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Abstract. We investigated whether diagrams influence strategy choice and
success in solving elementary combinatorics problems. Generic diagrams (trees
or two-way tables) were provided to solvers as aids. Participants’ coded solution
strategies revealed that problem solvers tended to utilize mathematical structures
and solutions that easily mapped to the diagrams’ visuospatial relations. For
example, when provided with an unlabeled N-by-N table, solvers tended to
proceed by defining an equally-likely outcome space (an “outcome-search”
solution); when provided with a binary tree, solvers tended to adopt a “se-
quential” solution defining stage-wise simple or conditional probabilities; when
provided with an N-ary tree cuing equally-likely outcomes, choices were split
between the two solution types. Furthermore, the tree and the table showed
different patterns of characteristic errors, and perhaps for this reason, the tree led
to higher accuracy for one problem that involved sequential sampling without
replacement, while the table was best for the other problem, involving inde-
pendent events. The results support arguments that the content and structure of
diagrams must be congruent to that of the problem at hand and be easily and
accurately perceived to be effective, and demonstrate that diagrams can influ-
ence strategy choice in problem solving.

Keywords: Probability problem solving � Diagram congruence �
Diagram design

1 Introduction

1.1 Background

Diagrams are essential tools for representation, communication, and reasoning. In
education, diagrams have been used widely and play an important role in STEM
learning and problem solving [e.g., 1–5], learning and comprehension of complex
systems [2], judgment [6, 7], reasoning [8], analogical transfer [9, 10], planning [11],
and data representation and interpretation [12, 13].

But like any tool, a diagram must be well chosen for the task at hand, and its use
affects both the process and the product of the activity. First, as an external repre-
sentation of a cognitive or educational problem, salient aspects of the diagram must
map to relevant aspects of the problem [14, 15]. Second, structural, visuospatial, and
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implicit aspects of the chosen diagram can influence and alter people’s inferences,
judgments, and the perceived relations and structures of the represented information
[e.g., 6, 8, 13]. How a diagram steers people to making certain inferences and judg-
ments concerning the represented concepts and relations is not arbitrary. Rather, it
stems from cognitively natural ways of mapping visuospatial elements and relations to
conceptual content and relations, externally or internally, based on shared metaphorical
(or analogous) similarity of abstract relational structures [e.g., 6, 15–17].

A rich body of research has explored how specific types of diagrams affect infer-
ences in reasoning and judgment tasks. When asked to describe the relation of indi-
vidual data points shown in statistical graphs, people given a bar graph tended to
describe the relation as comparisons of discrete entities, but as trends of continuous
change when given the same information depicted as a line graph [13, 18]. To describe
complex mechanical systems depicted by diagrams, people reading mechanical dia-
grams with arrows described the functions of the systems, whereas those reading the
same diagrams without arrows gave structural descriptions [2]. Other evidence [8] has
demonstrated that when people use diagrams to keep track of individuals’ locations
over different time points, presentation of different graph formats led to different
inferences by participants.

In general, people’s inferences using diagrams are systematically related to the
schemas that different diagram formats convey. For example, lines connect and asso-
ciate entities, indicating paths, relations, and movement [8, 13, 19]; bars and boxes
suggest enclosures and separate categories [8, 13]; and arrows show asymmetric
directions and sequences from actions to goals and causes to effects [2, 19].

In this paper, we investigate the role of diagrams in probability problem solving.
One general question we address is: can diagrams affect the interpretation or processing
of probability word problems? Another is: do diagrams facilitate solution of probability
problems? These questions can be answered in different ways. First, authors of prob-
ability textbooks seem to believe that diagrams aid in the understanding of probability
principles, since such textbooks sometimes feature outcome trees and tables in chapters
on probability [20]. Second, there is evidence that spontaneous use of diagrams by
probability problems solvers is associated with higher solution success, but only when
the diagram type used is appropriate to the problem type [4, 21]. Finally, there is
suggestive evidence that providing a generic diagram with a problem text may in some
cases facilitate solution of the problem, especially when the problem is somewhat
difficult for the would-be solver [22].

Providing a generic diagram might be beneficial to students solving a probability
word problem simply because it offers another representation of the problem, and
multiple representations have been argued to lead to a deeper understanding of the
problem [23]. But if the structure of the diagram is indeed cognitively mapped to the
problem structure and the diagram is then used to reason about the problem and its
solution, using different types of diagrams to represent a given problem might steer the
problem solver in different directions in terms of solution strategies or processes. Such
process evidence would provide more diagnostic evidence than mere solution success
for how diagrams steer, and ideally facilitate, problem solving processes.
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1.2 The Present Study

In the present study, we explore how using different types of diagrams can affect both
process (strategy choice) and product (solution success) in probability problem solving.
Specifically, we focus on two types of schematic diagrams that are commonly used as
visual aids in probability and statistics domains, trees and tables.

Trees and tables differ in diagrammatic structures, and thus may lead to inductions
of different schematic information and applications. Novick and Hurley [15] analyzed
the basic structures and schematic components of these two general types of diagrams.
As they observed, the global structure of a table features the cross-classification of two
variables or sets. The rows and columns each represent a variable or set, and the
intersection cells represent the combinations of items from the two sets. The global
structure of a tree diagram (or hierarchy) features hierarchical levels of events, gen-
erated by a branching process. Different levels of events are often dependent so that the
identities of one level depend on the identities of the preceding level. Items listed at the
same level are mutually exclusive and identical in status, whereas items listed at
different levels differ in status or sequence.

Research suggests that these two types of diagrams are chosen for representing
different situations and schemas [e.g., 24]. In probability problem solving, tables are
used to represent factorial combinations [e.g., 10], and trees may be used to keep track
of sequential selections [e.g., 25]. Zahner and Corter [4] found that using tree diagrams
was particularly useful for solving conditional probability problems, a type of proba-
bility problems that involve sequential and dependent occurrence of events. These
empirical findings suggest that trees and tables may evoke different schemas of
mathematical relations and choices of different solutions.

Thus, we sought here to investigate whether and how trees and tables lead to
different results in interpreting mathematical structures and selecting solutions. To do
this, we used problems representing two topics in combinatorics: combinations and
independent events. These specific types of problems were chosen because they admit
of multiple types of solution strategies (described and illustrated in the Method sec-
tion), and each can be represented by both trees and tables. We compared the effects of
providing three different types of generic diagrams for these combinatorics problems:
N-by-N tables, binary trees, and N-ary trees. The diagrams were designed to manip-
ulate two factors: the type of diagram structure (tree versus table) and the abstraction
level of the represented outcome space (either a large space of equally-likely outcomes,
or a smaller space of unequally-likely outcomes).

We hypothesize that the choice of solution strategies can be influenced by the
diagrammatic representation of a problem. The idea is that different types of diagrams
should bias people to formulate different mathematical solutions, due to the similarity
correspondences between a diagram’s visuospatial structures and the selected solu-
tion’s mathematical structure. That is, the problem solver tends to choose a solution
with procedural or mathematical structure that can be easily aligned with the visu-
ospatial relational structure of the diagram.
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2 Method

2.1 Participants

The participants were 48 students (39 or 81.3 % female) recruited from a university in
New York City. Most were paid $8 for their participation; the others participated for
course credit. Their average age was 25.6 years. To be qualified for the experiment, a
participant had to have taken at least one undergraduate- or graduate-level statistics
course prior to participation. On average, participants reported to have taken 2.33
statistics courses. However, their level of training varied: 19 (or 38.6 %) participants
reported having taken one statistics course, 11 (or 22.9 %) participants reported two, 10
(or 20.8 %) reported three, and 8 (or 16.7 %) participants reported four or more such
courses.

2.2 Materials

Each participant solved three elementary probability word problems, representing three
different probability topics: combinations, independent events, and conditional prob-
ability. The first two problems/topics were the target materials for this study, because
they admit of two distinct salient solution strategies, which we refer to as outcome-
search and sequential-sampling strategies (described below). The third problem,
involving conditional probabilities (and referred to below as the Weather problem),
does not admit of salient alternative solution strategies, and was treated merely as a
filler problem for purposes of this investigation.

The problem text for the independent events problem (also called the Spinner
problem) was:

Two spinners are constructed. Each spinner has 3 color sections of equal size: red, white, and
blue. The two spinners are spun at the same time, and the result of each spinner is recorded.
What is the probability of getting the same color on both spinners?

In the diagram conditions, either a tree (Fig. 1a) or a table (Fig. 2a) was also
provided to the problem solver. These diagrams were unlabeled, but the number of
branches (or rows and columns) was appropriate to the problem.

The problem text for the combinations problem (also called the Work-Group
problem) was as follows. The generic diagrams for this problem are presented in
Figs. 3 and 4.

Five students are in a work group. The teacher randomly selects two of them to present the
group work. If there are 2 boys and 3 girls in this group, what is the probability that the teacher
selects 2 girls?

Although these two problems represent two different probability topics, the same
two broad strategies can be used to solve each one. We refer to these two approaches as
“outcome-search” and “sequential-sampling”. The outcome-search strategy finds the
probability by first counting the total number of equally-likely outcomes in the out-
come space. For the combinations (Work-Group) problem, this involves computing the
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number of all possible combinations of 2 girls out of 3 girls (=3), and dividing into this
the number of all possible combinations of 2 students out of 5 students (=10). Thus, the
probability of selecting two girls is 3/10. The sequential-sampling strategy views the
problem as sequential sampling without replacement, so the solver first defines the
simple or conditional probability at each stage in a sequential order. For example, for

Fig. 1. Panel 1a (on left) shows the tree diagram provided with the Spinner problem for some
participants. Panel 1b (on right) shows how the tree diagram was annotated by one participant.

Fig. 2. Panel 2a (on left) shows the table diagram provided with the Spinner problem for some
participants. Panel 2b (on right) shows how the table diagram was annotated by one participant.

Fig. 3. Panel 3a (on left) shows the tree diagram provided to some participants for the
Work-Group problem. Panel 3b (on right) shows how the tree diagram was annotated by one
participant.
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the combinations (Work-Group) problem, this strategy first defines P(G1) = 3/5, the
probability of selecting a girl on the first draw, and then P(G2|G1) = 2/4, the probability
of selecting a girl again on the second draw, conditional on P(G1). Finally, P(G1\G2),
the probability of selecting two girls, is equal to P(G1)P(G2|G1) = (3/5)(2/4) = 3/10.

2.3 Design and Procedure

Three test forms were used, each presenting the problems in a different order (Table 1).
The first problem for each test form was given in text only, with no provided diagram.
For the second and the third problems, one was given with a generic tree diagram, and
the other one was given with a generic table diagram. Problems were presented in
different orders, counterbalanced to equate possible carry-over effects. Thus, each
problem was attempted by three independent groups of participants, with one third of
them solving it with no provided diagram, one-third with a tree diagram, and one-third
with a table diagram. As Table 1 shows, three types of provided diagram were used: an
N-by-N table and a binary tree for the Work-Group (combinations) problem; and an
N-by-N table and an N-ary tree for the Spinner (independent events) problem.

Participants (N = 48) were randomly assigned to the three test forms, with 16
participants in each test form. In the task, each participant was given a booklet in which
each problem was presented on a separate page. No explicit training was provided; they
were asked to solve all three problems, showing their step-by-step solution procedure
on the worksheet. To prevent participants from seeing more than one diagram type at a
time, they were instructed not to look at any other problems when they were working
on a problem. Participants were explicitly instructed to use the provided diagram for
problem solving when one was provided. A probability formula sheet was also pro-
vided, although participants were told that the formula sheet was optional for them to
use. Participants also filled out a brief survey about their basic demographic infor-
mation and statistics training experiences.

Fig. 4. Panel 4a (on left) shows the table diagram provided to some participants for the
Work-Group problem. Panel 4b (on right) shows how the table diagram was annotated by one
participant.

Table 1. The three test forms and the design for the study.

Problem 1 Problem 2 Problem 3

Form A Spinner (no diagram) Weather (tree: binary) Work-Group (table: N-by-N)

Form B Weather (no diagram) Work-Group (tree: binary) Spinner (table: N-by-N)

Form C Work-Group (no diagram) Weather (table: 2-by-2) Spinner (tree: N-ary)

8 C. Xing et al.



3 Results

3.1 Coding

Two outcome variables were of focal interest: choice of a solution strategy, and
problem solving correctness. Solution types were coded based on whether an outcome-
search strategy or a sequential-sampling strategy was used for problem solving. Use of
each strategy was coded independently and dichotomously, with a value of 1 if the
strategy was used, and 0 otherwise. This strategy determination was made without
reference to correctness, which was coded independently. Examples of participants’
work using each of the two solution strategies for the two problems are shown in
Figs. 5 (the Work-Group problem) and 6 (the Spinner problem). To check reliability, a
second coder independently coded 24 of the problem solutions. For each strategy,
percent agreement was .96, with r = .92. The sole discrepancy occurred for an incor-
rect, somewhat disorganized response.

Solution success was assessed with two measures. Answer correctness was coded
dichotomously, based on whether the final answer has the correct value, regardless of
whether all the solution steps were correct. Procedural correctness was coded to indicate
if the solution steps a solver followed were appropriate, regardless of final answer
correctness. For example, if a solver’s solution procedure was correct, but a computa-
tional error led to an incorrect final answer, procedure would be coded as correct (=1),
but answer correctness would be coded 0. On the other hand, one participant obtained a
correct final answer by an incorrect procedure. For these reasons, procedural correctness
was analyzed as our main measure of solution success [cf. 26]. Inter-rater reliability for
procedural correctness was perfect (=1.0) for the 24-solution set.

Fig. 5. Panel 5a (on left) shows an example of a solver using the outcome-search strategy for the
Work-Group problem. Panel 5b (on right) shows an example of a solver using the
sequential-sampling strategy for the Work-Group problem.

Fig. 6. Panel 6a (on left) shows an example of a solver using the outcome-search strategy for the
Spinner problem. Panel 6b (on right) shows an example of a solver using the sequential-sampling
strategy for the Spinner problem.
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3.2 Analysis of the Work-Group (Combinations) Problem: Effects
of the N-by-N Table Versus the Binary Tree

Strategy Choice. As hypothesized, solvers’ choices of the solution strategies were
strongly biased by diagram types (Table 2). Because use of each strategy was coded
independently, neither or both might both be employed on a given problem; however
use of both strategies was relatively rare. Participants given the N-by-N table more
frequently used the outcome-search strategy (93.8 %) compared to participants given no
diagram (62.5 %), χ2(1, 32) = 4.571, p = 0.083 (by Fisher’s Exact Test); and less
frequently used the sequential-sampling strategy compared to no diagram (6.3 % vs.
43.8 %), χ2(1, 32) = 6.000, p = 0.037 (by Fisher’s Exact Test). On the other hand,
participants given the binary tree showed significantly more use of the sequential-
sampling strategy than those in the no-diagram condition (81.3 % vs. 43.8 %), χ2(1,
32) = 4.800, p = 0.028; but significantly less use of the outcome-search strategy than
those in the no-diagram condition (25 % vs. 62.5 %), χ2(1, 32) = 4.571, p = 0.033.

Solution Success. Table 2 also shows participants’ rates of procedural correctness and
answer correctness. The procedural correctness rates for the no-diagram condition
(81.3 %) and the binary tree condition (81.3 %) were high and identical. However,
procedural correctness for the N-by-N table condition was significantly lower (31.3 %)
than for the no-diagram condition (81.3 %), χ2(1, 32) = 8.127, p = 0.004.

Error Analysis. We analyzed unsuccessful solvers’ error patterns to better understand
why the table decreased problem solving success for this problem. When participants
were given the N-by-N table for the Work-Group problem, 6 of the 11 erroneous
solutions resulted from incorrectly defining the total number of equally likely out-
comes, and 5 of these cases resulted directly from counting repeated selection of a
single student (represented by the diagonal cells) as valid combinations. Thus, it was a
common error to count all 25 cells as valid outcomes by using the 5-by-5 table (Fig. 7).
This corresponds to treating the selection of two (distinct) students as sampling with
replacement. Another 3 errors involved incorrect use of the combinations formula, or
failure to convert the count of outcomes to probability.

Thus, more than 80 % of the procedural errors made with the N-by-N table involved
the solver attempting to use the outcome-search strategy but being led astray by the

Table 2. Raw and proportional frequencies of solvers’ solution choices for the Work-Group
problem as a function of diagram type.

Diagram condition

Strategy Correctness
Outcome
search

Sequential
sampling

Procedural
correctness

Answer
correctness

No diagram (N = 16) 10 (62.5 %) 7 (43.8 %) 13 (81.3 %) 12 (75.0 %)
Binary tree (N = 16) 4 (25.0 %) 13 (81.3 %) 13 (81.3 %) 11 (68.8 %)
N-by-N table (N = 16) 15 (93.8 %) 1 (6.3 %) 5 (31.3 %) 5 (31.3 %)
Overall (N = 48) 29 (60.4 %) 21 (43.8 %) 31 (64.6 %) 28 (58.3 %)
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structure of the N-by-N table. Specifically, in order to use the table correctly, problem
solvers must recognize that all the diagonal cells should not be used, because the
self-repeated combinations that these cells represent are impossible outcomes when
sampling without replacement. Put another way, the structure of the table does not map
in a one-to-one way with the structure of the problem.

The binary tree led to distinctively different error types, so that three out of five
incorrect answers involved incorrectly defining stage-wise probabilities. For example,
the correct probabilities for the two sequential selections should be P(G1) = 3/5 and P
(G2|G1) = 2/4. However, the erroneous solutions involved incorrect probability values
for these two events.

Discussion. For the Work-Group problem, the tree and the table altered the frequency
of using particular strategies, with the N-by-N table biasing solvers to select an
outcome-based strategy (the “outcome-search” strategy), and the binary tree leading
them to select a sequential strategy based on an event-level representation (the
“sequential-sampling” strategy). These differences in turn led to differential error rates
for the provided-diagram conditions, and also to characteristic error patterns that are
highly distinctive. In particular, the N-by-N table led to more use of an outcome-based
strategy, and more errors in identifying the correct equally-likely outcome space, while
the binary tree led to more use of a sequential strategy, with typical errors in identifying
the correct stage-wise probabilities for unequally-likely outcomes.

We explain these solution-strategy effects in terms of the compatibility between the
diagram and the relevant problem characteristics. Combinations problems (e.g., “How
many ways can N objects be selected k at a time?”) are typically interpreted as
involving the simultaneous sampling of k entities from a larger set of N entities (e.g.,
by application of the formula for the number of combinations of n objects selected k at
a time), but can also be formulated and solved as involving sequential sampling (k
draws, a single object at a time, without replacement). However, in the latter case, order
of selection is implied to be relevant, so answers may require appropriate adjustment.

The N-by-N table displays the outcomes in an outcome space simultaneously, by
integrating all outcome cells into a single table. Therefore, it cues solvers to search for
all possible outcomes in the whole outcome space and for the target event as a subset
embedded in the whole outcome space on the table. Note specifically that an unlabeled
N-by-N table implicitly cues solvers to consider all outcome cells as relevant to the
problem, including those diagonal cells that represent self-repeated selections, although
these are impossible outcomes for the combinations problem.

Fig. 7. Counting diagonal cells (=self-repeated combinations) as valid outcomes, a common
misuse of the N-by-N table that led to erroneous solutions.
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Thus, the table diagram led to more erroneous identifications of the correct outcome
space, because its representational format violates the Principle of Congruence artic-
ulated by Tversky, Morrison and Betrancourt [27], in that there is poor fit between the
structure of the diagram and the structure of the problem.

In contrast, the binary tree steers problem solvers towards use of an outcome space
with only four unequally-likely outcomes: S = {BB, BG, GB, GG}. Further, we believe
that the tree diagram’s left-to-right hierarchical structure cues viewing the problem as
involving sequential sampling without replacement. Therefore, the binary tree steers
problem solvers towards a sequential-sampling strategy. Correct execution of this
strategy requires correctly specifying conditional probabilities for the second student
selected, as in Fig. 5b. Here, errors made by the binary tree condition tended to involve
incorrect specification of these probabilities.

3.3 Analysis of the Spinner (Independent Events) Problem: Effects
of the N-by-N Table Versus the N-ary Tree

The two generic diagrams offered as aids for the Work-Group problem actually vary
two aspects of the diagram at once: the diagram structure (trees versus tables), and the
abstraction level of outcome space (an equally-likely outcome space based on the
specific students selected versus an unequally-likely outcome space based only on sex
of the two selected students). For the Spinner problem, exemplifying the use of the
fundamental principle of combinatorics, we chose to control for the abstraction level of
the outcome space and vary only the diagram type: trees versus tables. We also refer to
this problem as the “independent events” problem, because the outcome of the first
spinner is independent of the outcome of the second spinner.

Strategy Choice. As seen in Table 3, for the Spinner problem, the N-by-N table
diagram led to more frequent use of the outcome-search strategy (68.8 %), compared to
31.3 % when no diagram was provided, χ2(1, 32) = 4.500, p = 0.034. However, the
N-ary tree, which cues both use of the equally-likely outcome space and a sequential
strategy involving the definition of stage-wise probabilities, led to mixed choices of
solutions: 50 % of participants in the N-ary tree condition used the outcome-search
strategy, while 50 % of them used the sequential-sampling approach.

Solution Success. Table 3 also shows the frequency and percentage of participants in
each condition who successfully solved the Spinner problem. Compared to the

Table 3. Raw and proportional frequencies of solvers’ solution choices for the Spinner problem
as a function of diagram type.

Diagram condition

Strategy Correctness
Outcome
search

Sequential
sampling

Procedural
correctness

Answer
correctness

No diagram (N = 16) 5 (31.3 %) 9 (56.3 %) 8 (50 %) 8 (50 %)
N-ary tree (N = 16) 8 (50 %) 8 (50 %) 10 (62.5 %) 11 (68.8 %)
N-by-N table (N = 16) 11 (68.8 %) 5 (31.3 %) 14 (87.5 %) 14 (87.5 %)
Overall (N = 48) 24 (50 %) 22 (45.8 %) 32 (66.7 %) 33 (68.8 %)
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no-diagram condition (50 % procedural correctness rate), both provided diagrams
increased the percentage of procedurally correct solutions. The increase for the N-ary
tree, to 62.5 %, was not significant, χ2(1, 32) = 0.508, p = 0.476. However, the
increase to 87.5 % for the N-by-N table was significant, χ2(1, 32) = 5.236, p = 0.022.

Error Analysis. For the Spinner problem, the most common error was to calculate the
probability of obtaining one specific color twice, instead of any color twice. Specifi-
cally, this error involved incomplete solution of the problem: finding the probability for
the two spinners to both land on a particular color to be (1/3)�(1/3) = 1/9, and stopping
there. However, the correct solution should be three times this probability (=1/3),
because there are three colors on each spinner, and hence three same-color outcomes.
In other words, solvers making this error failed to solve the problem completely due to
failure to integrate intermediate results and all possible outcomes. This type of error
and other types of errors were most likely to occur with no diagram, or with the tree.
On the other hand, the N-by-N table, by displaying all possible outcomes for the
independent events problem in a visually efficient way, facilitated coordinating the
multiple substages of the problem solution, and thus improved the success rates.

Discussion. For the Spinner problem, the N-by-N table was the most effective repre-
sentation, improving procedural correctness over the no-diagram condition. This is not
surprising, since the table represents the N�N = 3�3 = 9 equally likely outcomes in a
simple and direct way, even allowing space for labeling the 9 outcomes. Furthermore,
the table representation naturally suggests the semantic aspects of the problem: that
there are two different spinners that are of equal status or priority (corresponding to the
rows and columns of the table) [cf. 15]. These findings support an explanation in terms
of diagram congruency, that the more compatible the content and the structure of a
diagram to that of the represented problem, the more likely it is to be facilitative for
solving the problem.

The N-ary tree would also seem to offer advantages for this Spinner problem: it too
displays the nine equally-likely outcomes with roughly equal salience, allowing space
for convenient labeling. However, the tree’s hierarchical structure suggests a sequential
process, and here it is not explicitly stated whether the spinners are spun simultane-
ously or sequentially. Also, the tree does not emphasize the multiple target same-color
outcomes for this problem to the same degree as the table; the table places these
same-color outcomes on the main diagonal, where they are particularly prominent, and
grouped after a fashion. In this way, the N-by-N table was able to provide extra
external visual support for solvers to manage all the possible outcomes by chunking the
essential information for computational efficiency [6, 28].

4 General Discussion

The present study explored whether and how different types of provided diagrams
(trees or tables) influence problem solvers’ choice of mathematical structures and
solution methods for probability word problems. It was hypothesized that a diagram
will cue use of a particular solution strategy to the extent that structural and connotative
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properties of the diagram match to structural properties of the mathematical solution
procedure or the formal representation of the solution space [6, 13, 14, 29, 30].

Based on the structural differences of trees and tables, we specifically predicted that
N-by-N tables would lead to more use of an outcome-search strategy, and trees to more
use of a sequential-sampling strategy. This prediction was confirmed for both the
problems studied: the tree diagram tended to elicit a sequential-sampling strategy,
while the table increased use of the outcome-search strategy.

However, for the Work-Group problem there were confounds in our diagram
manipulation: the diagram conditions not only differed in basic diagram structure, trees
versus tables, they also differed in the abstraction levels that the diagram suggests for
the outcome space. The diagrams contrasted for the Spinner problem (the N-ary tree
and the N-by-N table) removed this confound. The results showed that the N-by-N
table strongly cues the use of an outcome-based strategy. Note the N-ary tree has
features that can cue either solution. The N-ary tree conveys a sequential schema,
which maps to the mathematical relation of sequential definitions of simple or con-
ditional probabilities; and it also offers the cue to use low-level and visualizable
equally-likely outcomes. Indeed, solutions were evenly split between outcome-based
and sequential solution strategies for this condition.

The present results support and extend previous findings on the cognitive effects
that visual representations have on reasoning, inferences, and problem solving [e.g., 7,
13, 31]. In particular, this study builds on and extends previous research on the
structural properties of tree and table diagrams [e.g., 15, 24], by assessing the effects of
using trees and tables on probability problem solving behavior. In particular, our results
suggest that performance is affected not only by diagram type (tree versus table), but
also by the abstraction levels of the outcome space that they suggest. Most prior
diagram studies have focused on problem solving success as the criterion variable.
Importantly, the present study demonstrates that diagrams can also affect strategy
choice and the types of characteristic errors made in mathematics problem solving. This
finding has instructional implications, because it implies that while diagrams can be an
important and powerful form of scaffolding, they should be used in a carefully targeted
fashion, taking into account their specific effects on the solution process. Also, it
suggests that student-generated diagrams might be useful diagnostic evidence for
inferring student problem-solving strategies and solutions.

The present results also show that the degree of the structural compatibility between
a diagram and the particular type of problem to be represented affects problem solving
success. For a combinations problem, which can be thought of as sampling without
replacement, the use of an N-by-N table actually decreased the proportion of correct
solutions. Because the diagonal cells are depicted with equal status as all the other cells,
the table structure can mislead solvers to perceive all types of combination outcomes as
valid, including those self-repeated combinations that do not arise in sampling without
replacement. On the other hand, for an independent events problem, which involves
sampling with replacement, the N-by-N table significantly improved participants’
solution correctness. For combinations of independent events, the table structure better
conforms to the probability problem structure, cueing an appropriate solution.

Thus, the findings of the present research offer support for the Congruence Prin-
ciple in diagram design, the idea that external visual representations must have
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analogous relational structures with the conceptual schemas and relations they are
designed to represent in order to facilitate construction of appropriate mental repre-
sentations and correct inferences [e.g., 6, 11, 27, 32–34]. Such congruence of structure
also ensures that inferences or insights spurred by the diagrammatic representation can
be accurately transferred back to the problem domain.
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