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Abstract Optimization subjects are addressed from both an introductory and an
advanced standpoint. Theoretical subjects and practical issues are focused, conju-
gating Optimization basics with the implementation of useful tools and SC (supply
chain) models. By now, in the Introductory section, Linear Programming, Integer
Programming, related models, and others of interest are treated. In another chapter
about these subjects in this handbook, more advanced related topics are addressed.
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1 Introduction

Optimization is the act or methodology of driving something, such as a system, as
near as possible to full functionality or effectiveness, the word having appeared one
and a half century ago. Nowadays, the concept is essential, in a global context,
because even a small improvement in a mathematical, economical or industrial
solution can be decisive in comparison with other, nonoptimal solutions.

A crucial contribution to optimization was the discovery of a computationally
simple method to solve “linear programming” problems, in the 1940s, by George
Dantzig, the so-called simplex method. This method, which is important in the
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Supply Chain problems, has since been very much used and studied, and important
extensions have been obtained, some maintaining the efficiency of the original
algorithm (as the Transportation Problem, the Transshipment Problem, the
Assignment Problem), some addressing other, more complex situations, namely
Integer Programming, which uses Linear Programming as a tool included in other
techniques, of which the branch-and-bound is explained in this text. (Source
computer code of some of these subjects can be obtained on request.)

2 Linear Programming (LP)

“The Best of the 20th Century: Editors Name Top 10 Algorithms” (Cipra 2000)
1947: George Dantzig, at the RAND Corporation, has created the simplex

method for linear programming. In terms of widespread application, Dantzig’s
algorithm is one of the most successful of all times: linear programming dominates
the world of industry, where economic survival depends on the ability to optimize
within budgetary and many other constraints. (Of course, the “real” problems of
industry are often nonlinear, and the use of linear programming is sometimes
dictated by the computational budget.) The simplex method appears an elegant way
of arriving at optimal answers. Although theoretically susceptible to exponential
delays, the algorithm in practice is highly efficient—which in itself says something
interesting about the nature of computation.

In the following, some examples are given, the theory of which can be found in
several classical books, such as Zionts (1974), Bronson (2010), Hillier and
Lieberman (2009). An intuitive algebraic approach is given below to solve linear
programming problems. It is meant to show that the method is iterative, as is readily
revealed.

max½ �z ¼ 0:56x1 þ 0:42x2
s: to x1 þ 2x2 � 240

1:5x1 þ x2 � 180
x1 � 110

ð1Þ

A

max½ �z ¼ 0:56x1 þ 0:42x2
x1 þ 2x2 þ x3f g ¼ 240

1:5x1 þ x2 þ x4f g ¼ 180
x1 þ x5f g ¼ 110

ð2Þ

This has (always) an obvious, sure solution. Let

x1; x2 ¼ 0 ð3Þ

64 M. Casquilho and J.L. de Miranda



Then

x3
x4
x5

2
4

3
5 ¼

240
180
110

2
4

3
5 ð4Þ

z ¼ 0 0 0½ �
240
180
110

2
4

3
5 ¼ 0 ð5Þ

Is this optimal? How to improve it?
There does not appear (Hillier and Lieberman 2005) to exist a systematic way of

setting all the nonbasic variables, i.e., those that were made zero, simultaneously to
optimal values—hence, an iterative method should be followed.

Choose the variable that increases the objective function most per unit (this
choice is somehow arbitrary), in the example, x1, because its coefficient (0.56) is the
largest.

According to the constraints, x1 can be increased till:

B
x1 ¼ 240

1:5x1 ¼ 180
x1 ¼ 110

!
x1 ¼ 240
x1 ¼ 120
x1 ¼ 110

ð6Þ

The third equation in (2) leads to x1 = 110 and x5 = 0. This choice comes from the
fact that it determines the smallest, most stringent limit. If this limit were exceeded,
at least one other variable would become negative. The variable x1 will be the
entering variable and x5 the leaving variable:

C x1 ¼ 110� x5 ð7Þ

Substituting for x1 everywhere (except in “its own” constraint, i.e., the one that led
to its choice), we have

max½ �z ¼ 0:56 110� x5ð Þ þ 0:42x2
110� x5ð Þ þ 2x2 þ x3 ¼ 240

1:5 110� x5ð Þ þ x2 þ x4 ¼ 180
x1 þ x5 ¼ 110

ð8Þ

A

max½ �z ¼ 0:42x2 �0:56x5 þ 61:6
þ 2x2 þ x3f g �x5 ¼ 130
x2 þ x4f g �1:5x5 ¼ 15

x1f g þ x5 ¼ 110

ð9Þ

which is equivalent to Eq. (2).
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We now have a new (equivalent) LP problem, to be treated as the original
was: the essence of the simplex method has just been found! The process can
continue iteratively, until there is no variable leading to improvement in the
objective function. In sum:

A. In the system of equations, find the identity matrix (immediate solution).
B. Search for an entering variable (or finish).
C. Consequently, find a leaving variable (if wrongly chosen, negative values will

appear).

3 Transportation Problem and special cases

In the supply chain environment, several problems related to transportation and
others apparently unrelated can be formulated and solved by the technique used for
the typical transportation problem, frequently simply denoted by the initials
TP. Besides the TP, we shall address: the (simple) production scheduling; the
transshipment problem; and the assignment problem (AP). These problems can be
solved by their own algorithms: the TP, the production scheduling and the trans-
shipment, by the “stepping-stone” method; and the AP by the Hungarian method.
As all these problems are particular cases of Linear Programming (LP), the prob-
lems will be presented and then formulated as LP problems. Indeed, with the
current availability of high quality LP software, namely, the suggested IBM ILOG
CPLEX (2015a, b, c), it looks unnecessary to go into the details of those other
methods. Otherwise, a negative remark about the Hungarian method to solve the
AP is that, although it is easy and elegant to be done by hand, it is quite hard to
program, with no readily available source code in the literature.

The general goal is to “transport” (whatever that may be) goods to the customers
at minimum global cost of transportation, according to the unit costs of trans-
portation (certainly dependent on distance, etc.) from the sources to the destina-
tions. The problems mentioned are dealt with in the following sections, mainly
based on examples.

4 The Transportation Problem

The Transportation Problem (TP) arises from the need of programming the optimal
distribution of a single product from given sources (supply) to given destinations
(demand).

The product is available in m sources, with known quantities (also said capac-
ities), ai, i = 1 .. m (the two dots denoting a range, as used in various computer
languages, avoiding the vague 1, …, m), and is needed in n destinations, with
known quantities (or capacities), bj, j = 1 .. n, and will be sent directly from the
sources to the destinations at unit costs, cij, all these values being the known data.
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The objective is to find the quantities to be transported, xij, at minimum global
cost, usually in a given time period, such as a week. The problem can thus be
formulated according to the model of Eq. (10), where obviously the sum of the a’s
must equal that of the b’s, without which the problem would be infeasible.

min½ �z ¼
Xn
i¼1

Xn
j¼1

cijxij

Subject to

Xn
j¼1

xij ¼ ai i ¼ 1. . .m ð10Þ

Xm
i¼1

xij ¼ bj j ¼ 1. . .n

xij � 0 8i; j

The physical (typically integer) units of x, a and b can be, say, kg (or m3, bags,
etc.), and c in $/kg (with $ a generic money unit, such as dollar, euro). The scheme
in Fig. 1 makes the problem clear.

The model in Eq. (10) is, of course, in all its components (including the last one,
of non-negativity of the variables), an instance of Linear Programming (LP). Our
notation “[max]” ([min], [opt]) means that the maximum of both sides is required,
and not that the maximum of z, the objective function, is equal to the right-hand
side (otherwise even not yet known).

It is remarkable that the TP can be envisaged as an integer programming
problem. The x’s will always be, namely in the optimum, multiples of the greatest
common divisor of the set of a’s and b’s. So, if these are integers (as is usual), the

Fig. 1 Transportation
problem: from 3 factories to 5
warehouses
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x’s will be integers; if, e.g., these are multiples of 7, so will they be, etc. If the
problem is stated with “decimals”, as 4.7, the x’s will be multiples of 0.1, so, with
appropriate multiplication by a suitable constant, the results will be integer.

Any problem having the above structure can be considered a TP, whatever may
be the subject under analysis.

Example
A company, as in Fig. 1, has 3 production centres, factories F, G and H, in given
locations (different or even coincident) with production capacities of 100, 120, and
120 ton (per day), respectively, of a certain (single) product with which it must
supply 5 warehouses, P, Q, R, S, and T, needing 40, 50, 70, 90, and 90 ton (per
day), respectively. The unit costs of transportation, the matrix C, are those in
Table 1. Determine the most economical (cheapest) transportation plan, matrix X.

Resolution
Introduce the transportation matrix, X, in Eq. (11), the values of whose elements
must be found. (Notice that z, in Eq. (10), does not result from a typical product of
matrices!)

X ¼
x11 x12 x13 x14 x15
x21 x22 x23 x24 x25
x31 x32 x33 x34 x35

2
4

3
5 ð11Þ

The problem could be solved by the adequate “stepping-stone” method (which is
simple and very efficient), but its formulation leads directly to the LP in Eq. (12).

min½ �z ¼ c11x11 þ c12x12 þ c13x13 þ c14x14 þ c15x15
þ c21x21 þ � � � þ c25x25
þ c31x31 þ � � � þ c35x35

Table 1 Costs of transportation ($/ton) from the factories to the warehouses

P Q R S T

F 4 1 2 6 9 100

G 6 4 3 5 7 120

H 5 2 6 4 8 120

40 50 70 90 90
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Subject to

x11 þ x12 þ x13 þ x14 þ x15 ¼ a1
x21 þ x22 þ x23 þ x24 þ x25 ¼ a2
x31 þ x32 þ x33 þ x34 þ x35 ¼ a3

ð12Þ

x11 þ x21 þ x31 ¼ b1
x12 þ x22 þ x32 ¼ b2
. . .

x15 þ x25 þ x35 ¼ b5

A TP has really m + n − 1 independent constraints (not m + n), as (any) one of
the constraints shown above is superfluous (dependent). This is due to the sheer
nature of the TP, in which total supply must equal total demand. If, as happens in
several circumstances, supply and demand are not equal, one (no need for more)
fictitious entity (source or destination) is introduced, as detailed below.

The fact that the current solvers can be embedded in commercial worksheets,
means they natively accept the TP in tabular form and the constraints in Eq. (12)
are readily available for solution. The solution is given in Table 2, with a minimum
global cost of z* = 1400 $ (per day, the period considered). In this particular
problem, it happens that there are two (i.e., multiple) solutions, the other differing in
x11 = 10, x12 = 50, x31 = 30 and x32 = 0.

The TP is, naturally, “balanced”, i.e., the total supply is equal to the total
demand. As mentioned, in the cases where there is excess supply, the problem can
be readily converted to a TP by creating (at cost 0) one fictitious destination; or if
there is excess demand (insufficient supply), one fictitious source. So, product
could, respectively, be left “at home” or, possibly, bought from some competitor to
guarantee the supply to the customer.

Table 2 Quantities to be transported (ton) from the factories to the warehouses

P Q R S T

F 40 20 40 100

G 30 90 120

H 30 90 120

40 50 70 90 90

Optimization Concepts—I: Introductory Level 69



5 The Production Scheduling

The (simple) “production scheduling” problem will be presented through an
example akin to many in the literature, such as Hillier and Lieberman (2006,
pp. 330–331).

Example
See Table 3.

Resolution
The “transportation” in the production scheduling is not in space, but in time,
between months in this example. Assuming the basic TP problem where backorders
are not considered production of a certain month is not used to supply the previous
month, thus the corresponding unit costs should be prohibited, making them “very
large”, say, M (the classical “big M”), infinity, or, for computing purposes, suffi-
ciently large (in this problem, e.g., 100 will be enough). Using data in Tables 3 and
4 is obtained, by adding the storage costs and introducing a fictitious fifth month for
balancing.

In order to define a sufficiently large M, try some “reasonably” large value, i.e.,
at least large compared to the other cost values in the problem. (The naïve choice of
the greatest number in the computer is not valid, because of probable overflow.) If
this value is effective in the solution (prohibiting the related x’s), then it is a good
choice, but, if it is not effective (too small), try a greater new value. If the value is
“never” sufficiently large, then, the problem has no physical solution (is impossi-
ble), although it always has a mathematical one.

The solution has a (minimum) global cost of 82.7 $ with the production schedule
given in Table 5.

Table 3 Production scheduling data for Manufacture Co.

Month Scheduled
installations

Max.
production

Unit production
cost

Unit storage
cost

1 15 25 1.08 0.015

2 15 35 1.11 0.015

3 25 30 1.10 0.015

4 20 10 1.13 0.015

Table 4 TP-like data for the Northern Airplane Co. problem

Month 1 2 3 4 (5) Supply

1 1080 1095 1110 1125 0 25

2 M 1110 1125 1140 0 35

3 M M 1100 1115 0 30

4 M M M 1130 0 10

Demand 15 15 25 20 25 (100)
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6 The Transshipment Problem
and the Assignment Problem

The transshipment problem and the assignment problem (AP) can be considered
problems reducible to TP’s. The transshipment is typically treated like a TP,
whereas the AP has the Hungarian algorithm, which is very efficient.
Notwithstanding, this algorithm will not be presented, as the AP is a particular LP
and is appropriately and easily solved by the usual LP software.

The method to reduce a transshipment problem to a TP is simply to consider that
the transshipment points are supply points or demand points or both, by inserting
them on the supply side or the demand side (or both). Upon inserting these
transshipments as referred, each individual capacity must be “corrected” by adding
to it the original global capacity.

The AP is a particular case of the TP, having a square cost matrix and being
soluble by considering all the values of supply as 1 and all the values of demand
also as 1.

Example, Transshipment
The example is represented in Fig. 2 and is akin to problems from the literature.

Table 5 Production schedule
for the Northern Airplane Co.
problem

Month 1 2 3 4 (5) Supply

1 15 10 5 0 0 25

2 – 5 0 0 30 35

3 – – 20 10 0 30

4 – – – 10 0 10

Demand 15 15 25 20 25 (100)

Fig. 2 Transshipment
problem: sources (1 and 2),
destinations (5 and 6), and
transshipment points (3 and 4)

Optimization Concepts—I: Introductory Level 71



Resolution
In order to convert the transshipment to a TP, identify: (a) every pure supply point
(producing only), usually labelled with a positive quantity, such as Point 1 with +95
units; (b) every pure demand point (receiving only), usually labelled with a nega-
tive quantity, such as Point 5 with −30 units; and (c) every mixed point (producing
or receiving), labelled with a positive (if net producer) or negative (if net receiver)
quantity, such as Point 3 with +15 units. Make the original TP balanced, which
results here in a dummy destination (Point 7), and register the original capacity of
the TP, Q (here Q = 180).

The cost matrix becomes the one in Table 6. (The number of times Q is inserted
on the supply side and on the demand side is, of course, the same, thus maintaining
the equilibrium necessary for a TP.) The solution is in Table 7.

So: from Point 1, 20 units go to Point 3, and 75 stay home; from Point 2, 70 units
go to Point 3; from Point 3, 30 go to Point 4, etc.; and Point 4 just receives 30 (from
Point 3), with its quantity (equal to Q) meaning it was not used as a transshipment
point.

Example, Assignment
Suppose that n tasks are to be accomplished by n workers and the workers have the
abilities for every task as given in Table 8.

Table 6 Cost matrix for the
transshipment problem

3 4 5 6 (7) Supply

1 3 M 18 M 0 95

2 2 7 M M 0 70

3 0 3 4 4 0 15 + Q

4 M 0 M 2 0 Q

Demand Q 30 + Q 30 45 75 (180 + 2Q)

Table 7 Solution to the
transshipment problem

3 4 5 6 (7) Supply

1 20 – 0 – 75 95

2 70 0 – – 0 70

3 90 30 30 45 0 15 + Q

4 – 180 – 0 0 Q

Demand Q 30 + Q 30 45 75 (180 + 2Q)

Table 8 Ability of each
worker for each task

1 2 3 4

1 15 16 14 14

2 14 14 13 15

3 13 15 13 14

4 15 16 14 14
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These “positive” abilities are preferably converted to “costs”, replacing each
element by, e.g., its difference to their maximum (here, 16). After that, solve the AP
as a TP with each supply equal to 1 and each demand also equal to 1. The solution
to this example is in Table 9.

So, Worker 1 does Task 1, Worker 2 does Task 4, etc. (i.e., 1-1, 2-4, 3-3, 4-2), at
a minimum global cost of 5 cost units. This particular problem has multiple solu-
tions, another being 1-2, 2-4, 3-3, 4-1.

As this problem has, obviously, always n elements of value 1 (the assignments)
and the remaining n2 − n of value zero, its optimum solution is very degenerate if,
as was done here, it is considered a TP (degenerate in relation to the m + n − 1
possible positive cells in a TP). This is an argument in favour of the Hungarian
method, but the strength of that method is not significant when common software is
used. (The algorithm of Jonker and Volgenant would be preferable, if the AP itself
is under study.)

In the supply chain, several problems related to transportation can be formulated
and solved by the technique used for the typical transportation problem (TP), with
its own very efficient algorithm (stepping-stone): the (simple) production
scheduling; the transshipment problem; and the assignment problem (AP). The AP
can be solved by its own algorithm, but the availability of software for Linear
Programming makes it practical to solve them as TP’s, after convenient simple
conversions.

7 Integer Programming by Branch-and-Bound

An example from Ecker and Kupferschmid (1988, p. 217 ff) is used, with modi-
fications and a different, more systematic path to the solution. Using, for example,
the simple software Lindo (2013) semi-manually, or CPLEX, the successive
solutions can be obtained, to observe the Branch-and-Bound methodology. Of
course, these software tools or any other adequate to the problem (possibly) use this
technique without necessarily showing the path to the solution.

The problem, shown in (MILP.1), will be to maximize the objective function, z,
subject to: three constraints, with the typical constraint of nonnegative independent
variables; and being integers. It is this last constraint that makes this a problem of
integer programming or mixed integer programming in the cases where some
variables are continuous. Usually, this subject, which is related to Linear
Programming, is denoted by MILP, “mixed integer linear programming”.

Table 9 Assignments
(solution)

1 2 3 4

1 1 0 0 0

2 0 0 0 1

3 0 0 1 0

4 0 1 0 0
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max½ �z ¼ �3 x1 þ 7 x2 þ 12 x3

subject to

�3 x1 þ 6 x2 þ 8 x3 � 12

þ 6 x1 �3 x2 þ 7 x3 � 8

�6 x1 þ 3 x2 þ 3 x3 � 5

x1; x2; x3 nonnegative integers

ðMILP:1Þ

The resolution of a MILP inherits no ease from the Linear Programming proper.
The typical way to solve a MILP is through the technique of branch-and-bound, as
explained based on this example.

Begin by solving the MILP as a simple LP. If the solution happens to be
integer—which is, of course, rare—, it is the optimum sought. The solution to the
original problem, say, P0, is

X ¼ ½0 0:303 1:272� ðMILP:2Þ

z ¼ 17:39

The solution, i.e., X, in Eq. (MILP.2) is not integer, so the problem has not been
solved. Now, to solve it, let us introduce the B&B technique.

(a) Select any non-integer variable, xk (prefer the “least integer”, i.e., values closer
to halves, and ignore draws).

(b) Replace the current problem by two new problems:

(i) Current problem augmented with constraint xk � xkb c, and
(ii) Current problem augmented with constraint xk � xkd e.

(c) Solve the two problems and repeat, if necessary.

The notation bc indicates the ‘floor’ and de the ‘ceiling’ functions (the Iverson
notation). So, the original problem will be successively branched: this will occur in
an unpredictable way, giving rise to possibly many problems; and also, each time
there is branching, the new level will be more difficult than the previous one (one
more constraint). Remember that the difficulty (computational complexity) of an LP
problem depends essentially on its number of constraints (not its number of vari-
ables), which leads to about 1.5 m iterations (some authors preferring 2–3 m), with
m the number of constraints. (There are ways, beyond the context of this text, to
attenuate this growing difficulty, such as solving dual problems. Also, if there are
binary variables, branching leads to just fixing in the simple values of 0 or 1.)

In the example, branching will thus be around the variable x2 = 0.303. The two
new problems will be the original problem augmented with one of the two con-
straints, having now 4 constraints, giving, respectively,
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P1 P2

Original problem Original problem

x2 � 0 x2 � 1

The solutions to the problems are

P1 X ¼ ½0 0 1:143� ðMILP:3Þ

z ¼ 13:7

and

P2 X ¼ ½0:667 1 1� ðMILP:4Þ

z ¼ 17

In the process of choosing the sub-problem to branch on, it is impossible to predict
the best choice. So, select the sub-problem with the best (i.e., most promising) value
of the objective function, z. In the example, maybe the process will end up getting
an integer solution with z > z1—for instance, z* = 14—, permitting to avoid to
explore its branches, so P1 will not be chosen. This avoidance is the advantageous
feature of the B&B.

Neither P1 or P2 problems have an integer solution. The more promising is P2,
because it presents a greater z, so it is chosen, giving P3 and P4. Branching will be
around x1 = 0.667. The two new problems will be the current problem augmented
with one of the constraints, having now 5 constraints, giving, respectively,

P3 (from P2) P4 (from P2)

Original problem Original problem

x2 � 1 x2 � 1

x1 � 0 x1 � 1

The solutions to the problems are

P3 X ¼ 0 1 0:667 ðMILP:5Þ

with

z ¼ 15
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and

P4 X ¼ 1 1:348485 0:863636 ðMILP:6Þ

z ¼ 16:8

The active problems are now P1 (z = 13.7), P3 (z = 15) and P4 (z = 16.8). Problem
P2 (replaced by P3 and P4 has been fathomed, i.e., discarded after evaluation. So,
P4 will be chosen to branch from, giving P5 ðx2 � 1Þ and P6 ðx2 � 2Þ.

The B&B technique proceeds in this way, generating a sequence of solutions
The path to the solution (apart from the change of ‘min’ to ‘max of symmetrical’) is
not coincident with the one given in the example cited in Ecker and Kupferschmid
(1988). (In the 3rd row of solutions, the rightmost, 4th, solution, “Infeasible”, is
possibly wrong, although without further influence.) The integer solution is
z* = 15, with X* = [2; 3; 0], where of course the term “integer” relates to the values
of X*.
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