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Abstract. In this paper, we study the cognitive effectiveness of dia-
grammatic reasoning with proportional quantifiers such as most. We
first examine how Euler-style diagrams can represent syllogistic reasoning
with proportional quantifiers, building on previous work on diagrams for
the so-called plurative syllogism (Rescher and Gallagher, 1965). We then
conduct an experiment to compare performances on syllogistic reasoning
tasks of two groups: those who use only linguistic material (two senten-
tial premises and one conclusion) and those who are also given Euler
diagrams corresponding to the two premises. Our experiment showed
that (a) in both groups, the speed and accuracy of syllogistic reasoning
tasks with proportional quantifiers like most were worse than those with
standard first-order quantifiers such as all and no, and (b) in both stan-
dard and non-standard (proportional) syllogisms, speed and accuracy
for the group provided with diagrams were significantly better than the
group provided only with sentential premises. These results suggest that
syllogistic reasoning with proportional quantifiers like most is cognitively
complex, yet can be effectively supported by Euler diagrams that repre-
sent the proportionality relationships between sets in a suitable way.

Keywords: Euler diagrams - Proportional quantifiers + Reasoning -
Logic and cognition

1 Introduction

Euler diagrams have been used to represent various set-theoretical properties
and relations. We can distinguish three types:

(i) The basic inclusion and exclusion relations between sets, as represented by
sentences like All A are B and No A are B;
(ii) The proportionality relationship between sets, as represented by sentences
like Most A are B and More than half of A are B;
(iii) The cardinality of sets, represented by sentences like Three A are B, More
than three A are B, and Less than three A are B.
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In previous cognitive studies on Euler diagrams [16,17], empirical evidence has
been found in support of the effectiveness of diagrams with respect to (i). How-
ever, whether and how diagrams can also be effective in representing and rea-
soning about (ii) and (iii) still remains to be explored. In this paper, we will
focus on (ii), i.e., the proportionality relationship between sets, and examine the
cognitive effectiveness of diagrams to represent proportional quantification as
expressed by a sentence like Most A are B.

As we will review in Sect. 2, logical properties of proportional quantifiers
like most have been the focus of recent research on quantification in logic and
linguistics. In logical and cognitive studies on diagrams, however, although Euler
and Venn diagrams are widely used to represent and reasoning with quantified
statements, little has been discussed about how they can represent proportional
quantification and how effective they can be in actual reasoning. This paper is
a first step to fill this gap.

The structure of this paper is as follows. In Sect. 2, we present backgrounds
on proportional quantifiers in logical, computational and cognitive studies. In
Sect. 3, we analyze diagrammatic representations (Sect.3.1) and diagrammatic
inferences (Sect. 3.2) for proportional quantifiers in order to generate predictions
(Sect. 3.3). In Sect. 4, we report the results of an experiment comparing partici-
pants’ performance in solving proportional syllogism with and without diagrams.
Section 5 concludes the paper with a summary and discusses some directions for
future work.

2 Background on Proportional Quantifiers

We will start with a brief overview of the logical, computational and cognitive
properties of proportional quantifiers. This provides the necessary background
information about the main issue in this paper.

Logic. Natural languages use many expressions of quantification. Among them,
quantifiers such as all, some and no can be represented within first-order logic,
using the unary quantifiers V and 3 and other logical connectives. Thus, the
sentence All A are B is represented as Va(Ax — Bz), the sentence Some A are
B as 3z(Ax A Bz), and the sentence No A are B as Vz(Ax — —Bux).

In contrast, it is known that quantifiers that denote the proportionality rela-
tion between sets are not definable within first-order logic [3]. A typical example
is the quantifier most, where Most A are B is usually analyzed to mean More than
half of A are B, symbolized as |[ANB| > |A|/2, or equivalently, |ANB|>|A—B|.
As these paraphrases show, the quantifier most essentially denotes the binary
relation between sets, which is not reducible to a standard unary quantification
(i.e., a property of a set). Throughout this paper, we call a non-first-order quan-
tifier like most a proportional quantifier, in contrast to a standard first-order
quantifier like all and no.

Computation. Quantifier interpretations in terms of generalized quantifier the-
ory have also been analyzed from computational perspectives. In a seminal work,



Human Reasoning with Proportional Quantifiers 125

van Benthem [4] uses automata to model semantic computing of quantified sen-
tences. For example, in the standard quantified sentence of the form All A are B,
the machine reads the states of objects. If the object is B, the transition to
an accepting state occurs; otherwise, the transition to a rejecting state occurs.
Thus, the machine need not memorize data at each process, and the machine’s
system can be realized by a simple finite automaton. By contrast, a proportional
quantified sentence of the form Most A are B can only be modeled by push-
down automata. In the case of proportional quantifiers, if the result of reading
the states of objects is equal to the information in the top stack, the result
is stored in a pushdown stack; otherwise, information in the stack is removed.
Thus, a memory device (pushdown stack) is needed to give a computational
modeling of proportional quantifiers. The resulting system is realized not by a
finite automaton but by a push-down automaton. In this sense, the difference
between proportional and non-proportional quantification also appears in the
semantic automata approach to quantifiers.

Cognition. In cognitive psychology, it has been discussed whether the logical
and computational difference between proportional and non-proportional quan-
tifiers is reflected in the difference in the actual processing of quantifier expres-
sions (see [23] and references given there). In these studies, it has been widely
observed that proportional quantifiers take longer time to process and are inter-
preted less accurately than standard quantifiers. More specifically, Szymanik
and Zajenkowski [23] argued that the computational identification of general-
ized quantifiers using semantic automata is relevant to cognitive verification
processes of natural language quantifiers. In their experiment, participants were
asked to judge whether quantified sentences were true of pictures containing 15
objects with different properties. Response times for the verification tasks were
significantly longer in proportional quantified sentences (more than half and less
than half) than in standard quantified sentences (all and some). This indicates
that interpretation of proportional quantifiers requires more cognitive effort than
interpretation of standard quantifiers, which is in accord with the computational
model of generalized quantifiers.

In sum, proportional and non-proportional quantifiers show a different logical
and cognitive behavior. The main question we are concerned with in this paper
is whether such a difference between two kinds of quantification also appears
in diagrammatic reasoning. To approach to this question, we will start, in the
next section, with discussing how diagrams can represent sentences containing
proportional quantifiers.

3 Diagrams of Proportional Quantifiers

3.1 A Problem in Diagrammatic Representation of Most

Euler diagrams represent sets of objects in terms of circles or closed curves and
represent the inclusion and exclusion relations between sets by combining circles.
Note here that circle sizes are irrelevant to the understanding of inclusion and
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D1 D2

Fig. 1. A diagram for Three-fourths of A are B (D1) and Rescher-Gallagher’s Venn
diagram with an arrow convention for Most A are B (D3).

exclusion relations between sets i.e., the relations at the level (i) in our classifica-
tion of set-theoretic relations discussed in Sect. 1. By contrast, the size differences
play an important role in expressing the proportional relations between sets, i.e.,
the relations at the level (ii) in our classification.

As an example of a diagram in which the proportionality plays a role, consider
the proportional quantifier three-fourths and its diagrammatic representation
D; in Fig. 1. Here the area of the AB region is 1/4 of the total area of the A
region and the area of the AB region is 3/4. Thus, this diagram corresponds
to the sentence Three-fourths of A are B. We can find such a use of diagrams
in the seminal work on conditionals by Adams [1], where the probabilities of
conditionals are described by proportions of subregions in Euler-style diagrams.
Also, in more recent developments of diagrammatic logic, the notion of “area-
proportionality” is formalized using the weight values assigned to regions of Venn
and Euler diagrams ([6]; see also [22]).

However, this line of extension of Euler diagrams is inadequate as a dia-
grammatic representation of the proportional quantifier most. In diagrammatic
representations of most, one has to visualize the fact that the area of one region
is greater than that of another region, without specifying the particular values
of the areas of the relevant regions. This is an instance of the over-specifity prop-
erty of diagrams discussed in details in [20,21]. What is necessary to capture the
intended meaning of most is a natural device that indicates the proportional-
ity relation between two regions and at the same time leaves underspecified the
relation between the regions in question and the other regions in the diagram.

Rescher and Gallagher [15] overcame this problem by introducing to Venn
diagrams the conventional device of the arrow to indicate that the extension of
one region is less than that of another region. An example is shown as Dy in
Fig. 1. In this diagram, the AB region means the regions that can be extended,
and the AB means the region that can be reduced. Thus even if we do not know
the exact ratios of the regions’ areas, we can extract the information that ANB
is greater than A — B.

By using the framework of Venn diagrams and introducing the conventional
device of arrows, Rescher and Gallagher’s diagrams succeed in avoiding the over-
specificity problems inherent to proportional diagrams. However, giving up the
idea of using the proportion of regions to indicate the proportionality of sets
makes their diagrams less intuitive and hence more difficult to understand in
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D3 Dy Ds

Fig. 2. Proportional diagrams for Most A are B (Ds), Most A are not B (D4), and
All A are B (Ds)

actual use. We can say that Venn diagrams with the arrow conventions are hybrid
in that they combine a concrete circle-based form and an abstract convention in
terms of arrows to represent the relational meaning of most.

For the diagrammatic representation of proportional quantifiers, we prefer
to preserve the idea that the proportion of regions indicates the proportional
relation between sets. In our view, diagrams that can be actually available to
users are written on a paper or displayed on a PC monitor, with concrete forms.
For this reason, in our experimental study, we do not adopt Venn diagrams with
arrow conventions but instead use Euler diagrams whose regions have different
areas, with the understanding that the sizes of the relevant regions whose pro-
portionality is in focus are fixed and the other parts can be freely extended or
reduced. We call the diagrams used in our experiments proportional diagrams.

In the actual scenes of the experiment, proportional diagrams were provided
not as mere pictorial images, but rather as instances of general diagrams for
most by instructing their syntax and semantics (see Appendix 2).* For example,
Most A are B is represented by Djs of Fig.2, where (i) the proportion of AB
region by AB region is specified as a greater than (>) relation with the tentative
ratio of 2 : 1, and (ii) the proportion of BA region by BA region is unknown;
the tentative ratio is set to 1 : 1, in order to restrain the invalid inference from
Most A are B to Most B are A. D4 of Fig. 2 corresponds to More A are not B,
where the AB region and AB region are set to a 1 : 2 proportion and the BA
region and BA region are set to a 1 : 1 proportion. D5 of Fig.2 corresponds to
All A are B, where the area of the AB region is equal to that of the AB region
and the invalid inference from All A are B to Most B are A is restrained.

Before moving on to discussing how proportional diagrams can be used in
reasoning, two remarks are in order here. First, the system presented here works
for pair-wise syllogistic inferences, where each sentence (premise and conclu-
sion) has only two terms; however, without introducing a further convention,
the system does not generalize to more complex cases. We made this simplifying
assumption because we focused on the effectiveness of proportional diagrams in
actual syllogistic inferences. To generalize the system of proportional diagrams,
one would need a syntactic device to distinguish partially overlapping circles

! In addition, we can adopt a method using size-scalable diagrams in which object sizes
can be changed from a default. Sato et al. [19] reported that the use of size-scalable
diagrams in logical reasoning reduced the interfering effect of diagram layout.
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expressing indeterminacy, as is common in Euler diagrams and Venn diagrams,
from partially overlapping circles indicating the special proportionality relation
expressing the meaning of Most A are B. One may use the Rescher-Gallagher’s
convention of using arrows or, for that matter, any syntactic convention to indi-
cate the proportionality relation between two circles. Such a generalization of
proportional diagrams and its empirical evaluation are left for future research.
Secondly, it is worth mentioning that Euler diagrams for proportional quan-
tification used here can be naturally formalized within the framework of the
relation-based approach to formalization of Euler diagrams [12,14]. According
to this approach, a relation between sets such as inclusion and exclusion relations
is taken as a primitive to define a diagram at an abstract level. Then a semantics
and diagrammatic proof system can be provided in a similar way to the system
of natural logic [13]. It is natural to add to this relation-based framework a rela-
tion corresponding to Most A are B (see [8] for a related study). We leave the
detailed formal treatment of proportional diagrams for another occasion.

3.2 Reasoning with Proportional Diagrams

Reasoning with the proportional quantifier most has been studied in some depth
by logicians having interest in natural language inferences (for early works,
see [2]). Within syllogistic fragments, which are sometimes called as “plurative
syllogisms”, some researchers have proposed decision procedures with diagrams:
Venn diagrams with arrow in [15], as stated above, and Lewis Carroll diagrams
in [9]. More recently, the “natural logic” approach to natural language inference
has combined natural language semantics based on the generalized quantifier
theory, as seen in Sect. 2, and proof theory, to provide modern reconstructions
of syllogistic reasoning. Endrullis and Moss [8] developed a proof system of syl-
logistic reasoning with all, some, and most.
Consider the following four arguments with most:

— All BA, Most CB (AU1); therefore, Most CA (U)

All AB, Most C not B (AW2); therefore, Most C not A (W)
— No BA, Most CB (EU1); therefore, Most C not A (W)
— No AB, Most CB (EU2); therefore, Most C not A (W)

Here the label A stands for a sentence with All, E for a sentence with No, U
for a sentence with Most, and W for a sentence with Most-not. The conclusion
or hypothesis (beginning with therefore) is entailed by the premises in each
argument. In other words, if all the premises are true, then the conclusion also
is necessarily true. Therefore, each argument is a valid inference. Indeed, except
for trivial cases (e.g., conclusion sentences converted from All CA to Most CA,
and from No CA to Most C not A), valid syllogisms involving most and most-not
comprise only the above four arguments (see [25]; for the sake of simplicity, some
is not included here).

For invalid arguments, furthermore, non-entailment relations between
premises and hypothesis can be generated in two ways (cf. [11], Chap.5). First
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is a contradiction. Taking the AU1 syllogism above as an example, the hypoth-
esis Most C not A contradicts the premises; if the premises are true, then the
hypothesis cannot be true. Second is a consistency (compatibility). In the AU1
syllogism, the hypothesis All CA or No CA is consistent with the premises, in
that if the premises are true, then the hypothesis may or may not be true. (See
Appendix 1 for more details; note that not all valid/invalid syllogisms were used
here.)

The extent to which ordinary people correctly make inferences with most in
a typical sentential format is not well understood. If the interpretations of most
are computationally and cognitively more complex than the interpretations of all
(see Sect.2), it is natural to speculate that inferences with most are also more
complex than inferences with all. However, there is no empirical support for
this speculation. It may be more accurate to say that there are no experimental
studies which cover all of our tasks using most, most-not, all, and no. As a
notable exception, Chater and Oaksford [5] employed the AU1U syllogism in
their experiment, with a resulting accuracy rate of 85 %, and Geurts and van
Der Slik [10] included inferences with most in more extended syllogisms with
multiple quantifiers, for example, inferences from Most A played against more
than two B and All B were C to Most A played against more than two C. Changes
of most to every made no difference between them in participants’ performances.

The solving process for reasoning tasks with proportional diagrams is essen-
tially the same as that for standard syllogistic tasks with Euler diagrams [17].
Tasks for logical reasoning with diagrams typically consist of sentences (premises
and a conclusion), and diagrams corresponding to the premise sentences, as
shown in Figs.3 and 4. The processes of unifying diagrams and extracting the
information from sentences are illustrated by arrows.

Figure 3 shows the cases of an extended syllogism having the premises All BA
and Most CB. In (1), (2) and (3), the first premise All BA is represented by Dy,
and the second premise Most CB by Ds. There are two possible configurations of
circles C' and A in unifying the premise diagrams D; and Ds. In the first unified
diagram D3, the C'A region is larger than the C'A region. From this diagram we
can extract the information |[C N A|>|C — A (i.e., Most CA). In the second
unified diagram Dy, circle C' is totally included in circle A, thus we can extract
the information C C A (i.e., All CA).

Let us see how to solve the inferences in (1), (2) and (3) in turn. For (1),
which is an instance of AU1U syllogism, one can start with extracting the infor-
mation from the hypothesis Most CA. Then one can test whether this bottom-up
information matches the top-down information extracted from the unified dia-
grams. Given that All CA implies Most CA, we can match the information from
the hypothesis to both the information from D3 and that from D4. Thus, we
can correctly judge that the hypothesis Most CA is entailed by the premises.

Regarding (2) (AU1W syllogism), the hypothesis has the form Most C not A.
The information that can be read off from this hypothesis does not match the
information from D3 nor the information from D,4. Thus, we can judge that the
hypothesis Most C not A contradicts the premises.
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Regarding (3) (AU1A syllogism), the hypothesis has the form All CA. The
information from the hypothesis matches information from Dy, but not from Ds
(Most CA of D3 does not imply All CA)2. We can thus conclude that the given
hypothesis All CA may be true or may be false. Thus, we can judge that the
hypothesis All CA is consistent with the premises.

The above strategies that test whether the top-down information extracted
from the unified diagrams matches the bottom-up information of the hypothesis
sentence are common to standard syllogistic tasks using Euler diagrams. Figure 4
shows some examples. The syllogisms in (1) and (2) have the premises All AB
and No CB. In this case, the unification of premise diagrams D, and D5 produces
the unique configuration Ds, corresponding to No CA. In the case of AE2E
syllogism in (1), the hypothesis No CA matches the information No CA from
the unified diagram Ds, leading to the correct answer (entailment). In the case
of AE2A syllogism in (2), the hypothesis All CA does not match the information
No CA from Ds. Accordingly, we can judge that the premises contradict the
hypothesis. The syllogism in (3) (EA3E syllogism) has the premises No BA and
All BC and the consistent conclusion No CA. There are four possibilities for
the relationships between circles C and A: Dg, D7, Dg, and Dgy. The hypothesis
matches Dg but not D7, Dg or Dg. This kind of syllogism with no valid conclusion
can actually be solved by enumerating multiple possibilities to unify the premise
diagrams (see [18] for more details).

3.3 Predictions

Based on the analyses so far, we make two predictions.

(1) Reasoning with the proportional quantifier most (most-not) is more dif-
ficult and effortful than reasoning with standard quantifier all (no). This is true
for participants who use only linguistic material as well as those who are also
given proportional diagrams.

(2) The proportional diagrams improve the accuracy and speed of perfor-
mances not only in reasoning with standard quantifiers but also in reasoning
with proportional quantifiers, including all modes of entailment, contradiction,
and consistency.

In this study, diagrams are added to sentential tasks of reasoning. This sit-
uation requires participants to handle both sentences and diagrams; i.e., they
must do two jobs (cf. [16]). Nevertheless, if performance is faster with diagrams
than without diagrams, this is evidence for the effectiveness of diagrams in rea-
soning. By contrast, even if performance is more accurate with than without
diagrams, this does not necessarily count as evidence for the effectiveness of dia-
grams, because only the tasks with diagrams contain additional information on
diagrams. Therefore, response-time data as well as accuracy data will be used
to evaluate the effect of diagrams.

2 Note here that the existence of C'A region is a counter-example to the argument of
the AU1A syllogism. See Takemura [24] for a formal specification of counter-example
construction with Euler diagrams.
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4 Experiment

4.1 Method

Participants. Forty-two undergraduate and graduate students from the Uni-
versity of Tokyo were recruited by means of an advertisement posted on campus.
The mean age was 20.33 (SD = 2.09) with a range of 18-28 years. All partic-
ipants gave informed consent and were paid for their participation. The Ethics
Review Committee of the Graduate School of Arts and Sciences at the Univer-
sity of Tokyo approved all procedures in this experiment. The participants were
Japanese-speaking students, and the sentences and instructions were provided
in Japanese. None had any prior training in syllogistic logic. Participants were
divided into two groups: a Diagrammatic group (N = 21), in which diagrams
were used, and a Linguistic group (N = 21), in which diagrams were not used.

Materials. We presented 39 items: 17 standard syllogisms and 22 non-standard
syllogisms (see Appendix 1 for the list of syllogisms). The sentences of standard
syllogisms were universally quantified sentences either of the form All A are B or
No A are B. The sentences of non-standard syllogisms were proportional quan-
tified sentences of the forms Most A are B and Most A are not B. As shown
in Fig. 5, the participants were presented with two premises and a hypothesis
(conclusion) on a PC monitor and were asked to answer the question of If the fol-
lowing two premises are true, is the hypothesis also true?, by selecting a response
from a list of three options: 1. Hypothesis is true (i.e., entailment). 2. Hypoth-
esis is false (contradiction). 3. Neither 1 nor 2: Hypothesis may or may not
be true (consistency). The premises in 9 syllogisms (4 non-standard) entail the
hypotheses and the premises in 13 syllogisms (7 non-standard) contradict the
hypotheses, and the premises in 17 syllogisms (11 non-standard) are consistent
with the hypotheses. The quantified sentences included three properties, color
(red or blue) for A terms, shape (square or round) for B terms, and striped
pattern (horizontal or vertical) for C' terms.

Procedures. The experiment was conducted individually. First, the Diagram-
matic group only was given two pages of instructions on the meaning of Euler
diagrams, but they did not receive any instructions about how to manipulate dia-
grams when solving syllogisms (for details, see Appendix 2). Second, both groups
were given two pages of instructions regarding on three types of entailment rela-
tionships between premises and conclusion: “entailment”, “contradiction” and
“consistency” each with an example (for details, see Appendix 2). The partici-
pants were asked to press, as quickly and accurately as possible, a button with
the number representing their answer. The 39 reasoning tasks were presented in
random order. There was no time limit.

4.2 Results and Discussion

Accuracy rates (numbers of correct answers) for the non-standard syllogisms
were significantly lower than those for the standard syllogisms. This tendency
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If the following two premises are true, If the following two premises are true,
is the hypothesis also true? is the hypothesis also true?
blue
Premise 1 All round objects are blue. Premise 1 All round objects are blue.
round
vertic
Premise 2 Most vertical objects are round. Premise 2 Most vertical objects are round.
Hypothesis Most vertical objects are blue. Hypothesis Most vertical objects are blue.
1. Hypothesis is true. 1. Hypothesis is true.
2. Hypothesis is false. 2. Hypothesis is false.
3. Neither 1 nor 2: Hypothesis may or may not be true. 3. Neither 1 nor 2: Hypothesis may or may not be true.

Fig. 5. Examples of reasoning tasks (AU1U syllogism) for the Linguistic group (left)
and the Diagrammatic group (right)

was common to both the Linguistic group (73.4% vs. 84.9%, z = 2.78, P =
0.0055, Wilcoxon test) and the Diagrammatic group (81.6 % vs. 92.4 %, z = 2.80,
P =0.0051). Response times (for correctly answered items) for the non-standard
syllogisms were also significantly longer than those for the standard syllogisms.
This tendency was also common to both the Linguistic group (26.98 s vs. 21.05s,
t(20) = 5.074, p < 0.01) and the Diagrammatic group (20.13s vs. 14.19s, £(20) =
6.084, p < 0.01). Thus, syllogistic reasoning with proportional quantifiers most
is relatively difficult and effortful, supporting our first prediction.

Table 1 shows accuracy rates and response times (for correct answers only) in
the Linguistic and Diagrammatic groups. The results for each syllogistic type are
shown in Appendix 1. For the non-standard syllogisms, accuracy rates (numbers
of correct answers) were substantially higher in the Diagrammatic group than in
the Linguistic group (81.6 % vs. 73.4 %), but there was no significant difference
between them (U = 146.5, P = 0.0610, Mann-Whitney Test). Accuracy rates
for the standard syllogisms were significantly higher in the Diagrammatic group
than in the Linguistic group (92.4% vs. 84.7%, U = 146.5, P = 0.0422). More
detailed analyses of entailment, contradiction, and consistency were conducted.
For the non-standard syllogisms, accuracy rates were significantly higher in the
Diagrammatic group than in the Linguistic group for entailment (90.5% vs.
80.9%, U = 142.5, P = 0.0233) and contradiction (88.4% vs. 80.3%, U =
137, P = 0.0275). There was no significant difference for consistency (74.0%
vs. 66.2%, U = 177, P = 0.2669). For the standard syllogisms, there was no
significant difference for each condition of entailment (P = 0.2681), contradiction
(P = 0.3425) and consistency (P = 0.0586).

Response times of correctly answered items were logarithmically transformed
and subjected to t-tests. Response times were significantly shorter in the Dia-
grammatic group than in the Linguistic group for standard syllogisms (14.19s vs.
21.05s, t(40) = 3.506, p < 0.01) and for non-standard syllogisms (20.13s vs.



Human Reasoning with Proportional Quantifiers 135

Table 1. Accuracy rates and response times (correct answer only) for standard syllo-
gisms and non-standard syllogisms in the Linguistic group and Diagrammatic group

Entailment

Contradiction

Consistency

Total

Standard syllogisms

92.4% 20.38s
96.2% 12.74s
Non-standard syllogisms

80.9% 22.16s
90.5% 16.68s

Linguistic group

Diagrammatic group

Linguistic group

Diagrammatic group

92.1% 18.37s
95.2% 13.77s

80.3% 23.48s
88.4% 17.96s

71.4% 24.79s
86.5% 15.55's

66.2% 31.90s
74.0% 23.89s

84.9% 21.05s
92.4% 14.19s

73.4% 26.98s
81.6 % 20.13s

26.98s, t(40) = 2.526, p < 0.05). In the following analyses, we excluded the
participants’ data where there was no correct answer in each condition of entail-
ment, contradiction, and consistency. In the standard syllogisms, response times
were significantly shorter in the Diagrammatic group than in the Linguistic
group for entailment (12.74s vs. 20.38s, t(39) = 5.566, p < 0.01), contradic-
tion (13.77s vs. 18.37s, t(39) = 2.205, p < 0.05), and consistency (15.55s vs.
24.79s, t(39) = 3.887, p < 0.01). In the non-standard syllogisms, response times
were significantly shorter in the Diagrammatic group than in the Linguistic
group for entailment (16.68s vs. 22.165s, t(39) = 2.095, p < 0.05), contradiction
(17.96's vs. 23.48 s, £(39) = 2.393, p < 0.05), and consistency (23.89s vs. 31.90s,
t(39) = 2.127, p < 0.05). The results shown in Table 1 suggest that proportional
diagrams tend to be effective in syllogistic reasoning with the proportional quan-
tifier most, consistent with our second prediction.

5 Conclusion and Future Work

As seen in Sect. 2, previous work has revealed that most sentences are compu-
tationally and cognitively complex in interpretation or verification. Little atten-
tion, however, has been paid to most sentence inferences; further, not much is
yet known about the kind of diagrams that work well in such inferences. In this
study, we showed that syllogistic reasoning with proportional quantifiers most
is cognitively complex yet can effectively be supported by Euler-style diagrams
that represent the proportionality relationships between sets in terms of area-
proportionality. In particular, our result indicates that difference between all
and most in the complexity of comprehension also reflects the complexity of
reasoning tasks in both linguistic and diagrammatic formats.

Future research should explore the interaction of proportional diagrams and
diagrams for existential quantifiers. For instance, it is well-discussed that Most
A are B and Most A are C entail Some B are C [9]. It is clear that diagrams
expressing the proportionality relationship in an intuitive way can help deriving
such an inference from most to some. However, combining proportional dia-
grams with diagrams asserting the non-emptiness of a set is not a trivial task; in
addition to the generalization of proportional diagrams mentioned in Sect. 3.1,
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we leave for future research how to set up a more expressive representation
system for proportional diagrams.

In the study of visualization and graphics, it has been discussed that percep-
tual judgements of the relative sizes of areas is relatively difficult and effortful [7].
A detailed investigation on perception of proportional diagrams is also left for
future work.

As we saw in Sect. 2, by merging the theoretical and empirical findings on
various kinds of quantifiers, we can explore the relationship between logical,
computational and cognitive aspects of human reasoning. Imposing a constraint
on the possible ways in which we can reason by means of diagrams can contribute
to this direction of research and serve as a fruitful way to capture the complexity
of reasoning tasks.

Appendix 1: The Results of Each Task

Table 2. Accuracy rates and response times (correct answer only) for 39 syllogisms in
the Linguistic group (left) and Diagrammatic group (right)

Premises Entailment Contradiction Consistency
All BA, All CB (AAl) All CA (A) No CA (E) -
100 % 100 % 15.59s 14.68s |100% 100 % 14.75s 13.18 s
All AB, All CB (AA2) - - No CA (E)
52.4 % 90.5 % 25.93s 17.87s
All BA, All BC (AA3) - No CA (E) All CA (A)
85.7% 95.2% 17.34s 17.955|80.9% 90.5% 16.88s 30.10s
All BA, No CB (AE1) B B No CA (E)
71.4 % 90.5 % 25.23s 32.55s
All AB, No CB (AE2) No CA (E) All CA (A) -
85.7 % 95.2 % 21.93s 22.55s|85.7 % 95.2 % 23.59s 21.73s
All BA, No BC (AE3) - - no CA (E)
95.2 % 85.7 % 23.95s 12.28s
All AB, No BC (AE4) No CA (E) All CA (A) -
81.0% 90.5% 29.46s 27.065/90.5% 90.5% 25.11s 15.94s
No BA, All CB (EAL) No CA (E) All CA (A) -
100 % 100 % 16.48s 13.88s |100% 100 % 15.53s 10.72s
No AB, All CB (EA2) No CA (E) All CA (A) -
95.2% 95.2 % 21.29s 9.77s |90.5% 90.5% 19.50s 15.92s
No BA, All BC (EA3) - - No CA (E)
66.7 % 80.9 % 27.83s 25.22s
No AB, All BC (EA4) B B No CA (E)
61.9% 80.9 % 30.285s 19.67s
All BA, Most CB (AUL) Most CA (U) Most C not A (W) All CA (A)
90.5% 95.2 % 17.85s 22.79s/90.5% 95.2% 16.48s 15.89s|57.1 % 76.2 % 22.23s 19.52s
All AB, Most CB (AU2) - All CA (A) Most CA (U)
61.9% 66.7 % 24.78s 31.065|85.7% 90.5% 26.56s 24.49s
All BA, Most BC (AU3) B B Most C not A (W)
61.9% 66.7% 23.16s 35.39s
All BA, Most C not B (AW1) |- No CA (E) Most C not A (W)
61.9 % 90.5 % 26.29s 38.56s|71.4% 76.2% 24.87s 22.92s
All AB, Most C not B (AW2) [ Most C not A (W) Most CA (U) No CA (E)
61.9% 80.9% 24.11s 19.125|90.5 % 85.7 % 25.70s 12.87s|52.4 % 80.9 % 27.26s 33.68s
All BA, Most B not C (AW3) |- B Most CA (U)
76.2% 76.2% 36.51s 20.29s
All AB, Most B not C (AW4) |- B Most C not A (W)
71.4% 71.4% 50.49s 23.45s
No BA, Most CB (EU1) Most C not A (W) Most CA (U) No CA (E)
100 % 90.5 % 25.72s 17.67s [95.2 % 90.5 % 19.69s 20.26s|52.4 % 71.4% 19.42s 13.37s
No AB, Most CB (EU2) Most C not A (W) Most CA (U) No CA (E)
71.4% 95.2% 21.46s 39.255|90.5% 95.2% 20.89s 16.95s|57.1 % 71.4% 35.34s 30.15s
No BA, Most BC (EU3) - - Most C not A (W)
81.0% 61.9% 27.60s 15.60s
No AB, Most BC (EU4) - All CA (A) Most CA (U)
71.4% 95.2% 36.81s 18.59s/61.9% 71.4% 31.32s 35.92s
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Appendix 2: Instructions Used in Experiment

See: http://abelard.flet.keio.ac.jp/person/sato/index/appendix_d16.pdf
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