, cast results to integers and verify them in exact arithmetic –
a costly procedure.

The solution is to not store D−1, but instead update the circuits as M changes.

Definition 2. Given A and M , their circuit table is an m × m matrix, with
each row indexed by a �∈ M containing a non-zero kernel vector of the Cayley
matrix of A with support contained in M ∪ {a}.
This leaves 2n rows of the circuit matrix undefined. We will fix the scaling of
each row by letting its coordinates be the maximal minors of the 2n × (2n + 1)
submatrix of Cayley(A1, . . . , An) indexed by M ∪ {a}. Therefore our rows are
not circuits in the strict sense, as they need not be primitive.

The most important feature of the circuit matrix is that if we substitute an
entry of M , it is possible to keep the matrix updated using integer row operations,
i.e. cancelling out a particular coordinate common between two circuits.

Cache-Friendly Memory Layout. While matrices on which we want to do
row operations are conveniently stored row-wise in memory, the circuit matrix is
quite sparse. In a typical situation with n = 10 it may be of size 100×100, while
having at most 2n + 1 = 21 non-zero entries per row. Moreover, most of the
entries appear in pairs with opposite sign due to the last n rows of the Cayley
matrix. As all but one entry of a row appears in a column indexed by M , we
may therefore store the matrix compactly as a 100×10 matrix and an additional
vector of entries. It however turns out that many of the operations required to
update the circuit matrix can conveniently and cache-friendly be performed as
multiply-add row operations of the packed 10 × 100 transposed matrix of type

rowi :=
1
γ

(αrowi + βrowj) (1)

where α, β and γ are integers. While our implementation treat generic integer
implementations, we should imagine that the entries above are 32 bit ints.

Eliminating IntegerDivisions. The update (1) above is done roughly for every
row of the packed circuit matrix and requires an exact division for each entry. This
is costly compared to the addition and multiplications. A common trick for low-
level optimisation is to replace the division by multiplication. If γ is odd, then

204 A.N. Jensen

gcd(γ, 232) = 1 and therefore [γ] has a multiplicative inverse in Z/232Z. On the
other hand, if γ is even, we can reduce to the odd case by binary right shifts. The γ
remains constant for the update of the full matrix as it happens to be the volume
of the mixed cell in question, i.e. the determinant of D.

Vectorisation. In the update (1) each entry of a row gets the same treatment.
This allows the use of the by now common 128 bit SIMD vector instructions.
They can do 4 integer operations simultaneously. While we use a highlevel C++
class to encapsulate matrix data, to use the vector instructions we need to pass
the restrict keyword, telling for example that the data pointed to by a, respec-
tively b, can only be accessed through a, respectively b:

void muladd(int* __restrict__ a, int* __restrict__ b, int alph, int len);

Passing compiler options -O3 -mavx -msse2 -finline-limit=1000, gcc will
emit the desired SIMD instructions. It is possible that the code would be more
efficient if we forced data to be aligned at 128 bit boundaries and len to be
divisible by 4. However, as we would like the code to automatically exploit 256
bit instructions in the future we decided not to make the code 128 bit specific.

Overflow Checking. If we know bounds on the entries of the ith and jth rows
in (1) then we may be able to conclude that the operation does not overflow.
However, a bound would have to be computed again for the next update. There-
fore we compute the minimum and maximum entry of the new rowi in the same
loop that performs (1) and store the results for later. The code will translate
into two vector instructions (max and min) per loop iteration.

In the implementation there are actually four different loops for doing (1)
depending on the bounds on the arguments and whether a shift is needed. In
the worst case the operation needs to be done in 64 bit to catch the overflow.
To actually perform this checking without overflows, we put further restrictions
on the entries of A and ω′ (must fit in 16 bit) and on m (m < 215). These
restrictions are checked automatically in the initialisation step of the algorithm.

3.2 Templates

Our description above has mainly considered the case where the integers are of 32
bit. With the use of C++ templates, we have written the code for updating the
packed circuit table generically, so that the type can be replaced at compile time.
For example one may choose to make an integer type with arbitrary precision,
which should be called in case of an overflow.

3.3 Parallelisation

The key to easy parallelisation on multicore architectures is abstraction. We
make a class representing the concept of an enumeration tree traverser. It will
be located at a vertex of the tree and has a simple interface for asking for
the number of children and moving up and down in the tree. With this class

Exact Mixed Volume Computation 205

at hand we make, say 16, instances of such objects and hand them and the
actual parallelisation over to an abstract tree traversal library. Such library was
contributed to the gfan project by Bjarne Knudsen. It uses the C++11 standard
for dealing with threads.

The only other issue to take care of for good performance is not stressing
the memory allocator, which means that matrices whose sizes are known at
initialisation are never reallocated. With our 16 core machine we obtain speedups
of a factor 13.5 in the best cases. This is a reasonable speedup as the machine
clocks down by roughly 10 percent when many cores are in use.

3.4 Exceptions

We use the C++ exceptions to handle issues with overflows. If a subroutine
called by the enumeration graph traverser overflows, it will throw an excep-
tion. We do not count on C++ handling exceptions across threads and therefore
catch the exception in the abstract traverser, which will then make sure that
the computation is aborted in all threads. The library then throws a new excep-
tion indicating that an overflow occurred. We then have the option to redo the
computation with higher precision.

For this strategy to work it is important that our code is exception safe.
To be that, the most important feature is that we design our classes so that
allocated memory is freed in destructors following the RAII principle (Resource
Acquisition Is Initialization). In particular we avoid malloc and new but use
STL containers instead (Standard Template Library).

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–3),
21–46 (1996). First International Colloquium on Graphs and Optimization (GOI)
(1992) (Grimentz)

2. Dyer, M., Gritzmann, P., Hufnagel, A.: On the complexity of computing mixed
volumes. SIAM J. Comput. 27(2), 356–400 (1998)

3. Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Regeneration homotopies for
solving systems of polynomials. Math. Comput. 80(273), 345–377 (2011)

4. Jensen, A.N.: Gfan, a software system for Gröbner fans. http://home.math.au.dk/
jensen/software/gfan/gfan.html

5. Jensen, A.N.: Tropical homotopy continuation (2016). arXiv:1601.02818
6. Lee, T.-L., Li, T.-Y.: Mixed volume computation in solving polynomial systems.

Contemp. Math. 556, 97–112 (2011)
7. Malajovich, G.: Computing mixed volume and all mixed cells in quermassintegral

time. Found. Comput. Math. 1–42 (2014). arXiv:1412.0480. http://link.springer.
com/article/10.1007%2Fs10208-016-9320-1

8. Mizutani, T., Takeda, A., Kojima, M.: Dynamic enumeration of all mixed cells.
Discrete Comput. Geom. 37(3), 351–367 (2007)

http://home.math.au.dk/jensen/software/gfan/gfan.html
http://home.math.au.dk/jensen/software/gfan/gfan.html
http://arxiv.org/abs/1601.02818
http://arxiv.org/abs/1412.0480
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs10208-016-9320-1
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs10208-016-9320-1

Primary Decomposition in Singular

Hans Schönemann(B)

Department of Mathematics, University of Kaiserslautern, Kaiserslautern, Germany
hannes@mathematik.uni-kl.de

http://www.singular.uni-kl.de/

Abstract. Singular is a comprehensive and steadily growing computer
algebra system, with particular emphasis on applications in algebraic
geometry, commutative algebra, and singularity theory.

Singular provides highly efficient core algorithms, a multitude of
advanced algorithms in the above fields, an intuitive, C-like program-
ming language, easy ways to make it user-extendable through libraries,
and a comprehensive online manual and help function.

Singular’s core algorithms handle Gröbner resp. standard bases and
free resolutions, polynomial factorization, resultants, characteristic sets,
and numerical root finding. Symbolic-numeric solving in Singular starts
with a decomposition to a triangular system or the primary decomposi-
tion of (the radical of) an ideal. New developments for primary decompo-
sition will be presented in this paper: identifying sub problems allows an
early split of the radical. A primary decomposition of these sub problems
can be lifted to (not necessary primary) decomposition of the original
problem: the subsequent primary decomposition will be faster.

After the symbolic preprocessing numerical solving of these smaller
and easier to solve systems can be achieved by Singular’s implementation
of Laguerre’s algorithm or by integrating other systems.

1 Introduction

Symbolic-numeric solving in Singular [DGPS] starts with a decomposition of
the radical, which is the first step in the computation of the primary decomposi-
tion. Further decomposition into triangular systems provide a suitable starting
point for numeric solving for each component of the solution space. New devel-
opments for primary decomposition act as a preprocessing step and allow an
initial splitting of the problem into smaller sub-problems: factorizing Gröbner
and identifying sub problems.

A proper ideal Q of a ring R is said to be primary if f, g ∈ R, fg ∈ Q and
f �∈ Q implies g ∈ √

Q. In this case, P =
√
Q is a prime ideal, and Q is also said

to be a P -primary ideal. Given any ideal I of R, a primary decomposition
of I is an expression of I as an intersection of finitely many primary ideals.

Now suppose that R is Noetherian. Then every proper ideal I of R has
a primary decomposition. We can always achieve that such a decomposition
I =

⋂r
i=1 Qi is minimal. That is, the prime ideals Pi =

√
Qi are all distinct

and none of the Qi can be left out. In this case, the Pi are uniquely determined
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 206–211, 2016.
DOI: 10.1007/978-3-319-42432-3 26

Primary Decomposition 207

by I and are referred to as the associated primes of I. If Pi is minimal among
P1, . . . , Pr with respect to inclusion, it is called a minimal associated prime
of I.

The minimal associated primes of I are precisely the minimal prime ideals
containing I. Their intersection is equal to

√
I. Every primary ideal occurring

in a minimal primary decomposition of I is called a primary component of
I. The component is said to be isolated if its radical is a minimal associated
prime of I. Otherwise, it is said to be embedded. The isolated components are
uniquely determined by I, the others are far from being unique.

From the definitions, it is clear that there is a number of different tasks
coming with primary decomposition. These range from computing radicals via
computing the minimal associated primes to computing a full primary decompo-
sition. A variety of corresponding algorithms is implemented in the Singular
library primdec.lib. The two main algorithms for computing a full primary
decomposition are primdecSY and primdecGTZ. A detailed description is given
in [DGP].

The various Gröbner base computations dominate the computation. There-
fore, a splitting into simpler parts renders some problems possible. In this paper
I will present two such methods: the factorizing Gröbner (decreasing the degree)
and a new method: identifying sub-problems with less variables (decreasing the
number of variables).

2 Primary Decomposition by the Algorithm of Gianni,
Trager, Zacharias

2.1 Splitting Tool

The starting point of the GTZ-algorithm is the following simple observation:

Lemma (Splitting Tool). If I ⊂ R is an ideal, if h ∈ R is a polynomial, and
if m ≥ 1 is an integer such that I : 〈h〉∞ = I : 〈h〉m, then

I =
(
I : 〈h〉m

) ∩ 〈I, hm〉 .
The key result on which the algorithm is based specifies which polynomials

h are considered:

If I : f = I : f2 for some f , then I = (I : f) ∩ (I, f).
If fg ∈ I and (f, g) = R, then I = (I, f) ∩ (I, g).
If fg ∈ I, then

√
I =

√
(I, f) ∩ √

(I, g).
If fr ∈ I, then

√
I =

√
(I, f).

If J ⊆ R an ideal, then
√
I =

√
I : J ∩ √

I + J =
√
I : J ∩ √

I : (I : J).

2.2 Primary Decomposition: Reduction to Dimension 0

Proposition. Let I � K[x] = R be a proper ideal, and let u ⊂ x be a subset of
maximal cardinality such that I ∩ K[u] = {0}. Then:

208 H. Schönemann

– The ideal I K(u)[x\u] ⊂ K(u)[x\u] is zero-dimensional.
– Let > = (>x\u , >u) be a global product ordering on K[x], and let G be a

Gröbner basis for I with respect to >. Then G is a Gröbner basis for I K(u)[x\
u] with respect to the monomial ordering obtained by restricting > to the
monomials in K[x \ u]. Further, if h ∈ K[u] is the least common multiple
of the leading coefficients of the elements of G (regarded as polynomials in
K(u)[x\u]), then

I K(u)[x\u] ∩ K[x] = I : 〈h〉∞.

– All primary components of the ideal I K(u)[x\u]∩K[x] have the same dimension,
namely dim I.
Further, if I K(u)[x\u] = Q1 ∩ . . .∩Qr is the minimal primary decomposition,
then

I K(u)[x\u] ∩ K[x] = (Q1 ∩ K[x]) ∩ . . . ∩ (Qr ∩ K[x])

is the minimal primary decomposition, too.

If > is a global monomial ordering on K[x], then every subset u ⊂ x of
maximal cardinality satisfying L>(I) ∩ K[u] = {0} is also a subset of maximal
cardinality such that I ∩ K[u] = {0}. By recursion, the proposition allows us
to reduce the general case of primary decomposition to the zero-dimensional
case. In turn, if I ⊂ K[x] is a zero-dimensional ideal “in general position” (with
respect to the lexicographic order satisfying x1 > · · · > xn), and if hn is a
generator for I ∩K[xn], the minimal primary decomposition of I is obtained by
factorizing hn. In characteristic zero, the condition that I is in general position
can be achieved by means of a generic linear coordinate transformation.

2.3 Zero-Dimensional Primary Decomposition

The lexicographical Gröbner basis of a zero-dimensional ideal I contains one
polynomial f of only the last variable. Let fα1

1fαr
r = f the decomposition of

f in irreducible factors.
Then the minimal primary decomposition of I is given by

I = ∩r
k=1(I, f

αk

k).

3 Preprocessing: Factorizing Buchberger Algorithm

The factorizing Buchberger algorithm is the combination of Buchberger algo-
rithm with factorization: each new element for the Gröbner basis will be fac-
torized, and, if reducible, used to split the computation into several branches
corresponding to the factors. Applied to an ideal I = (f1, ..., fs) it computes a
list of Gröbner bases G1, ..., Gr such that

V (I) = V (G1) ∪ ... ∪ V (Gr)

Primary Decomposition 209

The V (Gi) need not be irreducible, so this algorithm is mainly used as a
preprocessing step, substituting the initial Gröbner base computation of the
GTZ algorithm, see [C].

This preprocessing steps lowers the degrees of the input polynomials to sub-
sequent Gröbner base computations, decreasing their difficulty.

4 Preprocessing: Identifying Sub-Problems

Polynomial systems constructed from practical problems often include, even in
the starting polynomials, subsystems (resp. subsets) which contain less than the
full set of variables.

A simple search for such subsystems in the input polynomials to the initial
Gröbner basis algorithm of GTZ (and also during the (lexicographic, i.e. variables
eliminating) Gröbner basis computations.

Lemma (Subsystem Lemma). If the ideal s given as I = (f1, ..., fs) with
J = (f1, .., fl) being the subsystem (l < s), and V (J) = V (J1) ∪ ... ∪ V (Jk) a
decomposition of J then

V (J1 + I) ∪ ... ∪ V (Jk + I)

is a decomposition of I.
If a subsytem J splits into several components, the degree of each component

will be lower than the degree of the original system I. The algorithm proceeds
as follows:

(1.) find a subset g1, ..., gl of f1, ..., fs which involves only NN variables
(2.) try to decompose (g1, ..., gl)
(3.) if it does split, return the set of the resulting sub-problems Jk + I
(4.) if (g1, ..., gl) does not split, increase NN
(5.) if NN < N continue at step 1
(6.) the search for smaller subsystem was not successful: return I

This preprocessing, if successful, can be very helpful: it allows the decompo-
sition of ideals which are not tractable otherwise.

5 Examples

The library primdec.lib implements the primary decomposition algorithms in
Singular: the main routines are primdecGTZ for the algorithm of Gianni, Trager
and Zacharias resp. primdecSY for the algorithm of Shimoyama and Yokoyama.

The following ideal will be decomposed into 2 parts, each given as a pair of
the primary component and the prime component:

210 H. Schönemann

LIB "primdec.lib";
ring r = 0,(x,y,z),lp;
poly p = z2+1;
poly q = z3+2;
ideal I = p*q^2,y-z2;
primdecGTZ(i);
[1]:

[1]:
_[1]=z6+4z3+4
_[2]=y-z2

[2]:
_[1]=z3+2
_[2]=y-z2

[2]:
[1]:

_[1]=z2+1
_[2]=y-z2

[2]:
_[1]=z2+1
_[2]=y-z2

In order to modify the main algorithm (GTZ resp. SY), additional arguments
(of type string or int) can be passed to primdecGTZ resp. primdecSY.

Some parts of these algorithms are available separately: minAssGTZ for min-
imal associated primes (resp. minAssChar).

In the following example the search for subsystems gives 5 equations in 5
variables which decomposes in 20 parts. The computation time for minAssGTZ
is 1.7 s while the unmodified algorithm needs 3.6 s:

LIB "primdec.lib";
ring rs= 0,(a,b,c,d,e,g,h),dp;
poly f0= a + b + c + d + e + 1;
poly f1= a + b + c + d + e;
poly f2= a*b + b*c + c*d + a*e + d*e;
poly f3= a*b*c + b*c*d + a*b*e + a*d*e + c*d*e;
poly f4= a*b*c*d + a*b*c*e + a*b*d*e + a*c*d*e + b*c*d*e;
poly f5= a*b*c*d*e - 1;
poly f6=g2+h2+e2;
poly f7=gha;
ideal gls= f1,f2,f3,f4,f5,f6,f7;
int ti=timer;
list L=minAssGTZ(gls,"subsystem"); timer-ti;
1700
ti=timer;
L=minAssGTZ(gls); timer-ti;
3600

Primary Decomposition 211

6 Alternative Solutions

There are other algorithms to compute the primary decomposition of an ideal
which can also include these preprocessing steps. As they are not starting with
an initial Gröbner basis computation, the integration of these preprocessing is
not straightforward.

The algorithm by Eisenbud, Huneke, Vasconcelos avoids the time consuming
elimination and decomposes into equidimensional parts. Its main splitting tool
is (cf. [EHV])

Proposition. If I ⊆ R = K[x1, ..xn] is an ideal, then the equidimensional hull
of I E(I) is AnnExtn−d

R (R/I,R), where d = dim(I).
This works well if the ideal have components of many different dimensions.
The other algorithm is the decomposition by characteristic series (cf. [SY])

which requires a different approach there this preprocessing does not fit very
well.

References

[C] Czapor, S.R.: Solving algebraic equations: combining Buchberger’s algorithm
with multivariate factorization. J. Symb. Comp. 7(1), 49–53 (1998)

[EHV] Eisenbud, D., Huneke, C., Vasconcelos, W.: Direct methods for primary
decomposition. Invent. Math. 110, 207–235 (1992)

[DGP] Decker, W., Greuel, G.-M., Pfister, G.: Primary decomposition: algorithms
and comparisons. In: Greuel, G.-M., Matzat, B.H., Hiss, G. (eds.) Algorithmic
Algebra and Number Theory, pp. 187–220. Springer, Heidelberg (1998)

[DGPS] Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-0-3 – A
computer algebra system for polynomial computations

[SY] Shimoyama, T., Yokoyama, K.: Localization and primary decomposition of
polynomial ideals. J. Symb. Comp. 22, 247–277 (1996)

Border Basis for Polynomial System Solving
and Optimization

Philippe Trébuchet1, Bernard Mourrain2(B), and Marta Abril Bucero2

1 ANSSI, Paris, France
Philippe.Trebuchet@lip6.fr

2 Inria Sophia Antipolis Méditerranée, AROMATH, Valbonne, France
{Bernard.Mourrain,Marta.Abril Bucero}@inria.fr

Abstract. We describe the software package borderbasix dedicated to
the computation of border bases and the solutions of polynomial equa-
tions. We present the main ingredients of the border basis algorithm and
the other methods implemented in this package: numerical solutions from
multiplication matrices, real radical computation, polynomial optimiza-
tion. The implementation parameterized by the coefficient type and the
choice function provides a versatile family of tools for polynomial com-
putation with modular arithmetic, floating point arithmetic or rational
arithmetic. It relies on linear algebra solvers for dense and sparse matri-
ces for these various types of coefficients. A connection with SDP solvers
has been integrated for the combination of relaxation approaches with
border basis computation. Extensive benchmarks on typical polynomial
systems are reported, which show the very good performance of the tool.

1 Border Basis Algorithms

In this section, we briefly describe the border basis algorithms and the algebraic
solvers available in the package borderbasix. Let R = K[x1, . . . , xn] be the
ring of polynomials in the variables x1, . . . , xn with coefficients in a field K.
Let f1, . . . , fm be the equations to be solved and I = (f1, . . . , fn) the ideal of
R generated by these equations. The algebraic approach implemented in this
package to solve the set of equations {f1, . . . , fm} proceeds in two steps:

(a) Compute the quotient algebra structure A = R/I represented by a (mono-
mial) basis and the operators of multiplication by the variables.

(b) Compute the roots of the system from the operators of multiplication by
the variables, when dimA < ∞.

The main algorithm of the package borderbasixis the computation of bor-
der bases which provides the algebra structure of A.

A border basis is defined with respect to a set B of monomials, connected to
1 (if m ∈ B either m = 1 or ∃i0 ∈ [1, n] and m′ ∈ B such that m = xi0m

′). Let
B+ := B ∪ x1B ∪ . . . ∪ xnB and ∂B = B+ \ B. The computation of a border
basis goes through the construction of a family F of polynomials of the form

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 212–220, 2016.
DOI: 10.1007/978-3-319-42432-3 27

Border Basis for Polynomial System Solving and Optimization 213

fα = xα −
∑

β∈B

cα,βxβ

which are in 〈B+〉 with only one term denoted γ(fα) = xα in ∂B and the other
monomials of its support in B. A family of polynomials of this form is called a
rewriting family. The family is graded if deg(γ(f)) = deg(f) for all f ∈ F .

Let M be the set of monomials in the variables x1, . . . , xn. For S ⊂ R, t ∈ N,
St is the set of elements of S of degree ≤ t. We denote by 〈S | t〉 the vector space
spanned by the elements sm such that deg(sm) ≤ t for s ∈ S and m ∈ M.

A rewriting family F is said to be complete in degree t if it is graded and
satisfies (∂B)t ⊆ γ(F); that is, each monomial m ∈ ∂B of degree at most t is
the leading monomial of some (necessarily unique) f ∈ F .

Given a rewriting family F which is complete in degree t, we define recursively
the projection πF,B on B along F in the following way: ∀m ∈ M,

– if m ∈ Bt, then πF,B(m) = m,
– if m ∈ (∂B)t (= (B[1] \B[0])t), then πF,B(m) = m−f , where f is the (unique)

polynomial in F for which γ(f) = m,
– if m ∈ (B[k] \ B[k−1])t for some integer k ≥ 2, write m = xi0m

′, where
m′ ∈ B[k−1] and i0 ∈ [1, n] is the smallest possible variable index for which
such a decomposition exists, then πF,B(m) = πF,B(xi0 πF,B(m′)).

The map πF,B extends by linearity to a linear map from K[x]t onto 〈B〉t. By
construction, f = γ(f) − πF,B(γ(f)) and πF,B(f) = 0 for all f ∈ Ft. The next
theorem shows that, under some natural commutativity condition, the map πF,B

coincides with the linear projection from K[x]t onto 〈B〉t along the vector space
〈F | t〉 (see [16]):

Theorem 1. Assume that B is connected to 1 and let F be a rewriting family
for B, complete in degree t ∈ N. Suppose that, for all m ∈ Mt−2,

πF,B(xi πF,B(xj m)) = πF,B(xj πF,B(xi m)) for all i, j ∈ [1, n]. (1)

Then πF,B coincides with the linear projection of K[x]t on 〈B〉t along the vector
space 〈F | t〉; that is, K[x]t = 〈B〉t ⊕ 〈F | t〉.
The commutation polynomials or C-polynomials are the polynomials:

πF,B(xi πF,B(xj m)) − πF,B(xj πF,B(xi m))
for m ∈ B, i, j ∈ [1, n] such that xim ∈ ∂B or xjm ∈ ∂B.

1.1 Border Basis Computation

The border basis algorithm computes a rewriting family F which satisfies the
relation (1) for any degree t. It proceeds incrementally degree by degree with a
candidate monomial set B for the basis of A and the rewriting family F for B
at a given degree t. At each degree, the non-zero polynomials deduced from the
relations (1) are added to F .

In the main loop of the algorithm, the following operations are performed:

214 P. Trébuchet et al.

1. prolongation: determine the new elements of B in degree t + 1 and the
elements F̃ of F+ which are in 〈B+〉;

2. matrix construction: compute the coefficient matrix M of F̃ with respect
to B+;

3. linear reduction: compute a (sparse) LU decomposition of the matrix M
and update the rewriting family F̃ ;

4. commutation reduction: reduce the C-polynomials with respect to F̃ and
update B, F and t;

This loop is iterated until a complete rewriting family for B which satisfies (1)
is obtained in the case of a zero-dimensional ideal [16] or until the Gotzmann
regularity criterion is satisfied [17]. The computation is controlled by a choice
function, which select “leading” monomials for the construction of rewriting
families.

1.2 Real Radical Computation

The border basis algorithm has been extended to compute the real radical of an
ideal [14], by integrating in the main loop a new operation:

5. moment kernel: compute a linear functional, which is positive on the sum of
squares and orthogonal to 〈F | t〉, by solving a Semi-Definite Program; compute
a basis of the kernel of its moment matrix in degree t

2 and add it to F .

1.3 Polynomial Optimisation

The border basis algorithm is also extended to compute the minimum of a poly-
nomial f(x) on a basic closed semi-algebraic set S defined by a set of constraints
g0 = 0, g+ ≥ 0 and the points where this minimum is reached (if they exist)[2].
The following operations are inserted in the main loop:

5.1. optimal moment kernel: compute a linear functional, which minimizes f
on the preordering or quadratic module generated by the set of constraints,
by solving a Semi-Definite Program, for moments associated to monomials
in B t

2
· B t

2
;

5.2. flat extension test: check if the moment sequence satisfies a flat extension
property, and compute a basis and the border associated to the moment
matrix kernel in degree t

2 .

1.4 Root Finding

In the case of a zero-dimensional ideal, the last step in the resolution process
consists in computing the roots from one or several operators of multiplication
[5,11].

The eigenspaces associated to the transposed operator M t
1 of multiplication

by the variable x1 in A are computed. The first coordinates of the roots are
given by the eigenvalues of M t

1. If the eigenspaces are one-dimensional the other

Border Basis for Polynomial System Solving and Optimization 215

coordinates are deduced. Otherwise the transposed operator of multiplication
by x2 restricted to these eigenspaces is computed as well as its eigenspaces. It
determines the second coordinates associated to a given first coordinate. This
process is repeated until all coordinates of the roots are determined.

2 Software

The package borderbasix is implemented in C++. It contains classes of mul-
tivariate polynomials represented as lists of monomials; classes for the border
basis algorithms and for the solution of polynomial systems by eigenvector com-
putation and linear algebra tools for dense and sparse matrices;

All the implementations are parameterized (templated) by the coefficient type.
So that it is possible to use several number types for the computation of border
bases. The set of number types effectively used in this computation includes mod-
ular arithmetic, multi-modular arithmetic, double, long double, double double,
extended arithmetic based on gmp such as rational numbers (mpq), floating point
numbers based on the GMP type mpf or on the library mpfr.

For linear algebra on dense matrices, a templated version of blas and lapack
[3] libraries has been developed and is available in the linalg sub-package of
borderbasix. It includes the specialization of some of the arithmetic functions
needed to control the precision of the computation. The main functionalities on
dense matrices used in this library are Singular Value Decomposition, eigenvalue
and eigenvector computation.

For sparse matrices, a templated version of SuperLU [7] is also available, so
that it can be used with general arithmetic number type. The main functionality
used in this library is the solution of sparse linear systems by a direct method, for
the computation of a rewriting family from the coefficient matrix of polynomials
in the main loop of the border basis algorithm.

The connection with SDP solvers is developed in two ways. For the solver
csdp, a connection with a templated version has been implemented. The solver
mosek [18] is also linked directly with the border basis implementation. For the
solvers sdpa, sdpa gmp [9], a file interface is used to describe the SDP problem
to be solved and the SDP solver is called in an external process. The result is
output in a file and read for the next step of the border basis computation. Since
the SDP part is the most expensive part of whole computation, using files is not
too penalizing.

The package contains approximatively 250 000 lines1 of C++ code. It is
accessible from http://www-sop.inria.fr/teams/galaad/software/bbx. It is also
part of the software project mathemagix (www.mathemagix.org).

3 Benchmarks

In this section we analyse the behavior of our software on characteristic inputs:

1 counted with cloc.

http://www-sop.inria.fr/teams/galaad/software/bbx
www.mathemagix.org

216 P. Trébuchet et al.

– Generic zero dimensional systems, because they provide the simplest case,
with no degree drop, trivial syzygies and sharp zero dimensional detection;

– Cyclic-n test suite because they lead to very sparse bases and because the
computation of the latter involves finding many non trivial syzygies.

The benchmarks have been performed on an Intel Corei7-3610QM CPU@
2.30 GHz with 6Go of DDR3 1600 MHz.

First we compare the basis computation, we emphasize here that once the
border basis is computed all the multiplication matrices are available. This is
not the case for a Gröbner basis and the computation of just one multiplication
matrix can be costly as shown in [12].

We have indicated by - test cases that have failed for unexplained reason
and by mem cases that failed because of lack of memory.

mac choice function is the choice function that returns one monomial of high-
est degree and highest partial degree.

3.1 Katsura-n

The systems Katsura are zero dimensional complete intersection. Resultant
theory give a characterization of a basis that is canonical but is not a Gröbner
basis. First of all we present timings using modular arithmetic. The reason is that
the behavior exposed here is also the one obtained using multi-modular computa-
tions. We then present numerical computations and show two different algorithms
to recover the roots from the border basis, the first one described in [5], and the
second in [11,21]. The system katsura-n has 2n solutions. In the following table,
we show raw timing using our method and other Gröbner engines.

n Bbx mac Bbx grl Magma [4] Sing. (std) [6] Sing. (SlimGB) [6] Giac [20] Fgb [8]

7 0.06 0.09 0.018 0.01 0.01 0.05 0.1

8 0.23 0.43 0.14 2 3 0.37 0.5

9 1.05 2.41 0.84 13 35 2.15 2.7

10 5.43 18.23 5.4 100 333 11.6 22.5

11 33.41 127.23 37.26 1043 3408 87.2 172.6

12 240.69 1029.15 602.02 >15000 >15000 715.55 mem

13 1985.35 10432.12 4700.1 - - mem -

14 13121.62 >15000 mem - - - -

Most of the time difference between Bbx mac order and Bbx grl order is due
to the time spent to perform reduction of the C-polynomials, this operation has
not been made scalable yet and also would greatly benefit from adaptation of
the signature based criterions.

3.2 Cyclic-n

This family of polynomial systems comes from permutation theory. These sys-
tems are very far from being a complete intersection and have a complicated

Border Basis for Polynomial System Solving and Optimization 217

first syzygy module making them a standard benchmark case for Gröbner bases
computations. It is noticeable here that the Gröbner basis computed for each
system is very sparse, i.e. the multiplication matrix is costly to compute from
the basis. This partly explains the difference of timings between bbx and the
other softwares.

n Bbx mac Bbx grl Magma grl [4] Singular [6] Giac [20] Fgb [8]

5 0.12 s 0.05 s 0.01 s (0.01) (0.16 s) (0.01 s)

6 1.09 s 0.18 s 0.10 (0.01) s (0.01) (0.15 s) (6.63 s)

7 65.46 s 7.24 s 12.78 (0.28) s (3) (0.61 s) (2.6 s)

The total time (in seconds) for computing the multiplication matrix by a variable
is reported in this table. The time for computing Gröbner bases is given between
parentheses. We did not consider higher systems of Cyclic-n which are not zero-
dimensional.

What is also striking here is the timing difference between borderbasix
and the classical Gröbner engines. The explanation is that for Cyclic-n systems
the Gröbner basis is very far from giving at least one multiplication matrix. As
shown in [12] in such a case the computation of the multiplication matrix is
the bottleneck of the resolution process. For instance it took 12.5 s with Magma
to compute the multiplication matrix by x0, the first variable, for the Cyclic-7
problem.

3.3 Floating Point Computation

In this section we present the floating point computation that are available inside
borderbasix. We show the time needed and the accuracy of the computed basis
(the error is computed from the rational basis).

We use the Katsura-6 system as support benchmark, for it has only 64 solu-
tions that are suitable for double precision treatment. The error estimates and
approximations are performed, computing a certification as exposed in [11,21].

arith Time basis Time solve Time cert Error on basis Error on sol

MPQ 22.5 - - 0 -

double 0.058 0.06 0.60 10−10 10

long double 0.069 0.32 3.34 10−30 10−14

MPF 128 0.13 3.38 17.64 10−38 10−36

MPF 256 0.25 3.57 56.9 10−76 10−75

We present here the same comparison for katsura-7:

218 P. Trébuchet et al.

arith Time basis Time solve Time cert Error on basis Error on sol

MPQ 22.5 - - 0 -

double 0.058 - - 10−10 -

long double 0.68 0.32 3.35 10−30 10−14

MPF 128 0.95 31.57 217.9 10−38 10−35

MPF 256 0.98 32.4 220.24 10−76 10−75

Problem v c d sol o p s t

� Robinson 2 0 6 8 4 21 15 0.10

� Motzkin 2 0 6 4 4 26 15 0.08

� Motzkin perturbed 3 1 6 1 5 167 56 0.90

� L’01, Ex. 1 2 0 4 1 2 8 6 0.022

� L’01, Ex. 2 2 0 4 1 2 8 6 0.022

� L’01, Ex. 3 2 0 6 4 4 25 15 0.075

L’01, Ex. 5 2 3 2 3 2 14 6 0.037

F, Ex. 4.1.4 1 2 4 2 2 4 3 0.023

F, Ex. 4.1.6 1 2 6 2 3 6 4 0.023

F, Ex. 4.1.7 1 2 4 1 2 4 3 0.022

F, Ex. 4.1.8 2 5 4 1 2 13 6 0.031

F, Ex. 4.1.9 2 6 4 1 4 44 15 0.11

F, Ex. 2.1.1 5 11 2 1 3 461 56 4.61

F, Ex. 2.1.2 6 13 2 1 2 209 26 0.46

F, Ex. 2.1.3 13 35 2 1 2 2379 78 34.55

F, Ex. 2.1.4 6 15 2 1 2 209 26 0.43

F, Ex. 2.1.5 10 31 2 1 2 1000 66 12.31

F, Ex. 2.1.6 10 25 2 1 2 1000 66 6.05

F, Ex. 2.1.7(1) 20 30 2 1 2 10625 231 1083.60

F, Ex. 2.1.7(5) 20 30 2 1 2 10625 231 1117.33

F, Ex. 2.1.8 24 58 2 1 2 3875 136 311.54

F, Ex. 2.1.9 10 11 2 1 2 714 44 1.98

F, Ex. 3.1.3 6 16 2 1 2 209 26 0.61

L’09 cbms1 3 3 3 5 3 26 17 0.14

L’09 rediff3 3 3 2 2 2 7 7 0.06

L’09 quadfor2 4 12 4 2 3 48 19 0.45

Simplex 15 16 2 1 2 3059 120 65.73

Tensor Ex. 4.2 6 0 8 4 8 2340 210 59.38

Border Basis for Polynomial System Solving and Optimization 219

We emphasize here that most of the numerical computation timing is spent for
getting a numerical certificate not for performing the actual computation of the
roots!

3.4 Polynomial Optimization

In the following examples, the border basis computation is combined with Semi-
Definite Programming to compute the optimum of a polynomial function over a
basic semi-algebraic set [2].

The minimizer ideal is zero-dimensional and the algorithm outputs a numerical
approximation of the minimizer points and generators of the minimizer ideal, after
a finite number of relaxations. The SDP solver used in this computation ismosek.

The table records the number of variables (v), the number of inequality and
equality constraints (c), the maximum degree of the constraints and of the poly-
nomial to minimize (d), the number of minimizer points (sol), the maximal order
(o), the maximal number of parameters (p), the maximal size of the moment
matrices (s) in the SDP problems, and the total CPU time in seconds (t).

The examples L’09 are from [13], L’01 from [15] and F are from [10]. New
equality constraints are added, following [1], to the initial problems in the exam-
ples marked with �. The example “Simplex” is the optimization of a quadratic
polynomial over the simplex. “Tensor” is an example from best rank-2 approxi-
mation of a tensor from [19]. Experiments are made on an Intel Core i5 2.40 GHz
with 8 Gb of RAM.

References

1. Bucero, M.A., Mourrain, B.: Exact relaxation for polynomial optimization on semi-
algebraic sets (2013). http://hal.inria.fr/hal-00846977

2. Bucero, M.A., Mourrain, B.: Border basis relaxation for polynomial optimization.
J. Symb. Comput. 74, 378–399 (2015)

3. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J.,
Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen,
D.: LAPACK Users’ Guide. SIAM, Philadelphia (1992). http://www.netlib.
org/lapack/

4. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system I. The user
language. J. Symb. Comput. 24(3–4), 235–265 (1997)

5. Corless, R.M., Gianni, P.M., Trager, B.M.: A reordered Schur factorization method
for zero-dimensional polynomial systems with multiple roots. In: Küchlin, W.W.
(ed.) Proceedings of ISSAC, pp. 133–140 (1997)

6. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-0-2 – A com-
puter algebra system for polynomial computations (2015). www.singular.uni-kl.
de

7. Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Liu, J.W.H., Li, X.S.: A supernodal
approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20, 720–755
(1999)

8. Faugère, J.-C.: FGb: a library for computing Gröbner bases. In: Fukuda, K.,
Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp.
84–87. Springer, Heidelberg (2010)

http://hal.inria.fr/hal-00846977
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
www.singular.uni-kl.de
www.singular.uni-kl.de

220 P. Trébuchet et al.

9. Fujisawa, K., Fukuda, M., Kobayashi, K., Kojima, M., Nakata, K., Nakata, M.,
Yamashita, M.: SDPA (SemiDefinite Programming Algorithm) (2008)

10. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H.,
Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Prob-
lems in Local and Global Optimization. Kluwer Academic Publishers, Dordrecht
(1999)

11. Graillat, S., Trébuchet, P.: A new algorithm for computing certified numerical
approximations of the roots of a zero-dimensional system. In: ISSAC 2009, pp.
167–173 (2009)

12. Huot, L.: Polynomial systems solving and elliptic curve cryptography. Ph.D. thesis,
Université Pierre et Marie Curie (UPMC) (2013)

13. Lasserre, J.-B.: Moments, Positive Polynomials and Their Applications. Imperial
College Press, London (2009)

14. Lasserre, J.-B., Laurent, M., Mourrain, B., Rostalski, P., Trébuchet, P.: Moment
matrices, border bases and real radical computation. J. Symb. Comput. 51, 63–85
(2012)

15. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11, 796–817 (2001)

16. Mourrain, B., Trébuchet, P.: Generalized normal forms and polynomials system
solving. In: Kauers, M. (ed.) ISSAC 2005, pp. 253–260 (2005)

17. Mourrain, B., Trébuchet, P.: Border basis representation of a general quotient
algebra. In: van der Hoeven, J. (ed.) ISSAC 2012, pp. 265–272 (2012)

18. MOSEK ApS. The MOSEK optimization library (2015). www.mosek.com
19. Ottaviani, G., Spaenlehauer, P.-J., Sturmfels, B.: Exact solutions in structured

low-rank approximation. SIAM J. Matrix Anal. Appl. 35(4), 1521–1542 (2014)
20. Parisse, B.: Giac/XCas, a free computer algebra system. Technical report,

University of Grenoble (2008)
21. Trébuchet, P.: A new certified numerical algorithm for solving polynomial systems.

In: SCAN 2010, pp. 1–8 (2010)

www.mosek.com

High-Precision Arithmetic, Effective
Analysis and Special Functions

Recursive Double-Size Fixed Precision
Arithmetic

Alexis Breust1, Christophe Chabot1, Jean-Guillaume Dumas1,
Laurent Fousse1, and Pascal Giorgi2(B)

1 Laboratoire J. Kuntzmann, Université Grenoble Alpes, Grenoble, France
alexis.breust,christophe.chabot,jean-guillaume.dumas,

laurent.fousse@imag.fr
2 LIRMM, CNRS, Université Montpellier, Montpellier, France

pascal.giorgi@lirmm.fr

Abstract. We propose a new fixed precision arithmetic package called
RecInt. It uses a recursive double-size data-structure. Contrary to arbi-
trary precision packages like GMP, that create vectors of words on the
heap, RecInt large integers are created on the stack. The space allocated
for these integers is a power of two and arithmetic is performed mod-
ulo that power. Operations are thus easily implemented recursively by a
divide and conquer strategy. Among those, we show that this packages
is particularly well adapted to Newton-Raphson like iterations or Mont-
gomery reduction. Recursivity is implemented via doubling algorithms
on templated data-types. The idea is to extend machine word function-
ality to any power of two and to use template partial specialization to
adapt the implemented routines to some specific sizes and thresholds.
The main target precision is for cryptographic sizes, that is up to several
tens of machine words. Preliminary experiments show that good perfor-
mance can be attained when comparing to the state of art GMP library:
it can be several order of magnitude faster when used with very few
machine words. This package is now integrated within the Givaro C++
library and has been used for efficient exact linear algebra computations.

1 Introduction

Mathematical computations that needs integers above machine word precision
are compelled to rely on a third party library. Among arbitrary precision libraries
for integers, GMP [11] (or its fork MPIR - www.mpir.org) is the most renown and
efficient. The underlying structure of GMP/MPIR integers is based on an array
of machine word integers that are accessed through a pointer. For instance, a
256-bits integers a can been represented by a dimension four array [a0, a1, a2, a3]
such that a = a0 + a1264 + a22128 + a12192. Additionally to the pointer, GMP/
MPIR stores two integers that represent respectively the number of allocated
words and the number of used words, ensuring the dynamic of the precision.

This material is based on work supported in part by the Agence Nationale pour la
Recherche under Grant ANR-11-BS02-013 HPAC.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 223–231, 2016.
DOI: 10.1007/978-3-319-42432-3 28

www.mpir.org

224 A. Breust et al.

Indeed, such a structure is well designed to efficiently handle arbitrary precision
but can be too costly when one knows in advance the targeted precision. Fur-
thermore, when dealing with multiple integers at the same time, i.e. in matrix
computation, access through pointers breaks cache mechanisms and penalizes
performances. Hopefully, one can access to a low level API (mpn level) to both
handle fixed precision and multiple integer without suffering from an heavy inter-
face. However, this approach let the memory management to the user and cannot
be incorporated to code that have been designed at a higher level. The purpose
of our work is to provide an alternative to the GMP library for fixed precision
integers that allow the flexibility of a high level library while still being efficient.
In particular, our approach is to design very simple codes that extend naturally
machine word to other powers of two.

A common and efficient way to compute over prime finite fields is to first
perform the operation over the integers and map the result back to the field
via modular reduction. In this specific case, the use of arbitrary precision is
not relevant since precision is fixed by the cardinality of the finite field. Indeed,
doubling the precision is often sufficient. To further optimize this approach, one
can use precompiled code to tackle specific range of modulus. This approach has
been proposed in the MPFQ library for cryptographic size moduli [10]. While
being very efficient to perform scalar computation over finite field, i.e. modular
exponentiation, the design of this library does not allow to use lazy modular
reduction that proved very efficient for linear algebra [7].

Besides fixed precision integers, our package also provides prime fields sup-
port that can be easily embedded in high level code, while offering very good
performance, in particular for matrix computations.

2 Functionality

2.1 Fixed Precision Arithmetic : Extending the Word Size

With fixed precision integers, the maximum number of bit is given in advance
and all arithmetic operations are done within this precision. In particular, if
K is the maximum bitsize (i.e. the precision) then all computations are done
modulo 2K . This corresponds to forgetting the carry for addition/subtraction or
to getting the lowest K-bits part of the integer products.

Fixing K in advance facilitates the storage of integers through static array
of size �K/64� on 64-bits architecture. In order to mimic word-size integers and
to fully use the memory, we focus only on supporting integers of size a power of
two: K = 2k, with k >= 6. This assumption will allow us to provide a simple
recursive data structure that eases manipulation and implementation of most
arithmetic operations as explained in Sect. 3.1.

2.2 Fixed Precision Types

Our C++ package is devoted to provide functionality for fixed integer types.
As for native integers, we provide signed and unsigned types. Furthermore,

RecInt 225

we extend this by providing a modular integer type that allows, e.g., com-
putation over prime finite fields as a standard type. We denote by ruint<k>
the type of our unsigned integer at precision 2k (for instance we also define:
using ruint128 = ruint<7>; using ruint256 = ruint<8>; etc.). Then the
other types (signed and modular) are implemented with this structure. Our fixed
precision integers are integrated in the Givaro library and available at https://
github.com/linbox-team/givaro.

Signed Type. The recursive signed integer is defined as a rint<k> type. The
data structure is just a ruint<k> and operations are performed via unsigned
operations thanks to a two’s complement representation.

Modular Integer Type. A special type rmint<k> is provided for modular
operations. The data structure is composed of an unsigned value, ruint<k>,
as well as a global ruint<k> for the modulus that is shared by all modular
elements. Modular elements modulo p are represented in the range [0, p− 1] and
all operations guarantee that values are always reduced to this range.

2.3 Integer Operations

Our package provides basic integer operations defined both as mathematical
operator (×,+,−, /) or with their functional variants (mul, add, sub, div).
A simple example of using our package for doing vector dot product with 256-bit
integers is given below:
ruint<8> *A,*B,res=0; ... for(size_t i=0;i<n;i++) res+=A[i]*B[i];

Elements of type ruint<8> can be easily converted to rint<8> for computing
with signed integer, or to rmint<8> for computing modulo a 256-bit prime. Sev-
eral other functions are available (gcd, axpy, exponentiation, comparison, shift)
as well as some internal functions that eases algorithm implementation, e.g.
addition with carry, internal access to the structure, etc.

Two Types of Modular Reduction. One can easily switch between two type
of modular reduction. In particular, one can choose between classic modular
reduction using Euclidean division or the one using Montgomery’s method [13],
described in Sect. 3.2. The choice of representation is done at compile time, by a
template constant: rmint<k>, or rmint<K, MG INACTIVE> gives you the classical
one, while rmint<K, MG ACTIVE> uses Montgomery’s reduction.

3 Underlying Theory and Technical Contribution

One drawback of arbitrary precision integers is to use a dynamic structure to
handle the variation of integers value. There, defining contiguous structure of
such integers leads to break cache prefetching when accessing data. Generally,
one alternative is then to use a low level API where dynamics of the integers is

https://github.com/linbox-team/givaro
https://github.com/linbox-team/givaro

226 A. Breust et al.

delegated to the programmer. Unfortunately, this often becomes incompatible
with the design of code at a high level, and then may not allow to re-use existing
code. In the following section, we present our prototype designing a simple data
structure preserving good performances.

3.1 Template Recursive Data Structure

Using specificities of fixed precision integers, we can represent an integer of 2k

bits as two integers of 2k−1 bits and therefore use a recursive representation.
ruint<k> is our recursive unsigned integer of 2k bits. The base case ruint<6> is
called a limb and it corresponds to a native 64-bits integer. With these conven-
tions, a ruint<k> can store any value between 0 and 22

k − 1. In order to ensure
a static contiguous storage, we chose to use a template recursive data structure
with partial specialization. Note that the compiler will always completely unroll
this structure at compiled time.

Our C++ template structure ruint<> is given hereafter together with an
example for 256-bits integers, where High and Low correspond respectively to
the leading and trailing 2k−1-bits of the 2k-bit integer.

�� ��

�� �	ruint<6> = uint64 t

�� ��

�� �	ruint<7>

������������
���� ��

�� �	ruint<6> = uint64 t

�� ��

�� �	ruint<8>

���������

���������

�� ��

�� �	ruint<7> ��

������������
�� ��

�� �	ruint<6> = uint64 t

�� ��

�� �	ruint<6> = uint64 t

template <size_t k>
struct ruint {

ruint<k-1> High, Low;
};

template <> struct ruint<6>
{uint64_t Value;};

3.2 Arithmetic Operations

Thanks to the recursive structure of ruint<k>, the implementation of arithmetic
operations can be done by a recursive approach. For instance, addition can be
done by two recursive calls with a carry propagation in between. Of course, the
base case is mapped to the corresponding word-size integer operation. One major
interest of such approach is that the compiler will unroll all the recursive calls
leading to reduced control flow overhead and better instruction scheduling. As
shown in Fig. 1 (left), such approach leads to better performance against the
GMP library for the addition of two integers (when the result is stored in one
of the operand) up to 1024 bits.

Multiplication is handled via a naive approach (or via Karatsuba’s method),
still using a recursive implementation, as shown in the following code:

template <size_t K> inline void lmul_naive

(ruint<K>& ah, ruint<K>& al, const ruint<K>& b, const ruint<K>& c) {

bool rmid, rlow; ruint<K> bcmid, blcl;

lmul_naive(blcl, b.Low, c.Low); // Low part

lmul_naive(bcmid, b.High, c.Low); // Middle part

laddmul(rmid, bcmid, b.Low, c.High, bcmid); // Middle part

RecInt 227

laddmul(ah, b.High, c.High, bcmid.High); // High part

copy(al.Low, blcl.Low);

add(rlow, al.High, blcl.High, bcmid.Low);

if (rlow) add_1(ah);

if (rmid) add_1(rmid, ah.High);

}

Fig. 1. Comparing integer addition (left) and multiplication (right) with GMP library

Still, without using any specific assembly code, contrary to GMP, our app-
roach allows to have good speed-up for small integers up to 256-bits, as shown
in Fig. 1 (right). Remark: We use Karatsuba’s method only for more than 1024
bits.

Montgomery’s Modular Reduction. Classical modular reduction uses inte-
ger division to map the result back into the desired integer range. Besides good
theoretical complexity [2], this approach is not efficient in practice since hard-
ware divisions are costly. If there exists a radix β such that divisions with β are
inexpensive and gcd(β,M) = 1, Montgomery gives in [13] a method for mod-
ular reduction without trial division. The idea of Montgomery is to compute
Cβ−1 mod M instead of computing C mod M . As shown in [2, Algorithm 2.7],
the fast version of this reduction requires to compute integer products modulo
β and integer division by β. Assuming β to be a power of 2, this provides an
algorithm without any division.

When the integer C to be reduced has a precision 2k+1 and the modulo has
a precision of 2k, i.e. β = 22

k

, this boils down to two multiplications at pre-
cision 2k. The design of our recursive integers is naturally compliant to such
method and implementation is almost straightforward. From our first experi-
ment, this straightforward implementation gives 1.5 speedup against GMP for
128-bits integer but becomes not competitive for larger modulus.

Inversion Modulo 22k

. On of the main operation in the setup of Montgomery
reduction is the computation of the inverse of M modulo β = 22

k

. The classical

228 A. Breust et al.

Fig. 2. Newton-Raphson iteration for the inverse modulo a prime power (left) and
Modular matrix-vector multiplication (right)

algorithm for this is to use the extended Euclidean algorithm. But with the
special structure of B, it is better to use a Newton-Raphson iteration [1,5],
doubling the precision at each iteration. Thus here also our recursive structure
is perfectly suited to this kind of algorithm, as shown in Fig. 2 (left). Note that
GMP uses an extended gcd.

Recursive Division. For the integer division, our structure is also well suited
to a recursive algorithm. Thus, we use that of [3] which uses two sub-algorithms
dividing respectively 2 digits by 1 digit and 3 halves by 2. They allow then a
recursive division of an s-digits integer by a r-digits integer with complexity
O(rslog(3)−1 + r log(s)).

Recursive Shift. One operation is slightly more complicated on a recursive
structure: shifting. At each recursive level, five cases have to be explored: no
shift; shifting the lower part on the high part, in parts or completely; shifting
more than half the word; shifting more than the whole word. For instance, if
the shift d is such that 0 < d < 22

k−1
, then b = a << d satisfies: b.High =

(a.High � d) ⊕ (
a.Low � (2k−1 − d)

)
and b.Low = (a.Low � d).

4 Application

4.1 Dense Linear Algebra: Freivalds Certificate

For dense linear algebra, a basic building block is the matrix-vector multiplica-
tion. We show in Fig. 2 (right) a multi-precision version of a modular matrix-
vector multi-precision. There, we use the FFLAS-FFPACK package [7], version
2.2.1 (http://linalg.org/projects/fflas-ffpack) and just change the underlying rep-
resentation from GMP to RecInt.

This possibility of easily changing the base representation can also be
extremely important when certifying the results. In verified computing, a client

http://linalg.org/projects/fflas-ffpack

RecInt 229

(the Verifier) will check the results provided by a server (typically a cloud, the
Prover). In dense linear algebra the basic tools for this is Freivalds’ certificate
for matrix-multiplication [9]. It uses matrix-vector multiplications with random
vectors to check that C = AB, via Cv − A(Bv) ?== 0 on a random projection.
With this certificate it is then possible to check any fast dense linear algebra
computations with any precision [12, Sect. 5]. These certificates have a double
goal. First this is a way to improve the confidence in a result, and this is even
more the case if the underlying data structure is different for the computation
and for the certificate. Second it provides a way to check outsourced computa-
tions. This is economically viable only if the Verifier’s time is faster than the
Prover’s time. We show in Fig. 2 (right) that RecInt makes it possible to gain
on all dense linear algebra verification, when operations require a few machine
words.

4.2 Sparse Linear Algebra: Prime Power Rank

The Smith normal form is useful, in topology for instance, for computing the
homology of a simplicial complex over the integers. There, the involved matri-
ces are quite often sparse and computations reduce to computing the rank of
these matrices modulo some prime powers [8, Sect. 5.1]. We report in Table 1
on timings using the LinBox library [6], version 1.4.1 (https://github.com/
linbox-team/linbox). The last invariant factor of the matrix S16.231× 231 is
263, while that of S22.1002× 1002 is 285, so both need some extra precision to
be computed. But as this factor is not known in advance, a strategy is to double
the precision, until the rank modulo the prime power reaches the integer rank of
the matrix. For the considered matrices we would stop at 256 bits, but we see in
Table 1 that the strategy can be faster until 512 bits. As a comparison we also
give timings modulo 340 to show that this is not specific to the characteristic 2.

Table 1. Rank modulo a prime power http://hpac.imag.fr/Matrices/Tsuchioka

Matrix mod int64 t RecInt GMP

6 7 8 9 10

S16.231× 231 340 - 0.01 s 0.05 s 0.12 s 0.37 s 1.28 s 0.19 s

S16.231× 231 263 0.03 s 0.03 s 0.09 s 0.29 s 1.15 s 4.64 s 1.85 s

S16.231× 231 264 - - 0.09 s 0.30 s 1.15 s 4.64 s 1.85 s

S22.1002× 1002 340 - 0.34 s 1.04 s 2.60 s 7.67 s 25.84 s 6.32 s

S22.1002× 1002 263 - 2.60 s 7.00 s 23.10 s 88.24 s 356.79 s 154.22 s

S22.1002× 1002 286 - - 7.37 s 24.17 s 90.30 s 357.44 s 190.36 s

https://github.com/linbox-team/linbox
https://github.com/linbox-team/linbox
http://hpac.imag.fr/Matrices/Tsuchioka

230 A. Breust et al.

4.3 Towards an FPGA Implementation

We present here the first attempts towards an implementation on a FPGA. To
build a programmable hardware (http://shiva.minalogic.net/), we had to provide
basic arithmetic libraries to be used in an Elliptic curve based encryption scheme.
We chose to use a dedicated software transforming C++ source into VHDL
called GAUT [4]. The creation of a VHDL program can be split in the following
steps: compilation of the C++ source and creation of the corresponding graph;
compilation of the library containing the required operations; synthesis of the
VHDL program and estimation of performance.

Table 2. FPGA area of modular exponentiation for different output flows, with
RecInt integers from 128 to 512 bits

128 bits op/s 7812 15625 31250 62500 125000 250000

Flipflops 3040 6100 7008 9538 16617 32199

256 bits op/s 976 1953 3906 7812 15625 31250

Flipflops 3618 4391 6923 7654 8776 14542

512 bits op/s 61 122 244 488 976 1953

Flipflops 3553 3553 3553 4704 5729 7458

Table 2 shows some simulations of a modular exponentiation on a Virtex 5.
We made the output flow vary in order to check the effect on the required size on
the FPGA. We notice that required size can be significantly reduced if we accept
a lower output flow. One nice point is that, due to the simple recursive structure
of RecInt, these results have been obtained without significant modifications
on the C++ source and automatically transformed. They are not optimal but
rather promising, with no significant work load.

5 Conclusion and Perspective

Our RecInt package is a first attempt to provide high level API for fixed pre-
cision integers that are usable out of the box. Thus it is easy to switch from
native integer types and to still provide good performance when compared to
standard libraries. To further improve the performance, we need to introduce
SIMD vectorized instructions in the design of our specializations and remove as
much as possible conditional jumps. Modular multiplication should also benefit
from either Barret’s method or Montgomery-Svoboda’s algorithm [2, Sect. 2.4.2].

References

1. Arazi, O., Qi, H.: On calculating multiplicative inverses modulo 2m. IEEE Trans.
Comput. 57(10), 1435–1438 (2008). http://dx.org/10.1109/TC.2008.54

http://shiva.minalogic.net/
http://dx.org/10.1109/TC.2008.54

RecInt 231

2. Brent, R., Zimmermann, P.: Modern Computer Arithmetic. Cambridge University
Press, New York (2010)

3. Burnikel, C., Ziegler, J.: Fast recursive division. Technical Report MPI-I-98-1-022,
Max Planck Institute fr Informatik, October 1998. http://www.mpi-sb.mpg.de/
ziegler/TechRep.ps.gz

4. Coussy, P., Chavet, C., Bomel, P., Heller, D., Senn, E., Martin, E.: GAUT: a
high-level synthesis tool for DSP applications. From algorithm to digital circuit.
In: Coussy, P., Morawiec, A. (eds.) High-Level Synthesis, pp. 147–169. Springer,
Netherlands (2008). http://dx.org/10.1007/978-1-4020-8588-8 9

5. Dumas, J.-G.: On Newton-Raphson iteration for multiplicative inverses modulo
prime powers. IEEE Trans. Comput. 63(8), 2106–2109 (2014). http://dx.org/10.
1109/TC.2013.94

6. Dumas, J.-G., Gautier, T., Giesbrecht, M., Giorgi, P., Hovinen, B., Kaltofen, E.,
Saunders, B.D., Turner, W.J., Villard, G.: LinBox: a generic library for exact linear
algebra. In: ICMS 2002, Beijing, China, pp. 40–50, August 2002. http://ljk.imag.
fr/membres/Jean-Guillaume.Dumas/Publications/icms.pdf

7. Dumas, J.-G., Giorgi, P., Pernet, C.: Dense linear algebra over prime fields. ACM
Trans. Math. Softw. 35(3), 1–42 (2008). http://dx.org/10.1145/1391989.1391992

8. Dumas, J.-G., Saunders, B.D., Villard, G.: On efficient sparse integer matrix
Smith normal form computations. J. Symbol Comput. 32(1/2), 71–99 (2001).
http://dx.org/10.1006/jsco.2001.0451

9. Freivalds, R.: Fast probabilistic algorithms. In: Bečvář, J. (ed.) MFCS 1979. LNCS,
vol. 74, pp. 57–69. Springer, Heidelberg (1979)

10. Gaudry, P., Thomé, E.: The mpFq library and implementing curve-based key
exchanges. In: SPEED: Software Performance Enhancement for Encryption and
Decryption, Amsterdam, Netherlands, pp. 49–64. ECRYPT Network, June 2007.
http://hal.inria.fr/inria-00168429

11. Granlund, T.: The GNU multiple precision arithmetic library, v6.1, November
2015. http://gmplib.org

12. Kaltofen, E.L., Nehring, M., Saunders, B.D.: Quadratic-time certificates in linear
algebra. In: ISSAC 2011, San Jose, USA, pp. 171–176, June 2011. http://www.
math.ncsu.edu/kaltofen/bibliography/11/KNS11.pdf

13. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985). http://dx.org/10.1090/S0025-5718-1985-0777282-X

http://www.mpi-sb.mpg.de/ziegler/TechRep.ps.gz
http://www.mpi-sb.mpg.de/ziegler/TechRep.ps.gz
http://dx.org/10.1007/978-1-4020-8588-8_9
http://dx.org/10.1109/TC.2013.94
http://dx.org/10.1109/TC.2013.94
http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Publications/icms.pdf
http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Publications/icms.pdf
http://dx.org/10.1145/1391989.1391992
http://dx.org/10.1006/jsco.2001.0451
http://hal.inria.fr/inria-00168429
http://gmplib.org
http://www.math.ncsu.edu/kaltofen/bibliography/11/KNS11.pdf
http://www.math.ncsu.edu/kaltofen/bibliography/11/KNS11.pdf
http://dx.org/10.1090/S0025-5718-1985-0777282-X

CAMPARY: Cuda Multiple Precision
Arithmetic Library and Applications

Mioara Joldes1(B), Jean-Michel Muller2, Valentina Popescu2,
and Warwick Tucker3

1 LAAS-CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse, France
joldes@laas.fr

2 LIP Laboratory, ENS Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
{jean-michel.muller,valentina.popescu}@ens-lyon.fr

3 Department of Mathematics, Uppsala University, Box 480, 75106 Uppsala, Sweden
warwick@math.uu.se

Abstract. Many scientific computing applications demand massive
numerical computations on parallel architectures such as Graphics
Processing Units (GPUs). Usually, either floating-point single or double
precision arithmetic is used. Higher precision is generally not available
in hardware, and software extended precision libraries are much slower
and rarely supported on GPUs. We develop CAMPARY: a multiple-
precision arithmetic library, using the CUDA programming language for
the NVidia GPU platform. In our approach, the precision is extended
by representing real numbers as the unevaluated sum of several stan-
dard machine precision floating-point numbers. We make use of error-free
transforms algorithms, which are based only on native precision opera-
tions, but keep track of all rounding errors that occur when performing
a sequence of additions and multiplications. This offers the simplicity
of using hardware highly optimized floating-point operations, while also
allowing for rigorously proven rounding error bounds. This also allows
for easy implementation of an interval arithmetic. Currently, all basic
multiple-precision arithmetic operations are supported. Our target appli-
cations are in chaotic dynamical systems or automatic control.

Keywords: Floating-point arithmetic · Multiple precision library ·
GPGPU computing · Error-free transform · Floating-point expansions ·
Dynamical systems · Hénon map, Semi-definite programming

1 Introduction

CAMPARY is a multiple-precision arithmetic library which targets mainly appli-
cations deployed on NVIDIA GPU platforms (compute capability 2.0 or greater).
Both a CPU version (in C++ language) and a GPU version (written in CUDA
C programming language [1]) are freely available at http://homepages.laas.fr/
mmjoldes/campary/. Our library provides extended precisions on the order of

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 232–240, 2016.
DOI: 10.1007/978-3-319-42432-3 29

http://homepages.laas.fr/mmjoldes/campary/
http://homepages.laas.fr/mmjoldes/campary/

CAMPARY 233

a few hundreds of bits. Currently, all basic multiple-precision arithmetic opera-
tions (+,−, ∗, /,

√) are supported. Our implementation is very flexible: we pro-
vide templated precision sizes and overloaded operators. The library contains
two levels of algorithms: (i) certified algorithms with rigorous error bounds and
output constraints; (ii) “quick-and-dirty” algorithms that perform well for the
average case, but do not consider the corner cases (i.e. cancellation prone com-
putations). The later one also comes with a code generation module that allows
for optimal performance.

The library was initially developed and tuned for long time iteration of
chaotic dynamical systems in extended precision. At present, we aim at han-
dling applications which require both extended precision and high performance
computing.

2 Context and Related Software

Currently most floating-point (FP) calculations are done using single-precision
(also called binary32) or double-precision (also called binary64) arithmetic. The
majority of today’s available processors (including GPUs) offer very fast imple-
mentations of FP arithmetic in these two formats, and comply with the IEEE 754-
2008 standard for FP arithmetic [2]. This standard defines five rounding functions
(round downwards, upwards, towards zero, to the nearest “ties to even”, and to
the nearest “ties to away”). An arithmetic operation should return the result as if
computed using infinite precision and then applying the rounding function. Such
an operation is said to be correctly rounded. The IEEE 754-2008 standard enforces
the correct rounding of all basic arithmetic operations (addition, multiplication,
division and square root). This requirement improves the portability of numer-
ical software and also makes it possible and relatively easy to build an interval
arithmetic (i.e., we get sure lower and upper bounds on the exact result).

However, several high-performance computing (HPC) problems require
higher precision (also called multiple precision), up to a few hundred bits. For
instance, in the field of chaotic dynamical systems, such problems appear in both
mathematical questions (e.g., the study of strange attractors such as the Hénon
attractor [3], in bifurcation analysis and stability of periodic orbits) and in appli-
cations to celestial mechanics (e.g., long-term stability of the solar system [4]).
Multiple precision is also used in computational geometry (several techniques
we use were initially developed for this domain) [5]. An example in experimental
mathematics is the high-accuracy computation of kissing numbers, i.e. the max-
imal number of non-overlapping unit spheres that simultaneously can touch a
central unit sphere [8]. That approach is based on very accurate solving of numer-
ically sensitive semi-definite optimization problems (SDP). A recent increased
interest in high precision SDP libraries comes also from ill-conditioned problems
in quantum chemistry or control theory [9].

As of today, higher precision, such as quad-precision (binary128) or more has
not yet been implemented in hardware on widely distributed processors, and the
most common solution is software emulation. Arbitrary precision, i.e., the user’s

234 M. Joldes et al.

ability to choose the precision for each calculation, is now available in most
computer algebra systems such as Mathematica, Maple or Sage. Furthermore,
GNU MPFR [6] is an open source library written in C, that provides, besides
arbitrary precision, correct rounding for each atomic basic operation. However,
the versatility of such multiple precision libraries, which are able to manipulate
numbers with tens of thousands –or even more– of bits, can sometimes be a
quite heavy alternative to use, when a precision up to a few hundred bits is
sufficient and we have strong performance requirements. Moreover, these libraries
are rather difficult to port to recent highly parallel architectures, such as GPUs,
since they implement very complex arithmetic algorithms, and they employ non-
trivial memory management. Their complexity also makes them very difficult to
prove formally.

In order to take advantage of the availability and efficiency of standard
floating-point operations, our approach consists in representing higher precision
numbers as unevaluated sums of several FP numbers (of different magnitudes).
This representation is called double-double when the numbers are made up with
two double-precision numbers, triple-double for three double-precision numbers,
etc., and floating-point expansion in the general case (an arbitrary number of
terms). The arithmetic operations on such representations are based on the use
of error-free transforms, namely algorithms that allow one to compute the error
of a FP addition or multiplication exactly. For instance, the sum of two FP num-
bers can be represented exactly as a FP number which is the correct rounding of
the sum, plus a second FP number corresponding to the rounding error. Under
certain assumptions, this decomposition can be computed at a very low cost by
a simple sequence of standard precision FP operations. For instance, assuming
that a and b are two FP numbers and that the rounding function, denoted RN,
is one of the two round-to-nearest functions defined by IEEE 754-2008, a simple
algorithm (called 2Sum and due to Knuth [10]) computes the decomposition of
a + b using only 6 FP operations (see Algorithm1). Similarly, if a FMA opera-
tor1 is available, 2ProdFMA returns π and the error e (namely ab − π) in 2 FP
operations (see Algorithm 2). Algorithms like this can be extended to be used
with arbitrary precision computations by chaining, resulting into the so called
distillation algorithms [11].

Algorithm 1. 2Sum(a, b)
s ← RN(a + b)
a′ ← RN(s − b)
b′ ← RN(s − a′)
δa ← RN(a − a′)
δb ← RN(b − b′)
t ← RN(δa + δb)
return s, t

Algorithm 2. 2ProdFMA(a, b)
π ← RN(ab)
e ← RN(ab − π)
return π, e

1 A FMA (Fused Multiply-Add) operator evaluates an expression of the form xy + t
with one final rounding only.

CAMPARY 235

It is thus possible to compute very accurate values even when rounding occurs
at the intermediate operation’s level. However, proving correctness and comput-
ing error bounds for this kind of algorithms is quite tricky and often their formal
proof is necessary. Currently, the only available and easily portable code for
manipulating such floating-point expansions is Bailey’s QD library [7]. It pro-
vides double-double (DD) and quad-double (QD) arithmetic. It is known that
most operations implemented in this library do not come with proven error
bounds and correct or directed rounding is not supported. It is thus usually
impossible to assess the final accuracy of these operations and no interval arith-
metic can be constructed based on this library. However, the performance results
of QD are very good on tested problems (e.g. on SDP instances [9]).

We generalize or modify this kind of algorithms in order to prove their cor-
rectness and keep good performances. We provide intermediary formats (such
as triple-double) and also we generalize the use of expansions to those based on
single-precision (for some processors which support only this format).

3 Key Features

CAMPARY is fully supported on and suitable for GPUs. This is because most
available GPUs are compliant with the IEEE 754-2008 standard for FP arith-
metic for both single and double precision; all rounding modes are provided
and dynamic rounding mode change is supported without penalties. The fma
instruction is supported in all devices with CUDA compute capability ≥2.0.

We implemented and proved new algorithms for normalizing, adding, mul-
tiplying, dividing and square rooting FP expansions. The method we use for
computing the reciprocal and the square root of a FP expansion is based on an
adapted Newton-Raphson iteration, where the intermediate calculations are done
using “truncated” operations (additions, multiplications) involving FP expan-
sions. We gave a thorough error analysis showing that it allows for very accurate
computations (see [12]). We also introduced a new multiplication algorithm for
FP expansions with arbitrary precision, up to the order of tens of FP elements
in mind. The main feature consists in the partial products being accumulated
in a specially designed data structure that has the regularity of a fixed-point
representation while allowing the computation to be naturally carried out using
native FP types. This allows us to easily avoid unnecessary computation and
to obtain a rigorous accuracy analysis. The correctness and accuracy proofs of
the algorithm and performance comparisons with existing libraries are presented
in [13].

Fully certified algorithms like the aforementioned usually come with a per-
formance cost. Thus, we chose to offer besides these, some so-called “quick-
and-dirty” algorithms. (i) The certified ones2 come with correctness proofs and
they ensure the resulted expansion to be non-overlapping. Roughly speaking this
means that an FP expansion carries sufficient information by ensuring that the

2 Certified algorithms are available in multi prec certified.h file.

236 M. Joldes et al.

each two consecutive terms, say ui and ui+1 are sufficiently far apart; for exam-
ple, |ui+1| ≤ ulp(ui), where ulp is the unit in the last place [10, Chap. 2]. This is
achieved by using different re-normalization algorithms, depending on the meth-
ods used for computing. Moreover, these algorithms offer a very tight error bound
on the result. (ii) The “quick-and-dirty”3 use faster versions of re-normalization
algorithms. In most cases the result is going to be the same as obtained when
computing with the certified level, even the non-overlapping condition can be
achieved. The result may be uncertain if cancellation happens during interme-
diate computations; this can generate intermediate 0s or even non-monotonic
expansions in the result. Also the worst case error bounds that we are able to
prove are not as tight as in the certified level. We recommend the use of the
“quick-and-dirty” if the performance requirements are strong, especially if there
is a possibility to a posteriori check the correctness of the numerical result.

4 Applications

In what follows we briefly describe two applications (one achieved and one on-
going work) for CAMPARY.

4.1 Hénon Map Iteration

In [3], we studied the behavior of the Hénon map, a classical two-parameter,
invertible map h(x, y) = (1 + y − ax2, bx). Depending on the two parameters
a and b, this map can be chaotic, regular (the attractor of the map is a stable
periodic orbit, also called sink), or a combination of these. We were interested
in observing whether near the classical parameters a = 1.4 and b = 0.3, the
Hénon map is chaotic and supports a strange attractor. This property has been
observed numerically, but the question whether the Hénon attractor is indeed
chaotic (trajectories belonging to the attractor are aperiodic and sensitive to ini-
tial conditions) or not remains open. In order to disprove this conjecture and find
sinks for parameters close to the classical ones, we need to compute very long
orbits for a large amount of initial points and parameters. Iterating the map for
various initial points is a classical SIMD parallel problem, so a GPU implemen-
tation was done. For a double-precision implementation we obtain a significant
speed-up of 21.5x compared to a multi-threaded CPU implementation. In order
to tackle the conjecture, we used CAMPARY. The strategy for locating sinks is
briefly the following: (1) We long term iterate the map (106 ∼ 109 iterations)
for various combinations of parameters and initial points in order to identify
(using some additional tricks) some “numerical periodic orbits”. A GPU code
snippet for iterating the map is in Fig. 1. This very computationally intensive
search process is parallelized; (2) At the end of the search, we rigorously prove
the existence of periodic orbits using methods from interval analysis. This part
is checked “on-line” on a CPU architecture. A performance results comparison
with QD and MPFR is given in Table 1 (the “quick-and-dirty” version of the
algorithms is used for CAMPARY).
3 “Quick-and-dirty” algorithms are available in multi prec.h file.

CAMPARY 237

with QD and MPFR is given in Table 1 (the “quick-and-dirty” version of the
algorithms is used for CAMPARY).

#define prec 4

/*device fct to be run using prec*doubles precision*/

__host__ __device__ void henon_iterate(double x0, double y0,

double a, double b, long int ITER) {

/*init multi_prec template vars*/

multi_prec<prec,double> x_i(x0);

multi_prec<prec,double> y_i(y0);

multi_prec<prec,double> x_old;

for (long int i=1; i <= ITER; i++) {

/*Compute iterates*/

x_i = y_i + 1.0 - a*x_i*x_i;

y_i = b*x_old;

}

}

Fig. 1. Example of usage of template multi prec types and operations with 4-doubles
precision in a host or device code that performs Hénon map iterations

Table 1. Peak number of Hénon map orbits/second for double vs. extended preci-
sion obtained using 106 iterations/orbit: (left) CAMPARY vs. QD library on a Tesla
GPU[C2075]; (right) CAMPARY vs. MPFR (both parallelized with OpenMP on 8
threads) on Intel i7-3820 @3.60 GHz.

Prec CAMPARY QD

double 102398

2-d 7608 4539

4-d 1788 618

Prec CAMPARY MPFR

2 doubles (106 bits) 227 11.8
3 doubles (159 bits) 76 10.6
4 doubles (212 bits) 37 10.1
6 doubles (318 bits) 15 8.9
8 doubles (424 bits) 8 7.9

4.2 SDP Programming

We currently consider the large-scale numerically sensitive semi-definite pro-
grams (SDP) on linear matrix inequalities (LMI). SDP can be seen as an exten-
sion of linear programming to the cone of symmetric matrices with positive
eigenvalues, and where the linear vector inequalities are replaced by LMI. LMI
are an important modeling tool in various areas of signal processing or automatic
control. Currently, SDPA [9] is the leading multiple precision HPC SDP solver.
Versions of SDPA (SDPA-GMP, SDPA-DD, SDPA-QD) use different multiple-
precision libraries for performing accurate computations. Among those, SDPA-
DD and SDPA-QD are reported to be the fastest on the market. In our present
study, we replaced QD with CAMPARY at the compilation step of SDPA (no
other tuning performed). We considered test problems from [14] where the perfor-
mances of the previously mentioned libraries are compared. Preliminary results
given in Table 2 show that CAMPARY is competitive for this kind of application
also.

238 M. Joldes et al.

Table 2. The optimal value, relative gaps, primal/dual feasible errors, iterations
and time for solving some ill-posed problems from SDPLIB by SDPA-QD, -DD, -
CAMPARY

Problem SDPA-DD SDPA-QD SDPA-CAMPARY

(2D) (3D) (4D)

gpp124-1 optimal: −7.3430762652465377

Relative gap 7.72e − 04 1.91e − 18 7.46e − 04 6.72e − 12 1.43e − 18

p.feas.error 5.42e − 20 2.86e − 41 2.71e − 20 2.72e − 29 6.88e − 41

d.feas.error 4.40e − 14 3.48e − 21 1.25e − 14 2.72e − 16 6.41e − 21

Iteration 24 57 24 39 66

Time (s) 3.580 94.58 13.25 55.57 127.52

gpp250-1 optimal: −1.5444916882934067e + 01

Relative gap 5.29e − 04 4.75e − 18 5.22e − 04 5.42e − 12 5.03e − 18

p.feas.error 3.89e − 20 2.58e − 41 1.35e − 20 1.18e − 30 6.43e − 42

d.feas.error 9.78e − 14 1.64e − 21 3.52e − 14 5.92e − 16 1.14e − 21

Iteration 25 58 25 46 56

Time (s) 28.93 762.89 132.1 527.33 856.16

gpp500-1 optimal: −2.5320543879075787e + 01

Relative gap 1.008e − 03 2.13e − 18 3.67e − 04 5.78e − 12 8.52e − 18

p.feas.error 1.01e − 20 5.73e − 39 1.35e − 20 2.01e − 28 3.76e − 42

d.feas.error 5.29e − 14 1.70e − 21 1.47e − 13 1.03e − 16 3.81e − 21

Iteration 25 55 26 42 58

Time (s) 230.05 5738.42 1027 3759.72 7146.72

qap10 optimal: −1.0926074684462389e + 03

Relative gap 3.84e − 05 2.06e − 14 9.82e − 05 2.40e − 10 3.86e − 14

p.feas.error 2.54e − 21 1.09e − 46 8.27e − 22 2.64e − 34 9.85e − 47

d.feas.error 4.91e − 14 2.97e − 30 2.62e − 13 1.98e − 22 1.18e − 29

Iteration 20 36 19 29 36

Time (s) 30.46 645.28 115.3 371.88 762.53

hinf3 optimal: 5.6940778009669388e + 01

Relative gap 1.35e − 08 5.30e − 31 2.59e − 06 2.47e − 24 1.98e − 31

p.feas.error 2.75e − 24 1.18e − 54 1.65e − 23 7.10e − 39 2.37e − 55

d.feas.error 3.82e − 14 1.74e − 38 3.66e − 14 1.79e − 29 7.89e − 42

Iteration 30 47 24 46 48

Time (s) 0.02 0.11 0.03 0.07 0.12

CAMPARY 239

5 Conclusion and Future Developments

Although initially used as a prototype for extended precision iterations of
dynamical systems, CAMPARY has become a self-contained multiple precision
arithmetic library mainly tuned for NVidia GPUs. We provide support for all
arithmetic operations, so the first extension is to use and test it in the context of
programs that make use of linear algebra, like SDP programming. Preliminary
CPU implementations show good results. On short term, we intend to provide
a GPU implementation for SDPA-CAMPARY. Concerning the certified part, a
current ongoing work aims at formally proving our arithmetic algorithms using
the Coq proof assistant [15]. A first proof of the renormalization algorithm is
almost completed. A long term goal is to provide elementary functions also.

References

1. NVIDIA, NVIDIA CUDA Programming Guide 5.5 (2013)
2. IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic,

IEEE Standard 754-2008, August 2008. http://ieeexplore.ieee.org/servlet/opac?
punumber=4610933

3. Joldes, M., Popescu, V., Tucker, W.: Searching for sinks for the Hnon map using
a multiple-precision GPU arithmetic library. SIGARCH Comput. Archit. News
42(4), 63–68 (2014)

4. Laskar, J., Gastineau, M.: Existence of collisional trajectories of Mercury, Mars
and Venus with the Earth. Nature 459(7248), 817–819 (2009)

5. Priest, D.H.: Algorithms for arbitrary precision floating point arithmetic. In:
Kornerup, P., Matula, D.W. (eds.) Proceedings of the 10th IEEE Symposium
on Computer Arithmetic (Arith-10), pp. 132–144. IEEE Computer Society Press,
Los Alamitos (1991)

6. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. 33(2) (2007). Art. 13, 115

7. Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for quad-double precision floating-
point arithmetic. In: Burgess, N., Ciminiera, L. (eds.) Proceedings of the 15th
IEEE Symposium on Computer Arithmetic (ARITH-16), Vail, CO, pp. 155–162,
June 2001

8. Mittelmann, H.D., Vallentin, F.: High-accuracy semidefinite programming bounds
for kissing numbers. Exp. Math. 19(2), 175–179 (2010)

9. Yamashita, M., Fujisawa, K., Fukuda, M., Kobayashi, K., Nakata, K., Nakata,
M.: Latest Developments in the SDPA Family for Solving Large-Scale SDPs. In:
Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial
Optimization. International Series in Operations Research & Management Science,
vol. 166, pp. 687–713. Springer, US (2012)

10. Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic, Birkhäuser Boston, 2010, ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1. ISBN
978-0-8176-4704-9

11. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part I: faithful
rounding. SIAM J. Sci. Comput. 31(1), 189–224 (2008)

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

240 M. Joldes et al.

12. Joldes, M., Marty, O., Muller, J.-M., Popescu, V.: Arithmetic algorithms for
extended precision using floating-point expansions. IEEE Trans. Comput. 65(4),
1197–1210 (2016)

13. Muller, J.-M., Popescu, V., Tak, P., Tang, P.: A new multiplication algorithm for
extended precision using floating-point expansions. In: Proceedings of the 23rd
Symposium on Computer Arithmetic (ARITH-23), July 2016, to appear

14. Nakata, M.: A numerical evaluation of highly accurate multiple-precision arith-
metic version of semidefinite programming solver: SDPA-GMP, -QD and -DD. In:
2010 IEEE International Symposium on Computer-Aided Control System Design
(CACSD). IEEE (2010)

15. The Coq Development team. The Coq proof assistant referencemanual, Inria,
Version 8.0 (2004). http://coq.inria.fr

http://coq.inria.fr

On the Computation of Confluent
Hypergeometric Functions for Large Imaginary

Part of Parameters b and z

Guillermo Navas-Palencia1,2(B) and Argimiro Arratia2

1 Numerical Algorithms Group Ltd, Oxford, UK
guillermo.navas@nag.co.uk

2 Department of Computer Science,
Universitat Politècnica de Catalunya, Barcelona, Spain

argimiro@cs.upc.edu

Abstract. We present an efficient algorithm for the confluent hyper-
geometric functions when the imaginary part of b and z is large. The
algorithm is based on the steepest descent method, applied to a suit-
able representation of the confluent hypergeometric functions as a highly
oscillatory integral, which is then integrated by using various quadra-
ture methods. The performance of the algorithm is compared with open-
source and commercial software solutions with arbitrary precision, and
for many cases the algorithm achieves high accuracy in both the real
and imaginary parts. Our motivation comes from the need for accurate
computation of the characteristic function of the Arcsine distribution or
the Beta distribution; the latter being required in several financial appli-
cations, for example, modeling the loss given default in the context of
portfolio credit risk.

Keywords: Confluent hypergeometric function · Complex numbers ·
Steepest descent

1 Introduction

The confluent hypergeometric function of the first kind 1F1(a; b; z) or Kummer’s
function M(a, b, z) arises as one of the solutions of the limiting form of the

hypergeometric differential equation, z
d2w

dz2
+(b−z)

dw

dz
−aw = 0, for b /∈ Z

−∪{0},

see [1, Sect. 13.2.1]. Another standard solution is U(a, b, z), which is defined by
the property U(a, b, z) ∼ z−a, z → ∞, |ph z| ≤ (3/2)π − δ, where δ is an
arbitrary small positive constant such that 0 < δ � 1. Different methods have
been devised for evaluating the confluent hypergeometric functions, although
we are mainly interested in methods involving their integral representations. As
stated in [1, Sects. 13.4.1 and 13.4.4], the functions 1F1(a; b; z) and U(a, b, z)
have the following integral representations, respectively

1F1(a; b; z) =
Γ (b)

Γ (a)Γ (b − a)

∫ 1

0

eztta−1(1 − t)b−a−1 dt, 	(b) > 	(a) > 0 (1)

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 241–248, 2016.
DOI: 10.1007/978-3-319-42432-3 30

242 G. Navas-Palencia and A. Arratia

U(a, b, z) =
1

Γ (a)

∫ ∞

0

e−ztta−1(1 + t)b−a−1 dt, 	(a) > 0, |phz| <
1
2
π (2)

Furthermore, Kummer’s transformations (cf. [1, Sect. 13.2 (vii)]), can be
applied in situations where the parameters are not valid for some methods, or
when the regime of parameters causes numerical instability,

1F1(a; b; z) = ez
1F1(b − a; b;−z), U(a, b, z) = z1−bU(a − b + 1, 2 − b, z) (3)

In other cases, recurrences relations can be applied (cf. [1, Sect. 13.3]).
A recent survey of numerical methods for computing the confluent hypergeo-
metric function can be found in [9,10], where the authors provide roadmaps
with recommendations for which methods should be used in each situation.

2 Algorithm

The presented method for the computation of the confluent hypergeometric func-
tions is based on the application of suitable transformations to highly oscillatory
integrals and posterior numerical evaluation by means of quadrature methods.
Some direct methods for 1F1(a; b; iz) can be applied for moderate values of |
(z)|,
however a more general approach is the use of the numerical steepest descent
method, which turns out to be very effective for the regime of parameters of
interest. First, we briefly explain the path of steepest descent. Subsequently, we
introduce the steepest descent integrals for those cases where |
(b)|, |
(z)| → ∞.

2.1 Path of Steepest Descent

For this work we consider the ideal case for analytic integrand with no station-
ary points. We follow closely the theory developed in [3]. Let us consider the
oscillatory integral

I =
∫ β

α

f(x)eiωg(x) dx (4)

where f(x) and g(x) are smooth functions. By applying the steepest descent
method, the interval of integration is substituted by a union of contours on the
complex plane, such that along these contours the integrand is non-oscillatory
and exponentially decaying. Given a point x ∈ [α, β], we define the path of
steepest descent hx(p), parametrized by p ∈ [0,∞), such that the real part
of the phase function g(x) remains constant along the path. This is achieved
by solving the equation g(hx(p)) = g(x) + ip. If g(x) is easily invertible, then
hx(p) = g−1(g(x) + ip), otherwise root-finding methods are employed, see [3,
Sect. 5.2]. Along this path of steepest descent, integral (4) is transformed to

I[f ;hx] = eiωg(x)

∫ ∞

0

f(hx(p))h′
x(p)e−ωp dp

=
eiωg(x)

ω

∫ ∞

0

f

(
hx

(
q

ω

))
h′

x

(
q

ω

)
e−q dq (5)

Computation of Confluent Hypergeometric Functions 243

and I = I[f ;hα] − I[f ;hβ] with both integrals well behaved. In the cases where
β = ∞, this parametrization gives I = I[f ;hα] − 0.

A particular case of interest is when g(x) = x. Then the path of steepest
descent can be taken as hx(p) = x + ip, and along this path (4) is written as

∫ β

α

f(x)eiωx dx =
ieiωα

ω

∫ ∞

0

f

(
α+i

q

ω

)
e−q dq − ieiωβ

ω

∫ ∞

0

f

(
β+i

q

ω

)
e−q dq (6)

2.2 U(a, b, z), �(z) → ∞
Integral representation (2) can be transformed into a highly oscillatory integral

U(a, b, z) =
1

Γ (a)

∫ ∞

0

e−�(z)tta−1(1 + t)b−a−1e−i�(z)t dt (7)

Taking g(t) = t, g′(t) = 1 �= 0 and there are no stationary points. Therefore, in
this case we only have one endpoint and the steepest descent integral obtained
by (6) is reduced to a single line integral,

U(a, b, z) =
i

ωΓ (a)

∫ ∞

0

e−�(z)i q
ω

(
i
q

ω

)a−1(
1 + i

q

ω

)b−a−1

e−q dq (8)

2.3 U(a, b, z), �(b) → ∞
In this case, the path of integration is modified to avoid a singularity at t = 0, as
can be seen after performing the transformation to a highly oscillatory integral,

U(a, b, z) =
1

Γ (a)

∫ ∞

0

e−ztta−1(1 + t)b−a−1 dt

=
ez

Γ (a)

∫ ∞

1

e−zt(t − 1)a−1t�(b)−a−1ei�(b) log(t) dt (9)

Now, we solve the path of steepest descent at t = 1 with g(t) = log(t), which
in this case results trivial, h1(p) = elog(1)+ip = eip and h′

1(p) = ieip.
Likewise, no stationary points besides t = ∞ are present, and therefore there

are no further contributions. The steepest descent integral is given by

U(a, b, z) =
iez

ωΓ (a)

∫ ∞

0

eφ(q,ω)(μ(q, ω) − 1)a−1μ(q, ω)�(b)−a−1e−q dq (10)

where μ(q, ω) = i q
ω and φ(q, ω) = −zeμ(q,ω) + μ(q, ω).

2.4 1F1(a, b, z), �(z) → ∞
Similarly, we transform integral (1) into a highly oscillatory integral

1F1(a; b; z) =
Γ (b)

Γ (a)Γ (b − a)

∫ 1

0

e�(z)tta−1(1 − t)b−a−1ei�(z)t dt (11)

244 G. Navas-Palencia and A. Arratia

Again with g(t) = t and the transformation stated in (6), we obtain, after some
calculations, the steepest descent integrals given by

1F1(a; b; z) = Γ (b)
Γ (a)Γ (b−a)

i
ω

[∫ ∞
0

e�(z)i q
ω

(
i q
ω

)a−1(
1 − i q

ω

)b−a−1

e−q dq

−eiω
∫ ∞
0

e�(z)(1+i q
ω)

(
1 + i q

ω

)a−1(
− i q

ω

)b−a−1

e−q dq

]
(12)

2.5 1F1(a, b, z), �(b) → ∞
For this case we can use the following connection formula [1, Sect. 13.2.41], valid
for all z �= 0,

1
Γ (b) 1F1(a; b; z) =

e∓πia

Γ (b − a)
U(a, b, z) +

e±πi(b−a)

Γ (a)
ezU(b − a, b, ze±πi) (13)

2.6 Numerical Quadrature Schemes

Adaptive Quadrature for Oscillatory Integrals. The integrand in (11) can be
rewritten in terms of its real and imaginary parts to obtain two separate integrals
with trigonometric weight functions, the oscillatory factor, given the property,

∫ 1

0

f(t)eiωt dt =
∫ 1

0

f(t) cos(ωt) dt +i

∫ 1

0

sin(ωt) dt (14)

Thus, we obtain the following integral representation for 1F1(a; b; z) when
|
(z)| → ∞,

1F1(a; b; z) =
Γ (b)

Γ (a)Γ (b − a)

[∫ 1

0
e�(z)tta−1(1 − t)b−a−1 cos(
(z)t) dt

+ i
∫ 1

0
e�(z)tta−1(1 − t)b−a−1 sin(
(z)t) dt

]
(15)

These type of integrals can be solved using specialized adaptive routines, such
as the routine gsl integration qawo from the GNU Scientific Library [2]. This
routine combines Clenshaw-Curtis quadrature with Gauss-Kronrod integration.
Numerical examples can be found in [8], which show that this method works
reasonably well for moderate values of |
(z)|. Unfortunately, this method cannot
be directly applied to U(a, b, z), and Kummer’s transformation [1, Sect. 13.2.42],
valid for b /∈ Z, is needed.

Gauss-Laguerre Quadrature. An efficient approach for infinite integrals with
an exponentially decaying integrand is classical Gauss-Laguerre quadrature.
Laguerre polynomials are orthogonal with respect to e−x on [0,∞). Hence, using
n-point quadrature yields an approximation,

I[f ;hx] ≈ Q[f ;hx] :=
eiωg(x)

ω

n∑

k=1

wkf

(
hx

(
xk

ω

))
h′

x

(
xk

ω

)
(16)

Computation of Confluent Hypergeometric Functions 245

As stated in [3], the approximation error by the quadrature rule behaves
asymptotically as O(ω−2n−1) as ω → ∞. As an illustrative example, let us
consider the asymptotic expansion for U(a, b, z) when |z| → ∞, which can be
deduced by applying Watson’s lemma [11] to (8),

U(a, b, z) ∼ z−a
∞∑

n=0

(a)n(a − b + 1)n

n!(−z)n
, |ph z| ≤ 3

2
π − δ (17)

The error behaves asymptotically as O(z−n−1), as notice by truncating the
asymptotic expansion after n terms. Therefore, the asymptotic order of the
Gauss-Laguerre quadrature is practically double using the same number of terms.
A formula for the error of the n-point quadrature approximation (16) is

E =
(n!)2

(2n)!
f2n(ζ), 0 < ζ < ∞ (18)

According to this formula and under the general assumption that a, b ∈ R \N, f
is infinitely differentiable on [0,∞), we can use the general Leibniz rule for the
higher derivatives of a product of m factors to obtain the derivative of order 2n,

((f · g) · h)(2n) =
2n∑

j=0

2n−j∑

k=0

(2n)! · f (j)g(k)h(2n−k−j)

j!k!(2n − k − j)!
(19)

where

f(x) = e−�(z)ix/ω, g(x) =
(

1 + i
x

ω

)b−a−1

, h(x) =
(

i
x

ω

)a−1

(20)

and the 2n derivatives are given by
2n∑

j=0

2n−j∑

k=0

(2n)!(−1)j

j!k!(2n−k−j)!

(
�(z)i

ω

)j

e−�(z)ix/ω

(
i
ω

)k

(b−a−1)−k

(
1 + i x

ω

)b−a−1−k

×
(

i
ω

)2n−k−j

(a−1)−2n+k+j
xa−1−2n+k+j (21)

where (a)n is the Pochhammer symbol or rising factorial. An error bound in
terms of a, b and z might be obtained from (21). Ideally, the error bound shall be
tight enough without increasing the total computation time excessively. However,
as can be seen below, numerical experiments indicate that the number of terms
n rarely exceeds 50 for moderate values of the remaining parameters, typically
if |a|, |b| · 10 < |ω|, for the case U(a, b, iz) or 1F1(a, b, iz). Finally, for large
parameters we apply logarithmic properties to the integrand in order to avoid
overflow or underflow.

2.7 Numerical Examples

In this section, we compare our algorithm (NSD) with other routines in double
precision floating-point arithmetic in terms of accuracy and computation time1.
1 Intel(R) Core(TM) i5-3317U CPU at 1.70 GHz.

246 G. Navas-Palencia and A. Arratia

Note that just a few packages in double precision allow the evaluation of the
confluent hypergeometric function with complex argument. For this study we
use Algorithm 707: CONHYP, described in [6,7] and Zhang and Jin implemen-
tation (ZJ) in [12]. Both codes are written in Fortran 90 and were compiled using
gfortran 4.9.3 without optimization flags. We implemented a simple proto-
type of the described methods using Python 3.5.1 and the package SciPy [5],
therefore there is plenty of room for improvement, and is part of ongoing work.
Nevertheless, as shown in Table 1, our algorithm clearly outperforms aforemen-
tioned codes, being more noticeable as z increases. In order to test the accuracy,
we use mpmath [4] with 20 digits of precision to compute the relative errors.

Table 1. Relative errors for routines computing the confluent hypergeometric function
for complex argument. N : number of Gauss-Laguerre quadratures. (∗): precision in
mpmath increased to 30 digits. (E): convergence to incorrect value. (−): overflow.

1F1(a, b, z) CONHYP ZJ NSD N

(1, 4, 50i) 3.96e−13/4.29e−18i 1.50e−15/4.28e−18i 1.15e−16/1.11e−16i 2

(3, 10, 30 + 100i) 1.27e−13/1.28e−13i 6.83e−17/1.07e−14i 2.48e−17/1.24e−14i 25

(15, 20, 200i) 9.20e−13/9.20e−13i E 8.43e−16/7.93e−16i 25

(400, 450, 1000i) 8.32e−12/1.00e−11i − 1.37e−12/1.02e−13i 50

(2, 20, 50 − 2500i) 1.35e−11/1.35e−11i 7.30e−11/2.10e−09i 4.75e−16/6.41e−16i 20

(500, 510, 100 − 1000i) 4.10e−13/3.68e−12i − 4.71e−13/3.11e−16i 50

(2, 20, −20000i) − 5.79e−10/7.99e−07i 5.92e−16/3.62e−14i 10

(900, 930, −1010i) − − 6.78e−13/6.77e−13i 20

(4000, 4200, 50000i)∗ − − 6.04e−12/5.99e−12i 80

Table 2 and Fig. 1 summarize the testing results and general performance of
the algorithm for U(a, b, z). As can be observed, 13–14 digits of precision in real
and imaginary part are typically achieved. A similar precision for 1F1(a; ib; z)
is expected. In terms of computational time, we compare our implementation
in Python with MATLAB R2013a. As shown in Table 3, the MATLAB routine
hypergeom is significantly slow for large imaginary parameters.

Table 2. Error statistics for U(a, b, iz) and U(a, ib, z) using N = 100 quadratures.

Function Min Max Mean

U(a, b, iz) 1.97e−18/2.04e−17i 9.97e−13/2.50e−11i 1.34e−14/6.94e−14i

U(a, ib, z) 6.57e−18/6.17e−18i 1.49e−11/8.55e−12i 1.38e−13/1.43e−13i

3 Applications

Besides the necessity of accurate and reliable methods for the regime of para-
meters and argument considered, confluent hypergeometric functions can be
encountered in several scientific applications. In this paper, we focus on appli-
cations in statistics, more precisely on the evaluation of characteristic functions,

Computation of Confluent Hypergeometric Functions 247

Fig. 1. Relative error in computing U(a, b, z). Error in U(a, b, iz) for a ∈ [2, 400], b ∈
[−500, 500], z ∈ [103, 106] (left) and U(a, ib, z) for a ∈ [10, 100], b ∈ [103, 104], z ∈
[10, 100] (right). 700 and 1400 tests, respectively. (Color figure online)

Table 3. Comparison in terms of cpu time. MATLAB second evaluation in parenthesis.

1F1(a; b; z) MATLAB NSD

(2, 20,−20000i) 1.509 (0.068) 0.033

(900, 930,−1010i) 5.594 (0.739) 0.035

(4000, 4200, 50000i) 488.384(18.127) 0.043

which can be defined in terms of confluent hypergeometric functions. Character-
istic functions appear in many financial econometric models, for example mod-
elling a beta-distributed loss given default in portfolio credit risk models (see [8,
Sect. 4.4.2]). Let us consider three statistical distributions:

– Characteristic function of the Beta distribution.

φX(t) = 1F1(α;α + β; it) (22)

where α, β > 0. Thereby, the regime of parameters holds for the integral
representation in (12).

– The standard Arcsine distribution is a special case of the Beta distribution
with α = β = 1/2, therefore we obtain a similar characteristic function, which
can be identically computed.

φX(t) = 1F1

(
1
2
; 1; it

)
(23)

– The characteristic function for the F–distribution is defined in terms of the
confluent hypergeometric function of the second kind,

φX(t) =
Γ ((p + q)/2)

Γ (q/2)
U

(
p

2
, 1 − q

2
,−q

p
it

)
(24)

where p, q > 0, are the degrees of freedom. In this case we can use the integral
representation in (8).

248 G. Navas-Palencia and A. Arratia

4 Conclusions

We have presented an efficient algorithm for computing the confluent hypergeo-
metric functions with large imaginary parameter and argument, which emerges
as an alternative to asymptotic expansions. The numerical experiments show
promising results and fast convergence as the imaginary part increases. Through-
out this paper we have been considering real values for the remaining parameters,
otherwise the function f becomes oscillatory. The numerical steepest descent
method is not insensitive to oscillations in f , although in some cases this can be
treated by applying other transformations. In cases where that is not possible,
other methods have to be considered. Finally, a suitable integral representation
for |
(a)| → ∞ carry more complications and is part of future work.

References

1. NIST digital library of mathematical functions. Release 1.0.10 of 07 August 2015.
In: Olver, F. W.J., et al. (ed.) NIST Handbook of Mathematical Functions.
Cambridge University Press, NY (2010). http://dlmf.nist.gov/

2. Galassi, M., et al.: GNU Scientific Library Reference Manual, 3rd edn. ISBN
0954612078. http://www.gnu.org/software/gsl/

3. Huybrechs, D., Vandewalle, S.: On the evaluation of highly oscillatory integrals by
analytic continuation. SIAM J. Numer. Anal. 44(3), 1026–1048 (2006)

4. Johansson, F., others.: mpmath: a Python library for arbitrary-precision floating-
point arithmetic (version 0.19) (2013). http://mpmath.org/

5. Jones, E., Oliphant, E., Peterson, P., et al.: SciPy: open source scientific tools for
Python (2001). http://www.scipy.org/

6. Nardin, M., Perger, W.F., Bhalla, A.: Algorithm 707. CONHYP: a numerical eval-
uator of the confluent hypergeometric function for complex arguments of large
magnitudes. ACM Trans. Math. Softw. 18, 345–349 (1992)

7. Nardin, M., Perger, W.F., Bhalla, A.: Numerical evaluation of the confluent hyper-
geometric function for complex arguments of large magnitudes. J. Comput. Appl.
Math. 39, 193–200 (1992)

8. Navas-Palencia, G.: Portfolio credit risk: models and numerical methods. MSc
in Statistics and Operations Research Dissertation, Universitat Politècnica
de Catalunya (2016). http://upcommons.upc.edu/bitstream/handle/2117/82265/
memoria.pdf

9. Pearson, J.W.: Computation of hypergeometric functions. MSc in Mathematical
Modelling and Scientific Computing Dissertation, University of Oxford (2009).
http://people.maths.ox.ac.uk/∼porterm/research/pearson final.pdf

10. Pearson, J.W., Olver, S., Porter, M.A.: Numerical methods for the computation of
the confluent and gauss hypergeometric functions (2015). arXiv:1407.7786

11. Watson, G.N.: The harmonic functions associated with the parabolic cylinder.
Proc. Lond. Math. Soc. 2, 116–148 (1918)

12. Zhang, S., Jin, J.: Computation of Special Functions. Wiley, New York (1996)

http://dlmf.nist.gov/
http://www.gnu.org/software/gsl/
http://mpmath.org/
http://www.scipy.org/
http://upcommons.upc.edu/bitstream/handle/2117/82265/memoria.pdf
http://upcommons.upc.edu/bitstream/handle/2117/82265/memoria.pdf
http://people.maths.ox.ac.uk/~porterm/research/pearson_final.pdf
http://arxiv.org/abs/1407.7786

Mathematical Optimization

Parallelization of the FICO Xpress-Optimizer

Timo Berthold1(B), James Farmer2, Stefan Heinz1, and Michael Perregaard2

1 FICO (Fair Isaac Corporation), Berlin, Germany
{timoberthold,stefanheinz}@fico.com

2 FICO, Birmingham, UK
{jamesfarmer,michaelperregaard}@fico.com

Abstract. Many optimization problems arising in practice can be mod-
eled as mixed integer programs (MIPs). In this paper, we present the new
parallelization concept for the state-of-the-art MIP solver FICO Xpress-
Optimizer. A natural precondition to achieving reasonabling speedups
from parallelization is maintaining a high workload of the available com-
putational resources. At the same time, reproducibility and reliability are
key requirements for mathematical optimization software; solvers like the
FICO Xpress-Optimizer are expected to be deterministic. The resulting
synchronization latencies render the goal of a satisfying workload a chal-
lenge in itself.

We address this challenge by following a partial information app-
roach and separating the concepts of simultaneous tasks and independent
threads from each other. Our computational results indicate that this
leads to a much higher CPU workload and thereby to an improved scal-
ing on modern high-performance CPUs. As an added value, the solution
path that the FICO Xpress-Optimizer takes is not only deterministic in
a fixed environment, but, to a certain extent, thread-independent.

Keywords: Mathematical optimization · Mixed integer programming ·
Parallelization

1 Introduction

Mixed integer programming (MIP) has become one of the most important tech-
niques in Operations Research and Discrete Optimization. This paper deals with
solving mixed integer programming (MIP) problems in parallel. Throughout this
paper without loss of generality, we assume that the MIP is given in the follow-
ing, general form:

min{〈c, x〉 : Ax ≤ b, xI ∈ Z
|I|}, (1)

with matrix A ∈ R
m×n, vectors b ∈ R

m and c ∈ R
n, and a subset I ⊆ {1, . . . , n}.

State-of-the-art MIP solvers are based on LP-based branch-and-bound [8] in
which the problem is recursively split into smaller subproblems, thereby creating
a so-called branching tree. The basic branch-and-bound tree search typically is
enhanced by a large number of sophisticated algorithms to keep the enumeration
effort small. These include numerous heuristic methods to devise primal feasible
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 251–258, 2016.
DOI: 10.1007/978-3-319-42432-3 31

252 T. Berthold et al.

solutions, and a number of cutting plane separation algorithms to increase the
lower bound value obtained by the Linear Programming (LP) relaxation, see,
e.g., [10]. In practice, this allows for a dramatic reduction in the size of the
branching tree. Typically, problems with ten thousand variables and constraints
(i.e., approximately 210 000 potential solutions) can be solved by investigating a
few hundred thousand branch-and-bound nodes.

Intuitively, tree search algorithms appear easy to parallelize. However, an
efficient parallelization of LP-based branch-and-bound is a challenging task, see
e.g., [11]. This is partially due to fact that the decisions involved depend upon
each other (e.g., branching decision are based on history information) and par-
tially due to the fact that the effort of solving a single branching node can
vary tremendously. What makes a scalable parallelization of LP-based branch-
and-bound most challenging, however, is to require determinism, i.e., making
the algorithm always take the same solution path for identical input. A well-
designed dynamic load balancing mechanism is an essential part of parallelizing
LP-based branch-and-bound. In this paper, we present the new parallelization
concept for the FICO Xpress-Optimizer.

The FICO Xpress Optimization Suite is a toolbox for mathematical opti-
mization [3,9]. It features software tools used to model and solve linear, integer,
quadratic, nonlinear, and robust optimization problems. The core solver of this
suite is the FICO Xpress-Optimizer, a state-of-the-art MIP solver which com-
bines ease of use with speed and flexibility. All implementations described in this
paper have been conducted within the FICO Xpress-Optimizer.

2 Tasks Instead of Threads: A New Parallel Framework
for the FICO Xpress-Optimizer

When designing a parallel framework for a MIP solver, we need to take into con-
sideration the various algorithmic components that might exploit parallelization
and the different means of doing so.

– Tree search: The ability to process individual nodes and subtrees in parallel
is a major driver since for many MIP instances, a huge portion of the solving
time goes into tree search.

– Strong branching: A natural candidate for parallelization, given that for
early nodes it is a major cost factor and that individual strong branches are
hopefully very similar in timewise effort.

– LP solving: The barrier algorithm for solving the root LP can be parallelized
effectively. Additionally, the FICO Xpress-Optimizer is the first MIP solver
using a parallel dual simplex algorithm [6], e.g., for LP solving during the root
node cutting loop.

– Heuristics: Heuristics rarely depend on other tasks or vice versa and can
always be run, mostly independent of the state of the search. Hence, they can
be used to fill up any available time.

Parallelization of the FICO Xpress-Optimizer 253

– Cutting: During cutting plane separation, similar algorithms are applied in
serial with identical or at least similar input data, making it a natural can-
didate for parallelization. One could run different separators for the same LP
solution in parallel or the same separators for different LP solutions.

– Concurrent MIP starts: A brute-force strategy for parallelization is to con-
currently start single-threaded solves of slightly perturbed copies of the same
MIP problem. Recently it has been shown that this is surprisingly effective,
see [4].

– Decomposition: If a problem naturally decomposes, the MIPs should be
solved in parallel. Decomposition methods such as Dantzig and Wolfe [2] also
lend themselves naturally to parallelism.

So far, only some of these aspects were addressed in the FICO Xpress-
Optimizer. Each of them used to have its own parallelization. The existing par-
allel framework was originally implemented as a job queue for parallel strong
branching. It assumed all threads to be symmetric and the set of threads to
remain constant. Determinism was accomplished by having all threads pass
through synchronization barriers in thread order. A thread was only allowed
through the a barrier when all threads had passed through the previous barrier.
The synchronization was based on counts of dual simplex iterations, with some
adjustments for heuristics. Data synchronization was very costly and therefore
performed rarely. To synchronize data, all threads were halted at a synchro-
nization barrier, and only when all threads were waiting, was data synchronized
across all workers. All but one thread would therefore be idle while the synchro-
nization was performed.

2.1 Considerations Behind a New Parallel Framework

The new parallel framework comes in two parts:

– A general task scheduler which is independent of the concrete MIP solving
application. It can handle the execution of interdepending tasks in a deter-
ministic fashion, with a focus on tasks being of different levels of complexity

– A parallel MIP implementation that makes use of the task scheduler using
callbacks

The rationale of this separation is to develop a parallel task scheduler that is
generic enough that it can be applied for all multi-threading purposes within
the FICO Xpress-Optimizer. This includes the applications listed above, but
also additional applications such as multi-starts in FICO Xpress-Nonlinear.

A core aspect of the new design is the capability to handle asymmetric tasks
that might have different levels of complexity. It should not only be possible to
have, e.g., cutting, heuristics and branch-and-bound dives parallelized individu-
ally, but to be able to run tasks of each type at the same time.

A problem with barrier based synchronization is that it does not scale well
on large numbers of cores. One consequence is to break with the one-to-one

254 T. Berthold et al.

association between threads and tasks to be performed. There should always
be new tasks available for a thread when it completes a previous task, without
needing to wait for all (or: any) other thread. The tasks therefore need to be
independent of which threads executes them.

As an important consequence, by breaking the link between threads
and tasks, it is possible to make the solution path independent of the number
of threads used – it only depends on the number of tasks created. By ensur-
ing that there are sufficient tasks in the work queue for waiting workers and
by making the exchange of information more dynamic, it becomes less impor-
tant to have an accurate measure for assigning deterministic stamps. Note that
it is an important goal of our design to make the exchange of information less
costly, mostly by a tendency to use “out-dated” information. As an extreme case
of addressing ups and downs of data synchronization, Fischetti et al. recently
presented a deterministic parallelization framework for constraint programming
that does not make use of any information exchange [5].

2.2 Implementation of a New Parallel Framework

The new scheduler is a callback driven multi-threaded scheduler similar to an
operating system kernel. Each thread of the scheduler should be able to execute
any task in the queue.

A task consists of three stages: creation, execution and collection. Note that
there typically are delays between creation and execution as well as between the
end of execution and collection. During creation, a task is defined by the callback
functions to call for execution and collection and by private data associated with
the task. Additionally, a task might have dependencies on other tasks or create
locks on global data. Finally, to improve cache performance, a task might have
an affinity towards a certain thread.

Threads do not share data at designated synchronization points. At the time
when a task is created, it gets a deterministic stamp. The task may only use
information which is itself tagged with a smaller stamp. By this, the task uses
only a subset of information that could be available if a synchronization had
been triggered when the task was created. We refer to this concept as partial
information. The idea is that the potential performance loss from using slightly
“outdated” information will be easily made up with the performance gained by
dropping the need for regular complete synchronization.

Like in the old parallelization, the computation of deterministic stamps is
based on dual simplex iterations. Adjustments are made for simplex iterations
inside heuristics. Other time-intensive procedures, e.g., calls to the barrier algo-
rithm, are approximately converted into equivalents of dual simplex iterations.

When information is collected, all data that is transferred back to global data
receives a deterministic stamp. All tasks that have a stamp which is greater than
this, will be allowed to use that information. Those stamps serve two purposes:
they provide a deterministic ordering of events, and they let each task broadcast
its current local information so the scheduler knows which data can be made
available to which tasks. Note that it might happen that tasks are created at

Parallelization of the FICO Xpress-Optimizer 255

a later point in real time but with a smaller deterministic stamp. When a thread
performs a long-running task, e.g., solving a whole sub-tree, it might update its
local copy of global data. Likewise, it might send its local data back to make it
globally available. E.g., new incumbent solutions will be made globally available
shortly after they have been found.

There are two fundamentally different types of global data: pooled data and
updated data. With pooled data, we refer to a set of independent pieces of
data, such as feasible solutions, cuts, or conflict constraints. The only difference
between a static synchronization at certain synchronization points and a dynamic
synchronization with deterministic stamps is that each of the information pieces
needs to receive an individual stamp. For updated data, i.e. scalar statistics such
as counters, averages, and so forth, the situation is more complex. This requires
being able to present different snapshots of the data for different deterministic
stamps.

Occasionally, collected data will be deleted. This holds in particular for
pooled data, such as cuts or conflicts; but updated data might be reset, too.
Data deletion can be handled the same way as data creation: The point of dele-
tion corresponds to a deterministic stamp, and tasks might only consider this
data deleted when they themselves operate on a larger stamp. This implies that
data is not deleted instantly, but kept around until all tasks with a smaller stamp
have been processed, which creates a memory overhead.

There is one major benefit in switching from a static synchronization system
to a dynamic synchronization based on deterministic stamps. It significantly
lowers the need to have the deterministic counters used for stamps to be an
accurate approximation to real elapsed time. Rough proportionality is sufficient,
since having a certain stamp “off” first of all implies that particular information
will be used later than it could, but it will not completely stop all other threads
from continuing their work. However, synchronization delays might still appear
in this new framework, when a task requests data with a deterministic stamp,
for which other, data-providing, tasks have not yet reached that stamped point.
The more the deterministic stamps are off, the more likely such delays are. This
could be pre-empted by using more “outdated” information to avoid delays.

Finally, it is the scheduler’s responsibility to ensure scalability and proper
CPU utilization. The MIP solver “only” needs to provide a sufficient number
of tasks at every time. Compare the issue of ramp-up and ramp-down phases
as, e.g., described in [12]. In the FICO Xpress-Optimizer 8.0, the solution path
will only depend on the number of tasks that are present at any point in time,
not on the number of threads. The maximum number of tasks can be set by the
control MAXMIPTASKS. By default, it is computed automatically and lies in
between two and four times the number of threads. By setting MAXMIPTASKS
accordingly, it is possible to get the same solution path as for a run on a machine
with a different number of threads, no matter whether the actual machine has
more or less threads.

256 T. Berthold et al.

3 Computational Results

Our computational experiments compare the FICO Xpress-Optimizer 7.9 [3]
with an internal beta version of the FICO Xpress-Optimizer 8.0. The experiments
were conducted on a cluster of 40 core Intel Xeon E5-2690 CPUs at 3 GHz with
24 MB cache and 256 GB main memory, running Windows Server 2012 R2. More
precisely, these are 40 virtual cores on 20 physical cores and hence, running times
for more than 20 threads will be slower than they would which 40 actual physical
cores. Both, the old and the new parallelization framework, use the Windows
synchronization API, or the Pthreads library as parallel programming API when
running on Unix.

As a test set, we chose the benchmark set from MIPLIB2010 [7]. We ran
each FICO Xpress-Optimizer version with 1 thread, 4 threads, 12 threads, and
40 threads (the maximum on the underlying hardware). A summary of the results
is given in Table 1. Column “threads” gives the number of threads with which
the respective FICO Xpress-Optimizer version was run. Column “CPU load”
presents the average workload, as a number between 0 % and 100 %. More pre-
cisely, it gives the average of the measured CPU time divided by the elapsed
wall clock times the number of requested threads. Column “time in s” shows
the shifted geometric mean of the running (wall clock) time for each of the
solvers. The shifted geometric mean of values t1, . . . , tn with shift s is defined
as n

√∏
(ti + s) − s, see, e.g., [1]. We use a shift of s = 10. Column “speedup”

gives the speedup gained through parallelization w.r.t. running a single-threaded
FICO Xpress-Optimizer. We used a time limit of one hour.

Table 2 presents the same statistics for the same solvers, but restricted to
those 29 instances from the MIPLIB2010 benchmark set, for which at least one
of the eight different solvers took at least 100 000 branch-and-bound nodes.1

Table 1. Comparing the FICO Xpress-Optimizer 7.9 and the FICO Xpress-
Optimizer 8.0 w.r.t. different numbers of threads: average CPU workload, shifted
geometric mean of solving time, and the speedup factor w.r.t. single-threaded run;
complete MIPLIB2010 benchmark set (87 instances).

Threads CPU load Time in s Speedup

Xpr7.9 Xpr8.0 Xpr7.9 Xpr8.0 Xpr7.9 Xpr8.0

1 99.4 99.7 121.4 117.4 – –

4 63.9 67.5 57.2 54.4 2.1 2.2

12 43.2 53.8 42.1 34.7 2.9 3.4

40 25.8 33.1 35.2 28.6 3.4 4.1

1 Those were the instances rocII-4-11, ns1766074, aflow40b, bnatt350, csched010,
danoint, dfn-gwin-UUM, gmu-35-40, iis-100-0-cov, m100n500k4r1, n3div36, neos-
1337307, neos18, neos-849702, neos-916792, newdano, noswot, ns1830653, pg5 34,
pigeon-10, ran16x16, reblock67, rmine6, sp98ic, timtab1, vpphard, bab5, glass4, iis-
bupa-cov.

Parallelization of the FICO Xpress-Optimizer 257

Table 2. Comparing the FICO Xpress-Optimizer 7.9 and the FICO Xpress-
Optimizer 8.0 w.r.t. different numbers of threads: comparing average CPU workload,
shifted geometric mean of solving time, and the speedup factor w.r.t. single-threaded
run; MIPLIB2010 benchmark set, at least one solver took at least 100 000 nodes (29
instances).

Threads CPU load Time in s Speedup

Xpr7.9 Xpr8.0 Xpr7.9 Xpr8.0 Xpr7.9 Xpr8.0

1 99.5 99.9 477.3 480.2 – –

4 78.4 90.8 168.7 151.5 2.8 3.2

12 56.6 83.5 104.6 68.4 4.6 7.0

40 36.6 57.1 83.2 49.4 5.7 9.7

Looking at the results in Table 1 in more detail, we see that with the FICO
Xpress-Optimizer 8.0, we indeed observe a higher CPU load on 4, 12 and
40 threads. That the one-thread solve records slightly below 100 % usage is
due to system calls. On all four different thread numbers, the FICO Xpress-
Optimizer 8.0 improved its performance over the FICO Xpress-Optimizer 7.9.
Of course, this is not only due to the new parallelization framework (in partic-
ular the improvement for single thread). Thus, it makes sense to compare the
speedup factors w.r.t. the single-threaded run to get an impression of the impact
of our new parallelization framework. We again observe a better performance of
the FICO Xpress-Optimizer 8.0 on 4, 12 and 40 threads. In particular, the FICO
Xpress-Optimizer 8.0 improved on the larger thread numbers.

The FICO Xpress-Optimizer typically solves 10 out of 87 MIPLIB2010 bench-
mark instances at the root node, and there are a couple more that require really
small search trees. Naturally, the effects of parallelization come most into play
for instances with large search trees. Therefore, we present the same numbers
for the subset of instances for which at least one of the FICO Xpress-Optimizer
versions took at least 100 000 search nodes. The differences between the FICO
Xpress-Optimizer 7.9 and the FICO Xpress-Optimizer 8.0 become more obvi-
ous here. For 12 threads and 40 threads, the managed workload is a roughly
a factor of 1.5 larger with the FICO Xpress-Optimizer 8.0: 83.5 % compared
to 56.6 % and 57.1 % compared to 36.6 %, respectively. If we look at instances
with a particularly good workload, we also notice a big difference. For the FICO
Xpress-Optimizer 7.9 with 4, 12, and 40 threads, not a single instance had a
workload of more than 90 %. For the FICO Xpress-Optimizer 8.0, running with
4 threads, 19 out of 29 instances achieved a workload of more than 90 %. For 12
threads, it were ten instances, and four instances for 40 threads.

Not surprisingly, the speedup factors are much more significant, when only
looking at those instances that heavily rely on parallelization. We see that for
4 threads, the new parallel framework gives a nice improvement of 14 % in the
parallel speedup: factor 3.2 versus 2.8. It is excelling, however, on larger thread
numbers. For a typical 12 core desktop computer, this difference already grows

258 T. Berthold et al.

to 50 % (speedup factor 7.0 versus 4.6). For a high-end 40 core machine, the
speedup factor of the new parallel framework is more than 70 % better than
with the old parallelization. Please note again, that the numbers for 40 threads
are based on results from running on 40 virtual, not physical, cores and thereby
underestimating the full potential.

4 Conclusion

We presented a parallelization framework that uses a dynamic synchronization
scheme to exchange data. An important part of our implementation is the con-
cept of partial information: we prefer starting a task with “deprecated” data
to waiting for updated information. Furthermore, we separated the concepts of
simultaneous tasks and independent threads from each other. Our computational
results indicate that this leads to a much higher CPU workload and thereby to
a significantly improved scaling on modern high-performance CPUs.

References

1. Achterberg, T.: Constraint integer programming. Technische Universität Berlin
(2007)

2. Dantzig, G., Wolfe, P.: Decomposition principle for linear programs. Oper. Res.
8(1), 101–111 (1960)

3. FICO Xpress-Optimizer, Reference Manual. http://www.fico.com/xpress
4. Fischetti, M., Lodi, A., Monaci, M., Salvagnin, D., Tramontani, A.: Improving

branch-and-cut performance by random sampling. Math. Programm. Comput. 1–
20 (2015)

5. Fischetti, M., Monaci, M., Salvagnin, D.: Self-splitting of workload in parallel
computation. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 394–404.
Springer, Heidelberg (2014)

6. Huangfu, Q., Hall, J.: Parallelizing the dual revised simplex method. Technical
report 1503.01889, ArXiv e-prints (2015)

7. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E.,
Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H.,
Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Progam.
Comput. 3, 103–163 (2011)

8. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28(3), 497–520 (1960)

9. Laundy, R., Perregaard, M., Tavares, G., Tipi, H., Vazacopoulos, A.: Solving hard
mixed-integer programming problems with Xpress-MP: a MIPLIB 2003 case study.
Inf. J. Comput. 21(2), 304–313 (2009)

10. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley,
New York (1988)

11. Ralphs, T.K., Ladányi, L., Saltzman, M.J.: Parallel branch, cut and price for large-
scale discrete optimization. Math. Program. B 98(1–3), 253–280 (2003)

12. Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: ParaSCIP: a parallel
extension of SCIP. Competence in High Performance Computing 2010, pp. 135–
148. Springer, Heidelberg (2011)

http://www.fico.com/xpress

PolySCIP

Ralf Borndörfer1(B), Sebastian Schenker1,2, Martin Skutella2(B),
and Timo Strunk1(B)

1 Zuse Institute Berlin, Berlin, Germany
{borndoerfer,schenker,strunk}@zib.de

2 TU Berlin, Berlin, Germany
{schenker,skutella}@math.tu-berlin.de

https://www.zib.de,
https://www.coga.tu-berlin.de

Abstract. PolySCIP [1] is a new solver for multi-criteria integer and
multi-criteria linear programs handling an arbitrary number of objec-
tives. It is available as an official part of the non-commercial constraint
integer programming framework SCIP. It utilizes a lifted weight space
approach to compute the set of supported extreme non-dominated points
and unbounded non-dominated rays, respectively. The algorithmic app-
roach can be summarized as follows: At the beginning an arbitrary non-
dominated point is computed (or it is determined that there is none)
and a weight space polyhedron created. In every next iteration a vertex
of the weight space polyhedron is selected whose entries give rise to a
single-objective optimization problem via a combination of the original
objectives. If the optimization of this single-objective problem yields a
new non-dominated point, the weight space polyhedron is updated. Oth-
erwise another vertex of the weight space polyhedron is investigated. The
algorithm finishes when all vertices of the weight space polyhedron have
been investigated. The file format of PolySCIP is based on the widely
used MPS format and allows a simple generation of multi-criteria models
via an algebraic modelling language.

Keywords: Multi-criteria optimization · Multi-objective optimization ·
Efficient solutions · Pareto-optimal solutions · Non-dominated points ·
Weight space partition · Weight set decomposition

1 Introduction and Motivation

Multi-objective integer programs (MOIPs) and multi-objective linear programs
(MOLPs) can be considered as a generalization of single-objective IPs and single-
objective LPs. Despite many applications, the wide availability and the (com-
mercial) success of single-objective solvers (see e.g. [7–10]), there are almost no
solvers for MOIPs and MOLPs: until recently only Symphony [3], a solver for bi-
objective mixed IPs, and Bensolve [4], a solver for vector optimization problems
(including MOLPs), were available. PolySCIP is a new solver for MOIPs and
MOLPs handling an arbitrary number of objectives. Its name is composed of the
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 259–264, 2016.
DOI: 10.1007/978-3-319-42432-3 32

260 R. Borndörfer et al.

greek word πoλύς meaning “many” and SCIP [5,6], a non-commercial constraint
integer programming framework. One of the main drivers for the development
of PolySCIP was the need for a multi-objective solver for problems in sustain-
able manufacturing [11] where the three dimensions of sustainability, i.e., the
economic, environmental and social dimension, can be considered as different
objective functions which need to be optimized simultaneously (Fig. 1).

2 Problem Formulation and Basic Definitions

PolySCIP solves problems of the form:

min /max (c1 · x, . . . , ck · x)
s.t. Ax ≤ b,

x ∈ Z
n ∨ Q

n,

where k ≥ 2, ci ∈ Q
n for i ∈ [k], A ∈ Q

m×n and b ∈ Q
m.

Let X denote the feasible space of the given problem and let Y = {(c1 ·
x, . . . , ck · x) : x ∈ X} be the corresponding image in objective space. In the
rest of this paper we will consider minimization problems and state definitions
with respect to the latter. A point y∗ ∈ Y is called non-dominated if there is no
y ∈ Y such that yi ≤ y∗

i for i ∈ [k] with yi < y∗
i for at least one i. A solution

x1

x2

Xc1

c2 c1

c2

Fig. 1. Feasible space of a bi-criteria integer maximization problem and correspond-
ing set in objective space with dominated points (blue), supported non-dominated
points (red) and unsupported non-dominated point (green) for a maximization prob-
lem. (Color figure online)

X
x1

x2

x3

c1

c2

c1

c2

Y

Fig. 2. Feasible space of a bi-criteria linear maximization problem and corresponding
set in objective space with extreme non-dominated points (red) for a maximization
problem. (Color figure online)

A Solver for MOIPs/MOLPs 261

x∗ ∈ X corresponding to a non-dominated point y∗ = (c1 · x∗, . . . , ck · x∗) is
called efficient. A non-dominated point y ∈ Y that lies in the interior of the
convex hull of Y is called unsupported whereas a non-dominated point y ∈ Y
that lies on the boundary of the convex hull of Y is called supported. A supported
non-dominated point y ∈ Y that is an extreme point of the convex hull of Y is
called a supported extreme non-dominated (SEN) point. It is an important and
well-known theorem (see [12,13] for more details) that for a supported efficient
solution x∗ ∈ X there is a positive weight vector (w1, . . . , wk) ∈ R

k
+ such that

x∗ is the optimal solution to the single-objective problem minx∈X
∑k

i=1 wici · x.
Due to algorithmic and complexity issues it is clear that we cannot just try every
possible weight vector and we need to avoid unnecessary iterations that would
yield the same non-dominated point over and over again (Fig. 2).

3 Lifted Weight Space Approach

Taking an objective space perspective, for a non-dominated point y ∈ Y we can
consider the corresponding weight set W (y) = {w ∈ R

k
+ : w · y ≤ w · y′ ∀y′ ∈

Y}. Benson and Sun [14] were the first to investigate the structure of these
weight sets. Przybylski et al. [15] and Özpeynirci and Köksalan [16] utilized them
directly in an algorithmic framework. Our approach lifts the original weight sets
by one dimension also taking into account (all values less than) the achieved
weighted objective value. Let Y ⊂ Y be the set of all SEN points and let P be the
lifted weight space polyhedron defined by P = {(a,w) ∈ R×Λ : a ≤ w·y ∀y ∈ Y }
where Λ = {w ∈ R

k : wi ≥ 0,
∑k

i=1 wi = 1}. For a subset Ȳ ⊂ Y , the partial
weight space polyhedron P̄ = {(a,w) ∈ R × Λ : a ≤ w · y ∀y ∈ Ȳ } contains
P since it is defined by a subset of the constraints of P . The basic idea is to
find in each iteration a cutting plane (given by a new non-dominated point
y ∈ Y \ Ȳ) that cuts off parts of P̄ that do not belong to P . Thus, the algorithm
can be interpreted as a cutting plane algorithm with respect to the weight space
polyhedron. The difference to Benson’s outer approximation algorithm [17] or
its dual variant [18] is that our approach operates on the (lifted) weight space
whereas the latter two work directly in the objective space.

The algorithm begins with an initial SEN point y1, which can be found
by optimizing the objectives lexicographically, and initializes the partial weight
space polyhedron with y1, i.e., P̄ = {(a,w) ∈ R × Λ : a ≤ w · y ∀y ∈ {y1}}.
At this stage all vertices of P̄ are unmarked. After the initialization phase,
in every iteration an unmarked vertex (a,w) ∈ P̄ is chosen and the weighted
optimization problem minw = minx∈X

∑k
i=1 wici · x is solved. Let Ȳ be the

set of SEN points found so far, let x̃ ∈ X be the computed solution of minw

and let ỹ ∈ Y be the corresponding point in objective space. If a > w · ỹ,
then (a,w) ∈ P̄ is cut off and ỹ is a new non-dominated point which was not
found so far. In this case, the partial weight space polyhedron P̄ is updated to
P̄ = {(a,w) ∈ R × Λ : a ≤ w · y ∀y ∈ Ȳ ∪ {ỹ}}. On the other hand, if a ≤ w · ỹ,
then no new non-dominated point was found by considering minw and the vertex
(a,w) ∈ P̄ is marked. The algorithm stops when all vertices of P̄ are marked

262 R. Borndörfer et al.

which implies that P̄ = P . Note that for some weights w ∈ Λ, the problem minw

might be unbounded yielding unbounded non-dominated rays.

4 Implementation

PolySCIP is written in C++11. The optimization of the weighted single objective
problems minx∈X

∑k
i=1 wici · x is done via interface calls to SCIP.

In order to keep track of the partial weight space polyhedron P̄ and its
vertices, the 1-skeleton of P̄ is stored via an undirected graph data structure
from the LEMON Graph Library [19]. Nodes in the 1-skeleton represent vertices
of P̄ and edges between nodes in the 1-skeleton represent adjacent vertices. The
initial partial weight space polyhedron is given by

y1
1w1 + . . . + y1

kwk ≥ a, (H-rep)
w1 + . . . + wk = 1,

w1, . . . , wk ≥ 0,

where y1 = (y1
1 , . . . , y

1
k) ∈ Y is the first non-dominated point found by optimizing

the objectives lexicographically. P̄ is initialized with the k vertices of H-rep and
the undirected graph data structure representing the 1-skeleton is initialized as
a complete graph with k nodes each representing a distinct vertex. In the course
of the algorithm, if a vertex of P̄ is cut off by a cutting plane given by a newly
found non-dominated point, then the graph data structure is updated: nodes
representing vertices which are cut off by the cutting plane are deleted from
the graph, a new node representing the new vertex is added and the adjacency
relationships to the remaining nodes are updated. Unmarked nodes, i.e., vertices
of P̄ that need to be investigated, are kept in a queue.

5 File Format

The MOP (multi-objective problem) file format is based on the widely used MPS
file format (see [20] for more details). MPS is column-oriented and all model com-
ponents (variables, rows, etc.) receive a name. An objective in MPS is indicated
by an N followed by the name in the ROWS section. Similarly, in MOP the objectives
are indicated by an N followed by the name in the ROWS section. In general, MPS
might not be as human readable as other formats. However, one of the main
reasons to base the file format of PolySCIP on it is its easy extension towards
several objectives and its wide availability in other linear and integer program-
ming software packages which (hopefully) minimizes the effort to extend other
available MPS parsers to parse MOP as well. Furthermore, no user is expected to
write MOP files by hand, but to use an algebraic modelling language that does
the job (see [2] for an example).

A Solver for MOIPs/MOLPs 263

The following simple equation-based bi-criteria integer problem

minimize Obj1: 3x1 + 2x2 − 4x3

Obj2: x1 + x2 + 2x3

subject to
Eqn: x1 + x2 + x3 = 2
Lower: x1 + 0.4x2 ≤ 1.5

x1, x2, x3 ≥ 0
x1, x2, x3 ∈ Z

could be written in MOP format as follows:

NAME BICRIT
OBJSENSE
MIN

ROWS
N Obj1
N Obj2
E Eqn
L Lower

COLUMNS
x#1 Lower 1
x#1 Eqn 1
x#1 Obj2 1
x#1 Obj1 3
x#2 Lower 0.4
x#2 Eqn 1
x#2 Obj2 1
x#2 Obj1 2
x#3 Eqn 1
x#3 Obj2 2
x#3 Obj1 -4

RHS
RHS Eqn 2
RHS Lower 1.5

BOUNDS
LI BOUND x#1 0
LI BOUND x#2 0
LI BOUND x#3 0

ENDATA

References

1. PolySCIP website: http://polyscip.zib.de
2. PolySCIP user guide: http://polyscip.zib.de/download/userguide.pdf

http://polyscip.zib.de
http://polyscip.zib.de/download/userguide.pdf

264 R. Borndörfer et al.

3. Ralphs, T., Guzelsoy, M., Mahajan, A.: SYMPHONY Version 5.5 User’s Manual.
Lehigh University (2013). https://projects.coin-or.org/SYMPHONY

4. Löhne, A.: Vector Optimization with Infimum and Supremum. Springer, Heidelberg
(2011). www.bensolve.org

5. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Com-
put. 1(1), 1–41 (2009)

6. Gamrath, G., Fischer, T., Gally, T., et al.: The SCIP Optimization Suite 3.2. ZIB-
Report 15–60 (2016)

7. SCIP Optimization Suite. http://scip.zib.de
8. Gurobi Optimization. www.gurobi.com
9. FICO Xpress Optimization Suite. www.fico.com/en/products/fico-xpress-

optimization-suite
10. ILOG Cplex Optimization Studio. www-03.ibm.com/software/products/en/

ibmilogcpleoptistud
11. CRC (2011) Observation of strains: Sustainable Manufacturing. www.sustainable-

manufacturing.net
12. Isermann, H.: Proper efficiency and the linear vector maximum problem. Oper.

Res. 22(1), 189–191 (1974)
13. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)
14. Benson, H.P., Sun, E.: Outcome space partition of the weight set in multiobjective

linear programming. J. Optim. Theory Appl. 105(1), 17–36 (2000)
15. Przybylski, A., Gandibleux, X., Ehrgott, M.: A recursive algorithm for finding

all nondominated extreme points in the outcome set of a multiobjective integer
programme. INFORMS J. Comput. 22(3), 371–386 (2010)

16. Özpeynirci, Ö., Köksalan, M.: An exact algorithm for finding extreme supported
nondominated points of multiobjective mixed integer programs. Manage. Sci.
56(12), 2302–2315 (2010)

17. Benson, H.P.: An outer approximation algorithm for generating all efficient extreme
points in the outcome set of a multiple objective linear programming problem. J.
Global Optim. 13(1), 1–24 (1998)

18. Ehrgott, M., Löhne, A., Shao, L.: A dual variant of Benson’s “outer approximation
algorithm” for multiple objective linear programming. J. Global Optim. 52(4),
757–778 (2012)

19. LEMON Graph Library. https://lemon.cs.elte.hu/trac/lemon
20. MPS format: http://lpsolve.sourceforge.net/5.5/mps-format.htm

https://projects.coin-or.org/SYMPHONY
http://www.bensolve.org
http://scip.zib.de
www.gurobi.com
www.fico.com/en/products/fico-xpress-optimization-suite
www.fico.com/en/products/fico-xpress-optimization-suite
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
http://www.sustainable-manufacturing.net
http://www.sustainable-manufacturing.net
https://lemon.cs.elte.hu/trac/lemon
http://lpsolve.sourceforge.net/5.5/mps-format.htm

Advanced Computing and Optimization
Infrastructure for Extremely Large-Scale Graphs

on Post Peta-Scale Supercomputers

Katsuki Fujisawa1(B), Toshio Endo2, and Yuichiro Yasui3

1 The Institute of Mathematics for Industry,
Kyushu University & JST CREST, Fukuoka, Japan

fujisawa@imi.kyushu-u.ac.jp
2 Global Scientific Information and Computing Center,

Tokyo Institute of Technology & JST CREST, Tokyo, Japan
endo@is.titech.ac.jp

3 Center for Co-Evolutional Social Systems,
Kyushu University & JST COI, Fukuoka, Japan

y-yasui@imi.kyushu-u.ac.jp

Abstract. In this talk, we present our ongoing research project. The
objective of this project is to develop advanced computing and opti-
mization infrastructures for extremely large-scale graphs on post peta-
scale supercomputers. We explain our challenge to Graph 500 and Green
Graph 500 benchmarks that are designed to measure the performance of
a computer system for applications that require irregular memory and
network access patterns. The 1st Graph500 list was released in Novem-
ber 2010. The Graph500 benchmark measures the performance of any
supercomputer performing a BFS (Breadth-First Search) in terms of
traversed edges per second (TEPS). In 2014 and 2015, our project team
was a winner of the 8th, 10th, and 11th Graph500 and the 3rd to 6th
Green Graph500 benchmarks, respectively. We also present our parallel
implementation for large-scale SDP (SemiDefinite Programming) prob-
lem. The semidefinite programming (SDP) problem is a predominant
problem in mathematical optimization. The primal-dual interior-point
method (PDIPM) is one of the most powerful algorithms for solving
SDP problems, and many research groups have employed it for develop-
ing software packages. We solved the largest SDP problem (which has
over 2.33 million constraints), thereby creating a new world record. Our
implementation also achieved 1.774 PFlops in double precision for large-
scale Cholesky factorization using 2,720 CPUs and 4,080 GPUs on the
TSUBAME 2.5 supercomputer.

Keywords: Graph analysis · Breadth-first search · Optimization prob-
lem · High performance computing · Supercomputer · Big data

1 Introduction

The objective of our ongoing research projects (which we call GraphCREST)
promoted by JST (Japan Science and Technology Agency) is to develop an
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 265–274, 2016.
DOI: 10.1007/978-3-319-42432-3 33

266 K. Fujisawa et al.

advanced computing and optimization infrastructure for extremely large-scale
graphs on the peta-scale and/or exa-scale supercomputers. The extremely large-
scale graphs that have recently emerged in various application fields, such as
big-data analysis, transportation, social networks, cyber-security, and bioinfor-
matics, require fast and scalable analysis. The number of vertices in the graph
networks has grown from billions to trillions and that of the edges from hun-
dreds of billions to tens of trillions. For example, a graph that represents the
interconnections of all the neurons of the human brain has over 89 billion ver-
tices and over 100 trillion edges. To analyze these extremely large-scale graphs,
we require a new generation exa-scale supercomputer, which will not appear
until 2018 to 2020, and therefore, we need a new framework of software stacks
for extremely large-scale graph analysis systems, such as parallel graph analysis
and optimization libraries on multiple CPUs and GPUs, hierarchal graph stores
using non-volatile memory (NVM) devices, and graph processing and visualiza-
tion systems. In this talk, we explain our ongoing research project and show its
remarkable results.

2 Graph500 and Green Graph500 Benchmarks

The Graph5001 and Green Graph 5002 benchmarks are designed to measure
the performance of a computer system for applications that require irregular
memory and network access patterns. The detailed instructions of the Graph500
benchmark are described as follows:

1. Step1: Edge List Generation. First, the benchmark generates an edge list
of an undirected graph with n(= 2SCALE) vertices and m(= n · edge factor)
edges;

2. Step2: Graph Construction. The benchmark constructs a suitable data
structure, such as CSR (Compressed Sparse Row) graph format, for perform-
ing BFS from the generated edge list;

3. Step3: BFS. The benchmark performs BFS to the constructed data struc-
ture to create a BFS tree. Graph500 employs TEPS (Traversed Edges Per
Second) as a performance metric. Thus, the elapsed time of a BFS execution
and the total number of processed edges determine the performance of the
benchmark;

4. Step4: Validation. Finally, the benchmark verifies the results of the BFS
tree. Note that the benchmark iterates Step3 and Step4 64 times from ran-
domly selected start points, and the median value of the results is adopted
as the score of the benchmark.

Previous studies [1,2] have proposed hybrid approaches that combine a well-
known top-down algorithm and an efficient bottom-up algorithm for large fron-
tiers at Step3 above. This reduces some unnecessary searching of outgoing edges

1 http://www.graph500.org.
2 http://green.graph500.org.

http://www.graph500.org
http://green.graph500.org

Advanced Computing and Optimization Infrastructure 267

Fig. 1. Our major achievements in Graph500 benchmark

in the BFS traversal of a small-world graph, such as a Kronecker graph. BFS
is an essential kernel for graph traversals, it is widely applied to graph analysis
applications. BFS has been tuned for both single-node systems and large-scale
multi-node distributed systems [3–6]. In 2013 [19], we describe a highly efficient
BFS using column-wise partitioning of the adjacency list while carefully con-
sidering the non-uniform memory access (NUMA) architecture. We explicitly
manage the way in which each working thread accesses a partial adjacency list
in local memory during BFS traversal. Our project team have challenged the
Graph500 and Green Graph500 benchmarks, which are designed to measure the
performance of a computer system for applications that require irregular memory
and network access [12–16,19–22,24,25].

In 2013, our project team gained first place in both the big and small data
categories in the second Green Graph 500 benchmarks. The Green Graph 500
list collects TEPS-per-watt metrics. Our other implementation, which uses both
DRAM and NVM devices and whose objective is to analyze extremely large-
scale graphs that exceed the DRAM capacity of the nodes, which gained fourth
place in the big data category in the second Green Graph500 list. Figure 1 shows
our major achievements in Graph500 benchmark, which are mentioned in this
Section. In 2014 and 2015, our project team was a winner of the 8th, 10th,
and 11th Graph500 (Fig. 2) and the 3rd to 6th Green Graph500 benchmarks,
respectively.

268 K. Fujisawa et al.

Fig. 2. Our project team were awarded the first place in the 10th and 11th Graph500
benchmarks.

3 High-Performance Computing for Semidefinite
Programming Problems

We also present our parallel implementation for large-scale mathematical opti-
mization problems [9–11,17,18,23]. In the last decade, mathematical optimiza-
tion programming (MOP) problems have been intensively studied in both their
theoretical and practical aspect in a wide range of fields, such as combinatorial
optimization, structural optimization, control theory, economics, quantum chem-
istry, sensor network location, data mining, and machine learning. The semidef-
inite programming (SDP) problem is a predominant problem in mathematical
optimization. The primal-dual interior-point method (PDIPM) is one of the most
powerful algorithms for solving SDP problems, and many research groups have
employed it for developing software packages. However, two well-known major
bottleneck parts (the generation of the Schur complement matrix (SCM) and
its Cholesky factorization) exist in the algorithmic framework of PDIPM. These
two parts where bottlenecks occur are called ELEMENTS and CHOLESKY,
respectively. The standard-form SDP has the following primal-dual form.

P : minimize
∑m

k=1 ckxk

subject to X =
∑m

k=1 F kxk − F 0, X � O .
D : maximize F 0 • Y

subject to F k • Y = ck (k = 1, . . . ,m), Y � O .

We denote by S
n the space of n× n symmetric matrices. The notation X �

O (X � O) indicates that X ∈ S
n is a positive semidefinite (positive definite)

matrix. The inner-product between U ∈ S
n and V ∈ S

n is defined by U •V =∑n
i=1

∑n
j=1 UijVij .

Advanced Computing and Optimization Infrastructure 269

In most SDP applications, it is common for the input data matrices
F 0, . . . ,Fm to share the same diagonal block structure (n1, . . . , nh). Each input
data matrix F k (k = 1, . . . ,m) consists of sub-matrices in the diagonal positions
as follows:

F k =

⎛

⎜⎜⎜⎝

F 1
k O O O

O F 2
k O O

O O
. . . O

O O O Fh
k

⎞

⎟⎟⎟⎠

where F 1
k ∈ S

n1 ,F 2
k ∈ S

n2 , . . . ,Fh
k ∈ S

nh .

Note that
∑h

�=1 n� = n and the variable matrices X and Y share the same block
structure. We define nmax as max{n1, . . . , nh}. For the blocks where n� = 1, the
constraints of positive semidefiniteness are equivalent to the constraints of the
non-negative orthant. Such blocks are sometimes called linear programming (LP)
blocks.

The size of a given SDP problem can be approximately measured in terms
of four metrics.

1. m: the number of equality constraints in the dual form D (which equals the
size of the SCM)

2. n: the size of the variable matrices X and Y
3. nmax: the size of the largest block of input data matrices
4. nnz: the total number of nonzero elements in all data matrices.

We denote the time complexities of ELEMENTS and CHOLESKY by O(mn3 +
m2n2) and O(m3), respectively.

We have developed a new version of the semidefinite programming algo-
rithm parallel version (SDPARA), which is a parallel implementation on mul-
tiple CPUs and GPUs for solving extremely large-scale SDP problems that
have over a million constraints [9,11]. SDPARA can automatically extract the
unique characteristics from an SDP problem and identify the bottleneck. The
key to the high performance of SDPARA is the acceleration of ELEMENTS and
CHOLESKY by using thousands of CPUs and GPUs, respectively. SDPARA
could attain high scalability using 16,320 CPU cores on the TSUBAME 2.0
supercomputer and some processor affinity and memory interleaving techniques
when the generation of the SCM constituted a bottleneck [11]. SDPARA can
also perform parallel Cholesky factorization using thousands of GPUs and tech-
niques to overlap computation and communication if an SDP problem has over
two million constraints and Cholesky factorization constitutes a bottleneck. We
demonstrated that SDPARA is a high-performance general solver for SDPs in
various application fields through numerical experiments at the TSUBAME 2.5
supercomputer, and we solved the largest SDP problem (which has over 2.33
million constraints), thereby creating a new world record. Our implementation
also achieved 1.713 PFlops and 1.774 PFlops in double precision for large-scale
Cholesky factorization using 2,720 CPUs and 4,080 GPUs [11,23], respectively.

270 K. Fujisawa et al.

SDP has many applications that involve SDP problems with special struc-
tures. We initiated the SDPA project3, which aims to develop high-performance
software packages for SDP, and we have solved a large number of SDP problems
since 1995; therefore, we can classify the various types of SDP problems into the
following three cases:

1. Case 1: SDP problems are sparse and satisfy the property of correlative spar-
sity; therefore, SCM tends to become sparse (e.g., the sensor network location
problem and the polynomial optimization problem). In this case, CHOLESKY
is the bottleneck part of PDIPM.

2. Case 2: m is less or not considerably greater than n and SCM is fully dense
(e.g., the quantum chemistry problem and the truss topology problem). In
this case, ELEMENTS is the bottleneck part of PDIPM, so we can decrease
the time complexity of ELEMENTS O(mn3 +m2n2) to O(m2) by exploiting
the sparsity of the data matrix. ELMENTS for large-scale SDP problems
generally requires significant computational resources in terms of CPU cores
and memory bandwidth.

3. Case 3: m is considerably greater than n and SCM is fully dense (e.g.,
the combinatorial optimization problem and quadratic assignment prob-
lem(QAP) [9]). In this case, CHOLESKY is the bottleneck part of PDIPM.
We accelerated CHOLESKY by using massively parallel GPUs with com-
putational performance much higher than that of CPUs. In order to achieve
scalable performance with thousands of GPUs, we utilized a high-performance
BLAS kernel along with optimization techniques to overlap computation,
PCI-Express communication, and MPI communication [9].

Table 1 shows the performance record of CHOLESKY of SDPARA. In
2003 [7], we have released the SDPARA 1.0.1 and achieved 78.58 GFlops. Our
implementation with GPUs achieved 1.713 and 1.774 PFlops for large-scale
Cholesky factorization using 4,080 GPUs in 2014 [11] and 2015 [23], respectively.

We previously reported that SDPARA can certainly determine whether the
SCM of an input SDP problem becomes sparse (Case 1) or not (Cases 2 and
3). In the present study, we mainly focused on parallel computation of ELE-
MENTS and CHOLESKY in Cases 2 and 3, respectively. We also demonstrated
that SDPARA is a high-performance general solver for SDPs in various applica-
tion fields through numerical experiments on the TSUBAME 2.5 supercomputer
and solved the largest SDP problem (QAP10), which has over 2.33 million con-
straints [11]; and we created a new world record. Figure 3 and Table 2 show the
speed of the CHOLESKY component in teraflops. “New” corresponds to the
latest algorithm [11], while “org” denotes the original algorithm in our previous
paper [9]. Our implementation also achieved 1.713 PFlops in double precision
for large-scale Cholesky factorization using 2,720 CPUs and 4,080 GPUs. Table 3
shows that the speed of the CHOLESKY component in teraflops on the CX400
supercomputer at Kyushu University. We have achieved 294.2 TFlops when using
384 GPUs.

3 http://sdpa.sourceforge.net/.

http://sdpa.sourceforge.net/

Advanced Computing and Optimization Infrastructure 271

Table 1. Performance record of CHOLESKY of SDPARA

Year Paper n m CHOLESY (Flops)

2003 [7] 630 24,503 78.58 Giga

2010 [8] 10,462 76,554 2.414 Tera

2012 [9] 1,779,204 1,484,406 0.533 Peta

2014 [11] 2,752,649 2,339,331 1.713 Peta

2015 [23] 2,322,988 1,962,225 1.774 Peta

Table 2. Performance (teraflops) of GPU CHOLESKY obtained by using up to 1360
nodes (4080 GPUs) on TSUBAME 2.0 [9] and 2.5 [11].

(a) 400 nodes (1200 GPUs)

Name m org(2.0) new(2.0) new(2.5)

QAP6 709,275 223.0 233.0 314.5
QAP7 1,218,400 248.8 306.2 505.8

(b) 700 nodes (2100 GPUs)

Name m org(2.0) new(2.0) new(2.5)

QAP6 709,275 309.5 329.0 387.5
QAP7 1,218,400 440.0 470.0 707.1
QAP8 1,484,406 463.8 512.9 825.1

(c) 1360 nodes (4080 GPUs)

Name m org(2.0) new(2.0) new(2.5)

QAP6 709,275 439.6 437.8 508.7
QAP7 1,218,400 695.2 718.8 952.0
QAP8 1,484,406 779.3 825.6 1186.4
QAP9 1,962,225 – 964.4 1526.5
QAP10 2,339,331 – 1018.5 1713.0

Table 3. Performance (teraflops) of GPU CHOLESKY obtained by using up to 384
nodes (384 GPUs) on CX400

(a) 128 nodes (128 GPUs)

Name m org(2.0) new(2.0) new(2.5)

QAP6 709,275 – – 90.1
QAP7 1,218,400 – – 98.7

(b) 384 nodes (384 GPUs)

Name m org(2.0) new(2.0) new(2.5)

QAP8 1,484,406 – – 288.0
QAP8-1 1,495,602 – – 294.2

272 K. Fujisawa et al.

Fig. 3. Performance of GPU CHOLESKY obtained by using up to 1360 nodes (4080
GPUs) on TSUBAME 2.0 and 2.5.

Acknowledgment. This research project was supported by the Japan Science and
Technology Agency (JST), the Core Research of Evolutionary Science and Technology
(CREST), the Center of Innovation Science and Technology based Radical Innovation
and Entrepreneurship Program (COI Program), the TSUBAME 2.0 & 2.5 Supercom-
puter Grand Challenge Program at the Tokyo Institute of Technology, and “Advanced
Computational Scientific Program” of Research Institute for Information Technology,
Kyushu University.

References

1. Beamer, S., Asanović, K., Patterson, D.A.:Searching for a parent instead of fight-
ing over children: a fast breadth-first search implementation for Graph500. EECS
Department, University of California, Berkeley, CA, UCB/EECS-2011-117 (2011)

2. Beamer, S., Asanović, K., Patterson, D.A.: Direction-optimizing breadth-first
search. In: Proceedings of ACM/IEEE International Conference High Performance
Computing, Networking, Storage and Analysis (SC12). IEEE Computer Society
(2012)

3. Yoo, A., Chow, E., Henderson, K., McLendon, W., Hendrickson, B., Catalyurek,
U.: A scalable distributed parallel breadth-first search algorithm on BlueGene/L.
In: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, ser. SC
2005, pp. 25–43. IEEE Computer Society (2005)

Advanced Computing and Optimization Infrastructure 273

4. Checconi, F., Petrini, F., Willcock, J., Lumsdaine, A., Choudhury, A.R.,
Sabharwal, Y.: Breaking the speed and scalability barriers for graph exploration
on distributed-memory machines. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, ser. SC 2012,
pp. 13:1–13:12. IEEE Computer Society Press (2012)

5. Satish, N., Kim, C., Chhugani, J., Dubey, P.: Large-scale energy efficient graph
traversal: a path to efficient data-intensive supercomputing. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, ser. SC 2012, pp. 14:1–14:11. IEEE Computer Society Press (2012)

6. Checconi, F., Petrini, F.: Traversing trillions of edges in real time: graph explo-
ration on large-scale parallel machines. In: Proceeding of IEEE 28th International
Parallel and Distributed Processing Symposium, ser. IPDPS 2014, pp. 425–434.
IEEE (2014)

7. Yamashita, M., Fujisawa, K., Kojima, M.: SDPARA: semidefinite programming
algorithm parallel version. J. Parallel Comput. 29(8), 1053–1067 (2003)

8. Nakata, M., Fukuda, M., Fujisawa, K.: Variational approach to electronic structure
calculations on second-order reduced density matrices and the N -representability
problem. In: Siedentop, H. (ed.), Complex Quantum Systems - Analysis of Large
Coulomb Systems, Institute of Mathematical Sciences, National University of
Singapore, pp. 163–194 (2013)

9. Fujisawa, K., Endo, T., Sato, H., Yamashita, M., Matsuoka, S., Nakata, M.: High-
performance general solver for extremely large-scale semidefinite programming
problems. In: Proceedings of the 2012 ACM/IEEE Conference on Supercomputing,
SC 2012 (2012)

10. Fujisawa, K., Endo, T., Sato, H., Yasui, Y., Matsuzawa, N., Waki, H.: Peta-scale
general solver for semidefinite programming problems with over two million con-
straints. In: International Conference for High Performance Computing, Network-
ing, Storage and Analysis 2013, SC 2013 Regular, Electronic, and Educational
Poster (SC 2013) (2013)

11. Fujisawa, K., Endo, T., Yasui, Y., Sato, H., Matsuzawa, N., Matsuoka, S., Waki,
H.: Peta-scale general solver for semidefinite programming problems with over
two million constraints. In: The 28th IEEE International Parallel & Distributed
Processing Symposium (IPDPS 2014) (2014)

12. Iwabuchi, K., Sato, H., Mizote, R., Yasui, Y., Fujisawa, K., Matsuoka, S.: Hybrid
BFS approach using semi-external memory. In: International Workshop on High
Performance Data Intensive Computing (HPDIC2014) in Conjunction with IEEE
IPDPS 2014 (2014)

13. Iwabuchi, K., Sato, H., Yasui, Y., Fujisawa, K., Matsuoka, S.: NVM-based Hybrid
BFS with memory efficient data structure. In: The Proceedings of the IEEE Big-
Data2014 (2014)

14. Iwabuchi, K., Sato, H., Yasui, Y., Fujisawa, K.: Performance analysis of hybrid
BFS approach using semi-external memory. In: International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2013 Regular,
Electronic, and Educational Poster (SC 2013) (2013)

15. Suzumura, T., Ueno, K., Sato, H., Fujisawa, K., Matsuoka, S.: A performance
characteristics of Graph500 on large-scale distributed environment. In: The Pro-
ceedings of the 2011 IEEE International Symposium on Workload Characterization
(2011)

16. Ueno, K., Suzumura, T.: Highly scalable graph search for the Graph500 benchmark.
In: The 21st International ACM Symposium on High-Performance Parallel and
Distributed Computing, HPDC 2012. Delft, Netherlands (2012)

274 K. Fujisawa et al.

17. Yamashita, M., Fujisawa, K., Fukuda, M., Kobayashi, K., Nakata, K., Nakata,
M.: Latest developments in the SDPA family for solving large-scale SDPs. In:
Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial
Optimization, International Series in Operations Research & Management Science.
Springer, Heidelberg (2011)

18. Yamashita, M., Fujisawa, K., Fukuda, M., Nakata, K., Nakata, M.: Parallel solver
for semidefinite programming problem having sparse Schur complement matrix.
The ACM Trans. Math. Softw. 39(12), 6 (2012)

19. Yasui, Y., Fujisawa, K., Goto, K.: NUMA-optimized parallel breadth-first search
on multicore single-node system. In: The Proceedings of the IEEE BigData2013
(2013)

20. Yasui, Y., Fujisawa, K., Goto, K., Kamiyama, N., Takamatsu, M.: NETAL: high-
performance implementation of network analysis library considering computer
memory hierarchy. J. Oper. Res. Soc. Jpn. 54(4), 259–280 (2011)

21. Yasui, Y., Fujisawa, K., Sato, Y.: Fast and energy-efficient breadth-first search on
a single NUMA system. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC
2014. LNCS, vol. 8488, pp. 365–381. Springer, Heidelberg (2014)

22. Yasui, Y., Fujisawa, K.: Fast and scalable NUMA-based thread parallel breadth-
first search. In: The 2015 International Conference on High Performance Comput-
ing & Simulation (HPCS 2015) (2015). doi:10.1109/HPCSim.2015.7237065

23. Tsujita, Y., Endo, T., Fujisawa, K.: The scalable petascale data-driven approach for
the cholesky factorization with multiple GPUs. In: First International Workshop
on Extreme Scale Programming Models and Middleware. In Conjunction with
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC 2015) (2015). doi:10.1145/2832241.2832245

24. Fujisawa, K., et al.: Advanced computing & optimization infrastructure for
extremely large-scale graphs on post peta-scale supercomputers. In: Fujisawa,
K., Shinano, Y., Waki, H. (eds.) Optimization in the Real World: Toward
Solving Real-World Optimization Problems. Mathematics for Industry. Springer,
Heidelberg (2015). doi:10.1007/978-4-431-55420-2 1

25. Yasui, Y., Fujisawa, K.: NUMA-aware scalable graph traversal on SGI UV systems.
In: The Proceedings of 1st High Performance Graph Processing Workshop. In Con-
junction with The International ACM Symposium on High-Performance Parallel
and Distributed Computing (HPDC 2016) (2016)

http://dx.doi.org/10.1109/HPCSim.2015.7237065
http://dx.doi.org/10.1145/2832241.2832245
http://dx.doi.org/10.1007/978-4-431-55420-2_1

DSJM: A Software Toolkit for Direct
Determination of Sparse Jacobian Matrices

Mahmudul Hasan, Shahadat Hossain(B), Ahamad Imtiaz Khan,
Nasrin Hakim Mithila, and Ashraful Huq Suny

University of Lethbridge, Lethbridge, AB, Canada
{hasan,shahadat.hossain,ai.khan,mithila,a.suny}@uleth.ca

Abstract. We describe the main design features of DSJM (Determine
Sparse Jacobian Matrices), a software toolkit written in standard C++
that enables direct determination of sparse Jacobian matrices. Our design
exploits the recently proposed unifying framework “pattern graph” and
employs cache-friendly array-based sparse data structures. The DSJM
implements a greedy grouping (coloring) algorithm and several ordering
heuristics. In our numerical testing on a suite of large-scale test instances
DSJM consistently produced better timing and partitions compared
with a similar software.

Keywords: Sparse Jacobian matrix · Compression-reconstruction ·
Direct determination

1 Introduction

Problems in optimization, simulation, and differential equations often require the
computation or estimation of mathematical derivatives of the underlying model
components. In many systems analysis tasks system parameters are “optimized”
by studying the effect of noise in parameters to the model output. Mathemati-
cally, such effects can be captured and quantified by the derivative of the objec-
tive with respect to the parameters in question. Optimizing a multivariate scalar
function using descent or Newton’s method requires the evaluation of gradient
and Hessian matrix of the function. Solving a system of nonlinear equations or
nonlinear least-squares problem by Newton’s method or one of its many variants
require the evaluation of its Jacobian matrix and solving the associated linear
system at each iterative step. With the advent of faster computers and sophis-
ticated software there is an ever increasing demand for solving larger and more
complex problems. Fortunately, many real-life problems are sparse or otherwise
“structured”. In some optimization models sparsity occur naturally because only
a small subset of variables interact nonlinearly. An example of special structure
is a partially separable function; the gradient of a partially separable function
can be evaluated at a cost that is a small constant multiple of the cost of evalu-
ating the function [9]. If the source code for the function evaluation program is
available one may write code for analytic derivatives by hand. For large and/or
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 275–283, 2016.
DOI: 10.1007/978-3-319-42432-3 34

276 M. Hasan et al.

complicated functions this process is time-consuming and highly error-prone.
An alternative to hand-coded derivatives is to approximate the Jacobian by a
finite-difference (FD) scheme. In the recent years the techniques of automatic
or algorithmic differentiation (AD) (see [9] for a comprehensive treatment of
AD techniques and their software implementation) have emerged as the method
of choice where the derivative quantities can be evaluated with an accuracy
up to the machine precision; AD methods do not incur truncation errors of FD
schemes. In either method, great savings in computation can be achieved if the
sparsity structure of the Jacobian is known a priori or can be computed easily
[10], and does not change from iteration to iteration.

There are two main ways in which sparsity can be exploited in evaluating
derivatives. In the first, the entries of the Jacobian or Hessian matrix that are
known to vanish identically need not be stored explicitly in a data structure.
Secondly, operations involving known zeros must be avoided so as to speedup
the calculation on sparse data. On the other hand, sparse matrix algorithms
often require special techniques that are quite distinct and are usually more
complex than their dense counterpart. The computational complexity of sparse
matrix operations is affected by factors such as memory traffic and the size
and organization of fast cache memory, in addition to the number of floating-
point operations. For large-scale problems it is usually the case that the faster
cache memory is not large enough to hold the input data in its entirety. The
term locality of reference is used to signify the access pattern of data during
the execution of an algorithm in a hierarchical memory computing system. The
principle of data locality postulates that “recently accessed data (temporal) and
nearby data (spatial) are likely to be accessed in the near future”. Generally,
better the reference locality for data fewer the cache-misses.

The purpose of this short paper is to present the software tool DSJM that
can be used to compress and determine a sparse Jacobian matrix from its sparsity
pattern using FD or AD. We exploit the relationship between graph and sparse
matrix operations and use a standard array-based computer representation for
sparse matrices. Graphs that have been used to model and solve combinatorial
problems in Jacobian and Hessian matrix determination are rather dependent on
specific properties e.g., structural orthogonality, symmetry etc. the methods try
to exploit. For example an adjacency graph representation is a natural choice for
a symmetric Hessian matrix while a Jacobian matrix with m rows and n columns
can be conveniently represented with a bipartite graph. The pattern graph asso-
ciated with a sparse matrix is structurally close to its actual computer represen-
tation and remains invariant for graph operations required in one-sided [12,14]
and two-sided determination [2,11,13]. Further, the Jacobian matrix determina-
tion being a sparse matrix problem, we find it advantageous to accurately express
the computational cost of graph operations in terms of the nonzero unknowns
to be determined. Thus, for the basic sparse matrix operations the chosen repre-
sentation of the input sparse matrix enables the same asymptotic computational
cost as indicated by its graph abstraction. The paper is structured in the follow-
ing way. In Sect. 2 we briefly review the compression-reconstruction method for

DSJM 277

the determination of sparse Jacobian matrices. An example is used to illustrate
the central ideas in our approach to exploit known sparsity. The user interface
to DSJM is discussed in Sect. 3. Results from numerical experiments on a suite
of large-scale test problems together with some remarks on the comparative per-
formance of DSJM and software ColPack [7] is also reported in Sect. 3. The
paper is concluded in Sect. 4 with a discussion on extension of DSJM that are
currently being implemented.

2 Direct Determination

We consider the problem of determining the Jacobian matrix F ′(x) of a mapping
F : �n → �m. Using differences, the product of the Jacobian matrix with a
vector s may be approximated as

∂F (x + ts)
∂t

∣∣∣∣
t=0

= F ′(x)s ≡ As ≈ 1
ε
[F (x + εs) − F (x)] ≡ b, (1)

with one extra evaluation of F at (x + εs) assuming F (x) has already been
computed, where ε > 0 is a small increment. Also, Algorithmic (or Automatic)
Differentiation (AD) [9] forward mode gives b = F ′(x)s accurate up to the
machine round-off, at a cost which is a small multiple of the cost of one func-
tion evaluation. The Jacobian matrix determination problem (JMDP) based on
matrix-vector or vector-matrix products can be stated as below.

Obtain vectors sj ∈ �n, j = 1, . . . , p and wk ∈ �m, k = 1, . . . , q with p + q
minimized such that the products bj = Asj , j = 1, . . . , p or B = AS and
c�
k = w�

k A, k = 1, . . . , q or C� = W�A determine the matrix A uniquely.

In absence of any sparsity information, one may use the Cartesian basis vectors
ei, i = 1, . . . , n in (1) using n extra function evaluations, or in the case of AD
[9], m reverse mode calculations or n forward mode calculations, whichever is
smaller. On the other hand, if a group of columns of matrix A, say columns j
and l, are structurally orthogonal, i.e., no two columns have nonzero entries in
the same row position, only one extra function evaluation,

F ′
j + F ′

l = A(:, j) + A(:, l) ≈ 1
ε
[F (x + ε(ej + el)) − F (x)], (2)

is sufficient to read-off the nonzero entries from the product b = As, s = ej + el.
A group of columns that are structurally orthogonal will henceforth be called
a (structurally orthogonal) group, where the word “structurally orthogonal” is
suppressed for brevity when the context is clear. A group of nonzero unknowns
are said to be directly determined or read-off from the product b = As if no
floating point arithmetic operation is needed to compute them. Thus, if the
columns (rows) can be partitioned into p (q) structurally orthogonal groups then
the Jacobian matrix is directly determined from the row-compressed (column-
compressed) matrix B = AS (C� = W�A). In this case we have a one-sided

278 M. Hasan et al.

Fig. 1. A Jacobian matrix.

compression of matrix A. Determining a sparse Jacobian matrix by exploiting
sparsity as in (2) is due to Curtis, Powell, and Reid [3] (henceforth the CPR
method). Coleman and Moré [1] further analyze the column partitioning prob-
lem and formally show that the problem of finding a minimum cardinality column
partitioning consistent with direct determination is equivalent to a vertex color-
ing problem of an associated graph and that the problem is NP-Hard. DSJM
accepts, as input, a specification of the sparsity pattern of the Jacobian to be
determined. As output, it yields matrices S or W .

Let matrix A in Fig. 1 be the Jacobian matrix of some function F at x. Using
FD the nonzero unknowns in columns 1, 2 and 3 can be approximated as,

1
ε

(F (x + ε(e1 + e2 + e3)) − F (x))� ≈ (
ã12 ã21 ã33 ã42 ã51

)

where ε > 0 is a small increment (step-size), and (̃.) indicates that the entry
is an approximation to the true value. Thus, matrix A can be approximated
with only three extra function evaluations of the form F (x + εs) for direction s
set to e1 + e2 + e3, e4, and e5 in succession, in addition to evaluating F at x.
With AD technology, the entries of A are obtained as three forward evaluations
in the form of products As where each product costs approximately 3 function
evaluations. The central point here is that if the sparsity pattern of a group
of columns is such that for every pair of column indices j �= l in the group
S(A(:, j))

⋂ S(A(:, l)) where S(A) = {(i, j)|aij �= 0} denotes the sparsity pattern
for matrix A, is empty, then only one AD forward accumulation or one extra
function evaluation will suffice to determine the nonzero entries in those columns.
In other words, columns A(: j) and A(:, k) are structurally orthogonal if there
is no index i for which aij �= 0 and ail �= 0. Columns 1, 2, 3 as shown above is a
structurally orthogonal group. The CPR method groups or colors the columns
such that columns in each group are structurally orthogonal. It has been observed
frequently that scanning columns in specific order during grouping operation may
lead to fewer groups. DSJM implements grouping algorithms CPR Grouping
(CPR), Recursive Largest-First grouping (RLF), Saturation-Degree Grouping
(SD) and ordering algorithms Largest-First Order (LFO), Smallest-Last Order
(SLO), Incidence-Degree Order (IDO). In the next section we elaborate on data
structure and implementation of main algorithmic tasks.

DSJM 279

3 Interface and Implementation

3.1 Data Structure

The sparsity pattern of sparse matrix A can be specified to DSJM as index
pairs (i, j) where i and j denote, respectively, row index and column index of
a matrix nonzero. Internally, the pattern is represented by compressed sparse
vectors corresponding to rows and columns. A sparse vector can be stored in
compressed form using two arrays: one array to hold the indices of the nonzero
entries and the other to hold the corresponding nonzero values. Compressed
Sparse Row (CSR) storage scheme is a popular data structure where the sparse
row vectors are stored contiguously. A simple implementation of CSR can be
provided using three arrays: rowptr array indexes into colind and value, with
rowptr(i) indicating the location (index) of the first element of row i in the
arrays colind and value. Thus, elements in row i are accessed as

value(k) and are located in (i, colind(k)), k = rowptr(i) to rowptr(i + 1) − 1.

Compressed Sparse Column (CSC) is simply the transposed matrix stored using
the CSR. Sparse matrices in Harwell-Boeing collection [5] are given in CSC.
The MATLAB R© computing environment [8] and CSparse [4] software use CSC
representation for sparse matrices and the associated operations. DSJM enables
access to columns and rows by maintaining both CRS and CCS structures for a
sparse matrix.

3.2 Algorithms

Algorithm CPR takes as input the sparsity pattern of matrix A and an array,
group, initialized to zero. The index set L in line 4 represents columns that
cannot be grouped with column j; cm represents the least-numbered struc-
turally orthogonal column group that can include column j. The tasks in lines
4 and 5 are representative of kernel computational operations that are care-
fully implemented to enable efficiency. For example, the index set L is com-
puted as l = colind(indj) where indj = rowptr(i) : rowptr(i+1) - 1,
i = rowind(indi), indi = colptr(j) : colptr(j+1) - 1. On return from
the algorithm column j belongs to the group group(j), and ngroup holds the
number of structurally orthogonal groups. The matrix elements stored in data
structures CSR and CSC in the implementation of line 4 are placed in contiguous
locations in the computer memory thus ensuring maximum spatial locality [15]
and resulting in better cache memory utilization. Also, the computational cost
of the above kernel operation is proportional to the size of the data accessed
and the number of nonzero arithmetic operations. Indeed, except for SD and
RLF algorithms all grouping and ordering heuristics run in time proportional to∑m

i=1 ρ2i where ρi denotes the number of nonzero entries in row i of A. Borrowing
ideas from [8] DSJM utilizes a dense “work vector” and an efficient “tagging
scheme” in implementing many of the sparse linear algebra primitives.

280 M. Hasan et al.

CPR(S(A), group,ngroup)
1 ngroup ← 1
2 for j ← 1 to n
3 do
4 let L = {l | A(:, j) is not structurally orthogonal to A(:, l)} and
5 cm = min{c | c ∈ {1, . . . ,ngroup +1} �= group(l), l ∈ L}
6 group(j) ← cm
7 if cm > ngroup
8 then
9 ngroup ← ngroup +1

Algorithm FD-SpJms can be used to obtain an approximation to the nonzero
entries of the directional derivative F ′(x)S(:, k) ≡ B(:, k) corresponding to struc-
turally orthogonal group k.

FD-SpJms(gptr , gcolind , k, η,B)
1 w ← FD-SpJd(F, x, η, gptr , gcolind , k)
2 for ind ← gptr(k) to gptr(k + 1) − 1
3 do
4 j ← gcolind(ind)
5 for each i for which F ′(i, j) �= 0
6 do
7 B(i, k) ← w(i)

η(j)

FD-SpJd is a user-defined function to compute the difference F (x + η) − F (x)
where, array η initially containing zeros, can be defined to contain the finite-
difference increments ε(j) corresponding to columns j in column group k:

1 for ind ← gptr(k) to gptr(k + 1) − 1
2 do
3 j ← gcolind(ind)
4 η(j) ← ε(j)

3.3 Numerical Testing

In Table 1 we provide partitioning results for a selection of problems [6] where
there is a large gap between the maximum number of nonzero entries in any
row (ρ is a lower bound on the number of groups) and the number of groups in
the partition (p). In the table m, n, and nnz denote respectively, the number
of rows, columns, and nonzero entries in the test matrix. The experiments were
performed using an IBM PC with 2.8 GHz Intel Pentium CPU, 1 GB RAM,
and 512 KB L2 cache running Linux. Of 8 test problems DSJM yields better
partition (indicated in bold face. A comparison of the running time for the
implementations DSJM and ColPack we find that DSJM is about 1.6 − 3.0
times faster than the ColPack (see [13]).

DSJM 281

Table 1. Partitioning Results.

Matrix m n nnz ρ ColPack [7] DSJM

af23560 23560 23560 484256 21 41 37

cage11 39082 39082 559722 31 62 54

cage12 130228 130228 2032536 33 68 56

e30r2000 9661 9661 306356 62 68 65

e40r0100 17281 17281 553956 62 66 67

lpken11 14694 21349 49058 122 123 122

lpken13 28632 42659 97246 170 171 170

lpmarosr7 3136 9408 144848 48 70 76

3.4 DSJM Interface

The functionalities of the software are made available to the client through objects
of C++ class Matrix implemented in DSJM. Client code defines a Matrix object
to read in sparse matrix data: pairs of indices. Duplicate nonzero entries can be
removed by calling the member function compress. To set up the CSR and CSC
data structures users need to call member functions computeCRS and computeCCS,
respectively. Once the data structure is set up, the columns of the matrix object
can be ordered and partitioned into groups consistent with direct determination.

3.5 Example Usage of Matrix Object

Displayedbelow is a code snippet for structurally orthogonal groupingof thematrix
columns using smallest-last order and CPR greedy partitioning algorithm.

Matrix matrix(M,N,nnz, false); // Boolean argument false indicates that nonzero

// values are not to be stored

// ! C++ code to read-in the sparsity pattern omitted

int nnz = matrix.compress(); // remove duplicate entries

matrix.computeCCS(); // set-up CSC data structure

matrix.computeCRS(); // set-up CSR data structure

int *order = new int[N+1]; // array to store order information

matrix.slo(order); // columns in smallest-last order

int *color = new int[N+1]; // array to store the partitioning

int maxgrp = matrix.greedycolor(order,color);

for (int j = 1; j <= N; j++) // print the partition information

printf("Column j belongs to %d partition\n",color[i]);

DSJM grouping algorithms can be accessed from within MATLAB environment
using MATLAB’s MEX interface as below:

B = dsjmcolor(A,‘slo’);

282 M. Hasan et al.

In the call to dsjmcolor(), A is a MATLAB sparse matrix. The second parameter
“slo” denotes that the the matrix columns be CPR grouped using smallest-last
ordering.

4 Concluding Remarks

DSJM is being developed to address the need for efficient software toolkits
that are simple and intuitive to use. The current implementation provides a
collection of stand-alone column ordering and grouping algorithms and driver
routines for efficient direct determination of sparse Jacobian matrices through a
sparse matrix class interface. The tool is currently being extended with two-sided
compression algorithms [11].

Acknowledgements. This research was supported in part by Natural Sciences and
Engineering Research Council of Canada (NSERC) Discovery Grant (Individual).

References

1. Coleman, T.F., Moré, J.J.: Estimation of sparse Jacobian matrices and graph col-
oring problems. SIAM J. Numer. Anal. 20(1), 187–209 (1983)

2. Coleman, T.F., Verma, A.: The efficient computation of sparse Jacobian matrices
using automatic differentiation. SIAM J. Sci. Comput. 19(4), 1210–1233 (1998)

3. Curtis, A.R., Powell, M.J.D., Reid, J.K.: On the estimation of sparse Jacobian
matrices. J. Inst. Math. Appl. 13, 117–119 (1974)

4. Davis, T.A.: Direct Methods for Sparse Linear Systems (Fundamentals of Algo-
rithms 2). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA
(2006)

5. Duff, I.S., Grimes, R.G., Lewis, J.G.: Sparse matrix test problems. ACM Trans.
Math. Softw. 15(1), 1–14 (1989)

6. Gebremedhin, A.H., Manne, F., Pothen, A.: What color is your jacobian? graph
coloring for computing derivatives. SIAM Rev. 47(4), 629–705 (2005)

7. Gebremedhin, A.H., Nguyen, D., Patwary, M.M.A., Pothen, A.: ColPack: Software
for graph coloring and related problems in scientific computing. ACM Trans. Math.
Softw. 40(1), 1–31 (2013)

8. Gilbert, J.R., Moler, C., Schreiber, R.: Sparse matrices in matlab: design and
implementation. SIAM J. Matrix Anal. Appl. 13(1), 333–356 (1992)

9. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of
AlgorithmicDifferentiation, 2nd edn. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, USA (2008)

10. Griewank, A., Mitev, C.: Detecting Jacobian sparsity patterns by Bayesian probing.
Math. Prog. 93(1), 1–25 (2002)

11. Hossain, A.S., Steihaug, T.: Computing a sparse Jacobian matrix by rows and
columns. Optim. Methods Softw. 10, 33–48 (1998)

12. Hossain, S., Steihaug, T.: Graph coloring in the estimation of sparse derivative
matrices: Instances and applications. Discrete Appl. Math. 156(2), 280–288 (2008)

13. Hossain, S., Steihaug, T.: Graph models and their efficient implementation for
sparse jacobian matrix determination. Discrete Appl. Math. 161(12), 1747–1754
(2013)

DSJM 283

14. Newsam, G.N., Ramsdell, J.D.: Estimation of sparse Jacobian matrices. SIAM J.
Alg. Disc. Meth. 4(3), 404–417 (1983)

15. Park, J.-S., Penner, M., Prasanna, V.K.: Optimizing graph algorithms for improved
cache performance. IEEE Trans. Parallel Distrib. Syst. 15(9), 769–782 (2004)

Software for Cut-Generating Functions
in the Gomory–Johnson Model and Beyond

Chun Yu Hong1, Matthias Köppe2(B), and Yuan Zhou2

1 Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
jcyhong@berkeley.edu

2 Department of Mathematics, University of California, Davis, Davis, CA, USA
{mkoeppe,yzh}@math.ucdavis.edu

http://statistics.berkeley.edu/people/chun-yu-hong

http://www.math.ucdavis.edu/~mkoeppe

http://www.math.ucdavis.edu/~yzh

Abstract. We present software for investigations with cut-generating
functions in the Gomory–Johnson model and extensions, implemented
in the computer algebra system SageMath.

Keywords: Integer programming · Cutting planes · Group relaxations

1 Introduction

Consider the following question from the theory of linear inequalities over the
reals: Given a (finite) system Ax ≤ b, exactly which linear inequalities 〈a, x〉 ≤ β
are valid, i.e., satisfied for every x that satisfies the given system? The answer
is given, of course, by the Farkas Lemma, or, equivalently, by the strong duality
theory of linear optimization. As is well-known, this duality theory is symmetric:
The dual of a linear optimization problem is again a linear optimization problem,
and the dual of the dual is the original (primal) optimization problem.

The question becomes much harder when all or some of the variables are
constrained to be integers. The theory of valid linear inequalities here is called
cutting plane theory. Over the past 60 years, a vast body of research has been
carried out on this topic, the largest part of it regarding the polyhedral combi-
natorics of integer hulls of particular families of problems. The general theory
again is equivalent to the duality theory of integer linear optimization problems.
Here the dual objects are not linear, but superadditive (or subadditive) function-
als, making the general form of this theory infinite-dimensional even though the
original problem started out with only finitely many variables.

The authors gratefully acknowledge partial support from the National Science Foun-
dation through grant DMS-1320051 awarded to M. Köppe.
C.Y. Hong—The first author’s contribution was done during a Research Experiences
for Undergraduates at the University of California, Davis. He was partially supported
by the National Science Foundation through grant DMS-0636297 (VIGRE).

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 284–291, 2016.
DOI: 10.1007/978-3-319-42432-3 35

Software for Cut-Generating Functions 285

These superadditive (or subadditive) functionals appear in integer linear opti-
mization in various concrete forms, for example in the form of dual-feasible func-
tions [1], superadditive lifting functions [12], and cut-generating functions [6].

In the present paper, we describe some aspects of our software [10] for cut-
generating functions in the classic 1-row Gomory–Johnson [7,8] model. In this
theory, the main objects are the so-called minimal valid functions, which are
the Z-periodic, subadditive functions π : R → R+ with π(0) = 0, π(f) = 1, that
satisfy the symmetry condition π(x) + π(f − x) = 1 for all x ∈ R. (Here f is a
fixed number.) We refer the reader to the recent survey [4,5].

Our software is a tool that enables mathematical exploration and research
in this domain. It can also be used in an educational setting, where it enables
hands-on teaching about modern cutting plane theory based on cut-generating
functions. It removes the limitations of hand-written proofs, which would be
dominated by tedious case analysis.

The first version of our software [10] was written by the first author, C. Y.
Hong, during a Research Experience for Undergraduates in summer 2013. It was
later revised and extended by M. Köppe and again by Y. Zhou. The latter added
an electronic compendium [11] of extreme functions found in the literature, and
added code that handles the case of discontinuous functions. Version 0.9 of our
software was released in 2014 to accompany the survey [4,5]; the software has
received continuous updates by the second and third authors since.1

Our software is written in Python, making use of the convenient framework
of the open-source computer algebra system SageMath [14]. It can be run on a
local installation of SageMath, or online via SageMathCloud.

2 Continuous and Discontinuous Piecewise Linear
Z-periodic Functions

The main objects of our code are the Z-periodic functions π : R → R. Our
code is limited to the case of piecewise linear functions, which are allowed to
be discontinuous; see the definition below. In the following, we connect to the
systematic notation introduced in [3, Section 2.1]; see also [4,5]. In our code, the
periodicity of the functions is implicit; the functions are represented by their
restriction to the interval [0, 1].2 They can be constructed in various ways using
Python functions named piecewise function from breakpoints and values
etc.; see the source code of the electronic compendium for examples. We also
suppress the details of the internal representation; instead we explain the main
ways in which the data of the function are accessed.

π.end points() is a list 0 = x0 < x1 < · · · < xn−1 < xn = 1 of possible break-
points of the function in [0, 1]. In the notation from [3–5], these endpoints

1 Two further undergraduate students contributed to our software. P. Xiao contributed
some documentation and tests. M. Sugiyama contributed additional functions to the
compendium, and added code for superadditive lifting functions.

2 The functions are instances of the class FastPiecewise, which extends an existing
SageMath class for piecewise linear functions.

286 C.Y. Hong et al.

are extended periodically as B = {x0 + t, x1 + t, . . . , xn−1 + t : t ∈ Z }. Then
the set of 0-dimensional faces is defined to be the collection of singletons,{ {x} : x ∈ B

}
, and the set of one-dimensional faces to be the collection of

closed intervals,
{

[xi + t, xi+1 + t] : i = 0, . . . , n − 1 and t ∈ Z

}
. Together,

we obtain P = PB , a locally finite polyhedral complex, periodic modulo Z.
π.values at end points() is a list of the function values π(xi), i = 0, . . . , n.

This list is most useful for continuous piecewise linear functions, as indicated
by π.is continuous(), in which case the function is defined on the intervals
[xi, xi+1] by linear interpolation.

π.limits at end points() provides data for the general, possibly discontinu-
ous case in the form of a list limits of 3-tuples, with

limits[i][0] = π(xi)

limits[i][1] = π(x+
i) = lim

x→xi,x>xi

π(x)

limits[i][-1] = π(x−
i) = lim

x→xi,x<xi

π(x).

The function is defined on the open intervals (xi, xi+1) by linear interpolation
of the limit values π(x+

i), π(x−
i+1).

π(x) and π.limits(x) evaluate the function at x and provide the 3-tuple of its
limits at x, respectively.

π.which function(x) returns a linear function, denoted πI : R → R in [3–5],
where I is the smallest face of P containing x, so π(x) = πI(x) for x ∈
rel int(I).

Functions can be plotted using the standard SageMath function plot(π), or
using our function plot with colored slopes(π), which assigns a different
color to each different slope value that a linear piece takes.3 Examples of such
functions are shown in Figs. 2 and 3.

3 The Diagrams of the Decorated 2-Dimensional
Polyhedral Complex ΔP

We now describe certain 2-dimensional diagrams which record the subadditivity
and additivity properties of a given function. These diagrams, in the continuous
case, have appeared extensively in [4,5,11]. An example for the discontinuous
case appeared in [11]. We have engineered these diagrams from earlier forms
that can be found in [9] (for the discussion of the merit index) and in [3], to
become power tools for the modern cutgeneratingfunctionologist. Not only is
the minimality of a given function immediately apparent on the diagram, but
also the extremality proof for a given class of piecewise minimal valid functions
follows a standard pattern that draws from these diagrams. See [5, prelude] and
[11, Sections 2 and 4] for examples of such proofs.
3 See also our function number of slopes. We refer the reader to [4, Section 2.4]

for a discussion of the number of slopes of extreme functions, and [2] and
bcdsp arbitrary slope for the latest developments in this direction.

Software for Cut-Generating Functions 287

3.1 The Polyhedral Complex and Its Faces

Following [3–5], we introduce the function

Δπ : R × R → R, Δπ(x, y) = π(x) + π(y) − π(x + y),

which measures the slack in the subadditivity condition.4 Thus, if Δπ(x, y) < 0,
subadditivity is violated at (x, y); if Δπ(x, y) = 0, additivity holds at (x, y); and
if Δπ(x, y) > 0, we have strict subadditivity at (x, y). The piecewise linearity of
π(x) induces piecewise linearity of Δπ(x, y). To express the domains of linearity
of Δπ(x, y), and thus domains of additivity and strict subadditivity, we introduce
the two-dimensional polyhedral complex ΔP. The faces F of the complex are
defined as follows. Let I, J,K ∈ P, so each of I, J,K is either a breakpoint of π
or a closed interval delimited by two consecutive breakpoints. Then

F = F (I, J,K) = { (x, y) ∈ R × R : x ∈ I, y ∈ J, x + y ∈ K } .

In our code, a face is represented by an instance of the class Face. It is con-
structed from I, J,K and is represented by the list of vertices of F and its pro-
jections I ′ = p1(F), J ′ = p2(F), K ′ = p3(F), where p1, p2, p3 : R × R → R are
defined as p1(x, y) = x, p2(x, y) = y, p3(x, y) = x + y. The vertices vert(F) are
obtained by first listing the basic solutions (x, y) where x, y, and x + y are fixed
to endpoints of I, J , and K, respectively, and then filtering the feasible solutions.
The three projections are then computed from the list of vertices. Due to the
Z-periodicity of π, we can represent a face as a subset of [0, 1] × [0, 1]. See Fig. 1
for an example. Because of the importance of the projection p3(x, y) = x + y, it
is convenient to imagine a third, (x + y)-axis in addition to the x-axis and the
y-axis, which traces the bottom border for 0 ≤ x + y ≤ 1 and then the right
border for 1 ≤ x + y ≤ 2. To make room for this new axis, the x-axis should be
drawn on the top border of the diagram.

3.2 plot 2d diagram with cones

We now explain the first version of the 2-dimensional diagrams, plotted by the
function plot 2d diagram with cones(π); see Fig. 2. At the border of these
diagrams, the function π is shown twice (blue), along the x-axis (top border) and
along the y-axis (left border). The solid grid lines in the diagrams are determined
by the breakpoints of π: vertical, horizontal and diagonal grid lines correspond
to values where x, y and x + y are breakpoints of π, respectively. The vertices
of the complex ΔP are the intersections of these grid lines.

In the continuous case, we indicate the sign of Δπ(x, y) for all vertices
by colored dots on the diagram: red indicates Δπ(x, y) < 0 (subadditivity is
violated); green indicates Δπ(x, y) = 0 (additivity holds).

Example 1. In Fig. 2 (left), the vertex (x, y) = (15 , 3
5) is marked green, since

Δπ(15 , 3
5) = π(15) + π(35) − π(45) = 1

5 + 4
5 − 1 = 0.

4 It is available in the code as delta pi(π, x, y); in [7], it was called ∇(x, y).

288 C.Y. Hong et al.

Fig. 1. An example of a face F = F (I, J, K) of the 2-dimensional polyhedral com-
plex ΔP, set up by F = Face([[0.2, 0.3], [0.75, 0.85], [1, 1.2]]). It has ver-
tices (blue) (0.2, 0.85), (0.3, 0.75), (0.3, 0.85), (0.2, 0.8), (0.25, 0.75), whereas the other
basic solutions (red) (0.2, 0.75), (0.2, 1), (0.3, 0.9), (0.35, 0.85), (0.45, 0.75) are filtered
out because they are infeasible. The face F has projections (gray shadows) I ′ = p1(F) =
[0.2, 0.3] (top border), J ′ = p2(F) = [0.75, 0.85] (left border), and K′ = p3(F) = [1, 1.15]
(right border). Note that K′

� K.

In the discontinuous case, beside the subadditivity slack Δπ(x, y) at a
vertex (x, y), one also needs to study the limit value of Δπ at the vertex (x, y)
approaching from the interior of a face F ∈ ΔP containing the vertex (x, y).
This limit value is defined by

ΔπF (x, y) = lim
(u,v)→(x,y)

(u,v)∈rel int(F)

Δπ(u, v), where F ∈ ΔP such that (x, y) ∈ F.

We indicate the sign of ΔπF (x, y) by a colored cone inside F pointed at the
vertex (x, y) on the diagram. There could be up to 12 such cones (including rays
for one-dimensional F) around a vertex (x, y).

Example 2. In Fig. 2 (right), the lower right corner (x, y) = (25 , 4
5) of the face

F = F (I, J,K) with I = [15 , 2
5], J = [45 , 1], K = [1, 6

5] is green, since

ΔπF (x, y) = lim
(u,v)→(2

5 ,
4
5)

(u,v)∈rel int(F)

Δπ(u, v)

= lim
u→ 2

5 , u<
2
5

π(u) + lim
v→ 4

5 , v>
4
5

π(v) − lim
w→ 6

5 , w< 6
5

π(w)

= π(25
−) + π(45

+) − π(15
−) (as π(65

−) = π(15
−) by periodicity)

= 0 + 1 − 1 = 0.

Software for Cut-Generating Functions 289

Fig. 2. Two diagrams of functions and their polyhedral complexes ΔP with col-
ored cones at vert(ΔP), as plotted by the command plot 2d diagram with cones(h).
Left, continuous function h = not minimal 2(). Right, a random discontinu-
ous function generated by h = random piecewise function(xgrid=5, ygrid=5,

continuous proba=1/3, symmetry=True).

The horizontal ray to the left of the same vertex (x, y) = (25 , 4
5) is red, because

approaching from the one-dimensional face F ′ = F (I ′, J ′,K ′) that contains
(x, y), with I ′ = [15 , 2

5], J ′ = { 4
5}, K ′ = [1, 6

5], we have the limit value

ΔπF ′(x, y) = lim
(u,v)→(2

5 ,
4
5)

(u,v)∈rel int(F ′)

Δπ(u, v) = lim
u→ 2

5
u< 2

5

π(u)+π(45)− lim
w→ 6

5
w< 6

5

π(w) = 0+ 3
5 −1 < 0.

3.3 plot 2d diagram and additive faces

Now assume that π is a subadditive function. Then there are no red dots or
cones on the above diagram of the complex ΔP. See Fig. 3.

For a continuous subadditive function π, we say that a face F ∈ ΔP is
additive if Δπ = 0 over all F . Note that Δπ is affine linear over F , and so the
face F is additive if and only if Δπ(x, y) = 0 for all (x, y) ∈ vert(F). It is clear
that any subface E of an additive face F (E ⊆ F , E ∈ ΔP) is still additive. Thus
the additivity domain of π can be represented by the list of inclusion-maximal
additive faces of ΔP; see [4, Lemma 3.12].5

For a discontinuous subadditive function π, we say that a face F ∈ ΔP
is additive if F is contained in a face F ′ ∈ ΔP such that ΔπF ′(x, y) = 0 for any
(x, y) ∈ F .6 Since Δπ is affine linear in the relative interiors of each face of ΔP, the
last condition is equivalent to ΔπF ′(x, y) = 0 for any (x, y) ∈ vert(F). Depending
on the dimension of F , we do the following.
5 This list is computed by generate maximal additive faces(π).
6 Summarizing the detailed additivity and additivity-in-the-limit situation of the func-

tion using the notion of additive faces is justified by [3, Lemmas 2.7 and 4.5] and their
generalizations.

290 C.Y. Hong et al.

Fig. 3. Diagrams of ΔP of a discontinuous function h = hildebrand 2 sided

discont 2 slope 1(), with (left) additive limiting cones as plotted by the command
plot 2d diagram with cones(h); (right) additive faces as plotted by the command
plot 2d diagram(h).

1. Let F be a two-dimensional face of ΔP. If ΔπF (x, y) = 0 for any (x, y) ∈
vert(F), then F is additive. Visually on the 2d-diagram with cones, each
vertex of F has a green cone sitting inside F .

2. Let F be a one-dimensional face, i.e., an edge of ΔP. Let (x1, y1), (x2, y2)
be its vertices. Besides F itself, there are two other faces F1, F2 ∈ ΔP that
contain F . If ΔπF ′(x1, y1) = ΔπF ′(x2, y2) = 0 for F ′ = F , F1, or F2, then
the edge F is additive.

3. Let F be a zero-dimensional face of ΔP, F = {(x, y)}. If there is a face
F ′ ∈ ΔP such that (x, y) ∈ F ′ and ΔπF ′(x, y) = 0, then F is additive.
Visually on the 2d-diagram with cones, the vertex (x, y) is green or there is
a green cone pointing at (x, y).

On the diagram Fig. 3 (right), the additive faces are shaded in green. The
projections p1(F), p2(F), and p3(F) of a two-dimensional additive face F are
shown as gray shadows on the x-, y- and (x+y)-axes of the diagram, respectively.

4 Additional Functionality

minimality test(π) implements a fully automatic test whether a given func-
tion is a minimal valid function, using the information that the described
2-dimensional diagrams visualize. The algorithm is equivalent to the one
described, in the setting of discontinuous pseudo-periodic superadditive func-
tions, in Richard, Li, and Miller [13, Theorem 22].

extremality test(π) implements a grid-free generalization of the automatic
extremality test from [3], which is suitable also for piecewise linear func-
tions with rational breakpoints that have huge denominators. Its support for
functions with algebraic irrational breakpoints such as bhk irrational [3,
Section 5] is experimental and will be described in a forthcoming paper.

Software for Cut-Generating Functions 291

generate covered intervals(π) computes connected components of covered
(affine imposing [3]) intervals. This is an ingredient in the extremality test.

extreme functions is the name of a Python module that gives access to the
electronic compendium of extreme functions; see [11] and [4, Tables 1–4].

procedures provides transformations of extreme functions; see [4, Table 5].
random piecewise function() generates a random piecewise linear function

with prescribed properties, to enable experimentation and exploration.
demo.sage demonstrates further functionality and the use of the help system.

References

1. Alves, C., Clautiaux, F., de Carvalho, J.V., Rietz, J.: Dual-feasible functions for
integer programming and combinatorial optimization: Basics, extensions and appli-
cations. EURO Advanced Tutorials on Operational Research. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-27604-5. ISBN 978-3-319-27602-1

2. Basu, A., Conforti, M., Di Summa, M., Paat, J.: Extreme functions with
an arbitrary number of slopes. In: Louveaux, Q., Skutella, M. (eds.) IPCO
2016. LNCS, vol. 9682, pp. 190–201. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-33461-5 16

3. Basu, A., Hildebrand, R., Köppe, M.: Equivariant perturbation in Gomory and
Johnson’s infinite group problem. I. The one-dimensional case. Math. Oper. Res.
40(1), 105–129 (2014). doi:10.1287/moor.2014.0660

4. Basu, A., Hildebrand, R., Köppe, M.: Light on the infinite group relaxation I: foun-
dations and taxonomy. 4OR 14(1), 1–40 (2016). doi:10.1007/s10288-015-0292-9

5. Basu, A., Hildebrand, R., Köppe, M.: Light on the infinite group relaxation II:
sufficient conditions for extremality, sequences, and algorithms. 4OR 14(2), 107–
131 (2016). doi:10.1007/s10288-015-0293-8

6. Conforti, M., Cornuéjols, G., Daniilidis, A., Lemaréchal, C., Malick, J.: Cut-
generating functions and S-free sets. Math. Oper. Res. 40(2), 253–275 (2013).
http://dx.doi.org/10.1287/moor.2014.0670

7. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner poly-
hedra I. Math. Program. 3, 23–85 (1972). doi:10.1007/BF01584976

8. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner poly-
hedra, II. Math. Programm. 3, 359–389 (1972). doi:10.1007/BF01585008

9. Gomory, R.E., Johnson, E.L.: T-space and cutting planes. Math. Program. 96,
341–375 (2003). doi:10.1007/s10107-003-0389-3

10. Hong, C.Y., Köppe, M., Zhou, Y.: Sage program for computation and experi-
mentation with the 1-dimensional Gomory-Johnson infinite group problem (2014).
https://github.com/mkoeppe/infinite-group-relaxation-code

11. Köppe, M., Zhou, Y.: An electronic compendium of extreme functions for the
Gomory-Johnson infinite group problem. Oper. Res. Lett. 43(4), 438–444 (2015).
doi:10.1016/j.orl.2015.06.004

12. Louveaux, Q., Wolsey, L.A.: Lifting, superadditivity, mixed integer rounding and
single node flow sets revisited. Q. J. Belg. Fr. Ital. Oper. Res. Soc. 1(3), 173–207
(2003). doi:10.1007/s10288-003-0016-4

13. Richard, J.-P.P., Li, Y., Miller, L.A.: Valid inequalities for MIPs and group poly-
hedra from approximate liftings. Math. Program. 118(2), 253–277 (2009). doi:10.
1007/s10107-007-0190-9

14. Stein, W.A., et al.: Sage Mathematics Software (Version 7.1), The Sage Develop-
ment Team (2016). http://www.sagemath.org

http://dx.doi.org/10.1007/978-3-319-27604-5
http://dx.doi.org/10.1007/978-3-319-33461-5_16
http://dx.doi.org/10.1007/978-3-319-33461-5_16
http://dx.doi.org/10.1287/moor.2014.0660
http://dx.doi.org/10.1007/s10288-015-0292-9
http://dx.doi.org/10.1007/s10288-015-0293-8
http://dx.doi.org/10.1287/moor.2014.0670
http://dx.doi.org/10.1007/BF01584976
http://dx.doi.org/10.1007/BF01585008
http://dx.doi.org/10.1007/s10107-003-0389-3
https://github.com/mkoeppe/infinite-group-relaxation-code
http://dx.doi.org/10.1016/j.orl.2015.06.004
http://dx.doi.org/10.1007/s10288-003-0016-4
http://dx.doi.org/10.1007/s10107-007-0190-9
http://dx.doi.org/10.1007/s10107-007-0190-9
http://www.sagemath.org

Mixed Integer Nonlinear Program for
Minimization of Akaike’s Information Criterion

Keiji Kimura1(B) and Hayato Waki2

1 Faculty of Mathematics, Kyushu University, Fukuoka, Japan
k-kimura@math.kyushu-u.ac.jp

2 Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
waki@imi.kyushu-u.ac.jp

Abstract. Akaike’s information criterion (AIC) is a measure of the qual-
ity of a statistical model for a given set of data. We can determine the
best statistical model for a particular data set by the minimization based
on the AIC. Since it is difficult to find the best statistical model from
a set of candidates by this minimization in practice, stepwise methods,
which are local search algorithms, are commonly used to find a better
statistical model though it may not be the best.

We formulate this AIC minimization as a mixed integer nonlinear
programming problem and propose a method to find the best statistical
model. In particular, we propose ways to find lower and upper bounds
and a branching rule for this minimization. We then combine them with
SCIP, which is a mathematical optimization software and a branch-and-
bound framework. We show that the proposed method can provide the
best statistical model based on AIC for small-sized or medium-sized
benchmark data sets in UCI Machine Learning Repository. Furthermore,
we show that this method can find good quality solutions for large-sized
benchmark data sets.

Keywords: Mixed integer nonlinear program · SCIP · Akaike’s infor-
mation criterion

1 Introduction

Selecting the best statistical model from a number of candidate statistical models
for a given set of data is one of the most important problems solved in statistical
applications, e.g. regression analysis. This is called variable selection. Variable
selection provides a simplest statistical model for a given data set and improves
the prediction performance while keeping the goodness-of-fit for a given data
set. See [5] for more details on variable selection.

In variable selection based on an information criterion, all the candidates
are evaluated by the information criterion and select a statistical model by using
evaluations. Akaike’s information criterion (AIC) is one of the information cri-
teria and proposed in [2]. An AIC value is computed for each candidate, and the
model whose AIC value is the smallest is selected as the best statistical model.
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 292–300, 2016.
DOI: 10.1007/978-3-319-42432-3 36

MINLP for Minimization of AIC 293

Since we often need to handle too many candidates of statistical models in prac-
tical applications, the global minimization based on AIC is not practical. Instead
of the global minimization, stepwise methods, which are local search algorithms,
are commonly used to find a statistical model which has as small AIC as possible
though it may not be the smallest.

The contribution of our study is to provide a mixed integer nonlinear pro-
gramming (MINLP) formulation for the minimization based on AIC in linear
regression and a method to solve it efficiently via SCIP. SCIP is a mathematical
optimization software and a branch-and-bound framework. SCIP has high flexi-
bility of user plugin and control on various parameters in the branch-and-bound
framework for efficient computation. We implement a relaxator, which is a pro-
cedure to find lower bounds of the MINLP problems, and define a branching
rule. By applying our proposed method to benchmark data sets in [10], we can
obtain the best statistical models for some of them.

We introduce related work. Miyashiro and Takano [7] propose a mixed inte-
ger second-order cone programming (MISOCP) formulation for variable selection
based on some information criteria in linear regression. In our numerical com-
parison with them, our proposed approach outperforms MISOCP formulation.

The organization is as follows: We give a brief introduction of AIC-based
linear regression in Sect. 2. We introduce the MINLP formulation of the AIC
minimization and propose a procedure to compute lower and upper bounds used
in the branch-and-bound framework in Sect. 3. Section 4 introduces techniques
for more efficient computation. We present a numerical result in Sect. 5 and
discuss future work of our proposed approach in Sect. 6.

2 Preliminary on Akaike’s Information Criterion
in Linear Regression

We explain how to select the best statistical model via AIC in linear regression
analysis. Linear regression is a fundamental statistical tool which determines
coefficients β0, . . . , βp ∈ R for the following equation from a given set of data:

y = β0 +
p∑

j=1

βjxj . (1)

Here x1, . . . , xp and y are called the explanatory variables and the response vari-
able respectively. In fact, we adopt coefficients β0, . . . , βp which minimize

∑n
i=1 ε2i

for a set of data (xi1, . . . , xip, yi) ∈ R
p × R (i = 1, . . . , n), where εi is the ith

residual and defined by εi = yi − β0 − ∑p
j=1 βjxij .

In linear regression analysis, variable selection based on AIC corresponds to
the selection of a subset of the set of explanatory variables in (1) via AIC. More
precisely, for a set S ⊆ {1, . . . , p} of candidates of explanatory variables in the
statistical model (1), AIC is defined in [2] as follows:

AIC(S) = −2max
β,σ2

{�(β, σ2) : βj = 0 (j ∈ {1, . . . , p} \ S)} + 2(#(S) + 2) (2)

294 K. Kimura and H. Waki

where β = (β0, . . . , βp) ∈ R
p+1, #(S) stands for the number of elements in the

set S and �(β, σ2) is the loglikelihood function defined by

�(β, σ2) = −n

2
log(2πσ2) − 1

2σ2

n∑

i=1

ε2i .

Here we assume that all the residual εi are independent and normally distributed
with zero means and variance σ2. Computing AIC values for all subsets S of the
explanatory variables in (1), we can obtain the best AIC-based subset. However
since the number of subsets is 2p, the computation of all subsets is not practical.

3 MINLP Formulation for the Minimization of AIC

We provide a mathematical optimization formulation via mixed integer nonlinear
programming (MINLP) in this section. For this we focus on the first term of (2).
Let S be a set of candidates of explanatory variables in (1). By substituting
βj = 0 (j ∈ {1, . . . , p} \ S) to the objective function, the first term can be
regarded as the unconstrained minimization. The minimum solution satisfies
σ2 = 1

n

∑n
i=1 ε2i . This is obtained by calculating the partial derivative of the

objective function with σ2. Substituting this equation to (2), we simplify (2) as
follows:

AIC(S) = min
βj

{
n log

(
n∑

i=1

ε2i

)
: βj = 0 (j ∈ {1, . . . , p} \ S)

}
(3)

+2(#(S) + 2) + n (log(2π/n) + 1) ,

where εi = yi − β0 − ∑
j∈S βjxij for all i = 1, . . . , n.

We formulate the minimization of AIC(S) over S ⊆ {1, . . . , p} by the follow-
ing MINLP formulation:

min
βj ,zj ,
εi,k

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n log

(
n∑

i=1

ε2i

)
+ 2k :

εi = yi − β0 −
p∑

j=1

βjxij (i = 1, . . . , n),

p∑

j=1

zj = k, β0 ∈ R,

zj ∈ {0, 1}, |βj | ≤ Mzj (j = 1, . . . , p),

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (4)

where M is a sufficiently large positive number. We remove the constant in (3)
in the objective function of (4). If zj = 0, then βj must be zero, which implies
that the jth explanatory variable is not used in the statistical model (1). Note
that the minimization of the first term in (3) has an optimal solution with a
finite value for any subset S ⊆ {1, . . . , p}. This can be proved by using the
monotonicity of the logarithm function and the positive semidefiniteness of the
quadratic function

∑n
i=1 ε2i . Hence we can ensure that (4) has the same optimal

solution as the minimization in (3) by taking a sufficiently large positive number

MINLP for Minimization of AIC 295

M in (4). In addition, we use M only for the construction of the relaxation
problem (6), but does not use for the practical computation.

Next we provide a procedure to find lower bounds of the subproblem of (4)
at each node in the branch-and-bound tree. Some variables zj in (4) are fixed
to zero or one at each node of the tree. We define the sets Z0, Z1 and Z for a
given node as follows:

Z1 = {j ∈ {1, . . . , p} : zj is fixed to 1}, Z0 = {j ∈ {1, . . . , p} : zj is fixed to 0},

Z = {j ∈ {1, . . . , p} : zj is not fixed}.

We remark that Z1 ∪ Z0 ∪ Z = {1, . . . , p} and that each set is disjoint with one
another. Then the subproblem at the node is formulated as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
βj ,zj

n log

⎛

⎜⎝
n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2
⎞

⎟⎠ + 2
p∑

j=1

zj

subject to zj = 1 (j ∈ Z1), zj = 0 (j ∈ Z0), zj ∈ {0, 1} (j ∈ Z),
β0 ∈ R, |βj | ≤ Mzj

(5)

We deal with the following problem to obtain a lower bound of the optimal
value of (5):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
βj

n log

⎛

⎜⎝
n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2
⎞

⎟⎠ + 2#(Z1)

subject to β0, βj ∈ R (j ∈ Z ∪ Z1), βj = 0 (j ∈ Z0)

(6)

Recall that #(Z1) stands for the number of elements in the set Z1.
We can obtain the lower bound of the optimal value of of (5) after solving

(6). In fact, it is clear that any feasible solution of (5) is also feasible for (6).
Furthermore, we have

∑p
j=1 zj =

∑
j∈Z1∪Z zj ≥ ∑

j∈Z zj for any feasible solu-
tion (β, z) of (5). This implies that the optimal value of (6) is less than or equal
to (5), and thus we can obtain the lower bound of (5) after solving (6). We deal
with (6) as the relaxation problem of (5) in this sense.

We can freely remove the constant 2#(Z1) and the logarithm by the
monotonicity of the logarithm function in (6), and obtain the following prob-
lem from (6):

min
βj

⎧
⎪⎨

⎪⎩

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

βjxij

⎞

⎠
2

:
β0, βj ∈ R (j ∈ Z ∪ Z1)
βj = 0 (j ∈ Z0)

⎫
⎪⎬

⎪⎭
. (7)

Since (7) is the unconstrained minimization of a quadratic function, we can
obtain an optimal solution of (7) by solving a linear system. We denote the
optimal value of (7) by ξ∗. The optimal value of (6) is n log(ξ∗)+2#(Z1), which
is used as a lower bound of (5).

296 K. Kimura and H. Waki

We provide a procedure that constructs a feasible solution of (5) and com-
putes an upper bound of θ∗. For this we use a solution obtained after solving (7).
Let β̃ ∈ R

p+1 be an optimal solution of (7). We define z̃j by z̃j = 1 if β̃j �= 0,
otherwise z̃j = 0 for all j = 1, . . . , p. It is easy to see that (β̃j , z̃j) is feasible
for (5) and the objective value is n log(ξ∗) + 2#(Z ∪ Z1). If the objective value
is smaller than the current best upper bound, then we update the current best
upper bound and the current best solution.

4 Some Techniques to Improve the Numerical
Performance

4.1 SCIP

In order to implement our proposed approach, we use SCIP [1,8,11], which is
a mathematical optimization software and a branch-and-bound framework. In
fact, it has high user plug-in flexibility which helps to solve (4) efficiently. We
implement a procedure, which is called relaxator or relaxation handler, to obtain
lower bounds, upper bounds and feasible solutions of (4) at each node and to
define a branching rule described in Sect. 4.3.

4.2 Handling the Linear Dependency in Data

We illustrate that we can efficiently compute the optimal value of (4) by using
the linear dependency in data. Although linearly independent data is often the
assumption in standard statistical textbooks, practical data has often linear
dependency, e.g. servo and auto-mpg in UCI Machine Learning Repository [10].

For given data (xi1, xi2, . . . , xip, yi) ∈ R
p × R (i = 1, . . . , n), we denote

x0 =

⎛

⎜⎝
1
...
1

⎞

⎟⎠ , xj =

⎛

⎜⎝
x1j

...
xnj

⎞

⎟⎠ (j = 1, . . . , p).

We say that data has linear dependency if the vectors x0, x1, . . . , xp ∈ R
n are

linearly dependent.
The following lemma ensures that we do not need to branch zj = 1 for some

j ∈ Z if the data has the linear dependency. Thus we need to handle only zj = 0
in this case.

Lemma 1. Assume that in (5), there exists q ∈ Z such that the vector xq and
vectors {xj : j ∈ Z1 ∪ {0}} are linearly dependent. Then an optimal solution of
(5) satisfies zq = 0.

If a set of data has linear dependency, there exist q ∈ Z and nonempty set
Z1 ⊆ {1, . . . , p} which satisfy the assumption of Lemma 1. To implement Lemma
1, we collect sets of linearly dependent vectors from a given set of data before
solving (4). We then add the constraints

∑
j∈S�

zj ≤ #(S�) − 1 (� = 1, . . . , m)
in (4), where S1, . . . , Sm denote the sets of linearly dependent vectors. By this
addition, we do not generate the node in which S� ⊆ Z1 holds.

MINLP for Minimization of AIC 297

4.3 Most Frequent Branching

We define a branching rule for variables zj to improve the performance of our
implementation. We call it the most frequent branching. In our preliminary
numerical experiment, we observe that the explanatory variables used in the best
statistical model are also used in the statistical model whose AIC value is close
to the smallest AIC value. By branching variables zj in (5) which correspond
to such explanatory variables, we can expect that (5) at the node generated by
zj = 0 is pruned as early as possible. To find such explanatory variables, we use
stored feasible solution obtained in our procedure to compute upper bounds. We
describe most frequent branching rule at the current node in Algorithm 1.

Algorithm 1. Most frequent branching rule
Input: a positive integer N , a set Z of unfixed variables in the node and

all feasible solutions of (4) found from the root node through the
current node

Output: j̃ ∈ Z
1. Choose N feasible solutions (β1, z1), . . . , (βN , zN) out of all stored feasible

solutions. Here (βi, zi) is a feasible solution of (4) whose objective value is
the ith smallest in all the stored solutions.

2. Compute score value sj for all j ∈ Z defined by sj = #(Tj), where
Tj = {� ∈ {1, . . . , N} : z�

j = 1}.
3. Return J ∈ Z with sJ = max

j∈Z
{sj}

We observe in our preliminary numerical experiment that the obtained lower
bound at the child node generated by zJ = 0 tends to be relatively bigger and
that the pruning process tends to work earlier in our branching rule than in
branching rules implemented in SCIP. As a result, the number of nodes visited
in the branch-and-bound tree often decreases.

5 Numerical Experiment

We apply our proposed method to benchmark data sets in [10]. We apply our
implementation to standardized data sets, i.e. the data is transformed to have
the zero mean and unit variance. Note that the standardized data has also linear
dependency even if we apply the standardization to the original data which has
linear dependency. The specification of the computer is CPU: 3.5 GHz Intel Core
i7, Memory: 16GB and OS: OS X 10.9.5.

We compare our proposed method with the MISOCP approach proposed
in [7] via CPLEX [6]. This approach is also obtained from (4). Although the
objective function of (4) is non-convex, the difficulty due to the non-convexity
is overcome by using the identity exp(log(x)) = x and the monotonicity of the
exponential function exp(x). See [7, Section 3.2] for the detail. The resulting
problem is formulated as MISOCP and is tractable by CPLEX.

298 K. Kimura and H. Waki

Table 1. Summary of numerical results by MINLP, MISOCP and SW

Name n p Methods AIC k time(sec) gap(%)

housing 506 13 MINLP 776.21 11 0.04 0.0

MISOCP 776.21 11 7.96 0.0

SW 776.21 11 0.10 –

•servo 167 19 MINLP 258.35 9 0.78 0.0

MISOCP 258.35 9 7.99 0.0

SW 260.16 10 0.18 –

•auto-mpg 392 25 MINLP 332.88 15 1.64 0.0

MISOCP 332.88 15 303.83 0.0

SW 337.96 18 0.32 –

•solarflareC 1066 26 MINLP 2816.29 9 9.81 0.0

MISOCP 2816.29 9 304.51 0.0

SW 2821.61 12 1.08 –

•solarflareM 1066 26 MINLP 2926.90 7 7.76 0.0

MISOCP 2926.90 7 255.02 0.0

SW 2930.91 9 1.16 –

•solarflareX 1066 26 MINLP 2882.80 3 1.27 0.0

MISOCP 2882.80 3 19.39 0.0

SW 2891.56 9 1.20 –

breastcancer 194 32 MINLP 508.40 10 450.05 0.0

MISOCP 508.62 10 >5000 3.72

SW 509.96 14 0.60 –

•forestfires 517 63 MINLP 1429.64 12 >5000 0.71

MISOCP 1431.32 12 >5000 6.44

SW 1447.36 21 7.43 –

•automobile 159 65 MINLP -60.34 34 >5000 16.45

MISOCP -55.83 34 >5000 27.22

SW -47.61 40 2.64 –

crime 1993 100 MINLP 3410.25 50 >5000 0.53

MISOCP 3469.34 74 >5000 8.51

SW 3410.25 50 105.40 –

In addition, we also compare our proposed method with the stepwise method
with backward elimination. This method starts with all explanatory variables
and removes one explanatory variable at a time until the AIC value does not
decrease. More precisely, for the current set S of explanatory variables, we choose
an explanatory variable so that AIC(S \ {j}) is minimum over all j ∈ S.

Table 1 shows the summary of numerical comparisons. The mark • in the
first column indicates that the data has linear dependency. The second, third,

MINLP for Minimization of AIC 299

and sixth columns indicate the numbers of data, the explanatory variables in the
statistical model (1), and the ones in the models found by using each method.
The fifth column indicates the obtained AIC values by each method. The values
with the bold font are the best among three values. The seventh column indicates
the CPU time in seconds to compute the optimal value. “>5000” means that the
method cannot find the optimal value within 5000 s. The last column indicates
the gap in the percent as follows:

gap =
upper bound − lower bound

max{1, |upper bound|} × 100.

It should be noted that if the gap is sufficiently close to zero, then the obtained
value is optimal. MINLP, MISOCP and SW indicate the results obtained by our
proposed method, MISOCP approach and the stepwise method, respectively.

We observe from Table 1 that (i) MINLP computes the optimal value much
faster than MISOCP. MINLP finds smaller AIC values than MISOCP even when
MINLP cannot find them within 5000 s, and that (ii) the values found by using
MINLP is smaller than or equal to SW in some data sets. In fact, since SW
is a local search algorithm, it does not always find the global optimal values.
In contrast, MINLP finds the global optimal value. In particular, MINLP can
obtain the best statistical models (1) for p ≤ 32.

6 Future Work

Future work involves to applying our implementation to data sets with more
large p and/or n. A possible choice to accomplish this involves the use of parallel
computation via ParaSCIP and FiberSCIP [9].

Another future work is to compare our proposed method with a mixed integer
quadratic programming (MIQP) formulation for linear regression with a cardi-
nality constraint proposed by Bertsimas and Shioda [4] and Bertsimas et al. [3].
Their formulation is available to our problems by fixing the number of explana-
tory variables from 0 to p.

Acknowledgements. The second author was supported by JSPS KAKENHI Grant
Numbers 26400203. We would like to thank the anonymous referees for providing sig-
nificant comments on the presentation of the manuscript.

References

1. Achterberg, T.: SCIP solving constraint integer programs. Math. Prog. Comp.
1(1), 1–41 (2009)

2. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom.
Control 19(6), 716–723 (1974)

3. Bertsimas, D., King, A., Mazumder, R.: Best subset selection via a modern opti-
mization lens. Ann. Stat. 44(2), 813–852 (2016)

300 K. Kimura and H. Waki

4. Bertsimas, D., Shioda, R.: Algorithm for cardinality-constrained quadratic opti-
mization. Comput. Optim. Appl. 43, 1–22 (2009)

5. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

6. IBM ILOG CPLEX Optimizer 12.6.2, IBM ILOG (2015)
7. Miyashiro, R., Takano, Y.: Mixed integer second-order cone programming formu-

lations for variable selection. Eur. J. Oper. Res. 247, 721–731 (2015)
8. SCIP: Solving Constraint Integer Programs. http://scip.zib.de/
9. Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: ParaSCIP: A par-

allel extension of SCIP. In: Bischof, C., Hegering, H.-G., Nagel, W.E., Wittum, G.
(eds.) Competence in High Performance Computing 2010, pp. 135–148. Springer,
Heidelberg (2012)

10. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/
11. Vigerske, S., Gleixner, A.: SCIP: Global Optimization of Mixed-Integer Nonlin-

ear Programs in a Branch-and-Cut Framework. ZIB-Report 16–24, Zuse Institute
Berlin, May 2016

http://scip.zib.de/
http://archive.ics.uci.edu/ml/

PySCIPOpt: Mathematical Programming
in Python with the SCIP Optimization Suite

Stephen Maher1, Matthias Miltenberger1(B), João Pedro Pedroso2,
Daniel Rehfeldt1, Robert Schwarz1, and Felipe Serrano1

1 Zuse Institute Berlin, Berlin, Germany
{maher,miltenberger,rehfeldt,schwarz,serrano}@zib.de

2 Faculdade de Ciências da Universidade do Porto, Porto, Portugal
jpp@fc.up.pt

http://www.zib.de

http://www.dcc.fc.up.pt/∼jpp/

Abstract. SCIP is a solver for a wide variety of mathematical opti-
mization problems. It is written in C and extendable due to its plug-in
based design. However, dealing with all C specifics when extending SCIP
can be detrimental to development and testing of new ideas. This paper
attempts to provide a remedy by introducing PySCIPOpt, a Python
interface to SCIP that enables users to write new SCIP code entirely in
Python. We demonstrate how to intuitively model mixed-integer linear
and quadratic optimization problems and moreover provide examples on
how new Python plug-ins can be added to SCIP.

Keywords: SCIP · Mathematical optimization · Python · Modeling

1 Introduction

Since its initial release in 2005, SCIP has matured into a powerful solver for
various classes of optimization problems and has achieved considerable acclaim
in academia and industry. It is distributed as part of the SCIP Optimization
Suite [13], along with the LP solver SoPlex [6,15], the modeling language ZIMPL
[17], the generic column generation solver GCG [11], and the parallelization
framework UG [16]. For an in-depth description of SCIP and the Optimization
Suite in general we refer to the original publication [1] and the report about
the latest release 3.2 [3]. SCIP is available in source code and provides tutori-
als and comprehensive documentation for researchers and practitioners on its
web page [13], thereby allowing users to extend its functionality and write cus-
tom plug-ins. As yet, however, such extensions required not only knowledge of
the C programming language, but furthermore impeded fast prototyping, an
obstacle keeping some (potential) users from implementing their ideas within
a reasonable amount of time. To overcome these impediments, we have devel-
oped PySCIPOpt, a Python interface to SCIP that allows for fast prototyping
of new algorithmic concepts and concurrently benefits from the underlying high
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 301–307, 2016.
DOI: 10.1007/978-3-319-42432-3 37

302 S. Maher et al.

performance C code. The interface is implemented by means of the programming
language Cython [8] and documented with the Python standard Docstring [10].

Finally, it is certainly worth mentioning that with JuMP [4] there is already
an optimization software package available for the Julia language that provides
both fast implementation possibilities and high performance. However, this soft-
ware does not yet fully support SCIP.1

2 Modeling

The Python interface supports an intuitive modeling syntax using linear and
quadratic expressions. The following example shows how to build up and subse-
quently solve a small mixed-integer quadratic programming problem:

Mathematical formulation:

minimize x + 3y

subject to 2x − y2 ≥ 10
x, y ≥ 0
x ∈ R

y ∈ Z

Python code:

from pyscipopt import Model

scip = Model()

x = scip.addVar(’x’, vtype=’C’)

y = scip.addVar(’y’, vtype=’I’)

scip.setObjective(x + 3y)

scip.addCons(2x − y∗y >= 10)

scip.optimize()

Most methods can be called with a small number of parameters, leaving it to
the interface to fill in the remaining parameters with default values. If necessary,
these parameters can be set in any order to provide a more flexible interface. This
feature is exemplified by the addVar() method, which is used in the example
above with only two specified parameters, while in fact six may be provided:

addVar(self, # the SCIP model

name = ’’, # name of the variable

vtype = ’C’, # variable type (’C’, ’I’, or ’B’)

lb = 0.0, # lower bound

ub = None, # upper bound

obj = 0.0, # objective coefficient

pricedVar = False # is it a pricing candidate?

)

In this way, a minimalistic and intuitive code can be designed without surren-
dering any functionality of the wrapped SCIP method.

3 Extending SCIP: Writing Plug-Ins in Python

Every plug-in supported by PySCIPOpt is encapsulated in a separate file that
declares its interface methods to SCIP. The file defines the Python base class
1 SCIP can already be used to solve models formulated in JuMP via AMPL’s nl for-

mat [7]. Furthermore, there is an ongoing development effort to develop an interface
that supports callbacks [14].

Mathematical Programming in Python with SCIP 303

for the respective plug-in, including its callbacks. These callback definitions can
be left empty for optional callbacks, but need to be implemented by the user in
case of fundamental ones. In line with the overall approach of PySCIPOpt, the
user can thereby implement customized plug-ins with minimal effort, but access
to more intricate functionalities of SCIP is still provided.

3.1 Constraint Handler Example: TSP

In this section we show how to design a simple constraint handler that can solve
the traveling salesman problem (TSP).

The following model for solving the TSP has been proposed by Dantzig–
Fulkerson–Johnson (DFJ) [2]. Let G = (V,E) be a complete, undirected graph
with V = {1, · · · , n} being the vertex set and E the edge set. Furthermore, let
cij be the weight of the edge (i, j). We associate with each edge (i, j) a variable
xij , with xij = 1 if edge (i, j) is used in the solution and xij = 0 otherwise.
Thereupon, the DFJ integer programming formulation can be stated as follows:

minimize
∑

i,j

cijxij (1)

subject to
∑

j

xij = 2 ∀i ∈ {1, · · · , n} (2)

∑

i,j∈S

xij ≤ |S| − 1 ∀S � {1, · · · , n}, |S| ≥ 2 (3)

xij ∈ {0, 1} ∀i < j (4)

The constraints (3) exclude subtours by imposing that for any proper subset
S of the vertex set V such that |S| ≥ 2 a solution cannot encompass a cycle within
S. However, as there is an exponential number of subsets of V , it is impractical
to specify all of these constraints. A possible approach is to iteratively solve the
problem, starting without these constraints and after each solving round add
constraints (3) violated by the current solution.

The constraint handler in our PySCIPOpt TSP implementation does not
generate its own constraints, but instead SCIP is querying whether the current
solution is feasible and in case it is not, how feasibility can be achieved. This
is accomplished by setting the needscons flag to False when including the
constraint handler into SCIP.

304 S. Maher et al.

Our example2 uses the external Python library networkx to compute the
connected components of a graph. The constraint handler then adds the corre-
sponding subtour elimination constraints as described above when called in the
consenfolp() callback. An integer feasible solution that satisfies the first set
of constraints will be checked for subtours in the conscheck() callback of the
TSPconshdlr class. The conslock() callback sets up locks on the variables of
the constraint and is required for a correct implementation. In a nutshell, it tells
SCIP how the variables can be rounded without violating the constraint.

For more information about the different callbacks we refer to the SCIP
documentation [13].

When adding constraints via linear or quadratic expressions we recommend
to use the quicksum() function. This eliminates the overhead of intermediate
creation/destruction of multiple expressions and instead sets up one instance
that will be iteratively extended. A similar implementation is also provided in
the Python interface of the commercial optimization software Gurobi [12].

4 Conclusion and Outlook

With PySCIPOpt we provide a SCIP based optimization tool that allows for
fast, minimalistic and intuitive programing, while still having the more intri-
cate functionalities of SCIP up its sleeve. We hope that the availability of such
a device will help mathematical programming experts set up prototypes more
efficiently and moreover allow less experienced users to more easily make use of
the wide range of capabilities provided by SCIP. In this way, PySCIPOpt may
also serve as coherent tool to make (undergraduate) mathematical optimization
students familiar with the subject, as has already successfully been the case for
instance at the University of Porto [9].

Future developments naturally encompass the extension of PySCIPOpt to
cover even more functionalities provided by SCIP. Missing functions can be easily
added by specifying their header declaration in the scip.pxd file and defining
a corresponding wrapper function in the class Model in the scip.pyx file. Of
special interest in this context are additional general nonlinear programming
methods [5]: Our objective is to make them blend in with the already existing
features, while maintaining the underlying minimalistic design of PySCIPOpt.

2 A proper implementation of this constraint handler would implement the callback
conssepalp to separate the LP solution. The callback consenfolp is called at the
end of the node processing loop, where possibly several calls to the conssepalp

callback of the different constraint handlers have already been made.
For reasons of space we provide a concise, although rather inefficient, implemen-

tation.

Mathematical Programming in Python with SCIP 305

tsp example.py

import networkx

from pyscipopt import Model, Conshdlr , quicksum, SCIP RESULT

EPS = 1.e−6

class TSPconshdlr(Conshdlr):

def init (self, variables):

self.variables = variables

def find subtours(self, solution=None):

edges = []

x = self.variables

for (i,j) in x:

if self.model.getSolVal(solution , x[i,j]) > EPS:

edges.append((i,j))

G = networkx.Graph()

G.add edges from(edges)

components = list(networkx.connected components(G))

return [] if len(components) == 1 else components

def conscheck(self, constraints , solution , check integrality ,

check lp rows , print reason):

if self.find subtours(solution):

return {"result": SCIP RESULT.INFEASIBLE}
else:

return {"result": SCIP RESULT.FEASIBLE}

def consenfolp(self, constraints , n useful conss , sol infeasible):

subtours = self.find subtours()

if subtours:

x = self.variables

for subset in subtours:

self.model.addCons(quicksum(x[i,j] for(i,j) in pairs(subset))

<= len(subset) − 1)

print("cut: len(%s) <= %s" % (subset, len(subset) − 1))

return {"result": SCIP RESULT.CONSADDED}
else:

return {"result": SCIP RESULT.FEASIBLE}

def conslock(self, constraint , nlockspos , nlocksneg):

x = self.variables

for (i,j) in x:

self.model.addVarLocks(x[i,j], nlocksneg , nlockspos)

306 S. Maher et al.

def create tsp(vertices , distance):

model = Model("TSP")

x = {}
for (i,j) in pairs(vertices):

x[i,j] = model.addVar(vtype = "B",name = "x(%s,%s)" % (i,j))

for i in vertices:

model.addCons(

quicksum(x[j,i] for j in vertices if j < i) +

quicksum(x[i,j] for j in vertices if j > i) == 2)

conshdlr = TSPconshdlr(x) # set up conshdlr with all variables

model.includeConshdlr(conshdlr, "TSP", "TSP subtour eliminator",

needscons=False)

model.setObjective(quicksum(distance[i,j] ∗ x[i,j]

for (i,j) in pairs(vertices)), "minimize")

return model, x

def solve tsp(vertices , distance):

model, x = create tsp(vertices, distance)

model.optimize()

edges = []

for (i,j) in x:

if model.getVal(x[i,j]) > EPS:

edges.append((i,j))

return model.getObjVal(), edges

def pairs(vertices):

for i in vertices:

for j in vertices:

if i < j:

yield (i,j)

def test main():

vertices = [1, 2, 3, 4, 5, 6]

distance = {(u,v):1 for (u,v) in pairs(vertices)}
for u in vertices[:3]:

for v in vertices[3:]:

distance[u,v] = 10

objective value , edges = solve tsp(vertices , distance)

print("Optimal tour:", edges)

print("Optimal cost:", objective value)

if name == " main ":

test main()

Mathematical Programming in Python with SCIP 307

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Univer-
sität Berlin (2007)

2. Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling-
salesman problem. Oper. Res. 3, 393–410 (1954)

3. Gamrath, G., Fischer, T., Gally, T., Gleixner, A.M., Hendel, G., Koch, T., Maher,
S.J., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D.,
Schenker, S., Schwarz, R., Serrano, F., Shinano, Y., Vigerske, S., Weninger, D.,
Winkler, M., Witt, J.T., Witzig, J.: The SCIP optimization suite 3.2. Technical
report 15–60, ZIB, Takustr. 7, 14195 Berlin (2016)

4. Lubin, M., Dunning, I.: Computing in operations research using Julia. INFORMS
J. Comput. 27(2), 238–248 (2015)

5. Vigerske, S., Gleixner, A., SCIP: global optimization of mixed-integer nonlinear
programs in a branch-and-cut framework. Technical report 16–24, ZIB, Takustr.
7, 14195 Berlin (2016)

6. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. the-
sis, Technische Universität Berlin (1996)

7. AmplNLWriter.jl. https://github.com/JuliaOpt/AmplNLWriter.jl
8. Cython. http://www.cython.org/
9. Decision support methods, Universidade do Porto. http://www.dcc.fc.up.pt/∼

jpp/mad/
10. PEP 0257 - Docstring Conventions. https://www.python.org/dev/peps/pep-0257/
11. GCG: Generic Column Generation. http://www.or.rwth-aachen.de/gcg/
12. Gurobi optimizer reference manual. http://www.gurobi.com/
13. SCIP: Solving Constraint Integer Programs. http://scip.zib.de/
14. SCIP.jl. https://github.com/ryanjoneil/SCIP.jl
15. SoPlex: Sequential object-oriented simPlex. http://soplex.zib.de/
16. UG: Ubiquity Generator framework. http://ug.zib.de/
17. ZIMPL: Zuse Institute Mathematical Programming Language. http://zimpl.

zib.de/

https://github.com/JuliaOpt/AmplNLWriter.jl
http://www.cython.org/
http://www.dcc.fc.up.pt/~jpp/mad/
http://www.dcc.fc.up.pt/~jpp/mad/
https://www.python.org/dev/peps/pep-0257/
http://www.or.rwth-aachen.de/gcg/
http://www.gurobi.com/
http://scip.zib.de/
https://github.com/ryanjoneil/SCIP.jl
http://soplex.zib.de/
http://ug.zib.de/
http://zimpl.zib.de/
http://zimpl.zib.de/

A First Implementation of ParaXpress:
Combining Internal and External Parallelization

to Solve MIPs on Supercomputers

Yuji Shinano1, Timo Berthold2(B), and Stefan Heinz2

1 Zuse Institute Berlin, Berlin, Germany
shinano@zib.de

2 Fair Isaac Germany GmbH, Berlin, Germany
{timoberthold,stefanheinz}@fico.com

Abstract. The Ubiquity Generator (UG) is a general framework for the
external parallelization of mixed integer programming (MIP) solvers. It
has been used to develop ParaSCIP, a distributed memory, massively
parallel version of the open source solver SCIP, running on up to 80,000
cores. In this paper, we present a first implementation of ParaXpress,
a distributed memory parallelization of the powerful commercial MIP
solver FICO Xpress. Besides sheer performance, an important difference
between SCIP and Xpress is that Xpress provides an internal paralleliza-
tion for shared memory systems. When aiming for a best possible per-
formance of ParaXpress on a supercomputer, the question arises how to
balance the internal Xpress parallelization and the external paralleliza-
tion by UG against each other. We provide computational experiments
to address this question and we show preliminary computational results
for running a first version of ParaXpress on 6,144 cores in parallel.

Keywords: Mixed integer programming · Distributed memory paral-
lelization

1 Introduction

This paper deals with solving mixed integer programming (MIP) problems in
parallel. Many optimization problems arising in practice can be modeled as MIP,
see, e.g., [7]. A MIP is given in the following general form:

min{c�x : Ax ≤ b, l ≤ x ≤ u, xj ∈ Z, for all j ∈ I}, (1)

with matrix A ∈ R
m×n, vectors b ∈ R

m and c, l, u ∈ R
n, and a subset I ⊆

{1, . . . , n}. The standard algorithm used to solve MIP is an LP-based branch-
and-bound, which implicitly enumerates the whole solution space to find an
optimal solution x∗ that gives the minimum value of (1).

Over the past twenty years, substantial progress has been made in the solv-
ability of large-scale mixed integer programs [2]. As a result, state-of-the-art
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 308–316, 2016.
DOI: 10.1007/978-3-319-42432-3 38

A First Implementation of ParaXpress 309

MIP solvers are nowadays capable of solving a variety of different types of
MIP instances which arise from real-world applications within reasonable time
and mixed integer programming has become a standard technique in opera-
tions and in logistics industry. At the same time, we witnessed big progress in
the development of scalable, massively parallel branch-and-bound system, such
as, PEBBL [4], ParSSSE [13] and ALPS [14]. Surprisingly, only a handful of
publications [3,9,11] address the combination of both lines of research, i.e., an
effective parallelization of state-of-the-art MIP solvers, capable of running on
modern supercomputers. Two of these publications are based on using Cplex as
underlying MIP solver [3,11].

ParaSCIP is an external parallelization of the open source solver SCIP and
has been developed using the Ubiquity Generator (UG) framework [12]. UG is
a general software framework to parallelize MIP solvers externally; it is the
framework that we used to implement the FiberXpress and ParaXpress solvers which
we present in this paper. FiberXpress is the shared memory pendant to ParaXpress,
see Sect. 2.

The FICO Xpress Optimization Suite features software tools used to model
and solve linear, integer, quadratic, nonlinear, and robust optimization prob-
lems [5,6]. The core solver of this suite is the FICO Xpress-Optimizer, which
comes with a callable library that is accessible from all the major program-
ming platforms. It combines flexible data access functionality and optimization
algorithms, using state-of-the-art methods, which enable the user to handle the
increasingly complex problems arising in industry and academia.

The Xpress C API provides all necessary functionality for an external paral-
lelization by UG. In this study, we examine the feasibility of an external paral-
lelization of Xpress by making a preliminary implementation of it by using UG.
The key point addressed in this paper is how to combine UG’s external paralleliza-
tion with Xpress’s internal parallelization. We would like to answer two questions:
(i) what is the best combination of those two parallelization approaches and (ii)
what is the “price of externalization”, i.e., what potential is lost by having a pure
external parallelization like, e.g., ParaSCIP? We show computational experiments
for a comparison between internal and external parallelization of Xpress. We fur-
ther show preliminary computational results for a massively parallel ParaXpress
using up to 6,144 cores on a supercomputer.

2 Features of FiberXpress and ParaXpress

In this section, we introduce a preliminary implementation of FiberXpress and
ParaXpress by using UG. Figure 1 shows the design structure of UG. UG is written
in C++. It consists of a set of base classes to instantiate parallel branch-and-
bound based solvers. Both, the MIP solver and the parallelization library used for
communications are abstract classes. FiberXpress is the instantiated parallel solver
where Xpress is used as MIP solver and Pthreads is used as the parallelization
library, and ParaXpress is the instantiated parallel solver where Xpress is used as
MIP solver and MPI is used as the parallelization library. FiberXpress addresses

310 Y. Shinano et al.

Fig. 1. Design structure of ubiquity generator framework.

shared memory systems, ParaXpress addresses distributed memory systems. There
is a single LoadCoordinator (abbreviated to LC throughout this paper),
which makes all decisions concerning the dynamic load balancing and distributes
subproblems of MIP instances to be solved (so-called sub-MIPs). Further, there
is a set of parallel Solvers that solve the distributed sub-MIPs. Both, the LC
and an abstract implementation of a Solver, are part of the UG framework.

The following three features have been implemented in UG and can therefore
be directly used for the external parallelization of Xpress.

Ramp-up The phase that lasts until all solvers have become busy.
Dynamic Load Balancing A work load coordination mechanism to keep all

available Xpress Solvers busy.
Checkpointing and restarting A mechanism to restart a solving process of

an interrupted job from the last previous checkpoint.

We will briefly explain these features and special adaptations for ParaXpress in
the following.

In the initialization, the LC and all the Solvers read the instance data of the
MIP to solve. We refer to the resulting instance as the original instance, that
is (P). The original instance is embedded into the (local) Xpress environment
of each Solver. Later, only differences between a sub-MIP and the original
instance will be communicated.

An important technical difference between ParaSCIP and ParaXpress is the
following. In ParaSCIP, the original instance is presolved once within the LC and
the presolved instance is transferred to the individual Solvers. In ParaXpress, the
original instance is transferred to each Solver and presolved locally. The reason
for this design decision is that is currently not possible to extract the presolved
model from Xpress. Further, in the current preliminary implementation of Para-

Xpress, possible pruning of the transferred problem is checked for the first time
after complete root node processing, including solving the root LP and cutting.

A First Implementation of ParaXpress 311

This is a potential performance bottleneck, in particular during ramp-down, and
will be improved in future implementations.

After the initialization step, the LC creates the root node of the branch-and-
bound tree. Each node transferred through the system—called a ParaNode—
acts as the root of a subtree. The information sent to a ParaNode only consists
of variable bound changes. The Solver that receives a new branch-and-bound
node instantiates the corresponding sub-MIP using the original instance, which
was distributed in the initialization step, and the received bound changes. There-
fore, ParaNode is considered as a representation of a sub-MIP in ParaXpress.

UG provides two ramp-up mechanisms [12]. However, in this preliminary
implementation, we only realized the normal ramp-up. Normal ramp-up works
as follows. Solvers that are already solving a sub-MIP transfer every second
child node back to the LC. The LC maintains a node pool from which it assigns
nodes to idle Solvers. If no idle Solver exists, the LC keeps collecting nodes
from Solvers until it has p “heavy” (promising to have a large subtree under-
neath) unassigned nodes in its node pool. As soon as the LC’s node pool has
accumulated p “heavy” nodes, it sends a message to all Solvers to stop sending
nodes.

After the ramp-up, the dynamic load balancing mechanism works as follows.
Periodically, each Solver notifies the LC about the number of unexplored nodes
in its Xpress environment and the lower bound of its subtree; we call this infor-
mation the solver status. If a Solver becomes idle, the LC sends one of the
nodes from the pool to the idle Solver. In order to keep all Solvers busy, the
LC aims to always have a sufficient number of unprocessed nodes left in its node
pool. Further, the LC aims to keep at least p “heavy” nodes in the node pool
by employing a collecting mode. We call a node heavy, if the lower bound value
of its subtree (NodeBound) is sufficiently close to the lower bound value of the
complete search tree (GlobalBound). This is evaluated by the comparison

NodeBound − GlobalBound

max{|GlobalBound|, 1.0} < Threshold. (2)

When a Solver receives the message to switch into collecting mode, it
changes the search strategy to “best bound order” (see [1]). Similar to normal
ramp-up, the Solver alternates between solving nodes and transferring them
to the LC.

Solvers switch to collecting mode in ascending order of the minimum lower
bound of their open nodes. The collecting mode is stopped as soon as the number
of heavy nodes in the pool is larger than 1.5 · p.

The termination phase starts when the node pool is empty and all Solvers
are idle. In this phase, the LC collects statistical information from all Solvers
and outputs the optimal solution and statistics.

The checkpointing and restarting mechanism is identical to that of ParaSCIP
[8]. ParaXpress saves only primitive nodes; these are nodes that have no ancestor
nodes in the LC. The restart involves ParaXpress reading the nodes saved in
the checkpoint file and restoring them into the node pool of the LC. The LC

312 Y. Shinano et al.

subsequently distributes these nodes to the Solvers in an order determined by
their lower bounds. The discussion of this mechanism can be found in [8,10].

3 Computational Experiments

Our computational experiments consist of two parts. One is running FiberXpress

on a shared memory system in order to analyze the interplay of the Xpress internal
parallelization with UG’s external parallelization. The other is running ParaXpress

on a supercomputer as a proof-of-concept.
For both experiments, we used Xpress release 7.9 and UG 0.8.2. The experi-

ments in Sect. 3.1 were conducted on a cluster of 20 core Intel Xeon CPU E5-2670
v2 CPUs at 2.50 GHz with 24 MB cache and 128 GB main memory, running an
Ubuntu 14.04 with a gcc 4.8.4 compiler. The experiments in Sect. 3.2 were con-
ducted on the HLRN III supercomputer that is a Cray XC30 with 24 core Intel
Xeon E5-2695 v2 CPUs at 2.400 GHz, running SLSE v.11 with an Intel Parallel
Studio Composer Edition 15.0.1.133.

Table 1. Comparison of internal and external parallelization

Instance Xpress 16 UG 2 Xpress 8 UG 4 Xpress 4 UG 8 Xpress 2 UG 16 Xpress 1
Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time

csched007 571993 553 674247 537 * 412393 * 409 686640 913 435195 809

gmu-35-40 * 304215 76 349087 * 58 522770 112 483199 110 1147446 387

k16x240 903579 112 894575 * 102 767408 143 731922 158 * 669815 267

momentum1 966771 * 2217 968874 2584 1035816 4051 818913 5046 * 266026 2280

neos15 1362829 * 473 2006103 553 * 1011992 508 1426355 586 1617498 962

neos-1616732 1597293 555 1275256 * 499 1616314 910 880811 838 * 694200 676

noswot 36563 14 * 24623 * 5 43007 11 30818 8 47413 18

ns1766074 526817 42 523108 * 32 521909 87 * 510014 189 513897 291

ns894788 25124 83 16356 79 5596 * 32 28150 139 * 4378 33

pg * 10465 * 10 11679 * 10 14431 13 19346 19 48407 43

pigeon-10 2090347 * 78 * 1810887 159 2053671 305 2081876 567 2609692 969

pigeon-11 26725387 1320 * 14703728 * 1251 16767144 2464 19286131 3897 20079415 3610

ran14x18-disj-8 * 739241 235 854131 * 193 1884385 429 1606310 712 3983341 1312

ran14x18 * 1069177 * 214 1416210 250 1141378 238 1450989 326 1229049 432

reblock166 * 60565 * 60 96409 96 313183 431 118985 293 278644 896

timtab1 * 106737 42 158661 35 148651 * 33 296132 66 337464 165

umts 188753 * 79 201974 87 185982 94 287795 220 * 120737 127

shifted geom mean 385513 145.1 393505 145.4 415971 206.3 462828 299.0 455117 381.4

3.1 Comparison Between FiberXpress and Xpress Internal
Parallelization

In contrast to FiberSCIP and ParaSCIP, each Solver of FiberXpress and ParaXpress

can run in multi-threaded mode. Since on modern supercomputers, each single
computing node itself is a multi-core shared memory system, one could either
run a single, multi-threaded Xpress instance per computing node, or as many
UG Solvers as cores, each with a single-threaded Xpress— or any combination
in between. In this section, we analyze which relationship between UG Solver
threads and Xpress threads is most beneficial.

A First Implementation of ParaXpress 313

Therefore, we chose a test set that it is suitable for studying MIP solver
parallelization: the Tree test set of the MIPLIB 2010. We removed all instances
that Xpress 7.9 can solve at the root node and all for which at least one of the
tested solvers hit a memory limit. This left us with 17 MIP instances on which
we conducted the following experiment.

We compare a run of standalone Xpress with 16 threads against four different
FiberXpress versions: two UG Solver threads, each running Xpress with eight
threads (UG 2 Xpress 8), four UG Solver threads, each running Xpress with four
threads (UG 4 Xpress 4), eight UG Solver threads, each running Xpress with
two threads (UG 8 Xpress 2), and 16 UG Solver threads, each running Xpress

with one thread (UG 16 Xpress 1). Note that for this experiment, we ran both,
FiberXpress and Xpress, in opportunistic mode. A summary of the results is given
in Table 1. The Columns Nodes and Time depict the shifted geometric means
of the number of branch-and-bound nodes and the running time for each of
the five solvers. The shifted geometric mean of values t1, . . . , tn with shift s is
defined as n

√∏
(ti + s) − s. We use a shift of s = 10 for time and s = 100 for

nodes. For each instance, we mark the minimal time and the minimal number
of branch-and-bound nodes by an asterisk “*”.

From Table 1, we see a clear tendency that an internal parallelization like the
one of Xpress outperforms an external parallelization like the one by UG. This
is not surprising, since the internal parallelization directly benefits from sharing
different kind of statistics and the possibility to use parallelization for different
aspects than the tree search, e.g., LP solving. Notably, the (UG 2 Xpress 8) setting
almost showed the same performance as standalone Xpress which emphasizes that
with a growing number of CPU cores per computing, it might indeed make sense
to split the resources between UG and Xpress.

Looking at individual instances, the minimal running time was almost always
achieved by standalone Xpress or using two UG threads with an eight-threaded
Xpress each. However, when considering the number of branch-and-bound nodes,
we see that the minimal value is most often achieved by either standalone Xpress

or the “other extreme”, 16 UG threads with single-threaded Xpress. A major
difference between these two solvers is that for (UG 16 Xpress 1), much more
nodes will undergo a complete presolving and “root-node-like” cutting plane
separation, which for some instances can help to reduce the size of the branch-
and-bound tree significantly. As mentioned in Sect. 2, this is also a potential
bottleneck w.r.t. running time in our current implementation. This effect might
come even more into play when running on a supercomputer with thousands of
cores. Notably, all instances were solved within the time limit of two hours by
all solvers.

Concerning the mean running time, the mean values in Table 1 sketch a clear
picture: (UG 4 Xpress 4) is about 30 % slower than (UG 2 Xpress 8); (UG 8 Xpress

2) is about 30 % slower than (UG 4 Xpress 4), and (UG 16 Xpress 1) is about
20 % slower than (UG 8 Xpress 2). Altogether, this gives a factor of 2.6 between
16-threaded UG and 16-threaded Xpress. One could call this the price of exter-
nalization: for this particular test set and solver combination, using an external

314 Y. Shinano et al.

parallelization is about 2.6 times slower than using an internal parallelization.
Note that (UG 16 Xpress 1) suffers the most from missing intermediate pruning
checks at the root node, see Sect. 2. Therefore, a factor of 2.6 is probably an
over-estimation of the value that a more mature implementation of FiberXpress

will give.
Finally, the mean number of branch-and-bound nodes required to prove opti-

mality reaches its minimum value for standalone Xpress. Not surprisingly, nodes
get pruned faster when the solution process does not have to go through a second
level of synchronization. There are a couple of exceptions, as mentioned above,
where the reductions by local presolving and cutting plane separation outweigh
this effect. All of the instances and solvers produced rather large branch-and-
bound nodes, there were only two cases where the number of nodes was smaller
than 10,000. The largest tree in this experiment consisted of more than 26 million
nodes.

3.2 First Impression of Large Scale ParaXpress Computations

We conducted computational experiments with ParaXpress on the HLRN III
supercomputer, using 256 computing nodes with 24 cores each, giving a total of
6144 cores.

With a version of ParaXpress that used 12 UG processes per node, each running
Xpress with two threads, could solve the notoriously hard MIPLIB 2010 instance
timtab2 within two hours, processing 1,538,064,260 branch-and-bound nodes. It
is to be said that for this particular instance, running more UG processes and few
Xpress threads performed better than running few UG threads with many Xpress

threads. For more details, see Table 2. From Table 2, we can observe that more
UG threads further helps to find the optimal solution fast.

During ramp-own, the vast majority of sub-MIPs that are processed by the
Solvers can often be solved within a single branch-and-bound node, i.e., at the
root. Root node processing in multi-threaded Xpress does not benefit as much as
from parallelization as the tree search. Thus, having more UG processes with less
Xpress threads each gives us the possibility to process more such trivial sub-MIPs
in parallel. However, when sub-MIPs are hard enough to generate a reasonable
size of search tree, the results in Table 1 imply that using multi-threaded Xpress

is more beneficial.

Table 2. Comparison of internal and external parallelization for solving timtab2 in 2
hours on HLRN III (256 compute nodes with 24 cores each)

Settings UG 256 UG 512 UG 1024 UG 2048 UG 3072 UG 6144

Xpress 24 Xpress 12 Xpress 6 Xpress 3 Xpress 2 Xpress 1

Comp. time (sec.) 7200 7200 7200 7200 6432 7200

Opt. found time (sec.) - - 6589 1573 374 308

of nodes solved 737466918 1364575076 1587257539 1419599385 1538064260 1821264002

of nodes remained 47010556 95829812 57527687 21321739 0 18198038

Primal bound 1106555.0000 1111174.0000 1096557.0000 1096557.0000 1096557.0000 1096557.0000

Dual bound 893103.8671 941191.1516 1022324.7668 1068745.3351 1096557.0000 1025787.6759

Gap (%) 23.90 18.06 7.26 2.60 0.00 6.90

A First Implementation of ParaXpress 315

4 Concluding Remarks

There are two main observations that we made from our computational exper-
iments with a preliminary implementation of ParaXpress. First, ParaXpress can
be used to solve hard MIP instances that need more than a billion branch-and-
bound node to prove optimality within reasonable time. Second, finding a good
balance between external and internal parallelization can be difficult. The made
observations give rise to the idea of having an adaptive scheme that intensifies
the usage of external parallelization towards the end of the search. Finally, the
renewed parallelization framework in Xpress 8.0 might help to further improve the
performance of ParaXpress. Within ParaXpress itself, there is potential for improve-
ment by a more effective pruning of trivial subproblems and by implementing
features such as racing ramp-up.

References

1. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Uni-
versität Berlin (2007)

2. Achterberg, T., Wunderling, R.: Mixed integer programming: Analyzing 12 years of
progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization
- Festschrift for Martin Grötschel, pp. 449–481. Springer, Heidelberg (2013)

3. Bussieck, M.R., Ferris, M.C., Meeraus, A.: Grid-enabled optimization with GAMS.
IJoC 21(3), 349–362 (2009)

4. Eckstein, J., Hart, W.E., Phillips, C.A.: Pebbl: an object-oriented framework for
scalable parallel branch and bound. Math. Program. Comput. 7(4), 429–469 (2015).
http://dx.doi.org/10.1007/s12532-015-0087-1

5. FICO Xpress-Optimizer. http://www.fico.com/en/Products/DMTools/xpress-
over/viewPages/Xpress-Optimizer.aspx

6. Laundy, R., Perregaard, M., Tavares, G., Tipi, H., Vazacopoulos, A.: Solving hard
mixed-integer programming problems with Xpress-MP: a MIPLIB 2003 case study.
INFORMS J. Comput. 21(2), 304–313 (2009)

7. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley,
New York (1988)

8. Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., Winkler, M.: Solving
hard MIPLIB2003 problems with ParaSCIP on supercomputers: An update. In:
2014 IEEE International Parallel Distributed Processing Symposium Workshops
(IPDPSW), pp. 1552–1561, May 2014

9. Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: ParaSCIP - a par-
allel extension of SCIP. In: Bischof, C., Hegering, H.G., Nagel, W.E., Wittum, G.
(eds.) Competence in High Performance Computing 2010, pp. 135–148. Springer,
Heidelberg (2012)

10. Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., Winkler, M.: Solv-
ing open MIP instances with ParaSCIP on supercomputers using up to 80,000
cores. In: Proceedings of 30th IEEE International Parallel & Distributed Process-
ing Symposium, to appear (2016)

11. Shinano, Y., Achterberg, T., Fujie, T.: A dynamic load balancing mechanism for
new ParaLEX. Proc. ICPADS 2008, 455–462 (2008)

http://dx.doi.org/10.1007/s12532-015-0087-1
http://www.fico.com/en/Products/DMTools/xpress-over/viewPages/Xpress-Optimizer.aspx
http://www.fico.com/en/Products/DMTools/xpress-over/viewPages/Xpress-Optimizer.aspx

316 Y. Shinano et al.

12. Shinano, Y., Heinz, S., Vigerske, S., Winkler, M.: FiberSCIP - a shared memory
parallelization of SCIP. Technical Report ZR 13–55, Zuse Institute Berlin (2013)

13. Sun, Y., Zheng, G., Jetley, P., Kalé, L.V.: ParSSSE: An adaptive parallel state
space search engine. Parallel Process. Lett. 21(3), 319–338 (2011)

14. Xu, Y., Ralphs, T.K., Ladányi, L., Saltzman, M.: Alps version 1.5.2 (2015)

Interactive Operation to Scientific
Artwork and Mathematical Reasoning

CindyJS

Mathematical Visualization on Modern Devices

Martin von Gagern1, Ulrich Kortenkamp1, Jürgen Richter-Gebert2,
and Michael Strobel2(B)

1 University of Potsdam, Potsdam, Germany
{gagern,ulrich.kortenkamp}@uni-potsdam.de

2 Technical University of Munich, Munich, Germany
{richter,strobel}@ma.tum.de

http://www.math.uni-potsdam.de/professuren/didaktik-der-mathematik,
http://www-m10.ma.tum.de

Abstract. The CindyJS Project brings interactive mathematical visu-
alization to a broad variety of devices. Using projective geometry, homo-
topy methods and well tuned algorithms the CindyJS project is one of
the first real time capable software projects in this field that at the same
time approaches high-level mathematical descriptions and performance.

Keywords: Dynamic geometry · Interactive visualization · Projective
geometry · Homotopy methods · Web technology

1 Introduction

Visualization and real-time interactive simulation play an important role both
in mathematical research and in mathematical communication. The CindyJS
Project aims at the development of a software platform and its mathematical
foundation that allows a versatile and fast prototyping of mathematical experi-
ments and visualizations which can be used for research and demonstration. The
project attacks both the mathematical and the software related aspects of such
a platform. In particular, the system should be usable as a flexible authoring
system for providing mathematical content that can run in contemporary web
browsers, taking advantage of modern hardware and software technologies.

To understand the relevance and challenges of the creation of such a visual-
ization system in the current decade one has to take recent developments in the
landscape of browser based interaction possibilities into account. The recent past
showed a dramatic change of possible environments for such a general math visu-
alization system. One of the major achievements of the Cinderella platform as

M. von Gagern, J. Richter-Gebert and M. Strobel were supported by the DFG Col-
laborative Research Center TRR 109, “Discretization in Geometry and Dynamics”.
M. von Gagern and U. Kortenkamp were supported by the project “M C Squared”
which has received funding from the EU 7th Framework Programme (FP7/2007-
2013) under grant agreement no. 610467.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 319–326, 2016.
DOI: 10.1007/978-3-319-42432-3 39

320 M. von Gagern et al.

developed by Kortenkamp and Richter-Gebert was the ability to provide inter-
active math-related content via webpages [8]. With this philosophy, in recent
years extensive collections of interactive applets have been created and used as
tools for teaching and research [6,11] as well as for communication to the general
public. However, the underlying technology of Cinderella on the web was Java
in browsers, which became increasingly difficult to use due to security concerns.
Recently, Oracle even announced the discontinuation of the Java Plugin.

As a consequence to the gradual demise of Java Applet usability, a new
project called CindyJS was started. Its aim is allowing the creation of such
mathematical visualizations and embedding these into web pages using modern
plugin-less web technology like JavaScript, HTML5 and WebGL. The implemen-
tation of such a system poses several challenges, and while some of them have
been resolved already, others still remain open and challenging. By now, the
present prototype is already being used in production for the next generation of
interactive content.

CindyJS aims to be a viewer for interactive mathematical content (generated
by Cinderella or by explicit coding) in modern web browsers. In particular,
mobile devices like cell phones and tablet computers were included as target
platforms. The CindyJS project started in late 2013 and has already achieved
about 80 % compatibility to Cinderella: an implementation of an interpreter for
the scripting language, the implementation of the physics simulation engine, and
the geometry kernel are already usable for every day work. All of these have been
implemented with extensive optimizations for fast real-time interaction. Special
care was paid to software-ergonomic aspects in relation to usability on touch
devices. In particular, the experiences collected in the project iOrnament, as
described in [10], influenced the design of CindyJS. Like Cinderella, CindyJS is
intended to be an open-ended project (Fig. 1).

2 Project Guidelines

Our system has intentionally been written and designed from scratch for sev-
eral reasons. Based on the experience of prior projects, like the Java version of
Cinderella, the major development guidelines are:

– Performance: A detailed performance analysis of implementation patterns was
preceding the core development to avoid performance bottlenecks. Cross com-
piling techniques, as used in other visualization oriented projects, lead to poor
execution speed which makes these less suitable for advanced examples.

– Extendability: It is very easy to add additional functionality to the system,
while still maintaining global consistency (also under mathematical aspects).

– Interoperability: The system has thin and lightweight interfaces to communi-
cate with other software components in the browser. By this it is relatively
easy to include plugins and third party frameworks.

– Mathematical expressiveness: Many commonly used mathematical function-
ality is already included in the system as primitive operations. The scripting
language allows for a high level implementation of mathematical concepts.

CindyJS 321

Fig. 1. Snapshots of interactive animations with CindyJS : Different applications of
the CindyJS viewer, demonstrating its versatility. All these images, ordered left to
right, are snapshots of dynamic interactive visualizations. (a) Intersection of polytopes
(Deutsches Museum), (b) zα grid (DGD Gallery), (c) Discrete CMC Surface (DGD
Gallery), (d) Crystallization processes (MiMa, Oberwolfach), (e) Complex function
plot, (f) Apollonean gasket (Mathe-Vital), (g) Double pendulum (Deutsches Museum),
(h) Fractal (with WebGL support), (i) Nested polyhedra (ix-quadrat). More examples
can be found on [3].

– Mathematical consistency: Implementing a visualization system for mathe-
matical contexts is often preceded by a (rather subtle) modeling step in which
a mathematical realm is mapped to algorithmic representations. One of the
biggest achievements of the development of Cinderella and CindyJS was the
capability to resolve ambiguities in geometric constructions by expanding the
domain of RP2 using complex detours.

3 Architecture

Over the last two years a first prototypical implementation of the system has been
created that contained many of the necessary key components and adheres to
the above design principles. It inherits some features of the overall architecture
of Cinderella, however it is designed to be even more modular and open for

322 M. von Gagern et al.

CindyScriptAbstract Geometry Kernel

Visible Geometry

User Input Events

Coordinate
Accessors

Tracing

(Proving)

USER

– homogeneous coordinates
– Cayley-Klein geometry
– primitive operations

rendering algorithms
for geometric primitives

– mouse
– touch
– (multitouch)

– particles
– forces
– environment
– (sensors)

advanced drawing

functional language

primitive data types

adv. computation

(sound, midi,….)

HTML

JavaScript

WebGL

…..

……

Fig. 2. Current top-level architecture of CindyJS

interoperation with other programs. Among the main components implemented
so far there are a version of the scripting language CindyScript, a geometry
kernel based on projective geometry, a first implementation of tracing strategies
for homotopy continuation of geometric configurations, a basic physics engine,
a 3D viewer and many other components. For an overview see Fig. 2.

4 Geometric Primitive Operations and Tracing

All geometric operations in CindyJS are strictly based on principles of projective
geometry and Caley-Klein geometries. This ensures a consistent treatment that
has to take care only of a minimum number of special cases. It also allows for
an easy generalization to other geometries like for instance hyperbolic geometry.
Most of the concepts are explained in [7], for examples see Fig. 3. Cinderella was
the first software to resolve the problem of continuity in presence of ambiguous
operations in geometric constructions like the intersection of a circle and a line.
Singularities which naturally arise are resolved via complex detours. We won’t
go into details here, but a short example may illustrate the core idea. Assume we
are moving a free element of the construction in such a way that two points of
intersection merge into a single one before becoming distinct again (and perhaps
complex-valued). At the point of the singularity, where the two points became
one, we can no longer tell them apart. But by choosing a complex parametriza-
tion of the movement, we can move from the situation before the singularity to
that after the singularity in such a way that the points remain distinguishable

CindyJS 323

Fig. 3. Geometric operations: intersection of conics, traced locus and angle bisector
(Color figure online)

at all times. An instance of locus generation using this tracing technique can be
found in Fig. 3, and we refer to [4] for further details.

5 CindyScript – Programming on a Napkin

Have you ever explained something to another mathematician, while sitting in
a loud pub and having nothing but a pen and a napkin? CindyScript is the
programming equivalent of the napkin. In other words, in CindyScript concepts
should be expressible in sketchy, sometimes non-formal, nevertheless complete
and most of all understandable way. It should be easy to write down simple
concepts. Close to what you have in mind, also with respect to notation. It
should be flexible and forgiving with respect to small glitches. Code should be
easily explainable to non-experts. The size of a napkin is limited. CindyScript has
(originally) never been intended to create huge software systems. It is not really
a programming language for programmers, instead it is more a programming
language for people who have little to no programming experience, but perhaps
have some mathematical background. At the same time it is not an educational
tool for “learning how to program” (at least it was not intended to be). It
is a language in which small and easy things should be expressible in short
an easy terms. In a sense, it is a “special purpose language” that on purpose
avoids concepts that are complicated to explain to a non-expert. The core of the
sunflower example in Fig. 5 is essentially the following:

These lines should show exemplary the easiness and the power of expression
that comes with CindyScript. In particular CindyScript has dynamic typing and
internal objects (like numbers, vectors, matrices, etc.) that are close to the math-
ematical realm. For further details we refer to the Cinderella 2 handbook [9].

324 M. von Gagern et al.

6 Plugins

CindyJS was designed with extendability and interoperability in mind. This
enables us to attach plugins easily which extend the features of CindyJS without
bloating the core functionality. This keeps the essence of our project swift and
lightweight. Details of some plugins will be discussed in separate articles [5,12],
we just highlight some of them here.

Cindy3D is our OpenGL binding to CindyScript. Employing WebGL,
Cindy3D is used to display 3D content using the GPU.

CindyGL gives the user access to the GPU through WebGL in CindyScript.
While Cindy3D serves for rather classic displaying purposes, CindyGL provides
access to the GPU fragment shader in CindyScript, which can be used for color-
plots and advanced custom image manipulation. It aims to overcome technical
obstacles by integrating a pipeline which translates easy-to-write CindyScript
code into highly parallelized shader code driving GPU calculations.

A version of TEX was also integrated in our system. After some performance
tests we decided to drop MathJax and switched to KaTeX [1]. With some mod-
ifications to KaTeX, the most common tasks using TEX are computed in real
time.

We provide some selected examples in Fig. 4.

Fig. 4. CindyJS plugins: CindyGL raycaster, embedded TEX, Cindy3D Möbius strip

7 Technical Aspects

Modern browsers are a blessing and a curse at the same time. They are very
well attuned for displaying content and since HTML5 broadened their capabil-
ities introducing features like touch input or drag and drop. Also the execution
speed of JavaScript increased dramatically over the years which is crucial for
numerics. We implemented a feature-rich linear algebra package from scratch,
which was pioneering work in complex arithmetics (for browsers). When possi-
ble, we used typed arrays in order to improve performance. Another crucial point
was the embedding of CindyScript into HTML and the browser environment. We
employ <script> tags which are directly written into the HTML code and will
be interpreted by our libraries. Figure 5 shows a full example of the integration.

CindyJS 325

Fig. 5. Integration of CindyJS in HTML5

8 CindyJS in the Wild, a Selection

CindyJS is already suitable for every day work and is used in a large variety of
places. We mention just a few of them:

Mathe-Vital. The teaching platform Mathe-Vital focuses on interactive mathe-
matical content at university level. Currently it consists of roughly 500 applets
for scientific education. Within the next few years the platform will be entirely
migrated to the CindyJS viewer.

Bruchrechnen! Funded by the Heinz Nixdorf Stiftung and in collaboration
with the TUM School of Education, we are currently developing an interac-
tive schoolbook about fractions. The schoolbook contains many interactive
exercises almost all of which are realized within the CindyJS framework.

Teach@TUM. The BMBF funded “Qualitätsoffensive Lehrerbildung” supports
a project for the creation of structures and material to increase the quality of
teacher education. In this context the CindyJS viewer is a major component
for interactive teaching materials and micro laboratories.

ix-quadrat. All interactive exhibits in our campus maths exhibition ix-quadrat
are nowadays realized based with CindyJS. They are of particularly high com-
plexity and form benchmark cases for much of the functionality of CindyJS.

M C Squared. This EU-funded project for the creation of creative interactive
content allows the use of Cinderella as a widget factory. It automatically
converts the resulting widgets to CindyJS if the user is using the HTML5
player, e.g. on a tablet.

Mathe-Werkstatt. The project Mathe-Werkstatt (Leuders, Prediger et al.)
provides interactive material for all grades of mathematical school education.
Over the last few months the team of authors there started to also support
a Cinderella/CindyJS based environment. CindyJS formed an essential com-
ponent in the design of this course.

326 M. von Gagern et al.

DGD Gallery. CindyJS is also used as a visualization component in the context
of the SFB TR109 gallery. Besides 2D interaction CindyJS is also used as a
3D viewing engine [2].

9 Conclusion

Overall the CindyJS project aims to be one of the first medium to large scale
mathematical visualization projects based on an HTML5 framework. Our project
is licensed under the Apache 2 license and can be obtained from https://github.
com/cindyjs.

References

1. Alpert, B., Eisenberg, E.: Katex (2013). https://khan.github.io/KaTeX/
2. Joswig, M., Mehner, M., Sechelmann, S., Techter, J., Bobenko, A.I.: DGD gallery:

Storage, sharing, and publication of digital research data. CoRR, abs/1512.04364
(2015). http://gallery.discretization.de/

3. Kortenkamp, U., Kranich, S., Richter-Gebert, J., Strobel, M., von Gagern, M.,
Wurster, J.: CindyJS: A growing collection of interactive demonstrations (2015).
http://science-to-touch.com/DGD

4. Kortenkamp, U.: Foundations of Dynamic Geometry. Ph.D. thesis, ETH Zürich,
Zurich (1999)

5. Montag, A., Richter-Gebert, J.: CindyGL: authoring GPU-based interactive math-
ematical content. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS
2016. LNCS, vol. 9725, pp. 359–365. Springer, Heidelberg (2016)

6. Richter-Gebert, J.: Mathe-vital (2007–2015). http://mathe-vital.de
7. Richter-Gebert, J.: Perspectives on Projective Geometry: A Guided Tour Through

Real and Complex Geometry. Springer, Heidelberg (2011)
8. Richter-Gebert, J., Kortenkamp, U.: The power of scripting: DGS meets program-

ming. Acta Didactica Napocensia 3(2), 67–78 (2010)
9. Richter-Gebert, J., Kortenkamp, U.: The Cinderella.2 Manual: Working with the

Interactive Geometry Software. Springer, Heidelberg (2012)
10. Richter-Gebert, J.: Touch und Tablet.: Stationen einer Designstudie. Preprint, 11

Seiten, erscheint 2015 In: Heintz, G., Pinkernell, G., Schacht, F. (Hrsg.): Digitale
Werkzeuge für den Mathematikunterricht. Festschrift für Hans-Jürgen Elschen-
broich. Verlag Seeberger, Neuss ISBN 978-3-940516-20-6, zugreifbar unter. http://
science-to-touch.com/Articles/pdf/HJE Artikel.pdf

11. Richter-Gebert, J.: Mikrolaboratorien und virtuelle Modelle im universitären
Mathematikunterricht. In: Ableitinger, C., Kramer, J., Prediger, S. (eds.) Zur
doppelten Diskontinuität in der Gymnasiallehrerbildung, Konzepte und Studien
zur Hochschuldidaktik und Lehrerbildung Mathematik, pp. 169–186. Springer
Fachmedien, Wiesbaden (2013)

12. von Gagern, M., Richter-Gebert, J.: CindyJS Plugins - Extending the mathematical
visualization framework. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.)
ICMS 2016. LNCS, vol. 9725, pp. 327–334. Springer, Heidelberg (2016)

https://github.com/cindyjs
https://github.com/cindyjs
https://khan.github.io/KaTeX/
http://gallery.discretization.de/
http://science-to-touch.com/DGD
http://mathe-vital.de
http://science-to-touch.com/Articles/pdf/HJE_Artikel.pdf
http://science-to-touch.com/Articles/pdf/HJE_Artikel.pdf

CindyJS Plugins

Extending the Mathematical Visualization Framework

Martin von Gagern1(B) and Jürgen Richter-Gebert2

1 University of Potsdam, Potsdam, Germany
gagern@uni-potsdam.de

2 Technical University of Munich, Munich, Germany
richter@ma.tum.de

http://www.math.uni-potsdam.de/professuren/didaktik-der-mathematik

http://www-m10.ma.tum.de

Abstract. CindyJS is a framework for creating interactive (mathemat-
ical) content for the web. It can be extended using plugins, two of which
are presented here.
– Cindy3D enables displaying 3D content via WebGL.
– The KaTeX plugin typesets formulas within CindyJS.
We also discuss the general structure of plugins in CindyJS.

Keywords: Interactive visualization · Web technologies · 3D · Geome-
try · WebGL · OpenGL · Typesetting · TeX · KaTeX

1 Introduction

The CindyJS project is a system for the presentation of visual and interactive
mathematical web content (see [8]). It aims to be feature compatible with Cin-
derella [7], a Java-based authoring system. It is possible to extend Cinderella
using custom plugins. CindyJS provides a similar mechanism to allow exten-
sion by plugins. Compared to the original Cinderella plugin interface, the plugin
api of CindyJS offers more possibilities: while a plugin to Cinderella is essen-
tially restricted to providing new functions for the built-in scripting language
CindyScript, plugins in CindyJS can perform additional tasks, by accessing
selected portions of the internal data of a visualization, like the canvas of the
construction or unevaluated expressions passed to a plugin-provided function.

2 Plugin Interface

At the JavaScript level, a plugin for CindyJS is simply a callback method reg-
istered with either the CindyJS framework as a whole, or one specific widget.

M. von Gaqern was supported by the project “M C Squared” which has received
funding from the EU 7th Framework Programme (FP7/2007-2013) under grant
agreement no. 610467.
M. von Gaqern and J. Richter-Gebert were supported by the DFG Collaborative
Research Center TRR 109, “Discretization in Geometry and Dynamics”.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 327–334, 2016.
DOI: 10.1007/978-3-319-42432-3 40

328 M. von Gagern and J. Richter-Gebert

That function can interact with CindyJS using a set of API functions, the most
important of which are probably a function to define new CindyScript func-
tions and a function to evaluate a given expression. In order to help maintain
backwards compatibility, plugins must declare which version of the API they
are using, so that the framework can apply a compatibility layer if its internal
representation were to change. Here is a simple example:

3 Viewing Spatial Objects Using Cindy3D and WebGL

The goal of the Cindy3D plugin is visualizing spatial mathematical objects using
WebGL.

Cinderella (the Java ancestor of CindyJS) has a plugin of that same name [6],
based on JOGL to provide OpenGL bindings. The Cindy3D plugin for CindyJS
started out as a port of that Java plugin, but by now most of the code has
been rewritten, so the main connection is a common API that is exposed to
CindyScript. In the long run, it is expected to port large ports of the plugin back
to the Java version, for consistent results, easier maintainance and common sets
of features. In the subsequent text, the term Cindy3D will refer to the CindyJS
plugin only.

Cindy3D features four kinds of geometric primitives: spheres, rods, polygons
and meshes. A sphere is often used to denote a point in a 3D setup, just as
disks denote points in the planar view of CindyJS. A rod is a cylinder with
two spherical endpoints, and therefore the 3D counterpart to a line segment.
A polygon is a planar surface (although it’s the user’s task to ensure that the
vertices actually lie within a single plane). Non-planar surfaces are modeled as
meshes, which are triangle meshes internally but quadrilateral meshes in the
CindyScript API (Fig. 1).

CindyJS Plugins 329

Fig. 1. Code and result for a simple 3D object

330 M. von Gagern and J. Richter-Gebert

Contrary to many other 3D rendering environments, spheres and rods are
not subdivided into triangle meshes. Instead, an object which covers the sphere
or rod is drawn with a custom fragment shader to render a high-fidelity rep-
resentation of the actual geometric object using a raycasting approach. In the
case of a sphere, the covering object is a square facing the camera and just in
front of the sphere. For the rod, the covering object is a box containing the
actual rod. One consequence of this rendering approach is that the position of
the geometric primitive being rendered does not correspond to the position of
the final point once it’s rendered: the depth may differ, so the shader code has to
update the fragment depth. This requires the use of a WebGL extension called
EXT frag depth which isn’t available on all devices yet, although the percentage
of supported devices is ever increasing.

Cindy3D employs some simple raycasting to provide cheap yet realistic light-
ing of the scene. The details of the appearance can be controlled by placing lights,
by controlling object material properties like color or shininess, and of course by
placing the camera and configuring its lens.

Cindy3D supports translucent objects, which is important for many mathe-
matical visualizations Fig. 2. This is a challenging task, since for accurate results
the scene has to be rendered strictly from back to front. As of this writing,
Cindy3D doesn’t sort its primitives yet. But it already represents all its trian-
gles as distinct objects, which greatly simplifies the task of back-to-front ren-
dering, since the triangles of different meshes can then be sorted as a whole,
giving correct order in regions where both meshes twist around one another.
Even more demanding would be the task of accurate back-to-front rendering
in places where the constituent triangles intersect. That would require comput-
ing the corresponding intersections. No such endeavor is planned for the near
future. In commonly used examples it is often surprising how close one has to
look to spot errors due to the incorrect rendering order of the current naive
implementation.

Cindy3D is not designed to allow manipulation of displayed objects. The
objects are constructed from a sequence of drawing commands in CindyScript,
and then viewed in Cindy3D as they are. What can be controlled interactively is
the configuration of the camera. It can be rotated around the object, which for
every point and purpose is the same as rotating the object around the look-at
point of the camera since light sources can be fixed to the camera or the object at
the user’s discretion. It can also be rotated around itself, or translated in three
spatial directions. The camera can move closer to the object, or farther out,
which is colloquially called a zoom. It can also perform an actual photographic
zoom, i.e. change the field of view. All of these operations are accessible by mouse
movements, in combination with modifier keys.

The source code of Cindy3D is clearly structured into code which provides
specific bindings to the CindyJS API, and code which does the internal data
representation and manipulation. It would be fairly easy to replace the former
by bindings for some other software package, in order to turn Cindy3D into a 3D
model viewer for a different web-based (or at least browser-based) application.

CindyJS Plugins 331

Fig. 2. Translucent enneper surface with spheres indicating grid points

4 Typesetting Formulas Using KaTeX bindings

Some mathematical content can be best described using a combination of geo-
metric elements and formulas. Sometimes it is enough to include the formulas in
the text surrounding a given widget. But if the text has to be positioned with
respect to a given element of the widget, or perhaps contains numbers which
change during interaction, then it is important to typeset these formulas within
the widget Fig. 3.

The lingua franca for entering formulas is TEX for most mathematical com-
munities. Cinderella comes with its own home-grown parser and renderer for
TEX-like formulas. For CindyJS it was decided not to port that parser, but
instead build on one of the existing efforts to bring math typesetting to the
web. While MathML has been intended as default representation for formulas,
browser support for it is severely lacking, with no change anticipated in the near
future.

The most common solution is MathJax [2], a JavaScript library to render
formulas. But MathJax has several problems which make it unsuitable for the
application at hand. It operates on the HTML DOM tree, so one would have
to somehow position the text above the widget, instead of drawing it to the
widget canvas the same way geometric objects are being drawn. It operates
asynchronously, so there is a delay between the time when drawing a formula
is requested and the time when the typeset version of said formula is actually
ready for display. This fits in poorly with the synchronous drawing paradigma
employed by CindyScript.

Looking for an alternative, we found the KaTeX project [1]. It provides
synchroneous operations, and usually renders significantly faster than MathJax.
The main drawback is its lack of features: many things supported by MathJax
are (or at least were) not available in KaTeX. We identified those features whose
absence would cause the most trouble for existing or envisioned content, and

332 M. von Gagern and J. Richter-Gebert

Fig. 3. Educational widget using typeset formula

had those features implemented for KaTeX. Foremost on that list is support for
matrices, which was developed for CindyJS but has been merged into the official
KaTeX code base as well.

Just like MathJax, KaTeX is designed to modify the HTML DOM tree. But
it has an internal intermediate representation of how to arrange and nest its
boxes, from which the actual HTML elements are being generated. Using this
representation it was possible to modify the code in such a way that instead of
creating HTML elements it creates canvas drawing commands. Since the internal
representation only provides vertical placement information, horizontal position-
ing has to measure text dimensions. For this reason, the render-to-canvas process
has two phases. In the first phase, the individual blocks are measured and posi-
tioned relative to one another. The result is an object which contains enough
data to render all required glyphs, but which also has overall measurements of
the whole formula. These can be used to position the box, e.g. for horizontal
alignment, before the glyphs get actually drawn to canvas. The draw-to-canvas
feature hasn’t been merged into the official KaTeX (yet?), mainly since it caters
for some very specific use cases only. Nevertheless, this feature can be of use
to other projects facing the same problem of how to place high-quality math
typesetting in a web application based on the HTML canvas element.

The KaTeX plugin for CindyJS is a fairly thin layer binding CindyJS to
a version of the KaTeX library which includes our customizations like render-
to-canvas. It is different from other plugins in that it doesn’t provide any new
CindyScript commands. Instead it modifies the behavior of existing commands
using a hook in the CindyJS rendering pipeline. Much of the complexity of
the plugin, however, is spent on ensuring the automated loading of required
resources. Fonts in particular are difficult to handle, since on some browsers
loading of these only starts once they are actually being used, so they won’t be
available upon that first use. In this situation, the KaTeX plugin will not render
the text but instead wait for the required fonts and trigger a repaint once they
become ready.

CindyJS Plugins 333

5 Other Plugins

There have been other successfull applications of the plugin infrastructure as
well. The following list demonstrates the high flexibility of the plugin infrastruc-
ture.

CindyGL is a tool which allows running a subset of the CindyScript language
on the GPU. It is described in a separate article, [5].

QuickHull3D is an algorithm [2] and a Java library [4] used by Cinderella
to implement its convexhull3d operation. That Java code was compiled to
JavaScript using GWT, and made available as a plugin, in order to provide
compatibility. This is a temporary solution since it would be preferable to
have a native JavaScript implementation inside the core of CindyJS, which is
something currently being worked at. However, this setup demonstrates that
plugins can be used to build connections even to some Java libraries.

MC Squared (or Mathematical Creativity Squared) is a project which allows
authors to combine widgets from various sources into so-called C-Books.
When viewing them in a HTML5 environment, CindyJS is used to display
Cinderella widgets, and a plugin is used to realize the integration into that
specific environment, in particular the communication with other widgets.

Metadata extraction from images generated by the ornament drawing app
iOrnament was demonstrated in a proof-of-concept plugin implementation.
This made it possible to post-process the ornaments in a way compatible with
the symmetry group used for their creation.

Tests in the CindyJS test suite sometimes use plugins to allow a CindyJS
instance to report results back to the testing framework.

Development of the complex tracing implementation within CindyJS itself
was helped by visualizations of the tracing process. One instance of CindyJS
was showing some construction to be interacted with, while a second instance
turned debug logs of the operations behind the scenes into helpful visualiza-
tions, providing a real-time view of the corresponding internal computations.
Those logs were generated by the first instance and made available to the
second via a custom plugin.

6 Conclusion

Plugins are a useful way to extend a software framework in order to adapt it
to new requirements. Often the people writing the plugins are distinct from
those writing the core framework. So far, CindyJS has not attracted any third
party plugins that we know of. But the fact that plugins are being used by
the developers themselves ensures that the plugin infrastructure is powerful and
flexible enough to accomodate various requirements. They are particularly useful
for connecting optional components that provide their own interfaces, translating
between different conventions and representations. Plugins are the perfect tool
for extending functionality for custom applications without bloating the core
implementation for everyone.

334 M. von Gagern and J. Richter-Gebert

References

1. Alpert, B., Eisenberg, E.: Katex (2013). https://khan.github.io/KaTeX/
2. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex

hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)
3. Davide, C., Sorge, V., Perfect, C., Krautzberger, P.: Mathjax (2009). https://www.

mathjax.org/
4. Lloyd, J.: Quickhull3d – a robust 3d convex hull algorithm in java (2004). http://

www.cs.ubc.ca/∼lloyd/java/quickhull3d.html
5. Montag, A., Richter-Gebert, J.: CindyGL: authoring GPU-based interactive math-

ematicalcontent. In: Greuel, G.-M., et al. (eds.) ICMS 2016. LNCS, vol. 9725, pp.
351–358. Springer, Heildelberg (2016)

6. Reitinger, M., Sommer, J.: Cindy3d (2012). http://gagern.github.io/Cindy3D/
7. Richter-Gebert, J., Kortenkamp, J.: The Cinderella.2 Manual: Working with the

Interactive Geometry Software. Springer, Heidelberg (2012)
8. von Gagern, M., Kortenkamp, U., Richter-Gebert, J., Strobel, M.: CindyJS – math-

ematical visualization on modern devices. In: Greuel, G.-M., et al. (eds.) ICMS
2016. LNCS, vol. 9725, pp. 319–326. Springer, Heildelberg (2016)

https://khan.github.io/KaTeX/
https://www.mathjax.org/
https://www.mathjax.org/
http://www.cs.ubc.ca/~lloyd/java/quickhull3d.html
http://www.cs.ubc.ca/~lloyd/java/quickhull3d.html
http://gagern.github.io/Cindy3D/

Generating Data for 3D Models

Naoki Hamaguchi1(B) and Setsuo Takato2

1 National Institute of Technology, Nagano College, Nagano, Japan
hama@nagano-nct.ac.jp

2 Toho University, Funabashi, Japan
takato@phar.toho-u.ac.jp

http://ketpic.com

Abstract. KeTpic is a macro package which generates the graphical
code that can be used in LaTeX. In 2014, commands for generating data
in obj format were added to KeTpic. The data can also be converted to
stl format, with which 3D printers can make 3D models. KeTCindy is a
Cinderella plug-in that generates data for a variety of teaching materials
along with 3D models without much additional effort. In this paper, we
show a variety of KeTCindy commands for doing that, and present the
actual teaching materials that result.

Keywords: KeTCindy · KeTpic · 3D model

1 Introduction

KETpic is a macro package which generates graphical code that can be used in
LATEX. The first version was released in 2006, and since then some mathematics
teachers in Japan have been using it to make materials for distribution in their
classes. In collegiate-level math classes, these materials require not only mathe-
matical formulae but figures such as geometric shapes, graphs, charts, and tables.
Teachers sometimes need 3D figures as well, and so we have added commands
for polyhedra figures and surfaces. For these figures, with KETpic, hidden lines
are removed for solid models, and the rear parts of segments are cut for skeleton
models. Figures are composed of a small number of lines, and are appropriate
for printed materials. However, it still might be more effective on some occasions
to show physical models in class. In 2014, commands for generating data in obj
format were added to KETpic [1]. This data can also be converted to stl format,
with which 3D printers can make 3D physical models. These new commands in
KETpic in conjunction with existing commands enable teachers to make teaching
materials in various ways:

1. Handouts to be distributed.
2. Slides to be presented on the screen.
3. Figures to be manipulated by the students on their tablets.
4. Physical models to be displayed or passed around.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 335–341, 2016.
DOI: 10.1007/978-3-319-42432-3 41

336 N. Hamaguchi and S. Takato

Physical models have the most information about real objects. However,
there are cases in which they can hinder students from grasping the point under
discussion. Therefore, the above-mentioned materials should be evaluated and
combined to suit the contents.

The current version of KETpic mainly uses Scilab, which does not support
viewing of 3D figures in obj format, so one has to use other software such as
Meshlab [3] to do this. As a result, the following procedure, which may be slightly
inefficient, is needed.

1. Start Scilab and enter the scripts in the editor.
2. Execute the scripts, then a file in obj format will be generated.
3. Start Meshlab and open the file. The figure will appear on the screen.
4. To modify the figure, close Meshlab and go back to Scilab to revise the scripts.

Materials are made through trial and error, and to repeat the above steps
over and again results in the software starting up over and again, and is a drain
on both time and processing power. This is common when generating ordinary
figures with KETpic, as can be seen by replacing LATEX for Meshlab in the above
procedure. The graphical user interface (GUI) of KETpic had been required for
a long while.

Cinderella [2] is dynamic geometry software developed by Gebert and
Kortenkamp. We have held several research meetings with Kortenkamp, and
the first version of KETCindy was released in September, 2014. Cinderella works
as a KETpic GUI in KETCindy. The figure-generating flow in KETCindy is as
follows:

1. Start Cinderella. It has two screens, the display and the script editor.
2. Add geometric components on the display if necessary.
3. Write scripts in the editor, execute the scripts, and the figures appear on the

display.
4. Press two buttons, “Texview” and “Exekc”, on the screen for batch processing

to execute Scilab, LATEX and Pdf viewer sequentially.
5. One can get the figure in pdf format generated by the LATEX compiler.

The above screenshots show that

– A slider is displayed. One can move point C to determine the x coordinate,
which is used in the editor.

– The last argument of “Plotdata” is optional. Here “do” changes the line style
to dotted.

Generating Data for 3D Models 337

2 KETCindy commands for 3D models

When explaining spacial figures in class, the addition of materials generated by
LATEX, obj format files for tablets or screens, improves students’ ability to grasp
the concepts. The current version of KETCindy functions to generate a file in
obj format and call up the Meshlab directory from within the program, which
allows teachers to make materials easily, outwardly using only Cinderella.

Command for 3D model are as follows.

1. Mkviewobj
2. Mkobjcmd
3. Mkobjthickcmd
4. Mkobjcrvcmd
5. Mkobjsymbcmd
6. Mkobjpolycmd
7. Concatcmd

The point is that the usual commands for generating spacial figures for LATEX
documents are also used to generate files in obj format.

Here we explain some of these commands.

2.1 Making Surfaces

At first, set a list to define a surface as follows:

fd=["z=x^2-y^2","x=[-2,2]","y=[-2,2]","nesw"];

The list fd is available both to make LATEX figures and to make and view files in
obj format. For the former, add the following script:

Sfbdparadata(fd);

the result is the below-left figure.

For the latter, add the following command:

tmp1=Mkobjcmd("1",fd);
Mkviewobj("ex",tmp1,["make","view"]);

then KETCindy calls up Meshlab, and the figure appears on the Meshlab screen
as shown in the upper-right figure.

338 N. Hamaguchi and S. Takato

Surface thickness must be specified to make physical models. In this case,
use “Mkobjthickcmd” instead of “Mkobjcmd”.

tmp1=Mkobjthickcmd("1",fd);

Here we insert a comment that a command to call up Maxima, one of a few
free CASs, is used inside this command to find the normal vector of the surface.
KETCindy can call up several free CASs such as Maxima, Fricas and Risa/Asir.

2.2 Space Curves and Segments

One-dimensional figures, such as space curves and segments, are indispensable
for making materials, although it is not easy to make physical models of them.
KETCindy uses the following commands to do so:

Spacecurve("1","[cos(t),sin(t),0.3*t]","t=[0,6*pi]");
Spaceline("2",[A3d, B3d]);
Xyzax3data("","x=[-5,5]","y=[-5,5]","z=[-5,5]");
Skeletonparadata(1);

To generate LATEX figures, just press two buttons, “Texview” and “Exekc”, on
the screen, and use the command “Mkobjcrvcmd” to make a file in obj format.

tmp1=Mkobjcrvcmd("1","sc3d1");
tmp2=Mkobjcrvcmd("2","sl3d2");
tmp3=Mkobjcrvcmd("3","ax3d");
tmp=Concatcmd([tmp1,tmp2,tmp3]);
Mkviewobj("ex",tmp,["make","view"]);

“Concatcmd” concatnates these, making a single file out of them all.

2.3 2D Character and Symbol

Adding character strings to 3D figures is sometimes necessary and facilitates
understanding. Use the command “Mkobjsymbcmd” for this purpose.

Generating Data for 3D Models 339

tmp4=Mkobjsymbcmd(path,"x",0.5,0,[0,-1,0],[0,0,5]);
tmp5=Mkobjsymbcmd(path,"P",0.5,0,[1,0,0],[5,0,0]);
Circledata("1",[[0,0],[1,0]],["nodisp"]);
tmp6=Mkobjsymbcmd("cr1",0.5,0,[0,1,0],[0,5,0]);

The file read to generate the curves of the characters consists of Bézier curve
control points.

3 Examples of Teaching Materials

In this section, we introduce some 3D models as examples of teaching materials,
the first, a PDF file; next, screen shots of obj files displayed in Meshlab; and
last, photographs of actual printed out 3D physical models.

Example 1. Function z =
x2 − y2

x2 + y2

This illustrates the common problem of a two-variable function which is not
continuous at the origin.

Example 2. Functions z = x2 + y2 and z = x2 − y2

The following are scripts to make the file in obj format. Here, one can use
fd1 and fd2 to make the figure with LATEX.

fd1=["z=x^2+y^2","x=R*cos(T)","y=R*sin(T)",
"R=[0,2]","T=[0,2*pi]","e"];

fd2=["Z=X^2-Y^2","X=U","Y=-(1-V)*sqrt(U^2+1)+V*sqrt(U^2+1)",
"U=[-2,2]","V=[0,1]","news"];

tmp1=Mkobjthickcmd("1",fd1,[0.1,"+n+s-e-w+","assume(R>0)"]);
tmp2=Mkobjthickcmd("2",fd2,[0.1,"+n+s-e-w+"]);
tmp3=Mkobjcrvcmd("3","ax3d");
Mkviewobj("hp",Concatcmd([tmp1,tmp2,tmp3]),["make","view"]);

340 N. Hamaguchi and S. Takato

The intersection of these graphs is the spacial curve z = x2, y = 0.

Example 3. Polyhedron

3D models of polyhedra are sometimes useful for mathematics education.
KETCindy can generate two types of them, one a solid type, and the other a
skeleton type. In the following scripts, we use the data presented by Mitani [4].
The command “VertexEdgeFace” generates a list consisting of vertices, edges,
and faces named “phv3d”, “phe3d1”, and “phf3d” respectively. We use vertice
and face data for solid models, and edge data for skeleton models.

polydt=Readobj("r05.obj",["size=-3.5"]);
pd=VertexEdgeFace("1",polydt,["Pt=fix","Edg=nogeo"]);
Nohiddenbyfaces("1","phf3d1",[],["do"]);
tmp=Mkobjpolycmd("1",["phv3d1","phf3d1"],[[0,0,0]]);
Mkviewobj("hp",tmp,["make","view"]);

polydt=Readobj("r05.obj",["size=-3.5"]);
pd=VertexEdgeFace("1",polydt,["Pt=fix","Edg=nogeo"]);
Skeletonparadata("1",[1.5]);
tmp=Mkobjcrvcmd("2","phe3d1",[0.1]);
Mkviewobj("hp",tmp,["make","view"]);

Generating Data for 3D Models 341

4 Conclusions and Future Work

So, with the advent of KETCindy, one can streamline the production of teaching
materials from print-outs to actual 3D models, getting the job done in a single
window, which calls up various software in the background, ultimately saving
time and processing power.

More importantly, lesson plans are qualitatively different as one can now dis-
play any combination of the above-mentioned 3D teaching materials on a single
screen, and manipulate them side by side to determine what is most suitable.

We will follow up to ensure that all the above-mentioned methods are effec-
tive, and will make any and all modifications necessary to get them so.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number
15K00944.

References

1. Takato, S., Hamaguchi, N., Sarafian, H.: Generating data of mathematical figures
for 3D printers with KETpic and educational impact of the printed models. In:
Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 629–634. Springer,
Heidelberg (2014)

2. http://cinderella.de
3. http://meshlab.sourceforge.net
4. http://mitani.cs.tsukuba.ac.jp/polyhedron/index.html

http://cinderella.de
http://meshlab.sourceforge.net
http://mitani.cs.tsukuba.ac.jp/polyhedron/index.html

The Actual Use of KETCindy in Education

Masataka Kaneko(B)

Toho University, Funabashi, Japan
masataka.kaneko@phar.toho-u.ac.jp

Abstract. Today, various tools have been developed to visualize mathe-
matical objects dynamically. For example, graphical user interfaces have
been implemented on many computer algebra systems like Mathemat-
ica in which a dynamic presentation of geometric shapes and function
graphs can be generated by using sliders. Among such tools, dynamic
geometry software like Cinderella are quite excellent in that they allow
us to control those objects more interactively. At the same time, static
presentation of those objects on printed matters is also indispensable
for mathematical activities since it is through paper and pencil-based
activities that we can most easily synchronize computation and obser-
vation. Thus, especially for educational purposes, the selection and the
usage of these methods at each stage of the learning process is cru-
cial. Since KETCindy, which we have recently developed, serves a direct
linkage between interactive presentation of graphics on Cinderella and
its exported image into TEX, it can be expected that using KETCindy
enables mathematics learners to unify their intuitive reasoning through
observation of the interactive presentation on PC and their discursive
inference with the use of TEX documents including finely tuned graph-
ics. In this paper, the effect of such unifiability on the learners’ reasoning
processes is illustrated through time-series detection of learners’ activi-
ties during some case study in which KETCindy system is used.

Keywords: KETCindy · TEX · Dynamic geometry software ·
Cinderella · Studiocode system

1 Introduction

There are many obstacles that prevent undergraduate students from grasping
the fundamental notions of calculus correctly and using them appropriately in
applied areas such as physics and engineering. For instance, the descriptions of a
function’s derivative in many textbooks can mislead students’ understanding [1].
In fact, many textbooks use touch-the-curve expressions to explain a function’s
derivative which may prevent students from understanding its precise meaning
as the limit of secant lines or linearization of function. To address this problem,
it is recommended in [1] to “visualize the tangent definition (i.e., the limit of
secant lines) as a sequence of magnifications, zooming in on the point of tan-
gency”. Also the definition of the definite integral is not easy for undergraduate
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 342–350, 2016.
DOI: 10.1007/978-3-319-42432-3 42

KETCindy in Education 343

students to grasp. Some previous research [2] illustrates that a high prevalence
of area-under-the-curve and anti-derivative ideas and a relatively low occurrence
of Riemann sum-based ideas in students’ interpreting definite integrals can be
observed. This imbalance leads to the students’ having difficulty in applying the
notion of definite integral in physical situations [3]. To resolve this imbalance, it
is suggested in [2] that “increased experience with applied, science-based inte-
gral expressions in calculus courses may help strengthen students’ activation
of the multiplicatively based summation conception in pure mathematics con-
texts”. While paper and pencil-based activities are needed for students’ execut-
ing their mathematical reasoning and computing, the activities using dynamic
geometry software like Cinderella (http://cinderella.de/) and GeoGebra (http://
www.geogebra.org/) should be effective especially when students need to grasp
the mathematical concepts related to dynamic objects as cited above [4,5]. To
smoothly connect these two kinds of activities, we developed the KETCindy
plug-in to Cinderella. It enables us to synchronize the interactive presentation
of mathematical objects on the Cinderella screen and the generation of the cor-
responding graphical image in TEX documents [6]. It can be downloaded at
the website http://ketpic.com/. Though the author found that using KETCindy
often positively influenced students in their learning calculus through his experi-
ences in real classrooms, it has also turned out that insufficient knowledge about
which aspects of learners’ reasoning processes are worked upon by the dynamic
presentation of mathematical objects might cause learners’ unexpected confu-
sion. The aim of this research is to detect the qualitative change in learners’
reasoning processes as mathematical objects are presented to them dynamically.
In this paper, we show some results of our case study in this direction.

2 Generation of TEX graphics via KETCindy

The procedure to generate graphical images both on the Cinderella screen and
on the TEX final output through KETCindy can be summarized in Fig. 1.

Cinderella

Scilab

Tpic file TEX source file

PDF output
batch processing

KETCindy

input

compile

modify

Fig. 1. KETCindy cycle

While graphical images of mathematical objects are generated and handled
interactively on the Cinderella screen, KETCindy converts the drawing proce-

http://cinderella.de/
http://www.geogebra.org/
http://www.geogebra.org/
http://ketpic.com/

344 M. Kaneko

dure into the Scilab commands that generate the corresponding graphical data
which are subsequently formatted into TEX graphical codes. The compilation
of the TEX source file in which these TEX graphical codes are input leads to
the generation of high-quality graphical images in TEX final outputs (in PDF
form). If there are any points to be corrected, you only need to modify the
Cinderella file. The interactive operation on PC can be directly reflected in the
generated image on TEX final output through the KETCindy system. Moreover
the generated image can be finely tuned by KETCindy commands embedded into
the scripting language of Cinderella (Cindyscript). Since it is not easy for most
teachers to handle a great deal of software, some batch processing, shown by
a dashed arrow in Fig. 1, is implemented on KETCindy system. This process is
executed only by clicking a button on the Cinderella screen.

As a simple example, we see the procedure for drawing a circle and a triangle
which is inscribed in it via KETCindy. Figure 2 shows the Cinderella screen and
final TEX outputs. As shown in it, we can freely change the position of vertices on
the circle by mouse dragging, and the change is directly reflected in the exported
image in TEX. This output can be obtained simply by clicking buttons Texview
and Exekc located on the Cinderella screen.

Fig. 2. Drawing circles and segments

Also it is possible to draw function graphs and parametric curves by inputting
KETCindy commands into Cindyscript. Figure 3 is an example which shows the
drawing of the graph of a trigonometric function and the parametric circle with
moving points on them. Here the point C, located on the segment AB, plays the
role of “slider”. In fact, the positions of the points D and F are controlled by
moving point C.

KETCindy in Education 345

Fig. 3. Drawing graphs and parametric curves

3 Methods

Since paper and pencil-based activities are widely used in collegiate mathemat-
ics education, the primary target in this research is to discover how learners’
reasoning processes are influenced when presented with mathematical objects
dynamically. One possible way to illustrate these influences is to detect the
transition of learners’ responses and behaviors during some experimental lesson
in which they are asked to do similar tasks before and after the above mentioned
dynamic presentation. Among other elements, the most probable ones which we
can observe should be the followings:

1. The change in the learners’ concept which can be identified through their
verbal behaviors and gestures.

2. The change in the learners’ organizations of the steps to do the tasks which
might lead to the improvement of efficiency in their reasoning.

To detect these changes, we videotape all the behaviors of students and classify
the students’ activities into some characteristic categories. While we watch the
recorded video image, we identify which sort of activity the student does at
each time interval. We use the Studiocode system (http://www.studiocodegroup.
com/) to code the classified behaviors into a time-line and synchronize the coded
information with the recorded video image for further analysis.

We choose an elementary topic, drawing the graphs of trigonometric func-
tions, as the theme for this case study. This is because the more complicated
the theme, the more varied learners’ reasoning processes, which might exceed
the capacity of this pilot research. Since the concepts like amplitude, period,
and phase difference are needed to draw those graphs and are indispensable for
learners to understand many mathematical models in the applied areas, it should
be desirable that science majors be proficient in drawing those graphs. However,
they often adopt a plan to plot points and to search some curve passing through
them which leads to too much time spent and incorrectly drawn shapes.

To search for an effective way to promote those proficiencis, we planned an
experimental lesson as a part of a remedial course at a university in Japan. We
recruited one female student aged 19 (the first grade in Japanese university). She
stated that she was not good at drawing graphs of trigonometric functions though
she once studied it in senior high school without any difficulty in calculating the

http://www.studiocodegroup.com/
http://www.studiocodegroup.com/

346 M. Kaneko

values of trigonometric functions. She also stated that no dynamic presentation
was given when she learned this topic. She was asked to draw the graph of a
given function onto the worksheet in Fig. 4 together with all calculations.

π 2π 3π 4π 5π

y = cos 2x +
2
3
π

x
O

Fig. 4. Sample of worksheet

In the first stage, the subject was asked to draw the graphs of the following
six functions after she reviewed the textbook which she used in high school.

(1) y = sin x (2) y = cos x (3) y = sin 2x (4) y = cos
1
2
x

(5) y = sin
(

x − 1
3
π

)
(6) y = cos

(
2x +

2
3
π

)

When she made some mistakes in a task, the corresponding advice was given
immediately after she completed it. Moreover, the author asked her to clarify
her reasoning process after she completed each task or two.

In the second stage, the relationships between the following pairs of graphs

(1) and (3) (2) and (4) (1) and (5)

were explained regarding the difference of period and phase by using dynamic
presentations via KETCindy. Some samples are shown in Fig. 5. In these figures,
by dragging the point MF on the slider, we can interactively change the value
of x accordingly. Through this presentation, it is expected that the subject can
clearly recognize the correspondence between the rotation angle in the circle and
the value of x in the graph. Since the recognition might lead to some progress

Fig. 5. Cinderella screen used for dynamic presentation

KETCindy in Education 347

in her understanding the above mentioned relationships between the graphs, she
was asked to explain those relationships in her own words.

In the last stage, the subject was asked to draw the graphs of the following
two functions which are similar to (6).

(7) y = sin
(

2x +
1
3
π

)
(8) y = cos

(
1
2
x − 1

6
π

)

After the experiment, the recorded video data was input into a time-line via
the Studiocode system and the video image was studied in order to classify the
subject’s behavior. The details of the coding procedure are described in the next
section.

One week later, we gave a supplementary lesson so the subject could review.
In the review lesson, she was asked to draw the graphs of the following functions.

(1) y = cos 2x (2) y = sin
1
2
x (3) y = cos

(
2x +

1
3
π

)
(4) y = sin

(
1
2
x − 1

6
π

)

4 Results and Discussions

Though it took much time, the subject could complete the first five tasks without
being given any hints. When she did task (6), she at first made mistake in
computing the value y for some values of x and drew the wrong graph. However,
after the mistake was pointed out to her, she completed the same task correctly.
The resulting worksheets for tasks (3) (4) (5) (6) are shown in Fig. 6.

Fig. 6. Resulting worksheets

While the subject completed tasks (1) (2) (3) (4) by substituting several values
for x and searching for points where the value of y is equal to 0 or 1, she computed
the values of y for some values of x and tried to find the curve fitting the result
of those computations in tasks (5) (6), as indicated in the middle sheet in Fig. 6.

348 M. Kaneko

This result is compatible with her statements in the interview before the lesson.
According to her statements, she remembered that the substitution of x by ax

results in the change of period from 2π to
2π

a
and that the substitution of x

by x − a results in the parallel transport of the graph by a in the x direction,
though she was unsure about the reason.

When asked to explain her reasoning during the second stage, she used the
word “rotation becomes slow” with her hand rotating to explain (4). Also she
used the word “rotation delays” to explain (5). These responses indicate that
she could recognize the linkage between rotation and the change of x clearly
through dynamic presentation via KETCindy. She claimed that the graph of (6)

should be obtained by parallelly translating the graph of y = cos 2x by −2
3
π

in the x direction which is a misunderstanding induced from the expression

y = cos
(

2x +
2
3
π

)
. Therefore she was asked to add the graph of y = cos 2x on

the worksheet. She handwrote it with a dashed line as shown in the last image of
Fig. 6, and she became aware of her mistake. This result indicates the possibility
that dynamic presentation of mathematical object and its exported image in
paper play complementary roles in learners’ reasoning processes.

Observing the whole recorded video, the behaviors of the subject were clas-
sified into the following categories.

1. Calculating the transformed expression of the given function
2. Computing the values y for specific values of x by substitution
3. Computing the value x of the intercept on the x-axis
4. Plotting points through which the graph of the given function passes
5. Trying to find the curve fitting into the plotted points
6. Drawing the curve on the worksheet confidently

We adopted the rule that silent thought between the same kinds of behaviors
indicates that behavior continued throughout that silence. Category 5 (fitting the
curve) is identified by the subject’s moving her hand or pencil without drawing
a curve. The typical scene of category 5 together with the resulting classification
of her behaviors in the first stage coded on the time-line is shown in Fig. 7. Here
category 1 (calculation) was not observed.

The great contrast between the first stage and the third stage (before and
after the KETCindy presentation in the second stage) can be seen in Fig. 8. In
fact, categories 2, 3, and 5 disappeared and category 1 appeared. Moreover,
the transitions from one category to another largely decreased after the second
stage. These results indicate that the subject could master some efficient way of
drawing graphs without any trial and error.

The result of the supplementary lesson was quite similar to that of stage
three (though the subject made some mistake in task (1)) as shown in Fig. 9.
This result indicates that the efficient way of drawing graphs, which she mastered
in the third stage, had been transferred to long-term memory.

Since no technical advice was given in the second stage, it can be seen that the
resulting progress in drawing graphs was caused not by drilling in the technique

KETCindy in Education 349

Fig. 7. The subject’s behaviors in the first stage

Fig. 8. Comparison between the first stage and the third stage

Fig. 9. Comparison with the supplementary lesson

350 M. Kaneko

to draw graphs but by promoting conceptual understanding. We can assume
that the dynamic presentation via KETCindy played a role in triggering it.

Acknowledgements. KETCindy is developed mainly by Professor Setsuo Takato at
Toho University. The author greatly appreciates his cooperation. Also this research is
supported by the Japan Society for the Promotion of Science (KAKENHI 15K01037).

References

1. Kajander, A., Lovic, M.: Mathematics textbooks and their potential role in sup-
porting misconceptions. Int. J. Math. Educ. Sci. Technol. 40(2), 173–181 (2009)

2. Jones, S.: The prevalence of area-under-a-curve and anti-derivative conceptions over
Riemann sum-based conceptions in students explanations of definite integrals. Int.
J. Math. Educ. Sci. Technol. 46(5), 721–736 (2015)

3. Christensen, W., Thompson, J.: Investigating student understanding of physics con-
cepts and the underlying calculus concepts in thermodynamics. In: Proceedings
of the 13th Special Interest Group of Mathematical Association of America on
Research in Undergraduate Mathematics Education (2010)

4. Kortenkamp, U.: Interoperable interactive geometry for Europe. Electron. J. Math.
Technol. 5(1), 1–14 (2011)

5. Lavicza, Z.: Integrating technology into mathematics teaching: a review. Int. J.
Math. Educ. 42(1), 105–119 (2010)

6. Kaneko, M., Yamashita, S., Kitahara, K., Maeda, Y., Nakamura, Y., Kortenkam-
pand, U., Takato, S.: -Collaboration of Cinderella and -. Int. J.
Technol. Math. Educ. 22(4), 179–185 (2015)

Cooperation of KeTCindy and Computer
Algebra System

Shigeki Kobayashi1(B) and Setsuo Takato2

1 National Institute of Technology, Nagano College, Nagano, Japan
kobayasi@nagano-nct.ac.jp

2 Toho University, Funabashi, Japan
takato@phar.toho-u.ac.jp

Abstract. In Japan, some wooden plaques presenting geometrical puz-
zles (SANGAKU) show problems of drawing smaller circles within a
larger circle in contact with it or a circle in contact with a quadratic
curve, such as an oval. Problems of these kinds can be interesting teach-
ing materials. Dynamic geometry software such Cinderella or GeoGebra
is useful to solve these problems. One can use high-quality TeX graphics
with KeTCindy (Cinderella plug-in) to draw these figures. One can also
draw figures by solving simultaneous equations using a computer algebra
system such as Maxima or Risa/Asir. Although simultaneous equations
can be solved in Maxima, the solution takes time. Alternatively, it does
not work when too many variables are included. In such cases, one can
convert it to a system of equations that are easier to solve using a Grob-
ner base in Risa/Asir. Then a user can solve them by giving the result to
Maxima. A user can accomplish this on Cinderella through KeTCindy,
and can draw circles using the result. This method can also be applied
to other difficult circumstances. This paper presents some examples.

Keywords: KeTCindy · Cinderella · Dynamic geometry software ·
Computer algebra system · Maxima · Risa/Asir

1 Introduction

During the Edo period (1603–1867) Japan was isolated from the western world.
However, learned people of all classes, from farmers to samurai, produced the-
orems in Euclidean geometry. These theorems appeared as beautifully colored
drawings on wooden tablets that were hung under one roof in the precincts of a
shrine or temple. The tablet was called a mathematics tablet, of SANGAKU in
Japanese. Many skilled geometers dedicated a SANGAKU to thank the gods for
the discovery of a theorem. A proof of the proposed theorem was rarely given
[1]. Problems of these kinds can be interesting teaching materials.

Some SANGAKU present problems of drawing smaller circles within a larger
circle in contact with it or a circle in contact with a quadratic curve, such as
an oval.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 351–358, 2016.
DOI: 10.1007/978-3-319-42432-3 43

352 S. Kobayashi and S. Takato

Dynamic geometry software such as Cinderella or GeoGebra is useful to solve
these problems. A user can draw a clean figure. Then we can use a high-quality
TeX graphics with KeTCindy (Cinderella plug-in) to draw these figures.

2 SANGAKU of Nara Miminashi Yamaguchi Shrine

Here, we present an example using Cinderella and KeTCindy. This is a SAN-
GAKU of Nara Miminashi Yamaguchi Shrine (Fig. 1). We show the living lan-
guage reason of the original.

Fig. 1. Miminashi yamaguchi shrine

Big circle B and small circle A cross. Circle C touches big circle B internally
and is circumscribed to small circle A. There is a center of three circles on a
straight line. Circle C internally touches with a big circle B and is circumscribed
in small circle A. In contact to big circle and small circle, we write it to be
circumscribed sequentially from the former.

We can draw a figure of these circles using a function to picture a quadratic
curve of Cinderella in (Fig. 2) [2].

Fig. 2. Cinderella

KeTCindy and CAS 353

Fig. 3. KeTCindy.

The next figure made Tex file using KetCindy and had pdf (Fig. 3).
We can also draw figures by solving simultaneous equations using Computer

Algebra System such as Maxima, Risa/Asir.
Letting a, b, c be the respective radii of circles A, B, and C, and letting r,

(x, y) respectively denote a radius and a center coordinate of first circle, then
we can describe first circle by deciphering the simultaneous equation below.

⎧
⎨

⎩

x2 + y2 = (a+ r)2

(x− (a+ 2c− b))2 + y2 = (b− r)2

(x− (a+ c))2 + y2 = (c+ r)2
(1)

The first circle can be written according to the next script. In Cinderella, one
can calculate in Maxima when using KeTCindy.

if(1==1,
cmdL=[

"eq1:x^2+y^2-(a+r)^2",[],
"eq2:(x-(a+2*c-b))^2+y^2-(b-r)^2",[],
"eq3:(x-(a+c))^2+(y)^2-(c+r)^2",[],
"ans:solve",["[eq1=0,eq2=0,eq3=0]","[r,x,y]"],
"ans1:ev",["r","ans[1]"],"ans1:ratsimp",["ans1"],
"ans2:ev",["x","ans[1]"],"ans2:ratsimp",["ans2"],
"ans3:ev",["y","ans[2]"],"ans3:ratsimp",["ans3"],
"ans1::ans2::ans3",[]

];
CalcbyM("ans1",cmdL,["","All=y"]); <-- execute command of Maxima
hankei(a,b,c):=parse(ans1_1); <-- make functions
xzahyo(a,b,c):=parse(ans1_2);
yzahyo(a,b,c):=parse(ans1_3);
);
a=dist(A,C); <-- initial values
b=dist(B,D);
r0=dist(G,E);

354 S. Kobayashi and S. Takato

Circledata("1",[[xzahyo(a,b,r0),yzahyo(a,b,r0)],
[xzahyo(a,b,r0),yzahyo(a,b,r0)]+[hankei(a,b,r0),0]]);

Similarly, we do it and produce a simultaneous equation in sequence and can
picture a circle.

Circles can be described by deciphering the next simultaneous equation. It
is necessary to replace x0, y0, z0 of a provided solution with the center and the
radius of the previous circle sequentially.

⎧
⎨

⎩

x2 + y2 = (a+ z)2

(x− (a+ 2c− b))2 + y2 = (b− z)2

(x− x0)2 + (y − y0)2 = (z0 + z)2
(2)

Maxima takes time. Alternatively, it does not work when there are too many
variables. In such cases, it is possible to convert it to a system of equations easier
to solve using a Grobner base in Risa/Asir, and process it correctly by giving
the result to Maxima.

if(1==1,
cmdL=[

"load",["’gr’"],
"Eq1=x^2+y^2-(a+z)^2",[],
"Eq2=(x-(a+2*c-b))^2+y^2-(b-z)^2",[],
"Eq3=(x-x0)^2+(y-y0)^2-(z0+z)^2",[],
"G=nd_gr",["[Eq1,Eq2,Eq3],[y,x,z]",0,2], <-- Grobner base
"G[0]::G[1]::G[2]",[]

];
CalcbyA("ans",cmdL,[""]); <-- execute command of Risa/Asir
);
if(1==1,
cmdL=[

"A1:solve",[ans_1+"=0","z"], <-- hand a result of Risa/Asir
"ans1:ev",["z","A1[1]"],"ans1:ratsimp",["ans1"],
"eq2:subst",["ans1","z",ans_2],[];
"A2:solve",["eq2=0","x"],
"eq3:subst",["ans1","z",ans_3],[];
"A3:solve",["eq3=0","y"],
"ans2:ev",["x","A2[1]"],"ans2:ratsimp",["ans2"],
"ans3:ev",["y","A3[1]"],"ans3:ratsimp",["ans3"],
"ans1::ans2::ans3",[]

];
CalcbyM("ans1",cmdL,["","All=y"]); <-- execute command of Maxima
hankei(a,b,c,x0,y0,z0):=parse(ans1_1); <-- make functions
xzahyo(a,b,c,x0,y0,z0):=parse(ans1_2);
yzahyo(a,b,c,x0,y0,z0):=parse(ans1_3);
);
a=dist(A,C); <-- initial values

KeTCindy and CAS 355

b=dist(B,D);
c=dist(G,E);
x0=a+c;
y0=0;
z0=c;
r1=hankei(a,b,c,x0,y0,z0);
x1=xzahyo(a,b,c,x0,y0,z0);
y1=yzahyo(a,b,c,x0,y0,z0);
Circledata("1",[[x1,y1],[x1,y1]+[r1,0]]); <-- first circle
r2=hankei(a,b,c,x1,y1,r1);
x2=xzahyo(a,b,c,x1,y1,r1);
y2=yzahyo(a,b,c,x1,y1,r1);
Circledata("2",[[x2,y2],[x2,y2]+[r2,0]]); <-- second circle
r3=hankei(a,b,c,x2,y2,r2);
x3=xzahyo(a,b,c,x2,y2,r2);
y3=yzahyo(a,b,c,x2,y2,r2);
Circledata("3",[[x3,y3],[x3,y3]+[r3,0]]); <-- third circle

We can deal with this on Cinderella through KeTCindy. We can draw circles
using the result (Fig. 4).

Fig. 4. KeTCindy and CAS(1).

3 SANGAKU of Gunma Kumano Shrine

The next example is a SANGAKU problem from Gunma Kumano Shrine (Fig. 5).
It is a problem to draw a figure of circle to touch an oval internally. We can also
draw figures by solving simultaneous equations using Maxima, Risa/Asir. When
the length of the major axis of the oval is 2a, the length of the minor axis of the

356 S. Kobayashi and S. Takato

oval is 2b, the radius of small circle is r, we can describe a circle by deciphering
the following simultaneous equation.

⎧
⎪⎪⎨

⎪⎪⎩

9r2x(y − r) = a2(x− 3r)y
9r2(y − r) = y(3rx+ ry − 9r2)
9r2x2 + a2y2 = 9a2r2

(x− 3r)2 + (y − r)2 = r2

(3)

We can draw circles according to the following script.

Fig. 5. Kumano Shrine

if(1==1,

cmdL=[

"load",["’gr’"],

"Eq1=9*r^2*x*(y-r)-a^2*y*(x-3*r)",[],

"Eq2=9*r^2*(y-r)-y*(3*r*x+r*y-9*r^2)",[],

"Eq3=9*r^2*x^2+a^2*y^2-9*a^2*r^2",[],

"Eq4=(x-3*r)^2+(y-r)^2-r^2",[],

"G=nd_gr",["[Eq1,Eq2,Eq3,Eq4],[x,y,a,r]",0,2],

"G[0]::G[1]::G[2]::G[3]",[]

];

CalcbyA("ans",cmdL,[""]); <-- execute command of Risa/Asir

Mxtex("1",ans_1,["Disp=n"]); <-- make tex form

);

if(1==1,

cmdL=[

"A1:solve",[ans_1+"=0","r"], <-- hand a result of Risa/Asir

"ans1:ev",["r","A1[1]"],"ans1:ratsimp",["ans1"],

"ans2:ev",["r","A1[2]"],"ans2:ratsimp",["ans2"],

"ans3:ev",["r","A1[3]"],"ans3:ratsimp",["ans3"],

KeTCindy and CAS 357

"ans4:ev",["r","A1[4]"],"ans4:ratsimp",["ans4"],

"ans1::ans2::ans3::ans4",[]

];

CalcbyM("ans1",cmdL,["","All=y"]); <-- execute command of Maxima

Mxtex("8",ans1_4,["Disp=n"]); <-- make tex form

);

hankei(a):=parse(ans1_4); <-- make function

a=dist(A,B); <-- initial values

r=hankei(a);

Circledata("1",[A,A+[r,0]]);

Circledata("2",[[0,r],[0,r]+[2*r,0]]);

Circledata("3",[[0,(-1)*r],[0,(-1)*r]+[2*r,0]]);

Circledata("4",[[0,2*r],[0,2*r]+[r,0]]);

Circledata("5",[[0,(-2)*r],[0,(-2)*r]+[r,0]]);

Circledata("6",[[3*r,r],[3*r,r]+[r,0]]);

Circledata("7",[[3*r,(-1)*r],[3*r,(-1)*r]+[r,0]]);

Circledata("8",[[(-3)*r,r],[(-3)*r,r]+[r,0]]);

Circledata("9",[[(-3)*r,(-1)*r],[(-3)*r,(-1)*r]+[r,0]]);

Ellipseplot("1",[[sqrt(a^2-9*r^2),0],[(-1)*sqrt(a^2-9*r^2),0],2*a]);

Fig. 6. KeTCindy and CAS(2).

A user can display a figure and calculation result together (Fig. 6). It becomes
the interesting teaching materials by combining a figure with a solution using
the computer algebra system.

4 Conclusion

We have presented examples of two SANGAKU.We were able to draw a beautiful
figure by Cinderella with KetCindy and Computer Algebra System and to demon-
strate that they can be used as interesting mathematics teaching materials.

358 S. Kobayashi and S. Takato

When using KeTCindy, we can relate Computer Algebra System to
Cinderella (dynamic geometry software). Such a method can be used in vari-
ous locations and situations.

References

1. Fukagawa, H., Pedoe, D.: Japanese Temple Geometry Problems Sangaku. Winnipeg,
Canada (1989)

2. Makishita, H.: Development of the activated teaching materials in the high school
course in mathematics. RIMS Kokyuroku, Japan (2015)

CindyGL: Authoring GPU-Based Interactive
Mathematical Content

Aaron Montag(B) and Jürgen Richter-Gebert

Technical University of Munich, Munich, Germany
{montag,richter}@ma.tum.de
http://www-m10.ma.tum.de

Abstract. CindyJS is a framework for creating interactive (mathemat-
ical) content for the web. The plugin CindyGL extends this framework
and leverages WebGL for parallelized computations.

CindyGL provides access to the GPU fragment shader for CindyJS.
Among other tasks, the plugin CindyGL is used for real-time colorplots.

We introduce the main principles, concepts and application of
CindyGL and describe the encountered technical challenges. Special focus
is put on a novel visualization scheme that uses feedback loops, which
were among the motivating forces of developing CindyGL. They can be
used for a wide range of applications. Some of them are numerical simu-
lations, cellular automatons and fractal generation, which are described
here.

Keywords: Interactive visualization · Web technologies · WebGL ·
Transpiler · CindyScript · GLSL · OpenGL · Shader based colorplots ·
Feedback loops on GPU · Fractals · Limit sets · IFS · Kleinian groups

1 Introduction

The CindyJS project is a system for authoring dynamic mathematical web con-
tent (see [7]). It allows web based prototyping of mathematical experiments and
visualizations which can be used for research and demonstration. CindyScript is
a scripting language for CindyJS, that can be directly used in the HTML code.
For the design principles of CindyScript we refer to [4]. Its language specifications
are presented in the Cinderella 2 handbook [5].

In this article the plugin CindyGL for CindyJS is introduced. CindyGL is a
plugin for CindyJS which provides the high-level mathematically oriented user
with access to the shader language of the GPU.

In most other scenarios, knowledge of JavaScript and a shader language is
required and many lines of “boilerplate-code” have to be written in order to
build even small shader examples in WebGL. On the other hand, they often
could be described with only few words. One aim of the WebGL integration into

J. Richter-Gebert—Supported by the DFG Collaborative Research Center TRR 109,
“Discretization in Geometry and Dynamics”.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 359–365, 2016.
DOI: 10.1007/978-3-319-42432-3 44

360 A. Montag and J. Richter-Gebert

CindyScript through the CindyGL plugin is overcoming the technical obsta-
cles that are typically inevitable in usage of OpenGL technologies on the web.
While writing CindyScript code, the user should not even become aware of using
WebGL.

The second aim of CindyGL is providing a simple fast-prototyping tool for
feedback loops on the GPU, that can be used for various novel algorithms. No
other web project that overcomes both of this difficulties is known to us.

The technical core of this plugin is a transcompiler, which can translate
CindyScript to OpenGL Shading Language (GLSL). Aside general-purpose
computations on the GPU, the transcompiler is so far used for rendering 2D-
colorplots on the GPU. If required, the 2D-colorplots can be animated in real-
time as well.

This function is accessible via the colorplot command of CindyScript. A set
of running examples (with their source code) can be viewed on http://cindyjs.
org/CindyGL/.

2 The Colorplot Command

The CindyScript primitive operations for accessing CindyGL were designed such
that the boiler plate for creating WebGL-applications is minimized. For instance,
an animated plot of the interference of two circular waves can be rendered by
evaluating the following CindyScript code at every animation step:

A static image of the animated result is depicted in Fig. 1(a). The expression
inside the colorplot command maps pixel coordinates (at position #) to colors
(encoded as a 3-component rgb vector). Here |A,#| and |B,#| are the distances
between the current pixel coordinate and the two points on the CindyJS canvas,
that can be interactively repositioned by drag and drop.

A phase portrait for the complex function f : C → C, z �→ z7 − 1 can be
rendered as follows (the concept of complex phase portraits is explained in [9]):

This program outputs a GPU rendered image as in Fig. 1(b). The argument of
f(complex(#)) determines the color for the pixel with the coordinate #. Note
that the computation of complex numbers was inherently carried to the GPU,
which has no native support for complex calculus.

Furthermore, sophisticated colorplots are possible as well. As an example, a
raycaster for algebraic surfaces can be written as a colorplot in CindyScript as
depicted in Fig. 1(c). Following the approach of [6], we compute the intersection
of each view ray with the algebraic surface as the root of a polynomial that

http://cindyjs.org/CindyGL/
http://cindyjs.org/CindyGL/

CindyGL 361

is determined by an interpolation process. In CindyScript the interpolation –
a linear function that maps lists of evaluated function values to a vector of
polynomial coefficients – can be easily described as a matrix multiplication.
This matrix computation is coded high-level in CindyScript and transpiled to
the GPU.

Fig. 1. Screen shots of animations generated by the colorplot command: (a) Interfer-
ence of waves, (b) a complex phase portrait and (c) a raycaster for algebraic surfaces

3 Feedback Loops via CindyGL

The colorplot command was designed in a way that it is possible to write on
textures by a function passed as an argument. The textures then in turn can
be read in consecutive calls of colorplot with the imagergb-command. The
possibility to read and write texture data, immediately enables the creation of
feedback loops on the GPU.

By the term feedback loop we mean a system of a set of images that are
iteratively re-generated by using themselves. A “physical” example of a single-
image feedback loop is the “infinite tunnel” that becomes visible if one points a
camera at a screen which directly displays a live video recorded by the camera.

An example for a feedback loop in CindyGL can be seen here:

If the code is executed several times, a picture of a Julia-fractal for the
function f : z �→ z2 + c progressively emerges on the texture julia. After
roughly 50 iterations a picture as in Fig. 2(a) becomes visible. The Julia-fractal
for a specific function depicts the points which remain bounded if the function
is iteratively applied to them. The fact that only one iteration per pixel for each
rendering step is computed makes the rendering process very fast and enables
a real-time escape-time based fractal visualization. Here, a direct and smooth

362 A. Montag and J. Richter-Gebert

interaction with users changing the parameter c on the fly is possible, even on
mobile devices.

Figure 2(b) shows a picture of Conway’s Game of Life, where cells of a 2-
dimensional grid can either be alive or dead. In each computation step, a cell
can die or be reborn according to the number of its living neighbors. Using
black (0) and white (1) pixels for dead and living cells respectively, this cellular
automaton can be simulated with CindyGL as follows:

Here a texture "gol", which encodes the previous state, will be reused as
a basis for the computation of all the new states, which will be written to the
texture "gol" again.

Figure 2(c) shows a simulation of a reaction-diffusion system using feedback
loops. It serves as an example how numerical simulations of 2-dimensional partial
differential equations can be computed in real time on the GPU. In this example,
and also many other numerical simulations, a very fine time discretization is
demanded. Since a single iteration step utilizing a feedback loop construction
can be computed very fast on the GPU, many iterations of the feedback loop
can be done before displaying a single frame. On today’s average hardware,
decent frame rates are still possible.

Feedback loops also give a natural framework to render limit sets on the
GPU. Visualizations of the limit sets of two dimensional iterated function systems
(IFSs), which are described in [1], can be generated by iteratively applying a
slightly modified Hutchinson operator to a texture: A texture is iteratively re-
built as a composition of deformed copies of itself. This can be considered as a
feedback loop of a single texture and results of CindyGL implementations are
shown in Fig. 3(a) and (b).

By extending the feedback loop system containing a single texture to a sys-
tem containing multiple textures that are linked in a sophisticated manner, it
is also possible to visualize limit sets of certain Kleinian groups in real time.
An example image of such an CindyGL generated limit set of a Kleinian group

CindyGL 363

Fig. 2. Visualizations generated by feedback loops: (a) a progressively built up Julia
fractal, (b) Conway’s Game of Life and (c) a reaction-diffusion model

is depicted in Fig. 3(c). The required techniques are derivated and described in
detail in [2]. Summarizing the generation of Fig. 3(c), two Möbius transforma-
tions were chosen by “grandma’s recipe” from [3] to generate a free group. Then
a deterministic finite automaton was built that accepts the regular language of
the geodesic words of the language of the free group, i.e. the shortest words con-
sisting of the two generators and their inverses describing the group elements. By
transferring the states of this automaton to textures and the transition between
them to corresponding Möbius transformations that are used to generate each
of these textures, a complex interlinked system of textures is generated. Now by
iterating simultaneously the generation of these textures, one can prove that in
the limit an image of the limit set of the Kleinian group is attained.

CindyGL is a tool that can be used to built such interlinked systems of
textures with relatively little effort.

4 Technical Aspects

CindyJS is licensed under the Apache 2 license and can be obtained from https://
github.com/cindyjs. The plugin CindyGL is integrated into the CindyJS project.

One development aim for CindyGL was obtaining a performance that is com-
parable with the one of native WebGL applications. During real time animations,

Fig. 3. Images of different limit sets generated by feedback loops: (a) an IFS generated
by two affine transformations, (b) an IFS generated by circle inversions and (c) a
Kleinian group

https://github.com/cindyjs
https://github.com/cindyjs

364 A. Montag and J. Richter-Gebert

the colorplot command is called many times within a second. Typically, the
syntactic expression within the argument remains the same – only the values of
variables might change.

Performance preservation was mainly achieved by doing all the computations
that are demanded by an additional layer between a native WebGL application
and a CindyJS application only at the first time the colorplot-command is
called. During successive calls of colorplot (with the same arguments), a native
shader program is executed.

OpenGL Shading Language (GLSL) is the language which is used to run
specific programs on the GPU in WebGL. It is strongly typed. In contrast,
CindyScript has dynamic typing.

We have developed a transcompiler that is able to translate CindyScript
primitives into GLSL. During this process types of terms and variables in
CindyJS (e.g. real numbers, complex numbers, matrices, . . .) are – if possi-
ble – automatically detected and modeled to corresponding data structures on
the GPU (e.g. float, vec2, mat4, . . .).

A partial order on the types has been introduced in order to capture sub-
type relations between types. A type is defined to be a subtype of another type
(for instance, real numbers are a subtype of complex numbers), if there is a
inclusion function from values of the subtype to the other type such that every
function having multiple signatures for different types commutes with all the
inclusion functions. Hence, the “weakest possible” type can always be chosen for
the calculations in order to save resources and obtain good performance.

When the function colorplot is called for the first time, the syntax tree
of the color expression and functions that are called within this expression are
traversed recursively in order to find out the terms that depend on the varying
pixel variable #. Those terms are suitable for a massive parallelization on the
GPU and are translated to GLSL via the introduced transcompiler. A fragment
shader is built in WebGL, that computes the corresponding expressions for each

Fig. 4. Two fractals generated by analog feedback loops. (Using an integrated webcam
and a mirror)

CindyGL 365

pixel, while the other terms that are independent from # are calculated just
once on the CPU and passed to the GPU as uniforms. Since the segmentation
in parallelized code and CPU code is created automatically, this on the on hand
eases the work of the programmer. On the other hand, it very often creates the
most general and performant split of the code.

A ping-pong approach is used for the feedback loops. If colorplot tries
to read and write on a texture at the same time, the texture will be stored
twice: One texture for reading and another target texture for writing. After the
function call, the two textures will be swapped. In the next call of colorplot
then recently written texture can be used as input texture.

5 Conclusion and Outlook

Overall, the CindyGL project aims to provide an easy-to-use technical backbone
for a wide range of different mathematical visualizations.

CindyGL is not finished yet. Some primitive operations and data structures
from CindyScript are still missing. Also, an integration of the ideas of [8] is
planned. In particular, enabling live access to a camera is possible. Using a live
image of a camera-picture as input texture for a colorplot opens the door for
new educational concepts. The image can be easily deformed using CindyScript.
An analog design setup where a camera points to the currently displayed image
can be used to explain the concept of feedback loops. For a valuable educational
experience, the real world, that might consist of persons, patterns or a system
of mirrors for example, can be included in the setting. Results of a prototypical
setting are shown in Fig. 4.

References

1. Barnsley, M.F.: Fractals Everywhere. Academic Press, Boston (2014)
2. Montag, A.: Interactive image sequences converging to fractals. Bachelors Thesis.

http://aaron.montag.info/ba/main.pdf
3. Mumford, D., Series, C., Wright, D.: Indra’s Pearls: The Vision of Felix Klein.

Cambridge University Press, Cambridge (2002)
4. Richter-Gebert, J., Kortenkamp, U.: The power of scripting: DGS meets program-

ming. Acta didactica Napocensia 3(2), 67–78 (2010)
5. Richter-Gebert, J., Kortenkamp, U.: The Cinderella.2 Manual: Working with the

Interactive Geometry Software. Springer, Heidelberg (2012)
6. Stussak, C.: Echtzeit-Raytracing algebraischer Flächen auf der GPU. Ph.D. thesis,

Diploma thesis, Martin Luther University Halle-Wittenberg (2007)
7. von Gagern, M., Kortenkamp, U., Richter-Gebert, J., Strobel, M.: CindyJS - Math-

ematical visualization on modern devices. Submitted to ICMS 2016 Berlin (unpub-
lished)

8. von Gagern, M., Mercat, C.: A library of OpenGL-based mathematical image fil-
ters. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010.
LNCS, vol. 6327, pp. 174–185. Springer, Heidelberg (2010)

9. Wegert, E.: Visual Complex Functions: An Introduction with Phase Portraits.
Springer Science & Business Media, Berlin (2012)

http://aaron.montag.info/ba/main.pdf

Theoretical Physics, Applied Mathematics
and Visualizations

Haiduke Sarafian(B)

The Pennsylvania State University, University College, USA
has2@psu.edu

Abstract. The conceptual aspects of the majority of physical phenom-
ena readily are comprehensible, yet their analysis conducive to justifi-
able output require mathematical justifications. Applied mathematics
is the backbone of theoretical physics. No field in physics in particu-
lar and science in general is immune. Within the last couple of decades
advances in computer science introduced a fresh pathway, computational
physics, augmenting the field. The offspring of these innovations is the
scientific software capable of performing operations that could not be
accomplished traditionally. The impact of these spectacular innovative
technologies is evidence in scientific literature. The focus of this article
is to demonstrate the graphical usefulness of one such scientific software,
Mathematica analyzing the electrostatic features of discrete charge distri-
butions. This is an example of a theoretical physics problem focusing on
the overlap of physics, graphics and math. Ever since its birth a quarter
century ago, Mathematica steadily has been growing in popularity and
practicality. This article embodies the codes compatible with the latest
version of the software including one, two and three dimensional sliders.
Practitioner physicists, interested individuals and mathematicians may
adjust the code to meet their needs.

Keywords: 2D and 3D electrostatic potential · Theoretical physics ·
Mathematica

1 Introduction

Electrostatics is a well established branch of physics – however, comprehension
of some of its abstract concepts relies on visualization of quantities such as scalar
potentials and vector fields. Visualizing the potentials could be challenging; this
by itself contributes to the challenges of understanding the related concepts –
leave alone the associated vector fields. It is not a common practice to display
the potentials, the majority of the standard texts [1,2] conveniently have ignored
them. In a few cases, 2D contour plots are displayed [3], seldomly 3D plots of
the contours are considered.

Since the aforementioned texts have been published, computer technology
has progressed tremendously. Along with technological advances, powerful soft-
ware programs capable of performing symbolic and graphic scientific computa-
tion have been developed. By adapting one such program, Mathematica [4], the
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 366–370, 2016.
DOI: 10.1007/978-3-319-42432-3 45

Theoretical Physics, Applied Mathematics and Visualizations 367

author by way of examples revisited a few basic cases. For a systematic approach
to graphics review the text by the author [5].

The 2D and 3D potential curves and surfaces created by charged particles
possess somewhat artistic features. Scientifically speaking, a charge distorts the
homogeneity of the space. To study the shape of the distortion and the interac-
tion between the charges, the electric potential is introduced. The electric poten-
tial at point r from a set of scattered discrete point charges qi, (i = 1, 2, 3, · · · , n)
positioned at r i is V (r) =

∑n
i=1 V (|r − r i|), where V (|r − r i|) = kqi

|r−ri| with
|r − r i| being the distance between r and r i and k is a constant. By applying
this mathematical function to various situations in the following sections a few
fundamental cases are discussed.

2 Case Studies

We skip the electrostatic character of a single point charge and begin with two
charged particles. As stated each charge generates its own potential subject
to expressions given in the Introduction. We place two charges symmetrically
at (a,0) and (−a, 0) about the origin. The associated electrostatic potential is
V (x, y) = kq1√

(x−a)2+y2
+ kq2√

(x+a)2+y2
. For demonstration purpose we set kq1 = 1,

and kq2 = 0.2 and conveniently set a = 0.5 units. The 2D contour plot of
equipotentials are displayed in Fig. 1. Its generating code is:

To investigate the impact of placing the charges at different positions we
modify the code applying Manipulate. The output of the code allows interactiv-
ity. Its function shown on the right panel of Fig. 1. Its generating code is given
below:

Fig. 1. Contour curves of two charged particles along with their associated numeric
contour values. The right panel is an interactive version of the left generated with a
modified code above.

368 H. Sarafian

The square at the upper left corner of the output is a 2D slider. It is an
interactive slider, meaning placing the mouse pointer at the crossing round circle
of the intersecting axes allows interactively to move the charges. The action of
the slider is instantaneous. This is a useful feature and one may utilize in design
mode.

We have upgraded the functionality of the design by adding options to change
the value of the charges. This is done by inserting two additional control para-
meters. The output has three interactive sliders. The top square slider allows
two dimensional movement and the vertical sliders control the values of the
individual charges.

Fig. 2. Similar to Fig. 1 and includes a 2D slider.

The right panel of Fig. 2 is the refined version of the left panel; position of
each charge is controlled individually.

These examples show the power of the program and its usefulness. Follow-
ing the same steps one may add additional point-like charges displaying their
corresponding 2D associated contours and if needed their density plots.

Theoretical Physics, Applied Mathematics and Visualizations 369

The natural extension of the shown examples is the corresponding 3D elec-
trostatic potential surfaces. We consider three charges placing them at three
interactive locations. Their associated potential surface is shown in Fig. 3.

Fig. 3. A 3D potential surface and its 2D contours for a three point-like charges.

As in 2D cases the program is interactive. With the assist of the slider one may
study the impact of the values of the individual charges and their corresponding
geometric locations.

Figure 3 includes two different plots, a 3D side-by-side with a 2D contour plot.
An addition options added to view the surfaces at different desired angles. The
observation angle is automated so that the surfaces can be viewed at different
angles.

If needed one may place charges not all on the horizontal plane but on any
position in a 3D space. This is done by rotating the plane of the charges. For
instance we consider four charges, two on the xy-plane and the other two on the
yz-plane. Their potential is,

Fig. 4. 3D plots of four different charges; two in a xy-plane (left) and the other two on
the yz-plane (right).

370 H. Sarafian

For practical applications one may add an automation displaying the poten-
tial from any desired observation angle. The graph shown in Fig. 4 includes two
3D potential, the one on the left is static and the one on the right may be either
manually and/or automatically rotated.

3 Summary and Conclusion

By way of examples it is shown that it is useful to display the abstract mathemat-
ical functions describing distorted charged space. Characters of distorted space
are shown plotting 2D and 3D associated electrostatic potentials. Described
methods along with accompanied codes can readily be extended to study cases
of interest. Reviewing these plots may intrigue a physicist to think about the
implicit artistic features of the distorted space or an artist conversely may be
fascinated about the way the nature works.

References

1. Halliday, D., Resnick, R., Walker, J.: Fundamental of Physics, 6th edn. John Wiley,
New York (2001)

2. Purcell, E.M.: Electricity and Magnetism, Berkeley Physics Course, vol. 2. McGraw-
Hill, New York (1965)

3. Reitz, J.R., Milford, F.J.: Foundations of Electromagnetic Theory. Addison-Wesley,
Reading (1960)

4. Wolfram, S.: Computational software program to do scientific computation. Wolfram
Research, Champaign (2014)

5. Sarafian, H.: Mathematica Graphic Example Book for Beginners. Scientific Research
Publishing Inc., USA (2015). http://www.scirp.org

http://www.scirp.org

What is and How to Use KETCindy – Linkage
Between Dynamic Geometry Software
and LATEX Graphics Capabilities –

Setsuo Takato(B)

Toho University, Funabashi, Japan
takato@phar.toho-u.ac.jp

http://ketpic.com

Abstract. We introduce KeTCindy, which is the right combination of
Cinderella and KeTpic we developed to produce high-quality LaTeX
graphics using free mathematical software such as Scilab and R. In
KeTCindy, Cinderella works as a GUI of KeTpic, so the interactive oper-
ation on PC display can be reflected directly on the generated image
on LaTeX final output. The generated image can be finely tuned using
KeTCindy commands embedded into CindyScript, the scripting lan-
guage of Cinderella. KeTCindy can be regarded as a prominent scheme
to establish an effective linkage between visualization tools and editing
tools. Moreover, KeTCindy enables the importation of data calculated
or simulated using other mathematical software such as Maxima, Fricas,
Risa/Asir and R, and to combine them with the graphical data, so that
an extremely wide range of mathematical objects can be presented. We
will show some eminent capabilities of KetCindy and also its usage.

Keywords: KeTpic · KeTcindy · Cinderella · LaTeX

1 Introduction

In mathematics classes given at the collegiate level, printed materials are often
distributed. Many teachers produce such materials with LATEX because LATEX
produces the best looking typeset text and mathematical formulas. They are
accustomed to using it. However, few teachers insert figures in their printed
materials despite the fact that figures are important and that they are almost
indispensable for students to understand course contents. This lack of use of
figures appears to be attributable to teachers’ lack of abilities for using tools
to insert figures into LATEX documents. Alternatively, such tools in themselves
might be insufficient for teachers’ needs. The normal way is to make figures with
other software and insert them using the command includegraphics. How-
ever, differences between the text body and these figures will cause students to
feel incompatible. Use of TiKZ is another means of producing figures. However,
TiKZ has abundant commands that are somehow excessive to produce printed

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 371–379, 2016.
DOI: 10.1007/978-3-319-42432-3 46

372 S. Takato

materials distributed in mathematics classes. Moreover, the scripts are not only
difficult to write but are also difficult to read. As a simple example, it is necessary
to try to make graphs of y = sinx and y = x.

y = sinx

y = x

x

y

O

An example of TiKZ scripts is shown below, which shows poor readability.

\begin{TiKZpicture}

\draw[->, ultra thick, opacity=0.7] (0,2) -- (16,2) node[right] {x};

\draw[->, ultra thick, opacity=0.7] (8,0) -- (8,4) node[above] {y};

\draw[domain=-7.5:7.5, xshift=8cm, yshift=2cm, very thick, samples=80]

plot[id=sin] function{sin(x)} node[above right] {$y=\sin x$};

\draw[domain=-2:2, xshift=8cm, yshift=2cm, very thick, samples=80]

plot[id=x] function{x} node[above right] {$y=x$};

\node [xshift=8cm, yshift=2cm] (O) at (0,0) [label=225:O] {};

\foreach \x in {-6,-4,-2,2,4,6}

\fill [radius=1.5pt, xshift=8cm, yshift=2cm] (\x, 0)

circle node[below] {\x};

\foreach \y in {-1,1}

\fill [radius=1.5pt, xshift=8cm, yshift=2cm] (0, \y)

circle node[left] {\y};

\end{TiKZpicture}

For these reasons, we developed KETpic, which is a macro package of math-
ematical software such as Maple, Mathematica, Scilab, R, and the first Maple
version of KETpic was released in 2006. Recently, Scilab has become the most
often used of this software.

The flow of generating and inserting graphs with KETpic is the following.

1. One describes KETpic and Scilab commands in Scilab editor and executes
them.

2. Scilab generates a LATEX file composed of codes for drawing figures.
3. One inputs the file into a LATEX document with \input command.
4. Compiling the document, one can obtain the pdf file.

Scripts for the example presented above are the following. As might be readily
apparent, the readability of the scripts of KETpic is much better than those of
TiKZ.

Setwindow([-7.5,7.5],[-2,2]);

A=[2.5,1]; B=[2.0,1.5];

Setax(7,"se");

What is and How to Use KETCindy 373

gr1=Plotdata("sin(x)","x");

gr2=Plotdata("x","x","Num=1");

Openfile("figsin");

Drwline(gr1,gr2);

Expr(A,"e","y=\sin x",B,"e","y=x");

Closefile(’1’);

With LATEX and KETpic, collegiate teachers were able to produce printed
materials with figures easily and on a daily basis. However, they must write all
scripts in the editor before confirming on the screen that the figure is desirable.
This fact sometimes caused some hesitation of teachers, deterring them from
using KETpic. As a result, many have desired a graphical user interface (GUI)
for use with KETpic.

Cinderella [1] is a dynamic geometry software (DGS) package. We had
been exploring the possibility of using Cinderella as the GUI of KETpic. In
2014, we invited Professor Kortenkamp, who is a main developer of Cin-
derella, and had a research meeting with him. The first version of KETCindy,
a combination of Cinderella and KETpic, was released on September, 2014.
The package can be downloaded freely from a link page of our website.
ketpic.com or directly from https://www.dropbox.com/sh/kzt2bgaz07n7dr0/
AABZRvOrqqCp5Tn1JZYpnvSQa?dl=0.

2 Flow of KETCindy

The next image shows a Cinderella screen. The display screen of figures is shown
at left. The editor screen of CindyScript is shown at right. The message display
console of CindyScript is portrayed at the lower right.

The display screen is similar to that of other DGSs. A user arranges geometric
elements such as points, segments, lines, and moves them freely on this screen.

http://ketpic.com
https://www.dropbox.com/sh/kzt2bgaz07n7dr0/AABZRvOrqqCp5Tn1JZYpnvSQa?dl=0
https://www.dropbox.com/sh/kzt2bgaz07n7dr0/AABZRvOrqqCp5Tn1JZYpnvSQa?dl=0

374 S. Takato

CindyScript is the programming language of Cinderella. It distinguishes
Cinderella from other DGSs. Actually, KETCindy is a macro package of
CindyScript, uses the display screen only to put points, draw auxiliary seg-
ments/lines/circles, to decide the area for LATEX drawing, and to confirm the
figure beforehand.

Scripts used to make a figure with KETCindy are simpler than those of
KETpic, for example, to produce a graph of y = sinx.

1. Put points A, B on the display screen.
2. Write scripts using the CindyScript editor as shown below.

Fhead="sin";

Ketinit();

Setax([7,"se"]);

Plotdata("1","sin(x)","x");

Plotdata("2","x","x",["Num=1"]);

Expr(["A","e","y=\sin x","B","e","y=x"]);

Windispg();

3. Press the button Texview and Exekc in order on the display screen.
4. Then one can obtain both a LATEX file “fig.tex” to be input other LATEX

sources and a pdf file “figmain.pdf” to be generated for confirmation.

The image below shows the flow of producing a figure with KETCindy.

Cinderella

Scilab source

Plotdata

LATEX data

LATEX main

PDF

KETCindy

Exekc

3 Examples

With the latest version of KETCindy, one can produce geometric figures, graphs
of functions, various tables, figures of Bézier curves, figures of space curves, poly-
hedra, surfaces. Moreover, we can call computer algebra systems (CASs) Max-
ima, Fricas, Risa/Asir from KETCindy. The results are returned to KETCindy,
which is useful for producing figures or for additional calculations.

In these sections, we present examples of the above with main part of scripts
and figures. For some of them, brief explanations will be added.

What is and How to Use KETCindy 375

3.1 Geometric Figures and Graphs of Functions

Ex 1 : Triangle and Inscribed Circle

c

ab

A B

C

I

In preparation, put points A, B, C, draw
triangle ABC and the Inscribe circle on the
display screen.

Listplot([A,B,C,A]);

Circledata([D,E]);

Bowdata([A,B],[1,0.5,"Expr=c","da"]);

Bowdata([B,C],[1,0.5,"Expr=a","da"]);

Bowdata([C,A],[1,0.5,"Expr=b","da"]);

Pointdata("I",D,["size=4"]);

Letter([A,"sw","A",B,"ne","B",C,"se","C"]);

Letter([D,"s1e1","I"]);

Ex 2 : Graph of Solution of Differential Equation

One can apply sliders to decide coefficients of the equation as shown below.
Scripts are very simple as described below.

Deqplot("2","y‘‘=-L.x*y‘-G.x*y","t=[0,XMAX]",0,[C.y,0],["Num=200"]);

Expr([M,"e","\dfrac{d^2 x}{dt^2}+"+L.x+"\dfrac{dx}{dt}+"+G.x+"x=0"]);

d2x

dt2
+ 0.46

dx

dt
+ 7.13x = 0

x

y

O

3.2 Making Tables

It is troublesome work to insert tables into the LATEX document. LATEX has
poor ability to produce tables, and only tabular or array environments. Using
KETCindy, one can produce such tables easily. Moreover, one can move each rule
that is, each interval, by moving points on the display screen.

376 S. Takato

Ex 3 : Simple Table

A B C
x

y

Multi Cell

Scripts are as follows.

xL=[5,10,15,20]; // Set intervals between vertical rules

yL=[5,5,5]; // Set intervals between horizontal rules

rL=["r2c3c4"]; // Set rules removed

Tabledata("",xL,yL,rL);

Tlistplot(["c0r0","c1r1"]);

Putrow(1,"c",["","A","B","C"]);

Putcolexpr(1,"c",["","x","y"]);

Putcell("c3r1","c4r3","l1t1","Multi Cell");

Ex 4 : Special Form of Matrix/Determinant

Matrix is a kind of table. It can therefore be input into the LATEX document
easily with KETCindy.

a11 a12 · · · a1n

0
...
0

An−1
= a11|An−1|

xL=5*[1,1,1,1]; yL=5*[1,1,1,1]; rL=[];

Tabledata("",xL,yL,rL,["notex"]);

Putrowexpr(1,"c",["a_{11}","a_{12}",

"\cdots","a_{1n}"]);

Putcolexpr(1,"c",["","0","\vdots","0"]);

Putcell("c1r1","c4r4","c","\LargeA_{n-1}");

Tlistplot(["c0r0","c0r4"]);

Tlistplot(["c4r0","c4r4"]);

Tlistplot(["c0r1","c4r1"],["do"]);

Tlistplot(["c1r0","c1r4"],["do"]);

3.3 Bézier Curves

KETCindy supports several commands related to Bézier curves. Here we give
examples of Ospline and Mkbezierptcrv.

Ex 5 : Ospline Command

Oshima [2] devised an algorithm to improve the degree of fitness of a spline
curve to the origin curve. We have implemented it to KETCindy as a command
“Ospline”. In the following figures, a dotted curve is the original circle, a dashed
curve is a Catmull–Rom spline, and a solid curve is an Oshima spline. Knots,
which are control points on the curve, are freely movable.

Circledata([A,B],["do"]);

CRspline("1",[B,C,D,B],["da"]);

Ospline("1",[B,C,D,B]);

What is and How to Use KETCindy 377

B

C

D

x

y

O

Ex 6 : Mkbezierptcrv Command

The command “Mkbezierptcrv” takes the initial position of control points
on trisection points of each segment as the lower-left of the following figures.

drawimage([0,0],"bezieroriginal.png",scale->2,alpha->0.4);

Mkbezierptcrv([A,B,C,D,E,A]);

Here we use a functionality of Cinderella to display an image with png or
jpeg format on the screen. Moving those control points, fitting the curve to the
original picture, we can get the lower-right LATEX figure.

Example of Mkbezierptcrv

3.4 Calling CASs from KETCindy

Cinderella does not support symbolic computation or calculation of special func-
tions. Especially the former is often necessary for mathematics education. There-
fore, we have implemented KETCindy to call CASs as the following chart.

378 S. Takato

KETCindy

Scilab LATEX

Mathematical Softwares

Source File
Batch File

Returned Results (textfile)

Further Use in KETCindy

Here we give examples of calling Maxima.

Ex 7 : Calling Single Command of Maxima

1
x2+1

− 2 x
(x2+1)2

x

y

O

Mxfun("1","diff",["1/(x^2+1)","x"]);

Plotdata("1","1/(x^2+1)","x",["da"]);

Plotdata("2",mx1,"x",["Num=100"]);

Mxtex("1",mx1); Mxtex("f","1/(x^2+1)");

Expr([A,"e",txf,B,"e",tx1]);

Mxfun and Mxtex are commands of calling Maxima.

Ex 8 : Calling Several Commands of Maxima

mat="[1,1,1],[1,2,2],[2,1,1]";

cmdL=["batch",[Dq+mxL+Dq],

"A:matrix",[mat],

"A0:rowadd",["A",2,1,-1],

"A1:rowadd",["A0",3,1,-2],

"A2:rowadd",["A1",3,2,1],

"A::A0::A1::A2",[]];

CalcbyM("ans",cmdL);

4 Future Work

We can also produce space figures using KETCindy.
Improvement of the algorithm to speed up hidden line processing is a pressing
issue.

What is and How to Use KETCindy 379

Acknowledgment. This work was supported by JSPS KAKENHI Grant Numbers
25350370, 15K01037, 15K00944.

References

1. Cinderella. http://www.cinderella.de/tiki-index.php
2. Oshima, T.: Drawing curves. In: Symposium MEIS 2015: Mathematical Progress

in Expressive Image Synthesis. MI Lecture Notes 2015, vol. 64, pp. 117–20. Kyushu
University (2015). ISSN: 2188–200

http://www.cinderella.de/tiki-index.php

How to Generate Figures at the Preferred
Position of a TeX Document

Hisashi Usui(B)

National Institute of Technology, Gunma College, Maebashi, Japan
usui@nat.gunma-ct.ac.jp

Abstract. When we use TeX to edit a document, it is sometimes nec-
essary to place the figure of a preferred shape into a suitable position.
In this presentation, we propose a method using KeTCindy for this pur-
pose. KeTCindy is a plug-in to Cinderella that converts the procedure
to generate geometric shapes into TeX readable code to generate the
corresponding image on TeX final output. One merit of using KeTCindy
is its interactive character. On the Cinderella screen, a user can control
the shape of the figure as desired. When we place the resulting image at
the exterior side of text part, simple conversion to TeX graphical image
through KeTCindy is sufficient. However, when it is necessary to place
it onto the text part, some extra elaboration is necessary to ensure that
both the text part and the generated figure are finely balanced. The key
idea is making the screen of Cinderella semi-transparent using software
named feewhee.

Keywords: KeTCindy · KeTpic · Cindellera · Semi-transparent

1 Introduction

We use TEX to create a document with mathematical expressions. When we
create a document, we sometimes want to add a simple figure into the text part.
At such times, it is necessary to place the figure of preferred shape into a suitable
position. For example, we might want to create a TEX document like this:

——————————————————————————————————–

contradict
Ax = λx (x �= 0) ⇐⇒ λ : an eigen value , x : an eigen vector
(A − λE)x = 0
∃(A − λE)−1(⇐⇒ |A − λE| �= 0) =⇒ x = 0
|A − λE| = 0 : the characteristic equation of A

——————————————————————————————————–

From the perspective of reuse and modification, it is better to do so in TEX
system than using some other method such as a PDF editor or manual drawing.
In this paper, we propose a method using KETCindy [4]. KETCindy is a plug-
in to Cinderella [2] that converts the procedure to generate geometric shapes into
TEX readable code to generate the corresponding image on TEX final output. One
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 380–385, 2016.
DOI: 10.1007/978-3-319-42432-3 47

How to Generate Figures at the Preferred Position of a TeX Document 381

merit of using KETCindy is its interactive character. On the Cinderella screen,
a user can control the the figure shape as desired. When placing the result-
ing image at the exterior side of text part, simple conversion to TEX graphical
image through KETCindy is sufficient. However, when it is necessary to place it
onto the text part, some extra elaboration is necessary to ensure that both the
text part and the generated figure are finely balanced. KETCindy has a ketlayer
environment, which enables a user to put figures into a TEX document at the
desired position ([1,3]). The idea is explained below. First, we lay the screen of
Cinderella on the screen of the PDF file made from the TEX source file. Second,
we make the Cinderella screen semi-transparent using software named feewhee
[5]. Then we adjust the shape of the figure to the desired shape and produce a
figure file by KETCindy. By compiling the TEX source file written to import the
figure file in advance, one can obtain a document with figures as desired.

2 Underlying Technique

– KETCindy ([2,4])
KETCindy is a plug-in to Cinderella which converts the procedure to generate
geometric shapes into TEX readable “tpic” code to generate the correspond-
ing image on TEX final output. One of the merit of using KETCindy is its
interactive character. On the screen of Cinderella, we can control the shape
of the figure as we want. A user can also draw a free type curve such as a
Bezier curve. Of course, one can control the curve shape by moving the con-
trol points. A user can make a figure file that is useful by the input command
in a TEX document. A PDF file of the figure can be made even if the system
does not support tpic.

– ketlayer ([1,3])
KETCindy has a ketlayer environment of TEX. The ketlayer environment
enables a user to put a figure or letters at a preferred position of the doc-
ument.
When we use ketlayer, we show the scale guide grid lines at first.

\begin{layer}{100}{20}
\end{layer}

——————————————————————————————————–
0

10

200 10 20 30 40 50 60 70 80 90 100

aaaaaaaaaaaaaaa
bbbbbbbbbbbbbbb
ccccccccccccccc
ddddddddddddddd
eeeeeeeeeeeeeee

——————————————————————————————————–

Then we input the position data to fix a figure or letters at the desired position.

382 H. Usui

\begin{layer}{100}{20}
\putnotese{45}{6}{Here}
\putnotenw{98}{17}{There}
\putnotec{70}{10}{\bigcirc}
\end{layer}

——————————————————————————————————–
0

10

200 10 20 30 40 50 60 70 80 90 100

Here

There

©
aaaaaaaaaaaaaaa
bbbbbbbbbbbbbbb
ccccccccccccccc
ddddddddddddddd
eeeeeeeeeeeeeee

——————————————————————————————————–

Finally, we erase the scale guide grid lines.

Change to 0\begin{layer}{100}{0}
\putnotese{45}{6}{Here}
\putnotenw{98}{17}{There}
\putnotec{70}{10}{\bigcirc}
\end{layer}

——————————————————————————————————–

Here

There

©
aaaaaaaaaaaaaaa
bbbbbbbbbbbbbbb
ccccccccccccccc
ddddddddddddddd
eeeeeeeeeeeeeee

——————————————————————————————————–
– feewhee.exe ([5])

We use feewhee.exe to control the transparency of the Cinderella screen. The
feewhee.exe software was developed by Nattyware for Windows (Microsoft
Corp.). This cannot be done on a Macintosh (Apple Computer Inc.) device.
We could use this method on a Macintosh device if there were software for
Macintosh to make the Cinderella screen semi-transparent.

3 Procedure

1. Use style files ketpic.sty and ketlayer.sty.
2. To use ketlayer environment, write

\begin{layer}{100}{20}
\end{layer}

a little before where we want to add a figure in the TEX source file.

How to Generate Figures at the Preferred Position of a TeX Document 383

3. Display the PDF file with scale guide grid lines of ketlayer. When we use
pdfLaTeX, which does not support tpic, we show the scale guide grid lines
made in advance.

\begin{layer}{100}{20}
\putnotese{0}{0}{\includegraphics{guide.pdf}}
\end{layer}

——————————————————————————————————–
0

10

200 10 20 30 40 50 60 70 80 90 100

Ax = λx (x �= 0) ⇐⇒ λ : an eigen value , x : an eigen vector
(A − λE)x = 0
∃(A − λE)−1(⇐⇒ |A − λE| �= 0) =⇒ x = 0
|A − λE| = 0 : the characteristic equation of A

——————————————————————————————————–
4. Lay the screen of Cinderella on the screen of the PDF file.
5. Using feewhee.exe, make the screen of Cinderella semi-transparent.

6. Moving the screen of Cinderella or using Translate View of Cinderella, we
fit the point (0, 0) of Cinderella to the point (0, 0) of ketlayer. Then move
the point HH to the point (100, 0) of ketlayer. The unitlength of the figure
is calculated using the x-coordinate of the point HH to fit the text.

384 H. Usui

7. Draw a figure on the Cinderella screen. Seeing both the figure and the text,
adjust the figure shape.

8. Using KETCindy, make a figure file “fig.pdf”.
9. Input the figure file into TEX by includegraphics command of TEX.

\begin{layer}{100}{20}
\putnotese{0}{0}{\includegraphics{guide.pdf}}
\putnotese{0}{0}{\includegraphics{fig.pdf}}
\end{layer}

10. Adjust the figure shape.
11. Erase the scale guide grid lines.

\begin{layer}{100}{0}
%\putnotese{0}{0}{\includegraphics{guide.pdf}}
\putnotese{0}{0}{\includegraphics{fig.pdf}}
\end{layer}

12. If another figure is needed, repeat same procedure.

4 Another Example and Vision

Using this method, a user can indicate some part of a figure, connect the figure
and the text part, and produce a hand-drawn like figure.

How to Generate Figures at the Preferred Position of a TeX Document 385

——————————————————————————————————–

a b

y = f(x)

x

y

O

This area is equal to
∫ b

a

f(x) dx

——————————————————————————————————–

Then we can create a more effective document easily. It is also important
from an educational viewpoint. Another important task ahead is informing many
people of this method and presenting useful examples of its application.

We can use this method only for Windows now. We could apply this method
for Macintosh if there were software for Macintosh to make the Cinderella screen
semi-transparent. Another method to do something similar is that we set the
PDF file as the background image of Cinderella. It would be a more efficient
and intuitive method if we could do that easily. It would also be beneficial if
Cinderella had a function to control the screen transparency.

References

1. Kaneko, M., Takato, S.: The extension of KETpic functions-meta commands and

their applications. Asian J. TEX 4(2), 111–120 (2010)
2. http://www.cinderella.de/tiki-index.php
3. http://ketpic.com
4. https://sites.google.com/site/ketcindy/home
5. http://www.nattyware.com/feewhee.php

http://www.cinderella.de/tiki-index.php
http://ketpic.com
https://sites.google.com/site/ketcindy/home
http://www.nattyware.com/feewhee.php

The Programming Style for Drawings
from KETpic to KETCindy

Satoshi Yamashita(B)

National Institute of Technology, Kisarazu College, Kisarazu, Japan
yamasita@kisarazu.ac.jp

Abstract. To produce class materials with figures using TeX, the KeT-
pic Development Group (KDG), comprising S. Takato, the author and
several Japanese mathematics education researchers, completed KeTpic
in 2011 as a plug-in for the Scilab numerical analysis software pack-
age. We describe KeTpic programs with the command line user interface
Scinotes. KeTpic users produce KeTpic programs based on their origi-
nal programming styles. This leads other KeTpic users to a shortcoming
that renders it difficult to use their KeTpic programs. To resolve this
situation, KDG has developed the KeTpic programming style for draw-
ings in 2013. KeTpic programs include three parts: a preamble part that
describes setting commands, a part for making plot data and a part
for extracting plot data into a figure TeX file. Since 2014, KDG has
improved KeTCindy as a plug-in for an interactive geometry software
Cinderella. Cinderella has two screens: the interactive geometric screen
and a screen that describes Cinderella commands called Script Editors.
When a KeTCindy command is run in Script Editors, the correspond-
ing KeTpic commands are extracted to the proper position of the three
parts in a Scilab executable file described above. This paper explains
the KeTCindy system from the viewpoint of the programming style for
drawings and introduces the author’s related website, which describes
the utilization of KeTCindy.

Keywords: TeX · Scilab · KeTpic · Cinderella · KeTCindy

1 Introduction

The TEX typesetting system enables a user to produce high-quality documents
with mathematical formulae, but it is difficult to insert accurate and under-
standable figures, which are not mere images, into the documents. To mitigate
or resolve this shortcoming of TEX, the KETpic Development Group (KDG),
comprising S. Takato, the author, and several Japanese mathematics education
researchers, developed in 2006 a plug-in for mathematical software, i.e., Maple,
Mathematica, Maxima, Matlab, Scilab, and R, and KDG has completed it as a
plug-in for Scilab in 2010. KETpic produces 2D or 3D figures by accurate line
drawings. It is also equipped with a function of the page layout, a function of

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 386–393, 2016.
DOI: 10.1007/978-3-319-42432-3 48

The Programming Style for Drawings from KETpic to KETCindy 387

making TEX macro, and a function of the tabulation where each cell has a given
width and height. KETpic is suitable to produce our original class materials with
figures by TEX because it can make accurate figures and carry out a page lay-
out into a TEX document as desired. KETpic is a useful tool for mathematics
teachers, but KETpic users have the following dissatisfaction.

– KETpic is input by Command line User Interface (CUI), not a Grahmmphic
User Interface (GUI).

– It is hard for KETpic users to use other users’ program because it is based on
the user’s original programming style.

The author established the KETpic programming style for drawings
in 2013 [1]. A KETpic program is divisible into the following three parts. The
author has found nine requirements for describing a KETpic program in these
three parts. In Sect. 2, the author introduces the KETpic system for Scilab and
the KETpic programming style for drawings.

In 2014, KDG has established KETCindy through cooperation of KETpic
and an interactive geometry software Cinderella [2]. The interactive geometric
screen, called the main screen, of Cinderella is used as a GUI of KETpic and a
screen describing scripts, that is called Script Editors, is used as CUI of KETpic
(see Fig. 1). In Sect. 3, the author introduces the KETCindy system and explains
the difference of a KETpic program and a KETCindy program. In Sect. 4, the
author introduces future works.

2 KETpic System for Scilab

KETpic is a library folder called ketpicsciL5, which consists of many functions
defined by Scilab commands. We shall prepare to use KETpic system. Herein, we
use KETpic system of Macintosh edition; additionally there is Windows edition.
We download Scilab 5.5.2 from the following website.

Fig. 1. The main screen (left) and Script Editors (right) of Cinderella.

388 S. Yamashita

http://www.scilab.org/download/latest

We produce a folder called KeTpic, where we use KETpic system, in Applica-
tions folder of Macintosh HD, and make the folder called ketwork, where we
produce a figure TEX file, in Ketpic folder. We go to the following website called
KETpic.com.

http://ketpic.com/?page id=18# 13

After opening Scilab folder in this website, we download the zip file called ket-
picsciL5 1 6c.zip and defrost it. The ketpicsciL5 1 6c folder holds a folder called
ketpicsciL5 and two TEX style files respectively called ketpic.sty and ketlayer.sty.
We move ketpicsciL5 folder into Ketpic folder and move ketpic.sty and kelayer.sty
into ketwork folder. Our preparations are finished.

We shall make a KETpic program for drawings. We start Scilab 5.5.2 and open
SciNotes from Application of the pull-down menu. Using SciNotes, we describe
a KETpic program in a Scilab executable file called fig.sce as follows (see Fig. 2).

Fig. 2. The main screen (left) and SciNotes (right) of Scilab.

1 cd("/Applications/KeTpic/ketwork");
2 Ketlib=lib("/Applications/KeTpic/ketpicsciL5");
3 Ketinit();
4 Fnametex="fig.tex";
5
6 Setax(7,"se");
7 Setwindow([-5,5], [-2,2]);
8 G1=Plotdata("sin(x)","x");
9 D1=Listplot([Xmin(),1],[Xmax(),1]);

10 D2=Listplot([Xmin(),-1],[Xmax(),-1]);
11 Windisp(G1);
12
13 Openfile(Fnametex,"1cm");

http://www.scilab.org/download/latest
http://ketpic.com/?page_id=18#_13

The Programming Style for Drawings from KETpic to KETCindy 389

14 Drwline(G1);
15 Dashline(D1,D2);
16 Htickmark(-%pi,"-\pi",%pi,"\pi");
17 Vtickmark(-1,"sw","-1",1,"nw","1");
18 Closefile("1");

A KETpic program can be divided into the following three parts.

– The preamble part, which describes setting commands.
– The part for making plot data.
– The part for extracting plot data into a figure TEX file.

In the program above, the preamble part extends from line 1 through line 4. Line
1 changes the directory to the ketwork folder to produce a figure TEX file called
fig.tex. Line 2 reads the library folder ketpicsciL5. Line 3 initializes KETpic. Line
4 defines the name of a figure TEX file as fig.tex.

−π π

−1

1

x

y

O

Fig. 3. Graphic window (left) of Scilab and PDF output (right) of fig.tex.

The part for making plot data extends from line 6 through line 12. Line 6
sets the position of the origin name “O”southeast from [0, 0]. Line 7 sets the
drawing region in the area that −5 ≤ x ≤ 5 and −2 ≤ y ≤ 2. Line 8 makes
plot data of the graph of y = sinx in the drawing region. Line 9 and line 10
respectively mean making plot data of the straight lines y = 1 and y = −1. Line
11 previews the graph of y = sinx using Graphic window (See Fig. 3).

The part for extracting plot data extends from line 13 through line 18. Line
13 describes opening fig.tex and setting the unit length of drawings as 1 cm.
Line 14 and line 15 extract plot data into fig.tex, and line 16 and line 17 mean
extracting the data of scales of two coordinate axes. Line 18 extracts data of the
axes and closing fig.tex.

In 2013, KDG established the KETpic programming style for drawing. This
style has the following nine requirements including five basic requirements and
four applied requirements [1]:

390 S. Yamashita

– Basic 5 Requirements are following:
• The producer must arrange a command in a suitable position.
• The producer must attach the suitable name for a variable or plotting

data (see line 8, line 9, and line 10 in the above program).
• The producer must use the calculation function of CAS.
• The producer must use KETpic commands appropriately.
• The producer must divide a program into readable blocks (see line 5 and

line 12 in the above program).
– Applied 4 Requirements are the following:

• The producer must use a reference point to arrange a character and an
expression in a suitable position (see line 16 and line 17 in the above
program).

• The producer must use the list structure appropriately.
• The producer must use syntax appropriately.
• The producer must define local variables.

The above program is produced using some of these requirements.

fig.sce fig.tex main.tex

main.pdf

Scilab TEXImprovement

Fig. 4. KETpic system.

When we execute Scilab, we generate fig.tex. We insert fig.tex into the main
TEX document using the TEX command called \input. We can obtain the PDF
output by compiling TEX (see Fig. 4).

3 KETCindy System for Cinderella

KETCindy is a library folder called ketlib that consists of some folders (including
ketpicsciL5) and numerous executable files defined by Cinderella commands. We
shall prepare to use KETCindy system. Herein, we use the KETCindy system of
Macintosh edition. A Windows edition is available. We proceed to the following
website titled “Making of Teaching Materials by KETCindy ”.

http://www65.atwiki.jp/ketcindy-eng/pages/1.html

http://www65.atwiki.jp/ketcindy-eng/pages/1.html

The Programming Style for Drawings from KETpic to KETCindy 391

When we click “KeTCindy Install” in “Link” of the left column, we go to the
following website: Ketinstall-Dropbox. We download two zip files called Install-
forMac.dmg and ketcindycontents.zip. Then we defrost them. In the KeTCindyM
folder of the InstallforMac folder, we move the empty folder called KeTCindy into
the alias of Applications folder. We defrost texliveF.dmg and generate the texlive
folder in the Desktop. We copy the texlive folder into KeTCindy folder. We move
all contents of the Ketcindycontents folder into KeTCindy folder. In the ketwork
folder of KeTCindy folder, we delete the shell file called kc.sh. In s1figure folder
(including KeTCindy/ ketsample/samples), we open the Cinderella file called
s101figure.cdy and click the button called Texview. A new shell file kc.sh is gen-
erated in the ketwork folder. We start the terminal and change the directory to
the ketwork folder. Then we execute the following line.

chmod +x kc.sh

When we return to s101figure.cdy and click the button called Exekc, we obtain
the PDF output. Our preparations are finished.

We produce a KETCindy program for drawing. We save s001basic, cdy as
fig.cdy and open fig.cdy, We open Script Editors from Scripting of the pull-down
menu. Using Script Editors, we describe a KETCindy program as shown below.

1 Fhead="fig";
2 Texparent="fig-clip";
3 Ketinit();
4
5 Setax([7,"se"]);
6 Addax(1);
7
8 Plotdata("1","sin(x)","x");
9 Listplot("1",[[XMIN,1],[XMAX,1]],["da"]);

10 Listplot("2",[[XMIN,-1],[XMAX,-1]],["da"]);
11
12 Htickmark([-pi,"-\pi",pi,"\pi"]);
13 Vtickmark([-1,"sw","-1",1,"nw","1"]);
14
15 Figpdf();
16 Windispg();

When executing Script Editors, one can generate three files: kc.sh, fig.sce and
figmain.tex. The Scilab executable file fig.sce is described as the following KETpic
program:

1 cd(’/Applications/ketcindy/ketwork’);
2 Ketlib=lib(’/Applications/ketcindy/ketlib/ketpicsciL5’);
3 Ketinit();
4 disp(’KETpic ’+ThisVersion())
5 Fnametex=’fig.tex’;
6 Fnamesci=’fig.sce’;

392 S. Yamashita

7 Fnamescibody=’figbody.sce’;
8 Fnameout=’fig.txt’;
9 pi=%pi; i=%i;

10 arccos=acos; arcsin=asin; arctan=atan;
11
12 Setwindow([-5,5], [-2,2]);
13 Assignadd(’pi’,%pi);
14 Assignadd(’XMIN’,Xmin());
15 Assignadd(’XMAX’,Xmax());
16 Assignadd(’YMIN’,Ymin());
17 Assignadd(’YMAX’,Ymax());
18 Setax(7,"se");
19 gr1=Plotdata(Assign(’sin(x)’),Assign(’x’));
20 sg1=Listplot([[-5,1],[5,1]]);
21 sg2=Listplot([[-5,-1],[5,-1]]);
22 PtL=list();
23 GrL=list();
24 //if length(fileinfo(Fnamescibody))>0
25 // Gbdy=ReadfromCindy(Fnamescibody);
26 // execstr(Gbdy)
27 //end;
28
29 //Windisp(GrL,’c’);
30
31 if 1==1 then
32
33 Openfile(Fnametex,’1cm’);
34 Drwline(gr1);
35 Dashline(sg1);
36 Dashline(sg2);
37 Htickmark(-3.14159,"-\pi",3.14159,"\pi");
38 Vtickmark(-1,"sw","-1",1,"nw","1");
39 Closefile(’1’);
40
41 end;
42
43 quit();

In the program above, the preamble part is that section from line 1 to line 10.
The part for producing plot data extends from line 12 through line 29. The part
for extracting plot data extends from line 31 through line 41. Line 43 closes
Scilab. When executing line 8 of the KETCindy program, one obtains line 19
and line 34 of the KETpic program. Exactly one line of the KETCindy program
generates two lines of the KETpic program: one is in the part of making plotdata;
the other is in the part of extracting plot data. It follows that the KETCindy
program is simpler to use than the KETpic program.

The Programming Style for Drawings from KETpic to KETCindy 393

fig.cdy

kc.sh

fig.sce fig.tex figmain.tex

figmain.pdf

Cinderella

Scilab TEX

Texview

Exekc

Improvement

Fig. 5. KETCindy system.

When clicking the Exekc button, a user can treat execution fig.sce and com-
piling figmain.tex with lumping. Then the user can obtain PDF output (see
Fig. 5). Therefore, the KETCindy system is easy for beginners to use.

4 Future Works

KDG has developed KETCindy using KETpic system and KETpic programming
style. The author describes future work as presented below.

– The author intends to investigate how to produde PDF output to which sounds
and simulation are added.

– The author shall examine how to use PDF class materials with figures (printed
matter, slides, animation, etc.) produced by KETCindy , to encourage the
students’ active learning.

Acknowledgement. This research has been funded by Grant-in-Aid for Japan Sci-
entific Research (No. 25350370). The author extends special appreciation to Setsuo
Takato (Toho University) for constructive comments and numerous valuable sugges-
tions.

References

1. Yamashita, S., Maeda, Y., Usui, H., Kitahara, K., Makishita, H., Ahara, K.: Estab-
lishment of EK Tpic programming styles for drawing. In: Hong, H., Yap, C. (eds.)

ICMS 2014. LNCS, vol. 8592, pp. 641–646. Springer, Heidelberg (2014)
2. Kaneko, M., Yamashita, S., Kitahara, K., Maeda, Y., Nakamura, Y., Kortenkamp,

U., Takato, S.: E K TCindy – Collaboration of cinderella and KETpic reports on

CADGME2014 conference working group. Int. J. Technol. Math. Educ. 22(4),
179–186 (2015)

Information Services for Mathematics:
Software, Services, Models, and Data

The Software Portal swMATH:
A State of the Art Report and Next Steps

Hagen Chrapary1,2(B) and Yue Ren3

1 FIZ Karlsruhe/Zentralblatt MATH, Franklinstr. 11, 10587 Berlin, Germany
hagen@zentralblatt-math.org

2 Zuse Institute Berlin (ZIB), Takustr. 7, 14195 Berlin, Germany
3 Fachbereich Mathematik, Technische Universität Kaiserslautern,

Postfach 3049, 67653 Kaiserslautern, Germany

Abstract. swMATH with its web interface www.swmath.org is an open
access portal for mathematical software and mathematical research data.
After 5 years in operation, it provides information on more than 12,500
items in all mathematical fields and lists nearly 120,000 scientific pub-
lications citing the software (May 2016). A unique and novel feature of
swMATH besides its scope is the so-called publication-based approach,
which uses the information of the scientific database Zentralblatt MATH
(zbMATH) for identifying mathematical software and extracting relevant
information about them.

Keywords: Database · Software · Publication-based approach · MSC ·
Web service · zbMATH · swMATH

1 Introduction

The role of software in mathematics is steadily growing. In addition to its impor-
tance for applications, its relevance for fundamental research and mathematical
education is gradually expanding. Incidentally, mathematical software is under
permanent development. The swMATH service [6] is an attempt to develop and
establish a powerful information service on mathematical software and math-
ematical research data. The goal is to improve the visibility of mathematical
software and strengthen the subject as a whole. Up to now there exist a lot
of portals, repositories, and websites for specific mathematical subjects but a
service for a complete overview is missing. Some reasons are the dynamic char-
acter, the distributed development and deployment of software, and the missing
standards for metadata and description. This means that also manual mainte-
nance of a mathematical software portal is cost-intensive. To avoid this barrier
swMATH persues a so-called publication-based approach.

swMATH contains information on software covering all mathematical fields,
ranging from large general purpose systems to small specialized packages. It also
includes benchmarks, programming and specification languages, data sets, web
services, etc. The information model is an extension of the Dublin Core meta-
data set [5], and includes a short description of the software, an autogenerated
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 397–402, 2016.
DOI: 10.1007/978-3-319-42432-3 49

www.swmath.org

398 H. Chrapary and Y. Ren

keyword cloud and a list of publications citing the software, see Fig. 1 for the
page on the computer algebra system Singular.

Fig. 1. The swMATH page on Singular

The swMATH service was designed and developed by the Mathematisches
Forschungsinstitut Oberwolfach (MFO) and FIZ within a joint project of the
German Leibniz Association. Currently, it is a project under the auspices of
the MODAL research campus of the Konrad-Zuse-Zentrum (ZIB) and the Freie
Universität Berlin.

2 The Publication-Based Approach

swMATH follows a publication-based approach, which means that its main source
of information are scientific publications.

The Software Portal swMATH: A State of the Art Report and Next Steps 399

For this, it closely collaborates with zbMATH [7], the world’s most com-
prehensive and longest-running abstracting and reviewing service in pure and
applied mathematics, which currently covers more than 3.5 million bibliographic
entries with reviews or abstracts drawn from more than 3 000 journals and seri-
als, and 170 000 books. swMATH clones and extends some of the data, e.g. it
builds a index from the reference lines of all articles. This database is very large
and continuously increasing, already containing more than 18 million entries. As
of now, both services are fully integrated: links from software-relevant articles to
swMATH as well as back links from swMATH to zbMATH articles are provided.
In addition, there is a special software tab on the zbMATH homepage through
which swMATH can be called.

For mathematical software related to education, swMATH also relies on the
Mathematics Education Database [8], which is currently the only international
reference database offering a world-wide overview of literature on research, the-
ory and practice in mathematics education.

The publication-based approach inherits many advantages from the peer-
reviewing process. They are expanded upon in Sects. 4, 5 and 6.

3 Software Identification

The core of the publication-based approach is the ability to reliably identify
which publications use software and which do not.

As a first step, the titles of zbMATH publications are analyzed to identify
the names of mathematical software. Heuristic methods are developed to search
for characteristic patterns in the titles of the articles, e.g., ‘toolbox’, ‘software’,
‘package’, ‘solver’, ‘implementation’, ‘framework’ in combination with an artifi-
cial or capitalized first word. Examples are

• SCIP: solving constraint integer programs [1],
• KNITRO: an integrated package for nonlinear optimization [2],
• LANCELOT. A Fortran package for large-scale nonlinear optimization [3],
• Plural – a computer algebra system for noncommutative polynomial algebras

[4].

These publications, describing a certain software in detail, are called standard
articles and appropriately highlighted on swMATH.

In a second step, the reference lines of all articles are used as a starting point
for searching for application articles of the identified software. Searching in the
publication abstracts is done only for very specific names, i.e. ‘Microsoft Excel’
or ‘PolyBoRi’; short acronyms or ambiguous words like ‘singular’ and ‘reduce’
are not appropriate.

Besides identifying application articles for known software names, the ref-
erence lines are used for identifying new software, too. The lack of a widely
accepted citation standard of software is a main disadvantage. The development
of an accepted standard combined with technical LaTeX tools would decisively

400 H. Chrapary and Y. Ren

influence the process for an easy and valid software identification. In coopera-
tion with a partner project we develop a proposal which is based on Biber [11],
a BibTeX replacement for users of BibLaTeX.

A main problem of a peer reviewed publication process is the time lag between
writing and the public presentation of an article. In order to present new software
as well, we have started to analyze current ArXiv articles. As these entries are not
created through zbMATH articles and not much information can be collected,
a special link to a web-interface for expanding the data is provided. Because
swMATH stores the standard article specification, a later citation in zbMATH
publications will expand the initially empty articles list of the software. This
process is done automatically, no manual work is necessary.

Other sources for finding new software packages are well maintained reposi-
tories with a rigorous submission policy and a homepage structure suitable for
an automatic extraction. The most important example is The Comprehensive R
Archive Network [15] which is a collection of several thousand R packages.

The websites of software are the definite source for detailed information.
These URLs - if existing - are identified by a web search and linked in swMATH.
Unfortunately, the websites are heterogeneous in content and structure. We have
started to work on automatic methods to analyze the information, e.g. versions,
hard- and software requirements, legal rights, etc.

4 Software Quality

An advantage of the publication-based approach is the quality which is guar-
anteed by a rigorous peer-reviewing control system. The references to a specific
software in the database zbMATH can therefore be used as an indirect crite-
rion for its quality: A high amount of references from peer-reviewed articles is a
strong indication for the relevance of the software in question.

Moreover, there exist journals with a special focus on mathematical software,
in which both the submitted article as well as the underlying software will receive
a review. Any submission to these journals must be accompanied by a detailed
software description, installation instructions, implementation details and nec-
essary data sets. Any publication in these journals guarantees that independent
tests have been carried out to verify and replicate its results. Two notable jour-
nals are the Journal of Statistical Software [13] and the Mathematical Program-
ming Computation [12], the latter covering optimization software. A software
package that has undergone such a review is highlighted on swMATH with a
link to the respective journal. For an example, see the swMATH entry of SCIP
(http://www.swmath.org/software/1091).

swMATH maintains a second direct quality marker: Packages which are
part of the Oberwolfach References on Mathematical Software (ORMS) [14] are
labeled with a link to their respective entry. The ORMS presents high-quality
entries of carefully selected mathematical software. For an example, see the
swMATH entry of SINGULAR (http://www.swmath.org/software/866).

swMATH contains only software families without versions, but the evaluation
of the computer code is based on a fixed version in a fixed environment at a

http://www.swmath.org/software/1091
http://www.swmath.org/software/866

The Software Portal swMATH: A State of the Art Report and Next Steps 401

fixed time. Later bugfixes, software updates and ‘disimprovements’ can falsify
the former review, therefore the quality mark must be considered carefully.

5 Use of MSC and Keywords

The piece of information, that any information service on mathematical software
has to deliver, are the general scope and possible applications of each software
in its database. Ideally, this information should be usable in the search for spe-
cific software and in the ranking of different software based on relevance. So
while most software comes with a short description from its developers, a more
differentiating and independent source is desirable.

A feature that is always present in any mathematical publication is the canon-
ical use of MSC 2010 tags [9]. MSC stands for “Mathematics Subject Classifica-
tion” and it is widely used to assign publications to their mathematical subjects.
Mathematical reviewing services such as zbMATH or MathSciNet [10] rely on
them by default. Since swMATH systematically links software packages to rele-
vant mathematical publications, the collected MSC information can be used to
build a short MSC profile.

Although the knowledge about MSC is widely accepted in the mathematical
research community, its understanding is limited for many application users.
Fortunately a list of describing keywords is provided in scientific publications.
These important items are presented as an eyecatcher in a clickable rotating
keyword cloud in the centre of the software detail page. This distinctive design
is a well-known feature of swMATH. In the industrial and economic area it would
be called a marketing gag.

6 Operation and Sustainability

The technical swMATH infrastructure consists of the web service, a duplicate
test system, and the production system for handling the input data. The web
service itself is updated weekly, all other systems are availabe in daily update.

Sustainability and easy maintenance of swMATH have been important fea-
tures and important design goals from the very beginning. The publication-based
approach allows for a wide usage of automatic methods, hence the resources
needed for the maintenance of the service are limited. Therefore, feature requests
that come with high maintenance costs are currently postponed or even rejected.
Tracking version numbers, links to the homepages of each individual author, and
developing an explicit typing schema for software are examples of these tasks.
The developments in design and functionalities are carried out in close coordi-
nation with the corresponding developments in zbMATH.

The support by the Berlin Forschungscampus MODAL and the integration of
the database swMATH in the information services of FIZ Karlsruhe/Zentralbatt
MATH ensure the longstanding existence of the swMATH service. The last two
years of operation with limited manpower but an increasing amount of data have
proven the feasibility of this concept.

402 H. Chrapary and Y. Ren

Fig. 2. Usage statistics for swmath.org by Webalizer (pages)

The acceptance of swMATH is shown by an increasingly high amount of user
traffic, see Fig. 2. We hope that swMATH will become a valuable tool for the
mathematical community and gives an appropriate credit to the developer of
mathematical software.

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Com-
put. 1(1), 1–41 (2009)

2. Byrd, R.H., Nocedal, J., Waltz, R.A.: KNITRO: an integrated package for nonlin-
ear optimization. In: Di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimiza-
tion. Papers Based on the Presentation at the Workshop on Large Scale Nonlinear
Optimization, pp. 35–59. Springer, Heidelberg (2006)

3. Conn, A.R., Gould, N.I., Toint, P.L.: LANCELOT. A Fortran Package for Large-
scale Nonlinear Optimization (Release A). Springer, Heidelberg (1992)

4. Levandovskyy, V., Schöneman, H.: Plural – a computer algebra system for non-
commutative polynomial algebras. In: Proceedings of the 2003 International Sym-
posium on Symbolic and Algebraic Computation, ISSAC 2003, Philadelphia, PA,
USA, 3–6 August 2003, pp. 176–183. ACM Press (2003)

5. The Dublin Core Metadata Initiative (DCMI). http://dublincore.org/
6. swMATH: an information service for mathematical software. http://www.

swmath.org
7. zbMATH: the first resource for mathematics. https://zbmath.org
8. Mathematics Education Database. https://www.zentralblatt-math.org/

matheduc/en
9. MSC2010. https://zbmath.org/classification/

10. MathSciNet, Mathematical Reviews. http://www.ams.org/mathscinet/
11. Biber. http://biblatex-biber.sourceforge.net/
12. Submission guidelines of the Mathematical Programming Computation. http://

mpc.zib.de/MPC/information/authors.html
13. Submission guidelines of the Journal of Statistical Software. https://www.jstatsoft.

org/information/authors
14. Oberwolfach References on Mathematical Software. http://orms.mfo.de/
15. The Comprehensive R Archive Network. https://cran.r-project.org/

http://swmath.org
http://dublincore.org/
http://www.swmath.org
http://www.swmath.org
https://zbmath.org
https://www.zentralblatt-math.org/matheduc/en
https://www.zentralblatt-math.org/matheduc/en
https://zbmath.org/classification/
http://www.ams.org/mathscinet/
http://biblatex-biber.sourceforge.net/
http://mpc.zib.de/MPC/information/authors.html
http://mpc.zib.de/MPC/information/authors.html
https://www.jstatsoft.org/information/authors
https://www.jstatsoft.org/information/authors
http://orms.mfo.de/
https://cran.r-project.org/

The polymake XML File Format

Ewgenij Gawrilow1(B), Simon Hampe2(B), and Michael Joswig2(B)

1 TomTom International BV, Berlin, Germany
egawrilow@gmail.com

2 TU Berlin, Berlin, Germany
{hampe,joswig}@math.tu-berlin.de

Abstract. We describe an XML file format for storing data from com-
putations in algebra and geometry. We also present a formal specification
based on a RELAX-NG schema.

Keywords: XML · RELAX-NG · Polymake

1 Introduction

polymake is an open source software system for computing with a wide range
of objects from polyhedral geometry and related areas [5]. This includes convex
polytopes and polyhedral fans as well as matroids, finite permutation groups and
ideals in polynomial rings. As a key feature polymake is designed as an extensible
system, where each new version comes with new objects and new data types.
It is crucial to be able to store these objects in files since they themselves or
part of the information on them result from costly computations. The purpose
of this note is to explain the general concept for polymake’s file format which is
powerful enough to be able to grow with extensions to the software.

It is safe to say that the Extensible Markup Language (XML) is the de facto
standard for exchanging data across platform and implementation boundaries.
XML imposes a tree structure on any kind of text, and it comes with a large
array of tools which allow to process an XML file independent from the software
which generated that file. The tree structure makes it easy to ignore part of
the data on input without losing consistence by pruning of subtrees. Part of the
realm of XML tools are transformation style sheets (XSLT) which, e.g., allow for
simplified versioning or even translating into non-XML documents. This makes
XML especially useful for the long-term storage of data; see also [6, Sect. 1.1].

XML file formats for storing mathematical content are ubiquitous. The most
widely used is MathML [1] whose initial purpose was the presentation of math-
ematics in web pages. However, by now there is also Content MathML and
OpenMath [2] which focus on the semantics. Our goal here is to describe a
simple XML format which is useful for the serialization of data which occur in
computations in algebraic and polyhedral geometry.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 403–410, 2016.
DOI: 10.1007/978-3-319-42432-3 50

404 E. Gawrilow et al.

2 The File Format by Example

We start out by looking at one short polymake example XML file which stores a
square and some of its properties, including a triangulation. The formal descrip-
tion in terms of RELAX-NG [3] is deferred until Sect. 3 below.

1 <?xml version="1.0" encoding="utf -8"?>

2 <?pm chk="56 e977e8"?>

3 <object name="square" type="polytope :: Polytope<Rational>"

4 version="3.0"

5 xmlns="http :// www.math.tu -berlin.de/polymake /#3">

6 <description ><![CDATA[cube of dimension 2]]></ description >

7 <property name="VERTICES">

8 <m>

9 <v>1 0 0</v>

10 <v>1 1/3 0</v>

11 <v>1 0 1/3</v>

12 <v>1 1/3 1/3</v>

13 </m>

14 </property >

15 <property name="FACETS"

16 type="SparseMatrix<Rational ,NonSymmetric>">

17 <m cols="3">

18 <v> <e i="1" >1</e> </v>

19 <v> <e i="0" >1/3</e> <e i="1" >-1</e> </v>

20 <v> <e i="2" >1</e> </v>

21 <v> <e i="0" >1/3</e> <e i="2" >-1</e> </v>

22 </m>

23 </property >

24 <property name="LINEALITY_SPACE "><m /></property >

25 <property name="BOUNDED" value="true" />

26 <property name="N_FACETS" value="4" />

27 <property name="N_VERTICES" value="4" />

28 <property name="VOLUME" value="1/9" />

29 <property name="TRIANGULATION ">

30 <object name="unnamed #0">

31 <property name="FACETS">

32 <m>

33 <v>0 1 2</v>

34 <v>1 2 3</v>

35 </m>

36 </property >

37 <property name="F_VECTOR">

38 <v>4 5 2</v>

39 </property >

40 </object >

41 </property >

42 </object >

Listing 1.1. A polymake XML file, encoding a square.

Mathematical Background. A (convex) polytope is the convex hull of finitely
many points in a Euclidean space or, equivalently, the bounded intersection

The polymake XML File Format 405

of finitely many affine halfspaces. In polymake points are encoded in terms
of homogeneous coordinates to allow for a consistent treatment of both poly-
topes and polyhedral cones. Therefore, the polytope conv(S) for S ⊂ R

n finite
is encoded as the cone spanned by {1} × S ⊆ R × R

n. That is, in practi-
cal terms, the coordinates of points are always prepended with a 1. In our
example, we are considering the unit square scaled by 1/3. Its vertices, which
form the unique generating set which is minimal with respect to inclusion,
are written as (1, 0, 0), (1, 1/3, 0), (1, 0, 1/3), (1, 1/3, 1/3). Linear inequalities are
encoded in a similar fashion. The vector (a0, a1, . . . , an) ought to be read as
a0 + a1x1 + . . . anxn ≥ 0. In this way, a point p given in homogeneous coordi-
nates fulfills an inequality given by a vector a, if and only if the scalar product
p · a is nonnegative. See [7] for an introduction to polytope theory from an algo-
rithmic point of view.

Now we will walk the user through the Listing 1.1 line by line.

The Parent Object (Lines 3–6). The mathematical entities relevant to polymake
occur as objects each of which has a type. It will tell the parser what properties
to expect and how to interpret them. In this case the type describes a convex
polytope with rational coordinates. The version number refers to a specific poly-
make version. Via XSLT this allows for automatic updates from one object or file
format version to the next. Optional names and descriptions provide additional
human-readable information for quick identification.

Properties and Matrices (Lines 7–24). Every object is made up of various prop-
erties, which are identified by their names; their types are implicit. polymake
keeps track of the type of each property. The combination of the property’s name
with the version number (see above) uniquely determines the type.

However, properties may also be encoded in a more involved way. In our
example the property named FACETS comes with the type SparseMatrix explic-
itly given. This can be useful for saving space. In general, it is legal to specify
types which can be converted into the defined type of a property. For sparse data
types that conversion is only implicit, i.e., the matrix is never expanded into a
dense matrix. Most of the time the user will not notice the difference.

Any polymake matrix is stored as a sequence of row vectors. If it is sparse only
the nonzero entries are written down. The column of each entry is encoded in
the i attribute, and the cols attribute of the matrix indicates the total number
of columns of the matrix. In this case property FACETS encodes the matrix with
the row vectors (0, 1, 0), (1/3,−1, 0), (0, 0, 1), (1/3, 0,−1), and this yields the
non-redundant exterior description

x ≥ 0, x ≤ 1/3, y ≥ 0, y ≤ 1/3.

If polymake encounters a property with an unknown name, that property is
discarded — but a backup file is created.

Primitive Properties (Lines 25–28). Simple properties containing, e.g., numbers
(integer, rational or float) or boolean values are stored in an XML attribute
named value.

406 E. Gawrilow et al.

Subobjects (Lines 29–41). An object may have properties which are again objects
themselves (and which, in turn, may have further subobjects, etc.). Again the
object types are identified via the name of that property of the parent object.
Here TRIANGULATION is a SimplicialComplex. This mechanism allows for rather
elaborate constructions.

The maximal cells of the triangulation (called FACETS) are specified as subsets
of the vertices of the polytope. Each number refers to the corresponding row of
the property VERTICES of the parent object.

Notice that a convex polytope can be triangulated in more than one way.
Therefore, TRIANGULATION is a property of a Polytope object which may con-
tain several objects (of type SimplicialComplex). The various triangulations
are distinguished by their unique names. These can be set by the user or are
generated automatically (like here).

3 Format Specification in RELAX NG

The features presented above only provide a partial view of what can be
expressed in polymake’s XML. The full formal specification is expressed via
RELAX NG (or RNG for short) [3]; see the Listings 1.2 and 1.3 below. RNG is a
rather simple XML schema language based on the theory of hedge automata
[8]. Table 1 contains a short overview of the compact RNG syntax [4]. The full
specification file, which complies with the official RNG standard and contains
some additional explanatory annotations can be found in any current polymake
distribution under [polymake folder]/xml/datafile.rng.

Table 1. RELAX NG compact syntax

Listing 1.2 contains pattern definitions for the higher level elements in poly-
make’s XML. Each file either contains exactly one object or one data element
as its root. The pattern ObjectContent specifies that any object may contain
multiple property and attachment elements. Here we focus on objects, while
loose data and attachments are discussed briefly at the end of this section.

The polymake XML File Format 407

1 start = TopObject | LooseData

2

3 TopObject = element object { TopAttribs , ObjectContent }

4

5 TopAttribs = attribute type {

6 xsd:string { pattern = "[a-zA -Z][a-zA -Z_0 -9]*::.*" } },

7 attribute version { xsd:string { pattern = "[\d.]+" } }?,

8 attribute tm { xsd:hexBinary }?

9

10 ObjectContent =

11 attribute name { text }?,

12 attribute ext { text }?,

13 element description { text }?,

14 element credit { attribute product { text }, text }*,

15 (Property* & Attachment*)

16

17 Property = element property {

18 SimpleName ,

19 attribute ext { text }?,

20 ((attribute undef { "true" }, empty)

21 | (attribute type { text }?, PropertyData)

22 | Text | SubObject+) }

23

24 SubObject = element object

25 { attribute type { text }?, ObjectContent }

26

27 Attachment = element attachment {

28 SimpleName , attribute ext { text }?, AttachmentData }

29

30 LooseData = element data {

31 TopAttribs , attribute ext { text }?,

32 element description { text }?, PropertyData }

33

34 SimpleName = attribute name

35 { xsd:string { pattern = "[a-zA -Z][a-zA -Z_0 -9]*" } }

Listing 1.2. Format specification, Part 1: top-level elements

Listing 1.3 contains the pattern definitions for elements that encode actual
content. A property or data element can contain either a simple value stored in
an attribute, a reference to another property, a container or a list of subobjects.
The polymake XML format knows three container patterns: Vector, Matrix
and Tuple. The precise syntactical differences are somewhat subtle. A Matrix
is an array of containers of the same type. In Listing 1.1 the VERTICES (Lines
7–14) and the FACETS (Lines 15–23) of the square as well as the FACETS of the
triangulation subobject (Lines 31–36) are matrices. A Vector encodes an array
of homogeneous content. In Listing 1.1 the rows of the matrices mentioned above
occur as vectors; additionally we have the F VECTOR of the triangulation (which
counts the cells of the triangulation by dimension). Sparse vectors employ the
e element to specify the non-zero entries. The final container pattern Tuple
establishes records of heterogeneous content. For maximum flexibility the three
container types can be nested recursively.

408 E. Gawrilow et al.

39 PropertyData = (attribute value { text }, empty)

40 | IdReference | Complex | element m { SubObject+ }

41

42 AttachmentData =

43 (attribute type { text }?, attribute value { text }, empty)

44 | (attribute type { text }, attribute construct { text }?,

45 Complex) | Text

46

47 Text = attribute type { "text" }, text

48

49 Complex = Vector | Matrix | Tuple

50

51 VectorContents = text

52 | (attribute dim { xsd:nonNegativeInteger }?,

53 (element e { ElementIndex , text }*

54 | element t { ElementIndex?, TupleContents }+))

55

56 ElementIndex = attribute i { xsd:nonNegativeInteger }

57

58 IdReference = element r {

59 attribute id { xsd:nonNegativeInteger }?, empty }

60

61 Vector = element v { VectorContents }

62

63 MatrixContents =

64 (attribute cols { xsd:nonNegativeInteger }?, Vector*)

65 | (attribute dim { xsd:nonNegativeInteger },

66 element v { ElementIndex , VectorContents }*)

67 | Matrix+ | Tuple+

68

69 Matrix = element m { MatrixContents }

70

71 TupleContents = attribute id { xsd:nonNegativeInteger }?,

72 (text | (Vector | Matrix | Tuple

73 | IdReference | element e { text })+)

74

75 Tuple = element t { TupleContents }

Listing 1.3. Format specification, Part 2: Content elements

Attachments. Attachments provide a mechanism for storing essentially arbitrary
data with an object — regardless of its type and the current version of poly-
make. They can be primitive data types as well as more complex types such as
matrices and sets. Object types such as Polytope are not allowed. This can, for
example, be used to store unrecognized data from pre-XML polymake files or to
keep track of relevant context data in an involved computation without having
to create multiple files. Every attachment is identified by a unique name.

Loose Data. The polymake XML file format can also be used to store data which
are not a full object. The object node is then replaced by a data node and
no properties or attachments may appear. Otherwise, the format is essentially

The polymake XML File Format 409

the same. Listing 1.4 encodes an array whose single entry is the polynomial√
5/5x2 − y3. Since the coefficients lie in the quadratic field extension Q(

√
5),

each of them is encoded as a Tuple (a, b, c) which is to be read as a+ b ·√c. The
polynomial again is a Tuple where the first entry encodes the terms (which form
a Matrix of Tuple elements) and the second one the names of the variables.

1 <data type="Array<Polynomial<QuadraticExtension >>"

2 version="3.0"

3 xmlns="http :// www.math.tu -berlin.de/polymake /#3">

4 <v>

5 <t>

6 <m>

7 <t>

8 <v dim="2"> <e i="0" >2</e> </v>

9 <t>0 1/5 5</t>

10 </t>

11 <t>

12 <v dim="2"> <e i="1" >3</e> </v>

13 <t>-1 0 0</t>

14 </t>

15 </m>

16 <t id="1">

17 <v>x y</v>

18 </t>

19 </t>

20 </v>

21 </data >

Listing 1.4. A file representing an array which contains one polynomial.

Element References. To avoid writing the same data multiple times, an element
can be replaced by a reference tag <r>, which points to another element using an
identification number. This is useful, for example, when storing multiple polyno-
mials which all share the same variable names. An example of an element using
the id attribute can be seen in Listing 1.4, line 16. By referencing to this id,
e.g., one can express that another polynomial is contained in the same ring.

4 Concluding Remarks

A key design decision is that the polymake RNG schema does not restrict the
types of objects and their properties in any way. It provides a simple syntax
to recursively structure mathematical data in terms of vectors, matrices and
tuples as it occurs in computations. The precise type information relies on the
implementation of the polymake version specified. In this way polymake can
be extended easily by adding new objects, new properties and new types. The
long-term sustainability of the data relies on the extra flexibility which comes
from XSLT transformation style sheets.

It should be emphasized that this file format is by no means a replacement
of existing standards such as OpenMath or (Content) MathML. While MathML

410 E. Gawrilow et al.

focuses on the presentation of mathematical content, OpenMath and Content
MathML are comprehensive frameworks for defining the semantics of arbitrary
mathematical information. The polymake XML format aims at something more
modest: It provides a simple mechanism for storing concrete mathematical data
in a well-structured manner which still allows for extensions and modifications
without breaking the overall concept.

polymake’s release documentation at

http://polymake.org/release docs/3.0/

is automatically generated. This contains the complete list of objects, properties
and their types. We intend to enhance the mechanism for the documentation
generation to export this information again as RNG schema files. This will allow
third party developers to access polymake data without relying on our software.

References

1. Mathematical Markup Language (MathML) version 3.0 2nd edition. https://www.
w3.org/TR/MathML3/

2. OpenMath. http://www.openmath.org/
3. RELAX NG Specification, Technical report, The Organization for the Advancement

of Structured Information Standards (OASIS), December 2001. http://relaxng.org/
spec-20011203.html

4. RELAX NG Compact syntax specification, Technical report, The Organization for
the Advancement of Structured Information Standards (OASIS), November 2002.
http://relaxng.org/compact-20021121.html

5. Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes.
In: Kalai, G., Ziegler, G.M. (eds.) Polytopes—Combinatorics and Computation
(Oberwolfach, 1997), vol. 29, pp. 43–73. Birkhäuser, Basel (2000)

6. Joswig, M., Mehner, M., Sechelmann, S., Techter, J., Bobenko, A.I.: DGD Gallery:
Storage, sharing, and publication of digital research data. In: Bobenko, A.I. (ed.)
Advances in Discrete Differential Geometry. Springer, Heidelberg (2016)

7. Joswig, M., Theobald, T.: Polyhedral and Algebraic Methods in Computational
Geometry. Universitext. Springer, London (2013). Revised and updated translation
of the 2008 German original

8. Murata, M.: Hedge automata: a formal model for XML schemata. Technical
report, Fuji Xerox Information Systems (1999). http://www.horobi.com/Projects/
RELAX/Archive/hedge nice.html.

http://polymake.org/release_docs/3.0/
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/MathML3/
http://www.openmath.org/
http://relaxng.org/spec-20011203.html
http://relaxng.org/spec-20011203.html
http://relaxng.org/compact-20021121.html
http://www.horobi.com/Projects/RELAX/Archive/hedge_nice.html.
http://www.horobi.com/Projects/RELAX/Archive/hedge_nice.html.

Semantic-Aware Fingerprints of Symbolic
Research Data

Hans-Gert Gräbe(B)

Leipzig University, Leipzig, Germany
graebe@informatik.uni-leipzig.de

http://www.zv.uni-leipzig.de/en/university/profile-and-management.html

Abstract. One of the goals of the SymbolicData Project is to set up a
navigational structure on the research data associated with the project.
In 2009 we started to refactor the data and metadata along standard
semantic web concepts based on the Resource Description Framework
(RDF) thus opening the door to the Linked Open Data world.

One of the main metadata concepts used for navigational purposes is
that of semantic-aware fingerprints as semantically sound invariants of
the given data. We applied this principle, first used to navigate within
polynomial systems data, to the data sets on polytopes and on transitive
groups newly integrated with SymbolicData version 3, and also within
the recompiled version of test sets from integer programming.

The RDF based representation of fingerprints allows for a unified navi-
gation and even cross navigation within such data using the SPARQL
query mechanism as a generic web service, a clear advantage compared
to metadata management traditionally in use within the domain of com-
puter algebra.

In this paper we discuss merely the conceptual background of our
fingerprinting approach and refer to the SymbolicData wiki for more
details and examples how to use that service.

Keywords: Semantic technology · RDF · Computer algebra ·Metadata
management · SPARQL query mechanism

1 Introduction

The section “Information Services for Mathematics” addresses a more complex
target compared to the title “Mathematical Software” of this conference at large
since mathematical software can be considered as part of a whole infrastructure
for mathematical research. Nowadays such an infrastructure goes much beyond
the classically hawked “paper and pencil” or “chalk and blackboard” claimed to
be sufficient – together with access to the work of colleagues within an, nowadays
also not self-evident, information and communication infrastructure – to pursue
advanced mathematical research. The themes “software, services, models, and
data” point to at least four dimensions to enhance the mathematical research

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 411–418, 2016.
DOI: 10.1007/978-3-319-42432-3 51

412 H.-G. Gräbe

infrastructure in the era of ubiquitous computing and increasingly important
digital interconnectedness.

This paper addresses the dimension of research data in more detail, in par-
ticular aspects of public availability of reliable and well curated research input
data that is important for the coherence of research questions addressed by com-
munities and thus for the formation of specific research communities themselves.

We discuss relevant questions in the specific context of intra- and intercom-
munity communication within the specific research domain of symbolic and alge-
braic computations (CA) coarsely defined by the MSC 2010 classification code
68W13. We analyze the situation of public availability of research data in that
area on the background of almost 20 years of experience with research data man-
agement in that domain within the SymbolicData Project [18]. We address the
special challenges to small scientific communities as the CA community com-
pared to larger ones as the whole mathematical community, that nevertheless
splits into a number of CA subcommunities. These CA subcommunities are
organized around special research topics and in many cases already managed to
organize and consolidate their own intracommunity research infrastructures. We
discuss lessons to be learned from these activities and hurdles and obstructions
to generalize such experience to an intercommunity level within the CA domain.

In Sect. 2 we develop a more detailed view on the interplay between (digi-
tal) research data and research infrastructures and discuss the situation of the
mathematical digital research infrastructure compared to other sciences.

In Sect. 3 we give a short report about SymbolicData activities in the
CA domain during the years. In particular we emphasize the importance of a
redesign of the SymbolicData basics during the last years towards standard
semantic web concepts and the implementation of an RDF based infrastructure
to manage descriptions (“fingerprints”) of research data collections of different
CA subcommunities and thus to open them for the Linked Open Data world.

Sections 4 and 5 are devoted to a more detailed explanation of the notion
of fingerprints of research data and our conceptual background of data and
metadata management. Further we discuss the advantages of an RDF based
approach to metadata management compared to approaches traditionally in use
within the CA domain.

2 Research Data and Digital Research Infrastructures

Digital change and the accelerated development of a (seemingly) universally
interconnected digital universe lead to an essential reshaping of many areas of
life. Also the world of scientific research is affected by these mainly technolog-
ically triggered social changes. The public availability and easy accessibility of
very detailed descriptions and information about research processes leads to a
strong increase of transparency and provides a basis for completely new cooper-
ation forms whose importance for the future hardly can underestimated.

Such a development started to change research methods already in the com-
puter age since the 1960th complementing established forms of intermediation of

Semantic-Aware Fingerprints of Symbolic Research Data 413

scientific results by journal papers and preprints with computer simulations and
scientific software1 as an essentially new form of scientific knowledge production.
Within the upcoming networking age a number of questions of scientific knowl-
edge production have to be addressed anew. Three themes related to simulation
are of particular importance: (1) the input data, (2) the simulation procedures
(scientific software) and (3) the output data.

Not only with the digital universe the free availability of data for pub-
lic research from each of these three thematic areas plays an important but
scientific-sociologically different role:

(1) The public availability of reliable and well curated input data is important
for the coherence of research questions addressed by the community and thus
for the formation of a specific research community itself around its central
research problems.

(2) The public availability of newly developed simulation methods, procedures
and techniques is relevant for the traceability of the proposed scientific
approaches and increasingly accompanies classical forms of description of
scientific advancement by academic papers.

(3) The public availability of output data is important for the independent repro-
duction of results and thus of essential importance for the process of academic
quality assurance.

It is in the nature of the scientific process that output data is the starting
point for new research questions and thus output data mutates to input data. In
most of the cases such a mutation happens not immediately but is mediated by
a community-internal interpersonal transformation process that transforms the
often large output data (or a whole bundle of such data) into (one or several)
more compact input data adapted to the new research question(s).

Within the digital change the different scientific communities are faced with
the challenge to adapt their research and communication infrastructure to these
new socio-technical opportunities. Of central importance – beside a culture of
public access – is the allocation of resources for such a mainly non-academic
business to restructure this highly technical research infrastructure of the com-
munity and keep it running. After many years of community-driven grassroot
activities of academic self-organization (e.g., ArXiv) this topic begins to move
into the focus of research and political administrations at different levels and is
reflected in different calls and rules at German wide (e.g., [3]) or EU level (e.g.,
[4,14]).

Other scientific communities (e.g., with programs as TextGrid, DARIAH,
CLARIN-PLUS) act very successful to acquire EU funding to upgrade their

1 Scientific software is written to run computer simulations – we use this notion in
an appropriate broad meaning – and if software is not used in such a way it is of
less academic interest. Moreover, computer simulations often require the interplay
of several scientific packages bundled within an application, hence computer simu-
lation is the broader notion and we use it throughout this paper instead of scientific
software.

414 H.-G. Gräbe

research data infrastructure mainly at the theme (1) level – in particular to set
up a sustainable environment for text corpora (e.g., “Deutsches Textarchiv”)
as the central research data form within Digital Humanities. The mathemati-
cal community is much less successful within the EU Research Infrastructures
Program [14] (but see the OpenDreamKit Project [11]) and concentrates with
projects as swMath [19], sagemath [15] and also this conference on the theme
(2) level of sustainably available scientific software. Note that the application of
the OpenDreamKit Project was successful also due to the fact that it does not
address mathematical software as such but successful cooperate practices using
mathematical software.

Efforts to secure a research infrastructure for mathematical data at the theme
(1) or even theme (3) levels are lost in the brushwood of everlasting (for at least
a decade) debates about reliable formal but semantically expressive formats as
MathML or OpenMath for data resulting from calculi, that are already highly
formalized – at least at an informal level – by the internal nature of the research
topics themselves. The situation reminds the Tower of Babel Project, since
subcommunities are digitally already well established, developed their own for-
malizations for their own research data at theme (1) level and apply such formal-
izations very successful within their intracommunity communication processes.

3 The SymbolicData Project

The SymbolicData Project is a small project initiated at the end of the 1990th
as an intracommunity project in the area of Polynomial Systems Solving to
secure a research data infrastructure at the theme (1) level built up within the
EU funded PoSSo [13] and FRISCO [5] projects. It grew up from the Special
Session on Benchmarking at the 1998 ISSAC conference in a situation where the
research infrastructure built up within these projects – the Polynomial Systems
Database – was going to break down. After the end of the projects’ fundings
there was neither a commonly accepted process nor dedicated resources to keep
the data in a reliable, concise, sustainably and digitally accessible way. Even
within the ISSAC Special Session on Benchmarking the community could not
agree upon a further roadmap to advance that matter.

The SymbolicData Project was set up by a small number of volunteers not
involved within the EU funded projects, but strongly interested in the public
availability of this research data as reference that can be used as input data (1)
for certified benchmark activities on specialized mathematical software that was
written to run simulations (2) in a special domain of Algebraic Geometry. At
those times almost 20 years ago most of the nowadays well established concepts
and standards for storage and representation of research data did not yet exist –
even the first version of XML as a generic markup standard had to be accepted
by the W3C. It was Olaf Bachmann and me who developed during 1999–2002
with strong support by the Singular group concepts, tools and data structures
for a structured representation and storage of this data and prepared about 500
instances from Polynomial Systems Solving and Geometry Theorem Proving to
be available within this research infrastructure, see [1].

Semantic-Aware Fingerprints of Symbolic Research Data 415

The main conceptional goal was a nontechnical one – to develop a research
infrastructure that is independent of (permanent) project funding but operates
based on overheads of its users. This approach was inspired by the rich experience
of the Open Culture movement “business models” to run infrastructures. It
was an early attempt to emphasize the advantage of an explicitly elaborated
concept of a community-based solution to the “tragedy of the commons” [8]
within the CA community and to apply such a concept to run a part of its
research infrastructure.

Even 15 years later it remains difficult to keep the SymbolicData Project
running on such a base, and for many years we concentrate our efforts to secure
the sustainable public digital availability of the research input data within our
collections and to develop appropriate concepts and tools to manage, search
and filter this data. In 2009 we started to refactor the data along standard
semantic web concepts based on the Resource Description Framework (RDF).
With SymbolicData version 3 released in September 2013 we completed a
redesign of the data along RDF based semantic technologies, set up a Virtuoso
based RDF triple store and an SPARQL endpoint as Open Data services along
Linked Data standards, and started both conceptual and practical work towards
a semantic-aware Computer Algebra Social Network [7].

Since then we continued that development. On March 1, 2016, version 3.1 of
the SymbolicData tools and data was released. The new release contains

– new resource descriptions (“fingerprints”) of remotely available data on transi-
tive groups (Database for Number Fields of Gunter Malle and Jürgen Klüners
[10]) and polytopes (databases of Andreas Paffenholz [12] within the polymake
project [6]),

– a recompiled and extended version of test sets from integer programming –
work by Tim Römer (normaliz group [2]) –,

– an extended version of the SDEval benchmarking environment – work by
Albert Heinle [9] – and

– a partial integration (SymbolicData People database, databases of upcoming
and past conferences) of data from the Computer Algebra Social Network
subproject.

Moreover, the github account https://github.com/symbolicdata was trans-
formed into an organizational account and the git repo structure was redesigned
better to reflect the special life-cycle requirements of the different parts and
activities within SymbolicData. We provide the following repos

– data – the data repo with a single master branch mainly to backup recent
versions of the data,

– code – the code directory with master and develop branches,
– maintenance – code chunks from different tasks and demos as best practice

examples how to work with RDF based data,
– publications – a backup store of the LaTEX sources of SymbolicData publi-

cations,

https://github.com/symbolicdata

416 H.-G. Gräbe

– web – an extended backup store of the SymbolicData web site that provides
useful code to learn how RDF based data can be presented.

The main development is coordinated within the SymbolicData Core Team
(Hans-Gert Gräbe, Ralf Hemmecke, Albert Heinle) with direct access to the orga-
nizational account. We refer to the SymbolicData Wiki [18] for more details
about the project’s organization and the new release.

4 Research Data and Metadata

From the internal perspective of a research community a special aspect of every
research data collection is the design of management, search and filter func-
tionality. For this purpose data is usually enriched with metadata that collect
important relevant information of the individual data records in a compact man-
ner. We denote such metadata for an individual data record as its fingerprint.

Similar to a hash function a fingerprint function computes a compact meta-
data record (resource description in the RDF terminology) to each individual
data record (resource in the RDF terminology). As with a hash function one can
use the fingerprints to (almost) distinguish different data records within the given
collection and to match new records with given ones. But there is an essential
difference between (classical) hash functions and well designed fingerprints: fin-
gerprint functions exploit not only the textual representation of the data record
as meaningless syntactical character string but convey semantically important
information or even compute such information from the string representation.
Fingerprints are in this sense semantic-aware and can even be designed in such
a way that they map ambiguities in the textual representation of records (e.g.,
polynomial systems given in different polynomial orders and even in different
variable sets) to semantic invariants.

The design of appropriate fingerprint signatures is an important intracom-
munity activity to structure its own research data collections. Such fingerprint
signatures are also very useful for the intercommunity usage of research data
collections, since they allow to navigate within the (foreign) research data col-
lection without presupposing the full knowledge of the “general nonsense” of
the target research domain, i.e., the informal background knowledge required
freely to navigate as scientist in that domain. Hence well designed fingerprint
signatures are to be considered also as a first class service of a special research
community to a wider audience to inspect their research data collections without
using the community-internal tools to access the resources themselves.

5 Working with Semantic-Aware Fingerprints

Usually the research data collections (resources in the RDF terminology) of a
certain community are stored in a specially designed community-internal format,
often as plain text (e.g., the Normaliz Collection [2]), in a special XML nota-
tion (e.g., the Polymake Collection [6]) or as SQL database (e.g., the Database

Semantic-Aware Fingerprints of Symbolic Research Data 417

for Number Fields [10]). Such formats usually employ special formal semantics
agreed within the community as an effective way to store domain specific input
and output data and used by commonly developed tools with appropriate parsing
functionality.

Usually such formats are extended to store research metadata, i.e., fin-
gerprints or resource descriptions in the RDF terminology, together with the
research data. This has one benefit and two drawbacks:

– Benefit: A fingerprint can be computed immediately by the commonly used
tools or with their slight extension, and can be stored with the resource itself.

– First Drawback: Metadata unfold its full expressiveness only if one can search
and navigate within it. A storage together with the resource itself implies
high extraction costs for metadata navigation and access to the research data
collection.

– Second Drawback: The very different formats prevent an easy combination of
metadata from different communities and even from different sources.

The first drawback can be addressed if the metadata are extracted into a data-
base – either a central one or delivered with the tools for local use – and the
commonly used intracommunity tools provide search and navigational function-
ality within that metadata representation. Such an approach based on a web
interface was realized for the Database for Number Fields [10] and a tool inte-
gration based on a Mongo-DB for the Polymake Database [6]. But such a solution
has two further drawbacks:

– Drawback 1a: The search and navigational functionality is not or only in a
restricted way adapted for machine-readable interaction and thus cannot be
integrated into more comprehensive search and navigational processes.

– Drawback 1b: The search and navigational functionality can’t be adapted by
the user for its own needs.

A general solution that avoids these drawbacks proposes to extract the metadata
information from the resource data and to transform it into RDF. RDF – the
Resource Description Framework – is the conceptual basis of Linked Open Data
as a worldwide distributed database that can be globally queried and navigated
using the SPARQL query language in a similar unified way as SQL allows to
navigate in local relational databases.

We applied this approach, first used within the SymbolicData Project to
navigate within polynomial systems data, to the data sets on polytopes and
on transitive groups newly integrated with SymbolicData version 3, and also
within the recompiled version of test sets from integer programming. We store
these fingerprints in our RDF data store [16] thus allowing for a unified nav-
igation and even cross navigation within such data using the SPARQL query
mechanism as a generic Web service provided by our SPARQL endpoint [17].

We refer to the SymbolicData wiki [18] for detailed information and exam-
ples how to use that service.

418 H.-G. Gräbe

References

1. Bachmann, O., Gräbe, H.-G.: The SymbolicData Project - Towards an Electronic
Repository of Tools and Data for Benchmarks of Computer Algebra Software.
Reports on Computer Algebra 27, Centre for Computer Algebra, University of
Kaiserslautern (2000)

2. Bruns, W., Ichim, B., Römer, T., Sieg, R., Söger, C.: Normaliz: Algorithms
for Rational Cones and Affine Monoids, 08 March 2016. https://www.normaliz.
uni-osnabrueck.de

3. DFG verabschiedet Leitlinien zum Umgang mit Forschungsdaten. DFG-Magazin
“Information für die Wissenschaft” Nr. 66 (2015). http://www.dfg.de/foerderung/
info wissenschaft/2015/info wissenschaft 15 66/index.html. 07 May 2016

4. Strategy Report on Research Infrastructures. Roadmap 2016. Published by the
European Strategy Forum for Research Infrastructures (ESFRI), Brüssel (2016).
http://www.esfri.eu/roadmap-2016 . 16 March 2016

5. FRISCO - A Framework for Integrated Symbolic/Numeric Computation (1996–
1999). http://www.nag.co.uk/projects/FRISCO.html. 19 February 2016

6. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes.
In: Kalai, G., Ziegler, G.M. (eds.) Polytopes–Combinatorics and Computation.
DMV Seminar, vol. 29, pp. 43–73. Birkhäuser, Basel (2000)

7. Gräbe, H.-G., Johanning, S., Nareike, A.: The SymbolicData project– towards a
computer algebra social network. In: Workshop and Work in Progress Papers at
CICM 2014, CEUR-WS.org, vol. 1186 (2014)

8. Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–1248 (1968).
doi:10.1126/science.162.3859.1243

9. Heinle, A., Levandovskyy, V.: The SDEval benchmarking toolkit. ACM Commun.
Comput. Algebra 49(1), 1–10 (2015)

10. Klüners, J., Malle, G.: A Database for Number Fields, 08 March 2016. http://
galoisdb.math.uni-paderborn.de/

11. OpenDreamKit: Open Digital Research Environment Toolkit for the Advancement
of Mathematics, 16 March 2016. http://opendreamkit.org/, http://cordis.europa.
eu/project/rcn/198334 en.html

12. Paffenholz, A.: Polytope Database, 08 March 2016. http://www.mathematik.
tu-darmstadt.de/∼paffenholz/data/

13. The PoSSo Project. Polynomial Systems Solving - ESPRIT III BRA 6846 (1992–
1995)

14. Research Infrastructures, including e-Infrastructures, 16 March 2016. http://ec.
europa.eu/programmes/horizon2020/en/h2020-section/research-infrastructures-
including-e-infrastructures

15. The SageMath Project, 16 March 2016. http://www.sagemath.org/
16. The SymbolicData RDF Data Store, 15 March 2016. http://symbolicdata.org/

Data
17. The SymbolicData SPARQL Endpoint, 19 February 2016. http://symbolicdata.

org:8890/sparql
18. The SymbolicData Project Wiki, 13 March 2016. http://wiki.symbolicdata.org
19. swMATH–a new Information Service for Mathematical Software, 07 March 2016.

http://www.swmath.org/

https://www.normaliz.uni-osnabrueck.de
https://www.normaliz.uni-osnabrueck.de
http://www.dfg.de/foerderung/info_wissenschaft/2015/info_wissenschaft_15_66/index.html
http://www.dfg.de/foerderung/info_wissenschaft/2015/info_wissenschaft_15_66/index.html
http://www.esfri.eu/roadmap-2016
http://www.nag.co.uk/projects/FRISCO.html
http://dx.doi.org/10.1126/science.162.3859.1243
http://galoisdb.math.uni-paderborn.de/
http://galoisdb.math.uni-paderborn.de/
http://opendreamkit.org/
http://cordis.europa.eu/project/rcn/198334_en.html
http://cordis.europa.eu/project/rcn/198334_en.html
http://www.mathematik.tu-darmstadt.de/~paffenholz/data/
http://www.mathematik.tu-darmstadt.de/~paffenholz/data/
http://ec.europa.eu/programmes/horizon2020/en/h2020-section/research-infrastructures-including-e-infrastructures
http://ec.europa.eu/programmes/horizon2020/en/h2020-section/research-infrastructures-including-e-infrastructures
http://ec.europa.eu/programmes/horizon2020/en/h2020-section/research-infrastructures-including-e-infrastructures
http://www.sagemath.org/
http://symbolicdata.org/Data
http://symbolicdata.org/Data
http://symbolicdata.org:8890/sparql
http://symbolicdata.org:8890/sparql
http://wiki.symbolicdata.org
http://www.swmath.org/

Linking Mathematical Software in Web Archives

Helge Holzmann1(B), Mila Runnwerth2, and Wolfram Sperber3

1 L3S Research Center, Appelstr. 9a, 30167 Hannover, Germany
holzmann@L3S.de

2 German National Library of Science and Technology (TIB),
Welfengarten 1b, 30167 Hannover, Germany

Mila.Runnwerth@tib.eu
3 zbMATH, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure,

Franklinstr. 11, 10587 Berlin, Germany
wolfram@zentralblatt-math.org

Abstract. The Web is our primary source of all kinds of informa-
tion today. This includes information about software as well as associ-
ated materials, like source code, documentation, related publications and
change logs. Such data is of particular importance in research in order to
conduct, comprehend and reconstruct scientific experiments that involve
software. swMATH, a mathematical software directory, attempts to iden-
tify software mentions in scientific articles and provides additional infor-
mation as well as links to the Web. However, just like software itself, the
Web is dynamic and most likely the information on the Web has changed
since it was referenced in a scientific publication. Therefore, it is crucial
to preserve the resources of a software on the Web to capture its states
over time.

We found that around 40% of the websites in swMATH are already
included in an existing Web archive. Out of these, 60% of contain some
kind of documentation and around 45% even provide downloads of soft-
ware artifacts. Hence, already today links can be established based on the
publication dates of corresponding articles. The contained data enable
enriching existing information with a temporal dimension. In the future,
specialized infrastructure will improve the coverage of software resources
and allow explicit references in scientific publications.

Keywords: Scientific software management · Web archives

1 Introduction

Providing specialized information services for software (SW) is challenging for
various reasons: SW is highly dynamic, references in literature are often not
declared as SW, and structured metadata is sparse. Repositories as well as direc-
tories typically represent SW in an abstract manner with provided information

This work is partly funded by the German Research Council under FID Math and
the European Research Council under ALEXANDRIA (ERC 339233).

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 419–422, 2016.
DOI: 10.1007/978-3-319-42432-3 52

420 H. Holzmann et al.

corresponding not to a specific state or only to the current version. In contrast
to these representations, mentions of SW in scientific articles often refer to the
SW’s state at the time of use or publication. However, SW is dynamic and often
a version has been updated since it was referenced. With changes of the SW, its
website is likely to be updated as well. Thus, corresponding information as well
as associated materials of the referenced version might not be available anymore.
This makes it difficult to trace the development process and to obtain informa-
tion about a previous version of the SW, although this can be necessary to
reproducing published scientific results. While open source SW facilitates access
to different states of the source code, this does not always include associated
materials, such as a documentation.

To fix this temporal gap between publications and representations of SW on
the Web in the long run, a sophisticated Web archiving infrastructure is required
to preserve available information about SW at the time when it is referenced.
In the short term, however, establishing links to existing Web archives at the
publication time of an article will be a first step in this direction. SW directories
can serve as a bridge in this endeavor. swMATH1, a directory for mathematical
SW (MSW), follows a publication-based approach to link SW and corresponding
scientific publications (s. Sect. 2). From all MSW listed on swMATH, we found
the websites of around 40 % to be already existent in the Internet Archive’s Web
archive2, with many of them providing associated materials (s. Sect. 2).

2 Publication-Based Approach of swMATH

swMATH is one of the most comprehensive information services for MSW [1].
Based on simple heuristics, swMATH identifies MSW in scientific articles from
its underlying bibliographic database zbMATH3, consisting of nearly 120,000
publications referring to MSW. Currently, swMATH contains more than 12,500
SW records linked to corresponding articles, as shown in Fig. 1.

One of the major challenges of swMATH is the identification of MSW in
scientific publications. In many articles, only names are mentioned, while versions
or explicit labels as MSW are missing. swMATH addresses this by scanning titles,
abstracts, as well as references for typical terms, such as solver, program, or
simply software, in combination with a name. After that, a manual intervention
step verifies the recognized SW to ensure a high quality of the service. As part of
this, additional metadata, such as a website, the authors, technical requirements,
dependencies, licenses, documentations and more, is looked-up through a regular
Web search and added if available.

Similar to other SW directories and repositories (s. Sect. 1), the focus of
swMATH is to provide time-agnostic information about SW rather than specific
versions. Therefore, included websites are periodically checked and outdated
links as well as related information are removed or replaced. While this ensures an
up-to-date representation of the SW, it introduces inconsistencies with included
1 http://www.swmath.org.
2 http://web.archive.org.
3 http://www.zbmath.org.

http://www.swmath.org
http://web.archive.org
http://www.zbmath.org

Linking Mathematical Software in Web Archives 421

Fig. 1. Record of the mathematical software Singular on swMath

publications, which are annotated with the year of publication and constitute
temporal witnesses of different SW states. Therefore, it has been considered to
integrate temporal information in order to represent the different versions of a
SW over time and match publications. Web archives can serve as source for this
information in the future.

3 Linking Web Archives

Web archives have recently been of growing interest in research, however, they
have either been used as scholarly sources or have been a subject of research
themselves, with questions focusing on coverage and evolution [2,3]. To the best
of our knowledge, Web archives have never been used to recover information and
associated materials of former states of SW. We tackle this by linking articles on
SW with available resources in Web archives. As proxy serve the website URLs
as well as the publication dates of corresponding articles as listed on swMATH.
An initial analysis of this data unveiled what to expect from integrating Web
archives as source for temporal information about MSW.

As shown in Fig. 2a, we found that around 60 % of the analyzed websites
contain some kind of documentation, almost 50 % link to publications, more
than 40 % even provide downloads of SW artifacts with 30 % being open source,
and 10 % could be identified to publish updates or news, such as a changelog.
Although not all of this is currently being preserved by Web archives, already
today around 40 % of the URLs under investigation are included in the con-
sidered Web archive with at least one capture, as shown by the archived bars
in Fig. 2b dissected by the year of the highest cited publication of a SW. How-
ever, looking at the fraction with captures in the corresponding year, the past
archived bars unveil a clear growth over time with relatively low numbers in
the early times of Web archiving. Hence, we are able to successfully link around
25 % of the analyzed MSW with their top publication in 2013, but only very few

422 H. Holzmann et al.

before 2000. The reason for this is two-fold, while the coverage of Web archives
has drastically improved over time, as pointed out in Sect. 2, outdated links in
swMATH have been replaced with new URLs, which might not have existed at
the time of the top publication yet.

(a) Information on mathematical soft-
ware pages.

(b) Pages changed since top publication.

Fig. 2. Mathematical software in Web archives.

4 Conclusion and Outlook

Linking MSW in Web archives will help to recover information as well as associ-
ated materials of previous versions referenced in scientific publications. As shown
by the third category in Fig. 2b, past changed, almost all of the websites that
were archived in the year of the top publication mentioning a SW have changed,
which indicates the need of our approach. Moreover, the tools used for the analy-
sis of Web archives are a first step towards a machine-based content analysis of
the websites of a MSW. This opens up new possibilities to enrich the information
in swMATH.

In order to overcome the challenge of identifying former URLs of SW
resources in a Web archive (s. Sect. 3), temporal tags may be incorporated in
the future, as demonstrated by Holzmann and Anand [4].

References

1. Greuel, G.-M., Sperber, W.: swMATH – an information service for mathematical
software. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 691–701.
Springer, Heidelberg (2014)

2. Ainsworth, S.G., Alsum, A., SalahEldeen, H., Weigle, M.C., Nelson, M.L.: How
much of the web is archived? In: JCDL 2011 (2011)

3. Holzmann, H., Nejdl, W., Anand, A.: The dawn of today’s popular domains - a
study of the archived german web over 18 years. In: JCDL 2016 (2016)

4. Holzmann, H., Anand, A.: Tempas: temporal archive search based on tags. In:
WWW 2016 Companion (2016)

Mathematical Models: A Research Data
Category?

Thomas Koprucki and Karsten Tabelow(B)

Weierstrass Institute (WIAS), Mohrenstr. 39, 10117 Berlin, Germany
karsten.tabelow@wias-berlin.de

http://www.wias-berlin.de

Abstract. Mathematical modeling and simulation (MMS) has now been
established as an essential part of the scientific work in many disciplines
and application areas. It is common to categorize the involved numer-
ical data and to some extend the corresponding scientific software as
research data. Both have their origin in mathematical models. In this
contribution we propose a holistic approach to research data in MMS by
including the mathematical models and discuss the initial requirements
for a conceptual data model for this field.

Keywords: Research data · Mathematical modeling and simulation ·
Mathematical knowledge management

1 Introduction

In recent years the handling of research data as part of the scientific practice
has created vivid discussions within the scientific community, at research institu-
tions as well as in funding agencies. Specifically, the importance of research data
and its storage in view of new digital technologies is emphasized by the recent
adoption of the “DFG Guidelines on the Handling of Research Data” by the
Deutsche Forschungsgemeinschaft [1], the Open Research Data Pilot within the
EU Horizon 2020 program [2], or the development of principles for research data
handling within the german scientific organizations, the Leibniz Association,
the Max-Planck-, Helmholtz-, and Fraunhofer Society by the Priority Initiative
“Digital Information”1.

The importance of appropriate handling of research data is increasingly
recognized in view of its rising amount. It is central part of the discussion on
Open Data and a prerequisite of the scientific method. In the face of the emerging
digital science agenda research data proves to be an essential foundation for sci-
entific work. Driven by such considerations universities and scientific institutions
started creating policies for the handling of research data. These include rules for
the full data life-cycle including generation, storage, preparation for subsequent
re-use, publication and curation of data. However, the nature of research data is
as diverse as the scientific disciplines requiring specific discussions and concepts.
1 http://www.allianzinitiative.de/en/core-activities/research-data.html.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 423–428, 2016.
DOI: 10.1007/978-3-319-42432-3 53

http://www.allianzinitiative.de/en/core-activities/research-data.html

424 T. Koprucki and K. Tabelow

2 Research Data in Mathematical Modeling and
Simulation

Mathematics is one of the foundations of today’s key technologies and
science. Mathematical methodology is required for interdisciplinary modeling
of a research problem, for its mathematical treatment and solution, and for the
transfer of the results into practice. In the last decade mathematical modeling
and simulation (MMS) has been established alongside experiment and theory
and is now essential part of the scientific work in many disciplines and applica-
tion areas.

Research in the area of MMS is characterized by mathematical models,
scientific software for their treatment, and numerical data related to compu-
tations (input, output, parameters), see Fig. 1. Here, we propose to categorize
these three parts as the research data in MMS as they are jointly required to
understand and verify research results, or to build upon them.

Software

Mathematical
Model

Data

Fig. 1. This figure illustrates the three different components constituting research data
in MMS: mathematical models, simulation software and numerical data (e.g., input
parameters and data, output of simulation software).

Specifically, numerical data is generally regarded as research data in com-
mon sense and data repositories and information services such as DataCite [3]
or RADAR [4,5] exist or are emerging. Increasingly, software is categorized as
reasearch data [1] and a world-leading information service on mathematical soft-
ware, swMath [6], has already been developed.

Yet, communication in MMS suffers from the absence of a unified concept
including mathematical models: instead of considering mathematical models as
entities of their own class, which can be uniquely identified, cited and categorized,
they are rather found as plain text with a mixture of mathematical notation and
common language. This potentially leads to ambiguity, cites to different original
work, incompleteness, and “re-invention of the wheel”.

A comprehensive approach to research data in MMS should cover all three
aspects in a similar manner. While for software and numerical data the above men-
tioned services are reasonable starting points for the implementation of such a con-
cept, a corresponding definition and service for mathematical models is missing.

Mathematical Models: A Research Data Category? 425

A similar system for computational models of biological processes has been intro-
duced at the BioModels Database2.

In this contribution we discuss the initial requirements for a conceptual data
model for mathematical models, starting from a simple and widely-used example.
This is a first step towards the creation of a semantic corpus for mathematical
models in MMS, which can serve as a standardized access to mathematical mod-
els with cross-links to software, data repositories, and publications.

3 Mathematical Models: The Heat Transport Problem

As an example for mathematical modeling we consider the heat transport prob-
lem. Modeling and simulation of heat transport is a common task in many tech-
nical applications ranging from large heat exchangers to heating effects in small
semiconductor devices. For our discussions on a formalization concept for math-
ematical models we outline the corresponding description of the heat transport
model and its ingredients as plain text, which might be similarly found in typical
publications on this topic or in software documentations.

Heat transport model. We describe heat conduction by Fourier’s law

q = −λ∇T, (1)

where q denotes the heat flux, λ represents the heat conductivity and ∇T is the
temperature gradient. In a bounded spatial domain Ω the time evolution of the
temperature distribution T (x, t) is then governed by the heat flow equation:

∂

∂t
(C(x)T (x, t)) − ∇ · (λ(x)∇T (x, t)) = f(x) in Ω, (2)

with a heat source f(x), the heat capacity C(x) of the material, and boundary
conditions

− ν · q = ν · (λ(x)∇T (x, t)) = κ(x)(T (x, t) − Ta(x)) on ∂Ω, (3)

where ν denotes the outer normal vector, κ the heat transfer coefficient to the
environment and Ta is the ambient temperature. In studies of time-dependent
heating phenomena the time evolution of the temperature and thus the heat
flow is given by the solution of the boundary value problem (2)–(3) with the
initial value T0(x) = T (x, t = 0). In contrast, one is often only interested in
the stationary heat paths, e.g., in studying the heat flow from a device. Then it
suffices to solve the stationary heat equation

− ∇ · (λ(x)∇T (x, t)) = f(x) in Ω (4)

subject to the boundary conditions (3).

2 https://www.ebi.ac.uk/biomodels-main/.

https://www.ebi.ac.uk/biomodels-main/

426 T. Koprucki and K. Tabelow

4 Towards a conceptual data model for mathematical
models

The recognition of mathematical models as part of research data in MMS can be
established by the creation of a semantic digital corpus of mathematical models.
An information service for the registration and retrieval of mathematical models
is then necessary for the adoption of the approach by the MMS community and
for navigation, indexing and searching the model corpus.

The creation of such a corpus cannot just rely on a plain text description as
above, instead one has to develop a normal or canonical form. A similar nor-
malization is common in general mathematical texts where definitions, lemmas,
theorems, proofs, corollaries, propositions help to structure the content. Similar
to the approach of the semantical annotation of mathematical texts a normal
form for mathematical models needs to be represented in a modeling-oriented
markup-language, which can be based on LaTEX or MathML. In contrast to a
pure plain text description such a mark-up can be used to generate relations
between the entities of the formal description.

The encoded entities should contain the main characteristics of the model,
such as the equation, the domain, boundary conditions, material laws and con-
stitute a signature for the mathematical model. However, the complexity of the
task is far above simple one-to-one mappings as it is possible, e.g., for special
functions. A mathematical model is an abstract notion relying on a mathemat-
ical equation combined with semantic binding. Despite the fact that typically
multiple notations for the same equation exist, the task is further complicated
by the non-trivial question which entities are to be considered as atoms of the
description. For example, the definition of the heat flux in the heat transport
model can be itself considered as a model. The same applies to the material laws
such as the heat conductivity or the heat capacity where a constant or linear
dependence can be described by a single parameter. Finally, the replacement of
the boundary conditions of the heat transfer (3) on parts of the boundary by a
model for heat radiation (T 4-law) leads to further variants of the original model
with specific properties.

A data model for mathematical models must reflect a sufficient level of com-
plexity of the formal description to cover a large number of models while avoiding
unnecessary duplications in their encoding. It is a-priori not clear whether such
a description exists. The problem can be mitigated by appropriate relations
between different entries of the model corpus. In its final form an information
service for mathematical model should not only include models characterized by
partial differential equations, but also statistical or discrete models, as well as
systems of ordinary differential equations and many more.

Beside the plethora stemming from different specializations of a certain model
as introduced above two further dimensions of a data model are essential which
we introduce as math bindings and application bindings.

Math Bindings. The mathematical notation of a specific model is everything
but unique. Even for the non-dimensionalized heat equation with constant

Mathematical Models: A Research Data Category? 427

coefficients (λ(x) = const., C(x) = const.) there exists a whole diversity of pos-
sible mathematical notations such as a notation with Nabla calculus as above, a
representation in Cartesian coordinates, simplification to a Laplacian, a notation
with div- and grad- operators, weak formulations, or formulations as a gradient
flow.

It is common to classify linear, second order partial differential equations
as elliptic, parabolic or hyperbolic. For instance the transient heat equation (1)
is mathematically classified as a parabolic partial differential equation, whereas
the stationary heat flow problem (4) constitutes a partial differential equation
of elliptic type. The classification provides useful hints for their mathematical
treatment and for the characterization of their solutions. The mathematically
precise formulation of the model equations relates the assumptions on the data
of the problem, e.g., regularity of coefficient functions or smoothness of the
domain and its boundaries, to mathematical theory.

Furthermore, for the numerical solution of the model equations different com-
putational methods can be used. This introduces another aspect related to the
model description and the utilized software, which might also be regarded as a
math binding.

Application Bindings. The universality of mathematical models allows for trans-
ferring models from one application area to a different context. For example the
heat flow model above can be re-interpreted as model of diffusion processes of
particles. In this case the quantities get a new semantic meaning together with a
new notation: the temperature T is the particle density u, the heat conductivity
λ becomes the diffusion coefficient D.

A second aspect is the usage of models as building blocks to describe cou-
pled phenomena like in thermistor models, which couple thermal and electric
transport, or heat treatment of steel which couples heat transport with phase
transitions and elasticity. In these cases coefficient functions are defined by solu-
tions of supplemental differential equations, e.g., for thermistors the Joule heat
generated by a current flow enters the heat equation (2) as a source term f(x).

Both aspects are key features of mathematical modeling which are related
to the abstraction given by the mathematical language. They are the basis for
the strength of mathematical modeling and for the success of MMS as a third
discipline between theory and experiment.

Connection to Software and Data. The application of a mathematical model,
such as the heat transport model, to a specific technical problem requires a
mapping of mathematical objects such as coefficient functions to properties, or
more precisely material parameters, of the involved materials and boundaries.
In our example these are the heat conductivity λ(x), the heat transfer coefficient
κ(x) and the heat capacity C(x). The numerical solution of the heat transport
problem requires the approximation of the continuous problem (2) by discretiza-
tion methods. This involves a geometric description of the simulation domain
by suitable meshes. Typically, the simulation results in numerical values of the
temperature distribution T on the numerical mesh constituting the output of the

428 T. Koprucki and K. Tabelow

simulation software. Correspondingly, initial values and the material data are
the input for the software. Both, simulation results and input data, constitute
the numerical data part of the research data in MMS, see Fig. 1. Certain math-
ematical objects occurring in mathematical model have a semantical binding,
namely of T being the temperature, λ being the heat conductivity etc., but they
also link input and output of the utilized software and its interpretation.

5 Conclusions

We proposed to categorize mathematical models, scientific software and numeri-
cal data as the research data in MMS requiring suitable information services for
their management and handling. For numerical data and scientific software the
awareness of this fact in the MMS community is growing and suitable concepts
and information services are emerging. However, for the category of mathemat-
ical models, a corresponding definition and service is missing. We highlighted
the initial conceptual requirements for the definition of a suitable data model
and its difficulties on the basis of the heat transport model. A unified approach
to research data management that not only includes numerical data and scien-
tific software but also mathematical models can help to enhance future MMS
publications by making them more concise. A digital corpus of mathematical
models together with a suitable information service is necessary to reduce the
additional effort for the authors. On success its creation will be an important
contribution of applied math to the digital science agenda. Furthermore, it has
the potential to reduce today’s language barriers between disciplines and requires
an interdisciplinary effort.

Acknowledgments. The authors are grateful for many fruitful discussions with
W. Sperber who helped to shape their knowledge on the topic.

References

1. Deutsche Forschungsgemeinschaft : DFG Guidelines on the Handling of Research
Data. Adopted by the Senate of the DFG at 30 September 2015

2. European Commission: Guidelines on Open Access to Scientific Publications and
Research Data in Horizon 2020, Version 2.1, 15 February 2016

3. Brase, J.: DataCite - a global registration agency for research data. In: Fourth
International Conference on Cooperation and Promotion of Information Resources
in Science and Technology, COINFO 2009, pp. 257–261, Beijing (2009)

4. Razum, M., Neumann, J., Hahn, M.: RADAR - Ein Forschungsdaten-Repositorium
als Dienstleistung für die Wissenschaft. Zeitschrift für Bibliothekswesen und Bibli-
ographie 61, 18–27 (2014)

5. Kraft, A.: RADAR - a repository for long tail data. In: Proceedings of the IATUL
Conferences. Paper 1 (2015)

6. Greuel, G.-M., Sperber, W.: swMATH – an information service for mathematical
software. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 691–701.
Springer, Heidelberg (2014)

Mathematical Research Data
and Information Services

Wolfram Sperber(B)

zbMATH, FIZ Karlsruhe - Leibniz Institute for Information Infrastructure,
Franklinstr. 11, 10587 Berlin, Germany

wolfram@zentralblatt-math.org

Abstract. In the last centuries mathematical research results were pub-
lished on paper, as articles, reports, monographs, etc. The permanently
increasing number of mathematical publications required to develop pow-
erful information management services and tools for search and access to
mathematical knowledge. 1868, the ‘Jahrbuch über die Fortschritte der
Mathematik’ was founded to inform the mathematical community and
interested scientists on the progress of mathematical knowledge. Also
today, its successors, the bibliographic databases zbMATH and Math-
SciNet, provide an overview about recent developments in mathematics.
But the digital era has changed the situation dramatically. All kinds
of information are stored in digital form. Mathematical research results
are not longer limited to mathematical publications. New types and for-
mats of mathematical data and knowledge tackle new challenges also
to information services. The talk addresses the subject of Mathemati-
cal SoftWare (MathSW) in the context of Mathematical Research Data
(MathRD) and describes some challenges to create information services
for this data from a personal view.

Keywords: Mathematical research data · Mathematical software ·
Mathematical services · Mathematical models

1 Introduction: What is Mathematical Research Data?

Today, a lot of research results will be achieved with the help of computers and
SoftWare (SW). For these research results, reproduction, verification and reuse
involves also SW and data which are used. Up to now there is no satisfying
definition of Research Data (RD). But RD is gaining attention in the contempo-
rary discussion about the scientific infrastructure. The library of the University
Boston gives the following more or less tautological definition: ‘Research data is
data that is collected, observed, or created, for purposes of analysis to produce
original research results’ [1]. Of course, this definition could be easily adapted to
mathematics by adding the attribute ‘mathematical’ to it. But such a definition
is very general. RD is immediately connected with the research process and the
objects and concepts declared as RD are specific for each science. Therefore we
discuss some criteria for MathRD and then address some important classes of
MathRD. MathRD
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 429–433, 2016.
DOI: 10.1007/978-3-319-42432-3 54

430 W. Sperber

– covers distinct objects of mathematical research
– has an unambiguously defined mathematical content
– is necessary for the reproduction, verification and reuse of mathematical

research results

Some remarks:

– These criteria address especially also computational tools as MathSW.
– These properties are applicable to many heterogeneous kinds of resources

which are inside (e.g. mathematical models) or outside (e.g. MathSW) of
mathematical publications.

– Also data collections with a strong relatedness to real-world problems, e.g.
measurement data, which are used for mathematical research are MathRD.

Roughly, MathRD is all data which is used in mathematical research plus
tools for handling this data, MathRD in the narrower sense is data of mathe-
matical research provided in databases and services.

2 MathSW, Services, Data, and Models

2.1 Mathematical SoftWare (MathSW)

MathSW plays an exceptional role for the following reasons and is a first candidate
for a special MathRD class. MathSW is an own object of mathematical research
which is strongly connected with computer science. MathSW is written in a formal
language, not in a natural language. Another difference to other forms of mathe-
matical knowledge, especially publications, is its dynamic character resulting from
the dependencies from hard- and software, user interfaces, etc. The dynamic char-
acter of MathSW manifests itself in versions, bug-fixings, etc.

MathSW requires new concepts for maintaining and content analysis. The
source code is inappropriate to give human audience information about the con-
tent of MathSW. Typically, documentations or manuals independent from source
code and written in natural language accompany the source code. Documen-
tations and manuals describe the functionalities of MathSW, the algorithms
behind, the implementation, specifiy technical requirements, the user interface
etc. Documentations and manuals of MathSW must be updated when a new
version is available.

‘Regular’ publications on MathSW as journals articles or books refer to a
special – possibly outdated – version of MathSW.

Some mathematical journals, e.g., ‘ACM Transaction on Mathematical Soft-
ware’ (ACM TOMS) [2], the ‘Journal of Statistical Software’ (JSS) [3], or the
Journal ‘Mathematical Programming Computation’ (MPC) [4] which have their
focus on MathSW, have defined policies for evaluation which involve also the
software code (of the analyzed version). Typically, the evaluation requires an
independent implementation of MathSW and the data used as well as the repro-
duction of the achieved research results.

Mathematical Research Data and Information Services 431

2.2 Further Classes of MathRD

MathSW and data are closely linked. Data is the input for MathSW and its output.
The verification of research results achieved with MathSW requires data. Data
can be plain tables of numbers, e.g. measurements results, which are analyzed by
statistical methods, but also complex representations of mathematical objects as
functions, sequences, differential equations, matroids, groups or ideals, etc.

Data used must be available in a unique and standardized way. This involves
especially a formalization and semantic encoding of data. The development of
languages and formats for presenting data has led to specific data formats for
MathSW, see e.g. the Polymake format [5].

Benchmarks, test sets, are used for analyzing the performance of MathSW.
Collections of MathRD are often accessible via services. Services providing

MathSW can be regarded as a special class of MathSW. There exists a row
of popular mathematical services in the Web, e.g. the On-Line Encyclopedia
of Integer Sequences (OEIS) [6] or the NIST Digital Library of Mathematical
Functions (DLMF)[7]. Mathematical services can be databases of mathematical
information or MathSW, e.g. cloud computing, or a combination of both.

Mathematical Models (MathMs) are MathRD of their own interest and an
unique feature of mathematics. MathMs play a significant role in all phases of
mathematical research. They are the result of mathematical modeling processes
or mathematical transformations or the starting point for the use of MathSW.
Typically, MathMs are part of mathematical publications but a separate pre-
sentation would be useful, especially for applications of mathematics. The pre-
sentation of research models is challenging which show first prototypes of model
databases in other science because research models are often complex and up to
now there exist no standards for a semantic presentation. MathMs will be dis-
cussed in a separate talk in more detail.

Remarks:

– It is not the intention to describe the complete spectrum of MathRD. There
are other important classes of MathRD, e.g. algorithms, simulations, ency-
clopeadias and glossaries of mathematical terms and concepts, etc. The talk
should give some impulses for the future discussion of the topic.

– The borderline between different MathRD classes is fuzzy. Interactive math-
ematical services, e.g. OEIS which cover also calculations of data, contain
both data and tools. Nevertheless, a classification of MathRD and a seman-
tic linking between these data, e.g. between models and software would be
helpful for the retrieval. Our impetus for typing of MathRD was caused by
swMATH [8] activities. swMATH is an information service for MathSW, with
the focus on MathSW. But the publication-based approach for the identifica-
tion of MathSW doesn’t allow a secure identification of the type of resources.
So swMATH also contains entries describing benchmarks, services, models,
and other resources. A classification of the type would improve the retrieval
precision.

432 W. Sperber

– Different kinds of research data are in close connection. Context information
is very helpful for humans as well as automatic processing of information. As
an example we refer to the references to MathSW in publications which are
used by the swMATH service for identification and maintaining the service.

3 Information Services and Open Platforms for MathRD

Information services on MathRD are those which provide search for, navigation
in, and access to MathRD. Therefore qualified information, especially semantic
metadata, about the MathRD are necessary. MathRD services are under devel-
opment. Up to now, the existing services are often focused to special subjects
and are widely distributed.

We start with brief overview on information services on MathSW because the
majority of existing mathematical information services on MathRD are focused
on MathSW and the associated data as benchmarks etc.

The information in the Web on MathSW consists of sources which address
MathSW directly, especially Web sites, repositories, directories and also indirect
sources, publications which refer to MathSW, mathematical models which use
MathSW, or associated data to a software (benchmarks, etc.).

With the advent of MathSW some activities started to make MathSW search-
able and usable. The Netlib [9] is an early and well-known example of a MathSW
repository. Repositories are archives. They provide the source code and metadata
of MathSW. Often MathSW repositories are focused to individual mathematical
subjects developed in a special programming language. An excellent example for
this type of repositories is CRAN [10], the Comprehensive R Archive Network,
collecting statistical computing packages written in R. It contains currently more
than 8,300 packages. Classification schemes as the GAMS index [11] help the
users to find relevant MathSW. The providers define the policy of the reposi-
tory, that means specifying the mathematical subjects, criteria and standards for
the input (formats, metadata), check the consistency and completeness of the
input, administrating and handling the MathSW data, and provide the infor-
mation on the resources in a uniform manner. In general, repositories are well
accepted entry points with a standardized access and improve the visibility of
MathSW listed.

On the other hand repositories capture the existing MathSW only partially
and the standards for the description of resources are proprietary. Therefore, a lot
of MathSW developers run local Web sites for their MSW with special structure
and design. The intention of MSW directories, e.g. swMATH, is to provide a
fast and comprehensive search and navigation to MathSW resources in some or
all mathematical subjects in the Web. Directories are collections on MathSW
providing metainformation and links to further information on and the source
code of MathSW. Metadata of MathSW results from analyzing direct or indirect
resources on MathSW. swMATH is an example for a directory on MathSW which
analyzes indirectly MathSW resources by heuristic means (especially information
about MathSW in mathematical publications).

Mathematical Research Data and Information Services 433

The SymbolicData project [12] has the goal to provide an enhanced access
to MathRD for the Computer Algebra (CA) community. Therefore methods for
the content analysis of CA data have been developed basing on Semantic Web
concepts, especially Resource Description Framework (RDF) [13] and Ontology
Web Language (OWL) [14].

An future trend for enhanced informnation services in mathematics is the
development of open platforms for computational mathematics. Initiatives as
SAGEMATHCLOUD [15] or the recent EU project OpenDreamKit [16] aim for
to support collaborative work in computational mathematics. Virtual research
environments which integrate various MathSW and other MathRD allow a seam-
less use of different MathSW and data. This requires new concepts for the inte-
gration of different resources and formats.
But for many other kinds of MathRD, e.g. MathMs, specialized information
services are not existing.

4 Summary

The availability of MathRD plays a central role for the development of compu-
tational mathematical research and application of mathematics. MathRD is a
problem-oriented view on models, tools, associated data, etc. A differentiated
presentation of MathRD classes opens new perspectives for presentation and
dealing with MathRD. But up to now a holistic concept for a systematic and
comprehensive availability and access of MathRD is missing because MathRD is
very heterogeneous and multifacted. The mathematical community is challenged
to develop and realize concepts for a distributed system of information services
for MathRD which extend, enhance, integrate, and link the existing ones.

References

1. http://www.bu.edu/datamanagement/background/whatisdata/
2. ACM Transaction on Mathematical Software (ACM TOMS). http://toms.acm.org
3. Journal of Statistical Software (JSS). http://www.jstatsoft.org
4. Mathematical Programming Computation (MPC). http://mpc.zib.de
5. Polymake website. https://polymake.org
6. On-Line Encyclopedia of Integer Sequences (OEIS). https://oeis.org/
7. NIST Digital Library of Mathematical Functions (DLMF). http://dlmf.nist.gov/
8. swMATH database. http://www.swmath.org
9. Netlib Repository. http://www.netlib.org/

10. CRAN the Comprehensive R Archive Network. https://cran.r-project.org/
11. Guide to Available Mathematical Software (GAMS). https://www.gams.com/
12. SymbolicData project. http://wiki.symbolicdata.org/Main Page
13. Resource Description Framework (RDF). https://www.w3.org/RDF/
14. Ontology Web Language. https://www.w3.org/TR/owl2-overview/
15. SAGEMATHCLOUD. https://cloud.sagemath.com/
16. OpenDreamKit. http://opendreamkit.org/about/

http://www.bu.edu/datamanagement/background/whatisdata/
http://toms.acm.org
http://www.jstatsoft.org
http://mpc.zib.de
https://polymake.org
https://oeis.org/
http://dlmf.nist.gov/
http://www.swmath.org
http://www.netlib.org/
https://cran.r-project.org/
https://www.gams.com/
http://wiki.symbolicdata.org/Main_Page
https://www.w3.org/RDF/
https://www.w3.org/TR/owl2-overview/
https://cloud.sagemath.com/
http://opendreamkit.org/about/

SemDML: Towards a Semantic
Layer of a World Digital
Mathematical Library

Stam’s Identities Collection: A Case Study
for Math Knowledge Bases

Bruno Buchberger(B)

Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria

bruno.buchberger@risc.jku.at

http://www.risc.jku.at/people/buchberg/

Abstract. In the frame of the work of the Working Group “Global Digi-
tal Mathematical Library”, Jim Pitman proposed Aart Stam’s collection
of combinatorial identities as a benchmark for “digitizing” mathemati-
cal knowledge. This collection seems to be a challenge for “digitization”
because of its size (1300 pages in a .pdf file) and because of the fact
that, for the most part, it is hand-written. However, after an in-depth
analysis, it turns out that the real challenges are of mathematical and
logical nature. In this talk we discuss what digitization of such a piece
of mathematics means and report on various tools that may help in this
endeavor. The tools range from technical tools for typing formulae all
the way to sophisticated algebraic and reasoning algorithms. The exper-
iments for applying these tools to Stam’s collection are currently carried
out by two of the working groups at RISC.

1 The Problem

Aart Stam’s collection of combinatorial identities (Stam 2012) consists of hun-
dreds of identities that show how formal sums involving bionomial coefficients
can be simplified. The collection also explains how these identies can be proved
using various proof techniques.

In the context of the “Global Digital Math Library” project, Jim Pitman
(Pitman 2015) proposed to consider this collection as a benchmark for the “dig-
itization” of mathematical knowledge. We are faced with the challenge how the
extremely valuable knowledge contained in such a collection can be transformed
to a form in which the individual identities can be stored, accessed, and processed
by algorithmic tools over the web. One might think that the task should and
could be decomposed into a first step of (automated) translation of the hand-
written formulae into LaTEX or any other mathematical expression format and
a second step of processing the LaTEX formulae by sophisticated algorithms and
tools from computer algebra and automated mathematical reasoning. However,
given current technologies, we will show that this may not be the most reason-
able approach. In fact, we will see that it already can be questioned whether the
individual identities need to be stored or, alternatively, may be generated and /
or proved on demand!
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 437–442, 2016.
DOI: 10.1007/978-3-319-42432-3 55

438 B. Buchberger

2 The RISC Approach

For looking into the feasibility of formalizing Stam’s paper, we installed a seminar
at our RISC institute (my Theorema group and Peter Paule’s Symbolic Combi-
natorics group) for working together on the formalization of Stam’s paper. Our
team consists of:

– Theorema Group: Bruno Buchberger, Alexander Maletzky, Wolfgang Wind-
steiger.

– From the Symbolic Combinatorics Group: Peter Paule, Christoph Koutschan,
Clemens Raab, Silviu Radu, Carsten Schneider.

After in-depth discussion, we came up with the following decomposition of
work and distinction between the various aspects of the problem:

a. Translating the formulae into predicate logic form (or any variation of this
form), but still in the usual nice two-dimensional appearance used in math
papers and typing the formula in this format:
This can be easily done in Theorema. I did some timing experiments and my
estimate is that, for the approximately 1200 formulae in the section “Tables”
(the kernel of Stam’s paper) I would need approximately 60 h. After this, all
formulae would be available in correct logical form that could be translated to
any other logic form automatically. Also, after the formalization, hyperlinks
to all formulae would be available. Here is a view to the first few formulae in
Theorema notation (which could be changed according to the taste of users):

∀n ∈ N

From D(19): ⎛

⎝
∑

k=0,...,n

(
n
k

)⎞

⎠ == 2n (1)

From D(19):

n ≥ 1 ⇒
⎛

⎝

⎛

⎝
∑

k=0,...,n

(−1)k
(
n
k

)⎞

⎠ == 0

⎞

⎠ (2)

⎛

⎝

⎛

⎝
∑

k=0,...,n

(−1)k
(
x
k

)⎞

⎠ == (−1)n
(
x − 1
n

)⎞

⎠ (3)

The important thing is that, internally, the complete parse tree of the formu-
lae as a Mathematica nested expression is available. Thus, automated trans-
lation to any other formalization, to the input format of arbitrary reasoners,
and of course also to pretty-print LaTEX, would be possible. This is in clear
distinction to formulae presented, first, in LaTEX, which does not display the
logical structure of the formulae and from where automated translation to
formulae in logic is not possible.

Stam’s Identities Collection 439

For example, the Mathematica formula:

n∑

i=1

k2

has the internal representation

Sum[Power[k,2], List[i,1,n]]

which reveals the structure completely. Theorema formulae, internally are
also Mathematica nested expressions but with a structure that is closer to
some common forms of predicate logic.

b. Automated proofs of all formulae using the “old-fashioned” proof methods:
Some of these methods (simplification, induction, summation quantifier infer-
ence rules as described in (Buchberger 1980)), are already implemented in
Theorema. Some adjustments are necessary though. Stam lists approximately
15 “old-fashioned” proof methods. I estimate that we can implement all of
them in Theorema with an effort of about one person year. Most of them,
however, are superseded by the “modern” proof methodology, see remark
c., or already have some flavor of the “new-fashioned” proof methods, e.g.
Ergoychev’s method. See however also remark g.
– reduction to known formulae
– rearranging factorials
– Fibonacci
– Lucas
– poly of convolution type
– specialization in general summation formulae
– the complex argument
– induction over naturals
– recurrence
– finite differences
– Newton interpolation
– inverse relations (to do with convolution)
– inclusion - exclusion
– multisection of sums
– expansion of factor in the summand
– the beta integral
– generating functions
– partial fractions
– Egorychev’ s method.

c. Automated proofs of the formulae using “new-fashioned” proof methods, I call
them “Algebraic Simplification Methods”:
These methods proceed by translating the formulae into objects in suitable
algebraic (polynomial) domains and sophisticated new simplification tech-
niques based on new math results for these poly domains (e.g. the non-
commutative Gröbner bases methodology). This is prominent research activ-
ity of about 15 people in the world over the past 20 years. In this talk and

440 B. Buchberger

extended abstract, I cannot give a fair account of the individual contributions
of the key players in this research field. Ground was laid by Doron Zeilberger
(the “holonomic systems approach to special function identities”) together
with Herb Wilf, George Andrews and Marko Petkovsek. Today the methods
(with software implementation) by Peter Paule and his former PhD students
Manuel Kauers, Christoph Kouschan, Carsten Schneider et al., and by Fred-
eric Chyzak seem to be the most advanced. The literature on the field is
contained in the recent monograph (Kauers 2011).

After detailed inspection of all the formulae in Stam’s paper, we are pretty
sure that 95% or more of these formulae can be proved completely auto-
matically with the methods available in Paule’s group. After having typed
all formulae, the actual proof (verification) of all these identities, in typical
cases, is a matter of a few seconds per formula.

d. Formal, and maybe automated, proof of the correctness of the algebraic theory
(like Gröbner bases etc.) which is behind the methods in c.:
This is a major task, which goes far beyond Stam’s paper but would of
course be an essential and interesting part of a future comprehensive paper
on combinatorial identities. For the commutative case of Gröbner bases the-
ory, I am working on this with one of my PhD students, see (Maletzky 2016)
and, in fact, this theory is now completely formalized and formally proved.
This includes formalization and formal proof of my algorithm for computing
Gröbner bases within the same logic in which the formalization of the rest of
the theory is done. In fact, the execution of the algorithm on concrete input is
also done within the same logic. Many more theses etc. would be necessary for
formalizing and formally proving all current theory behind symbolic combi-
natorics. I consider research of this type as the essential goal of future formal
math. Thinking further ahead, the question arises if, with today’s mathemat-
ical knowledge and methodology of type c., it would at all make sense to type
all the formulae in Stam’s paper. My answer comes in the next items:

e. Automated generation of combinatorial identities:
One could write a “conjecture generator” that automatically generates all
(and more of) the formulae listed in Stam’s paper as conjectures and then
submits the conjectures to the methods in c., keeping those that are true. I
have ideas for this and did this already on a smaller scale for a different area.

f. Proof of identities on demand:
Alternatively, one just would not any more generate tables of identities but
would “wait for the user” who has a particular instance of any of the formulae
in the table and wants to get an automated verification by the methods in c.
Even more attractively, by the methods in c., one can obtain automatically a
simplified right-hand side if one provides a complicated left-hand side. This
is similar to the situation in symbolic integration: We do not any more store
integral tables in math systems like Mathematica, Maple etc. but, rather, one
uses Risch’ algorithm (Risch 1969) or extensions thereof for generating the
integrals on demand.

Stam’s Identities Collection 441

g. Providing “old-fashioned” proof methods in the presence of “modern” proof
methods:
My personal view on the question of “old-fashioned” proof methods versus
“modern” proof methods is as follows: The (“manual” or automated) proof
of formulae by some “older” proof techniques needs extra “handcrafting” for
each individual formula. Often (95% or more), proofs of these formulae can be
obtained, without extra hand-crafting, completely automatically by a “newer”
proof technique. However, still, there may be reasons why a mathematician
working in a particular area, as for example statistics or algorithm complexity,
may want to see proofs generated by newer and older methods. Also, he may
want to see “complete tables of identities” (like Stam’s collection) even if
they would not be necessary any more in the presence of newer methods. The
reason for this may be:

• Proofs generated by various different methods may give various different
insights about the formulae proved.

• The use of older or newer proof techniques and the desire of seeing
“tables” of formulae may depend on the particular application of the
identities in other fields of mathematics (Pitman 2015).

• The relation between “older” and “newer” proof techniques is, in fact, as
old as mathematics. However, so far, in the lifetime of a mathematician,
the proof techniques in his field did not really change. Logically, proceed-
ing from “older” to “newer” proof techniques is an important ingredient
of mathematics. We pointed this out, for example, in (Buchberger 2012).
In essence, the transition from “old” to “new” is the transition from the
“object” to the “meta” level of mathematics. Therefore, we advocate that
modern math proving systems have to provide means for proceeding from
the object to the meta level (e.g. level b. to d. and then to the application
of d. to c.). In Theorema, this is an important design principle and we
showed its feasibility in the work on formalizing Gröbner bases theory.

In the talk, I will report on the current state of the joint work of our team
on the various aspects above.

Acknowledgements. The work described in this talk is carried out in a team at RISC
consisting of B. Buchberger, C. Koutschan, A. Maletzky, P. Paule, C. Raab, S. Radu,
C. Schneider, and W. Windsteiger.

References

Buchberger, B., Lichtenberger, F.: Mathematics for Computer Scientists. Springer,
Heidelberg (1980). (in German)

Buchberger, B., Mathe is meta. In: Invited Talk at the Summer School “Summation,
Integration and Special Functions in Quantum Field Theory”, 9–13 July. RISC.
Johannes Kepler University, Castle of Hagenberg, Austria (2012)

Kauers, M., Paule, P.: The Concrete Tetrahedron. Texts and Monographs in Symbolic
Computation. Springer, Vienna (2011)

442 B. Buchberger

Maletzky, A.: Formalization of Gröbner Bases Theory in Theorema (working title).
Ph.D. thesis, July 2016, to appear

Pitman, J.: Personal Communcation to the Working Group “Global Digital Math
Library”, December 2015

Risch, R.H.: The problem of integration in finite terms. Trans. Am. Math. Soc. 139,
167–189 (1969)

Stam, A.: Binomial Identities with Old-fashioned Proofs, Manuscript, University of
Groningen (2012)

The GDML and EuKIM Projects:
Short Report on the Initiative

Bruno Buchberger(B)

Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria

bruno.buchberger@risc.jku.at

http://www.risc.jku.at/people/buchberg/

Abstract. We give a report on the EuKIM project, which was recently
submitted to the EU Horizon 2020 program, INFRAIA-02-2017 (Inte-
grating Activities for Starting Communities) topic, by a consortium of
twelve European research groups. The project aims at building up a
“Global Digital Math Library” (knowledge base) integrating and extend-
ing current efforts worldwide. A central part of the project is the design
and implementation of a software system that organizes open and one-
stop access to mathematical knowledge and to various tools for process-
ing mathematical knowledge. Recent progress in automated reasoning
is an important issue for achieving more sophisticated levels in this
endeavor.

In 2014 the International Mathematical Union (IMU) called for creating a
“Global Digital Mathematics Library” (GDML) (GDML 2016) – a comprehen-
sive, extensible, machine-processable knowledge base of mathematics providing
one-stop open access for researchers, teachers, students and all users of mathe-
matics in science, technology, and industry.

Existing digital libraries provide web access and search of entire papers, but
the fine-grain units of knowledge in mathematics are statements expressing con-
cepts, theorems, conjectures, problems, algorithms, proofs and more. A math-
ematical knowledge base must, therefore, allow users to store, retrieve, verify,
and even invent knowledge at the level of individual statements and theories
(collections of statements) from which new statements can be derived.

In the past twenty years, major advances in automating mathematical reason-
ing by using algorithmic intelligence in interaction with artificial intelligence have
been made with important contributions by European research groups. This was
a strong motivation for the recent decision of twelve European academic insti-
tutes to form a consortium for establishing the proposed digital knowledge base.
The name of this initiative is “European Knowledge Infrastructure for Math-
ematics” (EuKIM). Roughly, the EuKIM infrastructure should do for precise,
human AND machine processable mathematical knowledge what Wikipedia has
done for imprecise human-only processable general knowledge.

B. Buchberger—Speaker of the EuKIM Consortium and representative of the RISC
Institute.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 443–446, 2016.
DOI: 10.1007/978-3-319-42432-3 56

444 B. Buchberger

The first joint action of the EuKIM Consortium was the formulation and
submission (March 2016) of a long-term EU-Proposal “EuKIM” in the frame
of the EU-Program Horizon-2020-INFRAIA-02-2017. The EuKIM project has
three aspects:

– joined research on the topics relevant for creating GDML
– building up and extending a (European and global) network of research insti-

tutes that want and are able to contribute to the goal of building up a GDML
– designing and developing a software system that can serve as the one-stop

open-access interface to all existing mathematical knowledge bases and to all
existing processing tools for mathematical knowledge and, at the same time,
will provide new mathematical knowledge bases (with an emphasis on formal
knowledge bases) and new processing tools for mathematics (with an emphasis
on automated reasoning tools).

In this talk we focus on the software aspect of the EuKIM project. The
following, very rough, diagram (Fig. 1) gives an overview on the software to be
designed and implemented.

Fig. 1. Concept of the EuKIM infrastructure

We start from the side of the typical users (math researchers, teachers, stu-
dents, people who apply math in science, engineering, etc.). The users should
be able to input queries on mathematics in various levels of sophistication: On
the first level, simple (natural language) keywords and combinations of keywords

GDML and EuKIM 445

can represent the input, like for ordinary search engines. On the second level,
natural language sentences describing problems, questions, or conjectures in con-
text should be presentable in a style similar to what is possible in very recent
natural language question answering systems for everyday situations (e.g.: the
new version of Siri from Apple presented at Disrupt NY, May 9–11, 2016). The
third level (which is specific to mathematics) will include mathematical formulae
in unambiguous formalization in some logic language (some version of predicate
logic) as part of the input.

The EuKIM software should analyze the request and decide which exist-
ing web-accessible mathematical libraries and knowledge bases contain relevant
information on the questions or problem and should give this information back
in a good structure with a navigator through the items found. (This information
may include links to papers whose download may request paying a fee.)

However, in addition, the system should direct the user also to all (open-
access and commercial) tools for processing the knowledge found in relation to
the request submitted. This will include all the recent automated reasoning tools
that may help in finding logically equivalent, similar, or relevant mathematical
knowledge, in deciding or semi-deciding the validity of formulae, in finding the
logical dependence of formulae from each other, in using algorithms for process-
ing mathematical data etc. Important examples of such tools are the existing
mathematical algorithm libraries like Mathematica, Maple, etc., and the exist-
ing automated reasoning systems like HOL (Nipkow et al. 2015), Coq (Affeldt
and Kobayashi 2008), Isabelle (Nipkow et al. 2015), Theorema (Buchberger et al.
2016), etc. The system will also deliver complete mathematical theories in formal
representation as a starting point for original research, as far as such theories
are available on the web.

In addition to existing tools for processing mathematical knowledge and exist-
ing mathematical theories, the EuKIM software will also add more and more
mathematical theories and processing tools and will motivate research groups
(and also users) to contribute to theories and tools under the structural guid-
ance and tools-support of the system.

Over the years, the EuKIM software system should grow into an intelli-
gent dialogue machine for mathematics: Not by re-invention of all the existing
beautiful and powerful web-accessible mathematical paper collections, formulae
collections, algorithm collections, but by integration of all these tools into an
open-access (as much as possible) and one-stop portal and by the addition of
new tools of high mathematical, i.e. automated reasoning, intelligence.

References

Affeldt, R., Kobayashi, N.: A Coq library for verification of concurrent programs. Elec-
tron. Notes Theor. Comput. Sci. 199, 17–32 (2008). Proceedings of the Fourth Inter-
national Workshop on Logical Frameworks and Meta-Languages (LFM 2004)

Buchberger, B., Jebelean, T., Kutsia, T., Maletzky, A., Windsteiger, W.: Theorema 2.0:
computer-assisted natural-style mathematics. J. Formalized Reasoning 9(1), 149–185
(2016). Special Issue: Twenty Years of the QED Manifesto

446 B. Buchberger

The Global Digital Mathematics Library Working Group. International Math-
ematical Knowledge Trust Charter (2016). http://mathontheweb.org/gdml/
IMKT-Charter-final.pdf

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-
Order Logic. Springer, Heidelberg (2015)

http://mathontheweb.org/gdml/IMKT-Charter-final.pdf
http://mathontheweb.org/gdml/IMKT-Charter-final.pdf

Math-Net.Ru Video Library: Creating
a Collection of Scientific Talks

Dmitry Chebukov(B), Alexander Izaak, Olga Misyurina, and Yuri Pupyrev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
tche@mi.ras.ru

http://www.mi.ras.ru

Abstract. In this article we give a brief description of the method for
constructing a collection of conference talks applied in the Math-Net.Ru
project.

Keywords: Math-Net.Ru · Scientific conference talk · Video record

1 Introduction

The Math-Net.Ru project collects information about leading mathematical
events occurring in Russia, along with publications in Russian mathematics jour-
nals [1,2]. The events database [3] includes talks at scientific conferences, sem-
inars and public and educational lectures. For researchers (particularly young
researchers and students) it is hardly possible to attend all conferences and
seminars they may be interested in. Sometimes unpublished results given in
a specific talk may be required for current research. This is why a collection
of talks powered by a search engine and supplied with extended metadata is of
great importance to the scientific community. The most important thing is to
supply a video record of the talk if possible. The collection of scientific events
which occurred in the period from 1991 to 2016 and were indexed in the Math-
Net.Ru project counts about 12500 talks and 4500 of them are supplied with
video records.

2 Metadata Structure

The way of arranging the collection of conference talks is similar to the method
for constructing the publication database. The main metadata fields of a journal
article and a conference talk are shown in Table 1. Of course, both journal paper
and conference talk metadata include the same common fields, namely: authors
(or speakers) names, affiliations, title, abstract, keywords, references. Other fields
differ but have a similar meaning: the conference is specified by its title, date and
place, which are the analogues of the journal title and ISSN. The talk is specified
by its location, date and time, which correspond to the year, the volume, the
issue and the pages of a journal paper. The video record of the talk corresponds
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 447–450, 2016.
DOI: 10.1007/978-3-319-42432-3 57

448 D. Chebukov et al.

Table 1. Main metadata fields of a journal paper and a conference talk

Journal paper Conference talk

Journal title Conference title

ISSN Conference date and place

Founder, publisher Organizers

Editorial board Program Committee

Editorial staff Organizing Committee

Paper title Talk title

Author (“Persons” database) Speaker (“Persons” database)

Affiliation (“Organizations” database) Affiliation (“Organizations” database)

Paper abstract Talk abstract

Keywords Keywords

References References

Year, volume, issue, page numbers Date, time

Full-text (PDF file) Video record (MP4 file or YouTube link)

to a full-text PDF file. Thus we can apply the way developed for a journal
database to create a database of scientific events.

The basic element of the journal database is the database record for a paper.
A journal volume or issue is formed as a set of records for papers. The basic
element of the event database is a database record for a talk. The conference
program is formed as a set of talks. The authors of journal papers and the authors
of talks (speakers) are collected into a single database of persons and have their
own unique IDs. The talk web page and the paper web page have links to their
authors’ personal pages. A personal web page shows the list of papers indexed
in the journal database and the list of talks indexed in the events database.
There are cross-links between web pages of talks, publications and persons. Of
course, there are many systems like YouTube which offer video hosting. All of
them are designed to show a video supplied with a limited number of descrip-
tion fields. Several videos can be collected into a playlist. The Math-Net.Ru
VideoLibrary provides an expanded metadata structure aimed at being used
with scientific events and fully integrated with other Math-Net.Ru data. In
Math-Net.Ru a video record is just an option, a very important one.

Journal paper metadata is just a short description of the full text, as well as
conference talk metadata is a description of the talk. For end users metadata may
be helpful in finding the full data (PDF file or video record) but cannot replace
them. A conference website which has a list of conference talks without video
records looks like a journal website without full texts. This is why an important
part of our work consists in filming scientific talks, processing the videos and
post-production.

Math-Net.Ru Video Library 449

3 Processing Video

At the Steklov Institute of the Russian Academy of Sciences we use profes-
sional video equipment including Full HD Panasonic AG-AC160A video camera,
a Shure PGX14/PG30 wireless lapel microphone and a TH-650 DV tripod stand.
Filming without a lapel microphone results in a very low sound quality. The cam-
era has 2 audio input channels and we use both: one for the lapel microphone to
record the speaker’s voice and the second for external microphones installed in
the conference hall. The camera is equipped with a SDI output connected with
the video server to arrange live online streaming. The camera outputs Full HD
1080p video stream. The server is powered by Intel (R) Xeon (R) CPU-2450,
32 Gb RAM and equipped with a Blackmagic DeckLink SDI card. Adobe Flash
Media Live Encoder 3.2 is video capture software which enables the broadcast of
live video to a media server. Various software to set up a media server is available
on the market, but we use YouTube Live, which provides a stable, reliable and
free service to arrange live streaming.

Video is processed in Adobe Premier Pro CS6. We prepare MP4 video files
in three resolutions: 1080p (5500 Mbps), 720p (3500 Mpps) and 480p (900
Mbps). These resolutions allow viewing videos smoothly on mobile devices and
desktops. End users can switch between resolutions. Video files are stored on
the local server. Video is embedded to the conference web pages with the
help of JWPlayer [4]. Pseudo-streaming [5] is arranged by means of the H264
streaming module of LightHTTPD server [6]. Pseudo-streaming enables fast
rewind/forward options. Video files can be also loaded to YouTube and then
embedded in conference web pages.

Statistics is counted for every talk indexed in the database. We follow the
COUNTER project standards [7], so we do not count repeat views and bots
activity. Lists of videos that have been most viewed during a week, a month or
all the time are available. Table 2 shows the number of video records and the
number of views for some events which occurred in 2015.

Table 2. Number of video records and its views in 2015

Event Videos number Views number Average views

Scientific conferences 378 11561 30

Summer math. school for students 152 8814 60

Courses and lectures for students 123 10969 90

Steklov Institute scientific seminars 31 6420 210

Popular lectures 6 2630 440

Memorial events 6 525 88

The most viewed video records are lectures given at educational events,
summer schools. Video records of Steklov Institute scientific seminars are very

450 D. Chebukov et al.

popular. In general, for all events the number of views significantly exceeds the
number of visitors attending the event.

Thus in the Steklov Mathematical Institute we apply a full-cycle system to
film, broadcast online, edit and distribute scientific and educational talks and
lectures.

Acknowledgments. This work is supported by the Russian Foundation for Basic
Research (grant no. 16-07-01281-a).

References

1. Zhizhchenko, A.B., Izaak, A.D.: The information system Math-Net.Ru. application
of contemporary technologies in the scientific work of mathematicians. Russ. Math.
Surv. 62(5), 943–966 (2007)

2. Chebukov, D.E., Izaak, A.D., Misyurina, O.G., Pupyrev, Y.A., Zhizhchenko,
A.B.: Math-Net.Ru as a digital archive of the russian mathematical knowledge
from the XIX century to today. In: Carette, J., Aspinall, D., Lange, C., Sojka,
P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 344–348. Springer,
Heidelberg (2013)

3. http://www.mathnet.ru/eng/video
4. http://www.jwplayer.com
5. https://support.jwplayer.com/customer/portal/articles/1430518-pseudo-

streaming-in-flash
6. http://www.lighttpd.net
7. http://www.projectcounter.org

http://www.mathnet.ru/eng/video
http://www.jwplayer.com
https://support.jwplayer.com/customer/portal/articles/1430518-pseudo-streaming-in-flash
https://support.jwplayer.com/customer/portal/articles/1430518-pseudo-streaming-in-flash
http://www.lighttpd.net
http://www.projectcounter.org

The SMGloM Project and System: Towards
a Terminology and Ontology for Mathematics

Deyan Ginev1, Mihnea Iancu1, Constantin Jucovshi1, Andrea Kohlhase1,
Michael Kohlhase1, Akbar Oripov1, Jürgen Schefter2, Wolfram Sperber2(B),

Olaf Teschke2, and Tom Wiesing2

1 Computer Science, Jacobs University Bremen, Bremen, Germany
2 Zentralblatt Math, Berlin, Germany

wolfram@zentralblatt-math.org

http://kwarc.info

http://zbmath.org

Abstract. Mathematical vernacular – the everyday language we use to
communicate about mathematics is characterized by a special vocabu-
lary. If we want to support humans with mathematical documents, we
need to extract their semantics and for that we need a resource that
captures the terminological, linguistic, and ontological aspects of the
mathematical vocabulary. In the SMGloM project and system, we aim
to do just this. We present the glossary system prototype, the content
organization, and the envisioned community aspects.

1 Introduction

One of the challenging aspects of mathematical language is its special terminol-
ogy of technical terms that are defined in various mathematical documents. To
alleviate this, mathematicians use special glossaries, traditionally lists of terms in
a particular domain of knowledge with the definitions for those terms. Originally,
glossaries appeared as alphabetical lists of new/introduced terms with short def-
initions in the back of books to help readers understand the contents. Another
kind of resource that deals with terminology of mathematics are “dictionar-
ies”, which align mathematical terms in different languages by their meaning –
originally without giving a definition.

In the last decades the term “glossary” has also been applied to digi-
tal vocabularies (online encyclopedias, thesauri, dictionaries, etc.), which have
become important resources in knowledge-based systems. This is especially true
for vocabularies that have a (i) semantic aspect – i.e. some of the relations
between the terms and the concepts, objects, and models they denote are
made explicit and machine-actionable, they are also called “ontologies” – or
(ii) that are multilingual. Digital vocabularies can be hand-curated, or machine-
generated/collected; an example of the former is the WordNet lexical database
for English, [WN] an example of the latter is DBPedia, [DBP13] but they can
also be hybrid, e.g. the UWN/Menta project [YAGO] generates a multilingual
WordNet by automatically adding other languages by crawling Wikipedia.
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 451–457, 2016.
DOI: 10.1007/978-3-319-42432-3 58

452 D. Ginev et al.

We present the SMGloM project, which aims to create a semantic, multi-
lingual glossary for mathematics. This resource combines the characteristics of
dictionaries and glossaries, with those of ontologies, but restricts the content to
definitions and the relations to the lexical ones to keep the task manageable.
Here we give a high-level overview over the data model, the SMGloM system,
organizational and legal issues, possible applications, and the state of the effort
of seeding the glossary.

2 The SMGloM System

Data Model and Encoding. We build the data model of SMGloM on top
of the one of OMDoc/Mmt [Koh06,RK13], which provides views, statements,
and theories. In a nutshell – see [Koh14] for details, a glossary entry consists
of one symbol, its definition, and a set of verbalizations and notations.
A symbol is a formal identifier of a mathematical object/concept (i.e. a formal
object). The verbalizations relate it to lexical entries (identified by the stem of
the head), which we call glossary terms. The definitions could be written down
in a formal logic, but in the SMGloM, we write them down in mathematical ver-
nacular (common mathematical language) and encode them in STEX, a variant
of LATEX with semantic annotations [sTeX]). Figure 1 shows the concrete form of
a glossary entry. It consists of a module signature, which specifies the formal
part: here the module name graphconnected in mhmodsig environment and the
symbol connected via the \symi macro. The module signature also specifies the
conceptual dependency on paths in graphs by importing the grpahpath module
via \gimport.

\begin{mhmodsig}[creators=hwk]{graphconnected}
\gimport{graphpath}
\symi{connected}
\end{mhmodsig}
\begin{mhmodnl}[creators=hwk]{graphconnected}{en}
\begin{definition}
A non−empty \trefi[graph]{graph} G is said to be \defi{connected} if any two
of its \trefis[graph]{node} are linked by a \trefi[graphpath]{path} in G.

\end{definition}
\end{mhmodnl}
\begin{mhmodnl}[creators=hwk]{graphconnected}{de}
\begin{definition}
Ein \mtrefi[graph?graph]{Graph} G hei”st \defi[connected]{zusammenh”angend}
wenn je zwei seiner \mtrefi[graph?node]{Knoten} durch einen
\mtrefi[graphpath?path]{Weg} verbunden sind.

\end{definition}
\end{mhmodnl}

Fig. 1. A glossary entry for “connected” graphs encoded in STEX

The SMGloM Project and System: Towards a Terminology and Ontology 453

The informal – and language-specific – part is given in the language binding
given in the mhmodnl environment. In Fig. 1 this consists of a single definition,
where the definiendum is marked up via the \defi macro and the concepts of
a “graph”, a “node”, and a “path” are via the \trefi, \trefi (for plurals), and
\mtrefi (for multilinguality) macros. Their optional argument specifies the glos-
sary module they are imported from and – after the ? the symbol name. In the
German language binding we can appreciate the difference between the sym-
bol name connected and its verbalization – the word “zusammenängend” used
to denote it in German (this is the content of the \defi macro). We will use
the fact that symbols coordinate verbalizations in our multilingual glossary and
mathematical dictionary (see Sect. 3 below).

In general Glossary entries are grouped into a glossary module, which
is represented as n + 1 OMDoc/Mmt theories: the module signature and n
language bindings. Figure 2 shows graphconnected glossary module in the center
and its 1-neighborhood wrt. the imports relation.

Fig. 2. The module graph around “Connected Graph”

A Terminology of Mathematics. In fact, we have all the information we need
for a mathematical terminology:

(i) we can identify semantic fields – here mathematical concepts, objects, and
models. Oher terminologies like WordNet use “synsets”: sets of synonyms for
this,

(ii) we can link semantic fields to technical terms,
(iii) and we can relate concepts to each other via terminological relations like

synonymy, hyper/hyponymy, and meronymy.

The last point needs some elaboration. In SMGloM we identify certain symbols
as primary in their module, e.g. graph is primary in the grpahs module while
node and edge that are defined in the same module are not. The terminological
relations can be read off from the imports relation (see [Koh14] for details): For
instance, if t verbalizes a primary symbol s in module m, which imports a module
m′ with primary symbol s′, which has verbalization t′, then t′ is a hyponym

454 D. Ginev et al.

Fig. 3. Terminological relations in the glossary

of t. For instance, “tree” is a hyponym of “graph”. Figure 3 shows computed
terminological relations in SMGloM.

An Ontology of Mathematics. As Fig. 2 already suggests, the SMGloM data
induces not only a mathematical terminology, but an ontology of mathematics
as well. But note that again, the concepts of the ontology are not the glossary
modules themselves, but the mathematical concepts, objects, and models, i.e.
the symbols. But again, the taxonomic information can be gleaned from the
module graph structure: primary symbols become ontological concepts, whereas
non-primary ones become roles – detalis are mainly due to their linguistic
forms. For instance the definition of a “graph” as a pair 〈V,E〉 of “vertices”
V and “edges” E ⊆ V 2 leads to the concept graph with two functional roles
nodes: graph→set and vertices: graph→set. Together with the definition of the
adjective “connected” on graphs in Fig. 1, we get the sub-concept connected–
graph which inherits these two roles from graph.

Induced Terminological and Ontological Relations via Views. The
imports relation in the module graph gives rise to direct terminological and onto-
logical relations. But experienced mathematicians recognize more relations, for
instance, that the set E of “edges” of a “graph” G = 〈V,E form a “relation on”
V . We call this ability mathematical literacy in ??; they can be modeled by a
new form of edge in the module graph in OMDoc/Mmt: views. Epistemically,
these behave like the imports relation, but their truth-preserving nature has to
be proven by proof obligations. If we generalize the computation of terminolog-
ical and ontological relations to allow views, then we obtain induced relations
that are recognized – and utilized by mathematically literate users.

Organizing a Communal Resource. The ultimate cause of the SMGloM
project and system is to facilitate the establishment of a knowledge resource for
mathematics. We need to take appropriate organizational measures to support
this. We are currently establishing a wiki-like archive submission system for
glossary modules on MathHub [MH] and thinking of a quality assurance system
that is based on a community/karma-driven approval system. Openness and
semantic stability are ensured by a special licensing and publication regime: The
SMGloM license [SPL] protects symbols against non-conservative changes while
allowing derived works.

The SMGloM Project and System: Towards a Terminology and Ontology 455

3 Applications of the SMGloM

The main advantage of SMGloM over existing terminological resources for math-
ematics is that it makes important linguistic and ontological relations explicit
that these do not. This extension makes a large variety of applications feasible
without requiring full formalization, the cost of which would be prohibitive. We
will sketch some of the applications here.

Glossary of Mathematical Terms. An interface that presents SMGloM like
a traditional glossary, i.e. as a (sorted) list of glossary entries. In addition, the
semantic information in SMGloM can be used to adequately mark up references
to as well as relations with (e.g. “synonym of”, or “translation of”) other entries.
See Fig. 4 for the current interface. There can be sub-glossaries, for certain areas
of mathematics, for certain languages, etc.

Fig. 4. The glossary interface at https://mathhub.info/mh/glossary

Mathematical Dictionaries. The mathematical terminology is synchronized
by content symbols in SMGloM, therefore a mathematical dictionary is simply an
interface problem; see Fig. 5. Again, all terms are hyperlinked to their definitions.

Fig. 5. The dictionary interface at https://mathhub.info/mh/dictionary

Flexible Styling/Presentation. If we have formulae in content markup (i.e.
in content MathML e.g. in OMDoc or STEX), then we can adapt the rendering

https://mathhub.info/mh/glossary
https://mathhub.info/mh/dictionary

456 D. Ginev et al.

of formulae with symbols that having multiple notations in SMGloM to the user’s
preferences. Then, each user can state their notational preferences (in terms of
SMGloM notation definitions), and the formulae in SMGloM will be rendered
using these, adapting to the preferences of the reader.

Notation-Based-Parsing. The notation definitions from SMGloM can be seen
as user-contributed grammar rules. Therefore, they can be used for parsing for-
mulae from presentation to content markup [Tol16]. This will lead to a context-
sensitive formula parser, where “context” is defined by the SMGloM glossary
modules currently in focus – here the data model in term of OMDoc/Mmt
theories directly contributes to the applications of the SMGloM.

More Semantic Search. As SMGloM declares symbols together with notations,
definitions and verbalizations it provides an unique opportunity for applying
semantic search services based on it in a variety of settings:

1. notation-based parsing in the input phase could make formula entry into
an interactive disambiguation process. For instance, a user enters eˆ?x,
and the system ask her: “with e, do you mean Euler’s number?”, and also:
“Is e?x a power operation?”. The answers will then help refine the search.

2. Alternatively, search could use disambiguation as a facet in the search to
refine the results or for clustering the results.

3. Furthermore, the SMGloM information could be used for query expansion
(both visible or automatic): if the user searches for e, then the query could
be expanded e.g. by (i) the string Euler’s Number (there is an interesting
question about what to do with the language dependency here) and even
(ii) the formula lim?n→∞(1 + 1

?n)?n (?n is a query variable).

Verbalization-Based Translation. One of the most tedious parts of translat-
ing mathematical documents is the correct use of technical terms. A semanti-
cally preloaded text (i.e. one that has all formulae in content markup and many
semantic objects explicitly marked up) can be term-translated automatically
using the translation relation induced by SMGloM. Of course, synonyms must
be resolved consistently (there has to be an interface for this). This (and related
semantic tasks) are for domain specialists. The intervening text can be done by
lesser trained individuals (or even a variant of google translate). This will make
translations much cheaper and will make math available in more languages.

Wikifiers like NNexus. Wikifiers are systems that given a glossary of terms
create definitional links in documents. A math-specific example is the NNexus
system [GC14], it can already use the SMGloM glossary.

4 Conclusion and State

We have described a project to establish a public, semantic, and multilingual
termbase for mathematics. We have a first prototype that supports authoring of
glossary entries and glossary management at https://mathhub.info/smglom. The

https://mathhub.info/smglom

The SMGloM Project and System: Towards a Terminology and Ontology 457

SMGloM system partially automates editing, management, refactoring, quality
control, etc.; for more information see https://mathhub.info/help/main.html.

To make public contributions to SMGloM feasible, it must already contain a
nucleus of (basic) entries that can be referenced in other glossary components.
The SMGloM project is currently working towards a basic inventory of glos-
sary entries, and has almost arrived at the first milestone of 700 entries – most
with two language bindings (English and German), some with 6 (+ Romanian,
Chinese, Turkish, and Bulgarian). The current glossary contains

(i) ca. 300 glossary entries from elementary mathematics, to provide a basis for
further development

(ii) ca. 400 are special concepts from number theory to explore the suitability
of the SMGloM for more advanced areas of mathematics.

(iii) ca. 30 views that generate induced terminological and ontological relations.

Acknowledgements. Work on the SMGloM system has been partially supported by
the Leibniz association under grant SAW-2012-FIZ KA-2 and the German Research
Foundation (DFG) under grant KO 2428/13-1.

References

[DBP13] DBpedia. 17 September 2013. http://dbpedia.org. Acccessed 21 Feb 2014
[GC14] Ginev, D., Corneli, J.: NNexus reloaded. In: Watt, S.M., Davenport, J.H.,

Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp.
423–426. Springer, Heidelberg (2014). http://arXiv.org/abs/1404.6548

[Koh06] Kohlhase, M.: Communication with and between mathematical software
systems. In: Kohlhase, M. (ed.) OMDoc – An Open Markup Format for
Mathematical Documents [version 1.2]. LNCS (LNAI), vol. 4180, pp. 75–79.
Springer, Heidelberg (2006). http://omdoc.org/pubs/omdoc1.2.pdf

[Koh14] Kohlhase, M.: A data model and encoding for a semantic, multilingual ter-
minology of mathematics. In: Watt, S.M., Davenport, J.H., Sexton, A.P.,
Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 169–183.
Springer, Heidelberg (2014). http://kwarc.info/kohlhase/papers/cicm14-
smglom.pdf

[MH] MathHub.info: Active Mathematics. http://mathhub.info. Accessed 28 Jan
2014

[RK13] Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230, 1–54
(2013). http://kwarc.info/frabe/Research/mmt.pdf

[SPL] Kohlhase, M.: The SMGloM Public License (SPL) version 0.1. https://
mathhub.info/help/spl0.1.html

[sTeX] KWARC, sTeX. https://github.com/KWARC/sTeX. Accessed 15 May 2015
[Tol16] Toloaca, I.: MathSemantier - a notation-based semantication study. B.Sc.

Thesis, Jacobs University Bremen (2016)
[Wat+14] Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.):

CICM 2014. LNCS, vol. 8543. Springer, Heidelberg (2014). ISBN: 978-3-
319-08433-6

[WN] WordNet: a lexical database for English. https://wordnet.princeton.edu/.
Accessed 26 May 2013

[YAGO] Towards a Universal Multilingual Wordnet. http://www.mpi-inf.mpg.de/
yago-naga/uwn/. Accessed 26 May 2013

https://mathhub.info/help/main.html
http://dbpedia.org
http://arXiv.org/abs/1404.6548
http://omdoc.org/pubs/omdoc1.2.pdf
http://kwarc.info/kohlhase/papers/cicm14-smglom.pdf
http://kwarc.info/kohlhase/papers/cicm14-smglom.pdf
http://mathhub.info
http://kwarc.info/frabe/Research/mmt.pdf
https://mathhub.info/help/spl0.1.html
https://mathhub.info/help/spl0.1.html
https://github.com/KWARC/sTeX
https://wordnet.princeton.edu/
http://www.mpi-inf.mpg.de/yago-naga/uwn/
http://www.mpi-inf.mpg.de/yago-naga/uwn/

The Effort to Realize a Global Digital
Mathematics Library

Patrick Ion(B)

AMS, University of Michigan, Ann Arbor, MI, USA
ion@ams.org pion@umich.edu

http://www-personal.umich.edu/∼pion/

Abstract. A decade after a resolution in 2006 by the International
Mathematical Union endorsing the notion of a global digital mathemat-
ics library, and following a thorough report on possibilities written under
the auspices of the US National Research Council in 2012, an 8-person
Working Group, set up in 2014, is still working toward implementations
of some of the ideas. There are difficulties with mobilizing the mathe-
matical community toward building worthwhile infrastructure in times
that are both perilous and well off, depending on where you stand. But
progress continues.

1 Introduction and History

Vignettes from history help to emphasize the way that members of the mathe-
matics community have long wished access to more of the world’s mathematics
to have a better understanding of it. The name of Giuseppe Peano (1858–1932) is
universally well known among students of mathematics as the author of an axiom
system for the natural numbers. That this remarkably inventive and productive
Italian mathematician, who has recently been the subject of renewed historical
interest [Dolecki&Greco:2016,Dolecki&Greco:2010a,Dolecki&Greco:2010b] also
was a leading light of the push for the international auxiliary language Interlin-
gua is less familiar [Peano:1903]. This can be seen in the mathematical context
as feeding into the efforts at pasigraphy, a writing system where each symbol
represents a concept. Indeed it was in connection with such efforts at represent-
ing mathematics by well-designed formulas that Peano developed his natural
number axioms [Peano:1894].

At the ICM in 1897 there was a session under the chairmanship of Peano on
how to encode mathematical knowledge. It remains striking to me that Ernst
Schröder, the algebraist and logician from Karlsruhe, delivered a plenary address
“On pasigraphy, its current status and the pasigraphic movement in Italy”
[Schröder:1897]. By the last phrase he meant the work of Peano and his fol-
lowers. Schröder disagreed with the distinguished chairman and suggested that
the new system he had developed with a small number of basic symbols, some-
what in the vein that had been worked on by the American C. S. Peirce, was
what was wanted. He began his remarks with the ringing statement that if there

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 458–466, 2016.
DOI: 10.1007/978-3-319-42432-3 59

GDML Efforts 459

were any topic that really belonged at an International Conference of Mathe-
maticians, then it was pasigraphy. He was sure that pasigraphy would take its
rightful place on the agenda of all succeeding such conferences.1

At the 1928 ICM in Bologna there was active discussion of how to pro-
vide comprehensive bibliographic resources for mathematics to everyone, espe-
cially in regard to publication of the comprehensive catalogue of mathematical
work prepared by the German Georg Valentin (which was later bombed out
of existence at Unter den Linden in Berlin in February 1942) [Valentin:1900,
GöbelSperber:2010]. From 1931 on there were publications such as Zentral-
blatt [ZM], Mathematical Reviews [MR] and Referativny Zhurnal [RZ] index-
ing and abstracting the mathematical literature, but full text could only be
had in the traditional way. In 2006 the IMU saw the possibility of realizing the
imagined Global Digital Mathematical Library, or World Digital Mathematical
Library, which had been discussed again [BallBorwein:2005,IMU/CEIC:2006,
Jackson:2003], and put out a resolution to this effect [IMU:2006]. But that
was all.

The adjective ‘digital’ is important here as it is the new digital technologies
that allow better access to the resources of mathematical knowledge than ever
before. Surely in 16th century Europe, or even earlier in 14th century Korea,
when printing from metal type was a brand-new technology, the possibilities
of new forms of books for the recording and dissemination of knowledge were
welcomed by some. That they were right we all now know. That sort of oppor-
tunity is open to us again now. Of course, printing revolutionized in other ways:
in Europe printing of indulgences was a labor-saving device for the church that
may have changed religion, and printed money changed economics in China.

The adjective ‘global’ is important too. We all think the truths of our subject
to be global, independent of location in this world.2,3 Think of the IMU’s mem-
bership from over 120 countries. A GDML can have a global reach as a result of
digital technology, particularly the internet. It should be a shared global good.
We are looking for global support for the idea and expect that there can be
contributions to a GDML from all over the world. The benefits will be felt all
over the world.

1 Zur Diskussion auf einem internationalen Mathematiker-Kongresse dürfte sich kaum
ein Thema in höherem Maße empfehlen als das der Pasigraphie, und ich bin berzeugt,
daß der Gegenstand von der Tagesordnung künftiger Kongresse nicht mehr ver-
schwinden wird.

Ist doch das Ziel dieser neuen Disziplin kein geringeres als: die endgültige Fes-
tlegung einer wissenschaftlichen Universal-Sprache, die völlig frei von nationalen
Eigentümlichkeiten und bestimmt ist, durch ihre Konstruktion die Grundlage zur
wahren, nämlich exakten Philosophie zu liefern!

2 Naturally there are ethnomathematical considerations to be discovered, and dif-
ferent developments in mathematics to be related to sociology. Also Marcus and
Watt point out that there are linguistic differences even in what is an equation
[MarcusWatt:2012].

3 See also a discussion by Gray of natural languages used for the expression of math-
ematical ideas [Gray:2002].

460 P. Ion

In 2010, IMU President Ingrid Daubechies and Peter Olver, chair of the
IMU’s Committee on Electronic Information and Communication (CEIC) took
the initiative to work toward a WDML or GDML through consultations with a
broad-based expert group [WDML Blog]. This culminated in a comprehensive
report from a Workshop at the US National Academy of Sciences [NAS:2012]. At
the 2014 ICM a small working group of 8 persons was given the task of working
toward realizing some of the dreams [Seoul CEIC Panels,Seoul DML Panel]. The
resources need to be found to begin building the GDML. It will not be an easy
task [Bouche:2014,PitmanLynch:2014].

2 Challenges

One can distinguish four facets of the GDML initiative:

– The mathematical community
– The mathematical literature
– Mathematical knowledge management
– Management of the enterprise

They are all discussed in the NRC report [NRC/USA:2014]. Some parts of
the GDML require work that is understood, or already done in part, but that
just takes much time and effort to complete. Other parts require serious inves-
tigation and prototyping which will take time, although the general ideas and
development paths may seem clear. But it turns out that each facet, though
many would think their meanings pretty clear, leads a number of people to hold
differences of opinion as to how each should be understood. It’s in those details
that the sticking points lie in realizing the public good we crave. Nonetheless,
the WG and its successors will keep moving forward, probably with progress
showing stick-slip characteristics that are hard to describe.

3 Goals

The goals of the GDML effort are still of considerable generality. To achieve
them is going to be a longer process. Setting up any new organization for the
public good which is to be sustained over a long period is a slow business. But
we need to do it since the openness of mathematical knowledge to all who need
it is very important.

To this end the GDML WG is founding an International Mathematical
Knowledge Trust [IMKT], which it is hoped will function eventually as an orga-
nizing center for the knowledge base that will be the GDML. Setting out a
charter for this proposed trust, and getting it endorsed by the IMU has been
one of the tasks of the WG. It has proposed the present goals:

GDML Efforts 461

The purpose of the International Mathematical Knowledge Trust,
IMKT, is to establish a mathematical knowledge commons — a pub-
lic resource consisting of mathematical knowledge represented in non-
proprietary, machine-readable formats and an international network of
knowledge providers, information systems, and semantic services based
on it, that is, a global digital mathematical library.

The mission of the IMKT is to construct a mathematical knowledge com-
mons as a global public good, an effective knowledge base of open mathematical
knowledge data, encompassing the world’s mathematics through collaborations
deploying both present and future technology, and to foster a supporting com-
munity. In particular, the IMKT should work to

– enhance accessibility of all mathematical knowledge world-wide, present, past
and future,

– serve people in research mathematics, education, and applications of mathe-
matics,

– promote the creation of open standards and best practices for management of
mathematical data, and encourage the use of such standards,

– facilitate the development of open source tools and open mathematical data
repositories,

– facilitate creation, dissemination and open archiving of semantically rich forms
of mathematical data,

– encourage the collaborative development of open services based on represen-
tations of mathematical knowledge.

The mathematical knowledge commons resulting from these efforts of the
IMKT and affiliated organizations should be a truly global resource, which
matches the highest possible standards of independence, of reliability, and of
data protection.

4 Achievements

Aside from working toward the problems of global existence and governance of
an IMKT and associated international efforts, the GDML WG has been paying
attention to building wider support for a GDML in the mathematical commu-
nity and to planning and beginning projects that start constructing tools and
structures to underpin a GDML. An activity of the support-building type was
a Special Session “Mathematical Information in the Digital Age of Science”
at the Joint Mathematics Meetings in Seattle Jan. 6–9, 2016 with 18 speak-
ers over 11 h [JMM:2016]. This is a large gathering with this year about 6,300
registrants. These meetings are organized by the Mathematical Association of
America (MAA) and the American Mathematical Society (AMS), and host addi-
tional sessions for the Association for Symbolic Logic (ASL), the Association
for Women in Mathematics (AWM), the National Association for Mathemati-
cians (NAM), and the Society for Industrial and Applied Mathematics (SIAM).

462 P. Ion

It was an excellent venue for speaking to the mathematical community on mat-
ters related to GDML efforts.

The materials collection efforts for a digital library, such as a world-wide
extension of what EuDML did [EuDML], and building on their experience is
being considered, but as yet have not been proposed to any funding agency. A
European consortium has, however, begun the process of applying for significant
funds under a European Union program.

The GDML WG helped organize a workshop to start on on of the infrastruc-
ture developments with long-range promise for a GDML. The Semantic Rep-
resentation of Mathematical Knowledge Workshop was held 3–5 February 2016
at the Fields Institute, located at the University of Toronto, Toronto, ON CA
[Fields:2016]. The support of a grant from the Alfred P. Sloan Foundation, staff
and resources provided by the Wolfram Foundation, and staff and resources
for local arrangements provided by the Fields Institute made possible a very
successful workshop. The workshop was organized by the Wolfram Foundation,
represented by Michael Trott and Eric Weisstein, by the Fields Institute and its
Director Ian Hambleton, and by the GDML WG.

To paraphrase the application for support to the Alfred P. Sloan Founda-
tion, the goals of the workshop were to pool the knowledge and experience of
a group of experts to agree on design principles leading the way toward imple-
mentation of a semantic capture language applicable to all mathematics. Such a
semantic encoding is expected to help realize one of the goals of a Global Digital
Mathematical Library.

Through a program of talks and discussions the workshop was to work toward
consensuses enabling the creation of a semantic language both for mathematics
as a whole and for its sub-disciplines. The workshop was intended to produce
(1) a white paper outlining the structure of the proposed semantic language,
(2) a concrete plan for creating an explicit semantic language that will be used
to mark up results in a specific area of mathematics, and (3) internet publications
for all to see.

A great number of opinions were offered and a good deal of intense discussion
ensued amongst the 40 participants of the workshop. Part 3 of the intentions
is well covered by materials on the Fields Institute and Wolfram Foundation
websites. However, production of a white paper and of definite plans proved
difficult. Though discussions were started it turned out there was more to learn
than expected. The first difficulty was the fact that there were several meanings
of the word semantics in use, which could be seen as contradictory and were
often confusing to one participant or another. The resulting short white paper
is online, and linked to a wiki for further discussion [SRMwiki].

After term distinctions there are, for instance, possibilities for different views
of the literature of mathematical interest, different levels of formalization, dif-
ferent kinds of semantically explicit mathematics, different audiences for math-
ematical communications, and even different levels of readability required.

When it comes to semantic capture language design there are language design
issues, use cases to list and satisfy, issues of organizing design when a large

GDML Efforts 463

vocabulary is presumably involved, and the whole matter of the relationship of
semantic levels to formal proofs which can be machine checked.

There were some ideas for possible projects exploring the semantic capture
aspect of recording the mathematical literature, whether old or newly created.
One can try and accord various mechanized reasoning styles with each other, and
tie them to more conventional computer algebra systems. There is lots of scope
for exploring particular subjects and trying to capture, to various degrees, the
special peculiarities of, say, algebra versus analysis, or geometry and probability.

One particularly attractive opportunity is the area of orthogonal polynomi-
als and special functions (OPSF). This is a classical subject which is still being
explored and has fascinating connections with other parts of mathematics. How-
ever, the basics of the subject are generally thought to be well understood. The
fact that current computer algebra systems do not always agree on definitions,
and so can produce strongly contrasting results to a fairly simple calculation,
shows this is not so. The need for a concordance of special functions seems clear,
and will be a good test case for proposed techniques of capturing mathematical
semantics.

Another useful beginning will be to take a subject area and to try and capture
all the significant theorems in it with a full set of definitions. A good prototype
area might be geometry, since geometrical thinking can be contrasted with alge-
braic although much of classical geometry can be done by algebraic calculation;
and there are sometimes insights to be gained into algebra from a geometri-
cal view.

This leads on naturally to the matter of ontology creation. In the medical and
life sciences use of mechanizable ontologies has proved useful. A lot of resources
and attention have gone into the Gene Ontology, for instance. However, the use
of the term ontology is also one fraught with possibilities for incomprehension,
it seems. Indeed opposition to the idea that an ontology could be useful can
provoke the sort of heat that political opinions are more known for. Nonetheless
mathematics may be able to benefit from the practical experience and develop-
ments in other fields, where researchers have developed software that, mutatis
mutandis could be useful for mathematics.

5 Prognosis

I expect to see the IMKT founded, and that it will work toward spreading the
ideas of cooperation to achieve a GDML. We should see other regional mathe-
matical Knowledge Trusts formed. There will come a wider awareness of what
well-organized mathematical knowledge resources can bring both rich and poor
communities. With better communication about how our subject’s knowledge
can be managed there will be a chance that it will not be lost to most people, as
could happen for plausible commercial reasons. If the mathematical community
can organize itself a little better, it can hope to avoid duplication of effort, and
to achieve more. To a perhaps surprising extent many of the problems in imple-
menting a GDML are social ones, though there are intellectual problems enough
in trying to clarify what mathematical knowledge is and to make machinery to
help us with it.

464 P. Ion

References

[BallBorwein:2005] Ball, J., Borwein, J., ACCESS: Who gets what access, when
and how? In: MSRI Digitizing Mathematics Workshop (2005).
http://www.mathunion.org/fileadmin/CEIC/Publications/
MSRI.pdf

[Bouche:2014] Bouche, T.: The digital mathematics library as of 2014. Not.
Am. Math. Soc. 61(2014), 1085–1088 (2014)

[Dolecki&Greco:2010a] Dolecki, S., Greco, G.H.: Tangency vis-à-vis differentiability by
Peano, Severi and Guareschi. J. Convex Anal. (2010). http://
arXiv.org/abs/1003.1332

[Dolecki&Greco:2010b] Dolecki, S., Greco, G.H.: Towards historical roots of necessary
conditions of optimality. Regula of Peano. http://arxiv.org/
abs/1002.45811002.4581

[Dolecki&Greco:2016] Dolecki, S., Greco, G.H.: The astonishing oblivion of Peano’s
mathematical legacy (I). Youthful achievements, foundations,
arithmetic, vector spaces, (13 pages). http://dolecki.perso.
math.cnrs.fr/dolecki greco pro Peano I.pdf (Submitted).
Dolecki, S., Greco, G.H.: The astonishing oblivion of Peano’s
mathematical legacy (II). Analysis and geometry, (18 pages).
http://dolecki.perso.math.cnrs.fr/dolecki greco pro Peano II.
pdf (Submitted). Dolecki, S., Greco, G.H.: The astonishing
oblivion of Peano’s mathematical legacy (III). Measure theory
and topology, (15 pages). http://dolecki.perso.math.cnrs.fr/
dolecki greco pro Peano III.pdf (Submitted)

[EuDML] EuDML - The European Digital Mathematics Library. https://
eudml.org/

[Fields:2016] Semantic Representation of Mathematical Knowledge Work-
shop Videos. http://www.fields.utoronto.ca/video-archive/
event/2053, http://www.fields.utoronto.ca/activities/
workshops/semantic-representation-mathematical-knowledge-
workshop

[GöbelSperber:2010] Göbel, S., Sperber, W.: Bibliographische Klassifikationen in
der Mathematik : Werkzeuge der inhaltlichen Erschlieung
und für das Retrieval. Forum der Berliner Mathematischen
Gesellschaft. 12, 77–99 (2010)

[Gray:2002] Gray, J.J.: Languages for mathematics and the language of
mathematics in a world of nations. In: Parshall, K.H., Rice,
A.C. (eds.) Mathematics Unbound: The Evolution of an Inter-
national Mathematical Research, pp. 201–228. Providence,
Rhode Island, American Mathematical Society and London
Mathematical Society, London (2002)

[IMKT] International Mathematical Knowledge Trust. http://imkt.
org/

[IMU:2006] Digital Mathematics Library: A Vision for the Future, Inter-
national Mathematical Union (2006). http://www.mathunion.
org/fileadmin/CEIC/Publications/dml vision.pdf

[IMU/CEIC:2006] Some Best Practices for Retrodigization, International Mathe-
matical Union (2006). http://www.mathunion.org/fileadmin/
CEIC/Publications/retro bestpractices.pdf

http://www.mathunion.org/fileadmin/CEIC/Publications/MSRI.pdf
http://www.mathunion.org/fileadmin/CEIC/Publications/MSRI.pdf
http://arXiv.org/abs/1003.1332
http://arXiv.org/abs/1003.1332
http://arxiv.org/abs/1002.4581 1002.4581
http://arxiv.org/abs/1002.4581 1002.4581
http://dolecki.perso.math.cnrs.fr/dolecki_greco_pro_Peano_I.pdf
http://dolecki.perso.math.cnrs.fr/dolecki_greco_pro_Peano_I.pdf
http://dolecki.perso.math.cnrs.fr/dolecki_greco_pro_Peano_II.pdf
http://dolecki.perso.math.cnrs.fr/dolecki_greco_pro_Peano_II.pdf
http://dolecki.perso.math.cnrs.fr/dolecki_greco_pro_Peano_III.pdf
http://dolecki.perso.math.cnrs.fr/dolecki_greco_pro_Peano_III.pdf
https://eudml.org/
https://eudml.org/
http://www.fields.utoronto.ca/video-archive/event/2053
http://www.fields.utoronto.ca/video-archive/event/2053
http://www.fields.utoronto.ca/activities/workshops/semantic-representation-mathematical-knowledge-workshop
http://www.fields.utoronto.ca/activities/workshops/semantic-representation-mathematical-knowledge-workshop
http://www.fields.utoronto.ca/activities/workshops/semantic-representation-mathematical-knowledge-workshop
http://imkt.org/
http://imkt.org/
http://www.mathunion.org/fileadmin/CEIC/Publications/dml_vision.pdf
http://www.mathunion.org/fileadmin/CEIC/Publications/dml_vision.pdf
http://www.mathunion.org/fileadmin/CEIC/Publications/retro_bestpractices.pdf
http://www.mathunion.org/fileadmin/CEIC/Publications/retro_bestpractices.pdf

GDML Efforts 465

[Jackson:2003] Jackson, A.: The digital mathematics library. Not. Am. Math.
Soc. 50, 918–923 (2003)

[JMM:2016] AMS Special Session on Mathematical Information in
the Digital Age of Science, 6-7 January 2016. http://
jointmathematicsmeetings.org/meetings/national/jmm2016/
2181 program ss65.html

[MarcusWatt:2012] Marcus, S., Watt, S.M.: What is an equation? In: 2012 Pro-
ceedings of the 14th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, SYNASC
2012, pp. 23–29. IEEE Computer Society, Washington, DC,
USA (2012). ISBN: 978-0-7695-4934-7, doi:10.1109/SYNASC.
2012.79, http://dl.acm.org/citation.cfm?id=2477708

[MR] Mathematical Reviews: MathSciNet. http://www.ams.org/
mathscinet/

[NAS:2012] Symposium Wiki on The Future World Heritage Digi-
tal Mathematics Library. National Academy of Sciences
(2012). http://ada00.math.uni-bielefeld.de/mediawiki-1.18.1/
index.php/Main Page

[NRC/USA:2014] National Research Council. Developing a 21st Century Global
Library for Mathematics Research. The National Academies
Press (2014)

[Peano:1894] Peano, G.: Formulaire de mathématiques. t. I-V. Turin, Bocca
frères, Ch. Clausen (1894–1908)

[Peano:1903] Peano, G.: De Latino Sine Flexione. Lingua Auxiliare
Internationale [1], Revista de Mathematica (Revue de
Mathématiques), Tomo VIII, pp. 74–83. Fratres Bocca Edi-
tores: Torino (1903). https://en.wikipedia.org/wiki/Latino
sine flexione

[PitmanLynch:2014] Pitman, J., Lynch, C.: Planning a 21st century global library
for mathematics research. Not. Am. Math. Soc. 61, 776–777
(2014)

[RZ] Referativny Zhurnal. http://www.viniti.ru/pro referat.html
[Schröder:1897] Schröder, E.: Über Pasigraphie, ihren gegenwärtigen Stand

und die pasigraphische Bewegung in Italien. In: Verhand-
lungen des ersten Internationalen Mathematiker-Kongresses
in Zürich, pp. 147–162, vom 9. bis 11 August 1897. Eng-
lish translation in The Monist, vol. 9, 44–62 (1899). (Cor-
rigenda p. 320). http://www.mathunion.org/ICM/ICM1897/
Main/icm1897.0147.0162.ocr.pdf

[SRMwiki] Semantic Representation of Mathematics White Paper and
Wiki. http://www.fields.utoronto.ca//sites/default/files/whi
tepaper.pdf, http://www.wolframfoundation.org/programs/
whitepaper.pdf, http://imkt.org/Activities/SemanticMathema
tics/Workshops/2016-02-03-Fields/whitepaper.pdf, http://
imkt.org/Activities/SemanticMathematics/wiki/index.php?
title=Main Page

[Seoul CEIC Panels] http://www.mathunion.org/ceic/resources/icm-2014-panels/
[Seoul DML Panel] https://www.youtube.com/watch?v=OERXmv2oIyU

http://jointmathematicsmeetings.org/meetings/national/jmm2016/2181_program_ss65.html
http://jointmathematicsmeetings.org/meetings/national/jmm2016/2181_program_ss65.html
http://jointmathematicsmeetings.org/meetings/national/jmm2016/2181_program_ss65.html
http://dx.doi.org/10.1109/SYNASC.2012.79
http://dx.doi.org/10.1109/SYNASC.2012.79
http://dl.acm.org/citation.cfm?id=2477708
http://www.ams.org/mathscinet/
http://www.ams.org/mathscinet/
http://ada00.math.uni-bielefeld.de/mediawiki-1.18.1/index.php/Main_Page
http://ada00.math.uni-bielefeld.de/mediawiki-1.18.1/index.php/Main_Page
https://en.wikipedia.org/wiki/Latino_sine_flexione
https://en.wikipedia.org/wiki/Latino_sine_flexione
http://www.viniti.ru/pro_referat.html
http://www.mathunion.org/ICM/ICM1897/Main/icm1897.0147.0162.ocr.pdf
http://www.mathunion.org/ICM/ICM1897/Main/icm1897.0147.0162.ocr.pdf
http://www.fields.utoronto.ca//sites/default/files/whitepaper.pdf
http://www.fields.utoronto.ca//sites/default/files/whitepaper.pdf
http://www.wolframfoundation.org/programs/whitepaper.pdf
http://www.wolframfoundation.org/programs/whitepaper.pdf
http://imkt.org/Activities/SemanticMathematics/Workshops/2016-02-03-Fields/whitepaper.pdf
http://imkt.org/Activities/SemanticMathematics/Workshops/2016-02-03-Fields/whitepaper.pdf
http://imkt.org/Activities/SemanticMathematics/wiki/index.php?title=Main_Page
http://imkt.org/Activities/SemanticMathematics/wiki/index.php?title=Main_Page
http://imkt.org/Activities/SemanticMathematics/wiki/index.php?title=Main_Page
http://www.mathunion.org/ceic/resources/icm-2014-panels/
https://www.youtube.com/watch?v=OERXmv2oIyU

466 P. Ion

[Valentin:1900] Valentin, G.H.: Die Vorarbeiten für die allgemeine mathema-
tische Bibliographie. Bibl. Math. 1(3), S. 237–245 (1900) (JFM
31.0003.04). http://hdl.handle.net/2027/hvd.32044102938867

[WDML Blog] http://blog.wias-berlin.de/imu-icm-panel-wdml/
[ZM] Zentralblatt für Mathematik und ihre Grenzgebiete; zbMATH.

http://zbmath.org

http://hdl.handle.net/2027/hvd.32044102938867
http://blog.wias-berlin.de/imu-icm-panel-wdml/
http://zbmath.org

Formula Semantification and Automated
Relation Finding in the On-Line Encyclopedia

for Integer Sequences

Enxhell Luzhnica and Michael Kohlhase(B)

Computer Science, Jacobs University Bremen, Bremen, Germany
{e.luzhnica,m.kohlhase}@jacobs-university.de

Abstract. The On-line Encyclopedia of Integer Sequences (OEIS) is an
important resource for mathematicians. The database is well-structured
and rich in mathematical content but is informal in nature, so knowledge
management services are not directly applicable. In this paper we provide
a partial parser for the OEIS that leverages the fact that, in practice, the
syntax used in its formulas is fairly regular. Then, we import the result
into OMDoc to make the OEIS accessible to OMDoc-based knowledge
management applications. We exemplify this with a formula search appli-
cation based on the MathWebSearch system and a program that finds
relations between the OEIS sequences.

1 Introduction

Integer sequences are important mathematical objects that appear in many areas
of mathematics and science and are studied in their own right. The On-line Ency-
clopedia of Integer Sequences (OEIS) [Inc15] is a publicly accessible, searchable
database documenting such sequences and collecting knowledge about them.
Sequences can be looked up using a text-based search functionality that OEIS
provides, most notably by giving the name (e.g. “Fibonacci”) or starting values
(e.g. “1, 2, 3, 5, 8, 13, 21”). However, given that the source documents describing
the sequences are mostly informal text, more semantic methods of knowledge
management and information retrieval are limited.

In this paper we tackle this problem by building a formula parser for the source
documents and exporting them in content MathML, the pertinent XML-based
standard. This opens up the OEIS library to knowledge management applica-
tions, which we exemplify by a semantic search application based on the Math-
WebSearch [HKP14] system that permits searching for text and formulas and by
a relation finder that induces new relations from the parsed formulae. This paper
is based on [Luz16] to which we refer for details we had to elide.

2 The OEIS

The OEIS is a web information system about integer sequences. Started in
1964 by Neil Sloane, an active community now curates over 250 000 sequences,
c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 467–475, 2016.
DOI: 10.1007/978-3-319-42432-3 60

468 E. Luzhnica and M. Kohlhase

collecting their starting values, literature references, implementations, and for-
mulae that encode representations and relations between sequences. This data is
stored in a line-keyed ASCII documents internally. We introduce this by way of
the snippet in Fig. 1 – we will use the Fibonacci numbers as the running example.
There we see a document fragment with identification (%I), values (%S), name
(%N) and reference (%D) lines, followed by three formula lines (%F) and the author
line (%A). The formula lines are the main object of interest in this paper.

Fig. 1. The OEIS sources for sequence A000045 (Fibonacci Numbers)

The bulk of formulae in the OEIS consist of generating functions used to
represent sequences efficiently by coding the terms of a sequence as coefficients
of powers of a variable x in a formal power series. Unlike an ordinary series, this
formal series is allowed to diverge, meaning that the generating function is not
always a true function and the “variable” is actually an indeterminate.

There are different types of generating functions, including ordinary gen-
erating functions, exponential generating functions, Lambert series,
Bell series, and Dirichlet series. The ordinary generating function (or
just generating function) of a sequence a0, a1, a2 . . . , an−1, an, . . . is the infi-
nite series:

GF (x) = a0 + a1x + a2x
2 + . . . + an−1x

n−1 + anx
n + . . . =

∞∑

i=0

aix
i (1)

For example, the sequence A000012 = (1, 1, 1, 1, 1, . . .) can be represented as:

1 + x + x2 + . . . =
1

1 − x
(2)

We know that the equation above only holds for |x| < 1 but we ignore the issues
of convergence, as already mentioned. Thus, the ordinary generating function of
this sequence can be written as 1

1−x .

3 Parsing OEIS Formulae

We built a partial parser for OEIS formulas by identifying and analyzing well-
behaved formulas to produce a workable grammar. We leverage the fact that,
although there is no standardized format for OEIS formulas, many of them
use a sufficiently regular syntax. At the core, the parser uses a rather standard
grammar for infix, suffix, and prefix operators and binding operators with prece-
dences. Instead of presenting it in detail we discuss some of the challenges we
encountered:

Semantification and Relation Finding for the OEIS 469

Open Set of Primitives. Since the formulas are not standardized, not only is
the syntax flexible, but so is the set of primitive operators that are used. For
instance, the formulas in Fig. 1 (on lines 5–6) use square root, power, as well
as the sum (Σ) and product (Π) binders. The challenges arise because of the
many different notations used for such primitives. For instance, in line 6 of Fig. 1
the range for sum and product is given in two different ways. Similar problems
appear with limits and integrals as well as numerous atypical infix and suffix
operators. In order to parse these correctly, we investigate the documents and
the grammar failures manually and incrementally extend the grammar.

Ambiguity. As it is often the case with informal, presentation-oriented formulas,
there can be ambiguity in the parsing process when there exist several reasonable
interpretations. Since the OEIS syntax is not fixed, this is quite common, so we
do additional disambiguation during parsing to resolve most of the ambiguities.
Some common ambiguities are:

– Implicit multiplications: a*(x+y) is usually written as a(x+y) which is
ambiguous since it can also be parsed as a function application.

– Natural way of using the power operator: T^2(y) is used for (T (y))2, however
T^y(x^2+2) is ambiguous.

– Unbracketed function applications: sin x is a common way of writing sin(x).
However, this form of function application can also be parsed as multiplication
between variable sin and x, as in Pi x.

We employ heuristics based on a type system that we use to assign types to each
of the parsed terms to resolve these ambiguities.

Delineating Formulas. OEIS formula lines freely mix text and formulas so it is
required to correctly distinguish between text and formula parts within the lines
in order to accurately parse each line. For instance, line 6 in Fig. 1 starts with the
text G.f.: (meaning “Generating function:”) and continues with the formula.
The line then has the author and date, separated from the formula by a dash (-)
which could also be interpreted as a minus and, therefore, a continuation of the
formula. In the extraction of the formulas we use the help of a dictionary. The
text in the OEIS documents has words that are not found in the dictionaries
since it contains many technical terms so we first run a pre-parsing procedure
which enriches the dictionary. The final grammar tries to parse words until it
fails and then tries to parse formulas; this process repeats.

Formula Parsing. The formula parser is implemented using the Packrat Parser
for which Scala provides a standard implementation. Packrat parsers allow us to
write left recursive grammars while guaranteeing a linear time worst case which
is important for scaling to the OEIS.

There are 223866 formula lines in OEIS and the formula parser succeeds on
201384 (or 90%) of them. Out of that, 196515 (or 97.6%) contain mathemat-
ical expressions. Based on a manual inspection of selected formulas we deter-
mined that most parser fails occur because of logical connectives since those are

470 E. Luzhnica and M. Kohlhase

not yet supported. Other failures include wrong formula delineation because of
unusual mix of formulas and text. We did a manual evaluation of the parsing
result for 40 randomly selected OEIS documents and evaluated 85 % of success-
fully parsed formulas as semantically correct.

The importer is implemented in Scala as an extension for the Mmt system
and consists of about 2000 lines of code. It is available at https://svn.kwarc.
info/repos/MMT/src/mmt-oeis/.

There are 257654 documents in OEIS totaling over 280 MB of data. The
OMDoc/MMT import expands it to around 9 GB, partly due to the verbosity
of XML and partly due to producing the semantic representation of formulas.
The total running time is around 1 h 40 min using an Intel Core i5, 16 GB of
RAM and a SATA hard drive.

Search. MathWebSearch (MWS) is an open-source, open-format, content-
oriented search engine for mathematical expressions. We refer to [HKP14] for
details.

To realize the search instance in MWS we need to provide two things:

1. A harvest of MathML-enriched HTML files that the search system can
resolve queries against. The content-MathML from the files will be used to
resolve the formula part of the query while the rest of the HTML will be
used for the text part. The harvest additionally requires a configuration file
that defines the location in the HTML files of MWS-relevant metadata such
as the title, author or URL of the original article. This, together with the
HTML itself is used when presenting the query results.

2. A formula converter that converts a text-based formula format into
MathML. This will be used so that we can input formulas for searching
in a text format (in our case OEIS-inspired ASCII math syntax) rather than
writing MathML directly.

To produce the harvest of the OEIS library for MWS we export the HTML from
the content imported into Mmt. We reuse the Mmt presentation framework and
only enhance it with OEIS-specific technicalities such as sequence name or OEIS
link. For the formula converter we use the same parser used for OEIS formulas
and described above, except extended with one grammar rule for MWS query
variables. Figure 2 shows (a part of) the current interface answering a query
about Fibonacci numbers. The search system is available at http://oeis.search.
mathweb.org.

4 Relation Finding

Part of the mathematical interest in the OEIS is that it gives interpretations
of sequences and provides a basis for establishing relations between them. Con-
sequently extending the latter has been an important concern. As the initial
values of the sequences were the only machine-actionable part of the OEIS,
relation-finding has concentrated on them. However it is important to note that

https://svn.kwarc.info/repos/MMT/src/mmt-oeis/
https://svn.kwarc.info/repos/MMT/src/mmt-oeis/
http://oeis.search.mathweb.org
http://oeis.search.mathweb.org

Semantification and Relation Finding for the OEIS 471

Fig. 2. Text and formula search for OEIS

even an exact match of initial subsequences can never verify a relation, thus any
numeric match can only be a relation conjecture. An extreme example of two
sequences that match for 777451915729367 terms but are not equal, is

⌊
2n

log(2)

⌋

and
⌈

2
21/n−1

⌉
[NJ12]. Ralf Stephan found 117 conjectures from which 17 of them

are still open [Ste04].
Our database of parsed formulae allows us to do better: we can directly look

for relations between the formula representations, most prominently between the
generating formulae. The approach we follow is mathematically simple. We will
show two methods, the second building on top of the first. Refer to [Luz16] for
a more elaborate discussion and another method.

Method 1. In this case, we normalize the ordinary generating functions of the
sequences and check for equality between the normalized expressions. The nor-
malization rules are defined as follows:

cG c - constant G - generating function
(Const)

G

xnG x - the indeterminate of G G - generating function
(Unshift)nG

P/Q P,Q - polynomials
(Sort)

(
∑n

i=0 pix
i)/(

∑m
i=1 qix

i) pn > 0 qn > 0

Intuitively, in this case we are checking if sequences are scaled and/or shifted
versions of each other. These relations are not meant to be interesting or new.

472 E. Luzhnica and M. Kohlhase

Method 2. In this case we check if a sequence can be expressed as a sum of other
sequences existing in the OEIS, possibly transformed and/or normalized.

A simplified algorithm roughly follows this pseudocode:

foreach sequence

foreach ogf in ordinaryGeneratingFunction(sequence)

add normalize(ogf) to hashSet

foreach sequence

foreach ogf in ordinaryGeneratingFunction(sequence)

pdf = partialFractionDecomposition(ogf)

partialFractions = decompose(partialFractions(pfd))

relationsExists =

forall pgf in partialFractions

transformedPartialFractions =

normalize(applyTransformations(pgf))

transformedPartialFractions.intersection(hashSet).length > 0

if (relationsExists)

print relations

We will now explain the functions that we are using above.
Let GFn be one of the ordinary generating functions of sequence An. The par-

tial fraction decomposition (partialFractionDecomposition) would leave us with
GFn =

∑n
j=1 Gj where Gj is also an ordinary generating function. The function

partialFractions extracts the summands, in this case, the partial fractions (ordi-
nary generating functions) themselves. The function decompose does a further
step of decomposition. If Gj = P

Q where P,Q are polynomials (P =
∑n

i=0 aix
i)

then it rewrites Gj =
∑n

i=0
aix

i

Q . These summands are then considered partial
fractions too.

The transformations are integration, differentiation and unit. The transfor-
mations are selected such that expressions that match under these transforma-
tions can be easily related both mathematically and semantically.

The relation finder is implemented in Scala and is available at https://github.
com/eluzhnica/OEIS. The page will be kept up to date with results. The imple-
mentation of the normalization rules makes use of the parsing tree of the expres-
sion. The transformations are done using SageMath [Dev16] as a math engine.
Our Scala code communicates with a local SageMath server using a REST API.

We show below some examples of the relations found from each method.

Method 1. This is more of a sanity check of the data. Due to the nature of these
relations, these are self-evident relations. Additionally, these relations can be
effectively searched utilizing a numerical method. An instance that our algorithm
finds is that sequence A001478(n) = −A000027(n). Sequence A001478 is the
sequence of the negative integers, while A000027 is the sequence of positive
integers.

https://github.com/eluzhnica/OEIS
https://github.com/eluzhnica/OEIS

Semantification and Relation Finding for the OEIS 473

(a) OEIS Relation Graph of Current Relations (b) OEIS Relation Graph after Method 2

The points around the circle represent the theories and the blue lines views between them. The
theories presented here are only the ones for which we have parsed the generating functions.

Fig. 3. OEIS relation graphs (Color figure online)

Method 2. An example of this method, which we have submitted and it is
accepted in the OEIS (https://oeis.org/A037532), is as follows.

A037532(n) =
5
57

A049347(n− 1) +
3
57

A049347(n) +
29
171

A000420(n) − 2
9

(3)

There is one subtlety that needs to be explained. The sequence with ordinary
generating function 1

1−x is the sequence (1, 1, 1, . . .). However, for simplicity we
write down 2

9 instead of 2
9A000012(n).

Since our parser runs over all the formulas of OEIS, we have extracted
the existing explicit relations in OEIS and made a graph (Fig. 3a) showing the
existing connections between sequences. The second method enriches the theory
graph as shown in Fig. 3b.

We converted the parsed generating functions to the SageMath syntax and
checked if SageMath can compute with the expressions. From manual inspec-
tion, we found out that most of the unaccepted cases were referencing functions
defined somewhere within the document. For instance, 1+Q(0) where the func-
tion Q(n) is defined later on in the sequence document. We currently do not
resolve these references (Table 1).

Method 1 reports 4859 relations of that kind. However, in total only 853
sequences can be normalized to other existing sequences.

It is noticeable that there are a lot of relations generated from the second
method. This is due to the number of relations found using the normalization
rules (Method 1). Take for instance, G = A + B + C, and say that each of
A,B,C is an OEIS sequence and is related with 3 other sequences under the
normalization rules. Then the number of relations that we can form is actually
43. For this reason, we also report the number of relations when we remove
the relations that come due to the normalization. So, in the example above the
relation would count only once, instead of 43.

https://oeis.org/A037532

474 E. Luzhnica and M. Kohlhase

Table 1. Evaluation of the relation finder

Parsed generating functions 43 005

SageMath verified generating functions 16 065

Parsed ordinary generating functions 35 953

SageMath verified ordinary generating functions 13 400

Method 1 relations 4 859

Sequences in method 1 relations 853

Method 2 relations 297 284 646

Method 2 relations without normalization 66 427

Out of three submissions, two relations are already accepted in the OEIS.
One of them has already been presented in Eq. 3 and the other relation is
A001787(n) = A007283(n)n6 which can be found at https://oeis.org/A001787.
The unaccepted submission was not perceived to add new information since
a similar relation was already present. The submitted relations were selected
randomly.

5 Conclusions and Future Work

We improved the digitalization of the OEIS by parsing the formulae. Even
though our parser can definitely be improved, it already supports two important
added-value services. First, the MathWebSearch instance on OEIS which
allows the users to search the OEIS by text formula queries. Second, a way of
generating knowledge from OEIS, specifically, relations between sequences. The
relation finding experiment presented above only uses very simple mechanisms
for finding relations between generating functions. We make the parsed and
induced formulae in content MathML form at https://github.com/eluzhnica/
OEIS to allow other parties to extend our methods and find even more relations.

Acknowledgements. We acknowledge financial support from the OpenDreamKit
Horizon 2020 European Research Infrastructures project (#676541), and thank the
OEIS community for support Neil Sloane for giving us access to a full OEIS dump
and Jörg Arndt for fruitful discussions. All the work reported in this paper has only
been possible, since the OEIS foundation had the foresight to license the contents under
a CreativeCommons license that allows derivative works.

Sustainability. To make our work sustainable, we would need to (i) periodically re-run
our system on future versions of the OEIS and (ii) feed the results back into the knowl-
edge base. The first needs a setup which facilitates change management, minimally a
way to query the OEIS for changes like the OAI-PMH, but even better, maintaining
the OEIS sources in a revision control system like GIT. For the second we note that
with the huge volume of induced formulae, manual submission to the OEIS cannot be
the answer. Automated submission – while simple to implement – would overwhelm
the OEIS editors.

https://oeis.org/A001787
https://github.com/eluzhnica/OEIS
https://github.com/eluzhnica/OEIS

Semantification and Relation Finding for the OEIS 475

References

[HKP14] Hambasan, R., Kohlhase, M., Prodescu, C.: MathWebSearch at NTCIR-11.
In: Kando, N., Joho, H., Kishida, K. (eds.) NTCIR Workshop 11 Meeting,
pp. 114–119. NII, Tokyo (2014)

[Inc15] The OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences
(2015). http://oeis.org/

[Luz16] Luzhnica, E.: Formula Semantification and Automated Relation Finding in
the OEIS. B.Sc. Thesis. Jacobs University Bremen (2016). https://github.
com/eluzhnica/OEIS/doc/Enxhell Luzhnica BSC.pdf

[NJ12] Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (2012).
http://neilsloane.com/doc/eger.pdf

[Dev16] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 7.1) (2016). http://www.sagemath.org

[Ste04] Stephan, R.: State of 100 Conjectures From The OEIS (2004). http://www.
ark.inberlin.de/conj.txt

http://oeis.org/
https://github.com/eluzhnica/OEIS/doc/Enxhell_Luzhnica_BSC.pdf
https://github.com/eluzhnica/OEIS/doc/Enxhell_Luzhnica_BSC.pdf
http://neilsloane.com/doc/eger.pdf
http://www.sagemath.org
http://www.ark.inberlin.de/conj.txt
http://www.ark.inberlin.de/conj.txt

Mathematical Videos and Affiliated
Supplementaries in TIB’s AV Portal

Mila Runnwerth(B)

German National Library of Science and Technology (TIB),
Welfengarten 1B, 30167 Hannover, Germany

Mila.Runnwerth@tib.eu

Abstract. Scientific videos often are supplementary material to other-
wise published research material or contain additional material on their
own. Especially in the mathematical context there are four main cate-
gories of accompanying media: (1) visual demonstrations of numerical
simulations, (2) video recordings of conference talks, (3) video abstracts
for journal submissions, and (4) lecture videos. TIB’s AV portal links
its videos to all kinds of supplementary research information if it is
freely available. Furthermore, a user’s query to the portal is automat-
ically expanded to a query in TIB’s discovery system in order to retrieve
supplementary material for further reading indexed therein. This article
discusses the four categories of media combinations listed above and how
to interlink them in order to guarantee easy access.

Keywords: Video platform · Scientific video · Information retrieval

1 Introduction

Publishing the latest research is no longer restricted to text-based journal
articles. Media packages consisting of published articles (including preprints),
research data, conference contributions, and software are submitted to scientific
libraries. This publication behaviour reflects both the technical potential to pro-
vide almost all documentation of the research process and the implementation of
the guidelines for good scientific practice. The challenge for libraries is to make
the data bundle accessible both in its entirety as well as individually via inter-
linking information. This contribution illustrates the challenge of combining the
formal requirements of library indexing and referencing information in new and
less restricted ways to provide access to library systems and search engines alike.

We present four categories of scientific videos with supplementary material
and how we provide access to them: (1) visualisations of numerical simulations,
(2) conference or workshop videos, (3) video abstracts to visually promote journal
articles, and (4) video lectures with visual information on slides or in handwritten
form on blackboard or whiteboard.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 476–481, 2016.
DOI: 10.1007/978-3-319-42432-3 61

Mathematical Videos and Affiliated Supplementaries in TIB’s AV Portal 477

2 TIB’s AV Portal

TIB’s AV Portal1 is a free, web-based platform for audiovisual media. It provides
access to about 6.700 scientific videos2 with emphasis to science and engineering.
The mathematics collection alone comprises altogether more than 1.000 videos
from notable institutions such as IHÈS, ICM, or Stanford University. The portal
enables extensive search functionalities, allows reliable citation and sharing via
Digital Object Idenitifier (DOI) and functions as an archive to preserve audio-
visual contributions to science as cultural heritage (Neumann and Plank 2014).
The portal is developed by the Competence Centre for Non-Textual Materi-
als, a subdivision at the German National Library of Science and Technology
(TIB), in cooperation with the Hasso Plattner Institute for Software Systems
Engineering (HPI). It combines multimedia retrieval techniques and semantic
analysis. Enhanced video analysis features are automatic scene, speech, text and
object recognition. Enhanced search features are concept mapping and semantic
search (Arraiza and Strobel 2015). Figure 1 illustrates the workflow each video
passes in order to be provided in the portal.

Fig. 1. Process chain of the automated video analysis (Strobel and Arraiza 2015).

Services and functionalities include:

Time-Stamped Citation Link: Every video is associated with a DOI. Addition-
ally, by using the open standard Media Fragment Identifier (MFID), every video
time segment can be cited individually.

Legally Secure Handling: When publishing a scientific video in TIB’s AV Portal
the customer specifies the legal terms of publication by concluding a license
agreement. Thus, the customer determines the terms under which the portal
may process, supply and further distribute the video.
1 https://av.tib.eu/.
2 Current status as of May 2016.

https://av.tib.eu/

478 M. Runnwerth

Metadata: A video’s metadata set consists of intellectually maintained meta-
data like title, file size, abstract, keywords provided by the customer. Addition-
ally, automatically generated metadata from the video analyses mentioned above
enrich the formal metadata (Lichtenstein et al. 2014).

3 Mathematical Media Packages

Especially research output that involves mathematical modelling or numerical
simulations is submitted to libraries more and more as data bundles or media
packages. They typically contain scientific software, experimental (measurement)
data, processed data, visualisations as images or film, documentation and the
resulting publication(s). Most audiovisual information, however, is not obviously
interlinked to additional materials because the customer is not aware of upload-
ing the data in a bundled package or because there are still more media to appear
in the course of a project.

A basic approach for simple maintenance is to assign a DOI to a superior
project archive and store the DOIs assigned to its associated components in the
metadata of the package. Without further processing that does not help for the
retrieval, though.

3.1 Visual Simulation Data and Their Related Information

Data Description: Videos of visual simulation data can be characterised by
being short (less than two minutes per experiment) and by consisting of exclu-
sively visual information. Current supplementaries are documentation papers,
abstracts explaining the experiment, a project web page of the affiliated research
institution or a published paper that references the video explicitly if it is freely
available. Visualised simulations themselves are generally supplementary appen-
dices.

State of the Art at TIB’s AV Portal: In general simulation data are uploaded
with additional materials to provide the scientific context. In the manual editing
process of the metadata the semantic connections can be considered intellectu-
ally. The scientific librarian who approved of the video in the first place also
decides how and where to provide the accompanying materials. The simplest
form to supply a reference to the video is to add a link to the accompanying
materials in the metadata set to a web page or the library system. A more
sophisticated approach is a reference to add the data to the library system
including interconnections. In TIB’s AV Portal the metadata section shows a
paragraph called Accompanying Material with all linked – although not inter-
linked – supplementaries.

Outlook: The primary goal is a more comprehensive retrieval for both the video
and its associated information from various distributed sources. Cross-linking
DOIs is a step to connect project data formally. Matching the visual analyses

Mathematical Videos and Affiliated Supplementaries in TIB’s AV Portal 479

data against analysis data of the supplementary materials – ideally fulltexts –
may give hints to semantically link them to the film. Feining a superior data set
for the abstract project and linking all associated data to it may help to inherit
classical subject indexing of related information for the child instances.

3.2 Conference Recordings and Their Corresponding Proceedings

Data Description: An increasing number of conference hosts produce videos of
contributions like lectures and talks. The added value in comparison with the
associated article in the conference proceedings can be the documented discus-
sion about the topic with critical input from third-parties, bringing together slide
or blackboard information as well as the spoken text which generally contains
subtle subtext information.

State of the Art at TIB’s AV Portal: Conference videos are especially popular in
computer science and mathematics. TIB’s AV Portal contains a large collection
of computer science conferences that do not publish in printed form at all. In
mathematics, most conference videos can be associated to a published article
in textual conference proceedings. These, however, cannot be linked together
automatically. The current workflow for subject librarians is to check a con-
ference video collection against the textual conference stock. If the affiliated
article within the proceedings volume can be confirmed, the video (or even the
collection) can be linked in a comment to the volume in the library system.
Accordingly, a reference can be included in the video’s metadata set to point
out the associated library stock, for example by referencing the DOIs of article
and film. From a librarian’s point of view the relation of an article to the talk
on it is not precisely defined. They are strongly related but neither the same
format nor of identical content.

Outlook: The intuitive way to link video and textual information would be to
link the whole video collection to the proceedings volume (where each video has a
match to an article, and vice versa). On a finer scale we need to link a video talk
to an individual article. The prominent challenges to address here are to find the
matching pairs (manually and eventually automatically) and connecting them in
a sound way. In mathematics, a significant number of conference contributions
are published as preprint on arXiv.org. Thus, we are able to link the open access
preprint to the video as accompanying material with a link to the repository
page.

3.3 Video Abstracts and the Associated Article

Data Description: There is an upcoming trend of submitting video abstracts
in addition to or instead of textual abstracts for scientific journals3. Together

3 A prominent example is given by Elsevier’s Journal of Number Theory (http://www.
journals.elsevier.com/journal-of-number-theory/video-abstracts/).

http://arXiv.org
http://www.journals.elsevier.com/journal-of-number-theory/video-abstracts/
http://www.journals.elsevier.com/journal-of-number-theory/video-abstracts/

480 M. Runnwerth

with an open access preprint as well as a final, published article a video abstract
may present the entity of the publication. Video abstracts are short summaries
with various image information: mostly with slides or handwritten content on
a blackboard, but also environments that express the author’s personality best,
for example summarising the article during a stroll on the beach or while sitting
on a lawn.

State of the Art at TIB’s AV Portal: Authors themselves do usually not directly
supply a video abstract to TIB’s AV Portal. The library acquisition team
researches them on the web and gets in touch with the publishing house. The
subject librarians check for further publications or preprints and recommend to
link them as accompanying material for direct download (if freely accessible) or
link them via a comment in the library system. In both cases, once the addi-
tional material is found, all associated materials are retrievable irrespective of
the access portal.

Outlook: The main challenge is to keep track of the publication process: where
there is a video abstract there is at least a paper in waiting. We would like to
pick users up at the video abstract and naturally forward them to its associ-
ated preprint or article. If these are open access we can easily provide them via
link. Otherwise a direct link to the library system is needed with the article’s
disposability information attached.

3.4 Lecture Videos and Their Scripts

Data Description: Lecture recordings are the most prominent form of Open
Educational Resources. They are often accompanied by an informal script by
the lecturer herself or the students. Most lectures in TIB’s AV Portal are math-
ematics or physics lectures with the specific characteristic that they contain
handwritten formulae. The largest collection of tutorial videos in TIB’s AV Por-
tal are Professor Jörn Loviscach’s4 short presentations on undergraduate topics
in mathematics. Additional materials are often handouts or scripted fragments
of the lecture. The duration of this video category ranges from short tutorials
with only a few minutes up to lectures of 90 min. The two main subcategories
are khan style videos5 (handwritten tutorials on electronic blackboards) and
classroom sceneries with a lecturer in front of a blackboard.

State of the Art at TIB’s AV Portal: For most lecture videos there exists an
inofficial script. Publishing a script as accompanying material is only feasible
with the lecturer’s consent. The Loviscach Collection not only provides scripts
but also further teaching materials like homework or question sheets to several
videos. This material is not relevant for the library stock. Hence, it is not entered
to the library system. To retrieve these documents specifically, the video must
be retrieved beforehand or the lecture web page is found via a web search engine.
4 http://www.j3l7h.de/videos.html.
5 The choice of expression makes allowance to the pioneering mathematical learning

platform https://www.khanacademy.org/.

http://www.j3l7h.de/videos.html
https://www.khanacademy.org/

Mathematical Videos and Affiliated Supplementaries in TIB’s AV Portal 481

Outlook: A trivial challenge is to make the additional documents retrievable
as well. If fulltext search is possible it should be provided. On a more chal-
lenging level associated materials to lectures provide an opportunity to enhance
retrieval techniques and formula search. It is the most promising category to
exploit semantical information via different documents. Especially mathemati-
cal lectures of 90 min cover many aspects which might be relevant for a user to
search within: a certain theorem or proof, an example or illustration for a math-
ematical phenomenon. This calls for a sophisticated table of contents based on
information of the video analyses techniques that are already in use.

4 Conclusion and Outlook

In TIB’s AV Portal occur mainly four categories of scientific videos with a focus
on mathematics with additional material: visual simulations, conference talks,
video abstracts, and lectures. Each brings diverse types of material that must
be referenced in different ways to optimise retrieval and access. Although we
already automised most of the analyses features for the videos themselves, finding
associated information and the deciding on how to interlink it must be mainly
organised intellectualy.

Our future task is to discover and link associated materials automatically
by using semantic search or analysis of formal metadata. Also, to optimise and
develop video analyses techniques, additional materials are a data basis for fur-
ther information with respect to machine learning.

References

Neumann, J., Plank, M.: TIB’s portal for audiovisual media new ways of indexing and
retrieval. IFLA J. 40(1), 17–23 (2014)

Arraiza, P.M., Strobel, S.: The TIB|AV portal as a future linked media ecosystem. In:
WWW (Companion Volume), pp. 733–734 (2015)

Strobel, S., Arraiza, P.M.: Metadata for scientific audiovisual media: current practices
and perspectives of the TIB|AV-portal. In: Garoufallou, E., Hartley, R.J., Gaitanou,
P. (eds.) MTSR 2015. CCIS, vol. 544, pp. 159–170. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-319-24129-6 14

Lichtenstein, A., Plank, M., Neumann, J.: TIB’s portal for audiovisual media: combin-
ing manual and automatic indexing. Cataloging Classif. Q. 52(5), 562–577 (2014)

http://dx.doi.org/10.1007/978-3-319-24129-6_14

Miscellanea

Complexity of Integration, Special Values,
and Recent Developments

James H. Davenport(B)

University of Bath, Bath, UK
J.H.Davenport@bath.ac.uk

http://staff.bath.ac.uk/masjhd

Abstract. Two questions often come up when the author discusses inte-
gration: what is the complexity of the integration process, and for what
special values of parameters is an unintegrable function actually inte-
grable. These questions have not been much considered in the formal
literature, and where they have been, there is one recent development
indicating that the question is more delicate than had been supposed.

Keywords: Integration · Complexity · Parameters

1 Introduction

The author is often asked two questions about integration.

1. “What is the complexity of integration?”.
2. “My integrand f(x, a) is unintegrable. For what special a is it integrable?”

These questions have rather different answers for purely transcendental inte-
grands and for algebraic function (or mixed) integrands. In fact, they are essen-
tially unexplored for mixed integrands, given the difficulties of the two special
cases.

Integration of f(x), in the sense of determining a formula F (x) such that
F ′(x) = f(x), is a process of differential algebra. There is then a question of
whether this formula actually corresponds to a continuous function R → R.
This is an important question in terms of usability of the results, but a rather
different one than we wish to consider here: see [7].

2 Transcendental Integration

In order to use differential algebra, the integrand f is written (itself a non-trivial
procedure: see [9], generally known as the Risch Structure Theorem) in a suit-
able field K(x, θ1, . . . , θn) where each θi is transcendental over K(x, θ1, . . . , θi−1)
with K(x, θ1, . . . , θi) having the same field of constants as K(x, θ1, . . . , θi−1) and
each θi being either:

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 485–491, 2016.
DOI: 10.1007/978-3-319-42432-3 62

486 J.H. Davenport

(l) a logarithm over K(x, θ1, . . . , θi−1), i.e. θ′
i = η′

i/ηi for ηi ∈ K(x, θ1, . . . , θi−1);
(e) an exponential over K(x, θ1, . . . , θi−1), i.e. θ′

i = η′
iθi for ηi ∈ K(x, θ1, . . . ,

θi−1).

This process may generate special cases: for example exp(a log x) lives in such a
K(x, θ1, θ2) with θ′

1 = 1
x (θ1 corresponds to log x) and θ′

2 = a
xθ2 (θ2 corresponds

to exp(a log x)), except when a is rational, when in fact we have xa. However, this
is generally not what is meant by the “special values” question, and in general
we assume that parameters are not in exponents.

2.1 Elementary Transcendental Functions

Here we have a decision procedure, as outlined in [8]. The proof of the procedure
proceeds by induction on n, the ingenuity lying in the induction hypothesis: we
suppose that we can:

(a) “integrate in K(x, θ1, . . . , θn−1)”, i.e. given g ∈ K(x, θ1, . . . , θn−1), either
write

∫
gdx as an elementary function over K(x, θ1, . . . , θn−1), or prove that

no such elementary function exists;
(b) “solve Risch differential equations in K(x, θ1, . . . , θn−1)”, i.e. given ele-

ments F, g ∈ K(x, θ1, . . . , θn−1) such that exp(F) is transcendental over
K(x, θ1, . . . , θn−1) (with the same field of constants), solve y′ + F ′y = g for
y ∈ K(x, θ1, . . . , θn−1), or prove that no such y exists.

We then prove that (a) and (b) hold for K(x, θ1, . . . , θn).

2.2 Logarithmic θn

If θn is logarithmic, the proof of part (a) is a straightforward exercise building
on part (a) for K(x, θ1, . . . , θn−1): see, e.g. [3, Sect. 5.1]. Unintegrability mani-
fests itself as the insolubility of certain equations, and any special values of the
parameters will be found as special values rendering these equations soluble.

It is also straightforward (though as far as the author knows, not done) to
prove that, if all θi are logarithmic, then the degree in each θi of the integral is
no more than it is in the integrand, and that the denominator of the integral is
a divisor of the denominator of the integrand. Hence, in the dense model, the
integral is, apart from coefficient growth, not much larger than the integrand,
and the compute cost is certainly polynomial.

In a sparse model, the situation is very different.
∫

logn xdx = x logn x − nx logn−1 x + · · · ± n!x,

so an integrand requiring Θ(log n) bits can require Ω(n) bits for the integral.
The same is true for

∫
xn logn xdx, but

∫
xn logn(x+1)dx shows that Ω(n2) bits

can be required. As far as the author knows, it is an open question whether the
problem is even in EXPSPACE, though it probably is.

Integration 487

2.3 Exponential θn

Here the problem is different. Suppose θn = exp(F).
∫

g exp(F)dx = y exp(F)
where y′+F ′y = g (and can be nothing else if it is to be an elementary function).
Hence solving (a) in K(x, θ1, . . . , θn) reduces (among other things) to solving
(b) in K(x, θ1, . . . , θn−1). In general, the solution to (b) proceeds essentially by
undetermined coefficients, which is feasible as y′ + F ′y is linear in the unknown
coefficients. Before we can start this, we need to answer two questions: what is
the denominator of y, and what is the degree (number of unknown coefficients)?
In general, the answers are obvious: if the denominator of g has an irreducible
factor p of multiplicity k, y′ will have the same, so the denominator of y will
have a factor of (at most) pk−1, and F ′ can only reduce this. Similarly, if g has
degree d, y′ will have degree at most d, so y will have degree d+1, and again F ′

can only reduce this. The complication is when there is cancellation in y′ + F ′y,
so that this has lower degree, or smaller denominator, than its summands. [8]
shows how to resolve this problem, and does not pay it much attention, not
being interested in the complexity question.

In [2] it is noted that these complications come from what one might loosely
call “eccentric” integrands. For example

y′ +
(

1 +
5
x

)
y = 1 (1)

has solution

y =
x5 − 5x4 + 20x3 − 60x2 + 120x − 120

x5
, (2)

(and in general y′ +
(
1 + n

x

)
y = 1 will have a solution with denominator xn)

but this comes from ∫
exp(x + 5 log x)dx, (3)

which might be more clearly expressed as
∫

x5 exp(x)dx. (4)

However, the integrand in (3) has total degree 1, whereas that in (4) has total
degree 6, consistent with the degrees in (2). Ultimately, the point is that the dense
model is not applicable when we can move things into/out of the exponents at
will.

We do have a result [2, Theorem 4] which says that, provided K(x, θ1, . . . , θn)
is exponentially reduced (loosely speaking, doesn’t allow “eccentric” integrands)
then we have natural degree bounds on the solutions of (b) equations. As stated
there, “this is far from being a complete bounds on integrals, but it does indicate
that the worst anomalies cannot take place” here.

Again, the complexity is still an open question, but the author is inclined to
conjecture that it is no worse than EXPSPACE.

What of special values of parameters? These come in two kinds.

488 J.H. Davenport

1. As in the logarithmic case, we can get proofs of unintegrability because certain
equations are insoluble. For example (x + a) exp(−bx2 + cx) is integrable if,
and only if, c = −2ab, and this equation arises during the undetermined
coefficients process.

2. More complicated are those that change the “exponentially reduced” nature
of the integrand. For example,

∫
exp(x + a log x)dx does not have an elemen-

tary expression except when a is a non-negative integer, when we are in a
similar position to (3). These values are similar to those that change the
Risch Structure Theorem expression of the integrand.

3 Algebraic Functions

The integration of algebraic functions [1,11] is a more complex process. If f ∈
K(x, y) where y is algebraic over K(x), the integral, if it is elementary, has to
have the form v0 +

∑
ci log(vi), where v0 ∈ K(x, y), the ci are algebraic over K,

and the vi ∈ L(x, y) where L is the extension of K by the ci (and possibly more
algebraic numbers added by the algorithm, though these should be irrelevant).
So far, this is the same as the integration of rational functions, and the challenge
is to determine the ci and vi.

3.1 The Logarithmic Part

Looked at from the point of view of analysis, the
∑

ci log(vi) term is to represent
the logarithmic singularities in

∫
fdx, which come from the simple poles of f :

in a power series world ci would be the residue at the pole corresponding to vi.
Hence an obvious algorithm would be

1. Compute all the residues rj at all the corresponding poles pj (which might
include infinity, and which might be ramified: the technical term would be
“place”). Assume 1 ≤ j ≤ m.

2. Let ci be a Z-basis for the rj , so that rj =
∑

αi,jci.
3. For each ci, let vi be a function ∈ L(x, y) with residue αi,j at pj for 1 ≤ j ≤ m

(and nowhere else). The technical term for this residue/place combination is
“divisor”, and a divisor with a corresponding function vi is termed a “principal
divisor”.
∗ Returning “unintegrable” if we can’t find such vi.

4. Having determined the logarithms this way, find v0 by undetermined coeffi-
cients.

The problem with the correctness of this algorithm is a major feature of alge-
braic geometry. It is possible that Di is not a principal divisor, but that 2Di,
or 3Di or . . . is principal. In this case, we say that Di is a torsion divisor, and
the corresponding order is referred to as the torsion of the divisor. If, say, 3Di is
principal with corresponding function vi, then, although not in L(x, y), 3

√
vi cor-

responds to the divisor Di, and we can use ci log 3
√

vi, or, more conveniently and
fitting in with general theory, ci

3 log vi as a contribution to the logarithmic part.

Integration 489

3.2 Complexity

There are three main challenges with complexity theory for algebraic function
integration.

1. The first is that it is far from clear what the “simplest” form of an integral
of this form is. The choice of ci is far from unique, and a “bad” choice of ci
may lead to large αi,j and complicated vi.

2. The second is that the rj are algebraic numbers, and there are no known
non-trivial bounds for the rj , or the αi,j .

3. The third is that there is very little known about the torsion. This might
seem surprising to those who know some algebraic geometry, and have heard
of, say, Mazur’s bound [6]. This does indeed show that, if the algebraic curve
defined by y is elliptic (has genus 1) and the divisor is defined over Q, then
the torsion is at most 12. The trouble is that this requires the divisor to be
defined over Q, and not just f . For elliptic curves, a recent survey of the
known bounds is given in [10].

Hence it appears unrealistic to think of complexity bounds in the current state
of knowledge.

4 Two Meis Culpis About Algebraic Integration
and Parameters

In the author’s thesis (see the expanded version in [1]) we considered the ques-
tion of whether f(x, u)dx, an algebraic function of x, could have an elementary
integral for specific values of u, even if the uninstantiated integral were not
elementary.

4.1 The Claim

We began [1, pp. 89–90] with a rehearsal of the ways in which substituting a value
for u could change the working of the integration algorithm, and how these could
be detected, i.e. given such an unintegrable f(x, u) how one might determine the
specific u values for which the integrand might have an elementary integral.

1. The curve can change genus: look at the canonical divisor.
2. The [geometry of the] places at which residues occur can change: look at

values of u for which numerator/denominator cancel, or roots coincide.
3. The dimension of the space of residues can collapse.
4. A divisor may be a torsion divisor for a particular value of u, even though it

is not a torsion divisor in general. These cases can be detected by looking at
the roots of SUM in FIND ORDER MANIN.

5. the algebraic part may be integrable for a particular u, though not in general.
Hence the contradicting equation in FIND ALGEBRAIC PART collapses.

490 J.H. Davenport

As a potential example of case 3, consider

1
x
√

x2 + 1
+

1
x
√

x2 + u2

whose residues are ±1,±u and therefore every rational u is a special case.

Lemma 1 ([1, Lemma 6, page 90]). Let the Z-module of residues ri of f(x, u)
have dimension k, and suppose there are values (u1, . . . , uk) such that f(x, ui)
has an elementary logarithmic part (not in cases 1,2,4,5) and such that the set
of vectors {(ri(ua) : 1 ≤ i ≤ k)1 ≤ a ≤ k} is of dimension k. Then f(x, u)dx
has an elementary logarithmic part.

Proof. Some (n, 0 . . . , 0) can be expressed as a linear combination with integer
coefficients of the (ri(ua)). Hence the divisor d1 must be a torsion divisor, as
nd1 is a sum of torsion divisors. Similarly the other di.

We suppose f(x, u) depends algebraically on u (else it’s a new transcendental).

Theorem 1 ([1, Theorem 7, page 90]). If f(x, u)dx is not elementarily inte-
grable, then there are only finitely many values ui of u for which f(x, ui)dx has
an elementary integral.

Proof. “Case 3 is the hard one. Lemma 6 disposes of the case where k values
generate a full-dimensional space, so there is a linear relationship between the
ri(ua) which is not true in general, but which is true infinitely often. But the
ri(ua) are algebraic in u (Proposition 5) and this means we have an algebraic
expression which is not identically zero, but which has infinitely many roots, and
this establishes the required contradiction” (from [1]).

4.2 The First Problem

[4] observes that
xdx

(x2 − u2)
√

x3 − x
is not elementarily integrable, but is inte-

grable whenever the point (u, ?) is of order at least three on the curve y2 = x3−x,
and this can be achieved infinitely often, at the cost of extending the number
field. The simplest example is u = i, when (i, 1 − i) is of order 4 and we have

∫
xdx

(x2 + 1)
√

x3 − x
=

1 + i

16
ln

(
x2 + (2 + 2 i)

√
x3 − x + 2 ix − 1

x2 − (2 + 2 i)
√

x3 − x + 2 ix − 1

)

+
1 − i

16
ln

(
x2 + (2 − 2 i)

√
x3 − x − 2 ix − 1

x2 − (2 − 2 i)
√

x3 − x − 2 ix − 1

)

Unfortunately neither Maple (2016) nor Mathematica (10.0) nor Reduce (build
3562) can actually integrate this elementarily.

The full problem is treated in [5]. It seems that the arguments in [1] are
implicitly assuming a fixed number field, but a full analysis awaits the publication
of [5].

Integration 491

4.3 The Second Problem

The assertion that the case of transcendental u is trivial, if true at all, is certainly
not trivial, and probably false, if we also allow transcendental constants in f ,
for they and u can then “collide” [4].

Acknowledgements. I am immensely grateful to Professors Masser and Zannier for
devoting such time to an obscure corner of an old and obscure thesis. I am also grateful
to Barry Trager for his comments, to ICMS for allowing me to state the problems, and
to Christoph Koutschan for his careful editing.

References

1. Davenport, J.H.: On the Integration of Algebraic Functions. Springer, Heidelberg
(1981). vol. 102 of Springer Lecture Notes in Computer Science. Heidelberg
New York (Russian ed. MIR Moscow 1985)

2. Davenport, J.H.: On the risch differential equation problem. SIAM J. Comp. 15,
903–918 (1986)

3. Davenport, J.H., Siret, Y., Tournier, E.: Computer Algebra, 2nd edn. Academic
Press, London (1993)

4. Masser, D.W.: Integration Update. Private Communications to JHD, February–
March 2016

5. Masser, D.W., Zannier, U.: Torsion points on families of abelian varieties. Pell’s
equation and integration in elementary terms (2016). In Preparation

6. Mazur, B.: Rational points on modular curves. In: Serre, J.-P., Zagier, D.B. (eds.)
Modular Functions of One Variable V. Lecture Notes in Mathematics, vol. 601,
pp. 107–148. Springer, Heidelberg (1977)

7. Mulders, T.: A note on subresultants and the Lazard/Rioboo/Trager formula in
rational function integration. J. Symbolic Comp. 24, 45–50 (1997)

8. Risch, R.H.: The problem of integration in finite terms. Trans. A.M.S. 139, 167–189
(1969)

9. Risch, R.H.: Algebraic properties of the elementary functions of analysis. Amer. J.
Math. 101, 743–759 (1979)

10. Sutherland, A.V.: Torsion subgroups of elliptic curves over number fields (2012).
https://math.mit.edu/∼drew/MazursTheoremSubsequentResults.pdf

11. Trager, B.M.: Integration of Algebraic Functions. Ph.D. thesis, M.I.T. Dept. of
Electrical Engineering and Computer Science (1984)

https://math.mit.edu/~drew/MazursTheoremSubsequentResults.pdf

An Algorithm to Find the Link Constrained
Steiner Tree in Undirected Graphs

Luigi Di Puglia Pugliese1, Manlio Gaudioso2, Francesca Guerriero1(B),
and Giovanna Miglionico2

1 Department of Mehcanical, Energy and Management Engineering,
University of Calabria, Rende, Italy

{luigi.dipugliapugliese,francesca.guerriero}@unical.it
2 Dipartimento di Ingegneria Informatica, Modellistica,

Elettronica e Sistemistica, University of Calabria, Rende, Italy
{gaudioso,gmiglionico}@dimes.unical.it

Abstract. We address a variant of the classical Steiner tree problem
defined over undirected graphs. The objective is to determine the Steiner
tree rooted at a source node with minimum cost and such that the num-
ber of edges is less than or equal to a given threshold. The link con-
strained Steiner tree problem (LCST P) belongs to the NP-hard class.
We formulate a Lagrangian relaxation for the LCST P in order to deter-
mine valid bounds on the optimal solution. To solve the Lagrangian dual,
we develop a dual ascent heuristic based on updating one multiplier at
time. The proposed heuristic relies on the execution of some sub-gradient
iterations whenever the multiplier update procedure is unable to generate
a significant increase of the Lagrangian dual objective. We calculate an
upper bound on the LCST P by adjusting the infeasibility of the solution
obtained at each iteration. The solution strategy is tested on instances
inspired by the scientific literature.

Keywords: Constrained Steiner tree · Lagrangean relaxation

1 Introduction

Let G(V,E) be a graph where V is the set of nodes and E is the set of edges.
Let T be a subset of V . The Steiner Tree for T in G is a set of edges Ē ⊆ E
such that the graph (V (Ē), Ē) contains a path between each pair of nodes in
T , where V (Ē) is the set of nodes incident to the edges in Ē. A cost (weight)
ce is associated to each edge e ∈ E. The Steiner tree problem (ST P) aims at
finding a minimum cost (weight) Steiner tree. The ST P belongs to the class
of NP-hard problem (see, e.g., [3]). Due to its theoretical complexity and its
practical importance, several ideas and solution strategies have been developed
to address the ST P. The scientific literature provides both heuristic and exact
solution methods. For a comprehensive survey on the ST P, the reader is referred
to [5,10].

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 492–497, 2016.
DOI: 10.1007/978-3-319-42432-3 63

Solving the LCST P via Lagrangean relaxation 493

Real-life applications require additional restrictions on the structure of the
Steiner tree. The scientific literature focuses on three main additional constraints:
(1) hop constraints [6,7,11]; (2) diameter constraints [2,4]; and (3) delay con-
straints [8,9].

In this paper we consider a variant of the ST P in which the number of edges
involved in the Steiner tree is constrained to be less than or equal to a given
upper limit K, that is, Ē ≤ K. We call this variant Link Constrained ST P
(LCST P).

In [1], the authors consider the LCST P defined over directed graph. A heuris-
tic procedure is tested on instances originated from 3D placement of unmanned
aerial vehicles used for multi-target surveillance.

We propose a solution approach for determining a valid upper bound that
relies on the solution of a Lagrangian problem. An ad-hoc procedure is defined
in order to solve the dual Lagrangian problem. A feasible solution is determined
by solving a restricted LCST P at each iteration.

In the next section, we introduce a formulation for the LCST P, together with
a possible Lagrangian relaxation. In Sect. 3, a multiplier update procedure is
described. In Sect. 4 we report the computational results, while Sect. 5 concludes
the paper.

2 A Lagrangean Relaxation for the LCST P
The LCST P can be formulated on a bi-directed graph B(V,A), where an edge
e, incident to nodes i and j, is replaced by two arcs, that is, (i, j) and (j, i), with
cij = cji = ce. Finding a Steiner tree on the graph B, means to obtain a Steiner
arborescence rooted at node 1 and containing a directed path from node 1 to
every other terminal node in T/{1}. A commodity k for each node k ∈ T/{1}
is considered. Given the undirected graph G(V,E) and the corresponding bi-
directed graph B(V,A), for each arc a = (i, j), the variable fk

ij represents the
flow of commodity k from node i to node j. The variable xe is defined for each
edge e ∈ E and takes value equal to 1 is edge e ∈ Ē, 0 otherwise.

The formulation for the LCST P is as follows:

min
∑

e∈E

cexe (1)

∑

{j∈V }
fk
ij −

∑

{j∈V }
fk
ji =

⎧
⎨

⎩

1 if i = 1
−1 if i = k ∀k ∈ T/{1} i ∈ V
0 otherwise

(2)

fk
ij ≤ xe ∀e = (i, j) ∈ E, k ∈ T/{1} (3)

∑

e∈E

xe ≤ K (4)

fk
ij ≥ 0 (5)

xe binary (6)

494 L. Di Puglia Pugliese et al.

A Lagrangian relaxation of problem (1)–(6) can be obtained by associating
to constraints (3) the multipliers μek ≥ 0 thus obtaining

ZLR(μ) = min
∑

e∈E

cexe −
∑

e∈E

∑

k∈T

μek(xe − fk
ij)

=
∑

e∈E

∑

k∈T

μekf
(k)
ij +

∑

e∈E

(ce −
∑

k∈T

μek)xe

s.t.

(2), (4), (5), (6)

We observe that ZLR(μ) can be decomposed into two problems, that is,
Z

(1)
LR(μ) and Z

(2)
LR(μ).

〈 Z
(1)
LR

(µ) = min
∑
k∈T

∑
e∈E

µekf
(k)
ij

s.t.

(2), (5)

〉 〈 Z
(2)
LR

(µ) = min
∑
e∈E

(ce −
∑
k∈T

µek)xe

s.t.

(4), (6)

〉

Given a vector of Lagrangian multipliers μ, solving Z
(1)
LR requires the solution

of |T | minimum path problems, whereas Z
(2)
LR can be solved by inspection.

3 Solving the Lagrangian Dual Problem

In order to find the best values for the Lagrangian multipliers, we need to solve
the Lagrangian Dual Problem, that is zLD = max

µ≥0
zLR(μ).

To this aim, we developed an ad-hoc multiplier updating procedure which
provides, at each iteration, either increase or bounded deterioration of zLR(μ).

In particular, let {xe = xe(μ), fk
ij = fk

ij(μ)} be any optimal solution to
ZLR(μ), we update the multipliers by considering the following cases:

(Case 1) ∃ ē : fk
ij = 0 ∀k and xē = 1;

(Case 2) ∃ ē : fk
ij > 0 for some k and xē = 0;

(Case 1). It holds cē(μ) = cē −
∑

k∈T

μēk < 0. Let emin = arg min
{e|xe(µ)=0}

ce(μ) the

index of the smallest coefficient ce(μ) having associated an x̄e = 0. Set Δµ =
cemin

(μ)−cē(μ) with cemin
(μ) = (cemin

−
∑

k∈T

μemink
) and cē(μ) = (cē−

∑

k∈T

μēk).

Select a new set of non negative multipliers μ′
ēk such that

∑

k∈T

μ′
ēk =

∑

k∈T

μēk

− Δµ − ε. The objective function Z
(1)
LR(μ) decreases at most of Δµ + ε, whereas

Z
(2)
LR(μ) increases of Δµ.

(Case 2). Calculate Δµ = cē(μ) − max
{e|xe(µ)=1}

ce(μ) ≥ 0 and select a new set of

non negative multipliers μ′
ēk such that

∑

k∈T

μ′
ēk =

∑

k∈T

μēk +Δµ+ε. The objective

function Z
(1)
LR(μ) does not decrease and Z

(2)
LR(μ) decreases of ε.

Solving the LCST P via Lagrangean relaxation 495

To find a feasible solution for the original problem, starting from the solution
obtained by using the multipliers updating procedure, we devise a repairing
procedure shortly described in the following.

Given {xe = xe(μ), fk
ij = fk

ij(μ)}, we set xe = 1 if fk
ij > 0 for some k, ∀e =

(i, j). If
∑

e∈E xe ≥ K, then we define a sub-graph Gx induced by x where the
LCST P is solved.

In particular, let Vx = {i, j|xe = 1, e = (i, j)} be the set of nodes associated
with the activated edges in solution x. Gx is defined as Gx(Vx, Ex), where Ex =
{e = (i, j) ∈ E|i, j ∈ Vx}. Set Ex contains all edges incident to nodes belonging
to Vx.

4 Computational Results

In this section, we evaluate the performance of the proposed approach. It is
implemented in Java language and it is tested on an Intel(R) Core(TM) i7-
4710HQ 2.50 GHz 16 GB RAM.

We have generated instances of LCST P starting from the SteinLib bench-
marks (http://steinlib.zib.de). In particular, we have considered sparse graphs
with random weights (B), sparse graphs with incidence weights (I080), com-
plete graphs with random weights (P4Z), and grid graphs with holes, L1 weights
(MSM).

We define K = α∗K̄, where K̄ is the number of edges in the optimal solution
of the minimum hops path problem. The value of α is chosen in the set {0, 0.2}.

Summarizing, we have 36 instances of type B, 200 instances of type I080, 16
instances of type P4Z, and 36 instances of type MSM .

The multiplier update procedure is interleaved by sub-gradient optimization.
In particular, the algorihms performs, 4 times, 30 multiplier updates and 60 sub-
gradient iterations and ends by executing the multipliers updating procedure (30
iterations). Thus, the total number of performed iterations is equal to 390 (i.e.,
(30+60)*4+30). The value of ε is set equal to 0.1 and 10.

Table 1 shows the average numerical results obtained for the undirected
instances, that is B, I080, P4Z, and MSM . In particular, we report the aver-
age upper bound under column UB, the optimality gap under column gap, the
execution time in seconds to perform 390 iterations under column time, the iter-
ation in which the best upper bound is found under column iterUB, and the
execution time in seconds to find the best upper bound under column timeUB.

The subscript associated to the value of UB indicates the number of instances
for which the best upper bound is the optimal solution. A lower bound is derived
by solving to optimality the linear relaxation of problem (1)–(6).

The numerical results underline that the proposed approach is able to obtain
the optimal solution for the 97.2% of the instances generated from B, the 75.5%
of those generated from I080, the 100.0% of those generated from P4Z, and the
65.3% of those generated from MSM . It is worth observing that the percent-
ages are under estimated, since the optimality is certified only by the gap. On
average, the gap is around 4% with a peack of 16% for the instances generated

http://steinlib.zib.de

496 L. Di Puglia Pugliese et al.

Table 1. Average results for undirected networks.

ε Test UB Gap Time iterUB timeUB

0.1 B 140.3635 0.0003 57.79 7.58 1.34

I080 3109.69151 0.0018 619.47 33.73 21.42

P4Z 1115.1916 0.0000 2999.74 6.31 70.58

MSM 834.6725 0.1600 2016.91 188.92 982.17

AVG 1299.98 0.0405 1423.48 59.13 268.88

10 B 140.3635 0.0003 61.31 8.39 1.59

I080 3109.28152 0.0017 594.57 26.22 21.14

P4Z 1115.1916 0.0000 2855.40 4.94 70.52

MSM 834.4422 0.1598 2138.27 163.53 902.06

AVG 1299.82 0.0404 1412.39 50.77 248.83

from MSM . On average, the best upper bound is obtained at about the 55-th
iteration.

Referring to ε, Table 1 shows a better behaviour of the algorithm for ε = 10
than that observed for ε = 0.1. Indeed, it is required a less computational effort
and a smaller number of iterations to obtain the best upper bound with ε = 10
than in case ε = 0.1.

5 Conclusions

In this paper, we have studied a constrained version of the ST P. In particular,
an upper bound on the number of links is imposed.

The problem is solved via a Lagrangean relaxation approach. A dual ascent
update multipliers procedure is defined for solving the dual Lagrangean problem.
Infeasible solutions are repaired by solving a restricted instance of the LCST P
at each iteration.

The proposed approach has been tested on instances derived from ST P
benchmarks defined over undirected graphs.

The computational results highlight the goodness of the relaxed approach
that provides the optimal solution for more than a half of the considered
instances

References

1. Burdakov, O., Kvarnstrom, J., Doherty, P.: Local search heuristics for hop-
constrained directed Steiner tree problemy. In: Examining Robustness and Vul-
nerability of Networked Systems, IOS Press (2014)

2. Ding, W., Lin, G., Xue, G.: Diameter-constrained Steiner tree. In: Wu, W., Daescu,
O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 243–253. Springer, Heidelberg
(2010)

Solving the LCST P via Lagrangean relaxation 497

3. Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing Steiner
minimal trees. SIAM J. Appl. Math. 32(4), 835–859 (1977)

4. Gouveia, L., Magnanti, T.L.: Network flow models for designing diameter-
constrained minimum-spanning and Steiner trees. Networks 41(3), 159–173 (2003)

5. Hwang, F.K., Richards, D.S.: Steiner tree problems. Networks 22(1), 55–89 (1992)
6. Kang, J., Kang, D., Park, S.: A new mathematical formulation for generating a

multicast routing tree. Int. J. Manag. Sci. 12(8), 63–69 (2006)
7. Kang, J., Park, K., Park, S.: Optimal multicast route packing. Eur. J. Oper. Res.

196, 351–359 (2009)
8. Leggieri, V., Haouari, M., Layeb, S., Triki, C.: The Steiner tree problem with

delays: a tight compact formulation and reduction procedures. Technical report,
University of Salento, Lecce (2007)

9. Leggieri, V., Haouari, M., Triki, C.: An exact algorithm for the Steiner tree problem
with delays. Electr. Notes Discrete Math. 36, 223–230 (2010)

10. Oliveira, C.A.S., Pardalos, P.M.: A survey of combinatorial optimization problems
in multicast routing. Comput. Oper. Res. 32, 1953–1981 (2005)

11. Voß, S.: The Steiner tree problem with hop constraints. Ann. Oper. Res. 86, 321–
345 (1999)

The Pycao Software for 3D-Modelling

Laurent Evain(B)

The Pycao Software, University of Angers, Angers, France
laurent.evain@math.univ-angers.fr

Abstract. Describing a three dimensional object requires a computer
code whose maintenance is difficult. Part of the problem is the gap
between the 3D-software languages based on coordinates and the nat-
ural geometric description of the object which is primarily coordinate
free.

Pycao is a software built to reduce the gap between the natural lan-
guage and the software language in 3D-modelisation. The Pycao lan-
guage is designed to avoid coordinates as much as possible. The available
concepts include CSG geometry, the framework of affine geometry in a
massic space, an intuitive “box model”, and several systems of measure-
ments which mimic the operations in the workshop. It is developed as a
python module to get a code compact and easy to read.

Keywords: Modeller · 3D-software

1 Introduction : Overview of the Problematic

A scene can be illustrated using a “natural language”, or using coordinates.
To illustrate the difference between the two approaches, consider the situation of
the simple image below: a room with a floor, two walls, a table, and a cylindrical
flower pot at the center of the table.

The scene may be described with usual words without ambiguity using “the
carpenter paradigm”, that is with a dynamic description telling how simple
objects could be assembled to reproduce the geometry: the carpenter cuts par-
allelepipeds of appropriate size for the legs and the tray of the table. The legs
are positioned and glued on the tray corners. The table is oriented with the legs
down and moved to its final position. Finally, the flower pot is placed on the
center of the table. This description uses few numbers besides the dimensions of
the objects and the location of the table.

In contrast, the code for the existing software often includes a lot of numbers.
The wavefront .obj [OBJ] format is a quite standard specification which illus-
trates this remark. The code is basically a long list of coordinates corresponding
to the positions of the material points which characterize the objects. Other
specifications [IGES,STL] are also focused on the manipulations of coordinates.

The carpenter description and the .obj description are in some sense
opposite. The carpenter description is a short geometrical high-level description.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 498–504, 2016.
DOI: 10.1007/978-3-319-42432-3 64

The Pycao Software 499

The vision is dynamic in the sense that objects are moved and assembled. The
.obj is a lengthy coordinate based low-level description of motionless objects.

Obviously, it is difficult for a human to read or produce a .obj file with-
out a modeller. The existing software includes tools to simplify the coordinates
manipulations, introducing various concepts such as geometrical transforma-
tions, grouping, CSG operations, or genealogy systems to improve readability.
But, as far as I know, no systematic effort has been done to avoid coordinates
as much as possible and to reduce the code to its minimal possible size. The
language is usually a mix between a coordinate description of the objects and
some paradigms to simplify the description. Cad software is usually oriented
towards versatility and power through elaborated interfaces rather than read-
ability [SALOME].

The programs do not come to a consensus on the relevant paradigms. Blender
and Povray [BL,POV] are for instance two software applications which are quite
different in their approach and philosophy . An effort of the scientific community
is still required to reach consensus. In some sense, one looks for an analog of the
SQL language in the realm of 3D-modelisation which could be universal and
shared among different software.

The architecture could ideally be closed to the following form:

description of a picture in a high level universal language

⇓
Object obtained after compilation

⇓
Object sent to a plugin for appropriate treatment (thermal study, visualization...)

The Pycao software is developed as a step in this direction. The focus is on
a coordinate free description of 3D-objects and on the minimization of the size
of the descriptive code. There is at present a unique plugin, which allows the
visualization of the scene using Povray.

A final word on graphical interfaces. Some software, like Blender and
Sketchup [BL,SK] and many others, have graphical modellers. This graphical
approach makes it difficult to connect with other software components in a sci-
entific environment. Even on a standalone project, the unavoidable difficulty is
the localization of a point in a 3D-space with a 2D-screen. Selecting a point
requires an orientation of the camera, zooming, removing objects which block
the view of the target, switching to an other view to define the required point as
an intersection of two lines. Pycao does not address these problems. We look for

500 L. Evain

an efficient text description of a 3D-scene in the form of a formalized language.
We do not consider the graphical interface problematics, although graphical
interfaces could be compatible with the Pycao language.

I warmly thank the developers of Blender and Povray. I learned many things
from their software.

2 Example

To see Pycao concretely in action, consider the following code with the comments
embedded in the code. This is the code to describe the above table with the flower
pot.

Some skipped preamble

################

The dimensions/constants used are in the next 6 lines

################

tableTrayDimensions=Vector(1,.5,.05)

tableLegDimensions=Vector(.2,.03,.8)

placementVector=X+Y

flowerPotRadius=0.1

flowerPotHeight=0.3

flowerPotThickness=0.01

Describing the scene starts here

################

ground=plane(-Z,origin) # a plane with normal vector Z=(0,0,1) through the origin

wall1=plane(X,origin)

wall2=plane(Y,origin)

tableTray=Cube(tableTrayDimensions)

tableLeg1=Cube(tableLegDimensions)

tableLeg2=tableLeg1.copy()

tableLeg3=tableLeg1.copy()

tableLeg4=tableLeg1.copy()

The next 2 lines correspond to the movement of tableLeg1 to the

corner of the tray and to the bonding of the leg on the tray

#################

tableLeg1.move_against(tableTray,Z,Z,X,X,adjustEdges=-X-Y)

tableLeg1.transplant_on(tableTray)

tableLeg2.move_against(tableTray,Z,Z,X,X,adjustEdges=X+Y)

tableLeg2.transplant_on(tableTray)

tableLeg3.move_against(tableTray,Z,Z,X,X,adjustEdges=-X+Y)

tableLeg3.transplant_on(tableTray)

tableLeg4.move_against(tableTray,Z,Z,X,X,adjustEdges=X-Y)

tableLeg4.transplant_on(tableTray)

The tray is moved and the legs follow because of the bonding

################

bottomOfTheLeg1=tableLeg1.point(0,0,0,"aap")

tableTray.translate(origin-bottomOfTheLeg1) # vertical move: legs on the floor

tableTray.translate(placementVector) # horizontal move

The flower pot is described as a difference between 2 cylinders then

placed on the table

################

flowerPot=Cylinder(origin,origin+flowerPotHeight*Z,radius=flowerPotRadius)

toCut=Cylinder(origin+flowerPotThickness*Z,origin+2*flowerPotHeight*Z,radius=flowerPotRadius-flowerPotThickness)

flowerPot.amputed_by(toCut)

topCenterOfTable=tableTray.point(0.5,0.5,1,"ppp")

flowerPot.translate(topCenterOfTable-origin)

Some color and cameras parameters skipped

################

Calling the plugins for rendering

################

camera.shoot # takes the photo, i.e. creates the Povray file called camera.file

camera.show # shows the photo, i.e. calls Povray to render camera.file

The Pycao Software 501

3 Comparison with Existing Software and Objectives
for Pycao

Comments below are relative to Blender and Povray [BL,POV] which are the
leading 3D-software projects in the open source community. Other software
applications seem interesting from their documentation. The absence of com-
ments just indicates that I have not used them actively enough.

Blender comes both with a python API and a graphical interface. This com-
plementarity is useful as it makes it easy to check graphically the objects pro-
duced by the code. The API is not designed to be a universal language for 3D
description. It is a Python access to the low level layers of the Blender code.
In particular, there are limitations in the API, which arise as “context errors”.
The context errors correspond to gates to preserve the compatibility between the
graphical interface and the python API, since both of them may simultaneously
access the low level objects of Blender. It is usually very difficult to circumvent
these errors.

The Povray language is a language with a very complete and clear documen-
tation. On the other hand, the Povray language is a very low level language.
The syntax is rigid, including many curly braces. It is a much more low level
language than FORTRAN for instance. It is painful to produce and maintain the
required code. No complaint about Povray which achieves its mission: Povray is
a ray Tracer rather than a modeller. The language is built to feed the ray Tracer,
not to simplify the work of the developer.

The Pycao projects started in a applied research project whose goal is to test
the performance of innovative bikes with a geometry very different from the usual
bikes. After building prototypes, a more precise 3D-modelisation of the bikes was
needed before building them. The Pycao project is an attempt to construct the
tools that I missed for these steps: a language with a rich vocabulary, focused
on the simplification of the description, documented, free from any graphical
interface and from any integrated environment. Formalizing these needs, the
goal of Pycao is to offer a language with the following characteristics by order
of decreasing importance.

– a readable code, easy to check and maintain in a high level language
– a documentation with precise mathematical descriptions of the tools
– a language allowing the shortest possible description of the scene in terms of

number of lines
– a language of moderate size, avoiding redundancies or rarely used features,

usable by people who are not full time cad developers
– a strict separation between the description of the scene, and the plugins using

the scene (in particular visualization is an autonomous plugin)
– a possibility to build and share library of objects among users.

Pycao is written in Python, which is a language allowing rapid development,
and thus integrates well with the philosophy of Pycao. An other advantage of
Python is the access to a large number of mathematical software (numpy, scipy,
matplotlib, sage).

502 L. Evain

4 Technical Details

4.1 Massic Space and Affine Geometry

The framework of affine geometry is implemented in Pycao. Points and vectors
are objects with different types: the point (1, 1, 1) and the vector (1, 1, 1) are
distinct. This allows compilation checking: A translation requiring a vector as
an input will raise an exception if the input is a point.

The classical arithmetic rules involving points and vectors are possible : the
addition p + v of a point p and a vector v is a point, and the difference p1 − p2
between two points p1 and p2 is a vector. This arithmetic provides flexibility
for the definition of points and vectors. But it also speeds up the input process.
Here are some examples:

– If f is a transformation of the affine space with underlying linear map φf , and
if v is a vector, then f(v) returns φf (v) which is the only sensible operation
in this context

– Consider a curve defined using a list of points as an input. The input points
can be described in absolute terms or relative terms (with respect to the
preceding point using a vector). As an example, if p1, p4 are points and v1, v2
are vectors, then the lists [p1, p2, p3, p4] and [p1, v1, v2, p4] define the same curve
if p2 = p1 + v1 and p3 = p2 + v2.

– Barycenters are constructed using the natural arithmetic without calling spe-
cific functions. If p1 and p2 are points, then p3 = 0.3p1+0.7p2 is a well defined
point whereas v = 0.3p1 − 0.3p2 = 0.3(p1 − p2) is a well defined vector

To keep a moderate size of the Pycao code, we have unified the constructions
on the points and the vectors by considering the massic space, which is a 4-
dimensional vector space containing both the 3-dimensional affine space and the
3-dimensional vector space. This massic space is sometimes considered in some
textbooks [V] This unification makes the cost of implementation of this affine
framework very low. For instance, both a change of frame in the affine space and
a base change in the vector space can be realized with appropriate identifications
as base changes in the 4-dimensional vector space.

To speak concretely, a point p = (x, y, z, t) of the massic space has weight t
by definition. If t = 0, then p is identified with the 3D-vector with coordinates
(x, y, z). If t = 1, p is identified with the point with coordinates (x, y, z). These
identifications are only useful in the dialog between Pycao and the end-user.
Behind the scene, triples of coordinates are never used. Pycao manipulates only
massic points with four coordinates and all the computations are performed in
the 4-dimensional massic space.

4.2 Boxes and Frames Everywhere

Some objects in Pycao are called frameBoxes. They are used both as a box
to carry objects and as frames to describe position of points. FrameBoxes are
attached to objects. They are automatically created along with primitive objects.

The Pycao Software 503

They follow the objects in their moves and vice-versa. We may think a Framebox
as an imaginary box around the object.

To move objects to their position, we carry the objects in their Frameboxes.
The instruction

tableLeg1.move against(tableTray, Z, Z,X,X, adjustEdges = −X − Y)

corresponds to a move of the box containing the tableLeg1 against the box
containing the table. A similar instruction makes sense for non cubic objects
since it applies to the frameBoxes, not to the object itself.

The geometry of pair of boxes is intuitive, however it includes many possi-
bilities. If the first box is kept fixed, and if the center of a second box is kept
fixed, then there are 24 ways to move the second box parallel to the first. When
the dimension of the faces are different, there are several ways to move a box
against an other: aligning the centers of the faces of contact or aligning the bor-
ders, with possible offsets. When 2 faces have a contact in their center, there are
still two possibilities, since the vectors normal to the faces may be positively or
negatively proportional. All these possibilities are formalized as options in the
move against method.

Frameboxes are used to make measurements. There are several possibilities
to proceed corresponding to the natural measurements done in a workshop.
A point may be 5 cm from the left face (“absolute measurement”) or 5 cm from
the right face (“negative measurement”) or at equal distance of the two faces
(“proportional measurement”). In other words, Frameboxes carry various sys-
tems of coordinates corresponding to different strategies of measurement. As an
example, in the instruction

topCenterOfTable = tableTray.point(0.5, 0.5, 1, “ppp”)

the option “ppp” means “p(roportional)-p(roportional)-p(roportional)”, i.e. all
three axes use proportional measurement.

4.3 Markers

Markers are objects automatically created with objects to simplify the posi-
tioning of objects. For instance, once we have built a cylinder, it is sometimes
handful to consider the central segment to perform intermediate computations.
We could let the developer define the segment himself with a few lines of code.
But the philosophy of Pycao is to shorten the code length. On the other hand,
if we define the segment automatically with each cylinder, and more generally if
we define many markers, this creates a long list of unnecessary variables partially
recomputed at each movement of an object.

The strategy followed in Pycao to solve this dilemma is to define the markers
as functions. With many cylinders, a unique segment function is necessary for
all the cylinders, which does not change when the cylinders move. A simple
call to the function computes the segment on demand when it is needed in the
computations.

504 L. Evain

In Pycao, we introduce a marker for each interesting characteristic element
which cannot be defined with direct readable code.

4.4 Unions and Intersections

Pycao supports two kinds of union, both classical. The first union (the genealogy
system) is asymmetric. When the child moves, the parent stays fixed, but when
the parent moves, the child moves and follows (recursively, the child of the child
follows the move, and so on). The colors/material of each part are defined inde-
pendently. This type of union is important for animations. For instance, suppose
that we modelize a bike movement using a differential equation and that we want
to visualize the results. We need an asymmetric link between the objects to be
able to move the wheel (the child) without moving the entire bike (the parent).

The other type of union (the Compound class) is symmetric. Objects are
aggregated in a compound. Any change on the compound affects each of its
object. As compounds may be nested, this is a useful concept to build libraries.

4.5 Visibility

Objects (including the camera) carry a visibility index. An object with no parents
and no children is seen by the camera if its visibility is at least the visibility of
the camera. This concept helps to concentrate on some parts of the scene.

There are some rules elaborated to make the behavior natural when a geneal-
ogy system, or unions, intersection, differences are involved. For instance, to
minimize the changes required in the code to display a small part of the scene,
it is natural to hide the children if the parents are not visible.

References

[OBJ] https://en.wikipedia.org/wiki/Wavefront .obj file
[IGES] https://en.wikipedia.org/wiki/IGES
[STL] https://en.wikipedia.org/wiki/STL (file format)

[SALOME] http://www.salome-platform.org/user-section/about/geometry
[BL] https://www.blender.org/manual/modeling/index.html

[POV] http://www.povray.org/documentation/3.7.0/
[V] Vienne, L.: Prsentation algbrique de la gomtrie classique (1996). ISBN:978-

2711788385
[SK] https://www.sketchup.com/

https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/IGES
https://en.wikipedia.org/wiki/STL_(file_format)
http://www.salome-platform.org/user-section/about/geometry
https://www.blender.org/manual/modeling/index.html
http://www.povray.org/documentation/3.7.0/
https://www.sketchup.com/

Normal Forms for Operators via Gröbner Bases
in Tensor Algebras

Jamal Hossein Poor, Clemens G. Raab, and Georg Regensburger(B)

Johann Radon Institute for Computational and Applied Mathematics (RICAM),
Austrian Academy of Sciences, Linz, Austria

{jamal.hossein.poor,clemens.raab,georg.regensburger}@ricam.oeaw.ac.at

Abstract. We propose a general algorithmic approach to noncommu-
tative operator algebras generated by linear operators using quotients
of tensor algebras. In order to work with reduction systems in tensor
algebras, Bergman’s setting provides a tensor analog of Gröbner bases.
We discuss a modification of Bergman’s setting that allows for smaller
reduction systems and tends to make computations more efficient. Verifi-
cation of the confluence criterion based on S-polynomials has been imple-
mented as a Mathematica package. Our implementation can also be used
for computer-assisted construction of Gröbner bases starting from basic
identities of operators. We illustrate our approach and the software using
differential and integro-differential operators as examples.

Keywords: Operator algebra · Tensor algebra · Noncommutative
Gröbner basis · Reduction systems

1 Introduction

For an algorithmic treatment of many common operator algebras, like differen-
tial and difference operators, skew polynomials are a well-established algebraic
construction; see e.g. the survey [4] describing also implementations in computer
algebra systems. However, not all common operator algebras are covered by this
setting. For example, integral operators cannot be constructed that way.

The principle that can always be applied is construction by generators and
relations. In practice, normal forms are needed for effective computation. Find-
ing and proving the structure of normal forms is a difficult task, the general
problem is even undecidable. For skew polynomials, normal forms are given by
the standard polynomial basis. For tensor algebras, Bergman’s paper [1] also pro-
vides a framework in which reduction systems and corresponding normal forms
can be analyzed, analogous to Gröbner bases. Tensor algebras can be seen as a
generalization of free noncommutative polynomial algebras and inherit all their
algorithmic obstructions. At the same time, parts of the tensor setting can be
automated, in particular, verification of the confluence criterion and subsequent

All authors were supported by the Austrian Science Fund (FWF): P27229.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 505–513, 2016.
DOI: 10.1007/978-3-319-42432-3 65

506 J. Hossein Poor et al.

computations with normal forms. We provide an implementation in the Math-
ematica package TenReS including our generalization of Bergman’s setting [6]:
http://gregensburger.com/software/TenReS.zip.

When representing linear operators as tensors, composition of operators is
modeled by the tensor product. We briefly describe the main building blocks
of the algebraic construction. Over some K-module of basic operators M , we
consider the tensor algebra

K〈M〉 =
∞⊕

n=0

M⊗n,

where K is commutative ring with unit element. Operator identities are encoded
as a reduction system Σ for K〈M〉. Then the operator algebra is constructed as

K〈M〉/IΣ ,

where IΣ is a two-sided ideal induced by the reduction system Σ. This setting
allows for finite reduction systems even in cases where the module M does not
have a finite basis. As our examples illustrate, this approach does not make use
of a basis of M at all.

2 Reduction Systems for Tensor Algebras

Using the well-known example of differential operators, we explain the main
theoretical notions as well as the most important commands of our package.
Usually one defines the differential operators directly via skew polynomials with
normal forms

∑
fi ∂i and noncommutative multiplication defined by

∂f = f∂ + f ′.

Suppose we do not already know the normal forms of differential operators
and we just have the definition of the derivation ∂ as a K-linear operator on some
differential K-algebra (R, ∂) obeying the Leibniz rule ∂fg = (∂f)g + f∂g. (Note
that we use operator notation in this paper.) Recall that differential operators
with polynomial coefficients (Weyl algebra) over a field K ⊇ Q can be defined
as the quotient algebra K〈X,D〉/(DX − XD − 1) of the free noncommutative
polynomial algebra K〈X,D〉 modulo the two-sided ideal (DX − XD − 1). Now,
we want to do an analogous construction for the differential operators with
coefficients in an arbitrary differential K-algebra (R, ∂). To this end, we work
in the tensor algebra over the K-module M = R ⊕ K∂. First, we explain some
main points informally before explaining necessary technical details later.

We interpret elements f ∈ R as multiplication operators, ∂ as the derivative
operator on R. Then we have three basic identities between these operators:
Multiplication by 1 ∈ R acts like applying no operator at all. So we can replace
it by the empty tensor ε, which represents the unit element in the tensor algebra.
For f, g, h ∈ R with fg = h the multiplication operators

f ⊗ g and h

http://gregensburger.com/software/TenReS.zip

Gröbner Bases in Tensor Algebras 507

act in the same way on R. Finally, the Leibniz rule implies that the operators

∂ ⊗ f and f ⊗ ∂ + ∂f

act in the same way as well. Deciding to move the differential operators to the
right results in the following reduction rules to simplify parts of tensors repre-
senting a composition of multiplication operators and the derivative operator:

1 �→ ε, f ⊗ g �→ fg, and ∂ ⊗ f �→ f ⊗ ∂ + ∂f.

A priori it is not clear that we will always end up with the same result if we
apply the reduction rules in different ways. Suppose we have a tensor of the form

f1 ⊗ f2 ⊗ f3

with f1, f2, f3 ∈ R arbitrary but fixed. Then we can apply the reduction rule for
composition of multiplication operators in different ways obtaining (f1f2) ⊗ f3
and f1 ⊗ (f2f3). Trivially, another application of the same rule yields f1f2f3 in
both cases. In general, a minimal case where two (not necessarily distinct) rules
can be applied differently to a tensor is called an ambiguity and the difference

(f1f2) ⊗ f3 − f1 ⊗ (f2f3)

is called the corresponding S-polynomial. If all S-polynomials of an ambiguity
can be reduced to zero by the reduction rules, like above for all f1, f2, f3, then
we call the ambiguity resolvable.

Analogous to Buchberger’s criterion for Gröbner bases [3] and the
Composition-Diamond Lemma for Gröbner-Shirshov bases [2], we have a con-
fluence criterion for tensor reduction systems due to Bergman [1]. A reduction
system defines unique normal forms if and only if all ambiguities are resolvable.
Termination of the reduction process, depends on a compatible Noetherian order-
ing on words; see [1,6] for details. Throughout this paper and in the package,
we tacitly assume that such an ordering exists.

One can distinguish four different types of ambiguities: overlaps and inclu-
sions, each with or without specialization. The ambiguity above is an overlap
ambiguity since the factors f1⊗f2 and f2⊗f3 of the tensor f1⊗f2⊗f3 on which
the rules act overlap. There is no specialization involved since all cases on which
the rules may act actually arise in this way. On the other hand, the tensor

∂ ⊗ c

with c ∈ R and ∂c = 0 may be reduced by the rules 1 �→ ε or ∂ ⊗f �→ f ⊗∂ +∂f
to either c∂ or c ⊗ ∂. Obviously, another application of 1 �→ ε in the second case
gives c∂ as well, so this ambiguity is resolvable again. In this case one factor c
of ∂ ⊗ c on which one rule acts is contained in the other factor ∂ ⊗ c acted on
by the other rule. So we call it an inclusion ambiguity. Moreover, not all cases
of the rule ∂ ⊗ f �→ f ⊗ ∂ + ∂f are needed here, just f ∈ K � R, so we say that
this ambiguity involves specialization.

508 J. Hossein Poor et al.

2.1 Tensor Algebras

For computation in the tensor algebra K〈M〉 over the K-module M , we need to
be able to check when objects are contained in K. The user has to implement
the function CoeffQ returning True whenever its argument is contained in K.
Based on that, tensors m1⊗· · ·⊗mn ∈ K〈M〉 are represented as Prod[m1, . . . , mn]
respecting K-multilinearity of the tensor product.

In order to fix domains for the reduction rules, we need corresponding direct
sum decompositions of the module M indexed by some finite set (alphabet). In
our example above, we define MF = R and MD = K∂ so that

M = MF ⊕ MD.

Hence, in terms of the word monoid 〈Y 〉 over the alphabet Y = {F,D}, we
have the following decomposition of the tensor algebra into modules MW =
My1 ⊗ · · · ⊗ Myn

for W = y1 . . . yn ∈ 〈Y 〉:

K〈M〉 =
⊕

W∈〈Y 〉
MW .

For each submodule MF and MD of M , the user has to implement a mem-
bership test MemberQF and MemberQD indexed by the corresponding letter of the
alphabet. Moreover, the user has to implement all computations with elements
of each module. In particular, this applies to additional operations on a module,
like in our example multiplication and derivation on MF respecting the Leib-
niz rule in R. For computation with S-polynomials, we need to compute with
general elements of non-cyclic modules. For example, in the module MF , gen-
eral elements will always be called F[1], F[2], . . . , which together with their
derivatives also have to be recognized by the membership test.

In order to formalize the rule 1 �→ ε, we need a refinement of the above
decomoposition of M by choosing a complement MF̃ of MK = K such that

MF = MK ⊕ MF̃ .

Of course, also for the new submodules, membership tests have to be imple-
mented. All such refinements of submodules have to be stored in the variable

Specialization={F→{K,~F}}.

Altogether, with X = {K, F̃ ,D} we have two decompositions of M :

M =
⊕

x∈X

Mx =
⊕

y∈Y

My.

For all cyclic submodules the user should store the letter and the generator as a
pair in the list CyclicModules. In our example we denote ∂ by Diff, so that

CyclicModules={{K,1},{D,Diff}}.

Gröbner Bases in Tensor Algebras 509

2.2 Reduction Systems

With the submodules introduced above, the reduction rule f ⊗ g �→ fg can
be formally defined as the pair (FF, hFF) consisting of the word FF ∈ 〈Y 〉
and the module homomorphism hFF : MFF → MF ⊂ K〈M〉. The homomor-
phism hFF is defined by f ⊗ g �→ fg and could be implemented by the user
as hFF[f , g] := Prod[mul[f, g]], for example. Similarly, we have the reduction
rule (DF, hDF), where hDF : MDF → MFD ⊕ MF may be implemented as
hDF[Diff, f] := Prod[f, Diff] + Prod[Diff[f]]. Thanks to the refinement, we also
can define the reduction rule 1 �→ ε as the pair (K,hK) with the homomorphism
hK : MK → Mε (hK [1] := Prod[]), where ε is the empty word. These homomor-
phisms have to be implemented by the user.

Our reduction system over the combined alphabet Z = X ∪ Y is given by

Σ =
{
(FF, f ⊗ g �→ fg), (DF, ∂ ⊗ f �→ f ⊗ ∂ + ∂f), (K, 1 �→ ε)

}

The corresponding definition for our package is

RedSys = {{{F, F}, hFF}, {{D, F}, hDF}, {{K}, hK}}.

In general, any reduction rule r = (W,h), where h is a K-module homomor-
phism h : MW → K〈M〉 reduces tensors a ⊗ w ⊗ b with a ∈ MA, w ∈ MW , and
b ∈ MB for some A,B ∈ 〈Z〉 by a ⊗ w ⊗ b →r a ⊗ h(w) ⊗ b. In other words,
similarly to polynomial reduction, we “replace” the “monomial” w by the “tail”
h(w) given by the homomorphism h. The reduction ideal induced by a reduction
system Σ is defined as the two-sided ideal

IΣ := (t − h(t) | (W,h) ∈ Σ and t ∈ MW) ⊆ K〈M〉.
If one tensor can be reduced to another, then their difference is contained in IΣ .
This is implemented via the command ApplyRules. For example, we can reduce
f1 ⊗ ∂ ⊗ f2 to (f1f2) ⊗ ∂ + f1∂f2 by the reflexive-transitive closure ∗→Σ :

2.3 Normal Forms and Confluence

Determination of normal forms and ambiguities can be reduced to problems in
the word monoid 〈Z〉 over the combined alphabet. We introduce the notion of
specializing a word W ∈ 〈Z〉 to a word in 〈X〉 by replacing all letters of W from
Y \ X by corresponding letters from X. For example, the specializations of the
word FFD ∈ 〈Z〉 are given by {KKD,KF̃D, F̃KD, F̃ F̃D} ⊂ 〈X〉. In terms of
modules, we then have that MW is the direct sum of all MV such that V is a
specialization of W .

The module K〈M〉irr of irreducible tensors, i.e. tensors that cannot be
reduced by any reduction rule in Σ, is determined by the set of irreducible
words 〈X〉irr ⊆ 〈X〉 via

K〈M〉irr =
⊕

W∈〈X〉irr
MW .

510 J. Hossein Poor et al.

Irreducible words are those words over the refined alphabet X that do not contain
a subword that is a specialization of the word W of any rule (W,h) ∈ Σ. In our
example one easily sees that the irreducible words are given by Dj and F̃Dj

with j ∈ N0. Consequently, irreducible tensors are of the form ∂⊗j and f ⊗ ∂⊗j

with j ∈ N0 and f ∈ MF̃ and K-linear combinations thereof.
In order to show that irreducible tensors already define a normal form of

tensors in K〈M〉 modulo the reduction ideal IΣ , we need to verify that the S-
polynomials of all ambiguities can be reduced to zero. In our example, there are
5 ambiguities, which we may informally denote by FFF , DFF , KF , FK, and
DK. Two of them (FFF and DK) already have been dealt with above. The
S-polynomials associated to the remaining ambiguities are given by

hDF (∂ ⊗ f) ⊗ g − ∂ ⊗ hFF (f ⊗ g) = f ⊗ ∂ ⊗ g + (∂f) ⊗ g − ∂ ⊗ (fg)
hFF (c ⊗ f) − hK(c) ⊗ f = 0
hFF (f ⊗ c) − f ⊗ hK(c) = 0

for all c ∈ MK and f, g ∈ MF . The first “family” can be reduced to zero by the
rules (FF, hFF) and (DF, hDF) and the others are zero anyway.

Using the commands ExtractReducibleWords, GenerateAmbiguities,
SPoly, and ApplyRules of the package we can verify that all S-polynomials
reduce to zero in the following way.

This process is also available through the command CheckResolvability, which
returns a list of all ambiguities that are not resolvable together with the reduced
from of their S-polynomials, see also its application in the following section.
If CheckResolvability[RedSys] returns the empty list, then the irreducible
tensors w.r.t. the reduction system given by RedSys really are normal forms.

3 Applications

In this section, we illustrate how to use the package for constructing a confluent
reduction system starting from a given one. For tensor reduction systems, the
computer-assisted process is heuristic and users can proceed in different ways.
In each step, we add new rules to the reduction system based on S-polynomials,
similar to Buchberger’s algorithm for computing Gröbner bases [3] and
Knuth-Bendix completion [7].

Gröbner Bases in Tensor Algebras 511

As an example, we consider the algebra of integro-differential operators.
Based on the free noncommutative polynomial algebra using a basis of the “func-
tion” algebra, it was introduced in [8,9] to study boundary problems; see also [10]
for an automated confluence proof relying on free integro-differential algebras.
First, we recall the definition of an integro-differential algebra [5,9].

Definition 1. Let K be a commutative ring and let (R, ∂) be a differential K-
algebra such that 1 ∈ R and ∂R = R. Moreover, let

∫
: R → R be an K-linear

operation on R such that
∂
∫

f = f

for all f ∈ R. Then we call (R, ∂,
∫

) an integro-differential algebra over K if
the evaluation E: R → K defined by E = id − ∫

∂ is multiplicative, i.e. for all
f, g ∈ R we have Efg = (Ef)Eg.

We fix an integro-differential K-algebra (R, ∂,
∫

) with ring of constants K
and evaluation E = id − ∫

∂. Recall from [5] that in any integro-differential
algebra, we have the direct sum decomposition

R = K ⊕ ∫
R

into constant and non-constant “functions”. We consider the corresponding K-
modules MK = K and MF̃ =

∫
R. Note that the elements of MK and MF̃ are

not interpreted as functions but as multiplication operators induced by those
functions. For the K-linear operators ∂,

∫
, and E we consider the free modules

MD = K∂, MI = K
∫

, and ME = KE generated by them. Now, let

M = MF ⊕ MD ⊕ MI ⊕ ME

with MF = MK ⊕MF̃ and alphabets Y = {F,D, I, E} and X = {K, F̃ ,D, I, E}.
In order to compute with these operators we need to collect the identities they
satisfy in form of a reduction system. The above definition contains the following
basic identities for all f, g ∈ R:

∂fg = f∂g + (∂f)g, ∂
∫

g = g,
∫

∂g = g − Eg, Efg = (Ef)Eg.

Based on these, we start with the following reduction system:

Σ = {(FF, f ⊗ g �→ fg), (DF, ∂ ⊗ f �→ f ⊗ ∂ + ∂f), (DI, ∂ ⊗ ∫ �→ ε),
(ID,

∫ ⊗ ∂ �→ ε − E), (EF,E ⊗ f �→ (Ef) ⊗ E), (K, 1 �→ ε)}
Using our package, we determine that out of the 10 ambiguities 6 are resolvable
and 4 remain. The reduced forms of the corresponding S-polynomials give rise
to additional identities, among tensors as well as among elements of MF .

512 J. Hossein Poor et al.

To proceed, we introduce 3 new rules. We also update the implementation of
computations in MF = R correspondingly, including the relation E1 = 1.

Σ1 := Σ ∪ {(DE, ∂ ⊗ E �→ 0), (EI,E ⊗ ∫ �→ 0),
(IFD,

∫ ⊗ f ⊗ ∂ �→ f − ∫ ⊗ ∂f − (Ef)E)}

Repeating the steps above, 15 of 20 ambiguities can be resolved. Only 3 of
the 5 S-polynomials not reduced to zero are essentially different, and we add
corresponding rules to the reduction system.

Σ2 := Σ1 ∪ {(EE,E ⊗ E �→ E), (IFE,
∫ ⊗ f ⊗ E �→ ∫

f ⊗ E),
(IFI,

∫ ⊗ f ⊗ ∫ �→ ∫
f ⊗ ∫ − ∫ ⊗ ∫

f)}

Now, among 37 ambiguities 35 are resolvable, resulting in two new rules.

Σ3 := Σ2 ∪ {(IE,
∫ ⊗ E �→ ∫

1 ⊗ E), (II,
∫ ⊗ ∫ �→ ∫

1 ⊗ ∫ − ∫ ⊗ ∫
1)}

Finally, we get 52 ambiguities which are all resolvable. This means that the
derived reduction system Σ3 is confluent. The function IrreducibleWords of the
package generates all irreducible words up to a given length. One can prove that
the irreducible words are given by F̃EDj and F̃ IF̃ with j ∈ N0. Consequently,
irreducible tensors are K-linear combinations of tensors of the form f ⊗E⊗ ∂⊗j

and f ⊗ ∫ ⊗ g with j ∈ N0, f, g ∈ MF̃ where f , g, and E can also be absent.

References

1. Bergman, G.M.: The diamond lemma for ring theory. Adv. Math. 29, 178–218
(1978)

2. Bokut, L.A., Chen, Y.: Gröbner-Shirshov bases and their calculation. Bull. Math.
Sci. 4, 325–395 (2014)

3. Buchberger, B.: An algorithm for finding the bases elements of the residue class ring
modulo a zero dimensional polynomial ideal (German). Ph.D. thesis, University of
Innsbruck (1965)

4. Gómez-Torrecillas, J.: Basic module theory over non-commutative rings with com-
putational aspects of operator algebras. In: Barkatou, M., Cluzeau, T., Regens-
burger, G., Rosenkranz, M. (eds.) AADIOS 2012. LNCS, vol. 8372, pp. 23–82.
Springer, Heidelberg (2014)

5. Guo, L., Regensburger, G., Rosenkranz, M.: On integro-differential algebras. J.
Pure Appl. Algebra 218, 456–473 (2014)

6. Hossein Poor, J., Raab, C.G., Regensburger, G.: Algorithmic operator algebras
via normal forms for tensors. In: Proceedings of ISSAC 2016, p.8. ACM, New York
(2016, to appear)

7. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. Compu-
tational Problems in Abstract Algebra, pp. 263–297. Pergamon, Oxford (1970)

8. Rosenkranz, M.: A new symbolic method for solving linear two-point boundary
value problems on the level of operators. J. Symbolic Comput. 39, 171–199 (2005)

Gröbner Bases in Tensor Algebras 513

9. Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for
linear ordinary differential equations in differential algebras. J. Symbolic Comput.
43, 515–544 (2008)

10. Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis for boundary prob-
lems: from rewriting to parametrized Gröbner bases. Numerical and Symbolic Sci-
entific Computing, pp. 273–331. Springer, Vienna (2012)

Robust Construction of the Additively-Weighted
Voronoi Diagram via Topology-Oriented

Incremental Algorithm

Mokwon Lee1, Kokichi Sugihara2, and Deok-Soo Kim1(B)

1 School of Mechanical Engineering, Hanyang University, Seoul, Korea
mwlee@voronoi.hanyang.ac.kr, dskim@hanyang.ac.kr

2 Meiji University, Tokyo, Japan
kokichis@meiji.ac.jp

http://voronoi.hanyang.ac.kr,

http://home.mims.meiji.ac.jp/∼sugihara/Welcomee.html

Abstract. Voronoi diagrams tessellate the space where each cell corre-
sponds to an associated generator under an a priori defined distance and
have been extensively used to solve geometric problems of various dis-
ciplines. Additively-weighted Voronoi diagrams, also called the Voronoi
diagram of disks and spheres, have many critical applications and a few
algorithms are known. However, algorithmic robustness remains a major
hurdle to use these Voronoi diagrams in practice. There are two impor-
tant yet different approaches to design robust algorithms: the exact-
computation and topology-oriented approaches. The former uses high-
precision arithmetic and guarantees the correctness mathematically with
the cost of a significant use of computational resources. The latter focuses
on topological properties to keep consistency using logical computation
rather than numerical computation. In this paper, we present a robust
and efficient algorithm for computing the Voronoi diagram of disks using
a topology-oriented incremental method. The algorithm is rather simple
as it primarily checks topological changes only during each disk is incre-
mentally inserted into a previously constructed Voronoi diagram of some
other disks.

Keywords: Topology-oriented · Additively-weighted · Voronoi
diagram · Disk · Circle · Robustness · Algorithm

1 Introduction

The Voronoi diagram is a tessellation of space where each element of the tes-
sellation is associated with a generating particle. The ordinary Voronoi diagram
VD of a set of points P = {p1, p2, . . . , pn}, pi ∈ R

d, is the tessellation so that
the Voronoi cell of pi ∈ P is the set of locations closer to pi than to pj ∈ P ,
i �= j for a given distance definition [1,2]. Suppose that pi ∈ P is assigned
a weight wi ≥ 0. In other words, Pw = {pw1 , pw2 , · · · , pwn } where pwi = (pi, wi).

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 514–521, 2016.
DOI: 10.1007/978-3-319-42432-3 66

Robust Construction of the Additively-Weighted Voronoi Diagram 515

Then, the power diagram can be similarly defined with the power distance which
is defined as dist(x, pi)2 − wi, where dist() denotes the Euclidean distance func-
tion. Let D = {d1, d2, . . . , dn} be a set of disks where di = (pi, ri) is a disk
with the center pi and radius ri. Let VC(di) denote the V-cell of di defined as
VC(di) = {x ∈ R

d | dist(x, pi) − ri ≤ dist(x, pj) − rj , i �= j}. Then, the Voronoi
diagram of disks D is defined as VD(D) = {VC(d1),VC(d2), · · · ,VC(dn)} which
is also frequently called the additively-weighted Voronoi diagram. It turns out
that pwi = (pi, wi) corresponds to a disk di = (pi, ri) with the center pi and the
radius ri =

√
wi. Then, dist(x, pi)2 − r2i is the square of the tangential distance

from x to ∂di. The connectivity among the topological entities in the tessellations
above are usually represented in a winged-edge data structure.

The Voronoi diagram of disks in R
2 [3,4] is important for both on its own

right for diverse applications [5–8] and for its extension to the Voronoi diagram
of spheres in R

3 which has many important applications. Despite of many previ-
ous studies [3,4,9–14], its robust and efficient computation remains a challenge.
This is particularly the case with the Voronoi diagram of disks which has topo-
logical properties that do not exist in the ordinary Voronoi diagram. For details,
see [3,4].

There are two general approaches to cope with degeneracy and instability
in the construction of geometric structures. The exact computation approach
employs high-precision arithmetic to guarantee the correctness of geometric deci-
sions and thus avoids inconsistency due to numerical errors [15–17]. It can guar-
antee the correctness of the behavior of the resulting software, but in return of
this it is necessary to pay high cost in computation. The exact computation is
widely used in prevailing software such as CORE [18], CGAL [19,20], etc. The
topology-oriented approach is based on the observation that numerical computa-
tions are imprecise and hence we cannot rely on them [21,22]. We concentrate on
the purely topological properties of geometric objects and try to keep their con-
sistency by using logical computation instead of numerical computation. Hence,
the implementation of a topology-oriented algorithm is usually rather easy.

In this paper, we present a new topology-oriented incremental algorithm for
the Voronoi diagram of disks. It turns out that the proposed algorithm is accu-
rate, efficient, and robust and we believe that the idea can be easily generalized
for its counterpart for the additively-weighted Voronoi diagram in R3.

2 Anomalies of the Voronoi Diagram of Disks

The topological properties of the Voronoi diagram of disks is significantly dif-
ferent from its counterpart for points due to the intriguing cases called anom-
aly. Figure 1 shows the cases that can occur in the Voronoi diagram of disks.
Figure 1(a) shows an ordinary case where each pair of disks defines at most
one V-edge (“V-” denotes “Voronoi-”). Let us call a V-cell of a disk d which is
bounded by two V-edges an anomaly and the d an anomaly disk. Such a case is
referred to an anomaly because three disks define two V-vertices, not one as its
counterpart of for points. Figure 1(b) shows a case that the V-cell of dnew defined

516 M. Lee et al.

by the new disk dnew is bounded by only two V-edges. Hence, dnew becomes an
anomaly disk by itself and this case is referred to a self-anomaly. In Fig. 1(c)
shows a case that the V-cell of dsmall becomes bounded by only two V-edges by
the new disk dnew. Hence, the V-cell of dsmall becomes an anomaly V-cell. As
dnew causes a neighbor V-cell to be anomaly, the V-cell of dnew is referred to as
a vicinity-anomaly.

(a) (b) (c)

Fig. 1. Three cases in the Voronoi diagram of disks. (a) ordinary case, (b) self-anomaly
case, (c) vicinity anomaly case.

3 Topology-Oriented Incremental Construction of the
Voronoi Diagram of Disks

The proposed algorithm for the Voronoi diagram of circular disks in R
2 inherits

the original topology-oriented incremental algorithm (hereafter, abbreviated as
TOI) for the ordinary Voronoi diagram VD(P) of a point set P in R

2 proposed in
1992 [21,22]. Its basic idea was to insert each point pi ∈ P into pre-constructed
Voronoi diagram VDold of P ′ = {p1, p2, . . . , pi−1} ⊆ P with a priority of topolog-
ical consistency. Let VC′(pj) be the V-cell corresponding to the point generator
pj , j = 1, 2, . . . , i, in VDnew. In the ordinary Voronoi diagram of points, the new
V-cell VC′(pi) contains at least one old V-vertex of VDold and there exists a
V-cell VC(pj), j = 1, 2, . . . , i − 1, which contains pi.

Suppose that VC(pj) contains pi. We find the V-vertex of VC(pj) which is
contained in VC′(pi) and insert it to Vremoved, which is the set of V-vertices to
be trimmed off by the new V-cell VC′(pi). Then, for all the V-edges incident
to each of the V-vertices in Vremoved, we check if the V-edge should be split
into two segment or not: one inside of and the other outside of VC′(pi). The
test can be done by examining the two V-vertices of a V-edge and an inside V-
vertex is also inserted into Vremoved if and only if it passes Segmentation-Test.
This propagation process continues until when the V-vertices in Vremoved are all
blocked by those cannot be contained in Vremoved.

Segmentation-Test is as follows. When VC′(pj) and VC′(pi) share one and
only one V-edge, ∂VC(pj) splits into two segments: one to be trimmed by VC′(pi)
and the other not trimmed. If only one segment exists, ∂VC(pj) is entire removed

Robust Construction of the Additively-Weighted Voronoi Diagram 517

and VC′(pj) has an empty region. If more than two segments exist, VC′(pj) and
VC′(pi) share more than one V-edge and it is abnormal.

The original TOI-algorithm above should be revised so that the anomalies
can be taken into consideration in the Voronoi diagram of disks. Let a V-edge of
VDold which twice intersect ∂VC′(di) be anomalizing V-edge (eA for short). The
intermediate part of an eA is trimmed in a self-anomaly case or remains in a
vicinity anomaly case after a new disk is inserted. While VC′(di) contains at least
one old V-vertex in the point set case, Fig. 1(b) shows that the V-cell VC′(dnew)
of dnew may not contain any old V-vertex in the Voronoi diagram of disks. The
V-edge trimmed by VC′(dnew) is an anomalizing V-edge and is split into two V-
edges by inserting a fictitious V-vertex which is contained in VC′(dnew). Then,
the algorithm can proceed just like the original TOI-algorithm.

Figure 1(c) shows a vicinity anomaly case when dnew is most recently inserted.
Then, the V-edge between dbig and dsmall remains while its two V-vertices
are removed. The V-edge also becomes an anomalizing one and we also split
it into two V-edges by inserting a fictitious V-vertex. Note that the two V-
vertices are contained in VC′(dnew) but the fictitious V-vertex is not. Hence,
the two V-edges after the split remain in the new Voronoi diagram. In Fig. 1(c),
VC′(dbig) and VC′(dtiny) share two V-edges. To reflect the observation above,
Segmentation-Test should be revised to Revised-Segmentation-Test to check
the number of anomalies and the number of segments of each V-cell.

4 Experiments

The proposed TOI-algorithm was implemented in Visual C++ and thoroughly
tested. The code is embedded in the BetaConcept program [8] that can be
freely available at Voronoi Diagram Research Center at Hanyang University.
The experimental was done in the following environment: Intel Core2 Duo
2.93 GHz, 2.93 GHz; 4.00 GB RAM; Windows 7 Ultimate K (32bit); Visual C++
on Microsoft Visual Studio 2010 (32bit).

The test data set TestSet consisted of 5 * 4 = 20 sets of 100 random disk
models (i.e. 2,000 disk models) where each model has from 100 to 10,000 disks.
Each model consists of disks where the radius of each disk is assigned at random
from a uniform distribution following five different ranges: [rmin = 1.0, rmax =
3.0], [1.0, 5.0], [1.0, 10.0], [1.0, 50.0], and [1.0, 100.0]. For convenience, we denote
each group by referring to only rmax (referring to as the radius range R, for
notational convenience) as rmin is identically 1.0 for all disks in TestSet. The
disks are contained within a sufficiently big enclosing circle. Let ρ be the packing
density which is defined as the ratio of the union of the area of all disks in a
model to that of an enclosing circle. We chose four values of ρ: 0.1, 0.2, 0.3, and
0.4 as a data set for ρ > 0.5 seems time consuming or infeasible to produce.
We reference each model by MODEL(ρ, rmax, n) where ρ and n represent the
packing density and the number of disks, respectively. Figure 1(a), (b), and (c)
show the constructed Voronoi diagrams of a random disk model, a high anomaly
case, and a degenerate case computed by the BetaConcept program using the

518 M. Lee et al.

proposed TOI-algorithm, respectively. Figure 3(a) shows the computation time
spent to compute the Voronoi diagrams of the TestSet data. CGAL using filtered
exact computation is much slower than TOI-algorithm but produces correct
results for all degenerate data sets we tested. However, CGAL “without” the
exact computation produces in correct results for many degenerate data sets, as
shown in Fig. 3(b), even if it is slightly faster than the proposed TOI-algorithm
which has produced always correct results regardless degeneracy level (Fig. 2).

(a) (b) (c)

Fig. 2. The result Voronoi diagrams via TOI-algorithm. (a) a random model, (b) an
anomaly model, (c) a degeneracy model.

(a) (b)

Fig. 3. Experimental result. (a) Computation time of the three codes: TOI, CGAL
(without exact computation), and CGAL-filtered-exact (with exact computation),
(b) Incorrect result produced from CGAL (without exact computation). (Color figure
online)

How frequently do anomalies occur? Figure 4 shows the anomaly occurrence
per 100 disks for TestSet (In this experiment, we counted the number of V-cells
bounded by two, and only two, V-edges). In Fig. 4(a), the horizontal and vertical
axes show the density of models and the average number of anomalies per 100
disks occurred in the 100 models for each radius range. Figure 4(b) shows that the

Robust Construction of the Additively-Weighted Voronoi Diagram 519

number of anomalies per 100 disks remain almost constant and it seems that this
measure is independent of the number of disks while the density shows somewhat
distinguishable difference. The more dense a model is, the more anomalies a
model tend to have even if the influence is not very strong. Let μ(ρ,R) be the
anomaly occurrences per 100 disks, μ(.,R) the average of μ(ρ,R) over different ρ
values, μ(ρ, .) the average of μ(ρ,R) over different R values, and μ(., .) the grand
average of μ(ρ,R) over different ρ and R values. μ(0.1, .) = 0.153; μ(0.2, .) =
0.238; μ(0.3, .) = 0.290; μ(0.4, .) = 0.354. Figure 4(c) shows a similar behavior
for the radius range. The larger the radius range is, the more anomalies a model
tend to have. We have the following statistics: μ(., 3.0) = 0.002; μ(., 5.0) = 0.029;
μ(., 10.0) = 0.162; μ(., 50.0) = 0.521; μ(., 100.0) = 0.580; μ(., .) = 0.259;

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4

an

om
al

ie
s

(p
er

 1
00

 d
is

ks
)

Density

Frequency Distribution of Anomalies

(Density and Radius Range)

3

5

10

50

100

rmax

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80 90 100

an

om
al

ie
s

(p
er

 1
00

 d
is

ks
)

disks (unit: 100 disks)

Frequency Distribution of Anomalies

(Density)

0.1

0.2

0.3

0.4

Grand Avg.

(b)

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

an
om

al
ie

s
(p

er
 1

00
 d

is
ks

)

disks (unit: 100 disks)

Frequency Distribution of Anomalies

(Density)

3
5
10
50
100
Grand Avg.

rmax

(c)

Fig. 4. The number of anomalies per 100 disks on average. (Each point in the graphs
denotes the number of anomalies per 100 disks.) The grand average is 0.26 (i.e. the
horizontal broken line). (a) With respect to the density (each curve denotes a different
radius range), (b) with respect to the number of disks (each curve denotes a different
density), and (c) with respect to the number of disks (each curve denotes a different
radius range). (Color figure online)

Another interesting issue is whether there is any model without any anomaly
at all. Figure 5 shows the frequency of models in TestSet with respect to the
number of anomalies. The horizontal axis shows the number of anomalies and
the vertical axis the number of models. Figure 5(a) and (b) correspond to the
radius range. For example, in Fig. 5(a), the blue curve corresponds to R = 3 (the
radius range 1–3). Among 400 models for R = 3, 358 models have no anomaly at
all; 33 models have one anomaly; 9 models have two anomaly; there is no model
with three or more anomalies. Figure 5(c) and (d) correspond to the density.
Among 500 models for ρ = 0.1, 113 models have no anomaly and 52 have one
anomaly. Among the total 2000 models, 529 models have no anomaly, 194 models
have one anomaly, etc. MODEL(ρ = 0.4, R = 100, n = 8900) has 91 anomalies,
the maximum in TestSet.

520 M. Lee et al.

0

100

200

300

400

0 10 20 30 40 50 60 70 80 90 100

m

od
el

s

anomalies

Frequency of Models
(Radius Range)

3

5

10

50

100

rmax

(a)

0

20

40

60

80

0 10 20 30 40 50 60 70 80 90 100

m

od
el

s

anomalies

Frequency of Models
(Radius Range)

3

5

10

50

100

rmax

(b)

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90 100

m

od
el

s

anomalies

Frequency of Model
(Density)

0.1

0.2

0.3

0.4

(c)

0

20

40

60

80

0 10 20 30 40 50 60 70 80 90 100

m

od
el

s
anomalies

Frequency of Model
(Density)

0.1

0.2

0.3

0.4

(d)

Fig. 5. Distribution of the model corresponding to the range of radius of circle.
(a) and (b) For the radius range, and (c) and (d) for the density (Color figure online)

5 Conclusion

The Voronoi diagram of circular disks, also called the additively-weighted
Voronoi diagram, is useful for solving important applications and its robust com-
putation has been a challenge. In this paper, we presented a topology-oriented
incremental algorithm for the construction of the Voronoi diagram of circular
disks, also called the additively-weighted Voronoi diagram. The accuracy, effi-
ciency, and robustness were verified through an extensive test with both random
and degenerate data sets. We believe the proposed idea can be easily generalized
for its counterpart of three-dimensional spheres.

References

1. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Conceptsand
Applications of Voronoi Diagrams, 2nd edn. Wiley, Chichester (1999)

2. Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data
structure. ACM Comput. Surv. 23(3), 345–405 (1991)

3. Kim, D.-S., Kim, D., Sugihara, K.: Voronoi diagram of a circle set from Voronoi
diagram of a point set: I. topology. Comput. Aided Geom. Des. 18, 541–562 (2001)

4. Kim, D.-S., Kim, D., Sugihara, K.: Voronoi diagram of a circle set from Voronoi
diagram of a point set: II. geometry. Comput. Aided Geom. Des. 18, 563–585
(2001)

5. Held, M. (ed.): On the Computational Geometry of Pocket Machining. LNCS, vol.
500. Springer, Heidelberg (1991)

6. Kim, D.-S., Hwang, I.-K., Park, B.-J.: Representing the Voronoi diagram of a
simple polygon using rational quadratic Bézier curves. Comput. Aided Des. 27(8),
605–614 (1995)

Robust Construction of the Additively-Weighted Voronoi Diagram 521

7. Kim, D.-S., Ryu, J., Shin, H., Cho, Y.: Beta-decomposition for the volume and
area of the union of three-dimensional balls and their offsets. J. Comput. Chem.
33(13), 1252–1273 (2012)

8. Kim, J.-K., Cho, Y., Kim, D., Kim, D.-S.: Voronoi diagrams, quasi-triangulations,
and beta-complexes for disks in R

2: The theory and implementation in BetaCon-
cept. J. Comput. Des. Eng. 1(2), 79–87 (2014)

9. Lee, D., Drysdale, R.: Generalization of Voronoi diagrams in the plane. SIAM J.
Comput. 10(1), 73–87 (1981)

10. Sharir, M.: Intersection and closest-pair problems for a set of planar discs. SIAM
J. Comput. 14(2), 448–468 (1985)

11. Yap, C.-K.: An O(n logn) algorithm for the Voronoi diagram of a set of simple
curve segments. Discrete Comput. Geom. 2, 365–393 (1987)

12. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174
(1987)

13. Sugihara, K.: Approximation of generalized Voronoi diagrams by ordinary Voronoi
diagrams. Graphical Models Image Process. 55(6), 522–531 (1993)

14. Karavelas, M., Emiris, I.Z.: Predicates for the planar additively weighted
Voronoi diagram, Technical Report ECG-TR-122201-01. INRIA Sophia-Antipolis,
Sophia-Antipolis (2002)

15. Sugihara, K., Iri, M.: A solid modelling system free from topological lnconsistency.
J. Inf. Process. 12(4), 380–393 (1989)

16. Sugihara, K.: A simple method for avoiding numerical errors and degeneracy in
Voronoi diagram construction. IEICE Trans. Fundam. E75–A, 468–477 (1992)

17. Yap, C.-K.: Towards exact geometric computation. Comput. Geom. Theory Appl.
7(1–2), 3–23 (1997)

18. Yu, J., Zhou, Y., Tanaka, I., Yao, M.: Roll: a new algorithm for the detection
of protein pockets and cavities with a rolling probe sphere. Struct. Bioinf. 26(1),
46–52 (2010)

19. Fabri, A., Giezeman, G.J., Kettner, L., Schirra, S., Schönherr, S.: On the design
of CGAL a computational geometry algorithms library. Softw. Pract. Experience
30(11), 1167–1202 (2000)

20. Goodman, J.E., ORourke, J.: Handbook of Discrete and Computational Geometry.
CRC Press, Boca Raton (1997)

21. Sugihara, K., Iri, M.: Construction of the Voronoi diagram for “one million” gen-
erators in single-precision arithmetic. Proc. IEEE 80(9), 1471–1484 (1992)

22. Sugihara, K., Iri, M.: A robust topology-oriented incremental algorithm for Voronoi
diagrams. Int. J. Comput. Geom. Appl. 4(2), 179–228 (1994)

Mathematical Font Art

Joris van der Hoeven(B)

Laboratoire d’informatique, UMR 7161 CNRS, Campus de L’École polytechnique,
1, rue Honoré d’Estienne d’Orves, Bâtiment Alan Turing,

CS35003, 91120 Palaiseau, France
vdhoeven@lix.polytechnique.fr

Abstract. Currently, only a limited number of fonts are available for
high quality mathematical typesetting, such as Knuth’s computer mod-
ern font, the Stix font, and several fonts from the TEX Gyre family. An
interesting challenge is to develop tools which allow users to pick any
existing favorite font and to use it for writing mathematical texts. We
will present progress on this problem as part of recent developments in
the GNU TEXmacs scientific text editor.

1 Introduction

For a long period, most documents with mathematical formulas were typeset
using Knuth’s Computer Modern font [5]. Recently, a few alternative fonts
were designed, such as the Stix font [7] and the TEX Gyre fonts [3]. These hand-
crafted fonts all admit a high quality, but they required an important develop-
ment effort. Now there exists thousands of fonts for non mathematical purposes.
To what extent is it possible to use such fonts for mathematical texts or presen-
tations, or on the web?

In this paper we describe recent developments inside the GNU TEXmacs sci-
entific text editor [1] which aim at a better support of general purpose fonts,
thereby making life a bit more colorful. The focus is on fully automatic tech-
niques for using existing fonts inside structured documents with mathematical
formulas. Further fine tuning for specific characters in particular fonts is another
interesting topic which will not be discussed here.

There are obvious limitations of what we can do with a font if bold and italic
declinations or glyphs for various important characters are missing. Nevertheless
we will see that quite a lot is often possible even though the resulting quality
may be inferior to what can be achieved via manual design. Since various special
characters or font effects are often only used at a reduced number of places inside
actual documents, the occasional loss of quality may remain within acceptable
bounds, even for professional purposes.

Our general strategy for turning existing fonts into full fledged mathematical
font families is to remedy each of the font’s insufficiencies. The most common
problems are the following:

– Lack of the most important font declinations as needed in scientific documents:
Bold, Italic, Small Capitals, Sans Serif, Typewriter.

c© Springer International Publishing Switzerland 2016
G.-M. Greuel et al. (Eds.): ICMS 2016, LNCS 9725, pp. 522–529, 2016.
DOI: 10.1007/978-3-319-42432-3 67

Mathematical Font Art 523

– Lack of specific glyphs: non English languages, mathematical symbols, and in
particular big operators, extensible brackets and wide accents.

– Inconsistencies: sloppy design of some glyphs that are important for mathe-
matics (such as −, <, etc.), leading to inconsistencies.

The main countermeasures are font substitution and font emulation. The first
technique (see Sect. 2) consists of borrowing missing glyphs from other fonts.
This can either be done on the level of an entire font (e.g. for obtaining bold
or italic declinations) or for individual characters (e.g. a missing ∝ symbol, or
lacking Greek characters). Font emulation consists of combining and altering the
glyphs of symbols in a font in order to generate new ones. This can again be
done for entire fonts (Sect. 3) or individual glyphs (Sects. 4 and 5).

All techniques described in this paper have been implemented in TEXmacs,
version 1.99.5 and beyond. The software can freely be downloaded from our
website www.texmacs.org. The virtual character definitions described in Sect. 4
below can be found in the TeXmacs/fonts/virtual directory; interested users
may play with these definitions. Longer examples of what can be obtained using
the techniques described in this paper are available here:

http://www.texmacs.org/joris/fontart/fontart-abs.html

In the TEX/LATEX universe, there have also been several efforts towards better
support for modern OpenType fonts, most notably XeTEX [4] and LuaTEX [2].
The first system also contains features that are similar to those described in
Sect. 3. However, these systems do not support full mathematical font emula-
tion as presented in this paper. XeTEX and LuaTEX also tend to diverge from
standard LATEX through the introduction of incompatibilities.

2 Font Analysis and Font Substitution

In order to borrow missing characters from other fonts, it is important to be
able to determine fonts with a similar design, so that the alien glyphs fit nicely
into the main text:

(1)

(2)

Usually, rules for font substitution are specified manually for each individual
font. Although this often yields the most precise and predictable results, it can
be tedious to write such rules. For this reason, we also implemented a more
automatic mechanism in order to determine good substitutes.

A prerequisite for our algorithm for automatic font substitutions is a detailed
analysis of the main characteristics of all supported fonts. The results of this
analysis are stored in a database. Using this database, we may then compute
the distance between two fonts. In the case when a symbol σ is missing in

www.texmacs.org
http://www.texmacs.org/joris/fontart/fontart-abs.html

524 J. van der Hoeven

a font F1, it then suffices to find the closest font F2 that supports this sym-
bol σ. Notice that the best substitution font may depend on the fonts which are
installed on your system.

In our database we both use discrete font characteristics (e.g. sans serif, small
capitals, handwritten, ancient, gothic, etc.) and continuous ones (e.g. italic slant,
height of an “x” symbol, etc.). Most characteristics are determined automatically
by analyzing the name of the font (for some of the discrete characteristics) or
individual glyphs (for the continuous ones). Some “font categories” (such as
handwritten, gothic, etc.) can be specified manually.

One of the most important font characteristics is the height of the “x” symbol
(with respect to the design size). When the font F1 borrows a symbol from the
font F2 we first scale it by the quotient of these x-heights inside F1 and F2. In
the example (2) this was done correctly, contrary to (2).

Other common font characteristics are also taken into account into our data-
base, such as the italic slant, the width of the “M” symbol, the ascent and
descent (above and above the “x” symbol), etc. In addition, we carefully analyze
the glyphs themselves in order to determine the horizontal and vertical stroke
widths for the “o” and “O” symbols, the average aspect-ratios of uppercase and
lowercase letters, and the average area of glyphs that is filled (how much ink will
be used).

Our current implementation manages to find reasonably good font substitu-
tions. Notice that this may even be a problem on certain occasions. For instance,
in the example (2) below, the sans serif font is such a good match that it can
barely be distinguished from the serif font, thereby defeating its purpose:

(3)

3 Poor Man’s Font Emulation

Various font alterations such as Bold, Italic and Small Capitals can be emu-
lated in rather obvious ways, although with significant loss of quality:

– Emboldening can be achieved through the replacement of pixels by small lines.
In addition, it may be worth it to horizontally stretch certain characters such as
“m”. The appropriate stretching factors are highly font and character depen-
dent, but using the factors corresponding to the computer modern font usually
leads to reasonable results.

– Italic fonts can be approximated by slanted fonts, which may be further nar-
rowed for a better result. The most important drawback of this method is that
it often falls short of producing the correct italic versions of certain characters
(a/a/a, f/f /f , g/g/g , etc.).

– Small capitals can be emulated by rescaling capitals using a factor that roughly
turns an “X” into an “x”. Instead of conserving the aspect-ratio, we found it
more pleasing to slightly widen characters as well. The transformed version of
“X” may also be taken slightly higher than “x”.

Mathematical Font Art 525

Fig. 1. Emulation of bold, italic, small capitals and blackboard bold. * These declina-
tions are already supported by the original font.

With more work, the above “poor man’s” strategies might be further enhanced.
For instance, the italic a might be better approximated using a shortened version
of d instead of a. In order to improve bold font emulation, we might also replace
pixels by small lines of cleverly adjusted lengths.

More elaborate emulation strategies might greatly benefit from a toolkit for
“retro-engineering” the design of existing fonts. For instance, given an outline,
we might want to determine the curve(s) followed by a “pen” and the size (or
shape) of the pen at each point of the curve. This would then make it easy to
produce high quality narrowed and widened versions of a font, as well as better
emboldened fonts, or variants in which the pen’s size is uniform (as needed for
sans serif and typewriter fonts). Another interesting question is whether it is
possible to automatically detect serifs and to add or remove them.

We have started to experiment with more elaborate emulation algorithms
for the generation of “blackboard bold” variants of glyphs. The easiest strategy
is to produce an outlined version of the possibly emboldened input glyph. The
standard AMS blackboard bold font uses this method (C, N, Q, R, Z), but we
consider the result suboptimal with respect to adding a single stroke (C, N, Q,
R, Z). We implemented an algorithm for the detection of the part of contour to
be “double stroked”. We next embolden this part and hollow it out (Fig. 1).

4 Virtual Characters

Missing glyphs can be generated automatically from existing ones using a com-
bination of the following main techniques, listed by increasing complexity:

– Superposition of several glyphs: + and − can be combined into ±, and � be
obtained by juxtaposing two < symbols.

– Clipping rectangular areas: cutting �→ and � in their midsts and combining
them yields .

526 J. van der Hoeven

– Linear transformations: combining a crushed O and an I, we may produce the
Greek capital Φ. Turning around →, we obtain ↑.

– Simple graphical constructs such as circles and lines. This can for instance be
used for producing the missing half circle of ⊂.

– Special ad hoc transformations that directly operate on the pixels of a glyph
(or on their outlines if possible). For instance, we designed a special “curlyfi-
cation” method that turns < into and into . Similarly, we implemented
a “flood fill” algorithm for transforming � into �.

In a similar vein, we need various querying mechanisms: all glyphs come with
logical and physical bounding boxes, but we sometimes may want to compute
the exact width of some stroke or obtain other kinds of information.

We developed a small language that can be used for defining new “virtual”
characters in terms of existing ones. The design of every new virtual glyph can
be regarded as a puzzle: finding a clever way to combine existing glyphs into the
desired one using the primitives from the language. Of course, we are looking
for robust solutions in the sense that they should work for any reasonable font
in which the required basic glyphs are available.

Let us consider a few examples. For the construction of arrows, it turns
out that the single guillemets < and > are often well suited for the heads (the
rescaled symbols < and > are acceptable fallbacks). The arrow bars are obtained
from the minus sign −, but the determination of an appropriate minus is non
trivial. For instance, the width of the dash - is usually too large, so we should
avoid using this symbol. The underscore is a better candidate; one may also cut
the plus sign into several pieces (avoiding the vertical stroke) and recombine
them.

Assuming that we have an appropriate arrow bar and head, we may use the
following code for producing an actual arrow:

(rightarrow (right-fit arrowbar (align righthead arrowbar * 0.5)))

The align primitive is used to vertically align the arrow head at the center of
the arrow bar. The right-fit primitive is less basic and corresponds to sliding
the arrowhead from the right to the left until the arrow bar goes past the head
on its right. More direct ways to produce arrows turn out to be less robust. Left
and left-right arrows can be defined using

(leftarrow (left-flip rightarrow))

(leftrightarrow (join (part leftarrow * 0.5) (part rightarrow 0.5 *)))

These definitions potentially take advantage of an existing rightarrow in
the base font. The part primitive performs two horizontal clippings between the
middle and the extremities, whereas join is used for superposition.

An interesting challenge is the emulation of Greek characters. This seems
intractable for the lowercase symbols, but is less hopeless for the capitals. For
instance, Γ can be obtained by flipping the Roman L upside down and we already
mentioned how to obtain a reasonable Φ. More interesting is the case of Π, which

Mathematical Font Art 527

Fig. 2. Emulation of various mathematical symbols in various fonts.

can be obtained from H by moving the horizontal bar to the top. However,
extracting this bar is not so easy in some fonts: consider . For a robust method,
we therefore cut the H into pieces: we first extract and recombine them
into II. We next take a tiny piece of the central bar, extend it to the desired
length, and move it to the top (Fig. 2).

5 Rubber Characters

One specific problem with mathematical fonts is the need for rubber charac-
ters. There are essentially four types of them: big operators (

∑
,
∏

,
⊗

), large
delimiters ((())) {{{}}}, wide accents (̂, ̂, ̂), and long arrows (,

).
We produce these rubber characters using essentially the same techniques as

in the previous section. Especially horizontal and vertical scaling are very useful,
as well as cutting symbols into several parts and reassembling them appropri-
ately.

For instance, moderately large versions of the bracket (are obtained through
magnification, typically with a higher stretch factor in the vertical direction. For
larger sizes, this method produces results that are unacceptably thick. In that
case, we rather cut the bracket into a top, a bottom, and a tiny middle part.
We next repeat the middle part as many times as necessary in order to obtain a
bracket of the desired size.

The use of scaling is a very delicate matter. For instance, in the case of square
brackets [(and their potential derivatives � and), the point where horizontally
magnified versions get too fat is usually reached much earlier than for ordinary or
curly brackets. In the case of wide accents, we typically need very large horizontal
stretch factors, which yield unacceptable results. Magnified versions of

∑
and

∏

typically look allright, but this is much less so for
⊗

.

528 J. van der Hoeven

Fig. 3. Assorted rubber symbols from various fonts.

We are still in the process of fine tuning our implementation. For better
results, one major challenge is to develop magnification methods with a finer
control over the stroke widths. In particular, we need a reliable magnification
method that preserves all relevant widths (Fig. 3).

6 Conclusion and Perspectives

After a moderate development investment, we are now able to use a lot of existing
fonts for mathematical typesetting. The quality of the obtained results ranges
from “better than nothing” to “professional typesetting quality”. Our virtual
font implementation can be regarded as a genuine “metafont”. Paradoxically,
and in comparison, Knuth’s Metafont initiative [6] has essentially resulted in
the creation of a single mathematical font of extremely high quality.

One interesting question that occurred during our development of a virtual
mathematical metafont concerns the “essence of a font”: which font features
essentially contain all necessary information to reproduce the entire font, and
how? For instance, most mathematical symbols can be reconstructed from a few
basic glyphs: −, =, ∼, <, ≺, ⊂, > (or →), ., ◦, (, [and {. Similarly, the Greek
capitals can essentially be reconstructed from E, H, O, X and Z. So what is the
real “fingerprint” of a font?

The development of more and better glyph emulation tools might be valuable
for font designers. On the one hand, such tools may be used to automatically
generate lots of glyphs. On the other hand, they allow designers to compare
their own handcrafted glyphs with automatically generated alternatives. This
may help to spot errors or increase consciousness about the distinctive features
of a personal design.

For the moment, we developed all our font substitution and emulation tools
inside TEXmacs. It might be worthwhile to conceive a separate library with even
more systematic tools for font analysis, retro-engineering and glyph emulation.
Such a library might come with command line tools for generating mathemat-
ically enriched fonts, emboldened or narrowed versions, etc. For the moment,
several of our algorithms are also limitated to operating on bitmaps. In the
future, it would be nice to systematically work with vector graphics only.

Mathematical Font Art 529

One final issue concerns the purpose of alternative fonts. For instance, cer-

tain fonts such as
are mainly used in order to produce specific graphical effects: emulate text on
a chalkboard or on a blackboard, imitating a degraded retro-font, or producing
a 3D sensation. It can be questioned whether these purposes are always best
served through the use of a special font. For instance, handwriting might be
imitated better by dynamically generating many different versions of the same
letter. Better retro and 3D effects might be obtained by applying a suitable
graphical filter to an entire portion of text. This might even more be true in the
presence of fractions, square roots or geometric pictures.
Disclaimer. Unfortunately, Springer does not yet support GNU TEXmacs for
submissions to its journals. For this reason, the original version of this paper
had to be converted to LATEX. Any resulting loss of typesetting quality should
be imputed to Springer.

References

1. Gubinelli, M., van der Hoeven, J., Poulain, F., Raux, D.: GNU TeXmacs: towards
a scientific office suite. In: Hong, H., Chee, Y. (eds.) ICMS 2014. LNCS, vol. 8529,
pp. 562–569. Springer, Heidelberg (2014)

2. Hoekwater, T., Henkel, H., Hagen, H.: Luatex (2007). http://www.luatex.org/

3. Jackowski, B., Nowacki, J., Ludwichowski, J.: The TEX Gyre collection of fonts.
http://www.gust.org.pl/projects/e-foundry/tex-gyre/

4. Kew, J.: Xetex (2005). http://tug.org/xetex/
5. Knuth, D.E.: Computer Modern Typefaces. Computers and Typesetting. Addison-

Wesley, Reading (1986)
6. Knuth, D.E.: The METAFONTbook. Computers and Typesetting. Addison-Wesley,

Reading (1986)
7. STI Pub companies: STIX fonts project (2010). http://www.stixfonts.org/

http://www.luatex.org/
http://www.gust.org.pl/projects/e-foundry/tex-gyre/
http://tug.org/xetex/
http://www.stixfonts.org/

Author Index

Abánades, Miguel 37
Abril Bucero, Marta 212
Ahrens, Benedikt 9
Arai, Noriko H. 82
Arratia, Argimiro 241

Benzmüller, Christoph 43, 75
Berthold, Timo 251, 308
Böhm, Janko 93, 117
Borndörfer, Ralf 259
Botana, Francisco 37
Brake, Daniel A. 127
Breust, Alexis 223
Bruns, Winfried 102
Buchberger, Bruno 437, 443

Chabot, Christophe 223
Chebukov, Dmitry 447
Chrapary, Hagen 397

Davenport, James H. 157, 485
Decker, Wolfram 93
Di Puglia Pugliese, Luigi 492
Dongarra, Jack 3
Dumas, Jean-Guillaume 223

Endo, Toshio 265
England, Matthew 157
Evain, Laurent 136, 498

Farmer, James 251
Fieker, Claus 93
Fish, Andrew 51
Fousse, Laurent 223
Fujisawa, Katsuki 265
Fukasaku, Ryoya 165

Gaudioso, Manlio 492
Gawrilow, Ewgenij 403
Ginev, Deyan 451
Giorgi, Pascal 223
Gräbe, Hans-Gert 411
Guerriero, Francesca 492

Hamaguchi, Naoki 335
Hampe, Simon 403
Hasan, Mahmudul 275
Hauenstein, Jonathan D. 127
Heinz, Stefan 251, 308
Holzmann, Helge 419
Hong, Chun Yu 284
Hossain, Shahadat 275
Hossein Poor, Jamal 505

Iancu, Mihnea 451
Ion, Patrick 458
Iwane, Hidenao 165
Izaak, Alexander 447

Jensen, Anders Nedergaard 198
Joldes, Mioara 232
Joswig, Michael 403
Jucovshi, Constantin 451

Kahle, Thomas 142
Kaneko, Masataka 342
Khan, Ahamad Imtiaz 275
Kim, Deok-Soo 514
Kimura, Keiji 292
Kobayashi, Shigeki 351
Kohlhase, Andrea 451
Kohlhase, Michael 451, 467
Köppe, Matthias 284
Koprucki, Thomas 423
Kortenkamp, Ulrich 319
Kovács, Zoltán 37
Kredel, Heinz 173

Laplagne, Santiago 93
Lee, Mokwon 514
Li, Zhibin 181
Liddell Jr., Alan C. 127
Lisitsa, Alexei 51
Liu, Yinping 181
Luzhnica, Enxhell 467

Maher, Stephen 301
Maletzky, Alexander 59

Marais, Magdaleen S. 117
Marco-Buzunariz, Miguel Ángel 191
Matsuzaki, Takuya 82
Miglionico, Giovanna 492
Miltenberger, Matthias 301
Misyurina, Olga 447
Mithila, Nasrin Hakim 275
Mohammadi, Fatemeh 148
Montag, Aaron 359
Mörtberg, Anders 9
Mourrain, Bernard 212
Muller, Jean-Michel 232

Navas-Palencia, Guillermo 241

Oripov, Akbar 451

Padmanabhan, Ranganathan 67
Pedroso, João Pedro 301
Perregaard, Michael 251
Pfister, Gerhard 93
Popescu, Valentina 232
Pupyrev, Yuri 447

Raab, Clemens G. 505
Rahli, Vincent 18
Recio, Tomás 37
Regensburger, Georg 505
Rehfeldt, Daniel 301
Ren, Yue 397
Richter-Gebert, Jürgen 319, 327, 359
Rodríguez, Marcos 191
Runnwerth, Mila 419, 476

Sarafian, Haiduke 366
Sato, Yosuke 165
Schefter, Jürgen 451
Schenker, Sebastian 259
Schönemann, Hans 110, 206
Schwarz, Robert 301
Scott, Dana 43
Serrano, Felipe 301

Shinano, Yuji 308
Sieg, Richard 102
Skutella, Martin 259
Söger, Christof 102
Sólyom-Gecse, Csilla 37
Sperber, Wolfram 419, 429, 451
Stanovský, David 51
Steen, Alexander 75
Strobel, Michael 319
Strunk, Timo 259
Sugihara, Kokichi 514
Suny, Ashraful Huq 275
Swartwood, Sarah 51

Tabelow, Karsten 423
Takato, Setsuo 335, 351, 371
Terui, Akira 82
Teschke, Olaf 451
Trébuchet, Philippe 212
Tucker, Warwick 232

Usui, Hisashi 380

van der Hoeven, Joris 522
van der Merwe, André F. 117
von Gagern, Martin 319, 327
von Raumer, Jakob 28

Wada, Yumi 82
Waki, Hayato 292
Wiesing, Tom 451
Wisniewski, Max 75

Yamashita, Satoshi 386
Yang, Le 181
Yao, Ruoxia 181
Yasui, Yuichiro 265

Zhang, Yang 67
Zhang, Zhian 181
Zhou, Yuan 284

532 Author Index

	Preface
	Bylaws of ICMS
	Organization
	Abstracts of the Invited Talks
	Contents
	Invited Talk
	With Extreme Scale Computing the Rules Have Changed
	1 Challenges
	1.1 New Algorithms for Multicore Architectures
	1.2 Adaptive Response to Load Imbalance
	1.3 Multiple Precision Algorithms and Software
	1.4 Communication Avoiding Algorithms
	1.5 Auto-Tuning
	1.6 Fault Tolerance and Robustness for Large-Scale Systems
	1.7 Building Energy Efficiency into Algorithm Foundations
	1.8 Sensitivity Analysis

	2 Outlook

	Univalent Foundations and Proof Assistants
	Some Wellfounded Trees in UniMath
	1 Introduction
	1.1 Related work

	2 Overview of the Mathematics Formalized in This Project
	2.1 Inductive Sets as Initial Algebras
	2.2 Existence of Initial Algebras
	2.3 Preservation of Colimits
	2.4 Connection to Work on Heterogeneous Substitution Systems

	3 Some Details on the Formalization
	4 Conclusions
	References

	Exercising Nuprl's Open-Endedness
	1 Introduction
	2 Background on Nuprl
	2.1 Constructive Type Theory
	2.2 Squashing
	2.3 Howe's Computational Equivalence

	3 Open-Endedness and Exploration
	4 The Axiom of Choice
	4.1 Squashed or Non-squashed?
	4.2 Choice Sequences

	5 Conclusion
	References

	Formalizing Double Groupoids and Cross Modules in the Lean Theorem Prover
	1 Introduction
	2 Double Categories and Double Groupoids
	3 The Fundamental Double Groupoid
	References

	Software for Mathematical Reasoning and Applications
	Towards the Automatic Discovery of Theorems in GeoGebra
	1 Introduction
	2 Automatic Deduction in Geometry
	3 The GeoGebra Command LocusEquation
	4 Further Work
	References

	Automating Free Logic in Isabelle/HOL
	1 Introduction
	2 Free Logic
	3 Implementing Free Logic in Isabell/HOL
	4 Functionality Tests
	5 Application in Category Theory
	6 Summary of Technical Contribution and Further Work
	References

	Efficient Knot Discrimination via Quandle Coloring with SAT and #-SAT
	1 Introduction
	2 Knots, Quandles and Colorings
	3 Experimental Set-Up
	4 Experimental Results: Running Time
	4.1 Knottedness Certification with MiniSat
	4.2 Knot Recognition with #-SAT

	5 Experimental Results: Small Set of Distinguishing Quandles
	6 Conclusion
	References

	Interactive Proving, Higher-Order Rewriting, and Theory Analysis in Theorema 2.0
	1 Introduction
	2 Interactive Proving
	2.1 How the Interactive Proof Strategy Works in Practice
	2.2 An Example

	3 Higher-Order Rewriting
	3.1 Main Idea
	3.2 Implementation Details
	3.3 More Features

	4 Theory Analysis
	5 Conclusion
	References

	Automated Deduction in Ring Theory
	1 Introduction
	2 Commutativity in Associative Rings
	3 Rings with Some Operations
	4 Commutativity Theorems in Semirings
	5 Conclusion
	References

	Agent-Based HOL Reasoning
	1 Introduction
	2 Classical Higher-Order Logic
	3 Extensional Paramodulation for HOL
	4 Agent-Based Refutation
	5 The Leo-III System
	6 Conclusion
	References

	An Automated Deduction and Its Implementation for Solving Problem of Sequence at University Entrance Examination
	1 Introduction
	2 Preliminaries
	3 Calculating Inputs for Solving Problems of Sequence
	3.1 Characteristics of Questions of Sequence in the National Center Test
	3.2 Constructing Input Logical Formula

	4 Algorithms for the Sequence Solver
	References

	Algebraic and Toric Geometry
	Bad Primes in Computational Algebraic Geometry
	1 Introduction
	2 Rational Reconstruction
	3 Bad Primes
	3.1 Bad Primes in Gröbner Basis Computations
	3.2 Classification of Bad Primes

	4 Error-Tolerant Reconstruction
	5 General Reconstruction Scheme for Commutative Algebra
	6 Computing Adjoint Ideals
	7 Modular Version of the Algorithm
	References

	The Subdivision of Large Simplicial Cones in Normaliz
	1 Introduction
	2 Hilbert Basis and Hilbert Series
	3 The Primal Algorithm
	3.1 Simplicial Cones

	4 Methods from Integer Programming
	4.1 Implementation and Results

	5 Approximation
	References

	Extending Singular with New Types and Algorithms
	1 Introduction
	2 Extending the Functionality of Singular
	3 Gfanlib
	4 Integrating Gfanlib
	5 Integrating Polymake
	6 Technical Problems of the Integration
	6.1 Data Conversion
	6.2 Memory Management
	6.3 Common Libraries
	6.4 Alternative Solution

	References

	Algebraic Geometry in Applications
	3D Printing Dimensional Calibration Shape: Clebsch Cubic
	1 Introduction
	2 Algebraic Varieties
	3 Historic Overview and Derivation of the Fundamental Properties of Cubic Hypersurfaces
	4 Implementation in Singular
	5 Explicit Data for the Clebsch Cubic
	References

	Decomposing Solution Sets of Polynomial Systems Using Derivatives
	1 Introduction
	2 Trace Test
	2.1 Zeroth Derivative Trace Test
	2.2 First Derivative Trace Test
	2.3 Second Derivative Trace Test

	3 Parameterizations
	4 Examples
	4.1 A Curve from Kinematics
	4.2 A Secant Variety

	5 Conclusion
	References

	Calibration of Accelerometers and the Geometry of Quadrics
	1 Introduction
	2 Functionality and Applications
	3 Background on Accelerometers
	4 Strategy of Calibration
	5 The Results
	References

	On the Feasibility of Semi-algebraic Sets in Poisson Regression
	1 Introduction
	2 Polynomial Inequality Systems in Statistics
	3 Non-optimality of Saturated Designs for Four Predictors
	4 Outlook
	References

	Combinatorial and Geometric View of the System Reliability Theory
	1 Introduction
	2 Source-to-Multiple-Terminal (SMT) System
	2.1 Reliability of the SMT System
	2.2 Dual of the SMT System
	2.3 Signature Analysis of the SMT System
	2.4 Multiple Failures
	2.5 Failure Distributions and Signatures

	References

	Software of Polynomial Systems
	Need Polynomial Systems Be Doubly-Exponential?
	1 Introduction
	2 Gröbner Bases
	3 Cylindrical Algebraic Decomposition
	3.1 Background
	3.2 Complexity
	3.3 CAD with Multiple ECs

	4 The Primitivity Restriction
	References

	On the Implementation of CGS Real QE
	1 Introduction
	2 Preliminary
	3 Simplification
	4 How to Deal with Strict Inequalities
	5 Conclusion and Remarks
	References

	Common Divisors of Solvable Polynomials in JAS
	1 Introduction
	2 Solvable Polynomial Rings
	2.1 Parametric Solvable Polynomial Coefficient Rings
	2.2 Recursive Solvable Polynomial Rings

	3 Generic Common Divisors
	3.1 Recursive Algorithm
	3.2 Class Design
	3.3 Example Continued

	4 Summary and Conclusions
	References

	An Online Computing and Knowledge Platform for Differential Equations
	1 Introduction
	2 The Computing Platform
	3 The Knowledge Database of Differential Equation
	References

	Software for Numerically Solving Polynomial Systems
	SIROCCO: A Library for Certified Polynomial Root Continuation
	1 Introduction
	2 Validated Numerics
	2.1 Newton Method

	3 The SIROCCO Library
	3.1 The Validated Continuation Algorithm

	4 Comparison and Timimgs
	References

	An Implementation of Exact Mixed Volume Computation
	1 Introduction
	2 A Brief Description of the Algorithm
	2.1 A Mixed Cell Cone
	2.2 Tropical Regeneration

	3 Technical Implementation Details
	3.1 The Circuit Table
	3.2 Templates
	3.3 Parallelisation
	3.4 Exceptions

	References

	Primary Decomposition in Singular
	1 Introduction
	2 Primary Decomposition by the Algorithm of Gianni, Trager, Zacharias
	2.1 Splitting Tool
	2.2 Primary Decomposition: Reduction to Dimension 0
	2.3 Zero-Dimensional Primary Decomposition

	3 Preprocessing: Factorizing Buchberger Algorithm
	4 Preprocessing: Identifying Sub-Problems
	5 Examples
	6 Alternative Solutions
	References

	Border Basis for Polynomial System Solving and Optimization
	1 Border Basis Algorithms
	1.1 Border Basis Computation
	1.2 Real Radical Computation
	1.3 Polynomial Optimisation
	1.4 Root Finding

	2 Software
	3 Benchmarks
	3.1 Katsura-n
	3.2 Cyclic-n
	3.3 Floating Point Computation
	3.4 Polynomial Optimization

	References

	High-Precision Arithmetic, Effective Analysis and Special Functions
	Recursive Double-Size Fixed Precision Arithmetic
	1 Introduction
	2 Functionality
	2.1 Fixed Precision Arithmetic : Extending the Word Size
	2.2 Fixed Precision Types
	2.3 Integer Operations

	3 Underlying Theory and Technical Contribution
	3.1 Template Recursive Data Structure
	3.2 Arithmetic Operations

	4 Application
	4.1 Dense Linear Algebra: Freivalds Certificate
	4.2 Sparse Linear Algebra: Prime Power Rank
	4.3 Towards an FPGA Implementation

	5 Conclusion and Perspective
	References

	CAMPARY: Cuda Multiple Precision Arithmetic Library and Applications
	1 Introduction
	2 Context and Related Software
	3 Key Features
	4 Applications
	4.1 Hénon Map Iteration
	4.2 SDP Programming

	5 Conclusion and Future Developments
	References

	On the Computation of Confluent Hypergeometric Functions for Large Imaginary Part of Parameters b and z
	1 Introduction
	2 Algorithm
	2.1 Path of Steepest Descent
	2.2
	2.3
	2.4
	2.5
	2.6 Numerical Quadrature Schemes
	2.7 Numerical Examples

	3 Applications
	4 Conclusions
	References

	Mathematical Optimization
	Parallelization of the FICO Xpress-Optimizer
	1 Introduction
	2 Tasks Instead of Threads: A New Parallel Framework for the FICO Xpress-Optimizer
	2.1 Considerations Behind a New Parallel Framework
	2.2 Implementation of a New Parallel Framework

	3 Computational Results
	4 Conclusion
	References

	PolySCIP
	1 Introduction and Motivation
	2 Problem Formulation and Basic Definitions
	3 Lifted Weight Space Approach
	4 Implementation
	5 File Format
	References

	Advanced Computing and Optimization Infrastructure for Extremely Large-Scale Graphs on Post Peta-Scale Supercomputers
	1 Introduction
	2 Graph500 and Green Graph500 Benchmarks
	3 High-Performance Computing for Semidefinite Programming Problems
	References

	DSJM: A Software Toolkit for Direct Determination of Sparse Jacobian Matrices
	1 Introduction
	2 Direct Determination
	3 Interface and Implementation
	3.1 Data Structure
	3.2 Algorithms
	3.3 Numerical Testing
	3.4 DSJM Interface
	3.5 Example Usage of Matrix Object

	4 Concluding Remarks
	References

	Software for Cut-Generating Functions in the Gomory--Johnson Model and Beyond
	1 Introduction
	2 Continuous and Discontinuous Piecewise Linear Z-periodic Functions
	3 The Diagrams of the Decorated 2-Dimensional Polyhedral Complex ¶
	3.1 The Polyhedral Complex and Its Faces
	3.2 plot_2d_diagram_with_cones
	3.3 plot_2d_diagram and additive faces

	4 Additional Functionality
	References

	Mixed Integer Nonlinear Program for Minimization of Akaike's Information Criterion
	1 Introduction
	2 Preliminary on Akaike's Information Criterion in Linear Regression
	3 MINLP Formulation for the Minimization of AIC
	4 Some Techniques to Improve the Numerical Performance
	4.1 SCIP
	4.2 Handling the Linear Dependency in Data
	4.3 Most Frequent Branching

	5 Numerical Experiment
	6 Future Work
	References

	PySCIPOpt: Mathematical Programming in Python with the SCIP Optimization Suite
	1 Introduction
	2 Modeling
	3 Extending SCIP: Writing Plug-Ins in Python
	3.1 Constraint Handler Example: TSP

	4 Conclusion and Outlook
	References

	A First Implementation of ParaXpress: Combining Internal and External Parallelization to Solve MIPs on Supercomputers
	1 Introduction
	2 Features of FiberXpress and ParaXpress
	3 Computational Experiments
	3.1 Comparison Between FiberXpress and Xpress Internal Parallelization
	3.2 First Impression of Large Scale ParaXpress Computations

	4 Concluding Remarks
	References

	Interactive Operation to Scientific Artwork and Mathematical Reasoning
	CindyJS
	1 Introduction
	2 Project Guidelines
	3 Architecture
	4 Geometric Primitive Operations and Tracing
	5 CindyScript -- Programming on a Napkin
	6 Plugins
	7 Technical Aspects
	8 CindyJS in the Wild, a Selection
	9 Conclusion
	References

	CindyJS Plugins
	1 Introduction
	2 Plugin Interface
	3 Viewing Spatial Objects Using Cindy3D and WebGL
	4 Typesetting Formulas Using KaTeX bindings
	5 Other Plugins
	6 Conclusion
	References

	Generating Data for 3D Models
	1 Introduction
	2 K.5exETCindy commands for 3D models
	2.1 Making Surfaces
	2.2 Space Curves and Segments
	2.3 2D Character and Symbol

	3 Examples of Teaching Materials
	4 Conclusions and Future Work
	References

	The Actual Use of K.5exETCindy in Education
	1 Introduction
	2 Generation of TeX graphics via K.5exETCindy
	3 Methods
	4 Results and Discussions
	References

	Cooperation of KeTCindy and Computer Algebra System
	1 Introduction
	2 SANGAKU of Nara Miminashi Yamaguchi Shrine
	3 SANGAKU of Gunma Kumano Shrine
	4 Conclusion
	References

	CindyGL: Authoring GPU-Based Interactive Mathematical Content
	1 Introduction
	2 The Colorplot Command
	3 Feedback Loops via CindyGL
	4 Technical Aspects
	5 Conclusion and Outlook
	References

	Theoretical Physics, Applied Mathematics and Visualizations
	1 Introduction
	2 Case Studies
	3 Summary and Conclusion
	References

	What is and How to Use K.5exETCindy -- Linkage Between Dynamic Geometry Software and LaTeX Graphics Capabilities --
	1 Introduction
	2 Flow of K.5exETCindy
	3 Examples
	3.1 Geometric Figures and Graphs of Functions
	3.2 Making Tables
	3.3 Bézier Curves
	3.4 Calling CASs from K.5exETCindy

	4 Future Work
	References

	How to Generate Figures at the Preferred Position of a TeX Document
	1 Introduction
	2 Underlying Technique
	3 Procedure
	4 Another Example and Vision
	References

	The Programming Style for Drawings from K.5exETpic to K.5exETCindy
	1 Introduction
	2 K.5exETpic System for Scilab
	3 K.5exETCindy System for Cinderella
	4 Future Works
	References

	Information Services for Mathematics: Software, Services, Models, and Data
	The Software Portal swMATH: A State of the Art Report and Next Steps
	1 Introduction
	2 The Publication-Based Approach
	3 Software Identification
	4 Software Quality
	5 Use of MSC and Keywords
	6 Operation and Sustainability
	References

	The polymake XML File Format
	1 Introduction
	2 The File Format by Example
	3 Format Specification in RELAX NG
	4 Concluding Remarks
	References

	Semantic-Aware Fingerprints of Symbolic Research Data
	1 Introduction
	2 Research Data and Digital Research Infrastructures
	3 The SymbolicData Project
	4 Research Data and Metadata
	5 Working with Semantic-Aware Fingerprints
	References

	Linking Mathematical Software in Web Archives
	1 Introduction
	2 Publication-Based Approach of swMATH
	3 Linking Web Archives
	4 Conclusion and Outlook

	Mathematical Models: A Research Data Category?
	1 Introduction
	2 Research Data in Mathematical Modeling and Simulation
	3 Mathematical Models: The Heat Transport Problem
	4 Towards a conceptual data model for mathematical models
	5 Conclusions
	References

	Mathematical Research Data and Information Services
	1 Introduction: What is Mathematical Research Data?
	2 MathSW, Services, Data, and Models
	2.1 Mathematical SoftWare (MathSW)
	2.2 Further Classes of MathRD

	3 Information Services and Open Platforms for MathRD
	4 Summary
	References

	SemDML: Towards a Semantic Layer of a World Digital Mathematical Library
	Stam's Identities Collection: A Case Study for Math Knowledge Bases
	1 The Problem
	2 The RISC Approach
	References

	The GDML and EuKIM Projects: Short Report on the Initiative
	References

	Math-Net.Ru Video Library: Creating a Collection of Scientific Talks
	1 Introduction
	2 Metadata Structure
	3 Processing Video
	References

	The SMGloM Project and System: Towards a Terminology and Ontology for Mathematics
	1 Introduction
	2 The SMGloM System
	3 Applications of the SMGloM
	4 Conclusion and State
	References

	The Effort to Realize a Global Digital Mathematics Library
	1 Introduction and History
	2 Challenges
	3 Goals
	4 Achievements
	5 Prognosis
	References

	Formula Semantification and Automated Relation Finding in the On-Line Encyclopedia for Integer Sequences
	1 Introduction
	2 The OEIS
	3 Parsing OEIS Formulae
	4 Relation Finding
	5 Conclusions and Future Work
	References

	Mathematical Videos and Affiliated Supplementaries in TIB's AV Portal
	1 Introduction
	2 TIB's AV Portal
	3 Mathematical Media Packages
	3.1 Visual Simulation Data and Their Related Information
	3.2 Conference Recordings and Their Corresponding Proceedings
	3.3 Video Abstracts and the Associated Article
	3.4 Lecture Videos and Their Scripts

	4 Conclusion and Outlook
	References

	Miscellanea
	Complexity of Integration, Special Values, and Recent Developments
	1 Introduction
	2 Transcendental Integration
	2.1 Elementary Transcendental Functions
	2.2 Logarithmic n
	2.3 Exponential n

	3 Algebraic Functions
	3.1 The Logarithmic Part
	3.2 Complexity

	4 Two Meis Culpis About Algebraic Integration and Parameters
	4.1 The Claim
	4.2 The First Problem
	4.3 The Second Problem

	References

	An Algorithm to Find the Link Constrained Steiner Tree in Undirected Graphs
	1 Introduction
	2 A Lagrangean Relaxation for the LCSTP
	3 Solving the Lagrangian Dual Problem
	4 Computational Results
	5 Conclusions
	References

	The Pycao Software for 3D-Modelling
	1 Introduction : Overview of the Problematic
	2 Example
	3 Comparison with Existing Software and Objectives for Pycao
	4 Technical Details
	4.1 Massic Space and Affine Geometry
	4.2 Boxes and Frames Everywhere
	4.3 Markers
	4.4 Unions and Intersections
	4.5 Visibility

	References

	Normal Forms for Operators via Gröbner Bases in Tensor Algebras
	1 Introduction
	2 Reduction Systems for Tensor Algebras
	2.1 Tensor Algebras
	2.2 Reduction Systems
	2.3 Normal Forms and Confluence

	3 Applications
	References

	Robust Construction of the Additively-Weighted Voronoi Diagram via Topology-Oriented Incremental Algorithm
	1 Introduction
	2 Anomalies of the Voronoi Diagram of Disks
	3 Topology-Oriented Incremental Construction of the Voronoi Diagram of Disks
	4 Experiments
	5 Conclusion
	References

	Mathematical Font Art
	1 Introduction
	2 Font Analysis and Font Substitution
	3 Poor Man's Font Emulation
	4 Virtual Characters
	5 Rubber Characters
	6 Conclusion and Perspectives
	References

	Author Index

