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Endodontic Pharmacotherapeutics
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Abstract
Managing dental pain of endodontic origin is complicated by the multiple bio-
logical mechanisms that contribute to several distinct painful clinical entities 
including dentinal hypersensitivity, pulpitis pain, periapical pain, postoperative 
pain, and persistent posttreatment pain. In general pain of endodontic origin is 
best managed by initiating endodontic treatment, during which time the source 
of inflammation is mostly removed. In order to successfully perform endodontic 
treatment, the affected pulpal tissues and adjacent periodontal tissues must be 
completely anesthetized using local anesthetics. This is complicated by the fact 
that inflammation reduces the efficacy of local anesthetics. Strategies for obtain-
ing successful pulpal anesthesia so that endodontic treatment can be adminis-
tered with minimal or no discomfort to the patient are discussed. Postoperative 
endodontic pain is common and can be severe, and clinicians need to utilize 
anti-inflammatory analgesics to manage their patient’s symptoms. Occasionally 
antibiotics are required to manage a spreading infection. In summary, successful 
endodontic treatment requires the wise use of pharmacotherapeutics before, dur-
ing, and after clinical treatment. This chapter provides a review of the evidence 
and practical guidance for the use of pharmacotherapeutics with the overall goal 
to improve the prognosis of eliminating endodontic pain for our patients.

H. De Brito-Gariepy • J.L. Gibbs (*) 
Department of Endodontics, New York University College of Dentistry,  
345 E. 24th St., Clinic 7W, New York, NY 10010, USA
e-mail: helaine.gariepy@nyu.edu; jlg15@nyu.edu 

T.C. Botelho-Dantas 
Basic Sciences and Craniofacial Biology, New York University College of Dentistry,  
345 East 24th ST. room 921C, New York, NY 10010, USA
e-mail: therezacfb@hotmail.com

6

mailto:helaine.gariepy@nyu.edu
mailto:jlg15@nyu.edu
mailto:therezacfb@hotmail.com


88

6.1  Pain Is a Complex Sensory Experience

Orofacial pain is a widespread problem that accounts for around 40 % of an esti-
mated $80 billion in pain-related healthcare costs annually in the United States [1]. 
Odontalgia, or toothache, is a common source of orofacial pain and can be a dis-
tressing and intensely painful experience, often leading to disruption of daily activi-
ties [2–5]. Pain is an important motivator for symptomatic patients to seek dental 
care, while a fear of pain during or after dental procedures causes some patients to 
avoid seeking routine dental treatments [6–9]. Pain is a complex sensory experience 
with emotional, conceptual, and motivational components. As such the experience 
of pain is unique to each individual [9]. Given the multifaceted nature of pain, it is 
not surprising that there are numerous and diverse means to prevent or inhibit the 
pain in a clinical setting, which run the gamut from relaxation strategies to reduce 
patient anxiety, to blocking sensory nerves with local anesthetics. This chapter will 
focus on pharmacological approaches to managing pain and infection before, dur-
ing, and after endodontic treatment.

6.1.1  Mechanisms of Pain of Endodontic Origin

One might think the term odontalgia or toothache should describe a fairly homog-
enous clinical phenomenon. However, we now know that there are multiple etiolo-
gies for pain originating from teeth that include inflammation of the dental pulp, 
inflammation of periapical tissues, transdentinal stimulation of pulpal neurons, and 
even persistent pain after surgical intervention.

6.1.1.1  Nociceptive Pain
Nociceptive pain describes the inherent ability of pain fibers, or nociceptors, to 
detect stimuli that are potentially tissue damaging, and can be of a thermal, mechan-
ical, or chemical nature. Nociceptive pain is mediated by smaller-diameter sensory 
afferents that include the myelinated Aδ- and unmyelinated C-fiber classes. The 
dental pulp appears to have a unique sensory capacity, as almost any stimulus that 
activates pulpal nerve endings produces the sensation of pain. The neural compo-
nent of the pulp tissue consists of sensory trigeminal afferents and sympathetic and 
parasympathetic efferent fibers [10, 11]. These fibers project into the pulpal tissues 
of the root canals through the apical foramen and are closely associated with blood 
vessels, forming a collagen-bound neurovascular bundle. Anatomical studies have 
demonstrated that the terminal portion of pulpal afferents can extend up to 150 μm 
into the predentin or the dentinal tubules and form a close association with the pro-
cesses of odontoblasts [12, 13]. These sensitive fibers act like nociceptors, in that 
they produce pain when stimulated. However, according to their diameter, conduc-
tion velocity, and expression of specific markers that identify classes of neurons, 
most of these fibers are large-diameter myelinated Aβ-fibers, which typically trans-
duce non-painful stimuli such as light touch [14–16]. This is an apparent paradox, 
as pain is thought to be exclusively mediated by the activation of Aδ- and C-fiber 
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nociceptive afferents. In an attempt to explain this paradox, Fried and colleagues 
have proposed the novel term “algoneuron” to explain the observation that the pulp 
is innervated primarily by larger-diameter fibers that appear to, paradoxically, trans-
duce painful stimuli [17].

Also found in the pulp are Aδ-fibers, which have a smaller diameter and slower 
conduction speed relative to the Aβ-fibers. At this time it is not known whether these 
fibers have a distinct function from that of the Aβ-fibers. Collectively the Aβ- and 
Aδ-fibers respond to stimuli that would produce fluid movement in dentinal tubules 
such as drilling, sweet foods, cold air, and hypertonic solutions and produce a sharp, 
bright, pain when activated [18, 19]. The low threshold for activation and the periph-
eral localization of these fibers suggest that they can become activated and produce 
pain without the presence of irreversible damage to the pulp. These fibers contribute 
to the increased sensitivity observed after restorative work involving enamel and 
dentin removal or toothbrush abrasion (see Dentinal Pain Sect. 6.1.2.3) [20].

Finally, the C-fiber subtype of sensory neurons, although less abundant, is are 
also found in the pulp. These are unmyelinated fibers with a low conduction veloc-
ity, a smaller diameter, and a higher excitation threshold. They are located deeper 
within the pulp than the myelinated fibers. C-fibers are activated by heat, mechani-
cal, and chemical stimulation and produce a dull, diffuse, and longer-lasting pain 
[13]. It is thought that when C-fiber involvement produces pulpal pain, the patient 
reports a diffuse, dull, and achy pain that can be difficult to localize. This type of 
pain may suggest that concomitant damage to the pulp proper has occurred, which 
is more likely to be irreversible. While an injury results in an interruption in the pulp 
microcirculation, the C-fibers continue to function for a longer time compared to 
A-fibers as their oxygen consumption is higher than A-fibers [20]. This characteris-
tic also underlines the familiar clinical occurrence in which a tooth that responds 
negatively to testing with a cold CO2 stick is painful to mechanical instrumentation 
during endodontic therapy [21].

The ability of a sensory neuron to detect specific types of stimuli is dictated by 
the receptors that are expressed in the peripheral terminal. Of particular relevance to 
the detection of painful thermal, mechanical, and chemical stimuli is the presence 
of transient receptor potential channels (TRPs) [22, 23]. The most-studied TRP 
channels are TRPV1, TRPV2, TRPA1, and TRPM8, all of which are expressed in 
pulpal afferents and thus have the potential to mediate thermal and mechanical sen-
sation in the dental pulp (Fig. 6.1). For example, applying heat directly in the tooth 
produces pain, which is most likely mediated by activation of the TRPV1 channel 
[24, 25]. In addition to heat, Aδ- and C-fiber neurons also are responsive to noxious 
and non-noxious cold temperatures. Calcium imaging studies revealed that neurons 
responding to cold temperatures <18°C are more common in the trigeminal gan-
glion (14 %) than in the dorsal root ganglion (7 %) [26]. Both the TRPM8 and 
TRPA1 channels are stimulated by cold temperatures with thresholds of 25°C and 
17°C, respectively, and both receptors have been localized in nerve fibers innervat-
ing the dental pulp [27, 28]. Further work is needed to determine whether TRPM8 
and TRPA1 contribute to the transmission of painful cold in the dental pulp.
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The role of odontoblasts in transducing nociceptive pain in the dental pulp is an 
active topic of debate [29]. Importantly, odontoblasts also appear to express several of 
the TRP receptors, which support their role in detection of sensory stimuli [30, 31]. The 
mechanism transduction of sensory stimuli from odontoblast to peripheral nerve is not 
clear, and studies attempting to better understand these mechanisms are ongoing.

6.1.1.2  Inflammatory Dental Pain
Inflammation is a normal protective immune response of the host to tissue infection. 
Circulating immunocompetent blood cells migrate through the endothelial barrier 
to gain access to the damaged tissues and eliminate injurious pathogens. However, 
uncontrolled inflammation may result in a full range of acute, chronic, and systemic 
inflammatory disorders [32]. Dental pulp tissues are rich in blood vessels and nerve 
fibers and have a relatively low interstitial compliance because of its enclosure in a 
rigid dentin chamber. Inflammation of the dental pulp, or pulpitis, can be intensely 
painful [33].

When infected dental caries approximates the dental pulp, lipopolysaccharide 
(LPS) from bacterial cell walls, and other virulent factors, stimulate an 

Fig. 6.1 Molecular 
mechanisms of neural 
theory. Thermo-TRP 
channels are functionally 
expressed by dental 
primary afferents (Figure 
adapted from Chung et al. 
(2013) [22])
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inflammatory response from a variety of cells residing in the dental pulp tissues [34, 
35]. The affected cells release inflammatory mediators such as prostaglandins and 
bradykinin, which then activate or sensitize pulpal sensory neurons, leading to ther-
mal and mechanical hyperalgesia and allodynia [24, 36]. In advanced stages of 
pulpal inflammation, large parts of the pulp become inflamed and the pulpal tissue 
may ultimately degrade. During the degradation process, pulpal nerve fibers might 
remain partially intact and continue evoke spontaneous pain sensations. The diag-
nostic terms reversible and irreversible pulpits are based on the clinical prognosis of 
the pulp, but evidence-based clinical measurements to determine whether a pulp is 
truly reversibly or irreversibly inflamed are lacking [37–39]. Nonsteroidal anti- 
inflammatory drugs (NSAIDs), opioid analgesics, acetaminophen, and steroids are 
all effective analgesics for treating inflammatory pulpal pain.

6.1.1.3  Dentinal Pain
The loss or compromise of enamel or cementum can cause exposure of the dentin to 
the oral cavity and produce the clinical condition of dentinal hypersensitivity. 
Dentinal pain is usually a brief, sharp pain that occurs in response to thermal, evapo-
rative, tactile, osmotic, or chemical stimuli. The hydrodynamic theory explains that 
stimuli producing fluid movement within the dentinal tubules can activate the very 
sensitive nerve fibers that innervate the dentinal tubules [40]. Dentin sensitivity has 
a direct correlation with the dentinal tubule size and patency [41]. The loss of the 
enamel or cementum is commonly a consequence of attrition, erosion, abrasion, or 
abfraction. It is estimated that 30 % of adults have dentin hypersensitivity at some 
point in their lives [11, 42]. Ultimately the symptoms may resolve when the tubules 
become occluded by salts, smeared dentin, peritubular dentin, and secondary or 
reparative dentin. Most existing therapeutics for dentinal hypersensitivity occlude 
the tubules, thus preventing dentinal fluid movement and, eventually, pain. Therapies 
include toothpastes containing strontium or oxalate salts, which deposit salts within 
the dentinal tubule. Professionally applied glass ionomers, resins, and resin adhe-
sives are also effective [43]. Conservative treatments such as these are recommended 
as an initial strategy for providing pain relief, as there is usually little pulpal inflam-
mation or pathology observed in teeth with dentinal hypersensitivity. Rather, this 
condition is just the expression of the profound sensitivity of normal pulpal sensory 
neurons to stimulation when the protective enamel or cementum is compromised.

6.1.1.4  Neuropathic Pain
Neuropathic pain is a type of chronic pain condition, which is caused by a primary 
lesion or dysfunction in the peripheral or central nervous system. Neuropathic pain 
has a complicated pathophysiology and can affect the orofacial region as well as 
other parts of the body. Of relevance to dentistry and endodontics is that it is now 
understood that neuropathic pain might be initiated by dental procedures including 
third-molar or implant surgery, surgical and nonsurgical endodontic treatment, and 
even dental injections [44, 45]. Neuropathic pain can also occur as a consequence of 
other disorders including diabetes (diabetic neuropathy), HIV (HIV neuropathy), 
and herpes zoster (postherpetic neuralgia). These peripheral neuropathies can occur 

6 Endodontic Pharmacotherapeutics



92

in orofacial regions including inside the mouth, in which case diagnosis can be very 
challenging. Unfortunately, many patients undergo unneeded dental procedures in 
an attempt to alleviate their pain. As neuropathic pain can be severely debilitating 
and intractable, measures to prevent or minimize nerve damage should always be 
implemented during treatment planning [46]. Lower molars and premolar teeth with 
apical roots approximating the mental nerve foramen of inferior alveolar canal 
should be approached with care to minimize damage to major nerve branches [47]. 
Typical analgesics and NSAIDs have minimal efficacy for treating neuropathic 
pain, although opioids are somewhat effective. In general, drugs that depress the 
nervous system have been found to have efficacy in treating neuropathic pain, 
including anticonvulsants such as gabapentin and antidepressant drugs such as nor-
triptyline [48, 49].

6.2  Endodontic Pain Management

When an odontogenic source of pain has been identified, and the clinical interven-
tion decided on by the practitioner and patient is root canal treatment, the most 
predictable route to alleviating pain is to remove the source of the infection, usually 
by caries removal, pulp extirpation (in vital cases), and some form of chemome-
chanical canal debridement. Pain management is essential, both during and after 
endodontic treatment, and knowledge of the judicious usage of pharmacotherapeu-
tics is critical to a practitioner’s success.

6.2.1  Intraoperative Pain Management: Local Anesthetics

The foundation of intraoperative pain management in the practice of endodontics is 
the effective administration of local anesthetics to block the transmission of sensory 
input from the nerve endings found in the dental pulp and periodontal tissues sur-
rounding the treated tooth. Although this class of drugs is generally safe, practitio-
ners should be familiar with dose limitations, side effects, and potential allergic 
reactions [50, 51]. Local anesthetics bind to sodium channels located on the cell 
membrane of sensory neurons, preventing the influx of sodium ions into the nerve 
fiber (Fig. 6.2). This prevents depolarization and action potential propagation along 
the neuron, effectively blocking the transmission of pain and other sensory signal-
ing. As pain is the dominant sensation produced when stimulating sensory fibers of 
the dental pulp, complete pulpal anesthesia is required to be able to perform end-
odontic treatments, as well as many restorative treatments on teeth containing vital 
pulpal tissue.

6.2.1.1  Inflammation Reduces the Efficacy of Local Anesthetics
The ability to reliably obtain effective anesthesia is challenged in the setting of 
inflammation. A vital but inflamed dental pulp can be especially difficult to anesthe-
tize, especially when attempting to utilize an inferior alveolar nerve (IAN) block to 
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treat a painful mandibular molar. In this scenario, the attempt to successfully anes-
thetize the inflamed pulp with IAN block alone is more likely to fail than to succeed, 
with success rates reported in the range of 25–40 % [52–55]. Multiple hypotheses 
exist to explain the reduced efficacy of local anesthetics in inflamed dental pulp 
(summarized here [56, 57]). Currently, the most accepted theory hinges on the con-
cept of neuronal plasticity.

Fig. 6.2 Primary structures of the α- and β-subunits of the voltage-gated sodium channel. The 
α-subunit is composed of four homologous domains (DI–DIV), each with six α-helical transmem-
brane segments (S1–S6). The S4 segment of each domain contains positive charged amino acid resi-
dues and forms part of the voltage sensor. The linker that connects S5 and S6 forms the external 
mouth of the channel pore and the selectivity filter. The cytoplasmic linker between DIII and DIV 
contains a critical hydrophobic motif that acts as a “hinged lid” (h) and is responsible for fast inac-
tivation. Slow inactivation depends in part on residues located in the external pore lining of the 
channel. The α-subunit contains several receptor sites for neurotoxins (not shown). Amino acid resi-
dues in the S6 segment of DI, DIII, and DIV in the inner cavity of the channel pore form the binding 
site for local anesthetics and related antiepileptic and antiarrhythmic drugs such as lidocaine, mexi-
letine, carbamazepine, and phenytoin. Sodium channel blockade by these drugs is relatively weak 
at resting potential but strong if the membrane is depolarized (“use-dependent” blockade). A con-
served amino acid sequence at the intercellular loop linking the DII–DIII binds ankyrin G (Ank) and 
is critical for targeting the channels to specific domains of the cell. The large intracellular loop 
between DI and DIII contains several modulatory phosphorylation sites (P) by protein kinases A and 
C. The carboxy-terminus domain associates with the β-subunit and other adaptor and cytoskeletal 
proteins. The auxiliary β-subunits are proteins with a single transmembrane domain, a long, heavily 
glycosylated extracellular amino-terminal domain that has an immunoglobulin- like structure with 
homology to cell adhesion molecules, and a short intracellular C-terminal tail. These subunits regu-
late targeting and kinetics of the channel (With permission from [208])
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Neuroplasticity describes the inherent property of individual neurons and com-
plex nervous tissues (e.g., the brain or spinal cord), to adapt to injury or disease, as 
well as changes in behavior or environment. More specifically, sensory neurons are 
fundamentally altered when the nerve terminals themselves are damaged or the sur-
rounding tissues are inflamed. The amount and type of receptors and neurotransmit-
ters that are expressed in a given class of sensory neurons are dynamic and change 
in response to growth factors and inflammatory mediators. Ultimately these changes 
can cause the neuron to exist in a sensitized state, where it is more easily activated 
by both painful and non-painful stimuli. These molecular changes underlie the clini-
cal observations of hypersensitivity and allodynia after injury. Clinical examples of 
the manifestation of allodynia in the inflamed periodontal ligament include pain on 
biting or to mild percussion of the tooth. A typical example of hypersensitivity in 
the inflamed dental pulp is an exaggerated painful response to a cold stimulus. Of 
interest to the discussion of local anesthetics, inflammatory mediators directly influ-
ence the expression and activity of several important sodium channels, thus influ-
encing the excitability of sensory neurons, and the efficacy of local anesthetics 
(Fig. 6.2).

6.2.1.2  Sodium Channel Subtypes
Sodium channels are divided into two distinct classes based on the presence or 
absence of sensitivity to tetrodotoxin (TTX). The Nav1.8 and Nav1.9 channels 
mediate the TTX-resistant (TTX-R) current [58, 59]. The Nav1.8 channel is 
expressed at higher levels under inflammatory conditions, and an increased expres-
sion has been demonstrated in human dental pulp in persons experiencing painful 
pulpitis [60–63]. Importantly, increasing the expression of the Nav1.8 channel 
reduces the efficacy of lidocaine in blocking neural transduction. Thus, the upregu-
lation of Nav1.8, within nerves innervating the inflamed dental pulp, could contrib-
ute to the clinical challenge of achieving adequate local anesthesia during dental 
procedures. Other sodium channels are likely also involved in mediating inflamma-
tory pain. The channel Nav1.7 is upregulated in many animal models of inflamma-
tory pain and also in humans with painful pulpitis [64, 65]. In summary, multiple 
sodium channels are involved in the sensitization of sensory neurons. A change in 
expression of sodium channels, especially Nav1.8, is likely responsible for the clin-
ical observation of reduced local anesthetic efficacy in the setting of 
inflammation.

6.2.1.3  Pulpal Anesthesia Versus Soft Tissue Anesthesia
When attempting to anesthetize asymptomatic, i.e., noninflamed pulpal tissues, it is 
important to remember that soft tissue anesthesia of adjacent tissues does not guar-
antee that pulpal anesthesia was achieved. This is especially true in the mandible, 
where successful pulpal anesthesia after an inferior alveolar nerve block is 35–60 %, 
depending on the tooth [66–68]. So before initiating endodontic treatment, espe-
cially in the setting of inflammation, it is important to determine whether pulpal 
anesthesia was obtained. This can be accomplished by repeating pulpal sensibility 
tests with either a cold or electrical stimulus. However, in the setting of irreversible 
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pulpitis, even cases where pulpal anesthesia was confirmed using sensibility tests, 
some patients will still experience pain during treatment [69]. For this reason, sup-
plementary injections and/or other adjunctive therapies are always recommended to 
minimize the chance of patient discomfort.

6.2.1.4  Supplementary Injections/Adjunctive Therapies
As mentioned previously, given the high rate of local anesthetic failure when per-
forming endodontic treatment on painful teeth, especially in the mandible after IAN 
block, it is essential to administer additional anesthesia via supplementary routes 
before attempting to initiate treatment [70, 71]. Although a comprehensive review 
of the methods and evidence for the various supplementary anesthetic approaches 
are beyond the scope of this chapter, we wanted to mention that there is a strong 
support for the use of buccal infiltration (especially with 4 % articaine), periodontal 
ligament injections, as well as intraosseous injections to supplement the IAN block 
and improve the likelihood of obtaining pulpal anesthesia [69, 72–78].

6.2.1.5  On Choosing a Local Anesthetic
Although there are several types of local anesthetic agents to choose from in the 
United States, the vast majority of dental practitioners utilize 2 % lidocaine, and it 
remains the standard against which other anesthetics are compared. Articaine (4 %) 
is another commonly used local anesthetic, and numerous studies have compared 
the ability of lidocaine to articaine in achieving soft tissue and pulpal anesthesia in 
teeth with normal pulps as well as those with symptomatic irreversible pulpitis. In 
general the two agents demonstrate comparable efficacy in achieving pulpal anes-
thesia [79, 80]. The exception is that articaine is more effective at accomplishing 
anesthesia when administered via infiltration [81]. This appears to be especially true 
for pulpal anesthesia in both symptomatic and asymptomatic cases when adminis-
tering supplementary anesthetic via buccal infiltration in the mandible [53, 72, 73, 
82]. Therefore, there is strong support for the choice of articaine over lidocaine as a 
supplementary anesthetic for buccal infiltration, in order to accomplish pain-free 
endodontic procedures in posterior mandibular teeth [81].

Lidocaine is the anesthetic of choice for nerve blocks including IAN, lingual, 
and mental nerve blocks. All local anesthetics are neurotoxic and have the potential 
to cause a neuropathy when administered in sufficient concentration adjacent to a 
nerve bundle or branch [83, 84]. Clinically this can produce prolonged numbness 
(anesthesia), prickling or “pins and needles” sensations (paresthesia), or more 
severe neuropathic pain symptoms in the region innervated by the damaged nerve. 
Higher concentration formulations such as articaine (4 %) and prilocaine (4 %) are 
associated with a higher risk of nerve damage, usually when administered for an 
IAN block [85–87]. Given the comparable efficacy of articaine and lidocaine in 
accomplishing pulpal and soft tissue anesthesia, combined with the increased risk 
of nerve damage with articaine, lidocaine is the anesthetic of choice for IAN block.

Bupivacaine (0.5 %) is notable as a local anesthetic agent because it produces 
long-lasting anesthesia of up to 8 h [88]. Administration of bupivacaine at the end 
of a clinical procedure is a useful strategy to help reduce postoperative pain 
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[89–91]. This is ideal when significant levels of postoperative pain are anticipated, 
including surgical endodontic cases, and for patients who present with a high level 
of preoperative pain.

6.2.1.6  Preemptive Analgesics for Improving the Efficacy of Local 
Anesthetics

Given the inherent challenge in obtaining adequate pulpal anesthesia in the setting 
of inflammation, multiple strategies are needed to optimize the chances for clini-
cians to perform pain-free endodontic procedures. Studies evaluating the effects of 
inflammatory mediators on sodium channels have demonstrated that prostaglandin 
E2 increases the activity of TTX-R sodium channels [92]. Given that TTX-R chan-
nels are more resistant to local anesthetics, the important, clinically relevant ques-
tion is whether pretreatment with an anti-inflammatory agent, for example, the 
nonsteroidal anti-inflammatory drug (NSAID) ibuprofen, improves the chances of 
obtaining pulpal anesthesia in patients with symptomatic pulpitis.

This hypothesis has been well tested in clinical studies, many of which were 
high-quality randomized controlled clinical trials. Several studies demonstrate effi-
cacy for NSAIDs versus placebo in achieving more frequent pulpal anesthesia and/
or pain-free endodontic treatment [93–96]. However several trials failed to observe 
significant differences between drug and placebo, although it should be noted that 
in the majority of these studies, the trend was for the subjects receiving the NSAID 
to have more successful rates of anesthesia [97–100]. The variance in results 
between the studies could be due to differences in study design including varying 
definitions of irreversible pulpitis (i.e., different subject populations), differences in 
the definition of successful vs. failed anesthesia, and differences in how the study 
was powered (i.e., sample sizes). Importantly, the overall evidence supports the use 
of a single preoperative dose of NSAIDs for improving the chances for successful 
mandibular pulpal anesthesia via IAN block in patients with painful pulpitis, as 
demonstrated in a recent systematic review (ibuprofen 600–800 mg, lornoxicam 
8 mg, and diclofenac potassium 50 mg were demonstrated to be better than placebo 
with ketorolac, ibuprofen/acetaminophen combination, and acetaminophen alone 
being no better than placebo) [101]. Although less studied, there is evidence that 
pretreatment with other anti-inflammatory agents, such as steroids, can increase the 
efficacy of pulpal anesthesia or the duration of anesthesia [102, 103]. In summary, 
pretreatment with an NSAID, such as 600 mg ibuprofen, 1 h prior to initiating end-
odontic therapy will increase the chances of obtaining pulpal anesthesia, helping to 
minimize the amount of pain experienced during endodontic treatment.

6.2.2  Postoperative Pain Management

6.2.2.1  Prognostic Factors Related to Endodontic Postoperative Pain
Studies regarding postoperative pain after endodontic treatment, both post- obturation 
or post-instrumentation for multi-visit treatments, suggest that the frequency and 
severity of pain are quite varied [104]. This is likely due to differences in when and 
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how pain was measured, in the patient population studied, and, importantly, in the 
preoperative pulpal and periradicular status of the subject populations. A recent sys-
tematic review reports that the prevalence of postoperative pain reported in individ-
ual studies ranges from 20–90 % and severity is usually in the mild- moderate range 
(10–60 mm on a 100 mm VAS). One week after endodontic treatment, pain preva-
lence is typically less than 10 %, and reported pain is, on average, reported to be at a 
low level of intensity [105]. Administering endodontic therapies is clearly an effec-
tive way to reduce pain of endodontic etiology, with postoperative pain levels drop-
ping to 50 % of preoperative levels after 24 h [105, 106]. This supports the idea that 
endodontic interventions, including root canal treatment, and emergency procedures 
such as pulpectomies and pulpotomies, in the appropriate clinical situations (e.g., the 
tooth is restorable, the tooth is in function), are the best way to quickly and predict-
ably reduce the frequency and intensity of odontogenic pain.

Several patient factors have been identified that appear to predict the occurrence 
of postoperative pain. Numerous studies have identified the presence and/or inten-
sity of preoperative pain to be one of the strongest predictors of postoperative pain 
(Fig. 6.3) [107–109]. This strong association was found in studies on subjects 
receiving endodontic therapies as well as studies involving subjects receiving other 
non-dental surgical interventions [110]. The clinical implication of this finding is 
that patients presenting with pain are more likely to experience significant postop-
erative pain, and care should be taken to ensure that appropriate postoperative anal-
gesics are prescribed. Biologically, this observation is likely associated with 
plasticity in the central nervous system associated with the increased input from 
nociceptors in the peripheral nervous system, with central sensitization likely being 
an important contributory mechanism.

Other factors associated with postoperative pain include gender (with females 
experiencing more pain), tooth type (with posterior multi-rooted teeth more pain-
ful), and experiencing inter-appointment pain [107–109, 111, 112]. Most impor-
tantly, postoperative pain after completion of root canal treatment, or after a first of 
two or more visits, is a common enough occurrence that analgesics should be 

Fig. 6.3 Preoperative pain level is an important predictor of postoperative pain level. This figure 
shows an example of a study demonstrating how the severity and incidence of postoperative pain 
after the first day of root canal treatment are predicted by the presence or absence of preoperative 
pain (Modified from Genet et al. 1986 [209])
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regularly prescribed, regardless of the presence or absence of predictive factors. 
However, the presence of some of these predictive factors might make a clinician 
more likely to consider a multimodal analgesic approach and/or higher doses, as 
discussed further below.

6.2.2.2  Nonsteroidal Anti-inflammatory Drugs
The first choice of analgesic class for odontogenic pain, including postoperative 
endodontic pain, is the nonsteroidal anti-inflammatory drugs (NSAIDs) and includes 
common analgesics available over the counter such as ibuprofen, aspirin, and 
naproxen. As inflammation is an important contributory mechanism to odontogenic 
pain, it follows that anti-inflammatory drugs are quite effective analgesics. Ibuprofen 
is more effective than aspirin, acetaminophen, or combination drugs such as Vicodin 
that contain acetaminophen and an opiate type drug such as hydrocodone, in reliev-
ing postoperative pain in an oral surgery model [113–115]. There is also good evi-
dence that ibuprofen is an effective analgesic for relieving postoperative endodontic 
pain [116, 117]. It is important to note that many of these studies are testing a single 
dose of drug given perioperatively and measuring effects out to 24 h or longer. 
Continued dosing of the analgesic, at the recommended time intervals, will have a 
greater impact on reducing postoperative pain. In conclusion, a single dose of ibu-
profen (400–600 mg) administered perioperatively will predictably reduce postop-
erative pain, but dosing should be continued for 24–48 h every 6–8 h, in patients in 
which this class of drugs can be safely administered (for more detail regarding the 
safety, see [118] and Fig. 6.4).

Fig. 6.4 Adverse reactions from the NSAID class of drugs. The occurrence and severity of these 
reactions differ with each drug (Reproduced with permission from Birkhäuser Verlag [118])
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6.2.2.3  Combination Ibuprofen and Acetaminophen
Strong evidence exists that the combination of ibuprofen and acetaminophen pro-
duces greater analgesia than either analgesic alone in the relief of acute pain, as 
described in several controlled clinical trials and summarized in a recent Cochrane 
review [119, 120]. There is also evidence for the efficacy of this combination spe-
cifically in postoperative endodontic pain ([121] but also see [122]). The concept of 
using combination analgesics makes sense from a biological standpoint, as different 
analgesics target different pain pathways, and so combining analgesics will more 
broadly inhibit pain signaling pathways, producing greater analgesia. The combina-
tion of ibuprofen and acetaminophen should be prescribed when moderate to severe 
pain is anticipated.

6.2.2.4  Opioids and Combination Opioid Drugs
Combination opioid drugs such as those that combine acetaminophen and hydroco-
done or codeine (e.g., Vicodin or Tylenol III) are commonly prescribed for the man-
agement of odontogenic pain and postsurgical pain. However, on their own they are 
less effective pain relievers than analgesics available over the counter with anti- 
inflammatory properties, such as ibuprofen [114, 123]. As the availability of pre-
scription opioid pain killers has increased in recent years, so has the nonmedical use 
and abuse of these agents, as well as the most undesirable outcome of death by 
overdose [124]. In looking further into this alarming trend of prescription opioid 
misuse and abuse, dentists have been identified as a major source of opioid prescrip-
tions (second only to family physicians). This has brought attention to the fact that 
greater care should be taken when prescribing these types of medications, as there 
is a chance that the drugs could end up being used for nonmedical purposes by 
someone other than the patient [125, 126]. With caution, combination opioids can 
be used in cases when severe pain is anticipated and NSAIDs are contraindicated, 
or pain is not relieved by NSAIDs or the combination of ibuprofen/acetaminophen. 
To prevent mishandling of any leftover medications, the dosing period can be lim-
ited to 24–48 h, during which time pain is anticipated to be most severe.

6.2.2.5  Steroids
Numerous studies have evaluated systemic and locally administered corticosteroids 
for the reduction of postoperative pain. Generally, there is ample support in the 
existing literature that steroids are effective at reducing postoperative pain after an 
endodontic intervention [127]. Systemic steroids, most commonly dexamethasone, 
administered intramuscularly or by oral tablets, decrease the incidence and intensity 
of postoperative endodontic pain [128–131]. These agents are also effective against 
postoperative pain when administered locally including intracanal, by intraligamen-
tary injection and intraosseous administration [132–135]. Local administration has 
the benefit of limiting the systemic exposure to corticosteroids, thereby limiting 
potential side effects (although the short-term administration of steroids is quite 
safe for the vast majority of patients [136]). Further clarification is needed regarding 
which subclasses of endodontic pain are most responsive to corticosteroids (e.g., 
irreversible pulpitis pain versus periapical pain from a tooth with a necrotic pulp 
versus flare-up pain) [127].
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6.2.2.6  Persistent Posttreatment Pain
Persistent pain after surgical procedures has gained attention recently as a public 
health problem and a potential opportunity for implementation of preventative 
methods to prevent the transition from acute to chronic pain [137]. Although occur-
ring much less frequently than after major medical surgical procedures, the possibil-
ity for persistent pain after surgical dental interventions including surgical and 
nonsurgical root canal treatment, implant placement, and oral surgery procedures 
has been recognized for quite some time [138–143]. Although persistent symptoms 
after endodontic treatment could be due to ongoing odontogenic causes such as an 
undetected root fracture or recurrent infection, there are clearly cases when pain 
persists despite the absence of detectable pathology. Historically, such persistent 
pain was referred to as atypical odontalgia, or phantom tooth pain. The more current 
nomenclature is persistent dentoalveolar pain or peripheral painful traumatic tri-
geminal neuropathy [144, 145]. Although debates regarding the criteria for classifi-
cation of this clinical entity are ongoing, and will surely continue, it likely represents 
a very specific type of persistent postsurgical pain. The etiology of non-odontogenic 
persistent post endodontic therapy pain is unknown, but there is some evidence that 
neuropathic mechanisms are involved [146–148]. More research is needed to better 
understand the biological mechanisms contributing to the development of persistent 
posttreatment endodontic pain.

6.3  Infection Management

6.3.1  The Role of Bacteria in Endodontic Pathology

Invasion of the root canal system by microorganisms precipitates the subsequent 
pathology of pulpal and periradicular tissues. The ultimate goal of endodontic treat-
ment is biomechanical preparation of the root canal system, which includes clean-
ing, shaping, and disinfection, as well as hermetically sealing the canals, thereby 
creating the conditions for the healing of diseased periradicular tissues [149–151]. 
Primary endodontic infections are polymicrobial and caused predominantly by 
gram-negative anaerobic bacteria such as Prevotella ssp., Porphyromonas ssp., 
Treponema ssp., and Fusobacterium ssp. [152, 153]. Endodontic infections can 
spread beyond the root canal system producing localized inflammation and swelling 
in the soft tissue adjacent to the involved teeth or, more rarely, a nonlocalized 
spreading cellulitis.

As such, root canal disinfection is the fundamental component of successful root 
canal treatment. Contemporary techniques to eliminate or significantly reduce 
microorganisms in the root canal system include mechanical debridement, intraca-
nal irrigation with antimicrobial/tissue dissolving agents, and placement of intraca-
nal dressings. Importantly, the process of obturating the root canal and subsequently 
sealing the coronal aspect of the tooth prevents the introduction of new microorgan-
isms. However, even during ideal treatment, some microorganisms can survive 
within the root canal system, causing persistent periapical inflammation, persistent 
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symptoms, and sometimes flare-ups [154]. Some patients can experience flare-ups 
of endodontic infection within a few hours or a few days following the root canal 
treatment [149, 154–156]. The flare-up rate after endodontic treatment varies from 
as low as 1.5 % [157] to as high as 20 % [158–162].

The composition of the microbiota in secondary or recurrent infections in previ-
ously treated teeth differs from that found in untreated teeth. Gram-positive bacteria 
are more frequently present and gram-negative bacteria, which are the most com-
mon component of primary infections, are usually eliminated. Frequently found 
organisms include streptococci, Parvimonas micra, Actinomyces species, 
Propionibacterium species, Pseudoramibacter alactolyticus, Lactobacillus, and 
Enterococcus faecalis [163]. Enterococcus faecalis is the species most often found 
in the case of treatment failure (Fig. 6.5) [164–166]. Existing evidence suggests 

a

b

c

Fig. 6.5 (a) Longitudinal aspect of an extracted tooth with a necrotic pulp, showing hand files 
placed in a working length. (b) A colony consisting of cocci of Enterococcus faecalis in an eco-
logical niche on the root canal wall. The aggregated bacteria also show some penetration into the 
dentinal tubules. Scanning electron microscopy, magnification ×3,500. (c) Images using a confocal 
laser scanning microscopy of dentin tubules with Enterococcus faecalis. These fragments were 
stained with Live/Dead dye, showing alive bacteria stained with green (Acknowledgment to Dr. 
Simone Duarte and Department of Basic Science of Craniofacial Biology. New York University)
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that, after Enterococcus faecalis and Actinomyces species, Candida albicans are the 
most prevalent microorganisms associated with failed endodontic treatment [167, 
168]. This species can colonize and invade the dentin and seems to be resistant to 
calcium hydroxide dressing (Fig. 6.6) [153, 169].

The presence of microorganisms in the root canal system evokes the pathogene-
sis of apical periodontitis. The microorganisms and their virulent factors can pene-
trate periradicular tissue, resulting in an inflammatory process, the intensity of 
which depends on the virulence and amount of the microorganisms present (Fig. 6.7) 
[170]. In the case of symptomatic apical periodontitis, the predominant strains of 
microorganisms found are Parvimonas micra, Eubacterium, Porphyromonas 
endodontalis, Porphyromonas gingivalis, Prevotella, and notably the “black- 
pigmented bacteria” which have gained much attention [171]. In the complex anat-
omy of the root canal system with its ramifications, isthmi, apical deltas, and 
accessory canals, the complete removal of microorganisms from the root canal sys-
tem remains a challenge (Fig. 6.7) [165, 170, 172]. Positive correlations were found 
between the persistence of high levels of bacteria and endotoxins and pain on palpa-
tion, exudation, and levels of TNF-α and IL-1β [173].

6.3.2  Antibiotics in the Management of Endodontic Infections

The first-line treatment for teeth with either symptomatic apical periodontitis or an 
acute apical abscess is the removal of the source of inflammation or infection by 
local, operative measures including endodontic treatment or extraction of the tooth 

a b

Fig. 6.6 (a) Scanning electron microscopy showing a hand file after passing the apical foramen 
while carrying smear layer from the root canal wall. Magnification ×120. (b) Image using a fluo-
rescence microscopy of the smear layer with Candida albicans. These fragments were stained with 
Live/Dead dye, showing alive bacteria stained in green and dead in red (c) (Acknowledgment to 
Dr. Simone Duarte and Department of Basic Science of Craniofacial Biology. New York University 
College of Dentistry)
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and incision and drainage for localized swellings [174, 175]. Systemic antibiotics 
are recommended in situations where there is evidence of a spreading infection (cel-
lulitis, lymph node involvement, diffuse swelling) or systemic symptoms (fever and 
malaise) as well as in treating refractory infections [176]. The overuse of antibiotics 
increases the chances for bacteria to develop antibiotic resistance and of an altera-
tion of the commensal flora, thus increasing the potential for adverse events such as 
allergies, anaphylactic reactions, nausea, vomiting, etc. [177–179]. Since dentists 
prescribe approximately 8–10 % of the antibiotics dispensed in developed countries, 
it is important not to underestimate the contribution of the dental profession to the 
increasingly serious problem of antibiotic-resistant bacteria [180, 181].

Systemically administered antibiotics should be considered an adjunct to end-
odontic therapy, and they should not be used to treat localized inflammatory condi-
tions such as pulpitis and apical periodontitis. Several studies appear to indicate that 
antibiotics do not reduce the pain or swelling arising from teeth with symptomatic 
apical pathology in the absence of systemic involvement [45, 76]. Nevertheless, in 
a survey of members of the American Association of Endodontics, 54% of respon-
dents reported that they would prescribe antibiotics as a first treatment for people 
with dental pain [182]. Except in patients with compromised immune system, anti-
biotics are not curative but instead function to assist in the reestablishment of the 
proper balance between the host’s defenses and the invasive agent [183].

In order to maximize the effects of antibiotics and minimize the chances of resis-
tant strains developing, patients must be instructed to initiate the course of antibiot-
ics as soon as possible. Some controversy exists regarding the prescribing of 
long-term antibiotics. The typical regimen for treating an endodontic infection is 
6–10 days on an around-the-clock schedule.

a b

c

Fig. 6.7 (a) Dentinal tubules of root canal wall filled with a colony consisting of cocci along its 
path to the pulp, after the mechanical debridement with hand files. (b) Extracted human mandibu-
lar molar: longitudinal aspect of the endodontic space. Scanning electron microscopy, magnifica-
tion ×1,500 (Acknowledgment to Dr. Simone Duarte and Department of Basic Science of 
Craniofacial Biology. New York University)
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6.3.3  Endodontic Dressings

The anatomical complexity of the root canal systems, especially in the critical api-
cal region, makes it impossible to completely remove all pulp tissue remnants and 
residual microorganisms, even when applying the highest technical standards of 
chemomechanical debridement (Fig. 6.7) [164, 165]. Because root canal infections 
are polymicrobial, consisting of both aerobic and anaerobic bacterial species, sev-
eral intracanal dressings have been suggested to accomplish root canal disinfection 
[184, 185]. Local applications of antibiotics within the root canal have been pro-
posed to overcome the potential risk of adverse systemic effects of antibiotics and 
as an active mode for drug delivery in teeth lacking blood supply due to necrotic 
pulps or pulpless status [185–187].

Several reports have been recently published describing revascularization or 
revitalization of immature permanent teeth with a necrotic dental pulp. In addition 
to traditional nonspecific endodontic disinfecting irrigants, these reports have docu-
mented the use of triple antibiotic paste (ciprofloxacin, metronidazole, and minocy-
cline) [185–191], calcium hydroxide [192–195], or formocresol [196] as 
inter-appointment intracanal dressings. The triple antibiotic mix and calcium 
hydroxide appear to sometimes allow for continued increased root thickening and 
lengthening, but formocresol did not achieve the same effect [197]. The antimicro-
bial effectiveness of intracanal antibiotics versus calcium hydroxide requires further 
study, but the combination appears to be effective against endodontic pathogens 
[185, 198].

Calcium hydroxide has been widely accepted as an intracanal medicament 
because of its antimicrobial properties, especially on gram-negative bacteria [199, 
200]. Studies in vitro and in vivo have shown an intracanal reduction of the micro-
bial population or at least inhibition of bacterial proliferation [201–203]. Some 
authors have discussed whether calcium hydroxide is effective at eliminating 
Enterococcus faecalis. Other studies have evaluated the effect of intracanal calcium 
hydroxide on the incidence of posttreatment pain and found that calcium hydroxide 
is not very effective in reducing posttreatment pain when it is used alone [204, 205], 
but its effectiveness increased when used in combination with other medicaments 
like 2 % chlorhexidine gluconate and camphorated monochlorophenol [206]. 
Additionally, several other studies have concluded that medicaments with the corti-
costeroid component in them are significantly better than calcium hydroxide in 
reducing the posttreatment pain, attributing to the anti-inflammatory action of cor-
ticosteroids (see Sect. 6.2.2.5) [206, 207].
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