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Abstract Optimization subjects are addressed from both an introductory and an
advanced standpoint. Theoretical subjects and practical issues are focused, conju-
gating Optimization basics with the implementation of useful tools and supply chain
(SC) models. In the prior Introductory chapter on Optimization concepts, Linear
Programming, Integer Programming, related models, and other basic notions were
treated. Here, the More Advanced chapter is directed to Robust Optimization, com-
plex scheduling and planning applications, thus the reading of the prior Introductory
chapter is recommended. Through a generalization approach, scheduling and plan-
ning models are enlarged from deterministic to stochastic frameworks and robustness
is promoted: model robustness, by reducing the statistical measures of solutions
variability; and solutions robustness, by reducing the capacity slackness, the non-used
capacity of chemical processes that would imply larger investment costs.

Keywords Robust Optimization � Batch scheduling � Process planning � Models
generalization

J.L. de Miranda (&)
Departamento de Tecnologias e Design, Escola Superior de Tecnologia e Gestão,
Instituto Politécnico de Portalegre, 7300-110 Portalegre, Portugal
e-mail: jlmiranda@estgp.pt

M. Casquilho
Department of Chemical Engineering, Instituto Superior Técnico,
Ave. Rovisco Pais, IST, 1049–001 Lisbon, Portugal
e-mail: mcasquilho@tecnico.ulisboa.pt

J.L. de Miranda � M. Casquilho
CERENA—Centro de Recursos Naturais e Ambiente, Instituto Superior Técnico,
University of Lisbon, Ave. Rovisco Pais, IST, 1049-001 Lisbon, Portugal

© Springer International Publishing Switzerland 2017
A.P. Barbosa-Póvoa et al. (eds.), Optimization and Decision Support
Systems for Supply Chains, Lecture Notes in Logistics,
DOI 10.1007/978-3-319-42421-7_6

79



1 Introduction

Generalization approaches occur widely in Mathematics fields, namely, the
enlargement of number sets, from the set of natural until the set of complex
numbers, considering the set of integer, fractional, and real numbers. These suc-
cessive enlargements occur also in the power operations, when the powers of
natural, integer, fractional, real, and complex numbers are addressed. Or in certain
functions, such as the Permutation function can be considered just a special case of
Factorial function, the “complete factorial”, and the Factorial function just a
restriction to non-negative integers of the Gamma function.

But generalizations occur also in Mathematical Programming (MP), since Linear
Algebra solutions are considered in the Linear Programming (LP) feasible solutions
space, the methods for Integer LP are using constrained-LP, deterministic LP are
enlarged to Stochastic LP (SLP) and then to Robust Optimization (RO) models
(Miranda and Nagy 2011). In fact, the analysis of the evolution of MP models, with
quantitative and qualitative improvements, show successively extended models.
Quantitative improvements are achieved when the objective function and/or space
of admissible solutions are successively enlarged, and vice versa.

The study of several industry-based SC cases addressing petroleum refineries,
fertilizers, pharmaceutics, chemical specialties, and paper production was devel-
oped in a first phase (Miranda 2007). The focus was on Mixed Integer Linear
Programming (MILP) models that aim at chemical processes planning (PP), that is,
long range investment planning.

Notice that in the chemical industry:

• Dedicated chemical processes, on one hand, use fixed proportions of products in
all the time periods; for instance, in the Kellogg’s process for ammonia syn-
thesis and in the electrochemical production of caustic soda;

• On the other hand, the flexible chemical processes that occur in petroleum
refineries use different products along the various time periods.

• Process flexibility may occur in raw materials, namely, some refinery processes
are suitable for several types of crude oil; and process flexibility may also occur
in products; for instance, when producing several types of paper, considering
different surface properties, various densities and colors.

The successive enlargement of models associated with the generalization
approach was observed, with PP models treating dedicated processes, then flexible
processes, and flexible processes through “production schemes”. Furthermore,
robust planning with dedicated processes, and SC production planning with flexible
processes were also treated, but not simultaneously in the same PP model.

Another focus on the industry cases was on MILP models aiming at the design
and scheduling of chemical batch processes (here on this text: Batch, a flowshop-
type problem), considering the production of tires, biotechnology, food industry,
chemical specialties, pharmaceutics. The flowshop problem is a very well-known
type of problem and addresses N tasks to be sequentially performed in M stages,
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assuming (Garey et al. 1976): (i) one machine is available in each stage; (ii) one
task is performed in one machine at each allocation, without preemption; and
(iii) one machine performs only one task at each time. Beyond the wide number of
applications in manufacturing, and due to the high cost of equipment in chemical
batch processes, either the maximization of equipment utilization or the make-span
minimization are usually considered.

Like in the former PP cases, the evolution of Batch models is observed in two
senses: (i) successively, more realistic formulations, integrating additional degrees
of freedom and uncertainty treatment, which are making resolution more difficult;
and (ii) usually, resolution procedures are considered at the very beginning of the
modeling phase, and some issues of networks resolution, heuristics, and approxi-
mation schemes, were introduced. Due to its inherent difficulty, the Batch model at
hand was treated only in a deterministic framework, and further developments
except this generalization approach are not at our knowledge.

In order to obtain quantitative and qualitative improvements, then, a PP model
and a Batch model are selected and generalized, aiming at the treatment of
uncertainty and promotion of robustness. Simultaneously, these models also
address the chemical processes designing and sizing, the material fluxes within such
processes, and finally materials to purchase and products to sell.

2 Robust Model for Flexible Processes Planning

As an overview of the PP problem and considering the evolution of PP models during
about a decade, a capacity expansion sub-problem was considered and, simultane-
ously, uncertainty is treated (Sahinidis et al. 1989), flexibility attributes are included
(Norton and Grossmann 1994), and robustness is promoted (Bok et al. 1998).

The Capacity Expansion problem, in general, addresses the expansion of pro-
duction capacities when products demand are expected to rise significantly. It
considers economies of scale by modeling fixed and variable costs and, in partic-
ular, obsolescence (e.g., electronics manufacturing) or deterioration with increasing
of operation and maintenance costs may be introduced. The improvements on
operations (e.g., learning curve), introduction of multiple types of technology (e.g.,
energy production), the discrete enumeration of alternatives, and the long term
uncertainty are being addressed through stochastic frameworks.

The Two-stage Stochastic Programming (2SSP) is widely used to address uncer-
tainty. For instance, considering the capacity expansion problem: at the first stage, the
capital and investment decisions must be taken, “here-and-now”; then, the project
variables are obtained (project stage); in the second stage (recourse stage), the
uncertainty is introduced through the set of foreseen scenarios and respective prob-
ability; this way, the control variables are calculated within a probabilistic character.

However, under uncertainty it is pertinent to promote robustness, either the
robustness on solution—the solution remain “almost optimal” even when all sce-
narios are considered—and the robustness in the model—the optimal solution do

Optimization Concepts: II—A More Advanced Level 81



not present high values to the excess/unused capacity or the unsatisfied demand.
Usually a SLP objective function is modified in RO models by introducing
penalization parameters on deviation, non-satisfied demand, capacity excess, or
probabilistic restrictions are modified by enlarging/narrowing “soft” bounds.

Furthermore, using a theoretical approach and developing computational com-
plexity studies of the PP problem, it is shown that most of the PP problems are
NP-hard (Miranda 2007). Then, the necessity to develop heuristics may arise in
case large instances are presenting. Nevertheless, it is suitable to solve instances of
reasonable dimension using detailed knowledge about the models, by balancing
their benefits and limitations. In the medium and large horizons, it is also pertinent
to promote robustness in face of uncertainty. A generalization was then developed
to properly address the “capacity production”, to economically evaluate it, by
considering flexible production schemes, and targeting robustness in 2SSP context.
Logistics and financial subjects were not addressed in this generalization approach
(e.g., inventory, distribution network, finance risk).

The purposes of the generalized model for processes planning thus are:

• To treat uncertainty and to promote robustness;
• To consider flexible processes, by integrating the production schemes

formulation;
• To define the time implementation and the size of processes;
• To model economies of scale;
• To estimate the fluxes in the chemical processes, the raw materials’ purchases,

and the products sales.

The related nomenclature follows:

Index and sets
NC Number of components/materials j;
NM Number of markets l for purchase/sale materials;
NP Number of processes i;
NR Number of scenarios r;
NS Number of production schemes s;
NT Number of time periods t.

Parameters
probr Probability associated with each scenario r;
kdsv, kzp Penalization parameters, respectively, for the solutions variability and

the capacity slackness;
cjlt, Cjlt Unit prices for sale and purchase of the j materials, in market l, period t;
dist Unit costs for the production processes i, at scheme s, period t;
ait, bit Variable and fixed costs for the capacity expansion of processes i, in

each period t;
ajlt, djlt Availabilities and demands of components and materials j, in market l,

period t;
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lijs Characteristic constants that associate the inflows and outflows of the
various components within each process i;

qis Relative production rates at each process i, scheme s;
Hit Upper value for the availability of production time, for process i during

period t;
PS(i) Set of production schemes s allowed for flexible process i;
QEacum

its Upper bound for the capacities to expand, concerning the aggregated
“demand of capacities” from period t until period s.

Variables
nr Net Present Value (NPV) in scenario r;
dsvnr Negative deviation on the value of NPV in scenario r;
Saljltr Products sales, for material j, in market l, period t and scenario r;
Purjltr Materials purchases, for material j, in market l, period t and scenario r;
QEit Capacity expansion of process i in period t;
Qit Capacity of process i in period t;
yit Binary decision related to the expansion of process, in period t;
Zpitr Deviation by capacity slackness of process i, in period t at scenario r;
histr Amount of principal component j′ being processed at scheme s of

process i, at period t and for each scenario r.

Then the model ROplan_flex (adapted from Miranda and Casquilho (2008)
along with some examples) in the relations set (RO.1-a–RO.1-l) considers and
simultaneously conjugates the significant points of prior PP models;

• A robust objective function (RO.1-a); and
• The flexibility schemes within the processes planning frame are addressed on

restrictions set (RO.1-b–RO.1-l).

These relations are synoptically described:

(a) Objective Function, aiming to maximize the expected Net Present Value
(NPV), considering penalizations on variability around the expected value,
and penalizations on capacity slacks (non-statistical measure);

(b) Definition of NPV;
(c) Definition of the solution variability through the negative linear deviation;
(d) Definition of capacity slacks;
(e) Upper bound to the investment budget;
(f) Logic bounds onto the expansion of processes;
(g) Balance to the process capacity ‘s “production”;
(h) Mass balance onto the components;
(i) Upper bounds to the materials purchases;
(j) Upper bounds to components sales;
(k) Non-negativity restrictions;
(l) Binary variables definition.
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Model ROplan_Flex:

max½ �U ¼
XNR
r¼1

probrnr � kdsv
XNR
r¼1

probr:dsvnr � kzp
XNP
i¼1

XNT
t¼1

XNR
r¼1

Zpitr ðRO:1-aÞ

subject to

nr ¼
XNC
j¼1

XNM
l¼1

XNT
t¼1

cjltSaljltr � CjltPurjltr
� �

�
XNP
i¼1

XNS
s2PSðiÞ

XNT
t¼1

distqishistrð Þ �
XNP
i¼1

XNT
t¼1

aitQEit þ bityitð Þ; 8r
ðRO:1-bÞ

dsvnr �
XNR
r0¼1

probr0nr0ð Þ � nr; 8r ðRO:1-cÞ

XNS
s2PSðiÞ

histr þ Zpitr ¼ HitQit; 8i; t; r ðRO:1-dÞ

XNP
i¼1

ait QEit þ bit yitð Þ�CIðtÞ; 8t ðRO:1-eÞ

QEit �QEUpp
it yit; 8i; t ðRO:1-fÞ

Qit�1 þQEit ¼ Qit; 8 i; t ðRO:1-gÞ

XNM
l¼1

Purjltr þ
XNP
i¼1

XNS
s2PSðiÞ

lijsqishistr ¼
XNM
l¼1

Saljltr; 8j; t; r ðRO:1-hÞ

Purjltr � aUppjltr ; 8j; l; t; r ðRO:1-iÞ

Saljltr � dUppjltr ; 8j; l; t; r ðRO:1-jÞ

nr; dsvnr; Saljltr; Purjltr; histr; Zpitr; QEit; Qit � 0; 8i; j; l; s; t; r ðRO:1-kÞ

yit 2 0; 1f g; 8i; t ðRO:1-lÞ
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Various examples were developed, and the sensitivity of the objective function
considering the penalization parameters evolution is studied in the very first one.
The graphs a and b in Fig. 1 consider:

(a) The variation of the expected value of the partial negative deviation, Edsvn,
within the penalization parameters kzp and kdsvn, showing the solution
robustness; for all the analyzed values of kdsvn on the 0–2 range (only three
lines are presented for easier observation), the expected value measuring the
solution variability, Edsvn, reduces rapidly with the kzp evolution and a flat
level is reached;

(b) The variation of the expected value of capacity slacks, Ezp, within the
penalization parameters kzp and kdsvn showing robustness on model; ana-
lyzing again the 0–2 range for kdsvn, the expected value measuring the
capacity slackness, Ezp, also reduces rapidly with the kzp evolution onto a flat
level.

In the second example, the issue of a reagent limitation is incorporated in the
expansion of the existing dedicated process. Improvements of about 0.3 and 15 %
due to the new two flexible processes are obtained, the superstructure and the
average flows of the selected processes are presented in Fig. 2. Flexible processes
are able to produce different components under different production schemes and
different reagents, while only one configuration production-parameters-reagent is
allowed on dedicated processes.

The superstructure represents a processes network with five continuous pro-
cesses: the existing dedicated chemical process P3, produces high value component
C7 using components C3 and C4, but component C3 has high price and short
availability. The production of C3 is to be evaluated, and for that components C1
and C2 are to be purchased and transformed by chemical processes P1 and P2; these
two processes are to be implemented if economically suitable. The flexible process
P1 allows two production schemes, the first scheme presents similar parameters as

Fig. 1 Sensitivity of the objective function in face of the penalization parameters, showing
solution robustness (a) and robustness in model (b)

Optimization Concepts: II—A More Advanced Level 85



dedicated process P2, but the second production scheme of P1 also allows the
production of component C6. Component C6 presents high market value, so as
components C7 and C8. In plus, the expansion of process P3 shall be evaluated too,
and compared with the implementation of a flexible process P4 and/or the dedicated
process P5: the parameters of the two production schemes on P4 are similar to the
parameters of both dedicated processes P3 and P5. The uncertainty on components
prices and demands along the time horizon is described by a discrete number of
scenarios, and scenario probabilities are assigned.

A comparative study of the different production pathways can thus be devel-
oped, and the parameters that make economically preferable processes can be
estimated. From the above, an alternative pathway for the production of component
C7 is shown of interest, also including C8 production and using the replacement
reagent C5. The self-production of limiting reagent C3 proved economically
favorable too, preferably by the scheme that also produces C6 over the pathway
which produces only C3. The selected processes are colored in the figure.

2.1 Concluding Remarks on the Robust Process Planning

The generalized process planning model, ROplan_flex, integrated the risk policy of
the decision maker. The model also integrates processes flexibility, the formulation

Fig. 2 Superstructure (left) and selection of flexible processes (right) for the numerical example
on reagent limitation
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of production schemes, and robustness without losing linearity. In addition, the
expected values on deviation estimators, solution variability and capacity slacks fit
the evolution the penalization parameters: consequently, the ROplan_flex model
and the solutions are robust.

3 Robust Model for Design and Scheduling of
Batch Processes

This section addresses the design of batch chemical processes and simultaneously
considers the scheduling of operations. A model generalization is proposed, from a
deterministic MILP model (Voudouris and Grossman 1992) to a stochastic 2SSP
approach, this generalization being based on computational complexity studies
(Miranda 2011a). The generalized model for design and scheduling of batch
chemical process treats different time ranges, namely, the investment and
scheduling horizons. Furthermore, the 2SSP framework allows the promotion of
robustness solution, by penalizing the deviations; and the robustness in the model,
with relaxation of the integrality constraints in the second phase variables.

In comparison with the evolution of PP models, a different way of evolution is
observed for the design and scheduling problem (Miranda 2007). A realistic for-
mulation was focused, with successive incorporation of freedom degrees, namely,
extending the number of processes in each stage, the production and storage
policies, and considering the economic charges on setups, operations, and inven-
tories. Since the model becomes more and more difficult to solve, the solution
procedures were adjusted in the early phases of modeling, and even network
subjects were introduced to improve short term scheduling. Nevertheless, a minor
impact of this case is noted, both in literature and industry applications.

In order to better select the equipment to purchase, the optimal production policy
must also be found since it directly affects the equipment sizing. However, it
involves the detailed resolution of scheduling subproblems where decomposition
schemes are pertinent. These subproblems are focused in the second phase of 2SSP,
where the control variables (recourse) occur. The integer and binary variables
related to the scheduling and precedence constraints are disregarded as control
variables, as they would make very hard the treatment of the recourse problem.
Consequently, the second phase variables are assumed continuous (for example, the
number of batches) and binary variables occur only in the first phase.

The study of existing models in the literature induces the enlargement of models
and related applications (Miranda 2007), and this generalization of models simul-
taneously increases complexity and solution difficulties. A design and scheduling
MILP model (Voudouris and Grossman 1992) that seems to have no improvements
for more than a decade is addressed. Analytical results and computational com-
plexity techniques were applied to the referred deterministic and single time MILP
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model, which is featuring multiple machines per stage, zero wait (ZW) and single
product campaign (SPC) policy. That model was selected (Miranda 2007) because:

• For industrial applications with realistic product demands, multiple processes in
parallel at each stage shall be considered, else numerical unfeasibility will occur;

• Due to modeling insufficiency, the option for the SPC policy arises from the
difficulties to apply multiple product campaign (MPC) in a multiple machine
environment;

• Assuming SPC, the investment cost will exceed in near 5 % the cost of the more
efficient MPC policy; then, the SPC sizing is a priori overdesigned, and this will
permit to introduce new products or to accommodate unforeseen growth on
demands.

The generalized model RObatch_ms (adapted from Miranda and Casquilho
(2011) along with some examples) includes the optimization of long term invest-
ment and also considers the short term scheduling of batch processes. Indeed,
deterministic models do not conveniently address the risk of a wider planning
horizon, and scheduling decision models often deal with certain data in a single
time horizon. Thus, difficulty increases when the combinatorial scheduling problem
is integrated with the uncertainty of the design problem. The following nomen-
clature is assumed:

Nomenclature
Index and sets
M Number of stages i
NC Number of components or products j
NP(i) (Cardinal) number of processes p(i) per stage
NR Number of discrete scenarios r
NS(i) (Cardinal) Number of discrete dimensions s(i) in the process of stage i
NT Number of time periods t;

Parameters
sij Processing times (h), for each product j in stage i
kdvt Negative deviation on NPV penalization parameter
kqns Non-satisfied demand penalization parameter
kslk Capacity slack penalization parameter
cips Equipment cost related to process p(i) and size s(i) selected in stage i
dvij Discrete equipment volume in each stage
H Time horizon
ncUpp Upper limit for disaggregated number of batches
probr Probability of scenario r
p(i) (Ordinal) Number of processes in stage i
Qitr Demand quantities (uncertain) for each product i

88 J.L. de Miranda and M. Casquilho



retjtr Unit (uncertain) values of return (net values) of the products j, in
period t and scenario r

s(i) (Ordinal) Number of process discrete dimensions in stage i
Sij Dimension factor (L/kg), for each product j in stage i
Vij Equipment volume (continuous value) in each stage;

Variables
nr NPV value in scenario r
dvtnr Negative deviation on the value of NPV in scenario r
njtr Number of batches of product j, in period t and scenario r
ncijsptr Number of batches of product j, in period t and scenario r,

disaggregated by process p(i) and size s(i) in each stage i
Qnsjtr Non-satisfied demand quantities of product j, in period t and scenario r
slkijtr Capacity slacks in each stage i, concerning totality of the batches of

each product j, in period t and scenario r
tcampjtr Campaign times (SPC) relative to each product j
Wjtr Global quantities produced of product j, in period t and scenario r
yisp Binary decision related to process p(i) and size s(i) selected in stage i.

Then the model RObatch_ms in the relations set (RO.2-a–RO.2-m) considers a
robust objective function (a) and the design and scheduling of batch plants with
multiple machines and SPC policy are addressed on restrictions set (RO.2-b–
RO.2-m) as follows:

(a) Objective Function, aiming to maximize the expected Net Present Value
(NPV), considering penalizations of variability and capacity slackness;

(b) Definition of NPV—Each probabilistic part n corresponds to the NPV
obtained at each discrete scenario r, and this part is obtained as the present
amount of sales return less the investment costs;

(c) Definition of the solution variability through the negative linear deviation;
(d–e) The non-satisfied demand of each product, Qns, is related with the con-

straint slack, being a non-negative variable by definition;
(f) The global excess (slk) on the implemented production capacities results

directly from the slacks of the constraints on the global quantities produced
for each product;

(g–i) The disaggregated number of batches, nc, corresponds to the
product-aggregation’s variables (n. y), and the three logical sets of con-
straints consider: (g) upper bounds; (h) only one value is selected; and
(i) the specification of its selected value;

(j–k) The campaign times, tcamp, must be determined to satisfy the time horizon,
H, and are related to the number of batches, nc;

(l) Non-negativity restrictions;
(m) Binary variables definition.
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Model RObatch_ms:

max½ �U ¼
XNR
r¼1

probrnr � kdvt
XNR
r¼1

probr:dvtnr � kqns
XNR
r¼1

probr
NC:NT

XNC
j¼1

XNT
t¼1

Qnsjtr

 !

� kslk
XNR
r¼1

probr
M:NC:NT

XM
i¼1

XNC
j¼1

XNT
t¼1

slkijtr

 !

ðRO:2-aÞ

subject to,

nr ¼
XNC
j¼1

XNT
t¼1

retjtrWjtr �
XM
i¼1

XNSðiÞ
s¼1

XNPðiÞ
p¼1

cispyisp; 8r ðRO:2-bÞ

dvtnr �
XNR
r0¼1

probr0nr0ð Þ � nr � 0 ; 8r ðRO:2-cÞ

Wjtr þQnsjtr ¼ Qjtr ; 8j; t; r ðRO:2-dÞ

Qnsjtr � 0 ; 8j; t; r ðRO:2-eÞ

SijWjtr þ slkijtr ¼
XNSðiÞ
s¼1

XNPðiÞ
p¼1

dvisncijsptr; 8i; j; t; r ðRO:2-fÞ

ncijsptr � ncUppijsp yisp � 0 ; 8 i; j; s; p; t; r ðRO:2-gÞ

XNSðiÞ
s¼1

XNPðiÞ
p¼1

yisp ¼ 1; 8i ðRO:2-hÞ

XNSðiÞ
s¼1

XNPðiÞ
p¼1

ncijsptr � njtr ¼ 0; 8i; j; t; r ðRO:2-iÞ

XNSðiÞ
s¼1

XNPðiÞ
p¼1

sij
pðiÞ ncijsptr
� �

� tcampjtr � 0; 8i; j; t; r ðRO:2-jÞ

XNC
j¼1

tcampjtr �H; 8t; r ðRO:2-kÞ
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nr; dvtnr; slkijtr; ncijsptr; njtr ; Qnsjtr; tcampjtr;Wjtr � 0; 8i; j; s; p; t; r ðRO:2-lÞ

yisp 2 0; 1f g; 8i; s; p ðRO:2-mÞ

The application of the generalized model RObatch_ms for the robustness pro-
motion is illustrated through various numerical examples, as indicated in Table 1.

For that, numerical instances of uncertain demands on a unique time period
(“static”) are addressed, and the generalization of the deterministic problem to the
minimization of investment costs in a stochastic and robust formulation is con-
sidered. Through the usual reasoning of polynomial reduction of problem instances,
the following is assumed: (i) only one time period; and (ii) zero value of return in
products.

Considering one single time period, the unsuitability of NPV maximization must
be noticed: NPV is usually addressed in a multiperiod horizon (dynamic problem)
due to high investment costs that do not allow payback at one single time period.
Furthermore, supposing retjtr = 0, then the NPV variables n are representing only
the investment costs because there are no cash flows returning:

n ¼ nr ¼ �
XM
i¼1

XNSðiÞ
s¼1

XNPðiÞ
p¼1

cispyisp; 8r ðRO:3Þ

There is no variability at this instance: NPV variables n are scenario independent
and a null deviation, dvtnr = 0, is observed in all scenarios. And aiming to satisfy
the uncertain product demands, the penalization of capacity slacks is not being
considered (kslk = 0). The objective function in equation RO.2-a is thus reduced to
the robust minimization of investment costs, assuming only the penalization of
non-satisfied demand:

Table 1 Numbers of parameters, variables and constraints corresponding to examples solved
assuming: NC = 4; M = 3; NS = 5; NP = 3; NT = 1

Numerical examples Parameters NR Continuous variables Constraints

EX1 1 209 226

EX2 3 603 672

EX3 7 1391 1564

EX4 15 2967 3348

EX5 30 5922 6693

EX6 100 19712 22303
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max½ �U ¼ n:
XNR
r¼1

probr � kqns
XNR
r¼1

probr
NC:NT

XNC
j¼1

XNT
t¼1

Qnsjtr

 !

¼ �
XM
i¼1

XNSðiÞ
s¼1

XNPðiÞ
p¼1

cispyisp � kqns
XNR
r¼1

probr
NC:NT

XNC
j¼1

XNT
t¼1

Qnsjtr

 ! ðRO:4Þ

or,

min½ �W ¼
XM
j¼1

XNSðiÞ
s¼1

XNPðiÞ
p¼1

cispyisp þ kqns
XNR
r¼1

probr
NC:NT

XNC
j¼1

XNT
t¼1

Qnsjtr

 !
ðRO:5Þ

The model defined in the relations set (RO.2-a–RO.2-m) is being restricted, and
the following can be neglected: the time period index, t, because only one time
period is considered; the constraint sets concerning the definition of the proba-
bilistic variables, n, which will have a constant and scenario-independent value;
and, the same for the deviation definitions, dvtn, which consequently will be null
and useless. The various examples (EX1 to EX6) are described in Table 1.

The effect related to the utilization of distinct numbers of discrete scenarios is
analyzed in the generalized stochastic model, which conceptually reduces to the
deterministic model when considering one single scenario. Although the number of
binary variables is kept constant and equal to 45 for all the six examples, both the
number of continuous variables and the number of constraints vary linearly with the
number of scenarios, NR.

(a) Variation of robust costs (105 €) versus the penalty values on non-satisfied
demand, kqns, for various numerical examples.

(b) Variation of the expected value for non-satisfied demand, Ensd (103 kg), with
the evolution of kqns, for various numerical examples.

Graphical representations are shown for the variation of different estimators
(robust cost, w, expected value of the non-satisfied demand, Ensd, expected value
of the capacity slacks, Eslk, non-robust cost, Ecsi), with the conjugated increase of
the number of scenarios, NR, and the penalization for non-satisfied demand, kqns.
Due to the near coincidence of the different lines represented, from NR = 1 (EX1)
to NR = 100 (EX6), only three lines are shown in these graphs.

Considering the graphs at Fig. 3, two key subjects are observed:

(i) the behavior of the numerical instances is similar even when different number
of scenarios is considered, NR from 1 to 100; and

(ii) the model robustness, with adequate sensitivity of technical estimators to the
evolution of the non-satisfied demand penalization parameter, kqns; for all the
scenarios number on the 1–100 range, the expected values associated with
robust cost, w, and the non-satisfied demand, Ensd, alter rapidly with the kqns
evolution and a flat level is reached in both cases.
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In Table 2, significant values for instances of EX3 are shown, in which instances
are considered with seven scenarios, but whose variation with the growth of the
penalization on the non-satisfied demand, kqns, is similar to all the other examples
with different numbers of scenarios. These significant values are the values asso-
ciated to alterations in the optimum configuration. Table 2 relates the penalty
parameters kqns and the (non-robust) costs, showing:

• the order of the discrete dimension (size, s) selected in each stage, Ord(s); for
example, “4/7/2”, indicates that the fourth dimension was chosen at the first
stage, the seventh dimension at the second stage, and the second dimension at
the third stage; these values come directly from the binary solution;

Fig. 3 Sensitivity of the objective function in face of the penalization parameters, showing
solution robustness (a) and robustness in model (b)

Table 2 Significant values of the robust optimization considering distinct instances of numerical
example EX3 (for NR = 7)

kqns Costs Ord(s) Sum(dv) %Eslk %Ensd

0 124,596.08 1/1/1 3451.47 21.0 54.1

1 156,737.60 1/3/3 6087.68 11.7 21.0

2 163,661.91 1/3/4 6659.83 11.5 18.6

3 205,467.00 2/5/5 9366.59 11.1 6.3

4 237,689.36 3/5/5 10,298.62 13.6 0.6

5 237,689.36 3/5/5 10,298.62 12.0 0.6

(…) (…) (…)

10 237,689.36 3/5/5 10,298.62 13.2 0.6

(…) (…)

20 237,689.36 3/5/5 10,298.62 12.7 0.6

21 257,332.14 4/5/5 10,929.24 13.3 0.0

(…) (…) (…)

40 257,332.14 4/5/5 10,929.24 12.8 0.0
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• the sum of the discrete dimensions or equipment volumes selected, Sum(dv); this
measure is important for slackness analysis, due to the interest of appreciating
Eslk in relative terms at each example;

• the percentage of non-satisfied demand expected value, %Ensd; for each
example, the reference value (100) is the expected value of uncertain demand;

• the percentage of capacity slacks expected value, %Eslk; for each example, the
reference value for the calculation of this estimator is the discrete volumes sum,
Sum(dv).

In Table 2, a progressive increase on costs is observed, due to the corresponding
increase of the orders of dimension, Ord(s), and the increasing sum of volumes,
Sum(dv). But in percentage of the expected value of the capacity slacks, %Eslk, it is
verified that this one is kept in a strict range of values, between 11 % and 13 %. In
absolute terms, the expected value for the slack, Eslk, is increasing for the first
values of the penalty, kqns, but then attains a stable value. This permits to confirm
the inherence of a residual value for the capacity slacks in this type of problem,
where multiple products are processed in the same equipment. Focusing the effect
of non-satisfied demand penalization, kqns, on the related percent expected value,
%Ensd:

• if the penalization parameter is large, all the demand will be satisfied, Ensd and
%Ensd tend to be null; the selected dimensions and the related costs are also
large, but notice that one single scenario with tiny probability can drive such a
large sizing;

• instead of full demand satisfaction, if the requirement of non-satisfied demand is
relaxed to 1 %, the investment costs are reduced in about 8 %; and assuming
more flexibility, if the non-satisfied demand is allowed to reach up to 6 %, the
cost reduction is about 20 %;

• this kind of reasoning is realistic, since the model and the numerical examples
are based on SPC policy; and if SPC is considered instead of MPC in the design
and scheduling models studied, a relative overdesign of about 5 % in investment
costs is foreseen (Miranda 2007).

3.1 Concluding Remarks on Robust Design and Scheduling

The MILP model featuring SPC and multiple machines (Voudouris and Grossmann
1992) was found to be the most promising from a computational standpoint
(Miranda 2011b), and it was generalized toward a stochastic model RObatch_ms.
Its results point to a significant reduction (8–20 %) on the investment costs in
comparison to the deterministic non-relaxed case. If the MPC policy is adopted or if
a slight relaxation is made to the impositions on the uncertain demands (respec-
tively, of 1–6 %), the demand relaxation does not cause real losses: model
RObatch_ms assumes the lower efficient SPC policy and an overdesign in about
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5 % on investment cost is thus expected (Miranda 2007). And remark also the
RObatch_ms model robustness, with estimators responding adequately to the
variation of the penalty parameter for non-satisfied demand, kqns.

4 Conclusions

The study of optimization cases and models from the literature allowed a detailed
overview, and permitted to conjugate realistic subjects both in formulation and
solution procedures. Developing theoretical studies, the various models at hand are
detailed and insight is gained, their benefits and limitations are balanced, and robust
generalization is developed. In addition, the studies on computational complexity
along with the computational implementation fostered the construction of heuris-
tics, such as local search procedures.

Based on the generalization approach described in prior paragraph, two prob-
lems are addressed:

• The PP problem—beyond the uncertainty treatment it is also considered the
formulation of flexible production schemes, the robustness on solution and on
model, and the processes parameters were economically evaluated.

• The Batch problem—the treatment of uncertainty also considered the problems’
specificities; the short term scheduling and the multi-period horizon were
simultaneously addressed, the deterministic approach from the literature is
generalized onto a stochastic one, and economic parameters of interest were
evaluated.

Further developments include modeling issues and solution methods, while the
development of Decision Support Systems will foster the application to industrial
cases.
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Appendix 1: Technical and Economic Estimators

The non-robust NPV expected value:

Ecsi ¼
XNR
r¼1

probrnr ðA:1Þ
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The negative deviation expected value:

Edvt ¼
XNR
r¼1

probr:dvtnr ðA:2Þ

The non-satisfied demand expected value:

Ensd ¼
XNR
r¼1

probr
NC:NT

XNC
j¼1

XNT
t¼1

Qnsjtr

 !
ðA:3Þ

The capacity slack expected value:

Eslk ¼
XNR
r¼1

probr
M:NC:NT

XNC
j¼1

XNT
t¼1

XM
i¼1

XNS
s¼1

XNP
p¼1

pðiÞ:yisp: dvjs � Sij:
Wjtr

njtr

� �( )
ðA:4Þ

The percentage non-satisfied demand expected value:

%Ensd ¼ Ensd
Qmed

:100; with Qmed ¼
XNR
r¼1

probr
NC:NT

XNC
j¼1

XNT
t¼1

Qjtr

 !
ðA:5Þ

The percentage capacity slack expected value:

%Eslk ¼ Eslk
Vtotal

:100; with Vtotal ¼
XM
i¼1

XNS
s¼1

XNP
p¼1

yisp:dvis
� � ðA:6Þ
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