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Abstract. In this paper we take a generic approach to developing a the-
ory of representation systems. Our approach involves giving an abstract
formal characterization of a class of representation systems, and proving
formal results based on this characterization.

We illustrate this approach by defining and investigating two closely
related classes of representations that we call Single Feature Indicator
Systems (SFIS), with and without neutrality. Many common representa-
tions including tables, such as timetables and work schedules; connectivity
graphs, including route maps and circuit diagrams; and statistical charts
such as bar graphs, either are SFIS or contain one as a component.

By describing SFIS abstractly, we are able to prove some properties
of all of these representation systems by virtue of the fact that the prop-
erties can be proved on the basis of the abstract definition only. In par-
ticular we show that certain abstract inference rules are sound, and that
each instance admits concrete inference rules obtained by instantiating
the abstract counterparts.

1 Introduction

In this paper we adopt a generic approach to developing a theory of represen-
tation systems in general, with diagrammatic systems as a special case. Our
approach involves giving an abstract formal characterization of a class of repre-
sentation systems, and then proving results about the properties of all members
of the class in the abstract setting. By adopting this approach, we are able
to short-circuit investigation of individual representation systems, and also to
assign the responsibility for the possession of various properties of an individual
representation system to its membership in the class. Specifically, we do three
things in this paper:

1. Describe and formalize our view of a representation system . Our for-
malization uses channel theory, a formal framework for modeling information
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flow, of which representation is a special case [3]. This task occupies Sects. 2
and 3 of this paper.

2. Show how to model particular types of representation systems
within the channel theory framework. We focus on two closely related
classes of representation systems: Single Feature Indicator Systems with and
without neutrality (SFIS). This is the content of Sects. 4 and 5. SFISs are
among the simplest representation systems that we can think of, and are
built into a number of important, familiar diagrammatic representation sys-
tems. Each of the diagrams presented in Fig. 1 illustrates a system that either
is an SFIS itself or has an SFIS as its main component. We will refer to these
examples throughout this paper.

3. Demonstrate properties held in common between all instances of
the class of SFIS. Our formalization of SFIS allows us to prove that they
all share important properties. One important goal of the diagrams research
community has been the development of diagrammatic proof editors, with
the ability to verify the application of inference rules to diagrammatic repre-
sentations. Hyperproof [2], Diamond [4], and CDEG [5] are examples of such
proof editor/checkers. MixR and Openbox are frameworks for constructing
heterogeneous proof systems for arbitrary representations [1,7]. For the pur-
pose of developing such systems, it is useful to have a generic view of a set
of inference rules that are guaranteed to be valid in any member of a class of
diagrammatic representation systems. We discuss this in Sects. 6 and 7.

Sections 2 and 4 describe the intuitions guiding this paper, while Sects. 3
and 5 describe the corresponding formalization of these ideas. We recommend
reading the informal sections first, before delving into their formalization.

2 The General Picture

We begin by sketching the general picture of representation systems that forms
the basis of the development of the theory that we present here. Our notion
of representation system is designed to capture important semantic properties
of a representational practice followed by a group of people. A representational
practice is a recurrent pattern in which people express information by creating a
(typically proximal) object and extract the information from it. In many cases,
the information thus expressed is about a particular (distal) object or situation.
We call a proximal object created on a particular occasion a representation.
When a representation s is created to express information about a particular
distal object or situation t, we say s represents t.

For example, a project leader may create the table in Fig. 1a to express
information about the work schedules of four workers at a research project. Many
people know how to extract the information expressed in this table and they do
extract information from it. Here we see a representational practice followed
by the project leader and these people. We will refer to this representational
practice and its formalization as Rt.
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Fig. 1. Diagrams illustrating representation systems that either are SFISs themselves
or amplifications of SFISs

Typically, a representational practice is governed by various constraints of
different origins, and the effectiveness of the practice deeply depends on these
constraints. They consist of source constraints concerning what kinds of sym-
bols appear in a representation and how they are arranged, semantic constraints
concerning what arrangement of symbols indicate what information, and target
constraints holding among the pieces of information expressible in the represen-
tational practice in question.

The source constraints in Rt include the fact that each cell of the table
contains one, and only one, of the symbols � and ✗. The target constraints
include the facts that every worker either does, or does not, work on a particular
day. The semantic constraints include the fact that a cell has the symbol � only
if the relevant worker works on that particular day. The project manager, his
workers, and other users know these constraints and respect them to make their
communication based on scheduling tables reliable and efficient.

The source constraints, semantic constraints, and target constraints govern-
ing a representational practice can be considered to make up a system, which
we call a representation system. Thus, we can think of the system Rt of schedul-
ing tables for this research project, as well as the systems underlying the other
diagrams listed in Fig. 1a—the systems of connectivity maps between these orga-
nizations, of bar charts representing sales of a particular book, of diagrams of a
particular traffic light, and of Venn diagrams concerning these particular sets.
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In the next section we present a formalization of representation systems using
channel theory [3]. In Sect. 4 we will define the notion of Single Feature Indicator
System using this general theory.

3 Channel Theory and Representation Systems

Channel theory provides us with a formal framework for describing information
flow, and it can be used to describe representation systems as a paradigmatic
case [3]. This section is a free-standing presentation, simplified to fit our pur-
poses, of Barwise and Seligman’s discussion of representation systems within the
channel theory framework (see Chap. 20 of [3]).

3.1 Types

As we discussed above, a representation system can be decomposed into three
systems of constraints. Each system of constraints is modeled as a theory, while
a theory is built on top of a set of types. The relevant set of types depends
on the system of constraints that we are considering. When we consider source
constraints of the system Rt, for example, the set of types include the following
types:

(σ1) The intersection of a row labeled “Atsushi” and a column labeled “Tues”
has a �.

(σ2) The intersection of a row labeled “Atsushi” and a column labeled “Tues”
has an ✗.

(σ3) A column labeled “Tues” has at least one �.

while when we consider that system’s target constraints, the set of types include:

(θ1) Atsushi works on Tuesday.
(θ2) Atsushi does not work on Tuesday.
(θ3) At least one person is working on Tuesday.

3.2 Constraints

We represent constraints using Gentzen sequents, which are pairs of sets of types.
When we write Γ � Δ, we refer to the pair of sets Γ and Δ, and indicate that
this pair is a member of the set �, or that the relation � holds between them.

We use lowercase Greek letters to refer to types, and uppercase Greek letters
to refer to sets of types and adopt a common abuse of notation and use types
and set of types interchangeably in sequents.

Types on the left hand side of the � are interpreted conjunctively, and on the
right hand side, disjunctively. A sequent of the form α1, α2, α3 � β1, β2 represents
the constraint that any object which is of type α1, α2 and α3, is also of one of
the types β1 or β2 (or both). As a consequence:
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1. α � β, represents the constraint that everything of type α is also of type β,
2. ∅ � α, represents the constraint that everything is of type α,
3. α, β � ∅, represents the constraint that types α and β do not hold together.

For example, the Gentzen sequents σ1, σ2 � ∅ and σ1 � σ3 capture plausible
source constraints in the system Rt. Source constraints often originate in syntac-
tic conventions combined with natural, spatial constraints on the arrangement of
symbols. For example, neither of these example constraints would hold without
syntactic conventions saying that there can be only one column labeled “Tues”
and that a cross or a check appearing in a cell has a certain minimal size and
may not overlap other marks. Both example constraints do hold in the presence
of such syntactic conventions.

3.3 Theories

A theory captures a set of constraints holding in a domain by modeling them as
a set of Gentzen sequents defined over a fixed set of types.

Definition 1 (Theory). A theory is a pair T = 〈Υ,�〉, where � is a set of
Gentzen sequents over Υ . A constraint of the theory T is a sequent 〈Γ,Δ〉 in �.

When the set of constraints of a theory is logically closed, it is called a
“regular theory”.

Definition 2 (Regular Theory). A theory T = 〈Υ,�〉 is regular if it satisfies
the following closure conditions:

– Identity: α � α, for all types α
– Weakening: If Γ � Δ, then Ψ1, Γ � Δ,Ψ2 for any sets of types Ψ1, Ψ2,
– Global Cut: If Ψ1, Γ � Δ,Ψ2 for any partition of any set Ψ into Ψ1, Ψ2, then

Γ � Δ.

The following proposition from [3] shows that any set � of Gentzen sequents
has a unique regular theory that minimally extends it.

Proposition 1. For every theory T = 〈Υ,�〉, there is a smallest regular theory
on Υ containing the sequents in Σ as constraints. This is called the regular
closure of T .

Proof: See [3], Proposition 9.7.

3.4 Representation Systems

As we described in Sect. 2, a representation system consists of three parts, a
system of source constraints (pertaining to representations), a system of target
constraints (pertaining to the represented situations), and a system of semantic
constraints linking representations to the represented situations. Each of these
components is represented as its own theory.
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Definition 3 (Representation System). A representation system is a triple
〈Ts, Tc, Tt〉, where

1. Ts is a theory 〈Υs,�s〉, this is the source theory,
2. Tt is a theory 〈Υt,�t〉, this is the target theory,
3. Tc is a theory 〈Υc,�c〉 where Υc = Υs � Υt, this is the semantic theory.

Among the three theories posited in this definition, Tc requires further expla-
nation.1 As we have explained above, the semantic conventions observed in a
representational practice can be considered as constraints on what arrangement
of symbols indicate what information. Take the previous example of the semantic
convention in Rt, according to which a check mark in the intersection of a row
labeled “Atsushi” and a column labeled “Tuesday” indicates that Atsushi works
on Tuesday. Since the participants of this practice generally follow this conven-
tion, it gives rise to a constraint in their local environment, according to which
σ1 holds of the scheduling table only if θ1 holds in the work place. The theory
Tc = 〈Υc,�c〉 captures constraints of this sort. Since the relevant constraints to
capture are ones from subsets of Υs to subsets of Υt, we define the set Υc to be
the disjoint union of these two sets: Υs �Υt. The theory Tc then lists the relevant
constraint from σ1 to θ1 as a sequent in �c (i.e., σ1 �c θ1). When a type σ in Υs

and a type θ in Υt are connected in this way, we say that σ indicates θ in the
system Rt.

The above definition of representation systems significantly simplifies the one
proposed by [3] (Definition 20.1) while preserving the idea that three systems
of constraints make up a representation system with one system providing a
semantic connection between the other two.

4 Observations Underlying the Concept of SFIS

In this section we make some observations about similarities among many famil-
iar representation systems. We will abstract these observations into a definition
of Single Feature Indicator Systems, the class of representation systems sharing
these similarities. In Sect. 5 we present a formalization of this definition.

4.1 First Observation: Roles

Many diagrammatic representations consist of basic components playing certain
common roles. These roles are common in the sense that they are played not
only by components of particular diagrams, but by components of all diagrams
used in the given representational practice. For example, each scheduling table
in the system Rt has a basic component that plays the role of [the intersection
of the row labeled “Atsushi” and the column labeled “Mon”]. The existence of
such a component is mandated by syntactic stipulations and spatial constraints
on scheduling tables in the system Rt. In this way, we can think of 4 × 5 = 20

1 We sometime call this the core theory, hence the subscript “c”.
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common roles for the source domain of Rt. Such roles appear in every diagram
in this representational practice, for example, if one schedule is made for each
week for a year.

Similarly, consider a Venn diagram representation system, Rv, with circles
labelled A, B and C, such as depicted in Fig. 1e. Every diagram used in the
system Rv has a component that plays the role of [the set of points inside all of
the circles labeled “A,” “B,” and “C”]. Another role is that of [the set of points
inside the circles labeled “A” and “B,” but outside the circle labeled “C”]. In
this way, we can think of 23 = 8 roles in the source domain of Rv. When a
symbol or a place in a diagram plays a common role in this sense, we call it a
basic element of that diagram.

4.2 Second Observation: Values

In many diagrammatic representation systems there is a fixed range of possible
values that a basic element can take. Further, each basic element must take
at least one value (value existence condition) but not more than one (value
uniqueness condition). For example, a basic element of a scheduling table must
have either a � or ✗ (existence) but cannot have both (uniqueness). The basic
elements of the bar chart in Fig. 1c are individual bars, and each has a certain
height (existence) but not more than one height (uniqueness).

4.3 Third Observation: Features in the Source Domain

The combination of roles and values that satisfy the value existence condition
and the value uniqueness condition give rise to a structure that we call a feature.

For example, the source domain of our scheduling tables involves a feature
consisting of 20 common roles (played by cells) and 2 values (having a � or ✗).
The source domain of our bar charts involves a feature consisting of 12 roles
(played by bars) and an infinite number of values (heights). The source domain
of our organization charts involves a feature consisting of 5C2 = 10 roles (played
by pairs of organization names) and 2 values (directly connected or not).

Notice that in each of the example representation systems, the values taken
by the various roles in the source domain are independent. That is, as far as the
syntactic stipulations and spatial constraints are concerned, the basic element
playing a role can take any value without consideration of the values of other
basic elements. We call this the independence condition.

4.4 Fourth Observation: Feature in the Target Domain

Often the target domain in a diagrammatic system makes up a feature too.
For example, in any given week represented by a scheduling table, Atsushi
either works or does not work on Monday, but he cannot do both. We can
restate this as the fact that the element of the described situation playing
the role of 〈Atsushi,Monday〉 must have either the property [working on] or
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the property [not working on] (value existence) but cannot have both (value
uniqueness). Here, 〈Atsushi,Monday〉 is a role, and the properties [work-
ing on] and [not working on] make up the value range. The other roles are
〈Atsushi,Tuesday〉, 〈Mike,Friday〉, and so on, counting up to 4 × 5 = 20 pairs.

Similarly, in any particular group of people represented by an Rv-diagram,
the set of A ∩ B ∩ C must be either empty or non-empty (existence) but cannot
be both (uniqueness). In this case 23 = 8 sets, including A∩B∩C, A∩B∩C and
A∩B∩C, constitute the set of roles, and the value range is {empty,non-empty}.

4.5 Fifth Observation: Semantic Correspondence of Features

We have just seen that the source and the target domain of a diagrammatic sys-
tem often make up features. Our final observation is that these features typically
stand in a close correspondence through the system’s semantic conventions.

Take the case of bar charts. The source role of [the bar labeled “Jan”] corre-
sponds to the target role [January]. In this way, a natural one-one correspondence
holds between the set of source roles and the set of target roles in this system.
A natural correspondence holds between the sets of values too. Each possible
height taken by a bar corresponds to a possible number of books sold in the
corresponding month. In the case of scheduling tables, the source role of [the
intersection of the row labeled “Atsushi” and the column labeled “Mon”] corre-
sponds to the target role of (Atsushi, Monday) and similarly for the other roles.
The two source values, having a � or ✗, each corresponds to a unique target
value, [working on] or [not working on]. The reader can easily check a similar
two-fold correspondence holds between the source feature and the target feature
involved in each of the other systems illustrated in Fig. 1.

These correspondences underlie semantic conventions in these systems. In
the system of scheduling tables Rt, if the intersection labeled “John” and the
column labeled “Mon” has a � in a scheduling table, it indicates that John works
on Monday. In the system of bar charts, that the bar labelled January having a
height of 10 mm indicates that the number of book sales in the month of January
being 100 units. In this way, many diagrammatic representation systems employ
semantic conventions with the form that, if a basic element playing role r has
the value v, it indicates that the element playing the role corresponding to r has
the value corresponding to v. We call representation systems having this form of
semantic convention “Single Feature Indicator Systems” or “SFISs” for short.

5 Single Feature Indicator Systems – Formalized

One of the contributions that we make in this paper is a demonstration of how
channel theory can be used to formalize classes of representation systems. This
section of the paper, where we formalize the notion of Single Feature Indica-
tor System, is focussed on this task. Our approach is to specialize Barwise and
Seligman’s definition of representation system that we presented in Definition 3,
so that the types and constraints in the component theories capture the obser-
vations about roles and values that we outlined in Sect. 4.
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5.1 Features

In Sect. 4, we observed that the target and source domains of many diagrammatic
representation systems can be characterized as consisting of roles which take on
specific values. We formalize this idea by using an ordered pair 〈r, v〉 to model the
type that holds on a representation d if and only if the element of d playing the
role r has the value v. For example, a diagram in the traffic light representation
system illustrated in Fig. 1d is of type 〈uppermost circle, white〉 if the uppermost
circle of d is white. A feature is a specialized theory over these types:

Definition 4 (Feature). A feature is a regular theory T = 〈Υ,�〉 for which
there are sets R and V such that:

1. R × V = Υ ,
2. For every r ∈ R,

(a) � {〈r, v〉 : v ∈ V },
(b) 〈r, v〉, 〈r, v′〉 � ∅ for all distinct v, v′ ∈ V .

When these conditions hold, R and V are called the set of roles and the set of
values of the feature T , respectively.

Clause 1 declares that this theory is concerned with pairs of the form 〈r, v〉
with a role r ∈ R and a value v ∈ V . Clauses 2a and 2b capture the value
existence condition and the value uniqueness conditions respectively.

5.2 Single Feature Indicator Systems

A Single Feature Indicator System is a representation system whose source and
target theories are features with appropriate connections provided by the seman-
tic theory.

Definition 5 (Single Feature Indicator System (SFIS)). A representation
system 〈S,C, T 〉 is a Single Feature Indicator System (SFIS) iff:

1. S is a feature with the set Rs of roles and the set Vs of values
2. T is a feature with the set Rt of roles and the set Vt of values
3. Every assignment f : Rs → Vs of values in Vs to roles in Rs is consistent,

i.e., f 
�S ∅
4. C is the theory 〈Υc,�c〉 where there are bijections pr from Rs to Rt and pv

from Vs to Vt such that �c is the regular closure of the set of all sequents
〈{〈r, v〉}, {〈pr(r), pv(v)〉}〉 where 〈r, v〉 ∈ ΣS.

Conditions 1 and 2 state that the source and target theories are features.
The additional condition on the source feature expressed by Clause 3 is the
independence condition, which implies that basic elements of a representation
can take any value no matter what values are taken by other basic elements.

The target theory T does not necessarily satisfy such a condition, which is to
say that the constraints on T may result in some assignments of values not being
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permitted. In our model of a representation system, the source theory captures
only those constraints originating in spatial constraints and syntactic stipulations
associated with a representational practice. We have seen that as far as these
constraints are concerned, the assignments of values to roles are independent of
one another. On the other hand, T is intended to capture any constraint that
holds on the types ΣT in the target domain. So for example, there are no spatial
or syntactic constraints preventing the drawing of a traffic light diagram with
both the uppermost and lowermost circles being white, but there are additional
constraints in the target domain which should prevent such a combination (on
the assumption that a white circle indicates that the corresponding lamp is
illuminated).

Finally, condition 4 tells us about the connections between the source and
target theories. The projection functions pr and pv respectively associate roles
in the source with roles in the target, and values in the source with values
in the target. This clause requires that the system’s semantic theory respects
the correspondence between source types and target types established by these
projection functions.

5.3 Single Feature Indicator System with Neutrality

Before we discuss the logical properties of Single Feature Indicator Systems we
will introduce a closely related, and more interesting, class of representation
systems that we call Single Feature Indicator System with Neutrality.

Consider a situation where you are observing the author of the scheduling
table in Fig. 1a as it is being constructed. Perhaps all of the row and column
labels are present, but the author has not yet filled in all of the cells. Such a
representation carries partial information about the target that it describes. We
can see, perhaps, that Dave will not be working on Monday, but whether or not
Atsushi is working that day is not represented in the diagram.

We can model this situation by introducing a third kind of source value, a
blank, in addition to � and ✗. But we do not want to assign a target value to
this source value. The function pv defined to map source properties to target
properties must be partial with respect to this blank property value.

The definition of a Single Feature Indicator System with Neutrality is similar
to that of an SFIS.

Definition 6 (SFIS with Neutrality (SFIS⊥)). A representation system
〈S,C, T 〉 is a Single Feature Indicator System with Neutrality (SFIS⊥) iff there
are sets Rs, Vs, Rt, Vt such that

1. S is a feature with the set Rs of roles and the set Vs of values
2. Vs contains a distinguished value ⊥
3. Every assignment f : Rs → Vs of roles in Rs to values in Vs is consistent,

i.e., f 
�S ∅
4. T is a feature with the set Rt of roles and the set Vt of values
5. There is a bijection pr from Rs to Rt and a bijection pv from Vs − {⊥} to Vt

such that fs(〈r, v〉) �C ft(〈pr(r), pv(v)〉) for every 〈r, v〉 ∈ (Rs × Vs − {⊥}).
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The critical difference between this definition and the definition of Single
Feature Indicator System simpliciter is that the source domain contains a neutral
value ⊥, and that this value is not in the domain of the bijection pv, and therefore
carries no information about the target.

6 Specifications and Semantic Consequence

We now turn out attention to some inference rules supported by every SFIS.
Before we can define these inference rules, we need to have a clear notion of

consequence between diagrams. That is, we must define what it means for one
diagram to follow from another. But before we can do this we need a way to
describe complete diagrams.

Let 〈S,C, T 〉 be an SFIS (with or without neutrality). We call any function
Σ : Rs → Vs a complete specification of the source. Σ is a set of types assigning
a unique value to every role in Rs. Such a function completely describes a source
representation by associating a value with each role. Indeed, we can think of
the complete specification as the representation with the visual appearance of
the roles and values abstracted away. As the range of diagrams in Fig. 1 attest,
the values associated with roles can be represented in a variety of ways, but
semantically, only the particular association of roles to values matters.

If Σ is a complete specification, we can define

Ind(Σ) = {〈pr(r), pv(v)〉 : 〈r, v〉 ∈ Σ and v 
= ⊥}
Ind(Σ) is the set of target types indicated by the source types in Σ.

The critical definition is of what it means for a specification be a consequence
of other specifications. If S is a set of representations (or more precisely, their
complete specifications) and Σ0 another representation, then Σ0 is a logical
consequence of S if everything indicated by Σ0 is entailed by the union of types
indicated by the members of S, or formally:

Definition 7 (Semantic Consequence). Given a collection S of complete
specifications of source (the premises), and a complete specification of source
Σ0 (the conclusion), we say that Σ0 is a semantic consequence of S and write
S =⇒ Σ0 iff

⋃{Ind(Σ) : Σ ∈ S} �t σ, for all σ ∈ Ind(Σ0).

7 Inference Rules

We now have everything that we need in order to define inference rules for SFISs,
and to demonstrate their soundness in our theory.

7.1 Contradiction

Definition 8 (Value Conflict). Two complete specifications of source Σ1 and
Σ2 have an value conflict iff there is some role r ∈ Rs and values v1 and v2 in
Vs such that 〈r, v1〉 ∈ Σ1 and 〈r, v2〉 ∈ Σ2 and v1 
= v2, v1 
= ⊥ and v2 
= ⊥.
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Theorem 1 (Contradiction). Given complete specifications of source Σ1 and
Σ2, if Σ1 and Σ2 have a value conflict, then Σ1, Σ2 =⇒ Σ for any complete
specification of source Σ.
Proof: Ind(Σ1) ∪ Ind(Σ2) has both 〈pr(r), pv(v1)〉 and 〈pr(r), pv(v2)〉 for some
r ∈ Rs and distinct v1, v2. 〈pr(r), pv(v1)〉, 〈pr(r), pv(v2)〉 �t ∅ because T is a
feature and pv(v1) 
= pv(v2). By weakening, 〈pr(r), pv(v1)〉, 〈pr(r), pv(v2)〉 �t σ
for any target type σ, so certainly for any σ ∈ Ind(Σ).

We therefore obtain a generic inference rule which we will call SFIS-Contra-
diction. This a generic rule since the rule may be specialized to a particular
concrete version of the rule in any particular SFIS, whether it is in the system of
scheduling tables, that of Venn diagrams, or that of connectivity maps. For exam-
ple, if one organization chart shows a connection between [Police] and [PTA],
and another shows no such connection, the rule lets us derive any organization
chart from the two.

We now turn our attention to additional generic inference rules which are
available only within SFIS⊥ since they require the existence of a neutral value
for their specification.

7.2 Erasure

In what follows, we need some definitions which will help us to describe manip-
ulations of complete specifications of the source (manipulations of the diagrams
that they describe).

Definition 9 (Point Substitution). Suppose that Σ is complete specification
of source. Let Σ〈r,v〉 be defined in the following way:

Σ〈r,v〉 = (Σ − {〈r, v′〉}) ∪ {〈r, v〉}
where v′ is the value taken by r in Σ. We call Σ〈r,v〉 the 〈r, v〉-substitution
of Σ.

The 〈r, v〉-substitution of Σ is just like Σ, except that 〈r, v〉 is a member
of Σ〈r,v〉, instead of 〈r, v′〉. Note that, since Σ is a complete specification of
source, there is some v′ such that 〈r, v′〉 ∈ Σ, and that Σ〈r,v〉 is also a complete
specification of source.

As special cases of point substitution, we call the 〈r,⊥〉-substitution of Σ, the
r-erasure of Σ, and, if 〈r,⊥〉 ∈ Σ and v 
= ⊥, we call Σ〈r,v〉 the 〈r, v〉-extension
of Σ.

Theorem 2. If Σ1 is a complete specification of source in an SFIS⊥ and Σ2 is
the r-erasure of Σ1, then Σ1 =⇒ Σ2.
Proof: The result follows from Identity (Definition 2), since Ind(Σ2) ⊂
Ind(Σ1).
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In this case, we say that Σ2 may be obtained from Σ1 by SFIS⊥-Erasure.
As an example of its use: if an organization chart showing a connection between
[Police] and [PTA] represents the world accurately, then a chart which is other-
wise identical but is non-committal about the existence of a connection between
these organizations is also accurate, though less informative.

If Σ2 may be obtained from Σ1 by repeated use of this rule, then we say that
Σ2 is an erasure of Σ1.

Corollary 1. If Σ2 is an erasure of Σ1, then Σ1 =⇒ Σ2.
Proof: Trivial using Theorem 2.

7.3 Proof by Cases

Any SFIS⊥ supports an inference rule allowing proof by cases. We know that
in the target theory, there is some property enjoyed by the target role, which
corresponds to a source role having one or other of the definite properties. If
some source role in a diagram token has the neutral property ⊥ then there is a
collection of new representations, which differ from the original, and from each
other, only in their assignment of a source property to this role. One of these
representations is a faithful representation of the target.

Suppose that 〈r,⊥〉 ∈ Σ for some role r. Then we define the set of
r-extensions of Σ, denoted Extr(Σ) to be the set containing the 〈r, v〉-extensions
of Σ for v ∈ Vs. If the set Vs is finite, then so is Extr(Σ).

Theorem 3. If Σ′ =⇒ Σ∗ for every Σ′ ∈ Extr(Σ), then Σ =⇒ Σ∗.
Proof: Assume the antecedent, and let σ be an arbitrary member of Ind(Σ∗).
It suffices to show Ind(Σ) �t σ. Let A = {〈pr(r), pv(v)〉 : v ∈ Vs}. To apply
Global Cut, we show A1, Ind(Σ) �t σ,A2 for every partition 〈A1, A2〉 of A.
Suppose A1 = ∅. Then A2 = A. By the definition of a feature, �t A. Thus, by
Weakening, A1, Ind(Σ) �t σ,A2. Suppose on the other hand that A1 
= ∅. Then
〈pr(r), pv(v′)〉 ∈ A1 for some v′ ∈ Vs. Let Σ′ be the r-extension of Σ for v′. Then
Ind(Σ′) = Ind({〈r, v′〉}∪Σ), and so Ind(Σ′) ⊆ A1 ∪ Ind(Σ). But Ind(Σ′) �t σ
by assumption. So, by Weakening, A1, Ind(Σ) �t σ,A2.

This permits the definition of a generic inference rule SFIS⊥-Cases, which lets
us derive any representation Σ′ from Σ if Σ′ is derivable from every r-extension
of Σ for some role r.

7.4 Disjunction

Every SFIS⊥ supports a rule which allows the weakening of information from a
collection of representations into a single representation.

Definition 10 (Σ∨S). Let S be a set of complete specifications of source, define
Σ∨S as follows:

For each r ∈ Rs:
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(a) Σ∨S(r) = v iff Σ(r) = v for all Σ ∈ S
(b) Σ∨S(r) = ⊥ otherwise

We call Σ∨S the disjunction of S.

Theorem 4. Suppose that 〈r,⊥〉 ∈ Σ for some role r. If S is a set of complete
specifications of source, and for each Σ′ ∈ Extr(Σ) there is Σ∗ ∈ S such that
Σ′ =⇒ Σ∗, then Σ =⇒ Σ∨S.
Proof: Observe Σ∨S is a consequence of every r-extension of Σ, since Σ∨S is
a consequence of every member of S (Corollary 1) while every r-extension of Σ
has some member of S as a consequence (assumption). Then apply Theorem 3.

This theorem immediately permits the definition of an abstract inference
rule, SFIS⊥-Merge, which is a more useful version of proof by cases. Rather than
insisting that each subproof of the proof by cases derive the same specification,
possibly involving uses of erasure, we can allow the different cases to derive
different specifications, but the disjunction of those specifications is exported into
the main proof. An instance of SFIS⊥-Merge is implemented in the Hyperproof
program [2] under the name of Merge.

7.5 Conjunction

Definition 11. (Σ∧S). Let S be a set of complete specifications of source.
Define Σ∧S as follows:

1. Σ∧S is undefined if S contains a value conflict,
2. for each r ∈ Rs:

(a) Σ∧S(r) = v iff Σ(r) = v for some Σ ∈ S, and v 
= ⊥
(b) Σ∧S(r) = ⊥ otherwise

We call Σ∧S the conjunction of S.

Theorem 5. If S is a set of complete specifications of source with no value
conflict, then S =⇒ Σ∧S.
Proof:

⋃{Ind(Σ) : Σ ∈ S} = Ind(Σ∧S).

8 Conclusion

In this paper, we have launched what may be called generic approach to the
formalization of diagrammatic proof systems. The strategy is to characterize a
class of diagrammatic systems using a formal property they commonly have. On
the basis of this characterization we can investigate other properties that hold
of this class of systems.

In this particular paper we define and analyze two related classes of repre-
sentation systems, namely, SFIS and SFIS⊥. Although these systems are rather
straightforward to characterize, they include a surprisingly large category of
diagrammatic representation systems. In this paper, we have developed a set of
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generic inference rules whose soundness is provable on the basis of membership
in the class of these systems. SFIS and SFIS⊥ support a substantial set of generic
inference rules, including Contradiction, Proof by Cases, Conjunction and Dis-
junction, which can serve the foundation for more complex inference rules that
are applicable in more sophisticated diagrammatic representation systems.

In future work, we propose to investigate other properties of SFIS, for exam-
ple their ability to support free rides and diagrammatic consistency-check [6].
Again, we will investigate these ideas in the abstract and demonstrate the con-
ditions under which SFIS have such properties.

In our view, many more sophisticated systems are derivatives of SFIS. We
have already discussed one derivative of SFIS, namely, SFIS⊥. We can also think
of derivatives whose indication relation is amplified through the meaning deriva-
tion mechanism [6] or through the introduction of concrete symbols that indicate
abstract information. Each of these different kinds of variants seem to define its
own class of diagrammatic representation systems (just as SFIS does) and allow
the generic approach to the set of inferences rules applicable in all representation
systems in the category. This will open a way to a generic diagrammatic proof
editor and checker that incorporates a wide range of diagrammatic systems in
an incremental, but systematic manner.
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