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Abstract Optimization and optimal control of multi-echelon supply chain opera-
tions is difficult due to the interdependencies across the stages and the various stock
nodes of inventory networks. While network inventory control problems can be
formulated as Markov decision processes, the resulting models can usually not be
solved numerically due to the high dimension of the state space for instances of
realistic size. In this paper the application of a recently developed approximation
technique based on piece-wise linear convex approximations of the underlying value
function is discussed for two well-known examples from supply chain optimization:
multiple sourcing and dynamic inventory allocations. The examples show that the
new technique can lead to policies with lower costs than the best currently known
heuristics and at the same time yields further insights into the problem such as lower
bounds for the achievable cost and an estimation of the value function.

Keywords Supply chain optimization �Markov decision processes � Approximate
dynamic programming � Value iteration

1 Introduction

Supply Chain Management, in particular production and inventory management, is
a classical scientific research area in Operations Research. The desire to organize
the resource usage and material flow through the value chain in the most efficient
way has inspired the development of suitable mathematical models and analytic as
well as computational solution techniques for over a century. Many cornerstones of
inventory theory are now an integral part of every Operations Research textbook,
providing essential insights into the fundamental trade-offs between resource cost
and service level and how to optimally parameterize and control inventory systems,
even under uncertainty.
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Yet, many traditional approaches and tools cannot readily cope with the growing
complexity and size of today’s supply and production networks, and results that
hold for simple systems (such as single warehouse or serial systems) do not extend
to general networks. In fact, except for a few special cases, inventory network
control problems are usually intractable, and a common approach is to resort to
simple heuristics that are known to work well in simpler situations.

Another way to deal with complex problems is by approximation, that is, to
solve a problem approximately with less effort, but ideally with some performance
guarantees. This paper explores the question whether a recently developed type of
approximate dynamic programming, based on piece-wise linear convex value
function approximations, is useful approximation technique for typical supply chain
control problems. The next section motivates and describes the technique, which is
then applied to the well-known problems of multiple sourcing (Sect. 3) and
dynamic inventory allocation (Sect. 4), respectively.

1.1 Monotone Approximate Relative Value Iteration

Using appropriate definitions of state and action spaces, multi-echelon supply chain
control problems can conveniently be formulated as Markov decision processes
(MDPs). However, as solving an MDP explicitly requires to store values for all
states, the curse of dimensionality usually makes it impossible to solve such models
for supply chain control problems of realistic size.

One way to cope with the curse of dimensionality is to look for an approximate
solution for the MDP, for instance using Approximate Dynamic Programming
(ADP). ADP is an active research area with a variety of literature. Standard text-
books include, e.g., Bertsekas and Tsitsiklis (1996) or Powell (2007).

A typical approach in ADP is to approximate the optimal value function using a
linear combination of a fixed set of functions on the state space, called basis
functions. Such approaches were shown to work well for some applications (see
e.g. Schweitzer and Seidmann 1985 or Farias and Van Roy et al. 2006). However,
determining a good set of basis functions is often very difficult and very
problem-specific.

In this section, we propose a generic approach for supply chains by exploiting
the fact that many supply chain control problems can be described as controlled
linear systems in discrete time with the following features:

• The state space is given by a polyhedral set S :¼fx 2 RnjQx� bg.
• The set of feasible actions U(x) for a given state x 2 S is defined as

U(x) :¼fu 2 RmjRuþVx� dg; that is, a polytope for each state x.

• The dynamics are linear so that for any state-action pair (x, u), the random
successor state x is given by x0 :¼AxþBuþC where (A, B, C) is a multidi-
mensional random variable that takes values in Rn×n × Rn×m × Rn. We assume
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there are J 2 N different possible realizations for (A, B, C), denoted by (Aj, Bj,
Cj) with probabilities pj 2 [0, 1].

• The immediate costs r: S × U → R are assumed to be piecewise linear and
convex.

As shown in Woerner et al. (2015), there exists a convex solution for the
discounted cost as well as for the average cost optimality equation for SLCPs. This
motivates the use of piece-wise linear convex approximations of the value function
(instead of a linear combination of basis functions as in usual ADP approaches).
Therefore we use a specialized algorithm called MARVI (Monotone Approximate
Relative Value Iteration, see Woerner et al. 2015), to obtain a piece-wise linear
convex value function approximation for it.

Any such value function approximation h: S → R defines a corresponding
policy as

phðxÞ ¼ argmin
u2UðxÞ

rðx; uÞþ
XJ

j¼1

pjh AjxþBjuþCj
� �

( )

Thus, instead of fixing a set of basis functions as in standard ADP approaches,
we take the maximum of a set of hyperplanes, which will be adaptively generated
during the run of the algorithm.

2 Application for Multiple Sourcing

The multiple sourcing problem is a well-studied problem in inventory control
(Minner 2003). The goal is to optimally control a single stock by continuously
ordering from a given set of potential suppliers. In this setup, each supplier rep-
resents a different combination of ordering cost and lead time.

Figure 1 gives a schematic view of the multiple sourcing problem for the case of
two suppliers. Supplier S1 has a longer delivery lead-time, in this case three time
steps, which is indicated by its order queue the ordered items have to pass until they
reach the inventory node. In contrast, the orders of the faster supplier S2 are
available already in the next time step after an order is placed. Using the notation of
the previous section, x represents the state (the inventory level and the open orders)
and u represents the action (the ordering decisions at the two suppliers).

The multiple sourcing problem is a well-studied hard problem. The goal is to
find an optimal policy (a mapping from states to actions) that minimizes the infinite
horizon average cost, which consists of ordering cost, inventory holding cost and
backlog cost for unmet demand.

Since nothing is known about an optimal policy, different heuristics have been
developed and are commonly used in practice:
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• The Fixed Order Ratio Policy simply allocates a fixed ratio of the order quantity
to each supplier in each time step.

• The Constant Order Policy orders a constant amount at one supplier (usually the
slower one) and reacts to variability via optimally ordering from the other
supplier. The problem is thereby reduced to a standard one-warehouse inventory
control problem, which can be solved efficiently.

• The Single Index Policy uses the inventory position (inventory level plus
unfilled orders) as an index to be compared to a threshold to determine how
much to order at each of the suppliers.

• The Dual Index Policy uses the inventory position as well as the expedited
inventory position (inventory level plus unfilled orders that will arrive within the
lead time of the fast supplier) to determine how much to order at the slow and
the fast supplier, respectively.

The Dual Index Policy has been shown to perform very well compared to the
optimal policy on a set of small instances where the optimal policy could be
computed by numerically solving the corresponding MDP (Veeraraghavan and
Scheller-Wolf 2008).

We now compare the Dual Index Policy with the policy found by applying the
MARVI algorithm as described in the previous section. The following problem
parameters are chosen:

• Holding cost: 1$ per time step,
• Backlog cost: 5$ per time step,
• Ordering cost: 1$ per unit for the slow supplier S1 and 2$ per unit for the fast

supplier S2.

The delivery lead time of the fast supplier is fixed at zero, while we consider
different problem instances where the lead time of the slow supplier varies from 1 to
6 time steps.

Figure 2 displays the resulting total costs as a function of the lead-time of the
slow supplier, for both the optimal Dual-Index Policy and a MARVI policy. The
results show that the MARVI policy obtains lower total costs than the Dual Index
Policy, and that this gap tends to increase with increasing lead-time difference

Fig. 1 Schematic view of the multiple sourcing problem for two suppliers
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between the suppliers. Furthermore, a lower bound is shown, which is also com-
puted by the MARVI algorithm as a by-product and allows us to give an
instance-specific performance guarantee.

Another advantage of the MARVI policy is that it reduces the order variance for
the suppliers, as shown in Fig. 3.

3 Application for Dynamic Inventory Allocation

Dynamic inventory allocation is the process of allocating inventory (fromapotentially
largesetofalternativestockinglocations)toincomingorders.Thistaskistypicallyfaced
in operations of large, spatially distributed inventory networks, such as spare part
networks (Tiemessen et al. 2013) or in order fulfillment of large e-commerce retailers.

The key decision in dynamic inventory allocation is therefore the decision from
which stocking point a given order should be satisfied. This decision should opti-
mally balance the (immediate) fulfillment cost (which mainly consists of trans-
portation and handling costs) with the expected future opportunity cost of
decreasing the inventory at the stocking point chosen for fulfillment. This

Fig. 2 Total costs for the dual sourcing problem as a function of the lead-time of the slow supplier

Fig. 3 Average order quantities and standard deviation (per time step) of the Dual Index Policy
and the MARVI policy
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opportunity cost is mainly related to the loss of serviceability in case of future
orders (for example lost sales in an e-commerce environment or contract penalties
for spare part operations).

The decision situation faced by the dispatcher is schematically represented in
Fig. 4 for the example of a spare part request of a customer with contractually
guaranteed delivery time of 8 h. The score card lists the different delivery options
for the current order, together with the respective delivery costs, and estimation of
the expected future opportunity costs and the resulting total cost. The graph below
depicts the decision situation geographically.

Besides the customer of the current order and the different delivery options,
Fig. 4 also indicates the location of another potential customer. In case the first
customer order is satisfied from Warehouse 1, a potential future demand by the
second customer might lead to a stock-out situation at Warehouse 1, and conse-
quently, if no other delivery options are available, to a violation of the service level
agreement and hence a penalty payment. This risk is captured in the expected future
costs.

The main question is how to compute the expected future cost. If this value was
known, the optimal policy would be to allocate the order to the delivery option with
lowest total costs. As in the previous sections, the problem can be formulated as a
Markov decision process with the inventory levels at the different warehouses, the
open replenishment orders (due to the replenishment lead-times), and the open
customer demand as the state variables and the allocation as well as replenishment
decisions as control actions. Figure 5 shows such a network with a central hub

Fig. 4 Decision situation for dynamic inventory allocation
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(top), two stocking locations (center), and two customers (bottom), as well as all
possible delivery options.

Again, solving the MDP model for an inventory allocation network of realistic
size is prohibitive and thus heuristic or approximate techniques are needed.

In a case study with approximately 40 warehouses and 150 customers the
MARVI algorithm was applied to approximate optimal inventory allocation poli-
cies. Policies were computed separately for 18 different products. Compared to a
greedy heuristic that simply allocates based on lowest immediate delivery cost, the
study has shown that, depending on the instance, a total cost reduction of 1 % to
10 % was achievable. Besides optimizing the fulfillment decisions, a further
advantage of applying MARVI is that it also yields an estimation of the expected
future cost, which is very useful information for the dispatcher, as it gives a clear
quantitative rationale why the suggested fulfillment option is optimal.

4 Conclusions

Two typical problems in multi-echelon supply chain management have been dis-
cussed in this paper, one regarding the supply side (multiple sourcing) and another
one regarding the demand side (dynamic inventory allocation) of the supply net-
work. Both problems are hard, so that a direct solution by solving the corresponding
Markov decision process is usually impossible due to the size of the state space.
Nevertheless, both problems are widely encountered in practice and need to be dealt
with somehow, usually by simple heuristics.

This paper has discussed the application of a new approximation technique—
Monotonous Approximate Relative Value Iteration—that exploits the structural
properties that these problems (and many other supply chain control problem) have,
specifically their linear dynamics and piece-wise linear convex cost structure. The

Fig. 5 Simplified state space
representation of the dynamic
inventory allocation problem
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main advantages of this approach are: (i) it handles high-dimensional state spaces,
(ii) it provides a policy on any approximation it builds (even on a coarse approx-
imation) and (iii) it provides lower bounds. The main disadvantages are: (i) the
approach is algorithmically more difficult to implement than a standard dynamic
programming approach and (ii) the policy as well as the bounds might be weak if
the approximation is not good enough. A limitation is given by the assumption of
piece-wise linear and convex costs, so the approach is not able to handle fixed costs.

Whether the mentioned disadvantages and limitations prevent the approach to
yield meaningful results is case specific. On the examples considered in this
chapter, the approximation technique achieves a noticeable (up to 10 %) cost
reduction compared to the best-know heuristics while at the same time giving valid
lower bounds on the total cost. In future work, the applicability of the technique to
other problems in supply chain management should be considered and its scalability
to larger state space dimensions should be explored. One goal of further investi-
gation would be to analyze whether certain problem properties, such as the mixing
properties of the underlying Markov chain or the number of different realizations of
the random variables, are indicative of the complexity of the optimal value function,
its approximability, and thus the quality and performance of our approximation
approach.
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