Multiobjective Interval Transportation
Problems: A Short Review

Carla Oliveira Henriques and Dulce Coelho

Abstract The conventional transportation problem usually involves the trans-
portation of goods from several supply points to different demand points and con-
siders the minimization of the total transportation costs. The transportation problem
is a special case of linear programming models, following a particular mathematical
structure, which has a wide range of potential practical applications, namely in
logistic systems, manpower planning, personnel allocation, inventory control, pro-
duction planning and location of new facilities. However, in reality, the trans-
portation problem usually involves multiple, conflicting, and incommensurable
objective functions, being called the multiobjective transportation problem. Several
methods have been developed for solving this sort of problems with the assumption
of precise information regarding sources, destinations and crisp coefficients for the
objective function coefficients. Nevertheless, when dealing with real-life trans-
portation problems, these circumstances may not be verified, since the transportation
costs may vary as well as supply and demand requirements. Therefore, different
approaches for dealing with inexact coefficients in transportation problems have
been proposed in scientific literature, namely with the help of fuzzy and interval
programming techniques. This paper is aimed at providing a short critical review of
some interval programming techniques for solving this particular type of problems.
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1 Introduction

The transportation problem (TP) might be seen as a particular case of linear pro-
gramming (LP) models which is generally used to determine the optimal solution
for the distribution of certain goods, from different supply points (sources—e.g.
production facilities, warehouses) to different demand points (destinations—e.g.
warehouses, sales, outlet), considering that there is a certain distance between these
points. The objective function in the TP usually represents the total transportation
costs, while the constraints are defined by the supply capacity and demand
requirements of certain sources or destinations, respectively. However, in real-life
situations the TP usually encompasses multiple, conflicting and incommensurate
objective functions (e.g. transportation cost, average delivery time, number of
goods transported, unfulfilled demand). This type of problem is also known as the
multiobjective transportation problem (MOTP). The conventional TP and MOTP
follow a particular mathematical structure assuming that the coefficients of the
objective functions and the supply and demand values are stated in a precise way,
with crisp values. Nevertheless, such assumptions are rarely satisfied (e.g. the unit
transportation costs may vary and the supply and demand may also change).
Therefore, TP and MOTP for decision support must take explicitly into account the
treatment of the inherent uncertainty associated with the model coefficients. Interval
programming is one of the approaches to tackle uncertainty in mathematical pro-
gramming models, which holds some interesting characteristics because it does not
require the specification or the assumption of probabilistic distributions (as in
stochastic programming) or possibilistic distributions (as in fuzzy programming) or
a max-min formulation (as in robust optimization). The use of interval program-
ming techniques is possible providing that information about the range of variation
of some (or all) of the parameters is available (Oliveira and Antunes 2007).

This paper is aimed at providing an overview of the different approaches
reported in scientific literature regarding interval programming techniques for
tackling the uncertainty in TP and MOTP. This paper is structured as follows:
Sect. 2 provides the underpinning assumptions of MOTP with interval coefficients
(MOITP); Sect. 3 discusses the main approaches found in scientific literature for
obtaining solutions to MOITP. Finally, Sect. 4 concludes highlighting the main
advantages and drawbacks of the several approaches also suggesting possible future
work development in this field of research.
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2 Theoretical Underpinning of MOITP

Conventional multiobjective linear programming (MOLP)/LP models usually
address practical problems in which all coefficients and parameters are a priori given.
However, due to the inexactness and uncertainty aspects of these problems should be
explicitly taken into consideration. Uncertainty handling can be dealt with in various
ways, namely by means of stochastic, fuzzy and interval programming techniques.
In the stochastic approach the coefficients are treated as random variables with
known probability distributions. In the fuzzy approach, the constraints and objective
functions are regarded as fuzzy sets with known membership functions. However, it
is not always easy for the decision-maker (DM) to specify these probability distri-
butions and membership functions. In the interval approach it is considered that the
uncertain values are perturbed simultaneously and independently within known
fixed bounds, being therefore intuitively preferred by the DM in practice.

2.1 Interval Numbers and Interval Order Relations

Consider that the value x (a real number) is uncertain, knowing that x lies between
two real numbers ¢~ and ¥ forming an interval, where at < aY. All numbers
within this interval have the same importance. An interval number A is defined as
the set of real numbers x such that ¢~ < x < aU, ie. x € [aL, aU], aL, a’ e R or,

A= [aL,aU] :{x:aLSXSaU,G 3?} (1)

The width and midpoint of the interval number A = [aL, aU] are wW[A] = (aU - aL)
and m[A] = § (" +d"), respectively. There are basically two types of order rela-
tions between intervals: one based on the extension of the concept “<” (less than)
for real numbers and another based on the extension of the concept of set inclusion.
Consider the intervals A = [a¢", "] and B = [b", bY] given in the set I(*R) i.e. the set
of real interval numbers. Thus, it is considered that A (<) B if and only if a’ < -,
Moreover, A C B if and only if a“ > b* and a¥ < bY. Nonetheless, these interval
order relations do not allow comparing overlapped intervals. On the other hand, the
extension of set inclusion does not allow ordering intervals in terms of their
importance. In this context, several approaches have been suggested which allow
comparing two interval numbers. Ishibuchi and Tanaka developed an approach
which allows comparing two interval numbers (Ishibuchi and Tanaka 1990). For
instance, in a problem where the objective function is minimized, A is better than B,
i.e. A <,y B if and only if ¢“ < p™ and a" < bY.

The interval order relation “<; ;" has the following properties:

(a) If A <y y B, then m[A] < m[B].
(b) If d" = a" and b* = bY, then “<; ;" corresponds to the inequality “<” used in
the set of real numbers.
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However, there are interval numbers that cannot be compared through the
interval order relation “<;,”. For example, if A = [85, 95] and B = [80, 100], the
order relations A <;y B and B <[y A are not verified. Therefore, Ishibuchi and
Tanaka suggested another interval order relation based on the midpoint and width
of the interval numbers, called “<y;w” (Ishibuchi and Tanaka 1990). According to
this interval order relation, A is better than B, i.e. A <\yw B if and only if
m[A] < m[B] and w[A] = w[B].

The interval order relation “<y;w” has the following properties:

(@) If A <yw B then o~ < b
(b) If w[A] = w[B] = 0, then “<p;w” corresponds to the inequality “<” used in the
set of real numbers.

Ishibuchi and Tanaka have also defined another interval order relation, “<;\”,
which allows comparing the previous two (Ishibuchi and Tanaka 1990). According
to this interval order relation, A is better than B, i.e. A <y B if and only if at <t
and m[A] < m[B]. On the other hand, A <;; B if and only if either A <,y B or
A <yw B. Chanas and Kuchta (1996) proposed a generalization of the interval
order relations suggested by Ishibuchi and Tanaka (1990) introducing the concept
of cutting level—¢,, ¢@;—of an interval. Consider the interval order relations
“<tu”, “Smw’s “<pm” defined as interval order relations of the type 1, 2 and 3,
respectively. Let A = [a", a"] and ¢, and @, any real crisp numbers such that 0 < ¢,
< ¢y £ 1. The cutting level—o,, ¢,—of interval A is:

A/[ ] = [d“+ @y (a” —d"),d" +¢(a” —d")]. (2)

Pos Py

Let A = [aL, aU] and B = [bL, bU] be two interval numbers, @q and ¢; any real
crisp numbers such that 0 < ¢y < ¢; < 1 and i any interval order relation of the set

{1, 2, 3}. The interval order relations < and <. are
t/[ﬁl’m @1] l/[(l)o; ? ]
defined in the following way:

A< B ifandonlyif A <,B , 3
Silee, 0]7 " VI A (o, 058 [0y o] ©
A< B ifandonlyif A <;B 4
i/[‘/’o (Pl] ! v /[(Po» </’1] /[(/70 (/’1] “)
here A dB d to the cutting levels—aqg, @;—

where /[(/’07 o] an /[(po’ o] correspond to the cutting levels—a@, ¢,

of interval numbers A and B, respectively.
Then, A < BifandonlyifA <; B,i = 1,2,3and A < ¢, 1Bif
] /[ @0, 5]
]B. Nevertheless, there are interval numbers that cannot

i/ @0, @

donlyifA <
andonly 1 _3/[€00; P1

be compared through the interval order relations defined by Ishibuchi and Tanaka
(1990) and Chanas and Kuchta (1996). For example, let us consider A = [1850, 2215]
and B = [1695, 2515]. Therefore, m[A] = 2032.5, m[B] = 2105, w[A] = 365 and
w[B] = 820. Therefore it might be concluded that interval A allows obtaining a lower
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value but less uncertain, whereas interval B allows obtaining a higher value but more
uncertain. Thus, it is not possible to know with any of the interval order relations
previously established what is the better interval value. In order to overcome this
drawback Sengupta and Pal suggested an index which allows comparing any type of
interval numbers, taking into account the satisfaction levels of the DM (Sengupta and
Pal 2000). Consider the following expanded order relation <, between the interval
numbers A and B. Sengupta and Pal (2000) defined an acceptability function
A I(R) x I(R) — [0, 0], such that A(A < B) or A < (A, B), or even,

(m[B] — m[A])
A== 7WB WAL’ ®)
Cay

where (224 x4) -£ (. The index A < can be interpreted has the degree of
acceptability of A being inferior to interval B, i.e. A(A < B) or A < (A, B).

The degree of acceptability of A < B can be classified by comparing the mid-
point and width of interval numbers A and B in the following way:

0 if m[A] = m[B],
A(A<B)=1¢10,1] if m[A]<m[B] and aY >b", (6)
[1,00[ if m[A]<m[B] and aY<b".

If A(A < B) = 0 then the premise “A inferior to B” is not accepted; if 0 < A(A <
B) <1 then the premise “A inferior to B” is accepted with different degrees of
satisfaction; if A(A < B) > 1 then the premise “A inferior to B” is accepted as true.
In a minimization problem, if A(A < B) > 0, then it should be concluded that A is
better than B. The index .4 < satisfies the DM for any possible judgment regarding
the comparison of any pair of interval numbers A and B, since it is always possible
to obtain at least one of the following situations: A(A < B) > 0, A(B < A) > 0 or
A(A < B)=A(B < A) =0.

2.2 MOLP Models with Interval Coefficients
and Parameters

Consider, without loss of generality, the following MOLP model with interval
coefficients and parameters and the interval arithmetic operations (Oliveira and
Antunes 2007; Moore 1966):
Maximize Zy(x) = Z {ij, Cg}xj k=1,...,p),
=1
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where [cl, el ], [al ol and [bY, bV k=1 pj= 1o mi= 1,

kji? Tk ij
m, correspond to closed intervals.

The interval programming approach has been used to tackle specific issues in
MOLP. Some algorithms only tackle the uncertainty in the objective functions,
others deal both with the uncertainty in the objective functions and in the right hand
side (RHS) of the constraints and others handle with the uncertainty in all the
coefficients of the model (Oliveira and Antunes 2007). According to Inuiguchi and
Kume and Inuiguchi and Sakawa there are two different approaches to deal with an
interval objective function: the satisficing approach and the optimizing approach
(Inuiguchi and Kume 1994; Inuiguchi and Sakawa 1995). According to the satis-
ficing approach each interval objective function is transformed into one or several
objective functions (the lower bound, the upper bound and the midpoint of the
intervals are usually used) in order to obtain a compromise solution. However, the
use of this approach may lead to a compromise solution that might not be the most
suitable one, if the gradients of the chosen objective functions are highly correlated
(Antunes and Climaco 2000). The optimizing approach extends the concept of
efficiency used in traditional MOLP to the interval objective function case [e.g.
(Bitran 1980; Ida 1999, 2000a, b, 2005; Inuiguchi and Sakawa 1996; Steuer 1981;
Wang and Wang 2001a, b; Oliveira et al. 2014)]. Bitran suggested two types of
efficient solutions for the interval MOLP: a “necessarily efficient” if it is efficient for
all objective function coefficient vectors within their admissible range of variation
(see the vertex with a bold circle obtained with the gradient cones of the two
objective functions illustrated in Fig. 1); a “possibly efficient” if it is efficient for at
least one of the given objective function coefficient vectors within their admissible
range of variation (Bitran 1980). When compared to the “possibly efficient”

Fig. 1 Necessarily and Possibly efficient
possibly efficient solutions X2 A solutions
(Oliveira and Antunes 2007) )

L[4
.

Necessarily efficient
solution

"
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solutions, the “necessarily efficient” solutions are the most robust (Ida 1999).
Although this type of approach allows enumerating all possibly efficient solutions
and/or all necessarily efficient solutions, the computational burden involved can be
significant. Another issue is that with a large set of solutions, in many cases with
just slight differences among the objective function values, the decision problem
becomes even more complex (Antunes and Climaco 2000).

Interactive approaches have also been considered to obtain solutions to the
MOLP models with interval coefficients in the whole model. Urli and Nadeau have
proposed an interactive algorithm that does not allow the DM to take into account the
worst case and the best case “scenarios” (Urli and Nadeau 1992). In the algorithm
proposed by Oliveira and Antunes the procedures involved provide a global view of
the solutions in the best and worst case coefficients scenario and allow performing
the search of new solutions according with the achievement rates of the objective
functions, both regarding the upper and lower bounds (Oliveira and Antunes 2009).
The main aim is to identify the solutions associated with the interval objective
function values which are closer to their corresponding interval ideal solutions. With
this approach it is also possible to find solutions with non-dominance relations
regarding the achievement rates of the upper and lower bounds of the objective
functions, considering interval coefficients in the whole model.

2.3 MOITP Formulation

The conventional MOTP problem can be formulated, without loss of generality, as:

m n
Minimize Z* = E E c}}xij, wherek = 1,...,p.
i1 j=1

subject to

n
E Xj=a, 1=1,...,m.
=1
m
E Xij:bj, _]:1,...,11
i=1

X,‘jZO, i=1

where x;; is the decision variable which refers to product quantity that has to be
transported from supply point i to demand point j; c‘ij, k =1, ..., p, denotes the unit
transportation cost from ith supply point to jth demand; a;, i = 1, ..., m, represents
the ith supply quantity; b;, j = 1, ..., m, represents the jth demand quantity.
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Three major cases can occur in MOITP problems (Das et al. 1999):

1. The coefficients of the objective functions are given in the form of interval
values, whereas source and destination parameters are deterministic.

2. The source and destination parameters are in the form of interval values but the
objective functions’ coefficients are deterministic.

3. All the coefficients and parameters are in the form of interval values.

If all the coefficients and parameters are provided in the interval form, the
MOITP can be formulated, without loss of generality, as the problem of minimizing
p interval-valued objective functions, with interval source and interval destination
parameters, as follows (Das et al. 1999; Sengupta and Pal 2009):

m n
e kK k k . o
Minimize Z* = E g {CLijﬂcUij]le’ where k =1,...,p.
i=1 j=1

subject to

ZXU [aLi, aui], i=1,...,m.

lej bLJabUJ _]: 1,...,11. (9)
x{j>0, i=1,...,m j=1,..., n

m n m n
with Z ap; = ZbLj and Z ay; = Z by;
i=1 =1 i=1 =1

m n
. 1 1
or with Z >(aLi +aui) = Z E(bLj +by),

i=1 =1
where x;; is the decision variable which refers to product quantity that has to be
transported from supply point i to demand point j; {clﬁij, clfjij} k=1, ..., p, denotes
the unit transportation cost from ith supply point to jth demand comprised between
cfij and c‘{ﬁj; [aLi,aUJ, i =1, ..., m, represents the ith supply quantity within ar; and

ay;; [bLj’ij] ,j=1, ..., m, represents the jth demand quantity located between by
and by;.

3 Solution Methods for MOITP

Abd El-Wahed and Lee classify the solution approaches for MOTP into four cat-
egories: interactive approaches [see e.g. (Climaco et al. 1993; Ringuest and Rinks
1987)], non-interactive approaches [see e.g. (Aneja and Nair 1979)], goal pro-
gramming (GP) approaches [see e.g. (Hemaida and Kwak 1994)] and fuzzy
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programming approaches [see e.g. (Abd El-Wahed and Lee 2006; Abd El-Wahed
2001; Li and Lai 2000)]. The interactive approaches may present several limita-
tions: the convergence to an efficient solution depends on the DM’s reasoning and
consistency; unless the interactive method becomes more flexible to facilitate the
enumeration and evaluation of the set of efficient solutions in large scale problems,
the procedure bears a high computational burden. However, with this sort of
approaches the search direction of efficient solutions is controlled by the DM
allowing him/her to reach an efficient solution consistent with his/her preferences.
The non-interactive approaches depend on the generation set of efficient solutions,
and the choice of the preferred compromise solution out of this set is then required
from the DM. Therefore, the solution search process may require a large compu-
tational burden and the DM may be facing additional difficulties in assessing the
tradeoffs between the different solutions. The GP approach allows obtaining a
compromise solution according to the established goal levels (aspiration levels).
Nevertheless, it is often difficult for the DM to decide the desired aspiration levels
for the goals, eventually leading to non-efficient solutions; the choice of the weights
in the formulation of the GP problem may also lead to non-satisfying results;
erroneous conclusions can be obtained if the achievement function is not correctly
formulated; the GP formulation changes the traditional mathematical form of the
MOTP problem. Finally, the fuzzy programming approaches are based on the use
of fuzzy set theory for solving the MOTP by means of an interactive procedure. The
use of fuzzy set theory in solving such MOTP changes the standard form of the
TP. Moreover, the computation of an efficient solution is not guaranteed in certain
conditions [see e.g. (Li and Lai 2000)]. Although this section is devoted to the
MOITP, our analysis will also encompass methods used in the framework of
interval TP (ITP). Therefore, by extending the previous classification of solution
approaches to MOITP and ITP, it might be concluded that the approaches mainly
used are broadly classified into three categories: the composite approach (i.e., they
are the result of the combination of two or more approaches), the fuzzy approach
(usually used for obtaining a final solution) and non-fuzzy approach. In the
framework of the composite approach, Abd El-Wahed and Lee (2006) presented an
interactive, fuzzy and goal programming approach to determine the preferred
compromise solution for the MOTP. The suggested approach considers the
imprecise nature of the input data by implementing the minimum operator, also
assuming that each objective function has a fuzzy goal. The approach focuses on
minimizing the worst upper bound to obtain an efficient solution which is close to
the best lower bound of each objective function. The solution procedure controls
the search direction by updating both the membership values and the aspiration
levels. An important characteristic of the approach is that the decision-maker’s
(DM’s) role is concentrated only in evaluating the efficient solution to limit the
influences of his/her incomplete knowledge about the problem domain. The
approach controls the search direction by updating both upper bounds and aspi-
ration level of each objective function. In the context of the fuzzy approach, Das
et al. suggested a procedure that starts by transforming the MOITP (see problem
(8)) into a classical MOTP, where the objectives (the upper bound and midpoint of
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the interval objective functions) are minimized and the constraints with interval
source and destination parameters have been converted into deterministic ones (Das
et al. 1999). Finally, the equivalent transformed problem has been solved by the
fuzzy programming technique. Sengupta and Pal proposed a methodology for
solving an ITP where multiple penalty factors are involved, reflecting the DM’s
pessimist or optimistic bias in achieving the compromise solution by means of a
fuzzy oriented method (Sengupta and Pal 2009). Panda and Das presented a
two-vehicle cost varying interval transportation model (TVCVITM) where the cost
varies due to the capacity of the vehicles and to the quantity transported (Panda and
Das 2013). The source and destination parameters are considered as intervals.
Initially, depending on the cost of the vehicles the interval coefficients of the
objective function are specified. Then, the problem is converted into a classical
ITP. Finally, this model is converted into a bi-objective TP, where the upper bound
and the midpoint of the objective function are minimized. The solution to this
bi-objective model is obtained with a fuzzy programming technique. Nagarajan
et al. suggested a solution procedure for the MOITP problem under stochastic
environment using fuzzy programming approach. All source availability, destina-
tion demand and conveyance capacities have been taken as stochastic intervals for
each criterion. Expectation of a random variable has been used to transform the
problem into a classical MOTP where the objectives which are the upper bound and
midpoint of the interval objective functions are minimized (Nagarajan et al. 2014).
In the context of non-fuzzy approach, Pandian and Natarajan (2010) suggested a
new method (the separation method based on the zero point method) for finding an
optimal solution for the integer TP where transportation cost, supply and demand
are given as interval values. The proposed method has been developed without
using the midpoint and width of the interval in the objective function. Joshi and
Gupta investigated the transportation problem with fractional objective function
when the demand and supply quantities are varying. The method computes the
lower and upper bounds of the total fractional transportation cost when the supply
and demand quantities are varying. A set of two-level transportation problems is
transformed into one-level mathematical programs to obtain the objective value
(Joshi and Gupta 2011). Pandian and Anuradha (2011) applied a split and bound
method for finding an optimal solution to a fully integer interval TP with additional
impurity constraints. This method has been developed without considering the
midpoint and width of the intervals and is based on the floating point method [see
Pandian and Anuradha (2011b)]. Rakocevic and Dragasevic (2011) presented a
parametric TP, in which the coefficients of the objective function depend on a
parameter. The main aim of this proposal is to assess the impact on the optimal
solution of changes in the coefficients of the objective function, i.e. to find the range
of variation of the coefficients of the objective function without affecting the
optimal solution obtained. Roy and Mahapatra (2011) dealt with the interval
coefficients to the multiobjective stochastic TP, involving an inequality type of
constraints in which all parameters (supply and demand) are lognormal random
variables and the coefficients of the objective functions are interval numbers. The
minimization MOITP is also converted into a bi-objective problem using the order
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relations which represent the DM’s preferences between the interval costs. These
interval costs have been defined by the upper and lower bounds and corresponding
midpoint and width. The proposed probabilistic constraints are firstly converted into
an equivalent deterministic constraint by means of the chance constrained pro-
gramming technique. Then, a surrogate problem has been solved by the weighted
sum method. Guzel et al. (2012) transformed a fractional TP with interval coeffi-
cients into a classical TP. Two solution procedures are then proposed for the
interval fractional TP. One of them is based on a Taylor series approximation and
the other one is based on interval arithmetic. Kavitha and Pandian (2012) presented
the sensitivity analysis of supply and demand parameters of an ITP. The method is
aimed at determining the ranges of supply and demand parameters in an interval
transportation problem such that its optimal basis is invariant. The upper-lower
method is used for finding a critical region of the supply and demand parameters at
which any change inside the ranges of the region does not affect the optimal basis,
while any change outside their ranges will affect the optimal basis. Dalman et al.
(2013) considered the Indefinite Quadratic Interval TP (IQITP) in which all the
parameters i.e. cost and risk coefficients of the objective function, supply and
demand quantities are expressed as intervals. Firstly, a feasible initial point is
determined within the Northwest Corner method by means of expressing all the
interval parameters as left and right limits. Then the objective function is linearized
by using first order Taylor series expansion about the feasible initial point.
Thus IQITP is transformed into a traditional LP problem. Then an iterative pro-
cedure is presented in such a way that the optimal solution of the last LP problem is
selected as the point from which the objective will be expanded into its first order
Taylor series in the next iteration step. The stopping criterion of the proposed
procedure is obtaining the same point for the last two iteration steps. Fegade et al.
(2013) considered TP with and without budgetary constraints, where demand and
budget are imprecise. An interval-point method for finding an optimal solution for
transportation problems is proposed and compared with zero suffix method. Panda
and Das (2014) also presented the two-vehicle cost varying transportation problem
as a bi-level mathematical programming model. The Northwest Corner rule is used
for determining the initial basic feasible solution and then the unit transportation
cost (which varies in each iteration) is established according to the choice of
vehicles. These authors also concluded that the two-vehicle cost varying trans-
portation model provides more efficient results than the single objective cost
varying transportation problem.

3.1 Advantages and Disadvantages of Solution Methods

From the different methodologies briefly presented it might be concluded that the
combination of two or more approaches may reduce some or all of the shortcomings
of each individual approach. Another issue refers to the fact that the majority of the
approaches herein reviewed transforms the original MOITP/TP into a surrogate
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crisp problem and then apply some algorithm to solve it (see Table 1). As a result,
the uncertainty of the intervals may get lost to a certain extent. In fact, in view of
interval order relations, the satisfactory solutions attained sometimes allow
obtaining contradictory results. The example suggested by Das et al. and used by
Sengupta and Pal helps illustrating this issue (Oliveira and Antunes 2009; Das et al.
1999).

Consider the following example:

34
.. kK o
Minimize Z* = E E [CLU,CUU]XU, wherek = 1,2.
i=1 j=1

subject to
4

ix1j=[7,9], > xg=[17,21], 24: x5 = [16, 18],

1 j=1

o
Il

3

an = [10,12], Z X = [2, 4],le3 = [13, 15],2)(14 = [15,17],

i=1 i=1 i=1

w

xj >0, i=1,2,3, j=12,3,4.

where clj |:C]£1J7CUIJ:| k=1,2,

(1, 2] [1, 3] [5 9] [4, 8]
¢i=|[1, 2] [7, 10] [2, 6] [3, 5]|and
(7, 9] [7, 11] [3, 5] [5, 7]

[[3, 5] [2, 6] [2, 4] [1, 5]
=114, 6] [7, 9] [7, 10] [9, 11]

(4, 8] [1, 3] [3, 6] [1, 2]

With the fuzzy programming technique suggested by Das et al. (1999) the
following Pareto optimal solution is attained: x5 =2, X;4 =195, Xp = 10,
X23 = 6.01, Xp4 =099, x33=6.97, x34, =901, with Z'=[113, 204.9], w
[Z'1=91.9, m[Z'] =158.95 and Z*=[129.89, 227.86], w[Z’]=97.97, m
[Z*] = 178.85. By means of the fuzzy oriented method proposed by Sengupta and
Pal (2009) the following solution is obtained, considering a higher importance of
the first objective function and with a more certain result—x;, =2, x;3 =15,
x| = 10, Xo4=7, X335=28, x34 =8, with Z'=[122, 202], w[Z']=80, m
[Z'] = 162 and Z* = [149, 233], w[Z?] = 84, m[Z°] = 191.

Let Z'P = [113, 204.9] and Let Z*" = [129.89, 227.86] be the interval solutions
obtained by Das et al. (1999) and Z'S = [122, 202] and Z* = [149, 233] be the
interval solutions reached by Sengupta and Pal (2009). If we compare these interval
objective function values using the interval order relations discussed in Sect. 2.1, it
can be concluded that:
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1. According to Ishibuchi and Tanaka (1990) Z'P <yw Z'S, since m[Z'®] < m
[Z'S] and Ww[Z'P] =2 w[Z'S]; Z?° <yw Z25, since m[Z%P] < m[Z*%] and
W[ZZD] > W[ZZS];

2. According to Ishibuchi and Tanaka (1990) Z'P < v Z'S, since the “lower
bound of Z'®” < “lower bound of Z'S” and m[Z'P] < m[ZlS]; 7P <M 7%,
since the “lower bound of Z?P” < “lower bound of Z2%” and m[ZzD] < m[Zzs];

3. Using the acceptability index developed by Sengupta and Pal (2000) Z'P® < Z'S,
since

m(Z' zlD 1) (162 — 158.95)
70 <= ( =0.035485748 > 0 and
(w L w[z® ) (40 1 45.95) an
Z°]) (191 —178.85)
70 2 7% since 72° < (m[Z] —m[Z%]) _ ©2) _ 0.133263725 > 0.
since < [z ] B w[z“’}> (42+48.985)
2 2

In a minimization problem, if both A(Z'? < Z'S) > 0 and A(Z*® < 2%) > 01t
should be concluded that Z'? is better than Z'S and Z>P is better than ZZS, which
allows concluding that from this point of view the solution proposed by Sengupta
and Pal (2009) is dominated by the solution obtained by Das et al. (1999). In fact,
all the interval order relations indicate the same results.

Table 1 provides a brief overview of the main advantages and drawbacks found
in the approaches previously discussed.

4 Conclusions

The mathematical formulation of the traditional MOTP assumes that the coefficients
of the objective functions and the supply and demand values are considered as crisp
values. However, the unit transportation costs may vary and the supply and demand
may also change. In this context, interval programming is one of the approaches
used to handle uncertainty in mathematical programming models, which entails
some interesting characteristics. In contrast to stochastic programming or to fuzzy
programming which start with the specification or the assumption of probabilistic
distributions and possibilistic distributions, respectively, and to robustness opti-
mization techniques which inherently consider a max-min formulation (i.e.,
worst-case), interval programming only requires information about the range of
variation of some (or all) of the parameters. In the framework of the critical
assessment of the interval programming techniques for solving MOITP revisited in
this study, it might be concluded that the combination of two or more approaches in
the solution methods applied to MOITP/ITP may reduce the limitations of each
individual approach. On the other hand, in general, the approaches herein reviewed
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transform the original MOITP/TP into a crisp model and then use an algorithm to
solve it. Consequently, the uncertainty of the intervals becomes lost to a certain
extent. Finally, as it was shown, the satisfactory solutions obtained may lead to
contradictory results from the point of view of interval order relations. Therefore,
new ways to model the MOITP/TP should be proposed in order to overcome this
expected drawback.
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