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Abstract We consider the system of two material points that interact by elastic

forces according to Hooke’s law and their motion is restricted to certain curves lying

on the plane. The nonintegrability of this system and idea of the proof are communi-

cated. Moreover, the analysis of global dynamics by means of Poincaré cross sections

is given and local analysis in the neighborhood of an equilibrium is performed by

applying the Birkhoff normal form. Conditions of linear stability are determined and

some particular periodic solutions are identified.

1 Introduction

Seeking exact solutions of nonlinear dynamical systems is a task to which physicists,

engineers and mathematicians have devoted much of their time over the centuries.

But to date, only a few particular examples of real importance have been found. In a

typical situation, nonlinear equations of motion are nonintegrable and hence we have

little or no information about qualitative and quantitative behavior of their solutions.

However, a very useful tool to overcome these difficulties is the so-called Birkhoff

normalization. The idea of this treatment, which is used in Hamiltonian systems,

goes back to Poincaré and it was broadly investigated by Birkhoff in [1]. It is mainly

based on the simplification of the Hamiltonian expanded as a Taylor series in the

neighborhood of an equilibrium position by means of successive canonical transfor-

mations. Using the Birkhoff normalization one can: determine stability of equilib-

rium solutions; find approximation of analytic solutions of Hamiltonian equations;

and identify families of periodic solutions with given winding numbers.
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The aim of this paper is the analysis of dynamics of the system of two mate-

rial points that interact by elastic force and can only move on some curves lying

on the plane. At first in order to get a quick insight into the global dynamics of the

considered system, we make a few Poincaré cross sections for generic values of para-

meters. Moreover, we communicate the nonintegrability result and give the idea of

their proof. Next, we look for equilibria of the system and we make the local analy-

sis in their neighborhood by means of Birkhoff normal form. In particular we look

for values of parameters for which equilibrium is linearly stable, we plot resonance

curves and look for periodic solutions corresponding to them.

2 Description of the System and Its Dynamics

In Fig. 1 the geometry of the system is shown. It consists of two masses m1 and

m2 connected by a spring with elasticity coefficient k. The first mass, m1, moves on

an ellipse parametrized by r = (a cos𝜑, b sin𝜑)T , while the second one, m2, moves

along the straight line parallel to the x-axis and shifted from it by the distance d. The

Lagrange function corresponding to this model is as follows

L = 1
2
m1

(
b2 cos2 𝜑 + a2 sin2 𝜑

)
𝜑̇
2 + 1

2
m2ẋ2 −

1
2
k
[
(x − a cos𝜑)2 + (d − b sin𝜑) 2

]
. (1)

In order to have invertible Legendre transformation, we assume that the condition

m1m2 ≠ 0 is always satisfied. Thus, the Hamiltonian function can be written as

H =
p2
𝜑

2m1(b2 cos2 𝜑 + a2 sin2 𝜑)
+

p2x
2m2

+ 1
2
k
[
(x − a cos𝜑)2 + (d − b sin𝜑)2

]
,

(2)

and the equations of motion are given by

Fig. 1 Geometry of the

system
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ẋ =
px
m2

, ṗx = −kx + ak cos𝜑, 𝜑̇ =
p
𝜑

m1(b2 cos2 𝜑 + a2 sin2 𝜑)
,

ṗ
𝜑
=

(a2 − b2) sin(2𝜑)p2
𝜑

2m1(b2 cos2 𝜑 + a2 sin2 𝜑)2
+ [bd + (a2 − b2) sin𝜑]k cos𝜑 − akx sin𝜑.

(3)

In order to present the dynamics of the considered model, we made several Poincaré

cross sections which are presented in Figs. 2 and 3.

Fig. 2 Poincaré cross

section on the surface 𝜑 = 0
with p

𝜑
> 0 for the values of

parameters: E = 0.28,
m1 = 1, m2 = 1.5, k = 1,
a = 1.5, b = 1, d = 0
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Fig. 3 Poincaré cross

section on the surface 𝜑 = 0
with p

𝜑
> 0 for the values of

parameters: E = 3.2,
m1 = 1, m2 = 2, k = 1,
a = 1, b = 1.5, d = 2
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As we can see, they show that for generic values of parameters and sufficiently

large energies the system exhibits chaotic behavior. In fact we can prove the following

theorem.

Theorem 1 The system of two point masses m1 and m2, such that ab(m1 − m2) ≠ 0,
one moving on an ellipse and the other on the straight line containing a semi-axis
of the ellipse, is not integrable in the class of functions meromorphic in coordinates
and momenta.

The proof of the above theorem consists in the direct application of the so-called

Morales–Ramis theory that is based on analysis of the differential Galois group of

variational equations. They are obtained by linearization of the equations of motion

along a particular solution that is not an equilibrium position. For the precise for-

mulation of the Morales–Ramis theory and the definition of the differential Galois

group see e.g., [5, 8]. The main theorem of this theory states that if the system is inte-

grable in the Liouville sense, then the identity component of the differential Galois

group of variational equations is Abelian, so in particular it is solvable. The technical

details of the proof of this theorem are given in [7], where the authors show that for

this system these necessary integrability conditions are not satisfied.

3 Stability Analysis—Birkhoff Normalization

Although Hamiltonian (2) turned out to be not integrable, we can deduce some

important information about the dynamics from its Birkhoff normal form. But first,

in order to minimize the number of parameters and thus simplify our calculations as

much as possible, we rescale the variables in H (2) in the following way

q1 =
𝜋

2
− 𝜑, p1 =

𝜏

b2m2
p
𝜑
, q2 =

x
b
, p2 =

𝜏

bm2
px, e = 𝜏

2

m2b2
E. (4)

Choosing 𝜏 = 𝜔
−1
0 , where 𝜔0 =

√
k∕m2, the dimensionless Hamiltonian takes the

form

H = 1
2

(
p21

𝛼(𝛽2 cos2 q1 + sin2 q1)
+ p22 +

(
x − 𝛽 sin q1

)2 +
(
𝛿 − cos q1

)2
)

. (5)

The new dimensionless parameters (𝛼, 𝛽, 𝛿) are defined by

𝛼 =
m1
m2

, 𝛽 = a
b
, 𝛿 = d

b
− 1. (6)

Let us denote x = (q1, q2, p1, p2)T , and let ẋ = vH(x) = J∇H be the Hamiltonian vec-

tor field generated by the Hamiltonian (5), then it is easy to verify that the equilibrium
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ẋ = 0 is localized at the origin. Thus, if we assume that H is analytic in the neigh-

borhood of x = 0, then we can represent it as a Taylor series

H = H2 + H3 + H4 +⋯ + Hj +⋯ , (7)

where Hj is a homogeneous polynomial of order j with respect to variables x. In our

case the second term H2 is as follows

H2 =
p21

2𝛼𝛽2
+

p22
2

+ 1
2
(𝛽2 + 𝛿)q21 − 𝛽q1q2 +

q22
2
. (8)

Since H2 is quadratic form of x it can be written as

H2 =
1
2
xTĤx, (9)

where Ĥ is the symmetric matrix

Ĥ =
⎛
⎜
⎜
⎜
⎝

𝛽
2 + 𝛿 −𝛽 0 0
−𝛽 1 0 0
0 0 (𝛼𝛽2)−1 0
0 0 0 1

⎞
⎟
⎟
⎟
⎠

. (10)

The Hamilton equations generated by H2 are a linear system with constant coeffi-

cients of the following form

ẋ = Ax, where A = JĤ. (11)

Here J is the standard symplectic form satisfying J = −JT . Considering the eigen-

values of the matrix A, we can obtain information about the stability of the linear

system (11) near the equilibrium x = 0. Following e.g., [3], the necessary and suf-

ficient condition for stability of linear Hamiltonian system is that the matrix A has

distinct and purely imaginary eigenvalues, i.e., 𝜆i = i𝜔i, 𝜆j+i = −i𝜔i, i = 1,… , j,
and 𝜔i ∈ ℝ. In our case the characteristic polynomial of A takes the form

p(𝜆) = det[A − 𝜆I] = 𝜆
4 + (𝛼 + 1)𝛽2 + 𝛿

𝛼𝛽2
𝜆
2 + 𝛿

𝛼𝛽2
. (12)

Because p(𝜆) is an even function of 𝜆 we can substitute 𝜎 = 𝜔
2 = −𝜆2, that gives

p(𝜎) = 𝜎
2 − (𝛼 + 1)𝛽2 + 𝛿

𝛼𝛽2
𝜎 + 𝛿

𝛼𝛽2
. (13)
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It is easy to verify that the roots 𝜎1,2 of Eq. (13) are distinct real and positive only for

𝛿 > 0. This implies that the equilibrium is linearly stable for d > b, and in this paper

we restrict the value of 𝛿 to greater than zero.

Next, we want to make the canonical transformation

x = MX, MTJM = J, (14)

such that the Hamiltonian H2 in the new variables X = (Q1,Q2,P1,P2)T takes the

form of the sum of two Hamiltonians for two independent harmonic oscillators

H2 =
1
2
𝜔1

(
Q2

1 + P2
1
)
+ 1

2
𝜔2

(
Q2

2 + P2
2
)
= 1

2
XT K̂X, K̂ = diag(𝜔1, 𝜔2, 𝜔1, 𝜔2).

(15)

From Eqs. (11) and (14) we have the following condition for the matrix M

MJK̂ = JĤM. (16)

Then, we look for M as a product M = NL, where N transforms A = JĤ into its

Jordan form, and L is given by

L =
(

i𝕀2×2 𝕀2×2
−i𝕀2×2 𝕀2×2

)
, (17)

where 𝕀 is the unit matrix. Matrix N is built from the eigenvectors of the matrix A
corresponding to eigenvalues 𝜔1,2. Choosing appropriate order of eigenvectors in A
as well as its lengths we can obtain the real transformation M = NL satisfying the

canonical condition MTJM = J, see e.g., [3]. After such transformation H2 takes the

form (15) with characteristic frequencies

𝜔1 =

√
2
√

(𝛼 + 1)𝛽2 +
√
(𝛼 + 1)2𝛽4 − 2(𝛼 − 1)𝛽2𝛿 + 𝛿2 + 𝛿

2𝛽
√
𝛼

,

𝜔2 =

√
2
√

(𝛼 + 1)𝛽2 −
√
(𝛼 + 1)2𝛽4 − 2(𝛼 − 1)𝛽2𝛿 + 𝛿2 + 𝛿

2𝛽
√
𝛼

.

(18)

As we can notice these frequencies are different in general. However, it is easy to ver-

ify that for some specific values of parameters (𝛼, 𝛽, 𝛿) they become linearly depen-

dent over the rational numbers. We say that the eigenfrequences 𝜔1,2 satisfy a reso-

nance relation of order k if there exist integers (m, n) such that

m𝜔1 + n𝜔2 = 0, |m| + |n| = k. (19)

Figure 4 presents examples of the resonance curves plotted on the parameter plane

(𝛿, 𝛼) for the fixed 𝛽 = 1. In this figure we use the notation
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Fig. 4 Examples of

resonance curves plotted on

the parameter plane for fixed

𝛽 = 1

𝜔n∶m ∶=
{
(𝛼, 𝛽, 𝛿) ∈ ℝ |||

𝜔1
𝜔2

= n
m

}
. (20)

In fact we can obtain the explicit formulae for the resonance. Namely, substituting

(18) into (19) and solving with respect to 𝛿, we obtain

𝛿 =
𝛽
2
(
𝛼 + 𝛼l4 − 2l2 ±

√
𝛼

(
l2 + 1

)√
𝛼 + 𝛼l4 − 2(𝛼 + 2)l2

)

2l2
, l = n

m
. (21)

Limiting the normalization of the Hamiltonian H (5) only to the quadratic part

H2, does not give in general sufficient accuracy of solutions of Hamilton’s equations

of the original untruncated H. Thus, in order to improve the accuracy we need to take

into account the higher order terms ofH, and normalize them so that the Hamiltonian

and the dynamics become especially simple. We can do this by means of a sequence

of nonlinear canonical transformations with some appropriately chosen generating

function

S = PTq +W(q,P), W = W3 + · · · +WK , (22)

where

WK =
∑

𝜈1+···+𝜇n=K
w
𝜈1,…𝜇n

q𝜈11 ⋯ q𝜈nn P
𝜇1
1 ⋯P𝜇n

n ,

for details consult e.g., [2, 3]. Let

Q = 𝜕S
𝜕P

= q +
𝜕W(q,P)

𝜕P
, p = 𝜕S

𝜕q
= P +

𝜕W(q,P)
𝜕q

(23)
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be the canonical transformation generated by (22). Then, from the implicit function

theorem, in the neighborhood on the equilibrium X = 0 we can express (q, p) as a

functions of (Q,P). Namely, one can solve (23) for q and p, treating the derivatives as

known, and then recursively substitute those expressions into themselves. Because

W contains polynomials of degree 3 or higher, the Taylor series is recovered, with

the first terms

q = Q −
𝜕W(Q,P)

𝜕P
+⋯ , p = P +

𝜕W(Q,P)
𝜕Q

+⋯ . (24)

The Hamiltonian function in the new variables is reduced to the Birkhoff normal

form HK(X) of order K, i.e., with all homogeneous terms of degrees up to K nor-

malized so that they Poisson commute with the quadratic part

H(x) = HK(X) + O(XK+1), {HK ,H2} = 0. (25)

Introducing the action-angle variables as the symplectic polar coordinates (Ii, 𝜙i)
defined by

Qi =
√
2Ii sin𝜙i, Pi =

√
2Ii cos𝜙i, i = 1,… , n

and discarding the non-normalized terms in (25) we obtain the integrable system

whose HamiltonianHK(I) depends only on actions and whose trajectories will round

the tori I = const with frequencies 𝜴 = 𝜕IHK . Since HK(X) consist of homoge-

neous terms of degrees up to K, its Birkhoff normal form can be written in action-

angle variables as a polynomial of degree [K∕2] in I. We can transform H to such

form by a sequence of canonical transformations provided eigenfrequences 𝜔i do not

satisfy any resonance relation of order K or less.

The Birkhoff normal form of degree four is given by

H4 = 𝜔1I1 + 𝜔2I2 + h20I21 + h11I1I2 + h02I22 , (26)

where the coefficients h20, h11, h02 related to our system have the form

h20 =
𝜔
2
1𝜔

4
2
(
𝜔
2
1 − 1

) (
3𝛿

(
𝜔
2
1 − 1

) (
𝜔
2
2 − 1

)
+
(
3𝜔2

2 + 1
)
𝜔
2
1 − 3𝜔2

2 + 3
)

16𝛿2
(
𝜔
2
1 − 𝜔

2
2
)2 (

𝜔
2
2 − 1

) ,

h11 =
𝜔
3
1𝜔

3
2
((
1 − 3𝜔2

2
)
𝜔
2
1 + 𝜔

2
2 − 3 − 3𝛿

(
𝜔
2
1 − 1

) (
𝜔
2
2 − 1

))

4𝛿2
(
𝜔
2
1 − 𝜔

2
2
)2 ,

h02 =
𝜔
4
1𝜔

2
2
(
𝜔
2
2 − 1

) (
3𝛿

(
𝜔
2
1 − 1

) (
𝜔
2
2 − 1

)
+ 3

(
𝜔
2
2 − 1

)
𝜔
2
1 + 𝜔

2
2 + 3

)

16𝛿2
(
𝜔
2
1 − 1

) (
𝜔
2
1 − 𝜔

2
2
)2 .

(27)
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Fig. 5 Poincaré sections on the surface q1 = 0, with p1 > 0

Now let us try to deduce some interesting information from the normalized Hamil-

tonian (26). First of all, in order to check that the normalization up to order four

gives sufficiently good accuracy, we have to compare solutions of Hamilton equa-

tions governed by Hamiltonian (26) with (5). We can do this easily for example by

comparison of Poincaré cross sections for original Hamiltonian system and its nor-

mal form of degree four. Let us note that action variables (I1, I2) are the first integrals

of the normalized Hamiltonian H4. We can chose one of them, for example I1 and

make the inverse canonical transformation in order to go back to the original vari-

ables (q1, q2, p1, p2)T . Then for the chosen energy level, we make the contour plot of

I1 restricted to the plane (q2, p2) with q1 = 0. Figure 5 presents numerical and analyt-

ical Poincaré cross sections constructed for chosen values of parameters belonging

to the stability region, namely: 𝜔1 = 𝜔1 = 1.75, 𝜔2 = 0.5, 𝛿 = 0.75, with cross-

section plane q1 = 0 and p1 > 0, on the energy level E = E
min

+ 0.01. As expected,

for E close to the energy minimum corresponding to an equilibrium both the images

are very regular. In fact each of them can be divided into two regions filled by invari-

ant tori around two stable particular periodic solutions. As we can notice, the differ-

ences between numerical and analytical computations are not visible. See especially

the Fig. 6 showing the superposition of Fig. 5a, b, where for better readability the

analytical loops have been plotted in bold gray lines.

As we mentioned previously, the Birkhoff normalization can be also very effective

in finding families of periodic solutions. Figures 7, 8 and 9 present contour plots

showing examples of such families

∙ on the (I1, I2) plane,

∙ on the (q1, q2) plane with p1 = p2 = 0,

∙ on the (q2, p2) plane with q1 = p1 = 0,

respectively, where (𝛺1, 𝛺2) are defined by



370 W. Szumiński and T. Stachowiak

Fig. 6 Superposition of

Fig. 5a, b

Fig. 7 Contour plot

showing the resonance

curves on the (I1, I2) plane

for the fixed values of

parameters: 𝜔1 = 1.75, 𝜔2 =
0.5, 𝛿 = 0.75

𝛺1 =
𝜕H4
𝜕I1

= 𝜔1 + 2h20I1 + h11I2, 𝛺2 =
𝜕H4
𝜕I2

= 𝜔1 + 2h02I2 + h11I1,

and 𝛺n∶m ∶=
{
(I1, I2) ∈ ℝ2 |||

𝛺1
𝛺2

= n
m

}
.

(28)

These figures are very helpful because from them we can read initial conditions for

which the motion of the system is periodic. For example, Fig. 10 presents periodic

orbits in the configuration space given by the numerical computations with the initial

values related to resonances 𝛺17∶5 and 𝛺10∶3, respectively.
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Fig. 8 Contour plot showing the resonance curves on the (q1, q2) plane with p1 = p2 = 0 for the

fixed values of parameters: 𝜔1 = 1.75, 𝜔2 = 0.5, 𝛿 = 0.75

Fig. 9 Contour plot showing the resonance curves on the (q2, p2) plane with q1 = p1 = 0 for the

fixed values of parameters: 𝜔1 = 1.75, 𝜔2 = 0.5, 𝛿 = 0.75

Fig. 10 Examples of trajectories in the configuration space given by the numerical computations

with the initial values related to certain resonances presented in Figs. 8 and 9
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4 Conclusions

As we have seen, in order to determine stability of equilibrium solution, detect fami-

lies of periodic solutions as well as find approximation of analytic solutions of equa-

tions of motion the Birkhoff normalization proves very useful. However, it is worth

mentioning certain inconveniences associated with this method. Namely, it gives

us opportunity to investigate behavior of the system over large time intervals, with

sufficiently good accuracy, only in the neighborhood of equilibrium. Furthermore,

it should be emphasized that the linear stability of the equilibrium x = 0 does not

imply its stability in the Lyapunov sense. This is due to the fact that the discarded

parts of the series can destroy the stability in the long timescale. It would seem that

the higher degree normalization should gives us a better approximation of reality.

However, in general there does not exist a convergent Birkhoff transformation, see

e.g., [6], so the estimation of those terms is not straightforward. To check the nonlin-

ear stability of equilibrium for Hamiltonian vector field vH(x) more involved analysis

is necessary, e.g., application of the second Lyapunov method or the Arnold–Moser

theorem, which itself relies on normal form, see [4].

Despite these limitations, the Birkhoff normalization is still a very useful source

of important information about dynamics and often the starting point of further

analysis.
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