
Chapter 8

Molecular Dynamics Simulations

8.1 Molecular Dynamics Simulations in Ionic Systems

8.1.1 Purpose and Goals of the Molecular Dynamics
Simulations

Molecular dynamics (MD) simulations are one of the methods of the computational

science. One can study the structure and dynamics of the system in the computer by

solving the equation of motion. Utilization of MD simulations has spread over

many fields, such as biophysics, drug designs, as well as fundamental research areas

in chemistry and physics. Systems and materials covered include proteins, liquid

crystals, colloidal systems, polymers, glass-forming liquids.

The purpose of the simulation is not necessarily the faithful reproduction of the

real system. Simulation is also used to examine the essential part of the dynamics
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and/or structures of the model, and such a simulation is not required to be fully

realistic. Therefore, it is necessary to understand the possible limitations of the

methods and judging them according to the purpose. As already mentioned, MD

simulations can treat the dynamics, because the equation of motion is numerically

solved. For other properties such as equilibrated structures, the results of MD

simulations are compatible with those by the Monte Carlo (MC) method.

Some of possible purposes, for which MD simulations are favorable or useful,

are given as follows.

1. Simulation can be used to examine some commonly recognized as the essential

parts of the dynamics and/or structures, such as the mechanism of ion diffusion

and conductivity, the glass transition, the mixed alkali effects, the

non-exponentiality and dynamical heterogeneity of the ion dynamics.

2. Simulations can be used for the prediction of the properties of systems not

previously known by experiments. Simulations can provide properties not easily

accessible by experiments such as the spatial information from wave number

(q)-dependence of the intermediate scattering function.

3. Simulations can be used to examine systems under more extreme conditions

including high pressures and high temperatures, which might be difficult to

reach by experiments.

4. Sometimes, real experiments bring environmental pollution by the emission of

heat, effusion of materials, and they might be hazardous. Simulations can

examine the systems without environmental pollution or such danger.

5. Simulations can be used for screening various systems in the search for desired

properties. In such cases, crude levels of the simulations are not necessarily a

drawback, particularly if the time required is short.

6. Simulations can be used to treat changes of properties of systems when the

structure, composition, mass, size, and/or other parameters, is modified.

7. Simulations can be used systematically to design new materials with improved

performance in applications.

8. Of course, simulations can be used for comparison with the results obtained from

experiments, and for validation of predictions from theory. Recently, they are

also used to be a basis of construction and/or refinement of theories and models.

In the field of ionics, they are also applied for understanding dynamics and

structures of new materials as well as composites or functional materials such as

solid state batteries, actuators, and nano-machines in recent works and will be more

applied in future works. It is expected that applicability of MD simulations will

spread over wider fields of both fundamentals and applications.

8.1.2 History of MD Simulations in Ionics

Applications of MD simulations to ionics have a long history, and some early

developments are introduced here. As far as we know, the first MD work for ionic
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system seems to be that by Woodcock in 1971 [1], in which alkali chlorides in the

liquid state are treated by using the empirical potentials by Tosi and Fumi

[2, 3]. Soon after, Rahman et al. [4] examined the structure and motion in liquid

BeF2, LiBeF3 and LiF, assuming purely ionic interactions. It is worth to mention

that the former two systems can be regarded a model of silica and silicate, because

of comparable size ratio of constituent atoms. After these works, vitreous state for

silica was examined by Woodcock et al. [5], where even individual motions of Si

and O atoms were examined. Soules also examined the structure and dynamics of

glasses including silicate [6]. These pioneer works of MD and/or Monte Carlo

Simulation (for example see Ref. [7]) take important roles to understand the

structure and dynamics of ionic systems including those in the glassy states.

Although the formal charge models used in almost of early works can pick up

some essential character of the ionic motion or structures, still they were not good

enough for comparison with experimental ones. A large discrepancy can be found

in formal charge model. For example, the glass transition temperature, Tg, tends to
be extremely different, and/or pressure becomes several orders larger or smaller

than the ambient pressure. Therefore, the history of classical MD simulations is also

a history of developments of reliable potential parameters, when used for compar-

ison with experiments. The system size and time scale covered were limited in early

works due to the limited power of computers. Furthermore, treatment of Coulombic

force needs larger cost of calculation than with repulsive force of short length scale.

As a result, the simulation times of early works on ionic systems were of the order

of several pico seconds and the system size was also small (~several hundreds).

This limitation of size and time scale caused several problems such as undesirable

effect of periodic boundary conditions, insufficient equilibration time and insuffi-

cient sampling of rare events. In spite of such limitations, many new insights had

been brought forth.

Empirical potential model for MD was usually derived from the information on

crystal structures and related information such as compressibility, expansivity,

structure of polymorphs. Although the models enable important tasks to be carried

out by simulations, more realistic potential models have been sought after, since the

quality of the available models was not necessarily good enough for some purposes.

Many researchers have tried the determination of better potential parameters for

different systems. Modeling by ab-initio quantum mechanical potential surfaces

has been used for calculations in physics by several authors. In 1988, the simple pair

additive potential derived from the quantum mechanical calculation was shown to

be effective enough to reproduce polymorphs of silica by Tsuneyuki et al. [8, 9]

(hereafter referred to as TTAM). Effective parameters used to reproduce the several

Mg silicates were also derived by them using the potential energy surfaces of model

clusters of both SiO2 and MgO. Their method for the silicate is applicable only

when the condition qM¼�qO is a good approximation, where q is the charge

number. In 1990, the progress of the modeling methods in mineralogy has been

reviewed by Catlow and Price [10]. Thus far, many MD works have been done for

ionic systems for both molten [11] and glassy states using several kinds of potential

parameters.
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Although alkali silicates are typical glass-forming materials and a study of the

structures and properties is important not only for industrial use but also for the

fundamental understanding of minerals, ceramics and glasses, an adequate potential

model for predicting the unknown properties had not yet been established for a long

time. In 1992, Habasaki and Okada derived parameters for some alkali silicates [12],

which have a different stoichiometry from Mg silicates, based on the ab initio MO

calculation (see Sect. 9.1), by using the method similar to the approach in deriving

TTAM. Because of the additivity of the different atomic species, the parameters are

suitable for the study of the mixed alkali effect as well (see Chap. 10). The effect was

reproduced by MD simulations successfully and jump paths (ion channels) for ionic

motion were visualized for the first time as far as we know [12–14] and elaborated

further in Refs. [15, 16]. Dynamic heterogeneity in the ionically conducting glass is

observed in the motion of Li ions in lithiummetasilicate [17, 18]. (See Sects. 9.5 and

11.5 for details.) This characteristic property is shared by structural relaxation of

glass forming liquids, and the commonality has drawn attentions in the relation with

the mechanism of the glass transition. Nowadays, the potential parameters are

widely used by several other groups [19–22].

MD simulations have been used to examine a variety of nature of ionic systems.

Using small angle X-ray diffraction and MD simulations, Greaves [23] has shown

the clustering of alkalis in mixed alkali disilicate. By Jund et al. [24] and by

Horbach and Kob [25], channel diffusion of sodium in silicate glass and melt was

examined, and the relationship with the mode coupling theory also was discussed

[26, 27]. Details of structures and dynamics are also examined in related systems.

Recently, ionic liquids are actively examined by MD simulations and many com-

mon views with glass forming liquids are reported (see Chap. 11 for details).

With rapid developments of computer and technology for acceleration of calcu-

lations, the classical MD can now cover wider range of materials, compositions,

temperatures, pressures and time scales. In recent years, ab initio molecular orbital

(MO) calculation or calculation by density functional theory (DFT) can be done for

the relatively larger systems [28, 29]. Furthermore, works using ab initio MD went

the dawn, although some cautions might be necessary for the treatment of it,

especially for the case of the slow dynamics as discussed in the next section.

Using ab initio MD methods, Tilocca [29] has examined the phosphosilicate

glass, which is bioactive material. Recently, Payal and Balasubramanian [30] have

performed the ab initio MD of dissolution of cellulose in ionic liquids. Such works

will increase the importance and reliability with further development of computer

technology in enabling the larger size and longer time scale calculations.

8.2 Methods in Molecular Dynamics Simulations

Nowadays, many MD programs are available and researchers are not necessarily to

be programmers themselves. However, the contents of programs aimed for general

purposes tend to be too complicated and often they seem to be a black box. In this
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section, the essence of methods used in the molecular dynamics simulation is

explained, enabling the reader to understand the outline of it, and what is done in

the programs. Our attention is mainly focused on the treatment of ionic systems by

classical MD. In Chap. 12, practical introduction for MD simulations is given with

some examples of the treatments of MD data.

For planning research using MD, the researcher is recommended to consider

the characteristics of the problem to be examined as well as requirements of system

size and time scale carefully. Then one can choose the most suitable method within

the available resources, because classical and ab-initio methods as well as other

methods all have their own advantage and limitation. Although needless to say, for

a meaningful comparison of methods, reasonable choices of initial configurations,

equilibration, suitable choice of conditions such as cooling schedules as well as

good statistics are required. Therefore careful judgment for the usefulness and

limitations of them is required. Even in the classical method, the covered space

and time region might not be large enough, and consequently the results are

problematic in such cases. This problem appears remarkably in ab initio MD,

which requires larger calculation cost and also the “real time” required for the

calculations. The problem will be discussed in the following section.

8.2.1 Classical and Ab Initio Methods

Here we compare classical and ab initio methods in the study of ionics briefly,

although mainly the former method is treated in the present book. In classical MD

simulations, equations of motion are solved numerically, based on a given potential

model. When large scale simulations of long time are necessary, classical MD using

empirical force field or effective force field derived from the ab initio molecular

orbital calculation or density functional calculations are the practice because of

lower calculation costs and time. For realistic simulations comparable to experi-

ment, potential parameters with good quality are required; however, researchers of

classical MD often encounter a problem of “missing parameters”. Situation

becomes worse in the complex systems with many interactions. In such works, it

is difficult to find out suitable parameters and their combinations for the system to

be examined. Although there are several approaches to treat general parameters

and/or combination rules, careful judgement for the quality of the potential model

is necessary. In such cases, derivation of suitable parameters for each problem is

expected. Thus, in the classical MD simulations or hybrids of quantum and classical

methods, one needs to critically examine the quality of the potential parameters,

and the functions used, as well other conditions. Of course, more realistic simula-

tions are better for some purposes. Ab initio MDmethods such as the Car-Parrinello

(C-P) methods [2] are contributing to recent developments of the computational

science. In C-P, electrostatic states of the system are calculated using the

density functional theory (DFT) with solving the equation of motions, at the same

time. The method is particularly applicable if there are the time dependent changes
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of electronic states during the simulation as in the case of occurring chemical

reaction. It is useful to examine the structures and dynamics in details, provided

suitable conditions are fulfilled. Considering above situation, one may consider that

the ab initio method is always the best choice. However, tractable ab initio methods

have serious limitation in the following situations. In the case of ion dynamics in

ionically conducting in molten and glassy states or in ionic liquids, dynamics

observed are slow, similar to the super cooled liquids near the glass transition

temperature [31], and therefore long time simulations as well as large size are

required. Unfortunately, it is not easy to perform ab initio MD in suitable condi-

tions, because of huge calculation resources and time required. For example,

activation energy obtained from the short time ab initio MD seems to be used as

a guide of material designs such as lithium batteries [32]. Although such

approaches are useful, one should note that the obtained short time activation

energy is for each jump motion and is not the same as that for diffusion (and/or

conduction) of long time scale (see Sect. 9.4.2), in the case of densely packed

materials such as supercooled liquids, crystals and glasses. That is, long time scale

is required to examine transport properties in low temperature regions or in high

pressure regions. In recent works in ab initio MD, typically system containing tens

to hundreds particles during several ps ~ several tens of ps are examined.

In contrast, in classical MD simulations of ionic systems, typically several

thousand ~ several tens of thousands particles during ns ~ several tens of ns are

examined. This situation of ab initio MD is similar to that in the beginning of the

classical MD, where many problems were found due to the limited system sizes and

the limited simulation time. Because of such limitations of ab-initioMD, the result

obtained for slow dynamics in some systems may not be reliable, although chal-

lenges to larger system and longer time scale are continuing. The difference of

several orders of magnitude in time scales and system size of the two methods are

non-negligible and it will not be removed easily even by the further development of

the computational technology. Nowadays, such limitation of ab initio MD seems to

begin to be recognized well and many kinds of hybrid methods or combinations of

methods tend to be used for each targeted problem. For the treatment of slow

dynamics, classical MD simulation using the potential (force field) based on the ab

initio MO calculation or DFT is a one of the suitable approaches for covering longer

time region and larger system size with a relatively low cost. Our and related works

using the approach will be explained in the Chaps. 9–11. When the potential curves

or surfaces are not time dependent, classical MD simulations using reliable poten-

tial are good enough to examine the structure and dynamics of systems. Thus when

applied to model systems, this method is capable of generating a “computational

experiment” to uncover the principles of structure formation and/or the mechanism

of the dynamics under well controlled conditions. In the studies of ionics in glasses

[33–35] and ionic liquids [36], comparisons of ab initio and classical methods are

reported. Pópolo et al. have argued that the local structure around the cation

obtained from ab initio MD in dimethyl imidazolium chloride [DMIM][Cl] shows

significant differences compared to both the classical calculations and the neutron

results [36]. The author suggests ways in which the classical potentials may be
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improved. Recently, Carré et al. [37] derived the effective potential for silica based

on the C-P MD [38] amenable for the larger and longer scale simulations. On the

other hand, classical MD can also provide initial configurations for ab initio MD

simulations, MO and DFT calculations, after long time equilibration. In this sense,

both methods are complementally each other. Other approaches to cover the long

time and large system size are also in progress. In the case of ionic liquids which

have inner structures, coarse-grained models [39, 40] are the possible choices to

extract the essential part of the structure or dynamics besides the fully atomistic

simulations.

8.2.2 Models Used in MD Simulations

Potential functions and their parameters are the main “input” of the MD simulation,

which determine the characteristics of the system. Here typical models used in the

classical MD are summarized. Several functional forms of potential (force field) are

used for MD simulation. Soft-sphere and Lennard-Jones are frequently used as

model systems for examining liquids, crystals and glasses including the problem of

the glass transition. They are also used as a part of ionic models having more

complicated form. For the simulation of realistic systems, unknown parameters can

be determined from the experimental data such as expansibility, compressibility,

structures and/or from quantum mechanical methods.

8.2.2.1 Soft-Sphere Model

The model consists of the repulsive term in the following form [41–47] is tradi-

tionally called as soft-core (SC) model.

φij ¼ ε
σ
rij

� �n

; ð8:1Þ

where the rij is the distance between particle i and j. The parameter ε, and σ
determine the depth and the size of the potential well, respectively. The

reduced units are often used for describing general properties and for

comparison with results. For example, the reduced unit of length, l (¼ (V/N)1/3),

and time τ (¼l(m/ε)1/2(l/σ)n/2) are used, so that the equation of the motion becomes

simple. Here V, N and m stand for system volume, total number and mass of

particle, respectively.

Recently, this functional (inverse power law) form is considered as a basis for

understanding the thermodynamic scaling (TVγ scaling) of dynamical properties

known for many systems including ionic liquids [48] and ionically conducting

systems and importance of the model seems to be increasing (see Chap. 7). In the
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scaling law for the inverse power law (SC) potential, exponent n in Eq. (8.1) is

connected to γ value of the system.

The SC system satisfies “dynamical scaling law” [44, 45], which is an extension

of the scaling law of the hard sphere (HS) system. For the HS system, one considers

N hard spheres of radius σ in the box of volume V (¼L3) and starts to move with

given initial coordinates and velocities. If the initial coordinates, velocities, L, and σ
are multiplied by a constant C (>0), the trajectory in the configuration space of 3N
dimension is similar to that of the original one. If only the initial velocities are

multiplied by C, the trajectory is unchanged through time intervals between colli-

sions and is reduced by the factor of 1/C. This is the dynamical scaling law of the

HS system. In a similar manner, in the SC model, dynamic scaling law holds

exactly and even a non-equilibrium relaxation can be represented by analytical

expression.

In experiments, going back to the early days, several one component systems

such as glycerol and/or ethanol are known to be excellent glass formers [49–51] and

the simplicity of the one component system was recognized in the study of the glass

transition problem. However, in early MD works around 1970, one-component SC

system was found to crystallize within a short run, and hence binary system tends to

be used for the study of glass transition [52–54]. In spite of this historical situation,

one-component SC system can be a good model to study glass transition due to its

simple theoretical treatment, if the crystallization is suppressed. Fortunately, when

the system size is large enough (>500), the crystallization seem to be suppressed at

long time and almost systems become metastable ones after non-equilibrium

relaxation [45]. Actually, in many runs in the system larger than 2000 particles,

one-component SC model with n¼ 12 shows non-equilibrium relaxation towards

metastable states (called as a glass branch), which can be regarded as the (stabi-

lized) glassy states, from both structural [45] and thermodynamical [46] properties.

In the metastable glassy state, different local structures (face-centered cubic (fcc)

like and body-centered cubic (bcc) like) are found to be mixing. Because of the

mixing of different local structures, disordered structures can be formed without

introducing different kinds of particles to form binary systems. Thus the glass

transition can be mapped on a phase-diagram using the compressibility factor

plotted against reduced density. When the system is rapidly quenched along the

liquid branch of the phase-diagram, the system tends to be trapped on the midway

towards the glass branch.

Recently, several one component systems including the ones with special types

of potential functions are examined to understand the glass transition [55, 56].

8.2.2.2 The Lennard-Jones Model

The Lennard-Jones (LJ) model [57] has the following form.
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ϕ rij
� � ¼ 4ε

σij
rij

� �12

� σij
rij

� �6
" #

; ð8:2Þ

The function becomes 0 at rij ¼ σ and the minimum is observed at rij ¼
ffiffiffi
26

p
σ, where

the function becomes �ε. The former is regarded as the size of the particle, and

therefore, σ is used as a unit of length r.

The parameters for argon, σ¼ 3.405 Å and ε/kB¼ 119.8 K, where kB is the

Boltzmann constant, have been used in many theoretical works [58]. Several new

parameters are proposed for argon (or other materials). The values σ¼ 3.345 Å and

ε/kB¼ 125.7 K bring a better agreement between theory and experiment for ther-

modynamic behaviors of the system [59]

Generalized forms of LJ model [60, 61] consists of repulsive and attractive terms,

ϕ rij
� � ¼ 4ε

σij
rij

� �n

� σij
rij

� �m� �
ð8:3Þ

with powers n and m replacing the 12 and 6 respectively are also used in recent

studies of the dynamics of glass-formers.

Binary LJ System

In recent years, starting from the study by Kob and Andersen, binary systems of LJ

systems have been used as a model system exhibiting the glass transition and there

are accumulated numbers of MD works based on these systems [62–65]. Bordat

et al. have compared three different interaction models [63, 64], where the struc-

tures and dynamics of the system composed of 1500 particles (1200 for species A

and 300 for species B) are discussed related to the glass transition problem. General

forms of the binary LJ used in their work are represented by

V rð Þ ¼ E0

q� pð Þ p
r0
r

	 
q
� q

r0
r

	 
ph i
; ð8:4Þ

where E0 and r0 are respectively a parameter for energy depth and position of the

minimum of the potential well. In the model I, q¼ 12 and p¼ 11. In the model III,

q¼ 8 and p¼ 5. The parameters for q¼ 12 and p¼ 6 for model II corresponds to the

Kob-Anderson model [62], which has been extensively examined as a model of

glass transition (see Table 8.1).

The anharmonicity of the potential for A-A interaction is increasing in the order

of I (12-11), II (12-6) and III (8-5). The ‘fragility’ obtained from several methods

is increasing in order of I, II and III. It parallels to the change of stretching exponent

β of I, II and III, which are 0.69, 0.65 and 0.60, respectively. That is, the capacity of
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intermolecular coupling and anharmonicity of the potential has the effect in

increasing fragility and the non-exponentially parameter (1�β), which is the

same as the coupling parameter, n, in the coupling model.

Even for the binary LJ systems, one may expect the existence of some mixing

effect for the dynamics and structures. This is because the glassy system like

silicates shows a large non-linear change of the dynamics by mixing of different

kind of alkali ions, known to be “mixed alkali effect” (see Sect. 4.8 and Chap. 10).

In this case, it was well established that the mixing of different sizes of alkali metal

ions causes the mutual interception of jump paths in a certain time scale and

suppression of the cooperative motion which enhances the effect [65]. For example,

in the case of lithium potassium silicates, mutual interception means that the Li ion

cannot enter the site previously occupied by K ion, while K ion cannot enter the site

previously occupied by Li ion. Similar situations are found in the generalized LJ

mixtures [66, 67]. The ionic liquids also can be regarded as the binary system of

cation and anion. Comparison of generalized binary Lennard-Jones (LJ) systems

with different potential parameters is helpful to understand the dynamics of ionic

liquids, especially for the physical meaning of the coupling of the anion and cation

or the role of charges [31].

Other functional forms used in inorganic materials especially for Ionics will be

introduced hereafter.

8.2.2.3 Huggins-Mayer Potential

Fumi and Tosi [3, 68] developed potential parameters for alkali halide such as

NaCl, by fitting the Huggins-Mayer dispersive energy to crystallographic data. The

function form is as follows.

φ rij
� � ¼ Aije

�rij
σij � Cij

r6ij
� Dij

r8ij
þ qiqj
4πε0 rij

; ð8:5Þ

where the exponential term is for repulsive interaction, while inverse power-law

terms represent the attractive interaction. Aij is called the Pauling factor, defined by

1þZi/niþZj/nj, where ni is number of electron of the most outer shell of the ion i

and Zi is for electric charge on species i. The second and third term is for dipole-

dipole and dipole-quadrupole interactions, respectively. The fourth term for the

right hand side is for Coulombic interaction term with charges q.

Table 8.1 Parameters of the Lennard-Jones potentials in the Kob-Andersen model, where

(σ ¼ r0
21=6

) in Eq. (8.4)

Interaction A-A B-B A-B

E0 1.0 0.5 1.5

σ 1.0 0.88 0.8
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Several functional forms for ionic systems are suggested so far, and both

empirical and ab initio based potential parameters are developed.

8.2.2.4 Born-Mayer-Huggins Potential

The following similar in form to the previous one is called as Born-Myer-Huggins

model.

φ rij
� � ¼ Aije

σiþσj�rij
ρ � Cij

r6ij
� Dij

r8ij
þ qiqj
4πε0rij

ð8:6Þ

The first term on the right-hand side represents the Born-Myer repulsive term. The

value of r represents the distance between atoms, and σi is a size of i ion. Here, ρ is
the softness parameter.

8.2.2.5 Gilbert-Ida Type Potential

Gilbert-Ida type [69, 70] repulsive potential combined with Coulombic force has been

successfully used for silica [8] and lithium, sodium and potassium silicates

[12]. It is given by

ϕ rij
� � ¼ qiqj

rij
þ f 0 bi þ bj

� �
exp

ai þ aj � rij
bi þ bj

� �
� cicjrij

�6 ð8:7Þ

The first term on the right-hand side represents the Coulombic interaction. The

value of rij (Å) represents the distance between atoms, and ai (Å) and bi (Å) are the
effective radius and the softness parameter, respectively, of atom i. the value f0 is a

constant (¼1 kcal mol�1 Å�1). The parameters cicj (kcal Å
6 mol�1) are for the

correction of the curvature for the interaction of pairs including oxygen atom, and

therefore may be treated as a part of repulsive potential term. Units in the function

are as in original papers [8, 12], to avoid the loss of numerical accuracy by changing

units. This potential form is additive for pair as well as atomic species. The latter

property enables us to treat the mixed alkali system while keeping consistency with

the single alkali systems. Therefore it is useful to study the “mixed alkali effect”

(see Chap. 10). Examples of MD simulations of silicate crystals and glasses using

this kind of potential will be shown in Chap. 9.

8.2.2.6 Potential Including Inner Structures

The following potential forms for representing both intermolecular and intramo-

lecular interactions are frequently used for organic systems as well as ionic liquids

[31, 71–73].
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U Rð Þ ¼
X
bonds

Kr r � req
� �2 þ X

angles

Kθ θ � θeq
� �2 þ X

dihedrals

Vn

2
1þ cos nϕ� γ½ �ð Þ

þ
Xatoms

i<j

Aij

R12
ij

� Bij

R6
ij

 !
þ
Xatoms

i<j

qiqj
εRij

ð8:8Þ

The model uses a sum of bond, angle, and dihedral deformation energies, a pairwise

standard (6,12) Lennard-Jones potential, and Coulombic interactions between

atoms with charges qi and qj.
Our and related works for ionic liquids using MD simulations are shown in

Chap. 11.

8.2.2.7 Reactive Force Field

Reactive force fields, such as ReaxFF, have been used in several related works

[74, 75], where the charge on the atom changes with the position. Such approaches

will be useful in the investigation of the details of reactions on the surfaces of

colloids, gels or related systems.

OtherMO or DFT based potential model may be applicable for representing bond

breaking of reconnection even if the charge seems to be fixed in the simulation.

Actually, Habasaki and Ishikawa have observed that the clusters or gels can be

formed in silica colloid-water-salt system [76] using the silica model by Tsuneyuki

et al. [8] with a fixed charge. This is because the charge is fixed in the fitted

parameters but not in the quantum mechanical calculations used for derivation of

it. Therefore the model allows reconstruction of bonds.

8.2.2.8 Other Models

Models for Water

Many kinds of water model such as SPC, SPC/E [77, 78], TIPS3P, TIPS4P, TIPS5P

[79, 80] are proposed so far. Comparison of some properties among different water

models was reported in Refs. [81, 82]. Each model has both drawback and advan-

tage and therefore researcher should select suitable one by any particular purpose.

It may be useful for the researchers of glasses to mention that the structure and

phase diagram of water is analogous to the silica due to network formation by

hydrogen bonds in many points. Therefore, comparison of related systems will be

useful for studies in both research fields.

366 8 Molecular Dynamics Simulations

http://dx.doi.org/10.1007/978-3-319-42391-3_11


8.2.3 Units Used in MD and Combination of Potential
Models

It is recommended to use International System of Units (SI) in many fields;

however, potential parameters or functions for MD simulations found in literatures

are not necessarily given in SI. This is probably because values used in SI are not

always appropriate for numerical treatments in order of magnitude. Many different

units appear in MD programs and papers. Furthermore, reduced units are also used

by physical reasons. Therefore, careful treatment of units is necessary. Because

simulated systems are sensitive for the given potential parameters, it is better to

avoid repeating conversions of units to keep numerical accuracy.

Quality of the potential parameters (for example, the size of the basis set used for

derivation if it were based on ab initio MO calculation) should be good enough and

comparable when one uses the combination of parameters taken from different

sources. Sometimes, one may encounter the difficulty to combine the parameters

because of different potential forms. In some cases, it is possible to change from one

to the other. Gilbert-Ida type parameters can be easily changed to the Born-Mayer-

Huggins form, although the merit of the additivity of the parameters is lost. The

parameters in LJ form can be changed into those for Gilbert-Ida type, by a

requirement of having the same energy minimum separation, depth and the same

behavior for the large r region [83].

In treatment of ionic system (similar situation may happen in other systems),

careful treatment of the term “mole” is required. For example, the system “Li2SiO3”

is the same composition as “xLi2O-(1�x)SiO2” with x¼ 0.5. The former expression

may be used to compare the different phases such as glass and crystal. The latter

expression is often used for glasses to include composition dependence of the

system. However, the system energy “per mole” for these system becomes different

due to the different definition of “mole”, because it is defined by the weight

(represented by grams) of the Avogadro numbers of “specified groups of particles”.

In an MD program, the former expression may be chosen for mole because the

smallest number of species (Si in this case) being an integer is preferred. In a certain

MD program, ions included in a basic MD cell seem to be used as a group to define

“mole”. In ionic liquids, ion pair seems to be used as the group by many researches

at least for simple systems. For comparison of works, it may be necessary to

mention what unit is chosen for the definition of “mole” or changing the units to

adjust it to conventional ones.

8.2.4 Solving the Equation of Motion

In principle, MD simulations describe the motions of particles (ions or atoms) by

solving the equation of the motion. That is, the position of the particle is predicted

from the previous and present ones by adding the forces acting from other particles.
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In the case of classical MD, it would not be an exaggeration to say that potential

functions and its parameters (force fields) determine the fate of the particles, if other

conditions are reasonably selected.

The equation of the motion for i-th numbered particle can be written as,

d2ri
dt2

¼ Fi

m
, i ¼ 1, 2, . . .N ð8:9Þ

8.2.4.1 Algorithm

In classical MD simulations, the equation of the motion is solved numerically. In

other words, the next position of i-th particle is calculated based on the position at

t and that of one or several steps before. Several algorithms to solve the equation of

motions have so far been proposed. Here we explain the Verlet algorithm [84],

which is simple and known to be symplectic [85, 86]. This method is suitable for

calculation of motion including sudden changes of displacements (jumps or hops)

found in melts and glasses, because it is not affected by the information of many

steps before. The Gear’s method, which is one of predictor-corrector methods with

several steps, is also used for MD simulation [87]. In this case, slow dynamics by

jump motions might be affected by the several steps before the motions. In other

words, the method is not necessarily suitable when the sudden change occurs in the

system. Although the method is known to be accurate in other cases and useful at

least for a short time scale, drift of the motion might be non-negligible during long

runs because of its non-symplectic nature.

In the Verlet method, the positions of i-th particle after Δt and that before Δt are

ri tþ Δtð Þ ¼ ri tð Þ þ Δtr
•
i tð Þ þ Δtð Þ2

2

Fi tð Þ
m

þ O Δtð Þ3
	 


ð8:10Þ

ri t� Δtð Þ ¼ ri tð Þ � Δtr
•
i tð Þ þ Δtð Þ2

2

Fi tð Þ
m

þ O Δtð Þ3
	 


: ð8:11Þ

From the sum of Eqs. (8.10) and (8.11), one can obtain the following relation.

ri tþ Δtð Þ þ ri t� Δtð Þ ¼ 2ri tð Þ þ Δtð Þ2 Fi tð Þ
m

þ O Δtð Þ4
	 


; ð8:12Þ

On the other hand, from the difference of Eqs. (8.10) and (8.11), one can obtain the

following equation,

ri tþ Δtð Þ � ri t� Δtð Þ ¼ 2Δtr
•

i tð Þ þ O Δtð Þ3
	 


; ð8:13Þ

368 8 Molecular Dynamics Simulations



That is, new position is,

ri tþ Δtð Þ ¼ 2ri tð Þ � ri t� Δtð Þ þ Δtð Þ2 Fi tð Þ
m

þ O Δtð Þ4
	 


; ð8:14Þ

and a new velocity is,

r
•

i tð Þ ¼
1

2Δt
ri tþ Δtð Þ � ri t� Δtð Þf g þ O Δtð Þ2

	 

; ð8:15Þ

A numerical error in solving equation of motion thus depends on the time of each

step, Δt.

8.2.4.2 Periodic Boundary Conditions (PBC)

Periodic boundary condition (PBC) is frequently used in typical MD simulations of

bulk systems. Schematic description of the periodic boundary conditions used in the

simulations is shown in Fig. 8.1, where the basic cell containing particles is

surrounded by the periodically repeating image cells infinitively.

The figure is for the two dimensional case; however, similar conditions are also

used for three dimensional cases. (One should be careful to use 2D system for

comparison with experiments except for a special purpose, because motions of

atoms might be affected by the dimensionality of the space.) For a particle within

Fig. 8.1 Schematic

description of the periodic

boundary conditions used in

the simulation. Image cells

continue infinitively. When

a particle moves out the

basic cell of the MD

simulation, another particle

moves in from the image

cell as shown by orange
arrows
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the basic cell, interactions from particles within the sphere with a certain cutoff

length (typically chosen to be L/2, where L is a length of basic cell) are taken into

account including ghost particles (images of the same particle found in the basic

cell) in image cells.

By this treatment, we have the following benefit.

1. Properties of the bulk can be simulated by the limited number of particles. That

is, effect of the surface can be removed.

2. If the particle moved beyond the boundary, the ghost particle comes into the

basic cell. Therefore, in the case of constant number simulations such as NVE or

NPT ensembles, the number of the particles is kept constant.

3. The periodicity like crystals makes it possible to calculate the long ranged

Coulombic force using the Ewald method or related ones, even in the case of

liquid or glasses. In many cases, minimum image (within 2/L ) is used for

calculation of short range forces (and for real part of the Ewald summation

explained later).

Following characteristics of the system should be kept in mind when one uses

PBC. Even when we considered the infinitive system using PBC, the wave number

accessible by the simulation is limited by the size of the simulation box. Further-

more, when one considered the motion of particle in the system with PBC, it is

repeated as well and some artificial waves or vibrations in the particle motions will

be formed. If the system size is too small, the particle might be affected by its own

ghost in an image cell, which is moving in the same directions. Especially in the

case of crystals, basic box of the MD is formed by several repeating basic lattices of

the crystal and therefore the number of repetition of them in each axis direction will

affect the periodicity of the motions. To reduce such effects, the system size used

has to be large enough to the possible extent while ensuring the practical usability.

It is useful to change the system size to check the effect.

For the study of glasses, further caution is required to avoid crystallization in the

system. If only a small number of particles were contained in each basic box of the

simulation, system may easily crystallize and/or behaves like crystals because of

PBC. In the case of network glasses, long ranged oscillation tends to be formed and

continued by PBC.

8.2.5 Treatment of Coulombic Force

Coulombic force is a long ranged force and has essential importance to consider in

the ionic systems. The repulsive force is usually a short ranged force, and for it in

MD simulations, using a certain cutoff length is a reasonable choice. Corrections by

shifted force can also be used. The cutoff length should be chosen, so that the wave

like structures of g(r) for ion-ion converge (typically 8–15 Å). When the ion
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(molecule or residue) has an inner structure, the distance among the center of unit

structures can be considered as that for ionic structures.

As well known, the Madelung energy of simple crystal is represented as

EMadelung ¼ �Nα 0Z2e2=r0, ð8:16Þ

where α’ is known to be Madelung constant [88]. The system energy is affected

from the ions located at long distances. For isolated system such as small clusters or

nano-crystals, one can use the direct sum or multipole expansion [89] of it.

If parameters and functions are given in SI, the Coulomb’s constant is defined
and given by k ¼ 1= 4πε0εð Þ, where the constant ε0 is the permittivity of free space

and ε is a relative permittivity for the material concerned. The Coulombic potential

formed by N ions around an ion is given by

ϕ rð Þ ¼ 1

4πε0

XN
n¼1

qn
r � rnj j: ð8:17Þ

Convergence of the long range force for the Coulombic term needs a large cost in

calculation. The calculation cost of direct sum of N particle is N(N�1) when all

combinations are counted, and is of the order of N2 (i.e. O(N2)). Order of N2 means

that, if the system size (particle number within the basic cell) is 100 times larger, the

calculation cost is 10,000 times larger.

Coulombic force is treated by several methods in MD simulations as shown

below.

8.2.5.1 The Ewald Method

The Ewald method [90–92] is a standard method for calculation of Coulombic term

used in the MD simulations, which mimics the periodicity of the crystal structure by

using a PBC of the MD cells. Many methods to reduce the cost have been developed

and still are developing. Recently, particle-particle-particle-mesh (P3M) Ewald

[93, 94], particle mesh Ewald method (PME) [95], and multipole expansion method

are also used. These methods will be explained in the following subsections.

In MD simulations of bulk system, all forces from the particles in the basic cell

and those from image cells at infinitive distances are taken into account to eliminate

surface effects. The Ewald method is applicable to both crystalline and

non-crystalline materials such as liquids, super-cooled liquids and glasses. In

non-crystalline systems, the method is used with the periodic boundary conditions

(PBCs), where the system has a periodic charge distribution similar to crystals.

With this condition, Coulombic potential of the system is represented by
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φC ¼ 1

2

X
n

X
i

X
j

0 QiQj

4πε0

1

jri � rj þ Lnj , ð8:18Þ

where L is a vector to represent the size of basic cell of MD simulations and n is a

vector consists of integers such as (1,1,1) to represent the image cells.

The summation for n is taken to consider the contribution of all image cells. The

vector (0,0,0) mean a basic cell for the simulation and the term (i¼ j) in the cell is

excluded and this restriction is represented by Σ0 in the summation.

The Ewald method takes into account infinitive numbers of ions using PBC

without considering all image cells in the real space. In the method, Coulombic

potential is separated into three parts, which is the real, the reciprocal and a constant

(self) part as shown in the following equation.

φC ¼ φreal þ φrecip � φself : ð8:19Þ

The First Term of the Ewald Method, φreal

Here we considered the j point charges around an ion “i”. The first term φreal is the

sum of the real part for point charges around an “i” ion and the Gaussian distribu-

tions having the opposite sign for the system. The term for the real space is given by

φreal ¼
1

2

X
i

X
j

0 QiQj

4πε0

erfc
�
α ri � rj

�����
ri � rj

���� : ð8:20Þ

Here the summation is taken for the sphere within a cut-off length, typically

radius of L/2 from “i” particles, and not for all image cells. In the expression

for φreal, “erfc()” stands for the complementary error function defined by,

erfc xð Þ ¼ 1� erf xð Þ ¼ 2ffiffiffi
π

p
ð1
x

e�t2dt ð8:21Þ

The term α in the expression is a setting parameter to determine the shape of the

Gaussian distribution of the charge and also determines convergence of the term.

The Second Part of the Ewald Summation, φrecip

A part not sufficiently taken into consideration in real space is compensated by the

reciprocal lattice term φrecip, which includes the Gaussian distributions having the

same sign as the point charges considered, and is given by
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φrecip ¼
2π

V

X
G 6¼0

exp � G

���� 2

4α2

� �
G
���� 2

X
i

X
j

QiQj

4πε0
cos G � ri � rj

� ��  ð8:22Þ

Here G is a reciprocal lattice vectors. This summation can be done for one half of

the vectors, because terms (h, k, l) and (�h,�k,�l ) in the reciprocal space have the
same values. The Gaussian distribution introduced guarantees the convergence of

the summation in the reciprocal lattice vectors.

The Third Term of the Ewald Summation, φself

In the reciprocal term, φself, extra electrostatic potential by the ion “i” having a

Gaussian distribution is included and the following term should be subtracted off.

φself ¼
X
i

QiQi

4πε0

αffiffiffi
π

p ; ð8:23Þ

Setting of the Ewald Method

The error in the Ewald summation is determined by the choice of α and L values.

The optimal choice can be done by several methods [96]. For example, when

L ~ 20 Å is used, 125 vectors are necessary to carried out the simulation with a

tolerance of 10�5 in the energy of the Ewald sum. In several software of MD, the

combination can be selected automatically or set by the choice of a value of

tolerance.

The reciprocal lattice term has the factor 1/|G|2, which diverges at G¼ 0. To

avoid the divergence of the second term, G¼ 0 is omitted and this procedure is

justified by the condition of the charge neutrality of the system. Thereby the method

does not hold exactly in system with defects. It may be better to consider the charge

redistribution to fulfill the neutrality in such a case, or to use other method such as

the multipole expansion.

8.2.5.2 Particle Mesh Ewald (PME) and Particle-Particle-Particle-

Mesh (P3M) Ewald Method

Instead of the Ewald method with the O(N3/2) character [90, 92], particle-particle-

particle-mesh (P3M) method was developed as the O(N ) method [93, 94]. In the

case of P3M, interaction of short length is treated by particle-particle, while the long

ranged interaction was treated by particle-mesh interaction. To obtain the O(N )
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condition in this method, real space region is more limited than the optimized one

for the Ewald summation, and the calculation times of real space and reciprocal

space are set to be comparable. Particle-Mesh Ewald [95], which is an O(NlogN)
method, is a special case of P3M method, although it was independently developed.

8.2.6 Multipole Expansion and Tree Method

Usually, the force from particles located at the long distance is weak. One of the

possible ways to reduce the calculation cost is to handle some numbers of particles

together. The group can be represented by the sum of multi-poles. To distinguish

the distant particles from the particles close by, the “tree method” has been

proposed. The “multipole method” with a multipole expansion is typically used

with the “tree method” or “hierarchy tree method” [97–99, 100], which can separate

groups by a distance effectively, without calculating the distance among particles.

For example, the “Quad tree code” (for 2D case) repeats the division of the system

into four until each region contains less than a certain number of particles (0 or 1)

(see Fig. 8.2). “Oct tree code” is for the case of 3D.

If both the particles acting and those being affected on are treated as groups, it

is called “fast multipole method (FMM)” and is shown to be an O(N ) method.

The method using multipoles is effective for extremely large system and also for the

system without a periodic boundary, since one can consider the force acting from

the sub-regions or grids (cells) of the system instead of individual particles. Now we

considered a case of interaction from M particles in a sub-region to the outer point

Fig. 8.2 Schematic

description of the “Quadtree

code” for the 2D structure,

which can separate group of

particles without calculating

the distance
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P to understand the merit of using multipoles. Here the center of the cell is

represented as rc and the relative positions of particles k (k¼ 1, 2----M) to the center

are taken as rk. A Coulombic potential formed at the point P is represented as,

φC rð Þ ¼
XM

k¼1
φC rk�Rj jð Þ ¼

XM

k¼1

qk
rk�Rj j; ð8:24Þ

The vector R is a relative position of P from the center of the sub-region and qk is a
point charge. At the arbitrary chosen position r, the potential function can be

approximately represented as follows.

φC rð Þ ¼ Z

R
þ μαRα

R3
þ QαβRαRβ

R5
þ � � �; ð8:25Þ

In the right hand side of the equation, Z is a sum of charge within a grid, Z ¼
X
k

qk,

μα is a dipole moment, μα ¼
X
k

qkrkα, and Qαβ. is a quadrupole, given by Qαβ¼X
k

qk
m
2

3rkα � δαβr2k
� �� 

.

The strength of the charge decreases with 1/r, while that of dipolar decreases ~1/r2

and so on. In this expression, μαRα is for a sum of α¼ x,y,z; while rkα is a α¼ x,y,z
component of vector rk. This treatment, which dividing the basic cell into sub-regions,

is also useful for the parallel computing.

8.2.7 General Description of the Multipole Expansion

One can represent any charge distribution by using multipole expansion and this

kind of treatment is also applicable for 1/rm type potentials besides the Coulombic

term. Therefore, more general treatment using spherical harmonics [101] will be

useful in some situations. Outside of the ionic system, one assumes that the

electrostatic potential ϕ(r) satisfies the following Laplace equation,

∇2ϕ rð Þ ¼ 0 ð8:26Þ

Under the condition that “at the long r limit, φ(r) becomes 0”, the solution of the

equation can be expanded as follows.

ϕ rð Þ ¼ 1

4πε0

X1
l¼0

Xl
m¼�l

4π

2lþ 1
qlm

Ylm θ;φð Þ
rlþ1

ð8:27Þ

Here the terms Ylm(θ,φ) are the spherical harmonics (i.e., the angular part of the

solution). One may be familiar with the graphical representation of the spherical
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harmonics, because it is frequently used to represent the shape of orbital of

electrons such as π-orbitals or d-orbitals. For example, one can see the shape of

the spherical harmonics. [For example, see Wolfram Demonstration Project, Spher-

ical Harmonics, http://demonstrations.wolfram.com/SphericalHarmonics/ (The

address was confirmed to be valid on 14th Feb., 2016.)]. The function is also

used to characterize structures of bond ordering, local or intermediate structures

in super-cooled liquids, glasses or crystals [66, 102].

The Eq. (8.27) as well as (8.25) is called a multipole expansion of the electro-

static potentials, where the qlm is a multipole moment, which is related to the

distribution of the density ρ(x’) as shown in,

qlm ¼
ð
Ω
Y*
lm θ0,ϕ0ð Þr0lρ r0ð Þdr0: ð8:28Þ

When the total charge is denoted by q and the dipole moment is denoted by

p ¼
ð
Ω

x0ρ x0ð Þdx0, then the following relations are obtained.

q00 ¼
1ffiffiffiffiffi
4π

p
ð
Ω

ρ x0ð Þdx0 ¼ qffiffiffiffiffi
4π

p ð8:29Þ

ql,�1 ¼ �
ffiffiffiffiffi
3

8π

r ð
Ω

x0 � iy0ð Þρ x0ð Þdx ¼ �
ffiffiffiffiffi
3

8π

r
px � ipy
� � ð8:30Þ

ql0 ¼
ffiffiffiffiffi
3

4π

r ð
Ω

z0ρ x0ð Þdx ¼
ffiffiffiffiffi
3

4π

r
pz ð8:31Þ

Here l¼ 0 is for point charge (m¼ 0), l¼ 1 is for dipole moment(m¼�1, 0, 1),

l¼ 2 corresponds to quadrupole (m¼�2, �1, 0, 1, 2), and l¼ 3 corresponds to

8-pole moment and so on. The concept of multipoles is useful not only for

calculations of Coulombic terms during simulation but also for understanding the

force affecting the ions.

8.2.8 Multipoles as an Origin of Nearly Constant Loss (NCL)
of Caged Ion Dynamics

Usually, interaction of neighboring ions or atoms is directly summed up in MD;

however, it is possible to consider the multipole expansion of interaction from

surrounding particles as a cage. Let us consider the cage formed by oxygen atoms

around Li ions as in silicate or related systems. Each Li ion is trapped inside the

cage formed by oxygen atoms and rocked. Instead of direct interaction between Li
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ion and oxygen atoms, the same potential (Coulombic term) can be represented as

the sum of multipoles up to lmax. Here the accuracy becomes better if the lmax is
larger, where the first term (charge-charge interaction) is considered for the center

of mass position of oxygen atoms. As already mentioned, contribution of the dipole

(~1/r2) decays faster than that of point charge (~1/r), while contribution of quad-

rupole (~1/r3) decays faster than that of the dipole. Thus the potential of the cage,

consisting sum of these terms, is anharmonic. In previous chapters, we have shown

that anharmonic potential acting on the ions causes caging of the ions at short times,

and observed experimentally in susceptibility as the nearly constant loss (NCL).

Here we do not exclude the contribution of repulsive terms, and note that

representation by the multipoles is also applicable to the repulsive part.

Represented by the multipoles and their time dependence, the anharmonic potential

is effective in caging the ions, and the loss from motion of ions confined within the

cages is manifested as the NCL in susceptibility (See Sects. 4.5, 4.7 and 9.4.2.).

Previously, Dieterich and Maass considered the asymmetric double well potential,

and/or random dipole interaction as an origin of NCL [103]. If the total charge in

the caging region is 0, then the main term will be dipole (if it is not 0). Although this

might be a good approximation in some cases, further terms will be necessary to

represent the situation more precisely. In the ionic structures, alternative oscillation

of positive and negative charges are observed at longer length scales than neigh-

boring distance and this means that the charge neutrality does not hold within the

neighboring distance. When the total sum of q is not 0, point charge term cannot be

neglected. Actually, we have previously shown that the motion of Li ions in the

lithium metasilicate system is well correlated with the motion of center of mass

position of polyhedral formed by caging oxygen atoms [3, 68]. Contribution of

further terms also will not be negligible especially in the short distance region. We

also note that the cage is moving in NCL region and therefore its motion is

characterized as dynamic anharmonicity as discussed in Sect. 9.5.2.

Generally, the nature of cages is also related to the problem of glass transition

[104, 105], because the rigidity or softness of the cages determines the motion of

ions, atoms, or molecules trapped within [106].

8.2.9 Treatment of Rotational Motion

8.2.9.1 Euler Angles

When ions or molecules of the system have internal structures, methods to include

consideration of rotational motion are necessary in MD simulations. In such cases,

motions of ion or molecule are regarded as a combination of translational motion of

the center of mass position, P, and rotational motion around it. The rotational

motion is represented by the Euler’s equations [91, 107] named after Leonhard

Euler using Euler angles, where the coordinates (P-exeyez) fixed on body, centered at

P are used.
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The coordinate (P-exeyez ) is transformed from the space coordinate (O-xyz) as
follows, where P and O are overlapped. There are several notations and definitions

for the treatment of angles. Here we used ones by Goldstein [108]. In these

procedures, the rotation is counterclockwise and is in three steps as shown in

Fig. 8.3.

1. The coordinate (O-xyz) is rotated around z axis with angle φ (see Fig. 8.3a).

2. A resultant coordinate (O-x0y0z0) is rotated around x0 axis with angle θ (see

Fig. 8.3b).

3. A resultant coordinate (O-x00y00z00) is rotated around z00 axis with angle ψ (see

Fig. 8.3c). The final coordinate after the rotations is O-x000y000z000 (¼P-exeyez ) in
Fig. 8.3c.

Rotational transformation of the vector A in (O-xyz) coordinate to B in P-exeyez
coordinate is represented as follows.

B ¼ AR: ð8:32Þ

Here R is a transformation matrix shown below.

R ¼ RφRθRψ

¼
cosψ cosϕ� cos θ sinϕ sinψ cosψ sinϕþ cos θ cosϕ sinψ sinψ sin θ

� sinψ cosϕ� cos θ sinϕ cosψ � sinψ sinϕþ cos θ cosϕ cosψ cosψ sin θ

sin θ sinϕ � sin θ cosφ cos θ

0B@
1CA;

ð8:33Þ

where Rϕ ¼
cosϕ sinϕ 0

� sinϕ cosϕ 0

0 0 1

0@ 1A

Fig. 8.3 Orientation of rigid body is represented by the Euler angles, ϕ, θ and ψ. Definition of

Euler angles by Goldstein is shown here. The rotation is measured in counterclockwise direction.

In this example, ϕ, θ and ψ used are 0.92, 0.67 and 0.87, respectively
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Rθ ¼
1 0 0

0 cosϕ sinϕ
0 � sinϕ cosϕ

0@ 1A

And Rψ ¼
cosψ sinψ 0

� sinψ cosψ 0

0 0 1

0@ 1A:

A transformation from B to A is by using transpose matrix,

A¼tRB ð8:34Þ

8.2.9.2 Euler’s Equations

Kinetic energy, KR of the rotational motion of rigid body is represented as follows

by using the inertia tensor.

KR ¼ 1

2
Ixxω~x

2 þ Ixyω~xω~y þ Ixzω~xω~z þ Iyzω~yω~x þ Iyyω
2
~y
þ Iyzω~z þ Izxωzω~x

h
þ Izyω~zω~y þ Izzω

2
~z

i
:

ð8:35Þ

If the P-exeyez is chosen to be coincident with the principal axes of inertia, inertia

tensor is simplified to be represented by the diagonal elements, and time depen-

dence of the angular momentum can be represented by the Euler’s equations.
Time derivative of the angular momentum LR in O-xyz coordinate is,

dLR

dt
¼ TR; ð8:36Þ

here TR is torque vector and total angular momentum of the rigid body (molecule,

ion, etc.) consists of N particles can be obtained by LR ¼
X
i¼1,N

miri � dri=dt:

While the angular momentum LP in the P-exeyez coordinate is represented by

LP ¼
L
Pex

L
Pey

L
Pez

0@ 1A ¼
I1 0 0

0 I2 0

0 0 I3

0@ 1A ω
Pex

ω
Pey

ω
Pez

0@ 1A ¼
I1ωPex
I2ωPey
I3ωPez

0@ 1A; ð8:37Þ

where I1, I2, I3 are the components of the principal moment of inertia in the P-exeyez
coordinate andω

Pex ,ωPey andωPez are the components of angular velocity about these

principal axes.

Euler’s equations can be derived from the transformation of time derivative of

angular momentum dLR/dt inO-xyz coordinate to that (dLP/dt) in P-exeyez coordinate,
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dLP

dt
in P� exeyez coordinateð Þ ¼ dLP

dt

�
in O� xyz coordinate

�þ ω� LP: ð8:38Þ

Taking each component along principal axis of Eq. (8.38) for left hand side, Euler’s
equations are given as follows.

I1
dω

Pex
dt

� ω
PeyωPez I2 � I3ð Þ ¼ T

Pex ð8:39aÞ

I2
dω

Pey
dt

� ω
PezωPex I3 � I1ð Þ ¼ T

Pey ð8:39bÞ

I3
dω

Pez
dt

� ω
PexωPey I1 � I2ð Þ ¼ T

Pez ð8:39cÞ

8.2.9.3 Relation Between Angular Velocity and Euler Angles

The derivatives of angles φ
•
, ϕ

•
and θ

•
; are z0, x00 and z000 components of angular

velocity vectors ω 0
ϕ, ω00

θ and ω000
ψ in the P-x0y0z0, P-x00y00z00 and P-x000y000z000(¼P-exeyez) coordinates, respectively. Therefore, the following relation holds.

ω ¼ RϕRθω
0
ϕ þ Rϕω

00
θ þ ω000

ψ ð8:40Þ

By solving Eq. (8.40) for each derivative of angle, the following results

θ
• ¼ ω~x cosψ � ω~y sinψ ,

ϕ
• ¼ 1

sin θ
ω~x sinψ þ ω~y cosψ
� �

,

ψ
• ¼ ω~z � cos θ

sin θ
ω~x sinψ þ ω~y cosψ
� �

;

ð8:41Þ

are obtained.

8.2.9.4 Relation Between Quaternion and Euler Angles

Since the temporal derivative of the Eulerian angle contains singular point (the term

1/sin θ in Eq. (8.41) becomes1 and �1, at 0 and π, respectively.), the Quaternion
parameters [109] are used to avoid it. Quaternion parameters (ξ, η, ζ, χ) are

connected to Goldstein’s Euler angles θ,ψ ,ϕ as follows.

ξ ¼ sin θ=2ð Þ • sin � ψ � φð Þ=2�
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η ¼ sin θ=2ð Þ • cos � ψ � ϕð Þ=2�
ζ ¼ cos θ=2ð Þ • sin � ψ þ ϕð Þ=2�
χ ¼ cos θ=2ð Þ • cos � ψ þ ϕð Þ=2� ð8:42Þ

Because of the relation, ξ2 þ η2 þ ζ2 þ χ2 ¼ 1, these four parameters are not

independent and therefore, the degree of freedom does not change with the

transformation.

8.2.10 Ensembles Used for MD Simulations

Several ensembles are used in MD simulations including extended ones. Some

typically used ensembles are introduced here.

8.2.10.1 Constant Energy Condition

Constant number of atoms, volume and energy (NVE) ensemble (micro-canonical

ensemble) is achieved without modification of system, while extended ensemble

such as NPT, NVT (P: pressure, T: temperature) requires additional parameters to

control the pressure and/or temperatures.

8.2.10.2 Constant Pressure Condition (Andersen Method)

Andersen [110] developed the method to control the pressure by introducing the

wall (a three dimensional piston) in the MD cell. This treatment is explained here

for the case of soft-core (SC) model.

The Hamiltonian of the SC system interacting pair-wise force is

H p; rð Þ ¼
X
j

p2j =2mþ
X
i<j

ε σ=rij
� �n � K þ U; ð8:43Þ

where the m and σ are the mass and a size parameter of the particle, respectively.

Hamiltonian in the extended system can be written as follows,

H s;π;V;Πð Þ ¼
X
i

πi •πið Þ= 2mV2=3
	 


þ U V1=3s
h i	 


þ 1

2M
Π2 þ PexV; ð8:44Þ

where s
�¼ six, siy, siz

�
, πi ¼ ∂L

∂s •i

	 

and Π ¼ ∂L

∂V
• ¼ MV

•
	 


are normalized (ri ¼ Lsi)

coordinates, momentum of particle i and momentum of the wall respectively, and
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PexV is a potential energy by the wall. Here we consider the isotropic system with

L¼V1/3. The system is conservative.

In the equilibrated system with a constant pressure, the term 1
2MΠ2 becomes

negligibly small, where M has the dimension of [mass][(length)�4]. Then one can

use the reduced mass M0 which is given by the relations [91]

M0 ¼ Mσ4=m: ð8:45Þ

The system under the constant pressure condition is controlled by the difference of

external pressure and internal pressure.

From Eq. (8.9), equations of motions are obtained as follows.

dsi
dt

¼ ∂H
∂πi

¼ 1

miV
2=3

πi ð8:46aÞ

dπi

dt
¼ �∂H

∂si
¼ ∂U

∂si
, i ¼ 1, 2, 3, . . . ,N ð8:46bÞ

dV

dt
¼ ∂H

∂Π
¼ Π

M
; ð8:46cÞ

dΠ

dt
¼ �∂H

∂V
¼ Π

M
¼ 1

3V
V�2=3

X
i

π• i •π
•
i

mi
� V1=3 ∂U

∂ V1=3
� � !

� Pex ð8:46dÞ

These equations of motion for the scaled system are solved numerically to give the

time development of coordinates and momenta.

The correspondence between the scaled system and the original system is taken

into account through the following relations.

ri ¼ Lsi ð8:47Þ
pi ¼ L�1πi: ð8:48Þ

dri
dt

¼ pi
m
þ ri

3V

dV

dt
; ð8:49aÞ

dpi
dt

¼ ∂U
dri

� Pi

3V

dV

dt
; ð8:49bÞ

dV

dt
¼ Π

M
; ð8:49cÞ

dΠ

dt
¼ 1

3V

X
i

pi
2

mi
�
XN�1

i¼1

XN
j>i

ϕ rij
� �
drij

rij • rij

rij

 !
� Pex ð8:49dÞ

The first term in Eq. (8.49d) represents the instantaneous internal pressure. When

the internal pressure equals to the external pressure Pex,
dΠ
dt ¼ 0 and then the system

volume becomes constant. In other cases, the instantaneous pressure (and volume)
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fluctuates around the Pex set in the simulations. This situation can be regarded as the

thermally equilibrated state, with the use of a suitable M. Time average of any

function (which corresponds to NVH ensemble), F, can be calculated from the

trajectories obtained by the Eq. (49).

8.2.10.3 Constant Temperature Condition (Nosé Method)

For controlling temperature, thermostat using a fictive time with a new degree of

freedom, (s, ps), is introduced by Nosé [86, 111–114]. Here, s and ps correspond to

the coordinate and its canonically conjugate variable, momentum, of the new

degree of freedom having mass represented by Q. The coordinate and its canoni-

cally conjugate variable, momentum, in the extended (fictive) system are

represented by r0 and p0, respectively.
The Hamiltonian of the extended system is defined by

H p0, r0, ps, sð Þ ¼
X
i

�
pi

02= 2ms2
� �þ U r0ð Þ þ ps

2

2Q
þ gkBTlns; ð8:50Þ

where g is a parameter used to represent the degree of freedom.

In this case, T is a parameter to give the targeted value of the temperature, and

Nosé has proved that the microcanonical ensemble of the extended system corre-

sponds to the canonical (NVT) ensemble in the real system if one choose

g¼ 3Nþ 1.

The values in the real and extended systems are assumed to be connected by

ri ¼ ri
0, pi ¼

pi
0

s
, t ¼

ðt dt0
s
, dt ¼ dt0

s

The last two equations represent the relation between the time in the extended

system, t0, and that in the real system, t.
Then the velocity of these systems are connected by,

dri
dt

¼ dri
dt0

dt0

dt
¼ s

dri
0

dt0
: ð8:51Þ

The Hamilton’s canonical equations for the extended system are derived from

(Eq. 46) are given by,

dri
0

dt0
¼ ∂H

∂pi0
¼ pi

0

ms2
; ð8:52aÞ

dpi
0

dt0
¼ � ∂H

∂ri0
¼ � ∂U

∂ri0
; ð8:52bÞ
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ds

dt0
¼ � ∂H

∂ps
¼ ps

Q
; ð8:52cÞ

dps
dt0

¼ �∂H
∂s

¼ �∂W sð Þ
∂s

¼
X

i

pi
02

ms3
� gkBT

s
: ð8:52dÞ

In Eq. (8.52d), W(s)
� ¼ K

s2 þ gkBTlns with K ¼Pi
pi

02
2m

�
corresponds to the poten-

tial energy relating to the giving and receiving the heat.

From Eq. (8.50), the equation of motion in the real system is derived as

[91, 111],

dri
dt

¼ pi
m
; ð8:53aÞ

dpi
dt

¼ �∂U
∂ri

� pspi=Q; ð8:53bÞ
ds

dt
¼ s

ds

dt0
¼ sps=Q; ð8:53cÞ

dps
dt

¼ s
dps
dt0

¼
X

i

pi
2

mi
� gkBT: ð8:53dÞ

The equations of motion in the real system are slightly modified to

dri
dt

¼ pi
m
; ð8:53a0Þ

dpi
dt

¼ �∂U
∂ri

� ζpi; ð8:53b0Þ

dζ

dt
¼ 2

Q

X
i

p2i
2m

� gkBT

2

� �
; ð8:53c0Þ

where ds/dt¼ sζ. Under the conditions, xs¼ lns and ζ ¼ x
•
s ¼ ps

Q
, these equations

are equivalent to Eqs. (8.53a–8.53d).

This form of the thermostat, which is by eliminating s, is called the Nosé-Hoover
thermostat [112], and it can reproduce the canonical distribution in the coordinate

space.

Because the variable s for the scaling of time of whole system is eliminated, the

friction coefficient ζ can be defined for each substructure of the system and it is

useful for the controlling temperatures in complex systems. Sampling of data

intervals used in a virtual system in the Nosé algorithm corresponds to the unequal

sampling of that in the real space. The Nosé-Hoover algorithm also removes

this difficulty, although the resulting system is not Hamiltonian. Recently, the

Nosé-Poincaré method [86, 114] was introduced to solve this problem.
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8.2.10.4 Combination of Conditions

Nosé generalized the work to include both thermostat and barostat. Nowadays,

many kinds of extended ensembles are introduced and used [87, 91, 115].

In Sect. 8.5.3, our attention will be focused on the problem of the choice of

ensembles to study structures and dynamics in super-cooled liquids or glasses

including non-equilibrium situations. Some other problems concerned with the

system showing slow dynamics will be also discussed there. Dynamics in crystals

are also slow process and similar treatment seems to be required.

8.2.11 Parrinello-Rahman Methods

It is useful for the simulation of the crystal and its transformation, additional degree

of freedom is taken into account. In the Parrinello-Rahman (and Parrinello-

Rahman-Ray) methods [116–118], angles as well as axis lengths in the basic cell

(with parallelepiped structure) can be changed during the MD runs. Practically, it

seems to work in several conditions after the equilibration, although it is known that

the collapse of the parallelepiped structure occurs in some cases. It may be helpful

to consider the geometrical degree of the freedom [119] of the basic cell of MD to

treat this problem.

8.2.12 High Performance Computation

If one would like to treat large system and for long times in a straightforward

manner, acceleration of the calculation is desired, as well as the developments of

computer technology itself. Another possible way is to reduce the amount of

calculation itself. Coarse-graining by several methods and scaling concepts are

effective for estimation and prediction of long time behavior of the system, and may

save the calculation times. Here we mention the means for accelerating the

calculations.

8.2.12.1 Parallel Computing, Acceleration Boards, and Graphic

Processing Unit (GPU)

In MD simulations, each particle moves by the sum of forces from other particles.

This calculation is the most time consuming part for the simulations. Many particles

can be treated by several kinds of parallel computing, using Message Passing

Interface (MPI), graphic processing unit (GPU), etc. Several methods for parallel

computing both by manipulating software and hardware can be applied.
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The GRAPE (Gravity Pipe) board was developed for solving the ‘Gravitational
Many-Body Problem’, where the common algorithm with molecular dynamics is

used. Then, MDGRAPE [120] chip was designed for acceleration of MD

simulation.

Recently, graphic processing unit (GPU) pioneered by NVIDIA in 2007 [http://

www.nvidia.com/object/what-is-gpu-computing.html (The address was confirmed

to be valid on 14th Feb. 2016).] is widely used for acceleration of computation

including MD and is called GPGPU (General-purpose computing on graphics

processing units) (see also Appendix 8). GPU boards named Tesla and/or GeForce

are included in many computing systems, not only super-computers but also in

personal computers. Because of its generality and relatively lower cost, the meth-

odology is rapidly spreading. Such developments will make an MD simulation

suitable for personal use in the near future. An example of coding for the main loop

of MD by Fortran using Compute Unified Device Architecture (CUDA) is shown in

the Appendix A.8.1.

There are several problems for each technology. Sometimes, heat released on the

boards causes many problems such as instability of the system. Noises coming from

the fan for cooling may cause another problem. Therefore, controlling the heat

release is an important problem for using acceleration boards. If the board is

occupied by a job in an exclusive manner, it will prevent the execution of parallel

computing jobs. Parallel calculations are effective to use for large system but not

necessarily being effective enough for long runs. This is because the MD run of

slow dynamics is essentially sequential to cover the different time regions. There-

fore the technology different from the parallel computation may be desirable.

Parallel computing of completely independent runs (of different conditions) is

one of the alternative approaches. “Array job” can be used in some systems for

parameter survey.

8.2.12.2 Difference in Numerical Results Using Parallel Computations

If one uses the symplectic integrator, the drift of the energy can be avoided in the

equilibrium system. Nevertheless, drift may occur due to different origins such as

the overlaps of non-equilibrium relaxations and/or aging. When calculated values

in parallel calculations are accumulated into one, resultant data will have larger

numerical errors compared with calculation on the single machine. Besides these

problems, in the case of slow dynamics in supercooled liquids or glasses, further

caution seems to be required for the deterministic nature of the motion.

Ionics in the glassy state is dominated by jump motion of ions and it has

intermittent and sporadic nature related to chaos. Consequently, each motion is

quite sensitive for the small difference of the initial value. Each ionic motion tends

to show the different trajectory by this. This situation occurs regardless of single

precision or double precision of the calculation and therefore it is not a problem of

the number of significant digits. It is not a problem of the quality of GPU itself as

well, although it occurs when the calculation is just moved from CPU to GPU.
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This is because similar situation also occurs just by changing the order of the

calculation within a Do loop [The view discussed here is obtained by the assistance

of the staffs of the project of acceleration of the program using GPU in the Global

Scientific Information and Computing Center in Tokyo Institute of Technology.

Here we appreciate it]. Sometimes one needs extremely long time runs for calcu-

lation of properties such as transport coefficients and their fluctuations, and one

may have to worry about the propagation of errors during the run. Fortunately, the

dynamic properties of long time, such as transport coefficients, tend to converge to

certain values during a long run (for example, diffusion coefficient of ionic motion

converges within 10 ns runs at 800 K in lithium disilicate) and this is also

represented by using the local expansion rate [121], which can be a measure of

the propagation of the error in non-linear dynamics [122, 123] (see also Sect. 8.4.2).

It means that the short time fluctuation of motions does not affect the structure of

the attracter for the long time dynamics. In other words, characteristics of the ion

channels are not changed by the local motion in the caging region. In our opinion,

the short time discrepancy does not necessarily affect the long time behavior of the

mean dynamics and that is why we can use a long time run of MD simulations for

the calculation of transport properties. Of course, each researcher has responsibility

to check it for the result of MD runs in each system when parallel computation

and/or long runs are used.

8.2.12.3 Perspective of Computational Technology in MD Simulations

During a long run of MD, one may encounter the situation of run being stopped by

the problem of the machine or supply of electricity. To avoid such troubles, further

developments for acceleration of long time runs will be helpful. One may also

encounter the problem of coding in calculations for adjusting available resources.

Although some compilers have an option for parallel computing, still it requires

some modification of the code for efficient treatment. When a new hardware is

developed, a new coding might be necessary. To improve the performance, devel-

opments of machine independent coding seem to be desirable. Recent development

of “Xeon Phi co-processor” by Intel seems to show one of the promising ways for

this direction, because it does not require the special coding.

8.3 Physical Quantity and Properties Obtained from MD
Simulations

In typical classical MD simulations, input of the MD simulations is the “potential

parameters” and the output is essentially the “time series of coordinates of particles

(and velocities)”, that is the “trajectories”. Typical input files in the MD simulations

of glasses contain the following items:
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1. Setting of potential parameters and functions,

2. Setting of ensemble (NPT, NVE, etc.).

3. Preparation of initial configuration (and velocity) (system size).

4. Setting of runs (step time and steps for equilibration and those for analysis)

In the case of study of glasses or glass transition, cooling schedule is also

required.

In typical output files, fundamental information such as temperature, energies,

pressure, pair correlation functions are included in most of MD programs for

checking the data and/or further treatment.

From the trajectories, further analyses can be done. Available information is

concerned with the structures, dynamics and thermodynamics. Researcher can

define any functions to obtain specific information suitable for their purpose.

Visualization of the structures, motions, vectors is also useful. Furthermore, poten-

tial functions or parameters can be artificially modified if necessary. For example,

mass, ionic size, and functional forms can be changed to examine the effects of each

factor. These methods are useful to separate possible mechanisms responsible for

the problem treated, and to check the results or prediction from models or theories.

The model of the system can be tuned up for desired properties and hence MD

simulations are applicable for material designs. In this sense, MD simulations are a

tool of experimental investigations as well as of theoretical treatment. Some typical

functions or properties obtained from MD are summarized in the next subsections.

We hope that from the example of the research on silicate systems and ionic liquids

in Chaps. 9–11, readers can have a good idea of how to use MD simulations.

8.3.1 Structural Properties

8.3.1.1 Pair Correlation Function: g(r)

Liquids have homogeneous structure at longer length scales and characteristics of

them can be well represented by the pair correlation function [87, 91], where the

structure is represented by a function of r only. This can be also used for charac-

terizing super-cooled liquids and glasses, although further terms might be required

in some circumstances.

Pair correlation function among different kind of particles i and j is obtained by

gij rð Þ ¼ V

Ni •Nj

XNi

i¼1

ni r � Δr=2, r þ Δr=2ð Þ
4πr2Δr

* +
; ð8:54Þ

where V is a volume of the system, Ni and Nj are the number of the species i and
j and ni r � Δr=2, r þ Δr=2ð Þ is the number of j particles within the shell with width
Δr at distance r from particle i. The term 4πr2 is for the surface area of the sphere.
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When the species i and j are the same one, the function is,

gii rð Þ ¼ V

Ni • Ni � 1ð Þ
XNi

i,¼1

ni r � Δr=2, r þ Δr=2ð Þ
4πr2Δr

* +
; ð8:55Þ

where now ni r � Δr=2, r þ Δr=2ð Þis the number of i particles within the shell with

width Δr at distance r. Practically, it can be calculated during the MD run and it is

useful to check the status of the calculation. In this case, distances among i and
j particles appeared are not ordered and this may prevent the effective coding for

parallel computation. A part using random access may be better to put it out of the

loop of the calculation of force, if necessary. The Ni � 1ð Þ term is the number of

surrounding particles, which does not include the central particle i.
For example, in the case of ionic liquids with internal structures, the function

g(r) for each pair can be determined for the center of mass position (or center of

charges) of each ion. Alternative arrangement of cation and anion in ionic system

tends to neutralize structure at a certain length scale. This behavior is regarded as

screening in the strongly-coupled system such as NaCl [124, 125] and charge radial

distribution in the following form is suggested.

q rð Þ ¼ A

r
exp �r=λDð Þ sin 2πr=d þ φð Þ; ð8:56Þ

where A/r is the amplitude, φ is the phase shift and d is the period of the oscillations.
In ionic structures, one can consider the charge distribution function Q(r) and

the density distribution function G(r) defined by the following equations [124–

127] by assuming that the charge is simply on the center of mass (or charge)

position,

Q rð Þ ¼ Qþ rð Þ þ Q� rð Þ ¼ gþþ rð Þ þ g�� rð Þ � 2gþ� rð Þ� 
e ð8:57Þ

G rð Þ ¼ Gþ rð Þ þ G� rð Þ ¼ gþþ rð Þ þ g�� rð Þ þ 2gþ� rð Þ� 
=4 ð8:58Þ

The former is related to the structures of layers of charges (charge density wave,

CDW), while the latter is related to structures of ionic positions regardless the

charges (density wave, DW). Typical length scales for these functions are infor-

mative due to the difference of the main factors controlling them. These functions

become 1 when the value becomes the mean density of species of the surrounding

particles.

If the plots of ln|Q(r)r| against r have a straight line when the maxima of the

peaks (envelopes) are connected, the characteristic length λQ, which corresponds to
the Debye length for the screening of the Coulombic term in the simple dilute ionic

systems, can be determined from the slope, �1/λQ. However, the values in dense

ionic systems are not necessarily the same one as in a dilute system. The interaction

observed is a renormalized one by the interactions from the other ions.
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In the theory of liquids, the pair correlation function is fundamental to under-

stand their structure [128, 129] and we note that the function can be obtained with

good statistics in MD because it can be averaged in many steps.

8.3.1.2 Structure Factor and Intermediate Scattering Functions

Comparison of structures with experiments can be done through the structure factor

S(k). The function is a Fourier transform of g(r) [128–132].

S kð Þ ¼ 1þ 4πρ

ðrmax

0

r2 g rð Þ � 1f g sin kr

kr
dr: ð8:59Þ

Obtained by X-ray diffraction, the function is modified by the weight of atomic

scattering factor, f(k) [131, 132], while for neutron diffraction it is modified by

scattering length, b. Details of the treatment of data is slightly different by different

researchers. For example, the following form was used in some X-ray diffraction

works, where I(k)¼ S(k)�1.

kI kð Þ ¼
X

i

X
j
xixjf i kð Þf j kð ÞX
i
xif i kð Þ

n o2
�
ðrmax
0

4πρ0 gij rð Þ � 1
n o

sin krð Þdr ð8:60Þ

Here ρ is the number density of the system and ρ0 is the average of it.
For comparison of the structural details of glasses (such as Qn where n is the

number of bridging oxygen in the SiO4 unit, the distributions or statistics of rings)

from simulations with experiments, one should be careful to consider not only the

cooling rate, but also the history of the system on the PVT phase-diagram (see Sect.

9.2). Otherwise, the results of the MD simulations might deviate from the experi-

mental ones. This is because the partial structure (such as Qn structure) has its

specific partial volume [133, 134].

The formation of three dimensional networks is observable directly in MD

simulations.

8.3.1.3 Running Coordination Numbers

To examine the coordination shells of other particles or solvent, the pair correlation

function is accumulated as represented by the running coordination numbers,

Ncoord(r). The function for the species j around species i is defined as follows.

390 8 Molecular Dynamics Simulations

http://dx.doi.org/10.1007/978-3-319-42391-3_9


Ncoord rð Þ�ρj

ð r
0

4πr2g rð Þdr: ð8:61Þ

This function also can be calculated during the MD runs.

Coordination number is often defined by the cutoff values corresponding to the

distance of the first minimum position of g(r). The function also can be used to

obtain the fractal dimension of the structures in different length scale regimes.

8.3.1.4 Angular Distribution Function

Distribution of angles in the structure can be examined by MD simulations. The

angular correlation function may be defined by using the number of particles, dN,
located between θ�dθ/2 and θþdθ/2, within a certain distance r.

P θð Þ ¼ CdN=sin θ dθ: ð8:62Þ

C is a normalization constant so that the integration over 2π becomes 1.

When the data points are uniformly spreading, the number of points on the polar

is smaller than that of points on the peripherals. The term sinθ is used to take into

account this situation. Namely, such correction is used, when the distribution in a

three dimensional (3D) space is a target of the problem. The absence of the

modification by the sine term is also found in literatures, such as the case when

the frequency of the appearance of the angle (for example, that among bonding) is

the problem to be examined.

8.3.2 Dynamic Properties

8.3.2.1 Mean Squared Displacement (MSD) and Diffusion Coefficient (D)

The Mean Squared Displacement (MSD) of species a is obtained by the expression
[87, 91],

<ra
2 tð Þ>¼

XNa

i¼1

rai tð Þ � rai 0ð Þð Þ2
( )�

Na

* +
: ð8:63Þ

Here the angled brackets represent the average for different initial times or

independent runs.

Using a sequence of particle positions during a run of T1 period, we prepared

N arrays of data sequence with slightly shifted initial time t0 values and the data for
N arrays were averaged. Wide time window covering fluctuation of dynamics is
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required in the case when dealing with heterogeneous dynamics. In the case of

equilibrated system, it is the same as the ensemble average. However, in the case of

non-ergodic system, it is not necessarily the same.

For each species, the MSD starts to become proportional to time t at times longer

than tdif. From the slope of the MSD at times longer than tdif, the diffusion

coefficients, D, can be obtained using the Einstein relation [135].

D ¼ 1

6
lim
t!1

d

dt
< ri tð Þ � ri 0ð Þ½ �2> : ð8:64Þ

The onset time of steady state diffusion, tdif, is a characteristic and fundamental

time of the dynamics. Here the denominator 6 is used for the case of diffusion in

three dimensional systems.

In slow dynamics of super-cooled liquids near the glass transition regimes,

quasi-diffusive regime, where the MSD is proportional to time, can be found before

the fractional power law regime, if one closely examine the data (see Sect. 9.4.2 for

details). Therefore, it is necessary to distinguish it from the true long term diffusive

regime, particularly if the observation time is limited. If the system has hierarchy

structures, diffusive regime is not be easily attained. For example, particles might

be located in different domains with different sizes, when observation is started.

Diffusion coefficients can also be obtained from the velocity autocorrelation

function.

D ¼ 1

3

ð1
0

v tð Þ • v 0ð Þh i: ð8:65Þ

This equation is known as the Kubo formula [136].

The function may seem to be converging at a short time (several ps) at a first

glance even in glasses. However, this is not for a true diffusive regime. Thus, to

ensure correct result for D, the times for the integration should be long enough to

cover steady state diffusive motion.

8.3.2.2 Conductivity

Conductivity is connected with the complex frequency dependence of the ion

dynamics and is related to the time dependence of the MSD by the relation

[136, 137],

σ* ωð Þ ¼ �ω2 Nq2

6HRkBT

ð1
0

<r2 tð Þ> e�iωtdt; ð8:66Þ

where N is the number density of mobile ions, q the ion charge, kB the Boltzmann

constant, HR the Haven ratio [138] and T the temperature.

392 8 Molecular Dynamics Simulations

http://dx.doi.org/10.1007/978-3-319-42391-3_9


In MD, the Haven ratio, HR¼Dt/Db, is obtained from the tracer diffusivity, Dt,

and the bulk (or charge) diffusivity Db. Its time dependency is defined by [136],

HR tð Þ ¼
X
i

<vi 0ð Þ • vi tð Þ> = <
X
i

vi 0ð Þ •
X
j

vj tð Þ> ð8:67Þ

Typical value of the Haven ratio is at around 0.2–0.5 for ionically conducting glasses

and therefore the correction by this is not so large although the value gives useful

information formechanism of the transport properties. The value is known to decrease

in increasing content of alkali metal, in alkali silicates or related materials

[139, 140]. The ratio represents the geometric correlations in the case of single particle

motion, while it is also affected by the collective or correlated motions of particles

(ions) [141]. Doliwa and Heuer [142] argued that the value is an inverse of the number

of particles (ions), which moves in cooperative manner. That is, typical Haven ratio

means that 2–5 ionsmove in cooperativemanner. Direct calculation of conductivity or

Haven ratio from MD simulation runs were performed in some works [143, 144].

For single particle properties, statistics can be improved by taking the average of

large number of particles or ions, while for collective properties such as conduc-

tivity or Haven ratio, it is not easy to obtain good statistics, especially when dealing

with heterogeneous dynamics. In taking average of heterogeneous ionic motions,

the use of large time windows covering different initial situations is recommended.

In principle, electric conductivity can be calculated directly from the electric

current of ions, J(t) defined by

J ¼
X
i

Qi _ri tð Þ; ð8:68Þ

where Q is the charge of the species and ri is a displacement vector of the ith-ion.
From the linear response theory [136], frequency dependent conductivity is given by

σ ωð Þ ¼ 1

3kBTV

ð1
0

J tð Þ • J 0ð Þh iexp iωtð Þdt; ð8:69Þ

and the direct current conductivity at the low frequency limit is given by

σ 0ð Þ ¼ 1

3kBTV

ð1
0

J tð Þ • J 0ð Þh idt: ð8:70Þ

If one compared this expressionwith Eq. (8.66), it is easily found that the time region

for this limit corresponds to the long time limit of the MSD and/or the displacement

of bulk diffusion. In themolten salt or in ionic “liquids”, the time region is usually far

beyond the ps region except for extremely high temperature region. At a first glance,

the velocity auto-correlation function or that of the electric current might appear as if
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it has converged at short time (ps) region as already mentioned. Even if apparent

convergence of the auto-correlation function in a short time was found, it does not

mean that the motion corresponds to low frequency limit of Eq. (8.70). Careful

sampling of the data is required with considering above situations. Similar situations

will be found in many systems, liquids, glasses and crystals. Some further problems

for the sampling of heterogeneous and intermittent dynamics near the glass transi-

tion regimes will be discussed in Sect. 8.5.7.

8.3.2.3 Viscosity

Viscosity, η, can be obtained from the Stokes-Einstein relation [135, 145] from the

diffusivity. The relation for 3D liquids is given by

D ¼ kBT=cπηR; ð8:71Þ

where R is the effective diameter of the particle and c is a constant. The value c is
known to be 2 and 3, in slip and stick hydrodynamic boundary condition,

respectively.

Near the glass transition temperature, the deviation from the Stokes-Einstein

relation is often found (see Sect. 7.3.3) and fractional power law relation between

D and η can be a better description (Several fractional power laws are suggested.

For example, D ¼ A0 kBT
η

	 
γ
was assumed in Ref. [67].).

The viscosity η can be calculated from the Green-Kubo formula

η ¼ V

kBT

ð1
0

dt < Pαβ 0ð Þ •Pαβ tð Þ > ð8:72Þ

where αβ stands for xy, xz, yx, yz, zx, or zy, and

Pαβ ¼ 1

V

"X
i

miviαviβ þ
X
i

X
j>i

ðriα � rjαÞFijβ

#
: ð8:73Þ

Non Equilibrium Molecular Dynamics (NEMD) and Reverse Non-Equilibrium

Molecular Dynamics (RNEMD) are also useful to derive such transport properties

(see Sect. 8.6).

8.3.3 Space-Time Correlations

8.3.3.1 Self- and Distinct-Part of Van Hove Functions

Space time correlation of the particles can be brought out by the self and distinct

part of van Hove functions respectively defined as follows [146, 147],
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Gs r; tð Þ ¼ 1=Nð Þ
XN
i¼1

δ
�
ri tð Þ � ri 0ð Þ � r

� �� ð8:74Þ

Gd
α,β r; tð Þ ¼ 1=Nαð Þ

XNα

i¼1

XNβ

j¼1

δ
�
r� rαi 0ð Þ þ r

β
j tð Þ

D 
E
ð8:75Þ

The former is concerned with a self-motion of a particle, while the latter is for the

mutual motion of different species α and β. Usually, results in figures are shown as a
function of r¼ |r|. If the self-part of the van Hove function is multiplied by 4πr2, the
area under the curve corresponds to the number of particle and therefore 4πr2Gs(r)
tends to be used for the plot.

In the distinct part of the van Hove function, new peak appears at r¼ 0 if the

particle of species β comes into the site previously occupied by a particle of species

α and this feature is useful to examine the jump events. (See Sects. 10.1–10.3.)

During this period, structures shown by g(r) are kept unchanged although at t¼ 0,

the distinct part of the van Hove function is the same function as g(r) of the

α�β pair.

This difference of the time development is due to the fact that the origin of the

coordinate is fixed on the initial position of species α in the space in the former,

while relative positions of α and β species are measured in the latter.

8.3.3.2 Intermediated Scattering Functions: Fs(k,t)

The intermediate scattering function is defined by [147]

Fs k; tð Þ ¼
XN
j¼1

exp ik � rj tð Þ � rj 0ð Þ� �� +
=N

*
ð8:76Þ

The function is useful for comparison with experiments as well as many kinds of

theoretical treatments in the problem of slow dynamics.

8.3.3.3 Fluctuation of the Order Parameter

Lačević et al. defined the overlap susceptibility χ4 (which is related to the four point

correlation function) as follows [148] to investigate the spatial heterogeneity in the

glass forming liquids. A time dependent order parameter Qp(t), which measures the

number of “overlapping particles in two configurations separated by a time interval

t” is defined by
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QpðtÞ ¼
ð
dr1dr2ρðr1, 0Þρðr2, tÞδðr1 � r2Þ

¼
XN

i¼1

XN

j¼1
δðrið0Þ � rjðtÞÞ, ð8:77Þ

where ρ r; tð Þ ¼
X
i

δ
�
r� ri

�
.

The order parameter is related to the distinct-part of the van Hove function by,

Qp tð Þ� � ¼ NGd r; tð Þ, with r¼ 0. In other words, this order parameter is concerned

with the probability of substituting α and β species in Eq. (8.75) (for the case of

single component, it is defined with α¼ β).
The function χp4(t), the fluctuation of the order parameter, is represented by

χp4ðtÞ ¼
βV

N2
½⟨Q2

pðtÞ⟩� ⟨QpðtÞ⟩2�, ð8:78Þ

where β¼ (kBT)
�1.

It is rewritten as

χ4ðtÞ ¼
βV

N2
½⟨Q2ðtÞ⟩� ⟨QðtÞ⟩2� ð8:79Þ

using a modified Q(t) by a substitution of δ ri 0ð Þ � rj tð Þ
� �

in Eq. (8.77) by the

“overlap” function w
�� r1 � r2ð Þ��. The “overlap” function is unity when

�� r1 � r2ð Þ��
	 a and zero otherwise. Here the parameter “a” is for typical amplitude of

vibrational motion. This function can pick up the correlation length concerned

with jumps or jump-like motions.

8.3.4 Thermal Properties

Thermal properties can be also determined from MD simulations. Pressure, tem-

perature, volume, energies, and forces (each component of the kinetic and potential

energies can be separated.), their time dependent behavior, and their derivatives or

integral as well as fluctuations can be analyzed. In several systems such as the SC

model, analytical treatment of the thermodynamic properties is possible [See Refs.

[41–47] and references therein.].

8.3.5 Thermodynamic Scaling and Other Scaling Rules

The system may obey several kinds of scaling rules. Details for the thermodynamic

scaling of the ionic systems are found in Chap. 7 and Sect. 11.10. Application of

such rules will be helpful (see also Sect. 13.2) to predict or interpolate the properties

396 8 Molecular Dynamics Simulations

http://dx.doi.org/10.1007/978-3-319-42391-3_7
http://dx.doi.org/10.1007/978-3-319-42391-3_11
http://dx.doi.org/10.1007/978-3-319-42391-3_13


of materials to a different condition or state. In this manner, the scaling rules make it

easier to estimate or predict the properties under a different condition, and also

useful to understand the mechanism underlying them.

8.3.6 Further Possible Analyses

There are many other possible analyses of the results from MD simulations. For

example, individual motion of particles (ions, molecules), rotational dynamics, 3-,

4- (or higher order) time correlation functions, details of inner and inter structures

of ions or molecules, correlation among angles and/or distances, can be analyzed

and examined. Furthermore, possible analyses are not limited to the ones mentioned

above. One can define any kind of functions or representations. Simulations also

could be done under extreme conditions such as high pressure, negative pressure,

and extremely high or low temperatures. For the purpose of material designs, or

examination of the mechanism of dynamics, one can change freely the mass,

particle size of the constituents of the system.

8.4 Errors in the Molecular Dynamics Simulations

There are several source of errors that can occur during the MD simulations and

analyses of them [149, 150]. Here we treat three kinds of errors. One is concerned

with the treatment of digits in the computer. Second one is concerned with the

treatment of the numerical integration during the MD runs and of the averaged

quantities. The third one is concerned with the propagation of small error during

MD runs related to deterministic properties of the system especially in the case of

slow dynamics.

8.4.1 Errors Occurred in the Numerical Treatment

In computers, the real number with infinitive digits is approximated by the floating

point numbers having a limited number of digits. There exists a round-off error due

to the limit. There are several standards to treat it such as IEEE 754-2008. The value

xf can be represented by [151],

xf ¼ �f � βm, f ¼ x1
β
þ x2

β2
þ � � � þ xn

βn
; ð8:80Þ

The base for the scaling can be two, ten, or sixteen in almost all cases.
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Here xk (k¼ 1, � � �, n) are integers with 1 	 x1 	 β � 1 and 0 	 xk 	
β � 1 k ¼ 2, � � �, nð Þ.

For example, 3.14159 is represented by 0.314159� 101. In this example,

0.314159 corresponds to the fraction f and 10 corresponds to the base, β, of
the scaling and 1 corresponds to the exponent m. The parameter m is integer within

the range, L 	 m 	 U.

The largest and the smallest values (Fmax and Fmin), which can be treated in the

machine are represented by

Fmax ¼ βU 1� β�nð Þ;
Fmin¼ βL�1 ð8:81Þ

Thus the system can be characterized by β (base), n (number of significant digits),

L (minimum exponent) and U (maximum exponent). These values depend on the

system. For example, β¼ 16, n¼ 14, L¼�64, and U¼ 63 may be used in the case

of double precision for a certain system.

For the treatment of MD simulations, one needs to be careful for the loss of

significant digits and trailing digits. The former situation occurs when the differ-

ence of comparable large values is taken. The latter situation occurs when the sum

or difference of large value and extremely small value is taken.

8.4.2 Numerical Errors Occurred During MD Runs

For example, in Eq. (8.14), the third term in the right hand side of the equation is

much smaller compared with other terms. To avoid the loss of trailing digits,

calculation will be done by preparing the following values for i¼ 1,2 ---N

Δri tð Þ ¼ ri tð Þ � ri t� Δtð Þ

Then Eq. (8.14) was divided into two steps,

Δri tþ Δtð Þ ¼ Δri tð Þ þ Δtð Þ2 Fi tð Þ
m

ð8:14aÞ

and

ri tþ Δtð Þ ¼ ri tð Þ þ Δri tþ Δtð Þ ð8:14bÞ

By this transformation, the values in Eq. (8.14a) become comparable in magnitude

and furthermore, the error in Eq. (8.14b) will not propagate to longer times.

Pressure of the system is usually obtained from the difference of large compa-

rable values and therefore, the loss of significant digits tends to occur. These losses

as well as rounding error may be diminished by changing the order of calculations.
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For example, for averaging of heterogeneous quantities for long runs, small values

are better to sum up before performing the summation that includes large values.

Error of the numerical integration also depends on the algorithm of the integrator

used [152, 153]. For energy conservation of long time scale, symplectic integrator

such as Verlet algorithm is known to be better compared with the method such as

predictor-corrector method, which might be more accurate for short time runs. For

the stability of the calculations, time reversible methods are also favored. Several

methods with symplectic and/or time reversal properties have been proposed.

8.4.3 Propagation of Small Error and Lyapunov Exponent

As will be discussed in the Sect. 8.5 and Appendix A.2, (see also Example 2 in

ESM) deterministic motion of ions causes the large fluctuation of the dynamics and

such characteristics are common to other non-linear systems. Lorenz [154] has

studied a predictability of non-linear dynamics of atmospheric model. In a similar

manner, one can consider a propagation of the small error in MD simulations,

although further problems remain as to be discussed later.

If the time evolution of the system is governed by a function F of the variables,

ri(t),i¼ 1, . . .,N, in N dimensional system (i.e., the positional vectors of MD), and

time evolution is determined by the following equation,

d

dt
ri tð Þ ¼ F r1 tð Þ, . . . , rN tð Þ½ �; i ¼ 1, . . . ,N; ð8:82Þ

The propagation of error in the basic solution, ri(t), beginning with initial time t0
with a small initial error e0i can be approximated by the linear equations by taking

the first term of the Taylor expansions,

d

dt
ei tð Þ ¼

XN
j¼1

∂F
∂rj

ej; ð8:83Þ

in which the coefficient ∂F
∂rj

is time dependent.

Using Jacobian matrix of F at r(t), Jij ¼ ∂F
∂rj

	 

, it can be written as,

d

dt
ei tð Þ ¼ J r tð Þð Þe tð Þ; ð8:84Þ

Integrating Eq. (8.84), we have at the time after τe of initial time,

e t0 þ τeð Þ ¼ M r t0ð Þ, τeð Þe t0ð Þ; ð8:85Þ

The matrix M is called as error matrix and it depends on the r tð Þ during this time

interval.
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Then one can consider the mean expansion rate of error. If initial error is

randomly and spherically distributed in the N dimensional phase space, the distri-

bution of error with size ε is represented by

eT t0ð Þe t0ð Þ ¼ ε2: ð8:86Þ

Here the superscript T indicates the transpose. From Eqs. (8.85) and (8.86), the

distribution of error becomes an ellipsoid after τe, represented by,

eT t0 þ τeð Þ M r t0ð Þ, τeð ÞMT r t0ð Þ, τeð Þ� ��1
e t0 þ τeð Þ ¼ ε2 ð8:87Þ

The amplification rate, α, during this time is given by [123, 155]

α r t0ð Þ, τeð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Γi r t0ð Þ, τeð Þ;
vuut ð8:88Þ

where Γi¼λ1
2, . . ., λN

2 is a N real and non-negative eigen values of the matrix M

r t0ð Þ, τeð ÞMT
�
r t0ð Þ, τe

�
and Γi

1=2 corresponds to the local Lyapunov exponent

[123, 154].

The error doubling time is inversely proportional to the leading Lyapunov

exponent, a common view in the meteorological community [156]. As shown

above, the error propagation in complex systems is related to the Lyapunov

exponent.

There are some further problems concerning it for the above treatment. The first

problem is the non-spherical distribution of the initial error, which is related to the

dimensionality of the jump paths, which can be less than 3. Another problem is that

the functional form of F being time dependent. Especially for slow dynamics at low

temperature regions, the fluctuation of the cage in local region is larger than that for

the whole system. The third problem may be a contribution of neglected terms in

Eqs. (8.83) and (8.84).

8.4.4 Backward Error Analysis of the Averaged Properties

Mathematicians are interested in the numerical integration of ordinary differential

equations. Backward error analysis [150, 153, 157] seems to be an important tool

for understanding the long time behavior of numerical integration methods and

have shown the usefulness of the symplectic integrator used in MD simulations.

Traditional ‘forward error analysis’ describes the difference between the exact

trajectory and numerical trajectory, while in the ‘backward error analysis’, the
difference between the numerical and exact solution is expressed in terms of a

perturbation of the problem or the vector field.
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Bond and Leimkuhler [153] have done the backward analysis of the accuracy for

numerically computed averages of MD. The history for the numerical treatment in

MD was also summarized in this reference. Reich [150] has shown the long time

integration of chaotic Hamiltonian systems and discussed the approximation of

time averages along numerically computed trajectories. These works seem to be

encouraging to use in long time MD simulations for obtaining averaged quantities.

8.5 Treatments of Slow and Fast Dynamics in Ionic
Systems

Dynamics of ions in both ionically conducting glasses and ionic liquids are quite

heterogeneous. That is, both fast and slow ions coexists, while the mean of the

dynamics is slow, similar to dynamics of liquids in the glass transition regimes,

where the rare event is not negligible. This situation makes it difficult to treat the

heterogeneous dynamics in molecular dynamics simulations.

In this section, several requirements to observe such dynamics and the resultant

structures will be discussed, although sometime they are difficult to fulfill by a

limited calculation resource. Sampling method of such dynamics or structures is

also a matter of debate here. If the system was trapped in the local metastable state

on the complicated potential well, many runs with independent cooling schedule

might be required. However, for the ionics with a measurable diffusivity within

several ns, delayed time series with many initial times obtained by a long run,

covering the phase-space, is more useful than a limited number of short time runs.

8.5.1 System Size Requirements (Relationship with Fragility
and Confinement)

In MD simulations, periodic boundary condition (PBC) is often used. This is useful

to treat the infinitive size of system and long ranged interactions. However, the

nature of the system might be affected by the size of the basic cell. This is because

the motions of particles are repeated by the periodic boundary conditions, and

consequently the resultant structures also are restricted. Of course, the system size

required in MD simulations depends on the problem to be treated, and researcher

should select suitable size for the purpose and within the restriction of the available

calculation resources. Here, some general requirements for the study of the struc-

ture and dynamics including those in the case of the silicate glasses are discussed.
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8.5.1.1 General Requirements of System Size in MD

The size of the basic cell determines the largest length scale and smallest wave

number accessible by MD simulations. In the case of crystal, motion of particles

including vibrational mode is considerably affected by the cell size and how the unit

crystal structure is repeated in the basic MD cell.

In liquids or glasses, the structure shown by pair correlation function g(r), decays
within a certain length. For ion-ion interactions, the correlation of the structure

(deviation from the line of g(r)¼ 1) is not clear at distance longer than 8–12 Å in

ionic systems such as lithium silicate glass. Therefore, twice this length is a

minimum length of the unit cell for MD simulations to avoid the ionic structure

being affected by the PBC. In the case of ionic liquid, longer correlation is observed

as shown in Fig. 8.4. The correlation is small at around ~18 Å. Therefore the system
size with ~36 Å of L will be a good choice for many purposes. However, larger

system size might be necessary depends on the purpose of the simulations.

Angell has introduced a concept of “fragile” and “strong” to characterize glass

forming materials [158, 159] and the system size required to examine the network

glasses depends on the fragility of it. The fragile system shows a non-Arrhenius

behavior, while the strong system shows an Arrhenius behavior. In the fragile

liquid, the Arrhenius plot of structural relaxation time as a function of Tg/T
increases rapidly near Tg/T¼ 1, and the “fragility” or fragility index m is usually

defined by the slope at Tg/T¼ 1. Fragile (strong) glass-formers have large (small)

value of m. In general, system size effect of the basic MD cell for dynamics is

known to be larger in the “strong” system [160].

Generally, fragility is larger when the alkali content is larger and this affects the

required system size of MD. For lithium silicate, experimental fragility index, m, of

Fig. 8.4 Example of the

structure of ionic liquid

(EMIM-NO3 at 400 K for

system with 512 ions)

examined by the center of

mass positions of ions.

Black: Cation-Anion pair,

Red: Anion-Anion pair,

Blue: Cation-Cation pair.

Correlation of the structures

is diminished but is

continuing ~18 Å
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silica, lithium trisilicate, lithium disilicate, and lithium metasilicate is reported to be

17.9, 26.3, 34.7 and 33.9, respectively [161]. As expected from its fragility, larger

size effect on the network statistics is found in silica rich region than in the lithia

rich region and therefore larger system size is required in the silica rich region.

In a confined system such as thin films, mobility of the mobile species (ions)

tends to be affected by the immobile species or walls (see Sect. 10.7.1). Using the

dependence of dynamics on the distance from the wall, one can obtain a length scale

to characterize it. If the system is smaller compared with this length scale, particle

motion is affected by its ghost particles in the image cells. Therefore this is related

to the minimum size of the system required for the study of the mobile particles.

In the case of more complex systems with several domains, larger system size

may be required to represent regions with different length scales. For example, in

colloid-water-salt systems, domains or clusters, gels are formed by a coagulation

process and the fractal dimension of local regions and connections between them

are different in the cluster or gel [76].

8.5.1.2 System Size Required for the Study of Qn Structures

or Other Network Statistics

For determination of the structures in network systems with long life time, both

system size dependency and cooling schedules play roles. In the case of strong

system, long (and medium) ranged structure at the high temperature may remain in

the system after the vitrification. As a result, the system will show the fictive glass

transition temperature which depends on the cooling rate. Fixing of the high

temperature structure causes a problem of how to get good statistics for the network

structures. One may consider that extremely large number of runs is required to

obtain statistically meaning quantity in a glass.

For the statistics of the networks, required numbers of runs may depend on the

possible sub-structural units to be considered and their combinations. ForQn (where

n is the number of bridging oxygen in the SiO4 unit) distribution in lithium

disilicate, the system size (3456 particles) seems to be large enough to represent

any combinations of structural units of the networks, even when the exchanges

among structural units are slow. If one would like to examine the structures at

longer range such as the connectivity of the Qn units, larger size may be required.

Some differences of the distribution are found by each quenching schedule and

ensemble due to the existence of polyamorphism (see Sect. 9.2 for more details). In

a limiting case of high pressure region, the statistics of the distribution can be well

represented by the binomial distribution as a first approximation [134, 162] and this

resulted in good reproducibility of the structures and dynamics of ions in the glassy

state from the works of different researchers.

Thus the system sizes should be large enough for the purpose of simulations.

However, due to practical reasons such as the calculation time, the required storage

and the cost, extremely large system is not necessarily recommended. One should

consider the balance of several factors to choose the condition of simulations.
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8.5.2 Equilibration and Cooling Schedules in the MD
Simulation of Glasses

Generally, different length scale motions have different time scales and therefore

larger system requires longer equilibration time. Some characteristics observed

near the glass transition of the system can be understood by existence of these

different time scales of substructures.

When the temperature or pressure of the system is changed, shorter length scale

motion of local structure can rapidly follow it, while the longer length scale motion

of long ranged structure occurs after that. For example, formation of glass starts from

short length scale, and spreads to the long length scale [163]. As a result, the system

near Tg shows some cooling rate dependence. Actually, Vollmayr et al. [164] found

that the glass transition temperature Tg in silica is in accordance with a logarithmic

dependence on the cooling rate γ. The rate γ seems to have a much more marked

effect on the radial distribution function, the bond-bond angle distribution function,

the coordination numbers, and the distribution function for the size of the rings, than

density and thermal expansion coefficients. Recently, Forero-Martinez et al. [165]

found the trend such as Tg(vol)> Tg(ene) (vol and ene stand for volume and energy,

respectively.) for the glass transition temperatures in ionic liquids and it was

rationalized in terms of the different relaxation times of energy and volume. It was

pointed out that the volume is an intrinsically N-body property, depending on the

relative position of far-away particles, while energy depends primarily on the local

arrangement of particles, whose relaxation in response to temperature variations is

faster than in the case of volume. As a result, energy provides an estimate of Tg
somewhat less affected than Tg(vol) by fast quenching rates. Thus the cooling

schedule should be designed with considering the different length scales. It is

probable that reproducibility of the glass transition temperature becomes better, if

the systemwasmaintained just above the glass transition regimes for a long time and

then the system was cooled down further. In this condition, long (and medium)

ranged structures are equilibrated enough and glass transition temperature is deter-

mined mainly by the short length scale structures.

8.5.3 Ensembles Used in the Simulations of Super-Cooled
Liquid, Glass, and in the Treatment of Glass Transition

Mostly experiments have been done under constant pressure conditions; while

constant energy condition (micro canonical ensemble) is obtained in MD, as long

as one does not use modification by additional degrees of freedom. Therefore, the

extended ensembles are useful for direct comparison of MD and experiments for

some purposes. However, details of the thermodynamics (and its fluctuation) and

motion of particles near the glass transition regimes depends on the ensemble used.

Therefore suitable conditions should be chosen dependent on the purpose.
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When the system is sensitive for thermodynamic condition in the preparation of

glass, question arises is what condition should be used in the study of glass

transition. So far, many MD works for the glass transition seem to be done in the

fixed volume condition and structures prepared in such a manner are not the same as

that obtained at ambient pressure. There are reasons to select such conditions.

Binder [166] pointed out that “It is essential to carry out simulations for examining

the glass transition at constant density (taken from experiment) and not at constant

pressure, because in the latter case, there is a too strong dependence of the

simulated properties on the cooling rate of the simulation.” It seems to be reason-

able for those with this point of views. Still one may ask how the system depends on

the volume change during the cooling schedule, because the strong dependence can

be characteristics of the glass transition.

As will be shown for the Qn distribution of the network of the silicates (see Sect.

9.2), it depends on the pressure or volume of the system considerably. This is

explained by the fact that a local structural unit has its own specific volume as

already mentioned. Furthermore, the system may show polyamorphism [167] in the

certain region of the phase-diagram [134]. Therefore, the resultant structure of

glasses depends on the path on the P-V-T diagram during the cooling schedules.

Since the different ensemble causes differences in the pathway and direction of

the fluctuation on the phase-diagram during the non-equilibrium relaxation as

shown for SC model [45, 46, 168], caution should be paid to the ensembles used

during the cooling schedules.

Thus, one of the possible choices comparable to experiments may be the

following conditions. The cooling is performed by constant pressure conditions

with temperature scaling or gradual changes in temperatures and the following run

is performed in the NVE condition at each target temperature and under a target

pressure. If the temperature spontaneously increases during NVE runs, it means the

system is under the non-equilibrium relaxation (aging) [45]. Therefore, further

control of temperature may be necessary during this period. An NPT ensemble

will be also useful, if the overlap with the aging is small or distinguished clearly.

8.5.4 Sampling of Structures and Dynamics Near the Glass
Transition Regimes and Glasses

For adequate sampling of the structure of glasses and jump motions including

cooperative ones, long time scale simulations and large system size are required

especially near the glass transition regimes. Here adequate sampling means that the

trajectories cover whole region in the phase space. In other words, the effective

sampling is concerned with the “ergodicity” of the system. For MD performed for a

limited time scale, is this condition achieved? Is the system trapped in a certain

position in the phase space? Fortunately as shown in Sect. 9.9, the transport
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properties of ions obtained MD are comparable to the experimental ones and such

sampling seems to be possible. This is understandable as discussed in the following

subsections.

8.5.5 Non-ergodicity of the Dynamics for Network Former

At first, we consider the case of network former in the silicate glass as an example.

Since the reconstruction of Si-O bonding is a slower process than ionic motion, it

will be more affected by the cooling rate and the characteristics of the structure in

the molten state will remain in the structures of glasses. That is, their structures are

affected by the fictive temperature as known in experiments. Due to this reason,

network structure represented by Qn (n means number of bridging oxygen atoms in

a SiO4 unit) distribution shows large fluctuations in each quenching run. However,

the rearrangement of Si-O bonding is relatively fast process above the glass

transition temperature (for example at 1000 K in lithium disilicate, rearrangement

occurs within several tens ps), in the conventional MD system with a periodic

boundary condition. Thereby one can obtain quasi-equilibrated Qn distribution,

which is approximately represented by the binomial distributions. This means

that the different substructures of the network is mixed well and can be sampled

enough in these systems. (See Sect. 9.2 for more details for the observed Qn

distribution). If one examined the structure of longer length scale (such as rings),

larger system size and longer relaxation time may be required. However, at least for

examining the ionics in the system, non-ergodicity of the network structure does not

cause severe problems. If suitable cooling schedules are used, reproducibility of

dynamics is also good. (See Sect. 9.9 for the comparison of ion dynamics in MD

and experiments.) This fact implies that the effect of rapid cooling rate in MD is

compensated by the system size effect with periodic boundary conditions at least

partially.

8.5.6 Relation Between Ion Dynamics and Chaos

Even for ionic motion, obtaining good statistics in slow dynamics is sometimes a

difficult task due to strong heterogeneity with intermittency of the jump motions. At

first, here we discuss how ion dynamics are related to the deterministic chaos to

understand such characteristics of ionic motions. In the super-cooled liquid states or

in the glass, the motion of ions occurs through jump motions among ionic sites (see

Sect. 2.4 for examples of such motions in ionic systems). Larger fluctuation of the

ion dynamic is observed compared with simple liquids. Similar situation occurs in

the ionic liquids, molten salt, crystals, bio-materials, colloidal systems and so on.

Strong heterogeneity with intermittency mentioned above is related to the

deterministic character of the motion.
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Researchers may encounter such motion even in a simple system such as the SC

model [46] or the Lennard-Jones model [168, 169]. Simonazzi and Tenenbaum

[169] have reported that the kinetic energy fluctuations exhibit an anomalous

behavior in LJ microcrystals at low temperature and attributed them due to weak

chaos. Deterministic nature of the system resulted in the intermittent and sporadic

behaviors [171] frequently observed near the glass transition regimes.

8.5.7 Sampling of Rare Event with Dynamic Heterogeneity-
Ergodicity of Ionic Motion

For ionics in the glassy state, system shows exchanges between vast or laminar

states and cooperative motions of several ions emphasize such a behavior [172]. For

averaging such properties, many independent initial positions and/or wide time

window are required [173], if the calculation resources and times allow it to be

performed. Deterministic behaviors of the system are also found in extended

ensembles. Holian et al. [174] have pointed out that the Toda “demon” is hidden

in the Nosé-Hoover thermostat, which can cause the noncanonical undulations.

Therefore, if one used extended dynamics, it is better to check if the dynamics are

affected by it or not. In the case of slow dynamics, sampling of the rare events such

as cooperative motions of several ions is always problematic [17, 171]. It also

means the difficulty of averaging the heterogeneous dynamics.

How can we cover the wide region of the phase-space and how can we check it?

One possible method to cover the wide phase-space is using a lagged time series as

shown below. To reduce the effect of fluctuation of dynamic heterogeneity related

to the cooperative nature of jumps for statistic treatment of the system, average for

many number of lagged time series, r(t), r(tþ τ00),����� and r(tþ (m�1)τ00), can be

used for the analysis of MD data. Large time windows and many initial times are

required because MD trajectories have correlations between successive motions.

If the time window, mτ00, covered by the many initial times is wide enough, long

correlated motion with strong dynamic heterogeneity can be smoothed out. This

procedure using lagged time series is similar to the “embedding” [175, 176] to find

out the deterministic chaos in the time series. That is, the procedure can cover the

trajectories in the phase-space.

Once sampling time is long enough with wide time windows, results of transport

properties of ions obtained by different runs starting from different configurations

or those by different researchers are comparable when the same potential model and

comparable cooling schedule was used. This suggests that the long time ionic

motion in ionically conducting glasses has “ergodicity” at least approximately,

once the whole phase-space structure can be covered during the observation time.

By this method, one can reproduce well the transport properties such as diffusion

coefficient of ions.
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Exceptional case is observed at quite low temperatures, where the aging

(non-equilibrium relaxation) overlaps the observed dynamics. If permanently

trapped particle exists, non-ergodicity of the dynamics might be found.

Of course, accumulation of independent runs is one of the possible choices for

the sampling method. However, how may runs are required for this kind of

sampling?

In Fig. 8.5, the van Hove functions of cations in the ionic liquid, EMIM-NO3

obtained at 370 K, which shows a medium degree of heterogeneity is compared

with the randomly sampled data from the original curve in (a). The shape strongly

depends on the number of the samples, NS. Many independent samples are required
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Fig. 8.5 (a) Distribution curve taken from the self-part of the van Hove functions of cations in

EMIM-NO3 at 370 K at 2.5 ns determined by using many lagged time series. (b)–(g) Reproduc-
ibility of the functional form by random sampling from the original distribution, where Ns data

points are used. Many data points are necessary to reproduce the original functional form
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to reproduce the original curves including power law tail and an exponential

truncation.

In Fig. 8.6, the mean squared displacement at 2.5 ns calculated from reproduced

distributions was plotted against NS. Error bars are for three or four examples with

the same Ns. For obtaining the mean value, ~104 of NS may be enough; while to

reproduce the functional form in details, more than 105 independent samples are

required. More heterogeneous the system, the larger number of samples will be

required. It is not easy to do so many runs and furthermore, independent short time

runs are not necessarily better than the small number of long runs to understand the

dynamics of the system. This is because they cannot cover the low frequency mode,

which is responsible for the transport properties of the glass and they cannot recover

the functional form concerned with the slow dynamics. Long time run is also useful

for sampling of rare events. If the observation time is not long enough, it is difficult

to observe the rare events such as correlated motion of ions of long time scales in

spite of the fact that its contribution to the dynamic properties are non-negligible.

For the single particle motions, sampling for the space can be done by many ions

spread out in the system. Therefore the average can be taken for many ions.

Existence of the large fluctuation is more serious problem for the collective motion

compared with the single particle motion. For example, enhanced heterogeneity

seems to be observed for molecular motion in bio-systems, where a small number of

molecules or units tend to be treated.

The cooling rate dependency of ion dynamics is smaller compared with that of

network [177] due to higher relaxation rate, but still it is non-negligible when it is

accompanied with the relaxation of networks. (See Sect. 9.9.)

Fig. 8.6 Dependence of

mean squared displacement

on number of random

sampling, NS. Error bars are

obtained from three or four

runs using different random

numbers. Distribution is

taken from the same

original function shown in

Fig. 8.5a
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8.6 Non-equilibrium Molecular Dynamics and Reverse
Non-equilibrium Molecular Dynamics

In slow dynamics, it is not easy to attain the region of constant transport coefficient

in MSD or other dynamic properties. In such a case, Non-Equilibrium Molecular

Dynamics, NEMD can be useful. In this method, the system is treated by the

external force such as that giving rise to shear viscosity [178]. Reverse

Non-Equilibrium Molecular Dynamics [179, 180], RNEMD, is also useful for

investigating the transport properties of glass-forming systems, because it provides

faster convergence than the usual numerical non-equilibrium or equilibrium

methods. The RNEMD method is based on the phenomenological relation:

JZ pxð Þ ¼ �η
∂vx
∂z

� �
; ð8:89Þ

where ∂vx
∂z

	 

is the shear, JZ( px) is the transverse momentum flux, and η is the shear

viscosity. In this method, different from the usual techniques, JZ( px) is imposed and

the shear is measured.
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71. M.G. Del Pópolo, G.A. Voth, J. Phys. Chem. B108, 1744 (2004)

References 411



72. T.I. Marrow, E.J. Maginn, J. Phys. Chem. B106, 12807 (2002)

73. J.N.C. Lopes, J. Deschamps, A.A.H. Pa’dua, B108, 2038 (2004)

74. A.C.T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, W.A. Goddard III, J. Phys.

Chem. 107, 3803 (2003)

75. H. Manzano, S. Moeini, F. Marinelli, A.C.T. van Duin, F.-J. Ulm, R.J.-M. Pellenq, J. Am.

Chem. Soc. 134, 2208 (2012)

76. J. Habasaki, M. Ishikawa, Phys. Chem. Chem. Phys. 16, 24000 (2014)

77. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, J. Hermans, in Intermolecular Forces,
ed. by B. Pullman (Reidel, Dordrecht, 1981), p. 331

78. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)

79. M.W. Mahoney, W.L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)

80. S.W.A. Rick, and references therein. J. Chem. Phys. 120, 6085 (2004)

81. J. Zielkiewicz, J. Chem. Phys. 123, 104501 (2005)

82. M.W. Mahoney, W.L. Jorgensen, J. Chem. Phys. 114, 363 (2001)

83. V.A. Bakaev, W.A. Steele, J. Chem. Phys. 111, 9803 (1999)

84. L. Verlet, Phys. Rev. 159, 98 (1967)

85. In the symplectic integrator, time propagator is decomposed into a product of easily obtain-

able propagators, where each time evolution can be solved rigorously. The methods are

known to conserve energy for long time; J.M. Sanz-Serna, Proceedings of the International
Congress of Mathematicians, Z€urich, Switzerland 1994 © (Birkhäuser Verlag, Basel, 1995)
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