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Abstract. When two social groups merge, members of both groups
should socialize effectively into the merged new entity. In other words,
interpersonal ties should be established between the groups to give mem-
bers appropriate access to resource and information. Viewing a social
group as a network, we investigate such integration from a computational
perspective. In particular, we assume that the networks have equipo-
tent nodes, which refers to the situation when every member has equal
privilege. We introduce the network integration problem: Given two net-
works, set up links between them so that the integrated network has
diameter no more than a fixed value. We propose a few heuristics for
solving this problem, study their computational complexity and compare
their performance using experimental analysis. The results show that our
approach is a feasible way to solve the network integration problem by
establishing a small number of edges.

1 Introduction

All social groups evolve through time. When two social groups merge, new rela-
tions need to be set up. Take, as an example, a merger between two companies.
The success of mergers and acquisitions of companies often hinges on whether
firms can socialize employees effectively into the merged new entity [1]. Therefore
a big challenge faced by the top managers of both companies is how to integrate
the two companies to ensure coherence and efficient communication. This paper
approaches this challenge from a computational perspective. To motivate our
formal framework, we make three assumptions: (1) the integration takes place
assuming equipotency of nodes; (2) creating weak ties between the networks can
be encouraged and forced; and (3) structural properties such as distance provide
a measure of effective communication and resource accessibility.

The first condition assumes the networks follow peer-to-peer relational
dynamic, which refers to social structures where information and resources are dis-
tributed. In such a social structure, as discussed by Baker in [3], members have no
formal authority over each other, and have equal privileges regardless their roles
[5]. Examples of such social groups include volunteer organizations, teams of scien-
tists, and companies that embrace a holacracymanagement style [16]. Baker claims
that in order for such a peer-to-peer network to operate efficiently, there must be
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clear and open communication; moreover each individual should be aware of the
resources available from other nodes.

The second condition arises from the nature of interpersonal relations. Social
networks are usually the result of complex interactions among autonomous indi-
viduals whose relationships cannot be simply controlled and forced. Ties between
people differ by strength; while strong ties denote frequent interactions which
form a basis for trust, weak ties plays an important role in information flow. In
business networks, although a firm is seldom in control of strong relationships
among its employees [15], it can normally prepare the ground for future weak
ties: conferences and meetings, group assignments, special promotions etc. can
be instruments of bringing people together.

The third condition discusses how the integrated network provides members
with appropriate access to resource and information.Distance is an important fac-
tor of information dissemination in a network [8]: a network with a small diameter
means that members are in general close to each other and information could be
passed from one person to any others within a small number of steps [17]. This
argument has been used to explain how small-world property – the property that
any node is reachable from others via only a few hops – becomes a common feature
of most real-world social networks [2].

Extending these ideas, we define network integration as the process when one
or more edges are established across two existing networks in such a way that
the integrated network has a bounded diameter Δ. Furthermore, a new edge
always costs effort and time to establish and maintain. Thus, we also want to
minimize the number of new edges to be created during the integration process.
We propose two heuristics to perform network integration. The first is a naive
greedy method that iteratively creates edges to minimize the diameter of the
resulting network. The second method separately discusses two cases: (1) When
Δ is at least the diameter of the original networks, we create edges by considering
center and peripheral nodes in the networks. (2) When Δ is smaller than the
original diameter of the original networks, we first reduce the distance between
nodes in the respective networks and then apply the procedure in case (1). The
experiments verify that, our second heuristic significantly outperforms the first,
both in terms of running time, and in terms of the output edge set.

The rest of the paper is organized as follows: Sect. 2 presents the formal frame-
work of network integration and shows that it is a computationally hard problem.
Section 3 presents a naive greedy heuristic Naive. Section 4 discusses our Integrate
algorithm. Section 5 presents experimental results on our algorithms using both
generated and real-world data. Section 6 discusses related works before conclu-
sion in Sect. 7.

2 Preliminaries and Problem Setup

We define a network as an undirected unweighted connected graph G = (V,E)
where V is a set of nodes and E is a set of (undirected) edges on V . We write an
edge {u, v} as uv. A path (of length k) is a sequence of nodes u0, u1, . . . , uk where
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uiui+1∈E for any 0≤ i<k. The distance between u and v, denoted by dist(u, v),
is the length of a shortest path from u to v. The eccentricity of u is ecc(u) =
maxv∈V dist(u, v). The diameter of the network G is diam(G) = maxu∈V ecc(u).
The radius rad(G) of G is minu∈V ecc(u). For two sets V1, V2, we use V1⊗V2 to
denote the set of all edges {uv | u ∈ V1, v ∈ V2}.

Definition 1. Let G1=(V1, E1) and G2=(V2, E2) be two networks. Fix a set of
edges E ⊆ V1⊗V2. We define the integrated network of G1, G2 with edge set E
as the graph G1 ⊕E G2 = (V1 ∪ V2, E1 ∪ E2 ∪ E).

When integrating two organizations, each person normally has constraints over
who he or she may connect to; this is determined largely by privilege, i.e., the type
of social inequality created from difference in positions, titles, ranks, etc. [5]. In this
paper we focus on the simpler case of social networks with equipotent nodes, and
therefore assume all nodes have unbounded and equal privilege. Take an integer
Δ ≥ 1, we propose the network integration problem NIΔ(G1, G2):

INPUT. Two networks G1 = (V1, E1), G2 = (V2, E2) where V1 ∩ V2 = ∅.

OUTPUT. A set E ⊆ V1 ⊗ V2 such that diam(G1 ⊕E G2) ≤ Δ.
In the rest of the paper we investigate NIΔ(G1, G2) on two networks G1 =

(V1, E1) and G2 = (V2, E2) where V1 ∩ V2 = ∅. The problem naturally depends
on the value of Δ. When Δ = 1, it is easy to see that NIΔ(G1, G2) has a solution if
and only if both networks G1, G2 are complete. When Δ ≥ 2, since G1⊕V1⊗V2 G2

has diameter 2, NIΔ(G1, G2) guarantees to have a solution.
Throughout, we assume Δ ≥ 2. We are interested in a solution E to the

problem NIΔ(G1, G2) that contains the least number of edges; such an E is
called an optimal solution. The brute-force way of finding optimal solutions for
NIΔ(G1, G2) examines all possible sets of edges until it finds a required solution
set E. This will take time 2O(|V1|·|V2|). In fact, obtaining optimal solutions is
computationally-hard; the following theorem implies that this problem is unlikely
to be polynomial-time solvable.

Theorem 2. The problem of deciding, given two graph G1, G2 and an integer
k > 0, whether NIΔ(G1, G2) has a solution set E with cardinality ≤ k, is hard
for W[2], the second level of the W-hierarchy.

Proof. Let G = (V,E) be a graph. A distance-r dominating set of G is a set S of
nodes such that for all u ∈ V , there is some v ∈ S with dist(u, v) ≤ r. As shown
in [11], finding the smallest distance-r dominating set in G with diameter r + 1
is complete for W[2] (for any fixed r). In fact, the W[2]-hardness also holds if G
is diametrically uniform, i.e., if all nodes have the same eccentricity.

Now let G1 = (V1, E1) be a diametrically uniform graph with diameter Δ ≥ 2
and let G2 be a graph that contains only a single node {u}. For any distance-(Δ−
1) dominating set S ⊆ V1, the set of edge S ⊗ {u} is a solution of NIΔ(G1, G2).
Conversely, suppose S ⊆ V1 is not distance-(Δ − 1) dominating. Then there is
a node w ∈ V1 that is at distance at least Δ away from any node v ∈ S. This
means that dist(w, u) in the integrated network is at least Δ + 1 and S is not



42 A. Moskvina and J. Liu

a solution of NIΔ(G1, G2). Thus NIΔ(G1, G2) has a size-k solution if and only if
G1 has a size-k distance-(Δ − 1) dominating set. 
�

3 The Naive Greedy Method

We thus turn to heuristics for finding small solution sets of NIΔ(G1, G2). As a
first step we introduce a greedy heuristic that approximates a solution.

Definition 3. A set of edges E ⊆ V1 ⊗ V2 is called a naive greedy set
if we can write it as {e1, . . . , e�} such that for all 1 ≤ i ≤ �, and e′ ∈
(V1⊗V2) \{e1, . . . , ei−1}, diam(G1 ⊕{e1,...,ei} G2) ≤ diam(G1 ⊕{e1,...,ei−1,e′} G2).
A naive greedy solution to NIΔ(G1, G2) is a solution that is a naive greedy set.

As its name suggests, a naive greedy set can be constructed incrementally using a
greedy strategy that locally optimizes diameter in the integrated network. Naive
greedy solutions to NIΔ(G1, G2) are not necessarily optimal, and vice versa:

Example. Let both G1 and G2 be paths of length 5, i.e., G1 contains nodes
a1, . . . , a5 while G2 contains nodes b1, . . . , b5 with edges aiai+1, bibi+1 for any
1 ≤ i < 5. Suppose Δ = 3. The only optimal solution E contains four edges, i.e.,
E = {a1b3, a3b1, a3b5, a5b3}. However, for any edge e ∈ E, diam

(
G1 ⊕{e} G2

)
=

7, while diam
(
G1 ⊕{a3b3} G2

)
= 5. Thus E is not a naive greedy solution, nor

will any naive greedy solution be optimal.

Theorem 4. There exists an algorithm NaiveΔ(G1, G2) that runs in time O(n6)
and computes a naive greedy solution for NIΔ(G1, G2) where n = |V1 ∪ V2|.
Proof. The algorithm NaiveΔ(G1, G2) iteratively adds edges e1, e2, . . . to the
solution set E. It also computes a matrix D: (V1 ∪ V2)2 → N that represents the
distance between nodes in the current integrated graph. See Procedure 1

Since Δ ≥ 2, the algorithm will terminate. Furthermore, the set of edges
created by the algorithm is a naive greedy solution. At each iteration, computing
each matrix De takes time O(n2); computing F takes O(n2). Since there are
O(n2) edges in (V1⊗V2) \Ei, this iteration runs in O(n4). Since there are at
most n2 iterations, the algorithm takes times O(n6). 
�
We remark that when Δ > 2, the maximum number of edges required is O(n),
and hence NaiveΔ(G1, G2) will take O(n5). The algorithm NaiveΔ(G1, G2) is still
too inefficient in most practical cases and hence in subsequent sections we discuss
more efficient heuristics for NIΔ(G1, G2).

4 Efficient Algorithms for NIΔ(G1, G2)

We separately discuss two cases: (1) when the integrated network’s diameter is
at least the diameters of the given networks, i.e. Δ ≥ max{diam(G1), diam(G2)};
and (2) when we improve the diameter, i.e. Δ < max{diam(G1), diam(G2)}.
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Procedure 1. NaiveΔ(G1, G2); Output E

Initialize D (for the disjoint union of G1, G2); Set E := ∅

while diam (G1 ⊕E G2) > Δ do
for e := xy ∈ (V1⊗V2) \ E do

for (u, v) ∈ (V1 ∪ V2)
2 do � define a temporary De : (V1 ∪ V2)

2 → N

De(u, v) := min{Di(u, v), Di(u, x) + Di(y, v) + 1}
end for
Set diame := max{De(u, v) : (u, v) ∈ (V1 ∪ V2)

2}.
end for
Set F := {e ∈ (V1⊗V2) \ Ei | diame ≤ diame′ for all e′ ∈ (V1⊗V2) \ Ei}.
Pick a random edge ei ∈ F and set D := Dei , E := E ∪ {ei}

end while

4.1 The Case When Δ ≥ max{diam(G1), diam(G2)}
Firstly, when integrating two networks, it makes sense to establish a link between
the most central persons in the networks, as they have the closest proximity
to other nodes. Furthermore, if x, y are nodes that are furthest apart in the
integrated network, they are unlikely to communicate effectively thanks to their
shear distance; this, in a certain sense, represents a form of structural hole [4].
Hence in integrating these two networks, it makes sense to connect x, y by an
edge. Formally, the center C(G) of a graph G = (V,E) is the set of all nodes
that have the least eccentricity, i.e., C(G)={v ∈ V |ecc(v) = rad(G)}. A pair of
nodes (x, y) in G forms a peripheral pair, denoted by (x, y)∈P(G), if dist(x, y)=
diam(G). Our heuristic first creates an edge between two nodes that are in C(G1)
and C(G2) respectively, and then iteratively “bridges” peripheral pairs.

Definition 5. A set E ⊆ V1 ⊗ V2 is called a center-periphery set if we can
write it as {e0, . . . , e�} such that (1) e0 ∈ C(G1) ⊗ C(G2); and (2) for all
1≤ i≤�, ei ∈ P

(
G1 ⊕{e0,e1,...,ei−1} G2

)
. A center-periphery solution is a solution

to NIΔ(G1, G2) that is also a center-periphery set.

Clearly, if Δ>rad(G1) + rad(G2), then for any uv ∈ C(G1) ⊗ C(G2), we have
diam

(
G1 ⊕{uv} G2

) ≤ max{diam(G1), diam(G2), rad(G1) + rad(G2) + 1} ≤ Δ.
Thus {uv} forms a solution of NIΔ(G1, G2). In this case, center-periphery solu-
tions coincide with optimal solutions.

Theorem 6. There exists an algorithm CtrPerΔ(G1, G2) that has O(n4) run-
ning time and computes a center-periphery solution for NIΔ(G1, G2) assuming
Δ ≥ max{diam(G1), diam(G2)}, where n = |V1 ∪ V2|.
Proof. The CtrPerΔ(G1, G2) algorithm also maintains a matrix D: (V1∪V2)2 → N

such that D(u, v) is the distance between u, v. The eccentricity of each node can
be easily extracted from D allowing the algorithm to identify the centers C(G1)
and C(G2), respectively. The algorithm then iteratively adds edges that connect
peripheral pairs in the integrated graph until its diameter becomes at most Δ.
See Procedure 2.
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Suppose the algorithm creates a set E ⊆ V1⊗V2 and diam (G1 ⊕E G2) > Δ.
The algorithm will update the matrix D and then picks (u, v) with the largest
D(u, v). By definition of D, (u, v) forms a peripheral pair in G1 ⊕E G2. We
need to show that uv is a valid edge to add, that is, u, v cannot both lie in
one of V1 and V2. Indeed, if {u, v} ⊆ V1 or {u, v} ⊆ V2, then dist(u, v) ≤
max{diam(G1), diam(G2)} ≤ Δ < diam (G1 ⊕E G2). Thus uv ∈ V1 ⊗ V2. Now
either E∪{uv} is a solution, or diam

(
G1 ⊕E∪{uv} G2

)
> Δ. In the latter case the

algorithm repeats the iteration to find another peripheral pair. Thus the algo-
rithm will terminate and produce a center-periphery solution to NIΔ(G1, G2).

It takes O(n3) to initialize the matrix D using Floyd-Warshall algorithm. At
each iteration, the algorithm takes O(n2) to update D and finds a peripheral
pair. Since there are at most n2 iterations, the algorithm takes time O(n4). 
�

Procedure 2. CtrPerΔ(G1, G2): Δ ≥ max{diam(G1), diam(G2)}; Output E

Initialize the matrix D so that D(u, v) = dist(u, v) in the un-integrated graphs
Take a node u ∈ C(G1) and a node v ∈ C(G2)
Set e := uv, E := {e}
while (diam (G1 ⊕E G2) > Δ) do

for (x, y) ∈ (V1 ∪ V2)
2 do � define D′ : (V1 ∪ V2)

2 → N

D′(x, y) := min{D(x, y), D(x, u) + D(v, y) + 1} where e = uv
end for
D := D′ � update matrix D
Pick (u, v) with the largest D(u, v). Set e := uv and E := E ∪ {e}

end while

4.2 The Case When Δ < max{diam(G1), diam(G2)}
When the diameter bound Δ is less than the diameters of the two component
networks G1, G2, the goal is to improve the connectivity of each original network
through integration. In other words, the integration should “bring people closer”.
In this case CtrPerΔ(G1, G2) no longer applies as it is possible for both nodes in
a peripheral pair to lie in the same component graph G1 or G2, forbidding us
to create the edge xy. We therefore need to first decrease the distance between
nodes in each G1 and G2. Suppose a, b are two people in an organization with
large distance. When their organization merges with another organization, a
and b can be brought closer if they both know a ‘third person’ c in the other
organization, i.e., the ties ac and bc allows a, b to be only 2 steps away.

Definition 7. Let E ⊆ V1⊗V2 be a set of edges and i ∈ {1, 2}. The diameter
of Gi relative to E is the maximum distance between any two nodes in Vi in
the integrated network G1 ⊕E G2; we denote this by diamE(Gi). A set of edges
E ⊆ V1⊗V2 is a Δ-bridge if diamE(Gi) ≤ Δ for both i ∈ {1, 2}.
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Theorem 8. For any Δ ≥ 2, there exists an algorithm BridgeΔ(G1, G2) that
runs in time O(n4) and computes a Δ-bridge E, where n = |V1 ∪ V2|.
Proof. The algorithm has two phases. In phase i ∈ {1, 2}, it makes diamE(Gi)≤
Δ. Phase i consists of several iterations; at each iteration, the algorithm takes
a pair (u, v) ∈ Vi with maximum distance and a node w ∈ V3−i, and builds two
edges uw and vw. See Procedure 3. Throughout, the algorithm computes and
maintains a matrix D: (V1 ∪ V2)2 → N such that D(u, v) is the current distance
between nodes u, v. When a pair of new edges uw, vw are added, the new distance
D′(x, y) between any pair of nodes (x, y) ∈ V 2

i is calculated as follows:

D′(x, y) = min{D(x, y),D(x, u)+D(w, y)+1,D(x, u)+D(v, y)+2,
D(x, v)+D(w, y)+1,D(x, v)+D(u, y)+2} (1)

In the worst case, the algorithm adds edges uw, vw for any pair (u, v) ∈ V 2
i where

i ∈ {1, 2}. Thus the algorithm terminates in at most n2 iterations. Finding nodes
u, v, w and updating the matrix D at each iteration takes time O(n2). Therefore
the total running time is O(n4). 
�

Procedure 3. BridgeΔ(G1, G2): Δ < max{diam(G1), diam(G2)}; Output E

Initialize the matrix D so that D(u, v) = dist(u, v) in the un-integrated graphs
Initialize E := ∅

for i = 1, 2 do � The two phases
while diamE(Gi) > Δ do

Take a pair of nodes u, v ∈ Vi with maximum D(u, v)
Take a node w in V3−i

E := E ∪ {uw, wv}
for (x, y) ∈ (V1 ∪ V2)

2 do � define D′ : (V1 ∪ V2)
2 → N

Compute D′(x, y) as in (1)
end for
D := D′ � update matrix D

end while
end for

Remark. Suppose the BridgeΔ(G1, G2) algorithm adds edges uw, vw. Here w
plays the role as a bridging node that links u and v. Naturally, the choice of
w affects the performance of the algorithm: by carefully choosing the bridging
node w, we may reduce the number of new ties that need to be created. Imagine
that G1, G2 represent two organizations.

1. To allow smooth flow of information between the two organizations and avoid
information gate keepers, we should have many bridging nodes in G2.

2. A node with a higher degree means it has better access to resource and
information, and thus is a more appropriate bridging nodes.
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Therefore, we introduce the following heuristics to BridgeΔ(G1, G2): Suppose the
algorithm has selected a set E of edges and picked (u, v) ∈ Vi where i ∈ {1, 2}
with the largest D(u, v). To pick a bridging node w:

Heuristic 1. For any node w∈V3−i, let b(w)=|{v | wv∈E}|. The chosen bridging
node w is taken from Bi={w∈V3−i | b(w)≤b(w′) for all w′∈V3−i}.

Heuristic 2. The chosen bridging node w has the highest degree in Bi.

We now extend BridgeΔ(G1, G2) to an algorithm that solves NIΔ(G1, G2).

Algorithm 4. IntegrateΔ(G1, G2); Output E

Run BridgeΔ(G1, G2) to obtain a set E ⊆ V1 ⊗ V2

Run CtrPerΔ(G1, G2) to add edges to E (instead of building E from scratch)

Theorem 9. The IntegrateΔ(G1, G2) algorithm runs in time O(n4) and com-
putes a solution to NIΔ(G1, G2) for any networks G1, G2 and Δ ≥ 2, where
n = |V1 ∪ V2|.

5 Experiments and Case Studies

To test the algorithms, we generate two types of random graphs: the first (NWS)
is Newman-Watts-Strogatz’s small-world networks, which have small average
path lengths and high clustering coefficients [13]. The second (BA) is Barabasi-
Albert’s preferential attachment model which produces scale-free graphs whose
degree distribution of nodes follows a power law [2]. In Figs. 1 and 2, we integrate
two graphs of each type using the IntegrateΔ(G1, G2) algorithm. The statistics
for each graph is shown in the table below. For the NWS graphs, Δ ranges from
6 to 11, while for the BA graphs, Δ ranges from 4 to 7. The figures show how the
two networks dissolve into each other with decreasing Δ: when very few edges
link the two networks, the network exhibits a clear community structure; this,
however, becomes less clear as more edges are created.

NWS Graph 1 NWS Graph 2 BA Graph 1 BA Graph 2

Number of nodes/edges 50/77 50/78 50/141 50/141

Diameter/radius 7/5 8/5 4/3 4/3

Experiment 1 (Running times). We implement both algorithms and record
their running times on 300 generated NWS and BA networks. The results indicate
that IntegrateΔ(G1, G2) outperformsNaiveΔ(G1, G2) significantly,with the former
runsmore than3000 times faster onnetworkswith1000nodes to adda single edge in
the solution set. Figure 3 plots how much longer (on average)NaiveΔ(G1, G2) takes
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Fig. 1. Integrating two NWS networks with different Δ

Fig. 2. Integrating two BA networks with different Δ

to add a single edge to the solution set compared to IntegrateΔ(G1, G2), against the
number of nodes in the networks.

Experiment 2 (Solution size). We compare the output of IntegrateΔ(G1, G2)
against the NaiveΔ(G1, G2) algorithm. While NaiveΔ(G1, G2) may output
smaller solutions when Δ is large, IntegrateΔ(G1, G2) is more likely to produce
smaller solutions as Δ decreases. Figure 4 plots the percentage of the cases where
IntegrateΔ(G1, G2) returns smaller sets. Note that IntegrateΔ(G1, G2) almost
always returns smaller sets whenever Δ < max{diam(G1), diam(G2)}. Figure 5
plots the average output size of IntegrateΔ(G1, G2) and NaiveΔ(G1, G2), against
absolute and relative values of Δ. Here, each graph consists of 100 nodes.
Even though NaiveΔ(G1, G2) may outperform IntegrateΔ(G1, G2) when Δ is
large, the difference is not very significant; as Δ decreases, the advantage of
IntegrateΔ(G1, G2) becomes increasingly significant.
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Fig. 3. The number of times NaiveΔ(G1, G2) runs slower than IntegrateΔ(G1, G2)
(Color figure online)

Fig. 4. The probability that IntegrateΔ(G1, G2) outputs smaller sets with varying Δ ∈
{d − 2, . . . , d + 5} where d = max{diam(G1), diam(G2)} (Color figure online)

Fig. 5. Comparing the IntegrateΔ(G1, G2) algorithm and the NaiveΔ(G1, G2) algo-
rithm: average number of edges with different parameter Δ (Color figure online)

6 Related Works

This paper studies the integration between two social networks of equipotent
nodes. This problem relates to several established topics in network science:

Firstly, strategic network formation aims to explain how a network evolves in
time [7]. A well known example along this line is on the rise of the Medici Family
in the XV century [14], which explains how inter-family ties shape political
structures. In a certain sense, the network integration problem can be regarded
as network formation between two established networks. However, the network
formation models are typically about the transformation within a single network,
while this paper initiates the perspective of integrating several different networks.

Secondly, the topic of interdependent networks aims to model a complex
environment where multiple networks interact and form a type of network of
networks [6]. The networks in such a complex environment are non-homogeneous,
i.e., the networks are of different types. For example, one may be interested in
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the interdependence between a telecommunication network and a transportation
networks and how such interaction affects robustness of the entire infrastructure.
The focus here is on robustness of the combined structure: how does a failure in
one network affects the other network. Compared to interdependent networks,
the problem in this paper involves homogeneous networks and concerns a type
of dynamic that ‘dissolves’ the two networks into one. This is more suitable for
the social context discussed in this paper.

A third related area is link prediction, which aims to infer potential ties
between nodes of a network [9]. Here, most approaches take into account sur-
rounding contexts such as homophily and maximum likelihood.

7 Conclusion and Future Works

This paper amounts to our effort to study integration of social networks from a
computational perspective, and is a continuation of our earlier work on network
socialization [12], where we study how an individual joins an established network,
in order to take an advantageous position in the network.

The simple formulation of the problem means that several natural limitations
exist: Firstly, the equipotency assumption restricts us to a special class of social
networks. In practice, individuals may have different constraints (e.g. titles, roles,
positions, etc.) forbidding certain ties to be created. Hence as a future work
we plan to enrich our framework by introducing privileges to nodes and study
how networks are integrated with privileged-based constraints on new edges to
be forged. Secondly, the paper focuses on optimising the number of new edges
between networks, which may not be the most crucial factor when merging social
groups. Indeed, every edge is established with certain cost; it may thus be an
interesting future work to develop a cost model for the establishment of ties in
a social network. Thirdly, the paper concerns with diameter of the integrated
network, which is a strong measure on access to resources and information; it
may make sense to consider other weaker notions. For example, a more relevant
measure of integration may be the distance from any node in one network to
any node in the other network, or the average distance between nodes. Lastly,
we would like to extend our notion of network integration to more elaborated
forms of networks. For example, in [10], a framework of hierarchical networks is
defined which incorporates both formal ties in an organization and information
ties. This framework allows the definition of a notion of power in a hierarchical
network. It is then natural to ask how power is affected during integration of
two hierarchical networks.
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