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Abstract A novel analytic approximate technique, namely optimal variational
method (OVM), is employed to propose an approach to solve some nonconserva-
tive nonlinear oscillators. Different from perturbation methods, the validity of the
OVM is independent on whether or not there exist small physical parameters in the
considered nonlinear equations. This procedure offers a promising approach by
constructing a generalized Lagrangian and a generalized Hamiltonian for nonlinear
oscillators. An excellent agreement has been found between the analytical results
obtained by the proposed method and numerical integration results.

1 Introduction

The entire conventional theory of Lagrangian representation in the space of the
generalized coordinates of conservative Newtonian systems subject to holonomic
constrains is based on the often tacit assumption that constrains are frictionless. But
in practice, holonomic constrains are realized by mechanical means. Therefore, the
presence of frictional forces is inevitable whenever holonomic constrains occur and
in turn, a Lagrangian representation that does not reflect this dissipative nature
commonly is considered a first approximation of the system. For computing a
Lagrangian for dynamical systems with more general Newtonian forces are
nowadays applicable only to systems with force derivable from a potential function
(basically conservative systems). But conservative systems do not exist in our
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Newtonian environment. In consequence, Lagrangian representation of conserva-
tive Newtonian systems is in general only a crude approximation of physical reality.
The problem of the existence of a Lagrangian or Hamiltonian can be studied today
with a variety of modern and sophisticated mathematical tools which include the
use of functional analysis, prolongation theory, and differential geometry. This
question is called as “Inverse problem in Newtonian Mechanics” and consists in the
identifications of the methods for the construction of a Lagrangian or Hamiltonian
from given equation of motion [1–3].

The aim of this paper is to construct approximations to periodic solutions and
frequencies of nonlinear oscillators with linear and cubic elastic restoring force and
quadratic damping. These oscillators are examples of nonconservative dynamical
systems. Such systems with linear and cubic elastic restoring force and quadratic
damping appropriately describe those real systems for which the damping of the
oscillations is produced by a turbulent liquid flow inside the damper. A typical
example of an oscillator with quadratic damping is the suspension of a vehicle
equipped with hydraulic shock absorbers. Suspensions with nonlinear elastic and
damping characteristics are frequently utilized, because nonlinearity limits dis-
placements and velocity reduces the extreme values of the acceleration and leads to
a more uniform dynamic loading of the suspensions. The damping nonlinearity is
usually achieved by using hydraulic or hydropneumatic shock absorbers. If v is the
velocity of the sprung mass, for small values of v, the flow of the oil in the shock
absorber is laminar and the damping characteristic is linear. As v increases, the flow
becomes turbulent and the characteristic takes a parabolic form. When the velocity
reaches a certain “critical” value, the pressure inside the shock absorber becomes
large enough to bring about the opening of the relief valves, and this modifies the
further dependence of the damping force on velocity [4]. Quadratic damping is a
subject of interest for many scientists [5–9].

In this paper we consider a nonlinear oscillator with linear and cubic elastic
restoring force and quadratic damping in the form

u
..
+ u+ αu ̇2 + βu3 = 0 ð1Þ

subject to initial conditions

uð0Þ=A, u ̇ð0Þ=0 ð2Þ

where dot denotes derivative with respect to time and α, β, A are known constants,
A > 0.

In the last few decades, considerable work has been invested in developing new
methods for analytical and numerical solutions of strongly nonlinear oscillators, but
it is still difficult to obtain convergent results in cases of strong nonlinearity. There
is a great need for effective algorithms to avoid shortcomings of some traditional
techniques. In this way, recently, many new approaches have been proposed for
determining periodic solutions and frequencies to nonlinear oscillators by using a
mixture of methodologies [10–20].
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In what follows, we construct approximations to periodic solutions and fre-
quencies of nonlinear oscillators by applying the optimal variational method. The
most significant features of this new approach are the optimal control of the con-
vergence of approximations and its excellent accuracy. Different from other
methods, the validity of the OVM is independent on whether or not there exist small
parameters in the considered nonlinear equations. Our procedure is very effective
and this work demonstrates the validity and great potential of the OVM.

2 Basic Formulation of the OVM

In order to develop an application of the OVM, we consider the following differ-
ential equation of the nonlinear oscillations

f ðt, u, u ̇, u..Þ=0 ð3Þ

with the initial conditions

uð0Þ=A, u ̇ð0Þ=0, A>0 ð4Þ

where f is a nonlinear function. In our procedure, f does not need to contain a small
parameter.

Variational principle can be easily established if there exists a functional called
the action functional or action for short:

J =
ZT ̸2

0

Lðt, u, u ̇Þdt ð5Þ

where T is the period of the nonlinear oscillator, T =2π ̸Ω, and Ω is the frequency
of the system (3), which admits as extremals the solutions of Eqs. (3) and (4) and
L is the generalized Lagrangian of the system (3). On physical grounds, the primary
significance of this principle rests on the fact that the acting forces of Newtonian
system (3) need not necessarily be derivable from a potential.

We assume that the solutions of Eq. (3) can be expressed in the form

uðtÞ=C1 +C2 cosΩt+C3 cos 2Ωt+⋯+Cs+1 cos sΩt ð6Þ

where Ci,i = 1,2,…,s + 1 are arbitrary parameters at this moment and s is a pos-
itive integer number.
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Substituting Eq. (6) into Eq. (5), it results in

JðC1,C2, . . . ,Cs+1,ΩÞ=
ZT ̸2

0

Rðt,C1,C2, . . . ,Cs+1,ΩÞdt ð7Þ

where

Rðt,C1,C2, . . . ,Cs+1,ΩÞ=
= Lðt, uðt,C1,C2, . . . ,Cs+1,ΩÞ, u ̇ðt,C1,C2, . . . ,Cs+1,ΩÞÞdt

ð8Þ

is the residual.
Equation (7) can be rewritten in the form

JðC1,C2, . . . ,Cs+1,ΩÞ=
Zπ

0

Rðx,C1,C2, . . . ,Cs+1,ΩÞdx ð9Þ

Applying the Ritz method, we require

∂J
∂C1

=
∂J
∂C2

=⋯=
∂J

∂Cs+1
=

∂J
∂Ω

=0 ð10Þ

From Eqs. (10) and initial conditions (4) which become

C1 +C2 +⋯+Cs+1 =A ð11Þ

we can obtain optimally the parameters Ci, i = 1,2,…,s + 1 and the frequency Ω.
We remark that expression (6) is not unique. We can alternatively choose

another expression of the solution in the form

uðtÞ=C′

1 cosΩt+C′

2 cos 2Ωt+C′

3 cos 3Ωt+⋯ ð12Þ

or, if the function f from Eq. (3) is an odd function:

uðtÞ=C′′

1 cosΩt+C′′

2 cos 3Ωt+C′′

3 cos 5Ωt+⋯ ð13Þ

and so on, where C′

i and C′′

j are the convergence control parameters. With these
parameters known, the approximate solution is well determined.

Another possibility to determine the optimal values of these parameters Ci is to
solve the system
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Rðx1,C1, . . . ,Cs+1,ΩÞ=Rðx2,C1, . . . ,Cs+1,ΩÞ=⋯=

=Rðxs+2,C1, . . . ,Cs+1,ΩÞ=0
ð14Þ

where Rðx,Ci,ΩÞ is the residual given by Eq. (8) and xi ∈ 0, πð Þ, i = 1,2,…,s + 2.
The parameters Ci and the frequency Ω can be determined by the least square

method, the Galerkin method, the collocation method and so on [10], [18], [19].
The Hamiltonian of Eq. (3) can be expressed in the form

Hðt, u, u ̇Þ= pu ̇− Lðt, u, u ̇Þ ð15Þ

where p is the generalized momenta

p=
∂L
∂u ̇

ð16Þ

If the Lagrangian is independent of time, then also the Hamiltonian is inde-
pendent of time and results that

Hðt, uðt,Ci,ΩÞ, u ̇ðt,Ci,ΩÞÞ=Hðt0, u(t0Þ, u ̇ðt0ÞÞ= constant ð17Þ

where t0 is a fixed value of t such that t0 ∈ ½0, π Ω̸�.
On the other hand, the parameters Ci, i = 1,2,…,s + 1 and Ω from Eq. (17) can

be determined from the conditions

Hðt1, uðt1,Ci,ΩÞ, u ̇ðt1,Ci,ΩÞÞ=Hðt2, uðt2,Ci,ΩÞ, u ̇ðt2,Ci,ΩÞÞ=⋯
=Hðts+2, uðts+2,Ci,ΩÞ, u ̇ðts+2,Ci,ΩÞÞ=constant

ð18Þ

3 The Oscillator with Linear and Cubic Elastic Restoring
Force and Quadratic Damping

The system described by Eqs. (1) and (2) is a nonconservative system, but we try to
determine a generalized Lagrangian L in the form

Lðt, u, u ̇Þ= eFðuÞ XðuÞ+Yðu ̇Þ½ �+
Z

GðuÞeFðuÞdu ð19Þ

where F, X, Y, and G are unknown functions. The expression (19) is not unique,
because it is well known that the generalized Lagrangian L is not unique. Our
problem consists in studying the conditions under which there exist the Lagrangian
given by Eq. (19) such that Lagrange’s equation in L coincide with
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−
d
dt

∂L
∂u ̇

� �
+

∂L
∂u

= hðt, u, u ̇Þ u
..
+ u+ αu ̇2 + βu3

� � ð20Þ

where hðt, u, u ̇Þ is an arbitrary function such that hðt, u, u ̇Þ≠ 0. It is clear that the
Eq. (1) and the equation

hðt, u, u ̇Þ u
..
+ u+ αu ̇2 + βu3

� �
=0 ð21Þ

have the same solutions, because hðt, u, u ̇Þ≠ 0.
From Eq. (19), we can write

d
dt

∂L
∂u ̇

� �
= u

.. d2Yðu ̇Þ
du2̇

+ u ̇
dYðu ̇Þ
dx ̇

dFðxÞ
dx

� �
eFðuÞ ð22Þ

dL
du

=
dFðuÞ
du

XðuÞ+Yðu ̇Þð Þ+ dXðuÞ
du

+GðuÞ
� �

eFðuÞ ð23Þ

Substituting Eqs. (22) and (23) into Eq. (20) we have

u
.. d2Yðu ̇Þ

du2̇
+ u ̇

dYðu ̇Þ
du ̇

dFðuÞ
du

−
dFðuÞ
du

XðuÞ+ Yðu ̇Þð Þ−
�

−
dXðuÞ
du

−GðuÞ
�
eFðuÞ = u

..
+ u+ αu ̇2 + βu3

� �
hðt, u, u ̇Þ

ð24Þ

If we choose

hðt, u, u ̇Þ= eFðuÞ ≠ 0 ð25Þ

d2Yðu ̇Þ
du ̇2

= 1 ð26Þ

then, from Eq. (26) we deduce that

Yðu ̇Þ= 1
2
u ̇2 +C1u ̇+C2 ð27Þ

For simplification, we choose C1 = C2 = 0 into Eq. (27), then substituting
Eqs. (25) and (27) into Eq. (24) it follows that

u
..
+

1
2
u ̇2

dFðuÞ
du

−XðuÞ dFðuÞ
du

−
dXðuÞ
du

−GðuÞ= u
..
+ u+ αu ̇2 + βu3 ð28Þ
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Into Eq. (28) we choose

dFðuÞ
du

=2α ð29Þ

XðuÞ= −
β

2α
u3 ð30Þ

From Eqs. (28), (29) and (30) we obtain

GðuÞ= − u+
3β
2α

u2 ð31Þ

FðuÞ=2αu ð32Þ

The Lagrangian L given by Eq. (19) can be obtained from Eqs. (27), (30), (31)
and by integrating the last term in Eq. (19). In this way, we can write the gener-
alized Lagrangian in the form

Lðu, u ̇Þ= e2αu
u2̇

2
+ β −

u3

2α
+

3u2

4α2
−

3u
4α3

+
3
8α4

� �
−

u
2α

+
1
4α2

� �
ð33Þ

The generalized momenta becomes

p=
∂L
∂u ̇

= u ̇e2αu ð34Þ

The generalized Hamiltonian given by Eq. (15) can be written

Hðu, u ̇Þ= e2αx
u2̇

2
+ β

u3

2α
−

3u2

4α2
+

3u
4α3

−
3
8α4

� �
+

u
2α

−
1
4α2

� �
ð35Þ

The generalized Lagrangian given by Eq. (33) and therefore the generalized
Hamiltonian given by Eq. (35) are independent of time, and therefore from
Eqs. (35), (17) and (4) we obtain

e2αu
u2̇

2
+ β

u3

2α
−

3u2

4α2
+

3u
4α3

−
3
8α4

� �
+

u
2α

−
1
4α2

� �
=constant =

= e2αA β
A3

2α
−

3A2

4α2
+

3A
4α3

−
3
8α4

� �
+

A
2α

−
1
4α2

� � ð36Þ
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We rewrite Eq. (36) in the form

R uðtÞ, u ̇ðtÞð Þ= e2αðu−AÞ u2̇

2
+ β

u3

2α
−

3u2

4α2
+

3u
4α3

−
3
8α4

� �
+

u
2α

�
−

−
1
4α2

�
− β

A3

2α
−

3A2

4α2
+

3A
4α3

−
3
8α4

� �
−

A
2α

+
1
2α2

= 0

ð37Þ

Equations (1) and (37) are equivalent because they have the same solutions. For
Eq. (37) we suppose that the solution (6) has the form (s = 5)

uðtÞ=C1 +C2 cosΩt+C3 cos 2Ωt+C4 cos 3Ωt+
+C5 cos 4Ωt+C6 cos 5Ωt

ð38Þ

The action functional (5) is very difficult to solve with the solution (38), but in
this case we use Eq. (37). Substituting Eq. (38) into Eq. (37), we obtain

Rðτ,C1,C2, . . . ,C6,ΩÞ=0 ð39Þ

where τ=Ωt.

4 Numerical Examples

In order to show the validity of the OVM, Eq. (39) has been numerically solved for
the case α = 1/2, β = 1 and A = 1. Making collocation in 7 points for Eq. (39), we
obtain

C1 = − 0.19619;C2 = 1.41281;C3 = − 0.308496;C4 = 0.119584;

C5 = − 0.0363356;C6 = 0.00856476;Ω=1.50999723

and therefore the solution (38) becomes

uðtÞ= − 0.19619+ 1.41281 cosΩt− 0.308496 cos 2Ωt+
+0.119584 cos 3Ωt− 0.0363356 cos 4Ωt+0.00856476 cos 5Ωt

ð40Þ

Figure 1 shows the comparison between the present solution and the numerical
integration results obtained using a fourth-order Runge–Kutta scheme.

222 V. Marinca and N. Herişanu



5 Conclusions

In this paper, an efficient variational approach, called the optimal variational
method (OVM) is employed to propose a new analytic approximate solution for
some nonlinear oscillators with linear and cubic elastic restoring force and quadratic
damping.

Our construction of the variational approach is different from the classical vari-
ational approach especially referring to the involvement of some initially unknown
parameters C1, C2, …, which ensure a fast convergence of the solution. Also, the
generalized Lagrangian and the generalized Hamiltonian are given in a proper
manner. It should be underlined that the form of the generalized Lagrangian (19) is
currently not found in the literature. Moreover, the arbitrary function h from (20) and
the equivalence of the Lagrangians are completing a new approach to Lagrangian
function and variational principle.

Our procedure is valid even if the nonlinear equations do not contain any small
or large parameters. The OVM provides us with a simple and rigorous way to
control and adjust the convergence of a solution through the parameters Ci which
are optimally determined. This version of variational approach proves to be very
rapid, effective, and accurate. We proved this comparing the solution obtained by
the proposed method with the solutions obtained via numerical integration using a
fourth-order Runge–Kutta scheme. Actually, the capital strength of the OVM is its
fast convergence to the exact solution, which proves that this method is very
efficient in practice.
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