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Abstract. Two main classes of reflexes relying on the vestibular system
are involved in the stabilization of the human gaze: the vestibulocollic
reflex (VCR), which stabilizes the head in space and the vestibulo-ocular
reflex (VOR), which stabilizes the visual axis to minimize retinal image
motion. Together they keep the image stationary on the retina.

In this work we present the first complete model of eye-head stabiliza-
tion based on the coordination of VCR and VOR. The model is provided
with learning and adaptation capabilities based on internal models. Tests
on a simulated humanoid platform replicating torso disturbance acquired
on human subject performing various locomotion tasks confirm the effec-
tiveness of our approach.

Keywords: Head stabilization · VOR · VCR · Eye-head coordination ·
Humanoid robotics

1 Introduction

Several neuroscientific studies focus on eye-head behaviour during locomotion.
Results about head and eyes during walking mostly come from two-dimensional
studies on linear overground, turning, treadmill locomotion, running and walking
on compliant surface [1–6]. These studies have shown that the body, head, and
eyes rotate in response to the up-down and side-to-side motion to maintain stable
head pointing and gaze in space. This is achieved through the joint effect of two
main classes of reflexes, which rely on the output of the inertial system: 1. the
vestibulo-ocular reflex (VOR), which stabilizes the visual axis to minimize retinal
image motion; 2. the vestibulocollic reflex (VCR), which stabilizes the head in
space through the activation of the neck musculature in response to vestibular
inputs. The VOR compensates for head movements that would perturb vision
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by turning the eye in the orbit in the opposite direction of the head movements
[7]. Several approaches have been used to model the VOR depending on the aim
of the study. In robotics literature we found some controllers inspired by the
VOR [8–11]. The VCR stabilizes the head based on the inertial input space by
generating a command that moves the head in the opposite direction to that of
the current head in space displacement. When the head is rotated in the plane
of a semicircular canal, the canal is stimulated and the muscles are activated.
This stimulation produces a compensatory rotation of the head in the same
plane. If more than one canal is activated, then an appropriate reflex response
is produced. Unlike the VOR, the VCR controls a complex musculature. The
VOR involves six extraocular muscles, each pair acts around a single rotation
axis. On the other hand, the neck has more than 30 muscles controlling pitch,
roll and yaw rotations.

In robotics, some head stabilization models already exist implemented on
humanoid robots. Gay et al. [12] proposed a head stabilization system for a
bipedal robot during locomotion controlled by the optical flow information. It is
based on Adaptive Frequency Oscillators to learn the frequency and phase shift
of the optical flow. Although the system can successfully stabilize the head of
the robot during its locomotion, it does not take in consideration the vestibular
inputs. The most close to the neuroscientific findings of the VCR are the works
proposed by Kryczka et al. [13–15]. They proposed an inverse jacobian controller
[13,14] based on neuroscientific results [16] and an adaptive model based on a
feedback error learning (FEL) [15] able to compensate the disturbance repre-
sented by the trunk rotations. All the presented models try to reproduce specific
aspects of the gaze stabilization behaviour, but none of them can provide a
comprehensive model of gaze stabilization, integrating eye stabilization (VOR)
together with head stabilization (VCR).

By considering the analysis of neuroscience findings, we can conclude that
in order to replicate eye-head stabilization behaviours found in humans it is
necessary to be able to replicate the joint effect of VCR for the head and VOR
for the eye. This work goes in this direction by presenting a model that replicates
the coordination of VCR and VOR and is suitable for the implementation on a
robotic platform. We used, as a disturbance motion, inertial data acquired on a
human subject performing various locomotion tasks (straight walking, running,
walking a curved path on normal and soft ground) and replicated by the torso of
a humanoid robot. The purpose of these tests is to assess the effectiveness of the
stabilization capabilities of the proposed model rejecting the torso disturbance
measured in real walking tasks through the joint stabilizing effect of head and
eye of the simulated iCub robot.

2 Eye-Head Stabilization Model

In order to implement the VOR-VCR system, a bio-inspired feed-forward con-
trol architecture was used. The model uses classic feedforward controllers that
generate motor commands purely based on the current error. Each controller
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is coupled with a learning network that generates predictions based on internal
models that are used to fine tune motor commands. An overview of the model
can be seen in Fig. 1.

Fig. 1. The proposed model of eye-head stabilization. Dashed lines represent encoder
readings, dotted lines show inertial values.

2.1 Head Stabilization System

Inside the head stabilization system, the output of the VCR internal model (uvcr)
is added to the output of the feedforward controller (evcr) in order to generate
motor commands that stabilized the head against the disturbance originating
from the torso movements. The VCR Feedforward Controller is implemented as
a PD controller, and its output is computed as a function of the inertial readings
(In, ˙In):

evcr = kp · In + kd · ˙In. (1)

The inputs to the learning network are the current and desired position and
velocity of the robotic head, and the network is trained with newly generated
motor commands. In order to provide a proper reference to the VCR internal
model, the current value of the external disturbance must be estimated. Using the
readings coming from the inertial measurement unit and the encoder values, the
disturbance vector (d) can be estimated using only direct kinematics functions,
by computing d = In − Ĩn, i.e. by subtracting the expected angular rotations
given by the encoder values (Ĩn) from the inertial readings (In). Ĩn = [ϕ, ϑ, ψ]
are the Euler angles for the rigid roto-translation matrix K(θh) from the root
reference frame to the inertial frame, computed as:

ϕ = atan2(−K(θh)2,1,K(θh)2,2), (2)
ϑ = asin(K(θh)2,0), (3)
ψ = atan2(−K(θh)1,0,K(θh)0,0). (4)

Likewise, the same procedure can be followed in order to estimate the velocity
of the disturbance:

ḋ = ˙In − ˙̃In = ˙In − J(θh) · θ̇h, (5)

where J is the geometric Jacobian from the root reference frame to the inertial
frame.
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2.2 Eye Stabilization System

The eye stabilization system implements the VOR and, similarly to the head
stabilization system, produces a motor command for the eyes that is the sum of
the feedforward controller output (evor) and the VOR internal model one (uvor).
Given that the eye should stabilize the image against the relative rotation of the
head, the error is computed as the difference between inertial measurements and
the current eye encoders (θe, θ̇e). Thus, the output of the VOR feedforward
controller is computed as

evor = kp · (−In) + kd · (− ˙In). (6)

The VOR internal model receives in input the head position and velocity signal as
references, acquired through the vestibular system, along with the proprioceptive
feedback, and uses the generated motor command as a training signal.

2.3 Learning Network

Prediction of the internal model is provided by a learning network that is imple-
mented with a machine learning approach, Locally Weighted Projection Regres-
sion (LWPR) [17]. This algorithm has been proved to provide a representation
of cerebellar layers that in humans are responsible for the generation of predic-
tive motor signals that produce more accurate movements [18,19]. The LWPR
spatially exploits localized linear models at a low computational cost through
an online incremental learning. Therefore, the prediction process is quite fast,
allowing real-time learning. LWPR incrementally divides the input space into a
set of receptive fields defined by a centre ck and a Gaussian area characterized
by a positive definite distance matrix Dk. The activation on each receptive field
k in response to an input x is expressed by

pk(x) = exp

(
−1

2
(x − ck)TDk(x − ck)

)
, (7)

while the output is yk(x) = wk ·x+εk, where wk and εk are the weight vector and
bias associated with the k-th linear model. For each iteration, the new input, x, is
assigned to the closest RF based on its weight activation, and consequently, the
centre, the weights and the kernel width are updated proportionally to a training
signal. Moreover, the number of local models increases with the complexity of
the input space.

The global output of the LWPR is given by the weighted mean of all the
predictions yk of the linear local models created:

u(x) =
∑N

k=1 pk(x)yk(x)∑N
k=1 pk(x)

. (8)
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3 Experimental Procedure

In order to collect human inertial data relative to locomotion tasks, experiments
were conducted on a human subject with no visual and vestibular impairments.
An inertial measurement unit (IMU) was placed on the back of the subject, near
T10, the tenth vertebra of the thoracic spine, as depicted in Fig. 2.

Fig. 2. Placement of the inertial measurement unit on the subject.

The IMU used was an Xsens MTi orientation sensor1, that incorporates an
on-board sensor fusion algorithm and Kalman filtering. The inertial unit is able
to produce the current orientation of the torso at a frequency of 100 Hz.

Three different tasks were performed by the subject: straight walking (25 m),
circular walking and straight running (25 m). The circular walking was carried
out by asking the subject to walk with a circular pattern, without any indication
of the pattern on the ground. Such task was executed both on normal and soft
ground, provided by placing a foam rubber sheet on the ground. The foam had
a density of 40 kg/m3 and the sheet measured 103× 160× 15 cm. All tasks were
performed with bare feet.

Due to the fact that the inertial readings relative to the yaw rotational axis
(rotation around z) can often be inaccurate because of drifting, we decided not
to use such readings. Moreover, in order to prevent drifts of the sensor measure-
ments on the other two rotational axis (pitch and roll, rotations around y and x
respectively), each trial lasted less than one minute with a reset of the rotational
angle at the beginning of the trial [20].

4 Robotic Platform

The proposed model was implemented for the iCub robot simulator [21], a soft-
ware included with the iCub libraries. The iCub head contains a total of 6 degrees
of freedom: 3 for the neck (pan, tilt and swing) and 3 for the eyes (a common

1 https://www.xsens.com/products/mti/.

https://www.xsens.com/products/mti/
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tilt, version and vergence), while the torso has 3 degrees of freedom (pan, tilt
and swing). The visual stereo system consists of 2 cameras with a resolution of
320× 240 pixels.

In order to assess the repeatability of the experiments on the iCub sim-
ulator, first test were conducted to evaluate whether the measurements of the
simulated robot inertial rotations were compatible with the collected data. Thus,
the collected torso rotations were given as motor commands to the robot torso.
A graphical comparison can be seen in Fig. 3, where the actual IMU data is
shown alongside the robot one. It can be observed that the simulation is accu-
rate enough to reproduce the data, even if with a delay of 50 ms. The error
between the two signals was then computed after a temporal alignment and its
Root Mean Squared value is 0.21 deg for the pitch rotational axis and 0.12 deg
for the roll.
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Fig. 3. Comparison between collected IMU readings and simulated ones, on pitch rota-
tional axis (top) and roll (bottom). (Color figure online)

5 Results

The stabilization model was tested on the data coming from the three different
locomotion tasks (straight walking, circular walking and straight running). Due
to the fact that the collected inertial data related to the yaw rotational axis was
not considered, the eye-head stabilization model has been simplified, so that no
stabilization on the yaw axis was performed. Moreover, given that the robot
eyes cannot influence stabilization on the roll rotational axis, due to the fact
that only tilt and pan motors are present, only disturbance on the pitch axis
was compensated by the VOR model.
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The main measure of error during a stabilization task is the movement of the
camera image. In particular, human vision is considered stable if the retinal slip
(the speed of the image on the retina) is under 4 deg/s [22]. In order to compute
the error from the camera image, a target was placed in front of the simulated
robot and its position was tracked from the camera images via a colour filtering
algorithm during the execution of the task. Another measure of performance
considered is the inertial orientation and speed of the head. As already stated
before, no movement on the yaw rotational axis was considered, thus only the
camera error on the vertical axis is relevant for the evaluation.

For each task, a comparison between the same task performed with and
without the stabilization model will be presented. The values of the gains of
the PD controllers were set to kp = 5.0, kd = 0.1 for the VCR model and to
kp = 1.0, kd = 0.1 for the VOR model, for all trials.

5.1 Straight Walking

Results for the compensation of the disturbance of straight walking inertial data
can be found in Table 1, where the Root Mean Square (RMS) values for inertial
readings and target position and speed are presented. In this and subsequent
tables, Inp, ˙Inp are the inertial readings for rotation (deg) and rotation speed
(deg/s) on the pitch axis, Inr, ˙Inr are the inertial readings for rotation (deg)
and rotation speed (deg/s) on the roll axis, v, v̇ are the position of the target on
the camera image (deg) and its speed (retinal slip, deg/s).

Table 1. Results for straight walking data.

Trial Inp
˙Inp Inr

˙Inr v v̇

No stabilization 2.06 11.36 2.05 11.56 3.66 8.88

Stabilization 0.84 14.71 0.22 3.45 2.71 3.30

Figures 4, 5 and 6 show the behaviour of the task, showing the target position
and retinal slip, inertial data for the pitch rotational axis and inertial data for the
roll axis, respectively. From these results it can be noticed that while the roll dis-
turbance is almost completely compensated by the VCR model, the magnitude
of the rotational velocity on the pitch axis is too high to be fully compensated by
the said model, that only provides an improvement in the position space. Nev-
ertheless, the VOR subsystem is still able to maintain the camera image stable,
with a mean vertical retinal slip lower than 4 deg/s. Moreover, Fig. 4 also shows
a comparison between the full stabilization model and a simplified model with
only the PD controllers. While the PD only implementation is able to reduce
the error on the camera, it is outperformed by the complete model, thus proving
the effectiveness of the latter.
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5.2 Circular Walking

Two sets of data were collected for circular walking tasks: one for normal ground
and one for soft ground. Results for both cases are presented in Table 2, where
it can be observed that walking on soft ground produces a greater disturbance,
especially in the velocity space. Despite the higher disturbance the model is still
able to stabilize the head and the camera image, achieving stable vision in both
cases. As in the straight walking case, the disturbance on the pitch axis cannot be
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Fig. 4. Stabilization task with data from a straight walking task, target position (top)
and retinal slip (bottom). (Color figure online)
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Fig. 5. Stabilization task with data from
a straight walking task, inertial position
data (top) and inertial velocity (bottom),
pitch axis. (Color figure online)
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fully compensated by the VCR alone, but thanks to the VOR module, the vision
remains stable. The behaviour on the soft ground task can be observed in Fig. 7.

Table 2. Results for circular walking data on normal and soft ground.

Ground Trial Inp
˙Inp Inr

˙Inr v v̇

Normal no stabilization 3.35 14.03 2.11 6.36 3.61 12.86

Normal stabilization 0.49 6.34 0.17 2.84 0.88 1.85

Soft no stabilization 3.09 16.00 3.89 10.95 4.23 15.15

Soft stabilization 0.46 6.35 0.24 3.07 2.74 3.56
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Fig. 7. Stabilization task with data from a circular walking task on soft ground, target
position (top) and retinal slip (bottom). (Color figure online)

5.3 Straight Running

During the last experiment, data from the straight running was used to move the
robot torso. From Table 3 it can be observed that the model is not able to achieve
a complete compensation of the disturbance, due to the high rotational velocities
on the two axes. Nevertheless, the mean retinal slip is reduced to a quarter of the
one of the trial with no stabilization. Thus, the model provides a viable solution
even for disturbances of this magnitude, as it is also shown in Fig. 8.
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Table 3. Results for straight running data.

Trial Inp
˙Inp Inr

˙Inr v v̇

No stabilization 3.14 45.36 1.77 16.28 3.49 25.96

Stabilization 1.06 43.03 0.53 10.78 1.61 6.36
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Fig. 8. Stabilization task with data from a straight running task, target position (top)
and retinal slip (bottom). (Color figure online)

6 Conclusions

In this work we present the first complete model of gaze stabilization based on
the coordination of VCR and VOR and we validate it through an implemen-
tation on a simulated humanoid robotic platform. We tested the model using,
as a disturbance motion, inertial data acquired on a human subject performing
various locomotion tasks that we replicated with the torso of the simulated iCub
robot. Results show that the model is able to perform well in almost all tri-
als, with the exception of the straight running task, by reducing the retinal slip
below 4 deg/s, thus achieving stable vision. In the running task, the model was
still able to improve the stabilization by reducing the retinal slip to a quarter of
the one from the task were no stabilization was present. As such, this model has
proven suitable to be used on humanoid robotic platforms, where it could help
during visually guided locomotion tasks by stabilizing the camera view against
the disturbance produced by walking.
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