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Abstract. We develop a systematic approach for dealing with infor-
mationally equivalent Aristotelian diagrams, based on the interaction
between the logical properties of the visualized information and the geo-
metrical properties of the concrete polygon/polyhedron. To illustrate the
account’s fruitfulness, we apply it to all Aristotelian families of 4-formula
fragments that are closed under negation (comparing square and rectan-
gle) and to all Aristotelian families of 6-formula fragments that are closed
under negation (comparing hexagon and octahedron).
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1 Introduction

Aristotelian diagrams are compact visual representations of the elements of some
logical or conceptual field, and the logical relations holding between them. These
diagrams have a long and rich history in philosophical logic [26]. Today, they
are still widely used in logic [11,24], but also in fields such as cognitive science,
linguistics, philosophy, neuroscience, law and computer science [17,19,21] (see
[12, Sect. 1] for more examples). Aristotelian diagrams have thus come to serve
“as a kind of lingua franca” [20, p. 81] for a highly interdisciplinary community
of researchers concerned with logical reasoning. Logical geometry1 systematically
investigates Aristotelian diagrams as objects of independent interest (regardless
of their role as lingua franca), exploring various abstract-logical topics [12,14,
15,33] as well as some more visual-geometrical issues [10,16,31,32].

One of the major visual-geometrical issues studied in logical geometry is the
fact that a single logical structure often gives rise to a wide variety of different
visualizations. In other words, even after all the strictly logical ‘parameters’ of
a structure have been fixed, one is still confronted with several design choices
when drawing the actual Aristotelian diagram for that structure. This phenom-
enon is widely manifested in the extant literature: there are numerous cases

1 See www.logicalgeometry.org.
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of authors who use completely different Aristotelian diagrams to visualize one
and the same underlying logical structure (concrete examples will be provided
below). Furthermore, since authors typically use Aristotelian diagrams to help
their readers gain a better insight into some underlying logical structure, the
fact that a single structure can be visualized by means of different diagrams
naturally raises the question whether some of these diagrams are perhaps more
‘effective’ (i.e. have a greater positive impact on readers’ comprehension) than
others.

This issue has already been partially addressed in other work. For example,
[13] compares different Aristotelian diagrams (a hexagon and an octhaedron)
for the Boolean algebra B3, and examines their geometrical connections with
the Hasse diagram for B3. Similarly, [35] compares two Aristotelian diagrams
(a rhombic dodecahedron and a nested tetrahedron) for the Boolean algebra B4.
These existing studies have a number of limitations, however: on the logical side,
they are restricted to structures that are Boolean closed (i.e. that constitute
entire Boolean algebras), and on the geometrical side, they are restricted to
comparing Aristotelian diagrams that are based on different geometric shapes.

The main aim of the present paper is therefore to propose and illustrate a new
approach to systematically investigate different Aristotelian diagrams for a given
underlying logical structure. We will show that this approach does not suffer from
the limitations present in other work: logically speaking, it applies to structures
that are Boolean closed as well as to structures that are not Boolean closed,
and geometrically speaking, it applies to Aristotelian diagrams that are based
on different geometric shapes as well as to Aristotelian diagrams that are based
on the same geometric shape. The key idea of the new approach is that for any
given set of logical formulas F , one can calculate a number �(F) based on strictly
logical considerations; similarly, for any concrete Aristotelian diagram PF that
visualizes F , one can calculate a number g(PF ) based on strictly geometrical
properties. The interaction between �(F) and g(PF ) will turn out to be very
informative about the quality of PF as a visualization of F .

The paper is organized as follows. Section 2 introduces some basic notions
from logical geometry, and explains the distinction between informational and
computational equivalence of Aristotelian diagrams. Section 3 then discusses the
interaction between logical and geometrical properties of Aristotelian diagrams
on a wholly general level. Next, Sects. 4 and 5 investigate the concrete details of
this logico-geometrical interaction in Aristotelian diagrams with 4 and 6 formu-
las, respectively. Finally, Sect. 6 summarizes the results obtained in this paper,
and discusses the advantages as well as the limitations of the logico-geometrical
perspective.

2 Informational and Computational Equivalence

Given a logical system S and a set F of formulas from that system, an
Aristotelian diagram for F in S is a diagram in which the formulas of F and the
Aristotelian relations holding between those formulas are visualized by means of
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Fig. 1. (a) Visual code for the Aristotelian relations, (b) classical square for formu-
las from the modal logic S5 (� and ♦ should be read as ‘necessarily’ and ‘possibly’,
respectively), (c) degenerated square for formulas from propositional logic.

points and lines connecting those points, respectively. The Aristotelian relations
are defined as follows: two formulas ϕ and ψ are said to be

S-contradictory iff S |= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ,
S-contrary iff S |= ¬(ϕ ∧ ψ) and S �|= ϕ ∨ ψ,
S-subcontrary iff S �|= ¬(ϕ ∧ ψ) and S |= ϕ ∨ ψ,
in S-subalternation iff S |= ϕ → ψ and S �|= ψ → ϕ.

Informally, the first three relations are concerned with whether the formulas
can be true/false together, whereas the fourth relation is concerned with truth
propagation [33]. These relations will be visualized using the code shown in
Fig. 1(a). Finally, two formulas are said to be unconnected iff they do not stand
in any Aristotelian relation at all.

The contemporary literature on Aristotelian diagrams has mainly focused on
the logical aspects of these diagrams. This is clearly manifested in the classifica-
tion of Aristotelian diagrams into different families. For example, with respect to
4-formula-diagrams, we distinguish between the ‘classical square of oppositions’
and the ‘degenerated square’, as shown in Fig. 1(b) and (c), respectively. Simi-
larly, with respect to 6-formula-diagrams, we distinguish between the ‘Jacoby-
Sesmat-Blanché (JSB) hexagon’, the ‘Sherwood-Cżezowski (SC) hexagon’ and
the ‘U4 hexagon’ (among others), as shown in Fig. 2(a), (b) and (c), respec-
tively.2 The differences between these families of Aristotelian diagrams are all
based on their logical properties. First of all, different families often have dif-
ferent Aristotelian relations; e.g. the classical square does not contain pairs of
unconnected formulas, whereas the degenerated square contains 4 unconnected
pairs. Secondly, different families may have different constellations of Aristotelian
relations; e.g. the JSB hexagon and the SC hexagon both have 3 contrarieties,
but in the former they constitute a closed triangle, whereas in the latter they
do not [31]. Thirdly, different families often have a different Boolean structure;
e.g. the Boolean closure of the classical square is (isomorphic to) B3, whereas
the Boolean closure of the degenerated square is (isomorphic to) B4 [14].

Using terminology from Larkin and Simon [23], the Aristotelian diagrams
in Figs. 1(b–c) and 2(a–c) are not informationally equivalent. They visualize
2 See [15] for some historical background on this nomenclature.
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Fig. 2. (a) JSB hexagon, (b) SC hexagon and (c) U4 hexagon for formulas from S5.

Fig. 3. Three visual alternatives to the JSB hexagon in Fig. 2(a).

different logical structures—i.e. different chunks of logical information—, and
hence, the differences between these diagrams are entirely due to differences
between their underlying logical structures.

A completely different type of question arises when we decide to focus on
a single logical structure (i.e. one set of formulas in one logical system), and
investigate the various Aristotelian diagrams that have been used to visualize
this single structure. For example, given four formulas that constitute a classical
square, this square is usually drawn as in Fig. 1(b), but it has also been drawn
with the subalternations pointing upwards, from left to right, etc. [20]. Similarly,
given six formulas that constitute a JSB hexagon, this hexagon is usually drawn
as in Fig. 2(a), but it has also been drawn as shown in Fig. 3(a) [29] or Fig. 3(b)
[5,25]. This structure has also been visualized by means of a different geometric
shape altogether, viz. an octahedron, as shown in Fig. 3(c) [22,30].

Again using terminology from Larkin and Simon [23], the Aristotelian dia-
grams in Figs. 2(a) and 3(a–c) are informationally equivalent (they are different
visualizations of one and the same logical structure), but they are not compu-
tationally equivalent. After all, even though the visual differences between these
diagrams are irrelevant from a strictly logical perspective, they can significantly
influence the diagrams’ effectiveness in increasing user comprehension.

3 Logic Versus Geometry in Aristotelian Diagrams

We will now present a general approach to study the interaction between logical
and geometrical properties of informationally equivalent Aristotelian diagrams.
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We will focus exclusively on fragments F that are closed under negation, i.e. if
ϕ ∈ F , then also ¬ϕ ∈ F (up to logical equivalence). Such fragments always
have an even number of formulas, and it will be fruitful to view them not only as
consisting of 2n formulas, but also as n “pairs of contradictory formulas” (PCDs).
Additionally, we will only deal with Aristotelian diagrams in which negation is
visually represented by means of central symmetry, so that ϕ and ¬ϕ correspond
to diametrically opposed points in the diagram. It should be emphasized that
both the logical condition (closed under negation) and the geometrical condition
(central symmetry) are satisfied in nearly every Aristotelian diagram that has
ever been produced,3 and are thus very mild restrictions.

We know from basic combinatorics that a fragment of 2n formulas (i.e. n
PCDs) can be ordered in exactly (2n)! ways.4 However, this number does not
take into account the fragment’s PCD-structure, in the sense that a formula and
its negation are not treated any differently from any other pair of formulas. If
we only consider orderings that respect the fragment’s PCD-structure, we find
the number 2n × n!. On the one hand, there are n PCDs to be ordered, which
yields the second factor (n!); on the other hand, each of these n PCDs has 2
‘orientations’, viz. (ϕ,¬ϕ) and (¬ϕ,ϕ), thus yielding the first factor (2n). Note
that this formula is strictly based on the logical properties of the fragment,
viz. the facts that it contains 2n formulas and is closed under negation.

A fragment of n PCDs can be visualized by means of a polygon or polyhedron
that has 2n vertices and is centrally symmetric (so that the diagram’s vertices
correspond to the fragment’s formulas, and the diagram’s central symmetry cor-
responds to the fragment’s PCD-structure).5 Each such polygon/polyhedron P
has a number of reflectional and rotational symmetries, which constitute a group
under the composition operation. This group is the symmetry group of P and will
be denoted SP [28, p. 67]. Its cardinality |SP | measures how symmetric P is, and
is thus strictly based on the geometrical properties of the polygon/polyhedron.

We now turn to the interaction between the numbers 2n × n! and |SP |. First
of all, it should be noted that the former is typically larger than the latter, since
every symmetry of P can also be seen as the result of permuting and changing
the orientation of the PCDs that are visualized by P, but not vice versa. Note,
for example, that the hexagon in Fig. 3(a) can be seen as the result of reflecting
the hexagon in Fig. 2(a) around the axis defined by �p and ♦¬p, but it can
equally validly be seen as the result of permuting the PCDs (♦p,�¬p) and
(�p∨�¬p,♦p∧♦¬p) in the latter hexagon. By contrast, note that the hexagon
in Fig. 3(b) can be seen as the result of changing the orientation of the PCD

3 One counterexample is Chow [7], who studies Aristotelian diagrams that satisfy the
logical condition, but not the geometrical condition.

4 In [20, p. 77] this formula is applied to a fragment of 4 formulas (so n = 2).
5 In this paper, we will mainly focus on regular polygons and polyhedra (the only

exception being the brief discussion of rectangles in Sect. 4). However, this restriction
is only made for reasons of space; in principle, the account presented here can be
applied to regular and non-regular shapes alike.
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(�p ∨ �¬p,♦p ∧ ♦¬p) in the hexagon in Fig. 2(a), but that it is not the result
of applying any reflection or rotation to the latter hexagon.

The key idea is now that the 2n ×n! different ways of ordering n PCDs can be
partitioned based on whether they yield variants of P that can be obtained from
each other via reflections or rotations.6 This partition has 2n×n!

|SP | cells, which will
be called fundamental forms. It follows immediately that diagrams with different
fundamental forms are not reflectional or rotational variants of each other; and
each fundamental form yields exactly |SP | diagrams that are all reflectional or
rotational variants of each other. For example, the hexagons in Figs. 2(a) and 3(a)
have the same fundamental form, whereas the hexagons in Figs. 2(a) and 3(b) have
different fundamental forms.

Suppose now that we have two distinct polygons/polyhedra P and P ′ that
visualize the same 2n-formula fragment F . Suppose, furthermore, that P is less
symmetric than P ′. This means that |SP | < |SP′ |, and hence 2n×n!

|SP | > 2n×n!
|SP′ | ,7

i.e. P has more fundamental forms than P ′. In other words, by having fewer
symmetries, P makes a number of visual distinctions that are not made by P ′.
The quality of P and P ′ as Aristotelian diagrams for the fragment F depends
on whether these visual distinctions correspond to any logical distinctions in F .
On the one hand, if there are such logical distinctions present in F , then P is
to be preferred over P ′, since P allows us to visualize these logical distinctions
by mapping them onto the visual distinctions of its fundamental forms, whereas
P ′ would simply force us to collapse them. On the other hand, if there are no
such logical distinctions present in F , then P ′ is to be preferred over P, since
in this case, the visual distinctions between the fundamental forms of P do not
correspond to any logical differences in F , but are merely by-products of the
lack of symmetry in P.8

4 Aristotelian Diagrams with Two PCDs

We will now apply the logico-geometrical account presented in the previous
section to Aristotelian diagrams for fragments consisting of 2 PCDs. On the logi-
cal side, one can show that the 2-PCD Aristotelian diagrams can be classified into
6 The idea of working up to symmetry can already be found in [4, p. 315], where it is

stated that Aristotelian squares that are symmetrical variants of each other should
be “counted as being of the same type”. The assumed irrelevance of symmetry con-
siderations for diagram design is also in line with work on other types of diagrams,
such as Euler diagrams [27]: several of their visual characteristics have been investi-
gated [1,3], but it has been found that rotation has no significant influence on user
comprehension of Euler diagrams [2].

7 Note that both fractions have the same numerator (since the two Aristotelian dia-
grams have the same logical properties, viz. they both visualize the fragment F), but
different denominators (since the two diagrams have different geometrical properties,
viz. P is less symmetric than P ′).

8 These considerations can be viewed as an application of the congruity/isomorphism
principle in diagram design [18,36]: the visual properties of the diagram should
closely correspond to the logical properties of the visualized fragment.
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exactly 2 Aristotelian families, viz. classical and degenerated [32,33]. On the geo-
metrical side, visualizing such 2-PCD diagrams requires a polygon/polyhedron
that has 4 vertices and is centrally symmetric. In this section, we will focus on
two such polygons, viz. the square and the rectangle (also recall Footnote 5).

Logically speaking, a 2-PCD fragment can be ordered in 22 × 2! = 8 distinct
ways. Geometrically speaking, the symmetry group Ssq of a square has order 8,
whereas the symmetry group Srect of a proper (i.e. non-square) rectangle has
order 4. This difference reflects the fact that a square is a more symmetrical shape
than a (proper) rectangle, since a rectangle distinguishes between its long and
short edges, whereas the square collapses this distinction (by having 4 edges of
the same length). Consequently, when a 2-PCD fragment is visualized by means
of a square, this yields 22×2!

|Ssq| = 8
8 = 1 fundamental form; by contrast, when it is

visualized by means of a rectangle, this yields 22×2!
|Srect| = 8

4 = 2 fundamental forms.
Because it is less symmetrical, the rectangle makes more visual distinctions

(long/short edges) than the square. In order to determine which shape is the
most effective visualization of a 2-PCD fragment, we should investigate whether
these visual distinctions correspond to any logical distinctions in the fragment.
We will now do this for each of the two Aristotelian families of 2-PCD fragments.

Classical 2-PCD Fragments. Visualizing a classical 2-PCD fragment using a
square yields 1 fundamental form; see e.g. Fig. 1(b). This means that all oriented
permutations of the 2 PCDs yield diagrams that are rotational or reflectional
variants of each other, regardless of where the (sub)contrarieties and subalter-
nations are in the diagram. By contrast, visualizing this fragment by means of
a (proper) rectangle yields 2 fundamental forms, as shown in Fig. 4(a–b). In the
first fundamental form, the (sub)contrarieties occupy the rectangle’s long edges
and the subalternations occupy its short edges, whereas in the second funda-
mental form it is the other way around.

Some authors have claimed that there is an important logical difference
between the Aristotelian relations of (sub)contrariety on the one hand, and sub-
alternation on the other. They distinguish between two complementary perspec-
tives on the classical square9 of opposition: as a theory of negation and as a
theory of logical consequence [33]. The former focuses on (sub)contrariety, while
the latter focuses on subalternation. Furthermore, it has been argued that these
two perspectives are linked to different scholarly traditions of Aristotle’s logi-
cal works: the former is mainly found in commentaries on De Interpretatione,
whereas the latter is central in commentaries on the Prior Analytics [8].

If a classical 2-PCD fragment is visualized by means of a rectangle, this
logical distinction can directly be visualized, by putting the (sub)contrarieties
and subalternations on edges of different lengths. For example, if one primarily
focuses on the theory of negation, then one can put the (sub)contrarieties on
the long edges, thus giving them more visual prominence [37, pp. 515–516],

9 We are using the term ‘square’ in a strictly historical sense here, regardless of its
concrete geometrical properties.
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Fig. 4. The two fundamental forms of a (proper) rectangle for the classical 2-PCD
fragment of S5-formulas that was already visualized by means of a square in Fig. 1(b).

while if one’s focus is on the theory of consequence, one should rather put the
subalternations on the long edges. By contrast, if the fragment is visualized
using a square, then the distinction between (sub)contrariety and subalternation
cannot be visualized in this way, since the square’s edges are all of the same
length.

Next to those who focus on the differences between (sub)contrariety and
subalternation, there are also authors who rather emphasize the logical unity of
these relations. They point out, for example, that every (sub)contrariety gives
rise to two subalternations, and every subalternation gives rise to a contrariety
and a subcontrariety [15,33].10 This has important consequences for the opti-
mal visualization of a classical 2-PCD fragment. If the fragment is visualized
by means of a square, then the unity of (sub)contrariety and subalternation is
visualized by putting them all on edges of the same length. By contrast, if the
fragment is visualized by means of a rectangle, then one will be forced to put
either the (sub)contrarieties or the subaltnerations on the rectangle’s long edges;
however, this visual difference is not motivated by any logical considerations, but
is merely a by-product of the lack of symmetry in the rectangle.

In sum: whether a square or a rectangle is the most suitable diagram for visu-
alizing a classical 2-PCD fragment depends on one’s logical views. If one focuses
on the differences between the Aristotelian relations of (sub)contrariety and sub-
alternation, then the rectangle is the optimal diagram, but if one rather focuses
on the unity between those relations, then the square seems most suitable.

Degenerated 2-PCD Fragments. The formulas in a degenerated 2-PCD frag-
ment are all pairwise unconnected (except for the two pairs of contradictory
formulas, of course). Because of the strictly negative characterization of uncon-
nectedness (absence of all Aristotelian relations), there do not seem to be any

10 In particular: (i) a contrariety between ϕ and ψ yields subalternations from ϕ to ¬ψ
and from ψ to ¬ϕ; (ii) a subcontrariety between ϕ and ψ yields subalternations from
¬ϕ to ψ and from ¬ψ to ϕ; (iii) a subalternation from ϕ to ψ yields a contrariety
between ϕ and ¬ψ and a subcontrariety between ¬ϕ and ψ.
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logical grounds for further differentiating between these pairs of unconnected for-
mulas. Consequently, if the fragment is visualized by means of a square, then the
equal logical status of the four pairs of unconnected formulas is visually repre-
sented by the fact that they are all on edges of the same length; see e.g. Fig. 1(c).
By contrast, if one were to visualize the fragment using a rectangle, then one
would be forced to choose two unconnected pairs to put on the rectangle’s long
edges, without having any logical motivation for doing so. The optimal diagram
for visualizing a degenerated 2-PCD fragment thus seems to be a square, rather
than a rectangle.

5 Aristotelian Diagrams with Three PCDs

In this section we continue our exploration of the logico-geometrical account
presented in Sect. 3, by applying it to Aristotelian diagrams for fragments con-
sisting of 3 PCDs. On the logical side, one can show that the 3-PCD Aristotelian
diagrams can be classified into exactly 5 Aristotelian families, viz. JSB, SC, U4,
U8 and U12 [31,33]. On the geometrical side, visualizing such 3-PCD diagrams
requires a centrally symmetric polygon/polyhedron with 6 vertices. We will con-
sider two such shapes, viz. the hexagon (2D) and the octahedron (3D).

Logically speaking, a 3-PCD fragment can be ordered in 23 ×3! = 48 distinct
ways. Geometrically speaking, the symmetry group Shex of a hexagon has order
12, whereas the symmetry group Soct of an octahedron has order 48. This differ-
ence reflects the fact that an octahedron is higher-dimensional than a hexagon,
which allows it to have more symmetries (viz. one additional rotation axis).
Consequently, when a 3-PCD fragment is visualized by means of a hexagon, this
yields 23×3!

|Shex| = 48
12 = 4 fundamental forms; by contrast, when it is visualized by

means of an octahedron, this yields 23×3!
|Soct| = 48

48 = 1 fundamental form.
Because it is less symmetrical, the hexagon makes more visual distinctions

than the octahedron. In order to determine which shape is the most effective
visualization of a 3-PCD fragment, we should investigate whether these visual
distinctions correspond to any logical distinctions in the fragment. This is exactly
what we will do next, for each of the 5 Aristotelian families of 3-PCD fragments.11

JSB 3-PCD Fragments. Visualizing a JSB fragment by means of an octahe-
dron yields 1 fundamental form; see e.g. Fig. 3(c). By contrast, visualizing it by
means of a hexagon yields 4 fundamental forms; see e.g. Figs. 2(a) and 5(a–c).
In the first fundamental form, the 3 lines connecting the contrary formulas are
all equally long, and thus constitute an equilateral triangle. In the other three
fundamental forms, one line of contrariety is longer than the other two, yielding
a (proper) isosceles triangle.

If the JSB fragment being visualized is (isomorphic to) the Boolean algebra
B3 (except for its �- and ⊥-elements), then its 3 pairwise contrary formulas
11 For reasons of space, our discussion of the visualizations of these 5 families will be

fairly brief; however, much more can (and should) be said about each of them.
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Fig. 5. (a–c) The three remaining fundamental forms of a hexagon for the JSB fragment
of S5-formulas whose first fundamental form was already shown in Fig. 2(a); (d–f) the
three remaining fundamental forms of a hexagon for the SC fragment of S5-formulas
whose first fundamental form was already shown in Fig. 2(b).

(in our S5-example: �p, ♦p ∧ ♦¬p and �¬p) are all of the same level: their
canonical bitstring representations are 100, 010 and 001 [14]. Consequently, the
3 contrarieties holding between them are all equally ‘strong’, and are thus best
visualized using 3 lines of equal length [18,36], as in the hexagon in Fig. 2(a).

However, for linguistic-cognitive reasons it is sometimes useful to view a
JSB fragment as (isomorphic to) a fragment of a much larger Boolean algebra,
e.g. B5, since this allows us to treat the 3 pairwise contrary formulas as belonging
to different levels. For example, in our S5-example, it makes sense to treat �p
and �¬p as the level-1 bitstrings 10000 and 00001, resp., since these formulas
represent the two ‘extremes’ of a ‘modal scale’, while ♦p ∧ ♦¬p is treated as
the level-3 bitstring 01110, since it represents the entire ‘interior’ of that modal
scale [34]. Consequently, the contrarieties holding between these formulas are of
different ‘strengths’: the extremes �p and �¬p are much more contrary to each
other than they are to the intermediate ♦p ∧ ♦¬p. It therefore makes sense to
visualize the strongest contrariety (between �p and �¬p) by means of a line
that is longer than the lines representing the two other contrarieties. This is
exactly the case with the contrariety triangle in the hexagon in Fig. 5(b).

In sum: if the JSB fragment is visualized by means of a hexagon, then various
logical distinctions can directly be visualized by using different fundamental
forms for different cases. By contrast, if the fragment is visualized using an
octahedron, then these distinctions are collapsed, since the octahedron has just
a single fundamental form. The optimal diagram for visualizing a JSB fragment
is thus a hexagon, rather than an octahedron.12

12 This result is in line with earlier work on visualizations for JSB fragments [13,16].
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SC 3-PCD Fragments. Visualizing an SC fragment by means of a hexagon
yields 4 fundamental forms; see e.g. Figs. 2(b) and 5(d–f).13 In the two hexagons
in Fig. 5(e–f), the subalternations do not share one common direction; in other
words, the idea that the formulas are ordered (according to the strict partial
order of subalternation) is not at all visualized in these hexagons. Furthermore,
the (sub)contrarieties are visually most prominent: most of them are in the cen-
ter of the diagram (the subalternations are in the periphery) and they are also
longer than most of the subalternations [37]. Turning to the hexagon in Fig. 5(d),
we see that the subalternations do share a common direction (they all go down-
ward), and hence, this diagram directly visualizes the ordering induced by the
subalternations (lower in the diagram corresponds to further in the subalter-
nation ordering). Furthermore, in this hexagon the subalternations are visually
most prominent: they are all in the center of the diagram, and they are longer
than all the (sub)contrarieties. Finally, the hexagon in Fig. 2(b) also directly
visualizes the ordering induced by the subalternations (again: lower in the dia-
gram corresponds to further in the subalternation ordering). In this hexagon,
however, the (sub)contrarieties are visually most prominent: most of them are
in the diagram’s center, and they are longer than most of the subalternations.

Putting everything together, we thus find that the two hexagons in Fig. 5(e–f)
primarily draw the user’s attention to the (sub)contrarieties in the SC fragment,
and in order to achieve this, they even distort the ordering induced by the sub-
alternations [36, p. 37]. Next, the hexagon in Fig. 5(d) focuses on the fragment’s
subalternation structure, by making the subalternations visually most prominent
and also respecting the ordering induced by these subalternations. Finally, the
hexagon in Fig. 2(b) strikes an ideal balance between these two extremes: it pri-
marily draws the user’s attention to the (sub)contrarieties in the SC fragment,
but does so while still respecting the ordering induced by the subalternations.

Hence, if the SC fragment is visualized by means of a hexagon, then different
fundamental forms can be used to visually emphasize different logical aspects of
the fragment. By contrast, if one were to visualize the fragment by means of an
octahedron, then this would no longer be possible, since the octahedron has just
a single fundamental form. Consquently, the best diagram for visualizing a SC
fragment seems to be a hexagon, rather than an octahedron.

U4 3-PCD Fragments. Visualizing a U4 fragment by means of a hexagon
yields 4 fundamental forms; see e.g. Figs. 2(c) and 6(a–c). In Fig. 2(c), the
(sub)contrarieties are visually most prominent: they are in the center of the dia-
gram and they are also longer than the subalternations. In Fig. 6(b), it is exactly
the other way around: the subalternations are in the center of the diagram,
and they are longer than the (sub)contrarieties.14 The hexagons in Figs. 2(c)
and 6(b) thus draw the user’s attention to either the (sub)contrarieties or the

13 Hexagons 1, 3 and 6 in [6, pp. 131–132] visualize an SC fragment using three distinct
fundamental forms, viz. those shown in Figs. 2(b), 5(e) and (f), respectively.

14 The hexagons in Fig. 6(a) and (c) strike a balance between the (sub)contrarieties
and subalternations, by distributing visual prominence equally among them.
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Fig. 6. (a–c) The three remaining fundamental forms of a hexagon for the U4 fragment
of S5-formulas whose first fundamental form was already shown in Fig. 2(c); (d–e) two of
the four fundamental forms of a hexagon for the U8 fragment {�p, �¬p, ♦p, ♦¬p, q,¬q};
(f) (the unique fundamental form of) an octahedron for the same fragment.

subalternations. Recalling the logical importance of the distinction between these
two types of Aristotelian relations (cf. Sect. 4), these two hexagons will thus be
particularly useful, depending on the author’s concrete purposes: does she want
her audience to focus on the (sub)contrarieties or rather on the subalternations?

In sum: if the U4 fragment is visualized by means of a hexagon, then different
fundamental forms can be used to visually emphasize different logical relations
inside the fragment. By contrast, if one were to visualize the fragment by means
of an octahedron, then this would no longer be possible, since the octahedron
has just a single fundamental form. The optimal diagram for visualizing a U4
fragment is thus a hexagon, rather than an octahedron.

U8 3-PCD Fragments. A U8 fragment consists of four formulas that consti-
tute a classical 2-PCD fragment, together with an additional pair of contradic-
tory formulas that are unconnected to the first four. A typical example is the
S5-fragment {�p,�¬p,♦p,♦¬p, q,¬q}. Visualizing a U8 fragment by means of a
hexagon yields 4 fundamental forms, viz. 2 fundamental forms in which the addi-
tional PCD is parallel to the subalternations, as in Fig. 6(d), and 2 fundamental
forms in which the additional PCD is parallel to the (sub)contrarieties, as in
Fig. 6(e). Since there does not seem to be any logical reason for preferring one
option over the other, the differences between the 4 fundamental forms are thus
mere side-products of the hexagon’s lack of symmetry. By contrast, if one visu-
alizes the fragment using an octahedron, then one can put the additional PCD
perpendicular to the subalternations as well as the (sub)contrarieties (thereby
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avoiding any unmotivated design decisions), as in Fig. 6(f). In sum, then, the
best diagram for visualizing a U8 fragment seems to be an octahedron.

U12 3-PCD Fragments. The U12 fragments are the perfect analogues of
the degenerated 2-PCD fragments, in the sense that their formulas are all pair-
wise unconnected (except for the 3 pairs of contradictory formulas, of course).
A typical example is the CPL-fragment {p,¬p, q,¬q, r,¬r}. If such a fragment
is visualized by means of an octahedron, then the equal logical status of its 12
pairs of unconnected formulas is visually represented by the fact that they are
all on lines of equal length (viz. the 12 edges of the octahedron). By contrast, if
one were to visualize the fragment using a hexagon, one would be forced to put
these unconnected pairs on lines of different lengths, without any logical motiva-
tion. The optimal diagram for visualizing a U12 fragment is thus an octahedron,
rather than a hexagon.

6 Conclusions and Future Work

In this paper we have presented a systematic approach for dealing with infor-
mationally equivalent Aristotelian diagrams. The account is based on the inter-
action between the logical properties of the visualized fragment and the geomet-
rical properties of the concrete polygon/polyhedron. Applying this account to
all Aristotelian families of 2-PCD and 3-PCD fragments has led to several new
insights: as to the 2-PCD fragments, the classical ones are best visualized by
means of a rectangle if one focuses on the distinction between (sub)contrariety
and subalternation and by means of a square otherwise, and the degenerated
ones by means of a square; as to the 3-PCD fragments, JSB, SC and U4 are best
visualized using a hexagon, and U8 and U12 using an octahedron.

A natural next step involves applying the account to 4-PCD fragments. This
is by no means trivial, since there exist 18 Aristotelian families of 4-PCD frag-
ments, only a few of which are currently well-understood. As for the geometric
shapes to be used, obvious candidates include the (regular) octagon and the
cube, which have symmetry groups of order resp. 16 and 48, and thus yield
resp. 24×4!

16 = 384
16 = 24 and 24×4!

48 = 384
48 = 8 fundamental forms. However, when

dealing with Aristotelian families that do not have any relevant logical distinc-
tions to be visualized, one might also want to consider shapes with a symmetry
group of order 384, since these will yield exactly 384

384 = 1 fundamental form.
On a more general level, when visualizing an n-PCD fragment, one might

want to consider a polytope15 that is (i) centrally symmetric, (ii) has 2n vertices,
and (iii) has a symmetry group of order 2n ×n! (since such a polytope will yield
exactly 2n×n!

2n×n! = 1 fundamental form). There indeed exists a polytope satisfying
these criteria, for all n, viz. the cross-polytope of dimension n, which is the dual
polytope of the n-dimensional hypercube [9, pp. 121, 294]. In case n = 2, this is

15 The term ‘polytope’ is a generalization of the terms ‘polygon’ and ‘polyhedron’ to
arbitrary dimensions [9].
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the dual of a square, which is itself also a square (cf. Sect. 4); in case n = 3, this
is the dual of a cube, which is an octahedron (cf. Sect. 5).

The practical usefulness of these last observations is fairly limited, because
they involve (cross-)polytopes of arbitrarily high dimensions, which are not very
useful for concrete visual-diagrammatic purposes. For example, visualizing a
4-PCD fragment would require a so-called 16-cell (i.e. the dual of the 4-
dimensional hypercube) [9, p. 292], which can be studied abstractly, but goes
beyond human visual cognition.16 Nevertheless, the theoretical importance of
these observations should not be underestimated, since they show that the dia-
grams that several logicians have come up with to visualize 2- and 3-PCD frag-
ments ‘up to symmetry’ (i.e. having a unique fundamental form), viz. the square
and the octahedron, are the first few instances of a well-defined, infinite series
of polytopes.
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