
Privacy-Preserving Ridesharing
Recommendation in Geosocial Networks

Chengcheng Dai1, Xingliang Yuan1,2, and Cong Wang1,2(B)

1 Department of Computer Science, City University of Hong Kong,
Hong Kong, China

{cc.dai,xl.y}@my.cityu.edu.hk
2 City University of Hong Kong Shenzhen Research Institute, Shenzhen, China

congwang@cityu.edu.hk

Abstract. Geosocial networks have received a lot of attentions recently
and enabled many promising applications, especially the on-demand
transportation services that are increasingly embraced by millions of
mobile users. Despite the well understood benefits, such services also
raise unique security and privacy issues that are currently not very
well investigated. In this paper, we focus on the trending rideshar-
ing recommendation service in geosocial networks, and propose a new
privacy-preserving framework with salient features to both users and
recommendation service providers. In particular, the proposed frame-
work is able to recommend whether and where the users should
wait to rideshare in given geosocial networks, while preserving user
privacy. Meanwhile, it also protects the proprietary data of recom-
mendation service providers from any unauthorised access, such as
data breach incidents. These privacy-preserving features make the pro-
posed framework especially suitable when the recommendation ser-
vice backend is to be outsourced at public cloud for improved ser-
vice scalability. On the technical front, we first use kernel density
estimation to model destination distributions of taxi trips for each
cluster of the underlying road network, denoted as cluster arrival pat-
terns. Then we utilize searchable encryption to carefully protect all the
proprietary data so as to allow authorised users to retrieve encrypted
patterns with secure requests. Given retrieved patterns, the user can
safely compute the potential of ridesharing by investigating the probabil-
ities of possible destinations from ridesharing requirements. Experimen-
tal results show both the effectiveness of the proposed recommendation
algorithm comparing to the naive “wait-at-where-you-are” strategy, and
the efficiency of the utilized privacy-preserving techniques.

1 Introduction

With the proliferation of smartphones, geosocial networks are gaining increas-
ing popularity for utilizing user-provided location data to match users with a
place, event, or person relevant to their interests, and to enable further socializa-
tion activities based on such information [1]. Based on geosocial networks, many
c© Springer International Publishing Switzerland 2016
H.T. Nguyen and V. Snasel (Eds.): CSoNet 2016, LNCS 9795, pp. 193–205, 2016.
DOI: 10.1007/978-3-319-42345-6 17

194 C. Dai et al.

promising on-demand transportation services have been enabled and increasingly
embraced by millions of mobile users. Among them, the trending ridesharing rec-
ommendation service has received lots of attentions, where users can submit their
sources and destinations to find other users that match their trips. Ridesharing is
particularly important for new on-demand transportation services such as Uber
and DiDi. Besides saving money for users, ridesharing also brings potential to
assuage traffic congestion and save energy consumption.

Despite the well understood benefits, such new services also raise unique
security and privacy issues that are currently not very well investigated. Take
the ridesharing recommendation service for example. Its recommendation mech-
anism depends on whether another passenger with the similar source and des-
tination can appear in time. Thus, it would inevitably demand constant access
to the users’ current locations and/or their intended destinations. Such personal
location data usually contain sensitive information, and should be always pro-
tected, as well recognised in the literature [11]. Besides, from the ridesharing
service provider’s perspective, the proprietary datasets, such as the recommen-
dation algorithms, and valuable score functions learned from mass of data with
data mining or machine learning techniques, are extremely valuable as well.
They are crucial digital assets to the recommendation services and should also
be strictly protected against any unauthorised access, especially given the rising
concerns of recent data breach incidents [3]. Considering more and more emerg-
ing geosocial applications are directly hosted at commercial public cloud that are
not necessarily within the trust domain of service providers, the security threats
on unauthorised access of such proprietary information are further exacerbated.

In light of these observations, in this paper we propose a privacy-preserving
framework for secure ridesharing recommendation with salient features to both
users and recommendation service providers. In particular, the proposed frame-
work is able to recommend whether and where the users should wait to rideshare
in given geosocial networks, while preserving user privacy. The user privacy
assurance hinges on the fact that all the data that leave from and arrive at the
user’s mobile devices are encrypted. Meanwhile, it also ensures that all the pro-
prietary data from the recommendation service provider will always be encrypted
during the service operations, and will never be exposed to any unauthorised
users. These privacy-preserving features make the proposed framework resilient
to data breach incidents at the service backend. They are also attractive when
the recommendation service backend is to be outsourced at public cloud for
improved service scalability, e.g., to satisfy the throughput and response time
requirement for real-time queries.

In our framework, to deliver good ridesharing recommendation services, we
exploit the fact that pick-ups and drop-offs of users’ daily trips usually follow
certain patterns. With the observation that user Alice may walk to some place
nearby or change her destination to a Point-of-Interest (POI) nearby to increase
her chance to rideshare, we investigate the probability for taxis to depart from
somewhere near Alice’s source towards somewhere near her destination. In par-
ticular, we first fragment the underlying road network into a number of road

Privacy-Preserving Ridesharing Recommendation in Geosocial Networks 195

clusters, and then model destination distributions of taxi trips for each clus-
ter, denoted as cluster arrival patterns, with kernel density estimation fusioned
with departure probabilities for expected higher user satisfaction, as explained
in Sect. 3. Based on these cluster arrival patterns, then we utilize off-the-shelf
searchable encryption technique to carefully protect all the proprietary data so
as to allow authorised users to retrieve encrypted patterns with secure requests.
These patterns are always encrypted and stored on the cloud server while answer-
ing for authorised on-demand encrypted requests from mobile users.

The operation of our proposed framework starts from the client application on
the user’s smartphone. Given possible waiting places and destinations of a user, a
secure query will be generated at the user client application, and then submitted
to the cloud server. Subsequently, the server securely searches over encrypted
patterns without decryption and returns encrypted result patterns. During this
procedure, the privacy of both patterns and requested cluster ids (i.e., user
source and destination information) are well-preserved. After decryption, the
client application computes the ridesharing probability based on the patterns. If
the potential to rideshare with others is not high enough for all nearby clusters,
Alice is recommended to take a taxi directly. Otherwise, the client application
highlights where to wait on the map for Alice. Thus in either cases, Alice can
save either time or money.

The main contributions are summarized as follows: 1. We design a privacy-
preserving recommendation framework to securely help users decide whether
and where to wait for ridesharing. It also protects service provider’s proprietary
data from unauthorised users during operations. 2. Experimental results show
the efficiency of the privacy-preserving techniques, and the effectiveness of the
recommendation comparing to the naive “wait-at-where-you-are” strategy.

The rest of this paper is organized as follows. Section 2 states the system
architecture, and Sect. 3 delineates the proposed privacy-preserving recommen-
dation scheme. Section 4 gives the security analysis of the proposed scheme.
Section 5 analyzes the performance. Section 6 discusses the related work. Finally,
Sect. 7 concludes this paper.

2 System Model

As shown in Fig. 1, the architecture consists of three different parties: the service
provider, the user and the cloud server. Service provider learns patterns with
data mining or machine learning techniques, and encrypts these patterns before
outsourcing them to the cloud. Users generate encrypted queries for certain
patterns according to their ridesharing requests. Cloud server sends encrypted
patterns to users in an “on-demand” manner. To enable search over encrypted
pattern, searchable symmetric encryption (SSE) is utilized to securely index
encrypted patterns. A secure pattern index will be uploaded as well.
Users. We consider authorised users with registration as prior work [5,18]. There
is no malicious user that either shares her key with others or generates unnec-
essary queries to steal information from the server. As a client application on a

196 C. Dai et al.

Encrypt

Raw Data
Cloud Server Users

Patterns

Encrypted Queries

Encrypted Patterns

Train

& Mine

Fig. 1. Our proposed system model

user’s smartphone, the city map is in the storage of the client application. When
a user submits a query, the client application on the user’s smartphone gener-
ates a secure search request to the cloud server. After receiving the encrypted
patterns from the cloud server, the client application computes the rideshar-
ing potential after decryption. If the user is recommended to rideshare, it will
highlight the corresponding road for each recommended cluster on the map.

Besides, the user specifies her willingness in the preference setting of the client
application, namely the maximum walking distance ds to a new place from her
source, the maximum walking distance de after she leaves the taxi to her own
destination and maximum waiting time tw at the new place for ridesharing.
Cloud Server. Sensitive patterns are encrypted and indexed before storing
on a cloud server. The server is deployed in the cloud to provide the privacy-
preserving recommendation service for a large number of real-time queries. In
this paper, we consider a “honest-but-curious” cloud server, i.e., the server acts
in an “honest” fashion, but is “curious” to infer and analyze the message flow to
learn additional information on the user request and the pattern information.
Problem Definition. In our recommendation application, the user specifies
her query as Q = (ID, timestamp, ls, ld), where id is user id, timestamp is when
the query is submitted, ls and ld are respectively the source and the destination
of the user. Given a query, we compute the potential of ridesharing and where
the user should wait based on ridesharing requirements. Alice can rideshare with
another passenger Bob if (i) the source of Bob is within her maximum walking
distance ds from her source ls (ii) the destination of Bob is somewhere within
her maximum walking distance de from her destination ld (iii) Bob submits
his request within waiting time tw. Recall that ds, de and tw are set as their
ridesharing willingness in the client application. For example, Alice can increase
her chance of ridesharing by increasing her waiting time tw.

When a user submits a query, the client application generates a search request
according to ridesharing conditions. The server returns encrypted patterns to the
client application. To allow an authorised group of users to search through the
patterns and prevent unauthorised access, the server cannot infer any sensitive
information of patterns from the encrypted storage before search and can only
learn the limited information about the requested patterns and the results.

3 Our Proposed Design

In this section, we discuss how to perform privacy-preserving ridesharing recom-
mendation with a third-party cloud server. To initialize the service, the service

Privacy-Preserving Ridesharing Recommendation in Geosocial Networks 197

provider distributes search request generation keys to authorised users. We here
assume the authorisation between the client application and the user is appro-
priately done on the smartphone. We discuss how to learn patterns (discussed in
Sect. 3.1) and make recommendation (discussed in Sect. 3.2) with machine learn-
ing techniques, and perform ridesharing recommendation in a privacy-preserving
way (discussed in Sect. 3.3).

3.1 Learning Patterns

Road Segment Clustering. Since modeling destinations of trips based on
single road is too dynamic, the underlying road network is grouped into road
clusters by applying k-means to the mid-points of road segments [16]. The cluster
of the mid-point is the cluster that the road segment belongs to, recorded as
ci = {r1, . . . , rN}. A grid index structure is built on the underlying road network.
Given a location (lon, lat), we can find out the road on which the location is
located and further get the cluster it belongs to. We category trip records into
groups according to which clusters their sources belong to. Each cluster makes
use of the corresponding group of records as samples to derive the kernel density
estimator about the probability for other passengers (or taxis) to depart from
somewhere in the cluster and have a given location (lon, lat) as their destination.
Kernel Density Estimation. For each cluster, given a trip record (ti, sourcei,
destinationi), we describe a training sample in the format xi = (loni, lati, ti)T ,
which is a 3-dimensional column vector with the longitude (loni) and latitude
(lati) and the time (ti), indicating a trip from somewhere in the cluster to
desinationi (loni, lati) happens at time ti

1. Intuitively ridesharing is related to
when the query is submitted since traffic directions in modern cities depend on
time. For example, traffics are likely to be from residencies to companies in the
morning and right way around in the evening. Thus pick-up time ti is taken into
consideration.

Let Xc = <x1,x2, . . . ,xn> be the samples for a certain cluster c that
follows an unknown density p. As described in [13], its kernel density esti-
mator over Xc for a new sample x is given by: p(x) = 1

nhd

∑n
i=1 K(x−xi

h).
K(x) = 1√

(2π)d
e− 1

2‖x‖2
. h is a smoothing parameter and K(.) is the widely

used Gaussian kernel. With d = 3, we can obtain the probability to have a taxi
that departs from a certain cluster c towards new location (lon, lat) at certain
time as follows:

p(xnew|Xc = {x1,x2, . . . ,xn}) =
n∑

i=1

1
n

1
(
√

2πh)3
e− 1

2h2 ‖xnew−xi‖2
(1)

Equation 1 is equivalent to
∑n

i
1
nN (xnew|xi, h

2I). The optimal smoothing para-

meter h [13] is 0.969n− 1
7

√
1
3σT σ, where σ is the marginal standard deviation

1 Instead of transforming the original pick-up time ti into discrete values between 1
and 48 [6], we transform ti to continuous values to keep more details about the time
domain. Please refer to the experiment section for more details.

198 C. Dai et al.

vector of values in Xc. Both samples x1, x2, . . . ,xn in Xc and the smoothing
parameter h are required to describe the kernel density estimator of each cluster.
Fusion with Departure Probability. For each cluster, the kernel density
estimator describes the probability for taxis to depart from somewhere in it and
have a given location (lon, lat) as their destination. However, it didn’t consider
the departure probabilities of different roads in the cluster. We distinguish each
road with the departure probability, i.e., the probability to have a taxi departing
from certain road, for more accurate prediction. Given xnew = (lon, lat, t)T , the
probability P (rj → xnew) to have a taxi departing at time t from road rj in
cluster ci and towards destination (lon, lat) is:

P (rj → xnew) = p(Arj
) ∗ p(xnew) (2)

where p(Arj
) is the probability to have a taxi pick up a passenger at road rj ,

i.e.,

p(Arj
) =

Nrj∑
rx∈ci

Nrx

(3)

where Nrj
denotes the number of pick-ups on road rj . Noted that p(Arj

) does
not incur any additional computation since it is obtained when we category
records into groups according to which clusters their sources belong to. p(xnew)
is computed by Eq. 1.

3.2 Recommendation with Patterns

After learning patterns, and before talking about how to perform ridesharing rec-
ommendation in a privacy-preserving way, we describe how the client application
can compute the ridesharing potential based on patterns to make recommenda-
tion. Specifically, given a ridesharing query Q= (ID, timestamp, ls, ld), the
client application performs network expansion technique [12] to get all the roads
R = {r1, . . . , rd} that are within distance ds from ls. With the road clustering
information in the client application, i.e., which road belongs to which cluster,
we can easily group roads in R to candidate clusters. Denote the candidate set as
L = {C1, C2, . . . , Cx} and Ci = {ry|ry ∈ R ∧ ry ∈ ci}. Cluster information, i.e.,
the kernel density estimator and departure probabilities of roads, are required
to compute the ridesharing potential for each Ci ∈ L.

For roads that are reachable within de from ld, which are obtained with the
same technique, we generate xnewk

= (rlon
k , rlat

k , t)T where (rlon
k , rlat

k) is the mid-
point of road rj and t is the time by transforming timestamp in the query Q
in the same way as records. Denote the sample set as D′ and the probability
to have taxis departing from roads in Ci toward roads in D as P (Ci → D), we
have P (Ci → D) =

∑
xnewk

∈D′ P (Ci → xnewk
), where P (Ci → xnewk

) is the
probability for taxis to depart from any road rj ∈ Ci, i.e., within distance ds

from ls at time t towards somewhere on road rk. By combining with Eq. 2, we
have P (Ci → xnewk

) =
∑

rj∈Ci
P (rj → xnewk

) = p(xnewk
) ∗ ∑

rj∈Ci
p(Arj

)2.

2 All roads in Ci share the same kernel density estimator and thus the same P (xnewk).

Privacy-Preserving Ridesharing Recommendation in Geosocial Networks 199

Since
∑

rj∈Ci
P (Arj

) is not relative to xnewk
, we further have

P (Ci → D) =
∑

xnewk
∈D′

p(xnewk) ∗
∑

rj∈Ci

p(Arj) =
∑

rj∈Ci

p(Arj) ∗
∑

xnewk
∈D′

p(xnewk).

Noted that if no pick-ups exist on any the road in Ci, i.e.,
∑

rj∈Ci
P (Arj

) = 0,
there is no need to further compute p(xnewk

) by plugging in different xnew in
Eq. 1. We display the computation of P (Ci → D) in Algorithm 1.

Algorithm 1. Ridesharing potential of cluster Ci

1 foreach rj ∈ Ci do
2 P1 += p(Arj);//Compute p(Arj) with Eq. 3;

3 if P1 is not 0 then
4 P2 = 0;
5 foreach rk ∈ D do

6 xnewk = (rlonj , rlatj , t);
7 P2 += p(xnewk);//Compute p(xnewk) with Eq. 1;

8 Return P1 * P2;

Only candidates with ridesharing potential P (Ci → D) greater than a thresh-
old are considered valid for recommendation. If no valid cluster exists for Q, the
user will be suggested not to wait for ridesharing and take taxi directly. In case
many road clusters satisfy the condition, we return top-k clusters according to
the probabilities. The client application will highlight the corresponding roads
rj ∈ R for each recommended cluster on the map, i.e., roads that are within
distance ds from ls.

3.3 Privacy-Preserving Ridesharing Recommendation

Given the discussion on learning patterns and making recommendation with
patterns, we describe the overall privacy-preserving ridesharing recommenda-
tion. We organize the patterns as follows. For Patterni of each cluster on the
cloud server, it records samples and the smoothing parameter of the kernel den-
sity estimator, and the departure probabilities3. SSE is utilized on the server side
to keep sensitive patterns confidential, while resuming the ability to selectively
retrieve encrypted patterns. A SSE scheme is a collection of four polynomial-
time algorithms (Kengen, BuildIndex, Trapdoor, Search) such that: (i) Keygen(1k):
outputs symmetric key K. (ii) BuildIndex(K, D): outputs a secure index I built
on encrypted patterns D that helps the server to search without decryption. (iii)
Trapdoor(K, w): outputs a trapdoor Tw. Cluster id w is associated with a trap-
door which enables server to search while keeping w hidden. (iv) Search(I, Tw):

3 Departure probabilities are ordered according to road ids in ascending order. Suppose
in Pattern1 of cluster c1 there are three probabilities 0.3, 0, 0.7 and c1 = {r1, r3,
r4}. We get p(Ar1)= 0.3, p(Ar3) = 0 and p(Ar4)= 0.7.

200 C. Dai et al.

outputs the identifier of the pattern of cluster w. Noted that Kengen, BuildIndex,
Trapdoor are run by the user, while Search is run by the server.

Let Encs(·), Decs(·) be semantic secure encryption and decryption functions
based on symmetric key s. In addition, we make use of one pseudo-random
function (PRF) f : {0, 1}∗×key → {0, 1}l and two pseudo-random permutations
(PRP) π : {0, 1}∗ × key → {0, 1}∗ and ψ : {0, 1}∗ × key → {0, 1}∗. We are now
ready for the details of the privacy-preserving ridesharing recommendation.

Generating Key. Generate random keys x, y and z where x, y, z
R←− {0, 1}k′

and output K = (x, y, z, s).
Building a Secure Index. The secure index I is a look-up table, which
contains information that enables one to locate the pattern of certain clus-
ter ci. Each entry corresponds to a cluster ci and consists of a pair
〈address, addr(Patterni) ⊕ fy(idi)〉. idi is the id of cluster ci. Patterni is the
pattern of cluster ci. The address of Patterni, i.e., addr(Patterni), is set to
ψx(idi), which means that the location of a pattern is permutated and protected.
addr(Patterni) ⊕ fy(idi) indicates that the address of Patterni is encrypted
using the output of a PRF fy(.). The other field, address4, is used to locate an
entry in the look-up table. We set I[πz(idi)] = 〈addr(Patterni) ⊕ fy(idi)〉.

After building the index I, Encs(Patterni) is performed for each pattern.
Both the secure index and encrypted patterns are outsourced to the cloud server.
Noted that we pad Encs(Patterni) to the same length to prevent leaking the
length information. Table 1 indicates the storage on the cloud server.

Table 1. Encrypted storage on the cloud server

Address Key

πz(idk) addr(Patternk) ⊕ fy(idk)
.

πz(idn) addr(Patternn) ⊕ fy(idn)
.

πz(id1) addr(Pattern1) ⊕ fy(id1)

→
→
→
→
→

Samples h Departure Prob.

Encs(xa), ∀xa Encs(hk) Encs(p(Ard)), ∀rd
.

Encs(xb), ∀xb Encs(hn) Encs(p(Are)), ∀re
.

Encs(xc), ∀xc Encs(h1) Encs(p(Arf)), ∀rf

Trapdoor Construction. Output Tw = (address, key), where address = πz(idi),
key = fy(idi) and idi is the requested cluster id.
Searching. With the trapdoor Tw = (address, key), the server retrieves
θ = I[address] and uses key to decrypt θ. Let 〈addr(Patterni)〉 = θ ⊕ key. With
the address of Patterni, the server sends the encrypted pattern of cluster ci to
the user. For each received pattern, the user performs Decs(Patterni).
Multi-user SSE. To allow an arbitrary group of users submit queries to search
the data on the cloud server, we combine single-user SSE with broadcast encryp-
tion to achieve multi-user SSE [5]. We assume the pre-sharing of the trapdoor
4 We manage address with indirect addressing [5] to provide efficient storage and

access of sparse tables.

Privacy-Preserving Ridesharing Recommendation in Geosocial Networks 201

generation key between the service provider and users. Adding/revoking users
can be properly done via broadcast encryption. An authorised user applies a
PRP φ (keyed with a secret key r) on a regular single-user trapdoor Tw. Upon
receiving φr(Tw), the server recovers the trapdoor by computing φ−1

r (φr(Tw)).
Unauthorised users cannot get the valid r to yield a valid trapdoor for searching.

On behalf of an authorised user, the client application generates a search
request Tw for each required cluster via a certain one-way function with
the trapdoor generation key. We have Tw = (φr(Tw1), φr(Tw2), . . . , φr(Twx

)),
where Twi

= (πz(idi), fy(idi)) and idi is the id of cluster ci. After con-
struction, Tw is submitted to the cloud server. Given Tw, the server recovers
Twi

= (πz(idi), fy(idi)) with key r and preforms searching. In this way, the server
searches over the stored data without decryption, and sends back required clus-
ter patterns, i.e., Pattern1, Pattern2, . . . , Patternx. Noted that the server is not
aware of which cluster is requested. After receiving the required patterns, the
client application decrypts them on behalf of an authorised user and computes
the ridesharing potential of each cluster Ci as shown in Algorithm 1. Recommen-
dations about whether and where the user should wait for ridesharing are made
as shown in Sect. 3.2.

4 Security Analysis

We follow the security definition in searchable symmetric encryption [5] that
nothing beyond the encrypted outcome and the repeated search queries should
be leaked from the remote storage. We adapt the simulation-based security model
of [5] and prove non-adaptive semantic security is guaranteed. We first introduce
notions used in [5]: 1. History: an interaction between the user and the cloud
server, determined by a collection C of cluster patterns and a set of cluster ids
searched by the user, denoted as H = (C, id1, id2, . . ., idx). 2. View: what the
cloud server can see given a history H, denoted as V (H), including the index
I of C, the trapdoors of the queried cluster ids {Tid1 , Tid2 , . . . , Tidx

}, and the
encrypted collection of C. 3. Trace: what the cloud server can capture, denoted
as Tr(H), including the size of the encrypted patterns, the outcome of each
search (i.e., the patterns Patterni) and whether two searches were performed
for the same cluster id or not.

Given two histories with the identical trace, the cloud server cannot distin-
guish the views of the two histories. Our mechanism is secure since the cloud
server cannot extract additional knowledge beyond the trace, which we are will-
ing to leak. We can describe a simulator S such that, given trace Tr(H), it can
simulate a view V ∗ (composed of encrypted patterns, index and trapdoors) indis-
tinguishable from the cloud server’s view V (H) [5]. In particular, the simulated
encrypted pattern is indistinguishable due to the semantic security of the sym-
metric encryption. The indistinguishability of index and trapdoors is based on
the indistinguishability of pseudo-random function output and a random string.

202 C. Dai et al.

5 Experiments

Dataset. We make use of the Uber trip data of NYC5. Each record is in
the format (t, source, destination), where t is the pick-up time, source and
destination are respectively pick-up location and drop-off location, described as
(lon, lat). We transform the pick-up time from the original format hh:mm:ss to
(hh*3600 +mm*60 + ss)/(24*3600) in preprocessing. We randomly select 1,000
records as ridesharing queries. The time, source and destination of the trip are
treated as timestamp, ls and ld in the queries.
Effectiveness Evaluation. We compare our ridesharing recommendation (RR)
with the naive strategy to “wait at where your are” (WW). In WW users
wait for ridesharing at where they are, i.e., the cluster that ls is in. To eval-
uate the effectiveness of recommendation, we category ridesharing recommen-
dation into two types, namely to-rideshare and not-to-rideshare. An accurate
to-rideshare means that users can rideshare with others at the recommended
locations. An accurate not-to-rideshare indicates that users are recommended
not to wait for ridesharing and there are indeed no others to satisfy the rideshar-
ing requirements. We consider the following measurements. (i) Ridesharing suc-
cessful ratio (RSRatio). We measure the ratio of successful ridesharing of both
RR and WW by RSRatio, defined as RSRatio = # accurate to-rideshare

to-rideshare . (ii) Pre-
diction accuracy (Accuracy). We measure the accuracy of predicting whether
the user should wait for ridesharing or not by accuracy, defined as Accuracy =
accurate not-to-rideshare+# accurate to-rideshare

queries . (iii) Recommendation quality6.
To find out how many clusters that actually have others to rideshare a query are
discovered by our framework, we employ standard metrics, i.e., precision and
recall: precision = # discovered clusters

k , recall = # discovered clusters
positive clusters . Positive clus-

ters are clusters with others to rideshare a query. Discovered clusters are the
positive clusters in the recommended clusters. Precision and recall are averaged
over all queries.

Table 2. Effect of waiting time tw (seconds)

Metrics RR WW

150 300 450 600 750 150 300 450 600 750

RSRatio 0.218 0.255 0.309 0.327 0.364 0.061 0.078 0.082 0.091 0.124

Accuracy 0.535 0.543 0.567 0.574 0.588 0.061 0.078 0.082 0.091 0.124

Precision 0.475 0.478 0.544 0.556 0.586 - - - - -

Recall 0.618 0.658 0.686 0.694 0.712 - - - - -

5 https://github.com/fivethirtyeight/uber-tlc-foil-response. Destinations are gener-
ated based on a check-in dataset of Foursquare from http://download.csdn.net.

6 We didn’t study precision and recall of WW since users wait at where they are.

https://github.com/fivethirtyeight/uber-tlc-foil-response
http://download.csdn.net

Privacy-Preserving Ridesharing Recommendation in Geosocial Networks 203

Table 3. Execution time

Learning patterns enc.pattern SSE.index SSE.token SSE.search Recommendation

263.37 s 14.12 s 40.34 ms 117.95µs 24.60µs 0.269 s

Table 2 shows the influence of waiting time tw on the performances of RR
and WW. The default values of maximum walking distances ds and de are set
to 500 m. The number of recommended clusters k is set to 5. As tw increases,
users can wait for ridesharing for a longer time. RSRatio and Accuracy increase
for RR and WW. As more passengers appear during a longer tw, the potential
to rideshare increases. Both the number of discovered clusters and the number
of positive clusters increase, leading to the increase in precision and recall.
Performance Evaluation. Experiments were performed on a Windows
machine with Intel i7-3770 CPU and 16 GB RAM. We measure the time of
learning patterns (Learning patterns), the time to make recommendation after
obtaining patterns from the server (Recommendation). To study the efficiency of
SSE, we measure the average execution time to generate indexes (SSE.index),
generate trapdoors per query (SSE.token), and execute search operations per
query (SSE.search), as well as the time to encrypt pattern (enc.pattern) before
outsourcing to a server. We have 1,000 patterns with the size of 106MB. As
shown in Table 3, the major cost is introduced in the learning pattern stage
and the encryption stage, which is acceptable because it is a one-time setup.
The introduced security overhead (enc.pattern+SSE.index) is around 5% to the
cost of learning patterns which is also required in plaintext applications. Mean-
while, the time cost for processing each secure query (SSE.token+SSE.search)
is small, and obtaining the potential for ridesharing from encrypted patterns is
also efficient.

6 Related Works

Private Searching in Cloud. Public-key searchable encryption is usually
adapted to deal with third-party data [2], where anyone with the public key
can write to the data stored on the server but only users with the private key
can search. For user-owned data, symmetrically encryption is widely adapted
and client uploads additional encrypted data structures to help search, includ-
ing oblivious RAMs [7] and searchable symmetric encryption (SSE) [5,8]. SSE is
applicable for any forms of private retrieval based on keywords [4,15,17], varying
from exact matching [5,8] to similarity search on textual files [15] or images [4].
Built on locality-sensitive hashing, similarity search is transformed to keyword
search to handle millions of encrypted records [17]. Yet, the above studies do not
focus on achieving privacy-preserving recommendation in geosocial networks.
Privacy-Preserving Recommender Systems. Privacy-preserving tests for
proximity is proposed to test whether a friend is close to her without revealing

204 C. Dai et al.

location information of any of them [11]. To perform online behavioral advertis-
ing without compromising user privacy, an efficient cryptographic billing system
is proposed so that the correct advertiser is billed without knowing which adver-
tisement is displayed to the user [14]. Secure image-centric social discovery [18] is
modeled as secure similarity retrieval of encrypted high-dimensional image pro-
files. Social media sites can recommend friends or social groups for users from
public cloud without disclosing the encrypted image content.
Ridesharing. Current studies about ridesharing can be categorized into two sce-
narios, either drivers change their routes to pick up and drop off passengers [10]
or users walk certain distance to get on a taxi and to their own destinations after
getting off [9]. We consider ridesharing in geosocial networks as the second sce-
nario to recommend users with the places that are most likely to have other users
with similar trips. Unlike previous work [6] that only considers destinations of
trips to model the pattern of each cluster, we fusion with departure probabilities
of each road to distinguish each road with their pick-up probabilities for more
accurate prediction. Noted that none of existing works [6,9,10] consider privacy
issues in ridesharing, we preserve user privacy as well as protect the proprietary
data of service providers from any unauthorised access.

7 Conclusion

In this paper, we proposed a privacy-preserving framework to recommend
whether and where the users should wait to rideshare in geosocial networks.
The privacy of both users and recommendation service providers are well pro-
tected. As future work, we plan to study how to enable the server to directly
compute the results in the encrypted domain.

Acknowledgement. This work was supported in part by the Research Grants Coun-
cil of Hong Kong (Project No. CityU 138513), and the Natural Science Foundation of
China (Project No. 61572412).

References

1. Bao, J., Zheng, Y., Mokbel, M.F.: Location-based and preference-aware recom-
mendation using sparse geo-social networking data. In: SIGSPATIAL, pp. 199–208
(2012)

2. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

3. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS (2015)

4. Cui, H., Yuan, X., Wang, C.: Harnessing encrypted data in cloud for secure and
efficient image sharing from mobile devices. In: INFOCOM, pp. 2659–2667 (2015)

5. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: CCS, pp. 79–88
(2006)

Privacy-Preserving Ridesharing Recommendation in Geosocial Networks 205

6. Dai, C.: Ridesharing recommendation: whether and where should i wait? In: Cui,
B., Zhang, N., Xu, J., Lian, X., Liu, D. (eds.) WAIM 2016. LNCS, vol. 9658, pp.
151–163. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39937-9 12

7. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

8. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: CCS, pp. 965–976 (2012)

9. Ma, S., Wolfson, O.: Analysis and evaluation of the slugging form of ridesharing.
In: SIGSPATIAL, pp. 64–73 (2013)

10. Ma, S., Zheng, Y., Wolfson, O.: Real-time city-scale taxi ridesharing. IEEE Trans.
Knowl. Data Eng. 27(7), 1782–1795 (2015)

11. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location
privacy via private proximity testing. In: NDSS (2011)

12. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial net-
work databases. In: VLDB, pp. 802–813 (2003)

13. Silverman, B.W.: Density Estimation for Statistics and Data Analysis, vol. 26.
CRC Press, Boca Raton (1986)

14. Toubiana, V., Narayanan, A., Boneh, D., Nissenbaum, H., Barocas, S.: Adnostic:
privacy preserving targeted advertising. In: NDSS (2010)

15. Wang, C., Ren, K., Yu, S., Urs, K.M.R.: Achieving usable and privacy-assured
similarity search over outsourced cloud data. In: INFOCOM, pp. 451–459 (2012)

16. Wang, R., Chow, C., Lyu, Y., Lee, V.C.S., Kwong, S., Li, Y., Zeng, J.: TaxiRec:
recommending road clusters to taxi drivers using ranking-based extreme learning
machines. In: SIGSPATIAL, pp. 53:1–53:4 (2015)

17. Yuan, X., Cui, H., Wang, X., Wang, C.: Enabling privacy-assured similarity
retrieval over millions of encrypted records. In: Pernul, G., Y A Ryan, P., Weippl,
E. (eds.) ESORICS. LNCS, vol. 9327, pp. 40–60. Springer, Heidelberg (2015). doi:
10.1007/978-3-319-24177-7 3

18. Yuan, X., Wang, X., Wang, C., Squicciarini, A.C., Ren, K.: Enabling privacy-
preserving image-centric social discovery. In: ICDCS, pp. 198–207 (2014)

http://dx.doi.org/10.1007/978-3-319-39937-9_12
http://dx.doi.org/10.1007/978-3-319-24177-7_3

	Privacy-Preserving Ridesharing Recommendation in Geosocial Networks
	1 Introduction
	2 System Model
	3 Our Proposed Design
	3.1 Learning Patterns
	3.2 Recommendation with Patterns
	3.3 Privacy-Preserving Ridesharing Recommendation

	4 Security Analysis
	5 Experiments
	6 Related Works
	7 Conclusion
	References

