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František Baluška
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Preface

Now that scientific focus is increasingly shifting to plant roots, it is a timely

occasion to summarize our current knowledge on belowground defence strategies

in plants by world-class scientists actively working in the area. The volume

includes chapters covering belowground defence to main soil pathogens such as

Fusarium, Rhizoctonia, Verticillium, Phytophthora, Pythium, and Plasmodiophora,
as well as to migratory and sedentary plant parasitic nematodes. In addition, the role

of root exudates in belowground plant defence is highlighted. Finally, accumulating

evidence on how plants can differentiate beneficial soil microbes from the patho-

genic ones is covered as well. Better understanding of belowground defences can

lead to the development of environmentally friendly plant protection strategies

effective against soilborne pathogens which cause substantial damage on many

crop plants all over the world. The book will be a useful reference material for plant

pathologists, agronomists, plant molecular biologists, as well as students working

on these and related areas. The editors would like to thank all authors for their

valuable contributions to this book.

St Lucia, Australia Christine M.F. Vos

St Lucia, Australia Kemal Kazan
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Introduction to Belowground Defence
Strategies in Plants

Christine M.F. Vos and Kemal Kazan

Abstract Plant roots have long been literally and figuratively hidden from sight,

despite their unmistakable importance in a plant’s life. Interactions between plant

roots and soil microbes indeed seem to take place in a black box, but science is

starting to shed some light into this box. This book aims to bring together our

current knowledge on the belowground interactions of plant roots with both detri-

mental and beneficial microbes. This knowledge can form the basis for more

environmentally friendly plant disease management of soil-borne pathogens and

pests, and the book will be of interest to both plant scientists and students eager to

discover the hidden part of a plant’s daily life and survival.

Plants are multicellular photosynthetic organisms that have evolved from unicellu-

lar fresh water green algae. During their evolution, plants have acquired diverse

capabilities that enabled them not only to survive but also to adapt and successfully

colonize diverse land environments. In particular, the acquisition of roots or root-

like structures that facilitate extracting water from soil rather than relying on

limited amounts of moisture available on the soil surface has no doubt played an

important role in plant’s adaptation to life on land.

Obviously, roots are also essential for physical attachment of plants to the soil, as

well as for nutrient uptake and interaction with soil biota. Plant roots continuously

C.M.F. Vos (*)
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explore the soil to sense and transmit diverse belowground signals needed to

modify plant architecture. The interaction between plant roots and beneficial

microbes (e.g., rhizobia or arbuscular mycorrhiza) can be highly advantageous

for both parties and greatly contributes to agriculture. However, the belowground

environment can be very hostile as well and plant roots are often threatened by

various biotic and abiotic stress factors (e.g., lack of water, oxygen, nutrients; soil

acidity, salinity, low temperatures, as well as pathogenic microbes). While the

interaction between roots and nonpathogenic microbes can be beneficial, many

pathogenic microbes and nematodes can inflict serious damage to roots, restricting

plant growth, reducing yield, and even causing plant death. Therefore, plants must

differentiate friends from foes to survive in a hostile environment, and the soil and

plant roots play essential roles in this process.

Despite the importance of plant roots in the overall well-being of plants, crop

breeding efforts aimed at improving biotic and abiotic stress tolerance have so far

been mostly focused on the aboveground part of the plant. In fact, the roots are often

referred to as “the hidden half,” or the “black box,” reflecting the neglected nature

of plant root research. Similarly, although root pathogens cause enormous losses on

our crop plants, root health has always been a difficult issue to deal with. Possible

reasons for this are probably numerous but mainly include the complexity of the

belowground environment.

Better understanding of the nature of the interaction between plant roots and

both beneficial and pathogenic microbes can generate new knowledge leading to

the development of novel strategies aimed at boosting plant productivity, while

reducing crop losses. As Editors of this Springer book, our objective is to contribute

to the ongoing efforts in this area by bringing together contributors who are leading

researchers in their respective areas.

The first part of the book focuses on the general plant responses to soil

microbes and the role that root exudates play in this process, both highly active

research domains. The first chapter of this part (chapter “Belowground Defence

Strategies in Plants: Parallels Between Root Responses to Beneficial and Detri-

mental Microbes”) highlights the parallels that are increasingly emerging in plant

root responses to beneficial and pathogenic microbes. The next chapter (chapter

“Root Exudates as Integral Part of Belowground Plant Defence”) details the

essential and versatile roles of root exudates in belowground plant defences,

impacting both detrimental and beneficial microbes.

The second part of the book then zooms in on the belowground defence

strategies against specific root pathogens. Fungal root pathogens are represented

by Fusarium oxysporum (chapter “Belowground Defence Strategies Against Fusar-
ium oxysporum”), Rhizoctonia (chapter “Belowground Defence Strategies Against

Rhizoctonia”), and Verticillium (chapter “Belowground Defence Strategies Against

Verticillium Pathogens”). Next in line are the plant root responses to the oomycete

pathogens Phytophthora (chapter “Belowground and Aboveground Strategies of

Plant Resistance Against Phytophthora Species”) and Pythium (chapter “Below-

ground Signaling and Defence in Host–Pythium Interactions”). Protists are

represented by the clubroot pathogen Plasmodiophora brassicae (chapter

2 C.M.F. Vos and K. Kazan



“Belowground Defence Strategies Against Clubroot (Plasmodiophora
brassicae)”). Finally, nematodes are another detrimental soil pest with severe

consequences for our worldwide food production. Chapter “Belowground Defence

Strategies Against Sedentary Nematodes” covers sedentary nematodes, among

which the highly damaging cyst and root-knot nematodes, while chapter “Below-

ground Defence Strategies Against Migratory Nematodes” deals with the migratory

nematodes. The chapters in this part mainly focus on pathogen infection strategies

and host resistance mechanisms, allowing an overview of the diverse nature of plant

belowground defence strategies against pathogens and pests with varying lifestyles

and infection strategies.

As already mentioned above, plants also seem to mount an initial defence

response against beneficial microbes. Successfully colonizing microbes are able

to overcome this and will assist the plant in its further belowground defences. This

topic will be covered for the interactions between plant roots and the following

beneficial microbes: nonpathogenic Fusarium oxysporum (chapter “Root Interac-

tions with Nonpathogenic Fusarium”), Trichoderma (chapter “Belowground

Defence Strategies in Plants: The Plant–Trichoderma Dialogue”), Piriformospora
indica (chapter “Defence Reactions in Roots Elicited by Endofungal Bacteria of the
Sebacinalean Symbiosis”), and arbuscular mycorrhizal fungi (chapter “Mitigating

Abiotic Stresses in Crop Plants by Arbuscular Mycorrhizal Fungi”). The editors

want to thank all authors for their valuable contributions, and wish you enjoyable

reading of this book.

Introduction to Belowground Defence Strategies in Plants 3



Part I

General Principles of Belowground
Defence Strategies



Belowground Defence Strategies in Plants:

Parallels Between Root Responses

to Beneficial and Detrimental Microbes

Ruth Le Fevre and Sebastian Schornack

Abstract Plant roots, as underground structures, are hidden from view, difficult to

work with and therefore typically understudied, especially in agricultural research.

In addition to providing crucial support for aerial tissues and acquiring nutrients,

roots engage with filamentous microorganisms in the soil. These interactions have

outcomes ranging from positive to negative and therefore roots must respond

appropriately to different microbes to ensure plant survival. While leaf responses

to filamentous pathogens have been well researched, we lack comparative infor-

mation from roots. Moreover, we lack knowledge on the extent of overlap of root

responses to microbes that share similarities in morphology, biochemistry and

colonisation strategy but that result in different outcomes. In this chapter, we

highlight current knowledge on parallels in root responses to beneficial and detri-

mental filamentous microorganisms. We also emphasise the importance of root

studies and advocate the development of new host systems that allow comparative

root–microbe interaction research. Ultimately, understanding of this field at the

molecular level could inform breeding for pathogen resistance in crops while

promoting cooperative root interactions with other microbes.

1 Introduction

Plant roots are in constant contact with microorganisms in the soil. Interactions with

specific microbes can lead to beneficial or detrimental outcomes for plants and

significantly affect plant growth and development. Therefore, distinguishing

between a potential mutualist and pathogen and responding appropriately are

paramount to plant survival because pathogenic microorganisms can destroy plant

tissue, while beneficial microorganisms can aid nutrient uptake and confer resis-

tance to biotic and abiotic stresses.

R. Le Fevre • S. Schornack (*)

Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, UK
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In leaves, responses to and interactions with pathogens have been well

characterised. In roots, pathogen studies are fewer; however, beneficial interactions

are well studied. Interestingly, the morphologies and mechanisms of colonisation of

plant roots by filamentous microbes that have different effects on plants are similar.

Therefore there is likely to be significant overlap in root responses to these different

microbes. However, our research into the extent of this overlap is hampered, partly

because suitable systems for comparative studies between these different interac-

tions are rare (Rey and Schornack 2013). A greater understanding of microbial

interactions with plant roots could enable new ways of protecting crops from those

that are detrimental while promoting those that are beneficial. This is especially

important considering future agricultural settings where we may rely on beneficial

plant–microbe interactions, for enhancing plant nutrition when fertilizers become

limited, and simultaneously aim to reduce disease in crops in order to maximise

yield.

In this chapter we review recent work that highlights what is known about root

responses to beneficial and detrimental filamentous microbes. We highlight the

importance of studies in roots and advocate the development of new host systems,

both plant and microorganism, which allow comparative root–microbe interaction

studies.

2 The Study of Root–Microbe Interactions

The interactions of soil microbes with plant roots are typically understudied,

especially in agricultural research, because as underground structures they are

hidden from view and difficult to work with (Balmer and Mauch-Mani 2013).

However, given the absolute importance of roots for nutrient and water uptake,

anchoring and support of aerial tissue and direct interaction with the soil environ-

ment and microbiome, it is critical we understand more about these plant tissues

and the associations they form with microorganisms. Understanding and engineer-

ing root–microbe interactions will help us find possible strategies to improve crop

yield, stress resilience and pathogen protection.

Above- and belowground plant tissues are exposed to different microorganisms.

The soil environment contains millions of filamentous microbes (fungal and other

eukaryotic microorganisms with fungal morphologies, such as oomycetes) that are

in constant proximity to or contact with plant roots (van der Heijden et al. 2008).

Therefore, it is reasonable to hypothesise that recognition of and downstream

responses to microbes in shoots and roots will differ (Balmer and Mauch-Mani

2013). Appropriate and timely responses in roots are especially important so as not

to be constitutively activated, as this could impose fitness costs (De Coninck

et al. 2015). Schreiber et al. (2011) demonstrated that the roots, but not leaves, of

Arabidopsis thaliana were susceptible to the pathogenic fungus Magnaporthe
oryzae, indicating that the defence situation below and above ground to this

microbe is indeed different. However, the use of mutants has illustrated that plant

8 R. Le Fevre and S. Schornack



defence signalling pathways are generally conserved between above- and below-

ground tissues (De Coninck et al. 2015). As most work on plant responses to

pathogenic microbes has been done in aboveground tissue, we can use our knowl-

edge from leaves to test root responses to pathogens and highlight common and

contrasting principles.

Microbes engage in a range of interactions with plant roots. Beneficial symbi-

oses facilitate plant nutrient uptake and can increase abiotic and biotic stress

tolerance. Detrimental pathogenic interactions result in nutrient loss and disease.

We know most about the associations at the more extreme ends of the spectrum

(Fig. 1b). However, what are less well understood are the intermediate interactions,

such as those with endophytes (Jumpponen and Trappe 1998; Franken 2012).

Filamentous endophytic fungi (such as the dark septate endophytes, DSE) persist

in plant roots seemingly without causing disease, but the outcomes, in terms of

effects on the plant, can vary from negative to neutral to positive depending on the

specific microbe–host combination (Jumpponen 2001). Given that the microbe and

the host environment can influence the outcome of an interaction, comparative

studies that keep one interaction partner constant (one microbe in multiple hosts or

multiple microbes with similar lifestyles within one host) would allow character-

isation of the contribution of each partner. Additionally, appropriate plant host and

microbial systems (see Table 2) to study these associations could help to answer

many interesting questions arising from the topic of root–microbe interactions:

– Why do some microbes have different lifestyles on different plant tissues?

(Sect. 2.2.1)

– How and why do some microbes engage in different interactions with different

hosts? (Sect. 3.5)

– Are plant defence responses activated and suppressed in a microbe-specific or

lifestyle-specific manner? (Sects. 4.1–4.3)

– Are structures formed by beneficial and detrimental microbes analogous?

(Sects. 4.2 and 4.3, Fig. 1)

– Do plant traits similarly or differentially affect filamentous microbes with

different lifestyles in roots? (see Table 1)

Understanding how the outcomes of plant root–microbe interactions are con-

trolled would ultimately provide inroads to promote beneficial partnerships while

suppressing detrimental ones.

2.1 Plant Systems

To better understand root responses to different microbes, a variety of appropriate

plant and microbial systems to work with are needed. Studying root responses to

different microbes that engage in a range of interactions in the same plant species

would be advantageous.

Belowground Defence Strategies in Plants: Parallels Between Root Responses. . . 9



Medicago truncatula has been used extensively for symbiosis research and has

been instrumental for identifying genes affecting interactions with beneficial

arbuscular mycorrhizal fungi (AM fungi, Table 1, Ane et al. 2008). With this

resource we are now able to determine whether these same genes are important

for colonisation of roots by other microbes, including pathogens (Table 1, Wang

et al. 2012; Gobbato et al. 2012, 2013; Rey et al. 2013, 2015).

Given that the three most important food crops (maize, wheat and rice) are

monocots, with root architectures divergent from dicots, the use of monocot plants

is also important for monocot versus dicot root response comparisons. In this regard

rice and maize are good candidates as plant systems for root–microbe interactions

as they have been used for AM fungi and pathogen research (see Table 2).

Fig. 1 Microbes engage in a spectrum of interactions with plant roots. (a) During root colonisation

microbes form a variety of intracellular structures that can facilitate nutrient transfer, effector delivery

to modulate host immune responses or simply the progress of growth through root cells. Although the

microbe penetrates the cell wall (outer solid line), the protoplast remains intact and, at least in the case

of I, haustoria, and IV, arbuscules, a modified membrane (dashed line) that contains a distinct protein
complement from the rest of the plasma membrane (inner solid line) encases the microbial structure.

M. oryzae transverses root cells as in II and P. indica forms coils insides cells as in III, but nothing is

known about the membranes that surround these structures and whether they are also different from

the plasma membrane as in I and II. (b) Root–microbe interactions lie on a spectrum and cannot be

compartmentalised into beneficial or detrimental without taking into consideration the interaction in

context of environmental factors and host/microbe genotype. This spectrum has been described

elsewhere as themutualism–parasitism continuum (Mandyam and Jumpponen 2015).Dashed arrows
for arbuscular mycorrhizal fungi (AMF), endophytes and pathogens represent perceived extents to

which microbe and plant benefit from the interactions they engage in

10 R. Le Fevre and S. Schornack
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Importantly, recent work in rice has shown that there are root type-specific tran-

scriptional responses to colonisation by AM fungi (Gutjahr et al. 2015). This

highlights the need for root type-specific microbe interactions to be studied

independently.

Barley and wheat are other suitable monocot candidate systems of significant

economic relevance. Work in crops is especially advantageous because it negates

the need for knowledge transfer from model plant species. Both barley and wheat

engage in beneficial symbiotic interactions with AM fungi and are affected by

Fusarium, Rhizoctonia and Pythium root pathogens. Additionally the barley–

Piriformospora indica (a model endophytic fungus) root interaction is already an

established research system (Table 2).

Arabidopsis has been used to investigate P. indica, M. oryzae, Verticillium and

Fusarium–root interactions. While it is a non-mycorrhizal species, it may still

undergo interactions with these fungi (Veiga et al. 2013). Other advantages of

using Arabidopsis as a model include the accessibility of mutants and extent of

genome resources and its convenience in size and life cycle.

Ultimately, the use of a range of monocot and dicot model plant species will help

to uncover core microbial accommodation programmes and those that are host

species specific for microbes with specific lifestyles. The evolutionary conservation

of these programmes can also be studied as lower descent plants, such as liverworts

and hornworts, are also colonised by AM fungi and other filamentous microbes (see

Table 2, Russell and Bulman 2005; Bonfante and Genre 2008).

2.2 Microbial Systems

In the following sections, we introduce additional microbial systems that are

particularly suited for comparative studies between root responses to pathogens

and mutualists.

2.2.1 Foliar Fungal Pathogens

The study of fungal pathogens and responses to pathogen colonisation in roots has

been neglected in comparison to leaves, but this is not for a lack of root pathogens

(see, e.g. Fusarium in chapter “Belowground Defence Strategies Against Fusarium
oxysporum”, Rhizoctonia in chapter “Belowground Defence Strategies Against

Rhizoctonia”, Verticillium in chapter “Belowground Defence Strategies Against

Verticillium Pathogens” and Pythium in chapter “Belowground Signalling and

Defence in Host–Pythium Interactions” in this book). Other non-pathogenic root-

infecting fungi have also been introduced elsewhere (Trichoderma in chapter

“Belowground Defence Strategies in Plants: The Plant–Trichoderma Dialogue”,

P. indica in chapter “Defence Reactions in Roots Elicited by Endofungal Bacteria

of the Sebacinalean Symbiosis” and AM fungi in chapter “Mitigating Abiotic
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Stresses in Crop Plants by Arbuscular Mycorrhizal Fungi”). Interesting, there is

accumulating evidence that many foliar pathogens, including the rice blast fungus

M. oryzae, anthracnose causing hemibiotrophic (i.e. exhibiting both symptomless

biotrophic growth and tissue destroying necrotrophic life stages) Colletotrichum
spp. and smut fungus Ustilago maydis, are also able to infect roots—although

knowledge on their occurrence as natural root pathogens is often limited (Table 2,

Dufresne and Osbourn 2001; Sukno et al. 2008; Mazaheri-Naeini et al. 2015). There

is, therefore, the potential to use foliar fungal pathogens to facilitate the study of

root–microbe interactions. Their classification as disease-causing pathogens, how-

ever, may have to be revisited in the root situation, as their associations with

underground plant tissues appear less aggressively parasitic and more endophytic.

Interestingly, penetration structures formed by some leaf pathogens on roots appear

more similar structurally to those produced by AM fungi (see Sect. 4.2). Addition-

ally, inside root tissue, M. oryzae, Colletotrichum graminicola and U. maydis
engage in intercellular and intracellular biotrophic growth, and symptoms of dis-

ease are either extremely delayed, as for M. oryzae and C. graminicola, or do not

seem to occur at all, as for U. maydis (Sukno et al. 2008; Marcel et al. 2010;

Mazaheri-Naeini et al. 2015). In this way, these aggressive foliar pathogens appear

to have different programmes for colonisation of different plant tissues and become

more endophytic in lifestyle when infecting plant roots. One hypothesis for this is

an absence of strong immune response signalling in some root tissues (such as the

cortex) compared to leaves, enabling an extended period of biotrophic growth,

although this has yet to be tested. As an avenue for future research, it will be

especially interesting to discover just how many leaf pathogens also engage in root

colonisation.

2.2.2 Oomycete Pathogens

Oomycetes are root- and shoot-infecting fungus-lookalikes which are taxonomi-

cally unrelated to fungi and differ from them in some structural and lifestyle

features (Fawke et al. 2015). Aphanomyces euteiches and Phytophthora palmivora
are root rot-causing oomycete pathogens. While A. euteiches infects legumes,

P. palmivora has a very broad host range and infects many monocot and dicot

species (Drenth and Guest 2004; Agrios 2005). P. palmivora is particularly inter-

esting as it forms specialised intracellular lateral hyphal branches, termed haustoria,

inside root cells (Rey et al. 2015). A. euteichesmay also form haustoria, although so

far they have only been reported from a single study (Franken et al. 2007).

Haustoria have been best studied as structures formed by biotrophic and

hemibiotrophic pathogens that cause foliar diseases, and parallels have been

drawn between these structures and the intracellular branched hyphal arbuscules

formed by AM fungi (chapter “Mitigating Abiotic Stresses in Crop Plants by

Arbuscular Mycorrhizal Fungi”, Sect. 4.3, Rey and Schornack 2013). Also,

specialised plant-derived membranes form around haustoria as they do for AM

fungi (see Sect. 4.3.2). Therefore, in comparison with AM fungi, we can use
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P. palmivora to increase our understanding of the formation and function of

intracellular microbial structures and interfaces.

3 Can I Stay or Must I Go? Parallels in Root Responses

to Beneficial and Detrimental Microbes at the Tissue

Level

In the interaction of plant roots with filamentous microbes, complex two-way

signalling occurs between host and potential invader. Depending on the microbe,

root responses can facilitate long-term accommodation and mutualistic associations

or act defensively to try and rid plant tissue of the foreign body. Parallels in root

responses to microbes with different lifestyles occur at the molecular level (Sect. 4)

and also at the tissue level as discussed in the following sections.

3.1 Nutrition Status

The nutrient status of the soil affects root responses to potential microbial interac-

tions. For example, if sufficient, accessible phosphate is present in the soil, it is

directly acquired through the roots. As a result, colonisation by AM fungi and the

symbiotic-phosphate uptake pathway are suppressed. Additionally, production of

strigolactone (SL) phytohormones by plant roots, which stimulate germination of

AM fungal spores and hyphal branching, is reduced if phosphate levels are

non-limiting (Gu et al. 2011). Conversely, if phosphate and nitrate levels are

limiting, roots respond by producing and secreting increased amounts of SL

(Yoneyama et al. 2007, 2013). Mutant plants defective in SL production, nsp1
and nsp2 (genes that control SL biosynthesis), are compromised in colonisation by

AM fungi compared to wild-type plants (Liu et al. 2011; Lauressergues et al. 2012;

Takeda et al. 2013; Delaux et al. 2013). Interestingly, SL-deficient nsp1 mutant

Medicago plants were more resistant to the pathogenic microbe Verticillium albo-
atrum than the wild type (Table 1, Ben et al. 2013). Production of SL by roots in

response to nutrient status is therefore important for colonisation by beneficial

microbes and may also affect colonisation by detrimental microbes, although the

effects of SLs on growth and branching of filamentous microbes other than AM

fungi are unclear. When the effects of the synthetic strigolactone GR24 were tested

on P. indica and the root pathogen Fusarium oxysporum f. sp. lycopersici, no effect
in growth or branching was reported (Steinkellner et al. 2007; Steinkellner and

Mammerler 2007). However, in another study, GR24 actually inhibited radial

growth of F. oxysporum and Fusarium solani and increased the number of branches

in the former, but not the latter microbe (Dor et al. 2011).
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3.2 Root System Morphology and Root Branching

Responses to mutualistic and parasitic interactions result in various changes to root

system morphology. AM fungi are well noted for their effects on root morphogen-

esis and can alter the number, length and size of roots, although their modifications

to lateral roots seem to be the most frequent effect (Fusconi 2014). Lateral roots in

host plants (such as Medicago) are induced by recognition of AM fungi

lipochitooligosaccharides (LCO) compounds, although both LCO and

chitooligosaccharide (CO) compounds can induce them in rice (see Sect. 4.1.4,

Maillet et al. 2011; Sun et al. 2015). Trichoderma spp. also induces the production

of lateral roots and other endophytic fungi cause changes in root diameter and root

hair length (Malinowski and Belesky 1999; Contreras-Cornejo et al. 2009).

Ectomycorrhizal (EcM) fungi, such as Laccaria bicolor (Table 2) that grow

intercellularly rather than intracellularly, stimulate lateral root formation and

increase root hair length through release of volatile organic compounds and mod-

ulation of auxin gradients during the pre-infection stage (Sect. 4.1, Felten

et al. 2009; Ditengou et al. 2015). Detrimental microbes can induce similar effects

to beneficial microbes on roots, as A. euteiches induces lateral root formation in

M. truncatula during infection (Djebali et al. 2009). Pythium ultimum and Pythium
irregulare infections, however, lead to a smaller root system size and reduced

degree of root branching (Larkin et al. 1995).

3.3 Secondary Metabolite Responses

Phytoalexins (PAs) are diverse low molecular weight antimicrobial compounds.

Plants produce PAs, most notably after pathogen attack, although beneficial

microbes also stimulate their production and this can provide resistance to subse-

quent infections by pathogenic microbes. Most evidence of these effects is derived

from studies on root colonisation effects on aboveground rather than belowground

tissues. For example, AM fungi, especially Funneliformis mosseae, stimulate

capsidiol PA production in pepper stems (Ozgonen and Erkilic 2007). Supporting

a role for AM fungi-based protection of belowground tissues, F. mosseae coloni-

sation also provides a bioprotector effect against Phytophthora parasitica infection
in tomato roots (Pozo et al. 2002). Endophytes also induce PA production. A type II

hydrophobin protein produced by Trichoderma longibrachiatum induces the pro-

duction of the PA rishitin in tomato leaves (Ruocco et al. 2015). Interestingly the

induction of secondary metabolite compounds may be host and/or microbe specific

as a different species of Trichoderma was shown to suppress expression of genes

involved in the production of the PA vestitol in Lotus japonicus (Masunaka

et al. 2011).

Microbes have evolved to utilise the production of secondary metabolites to their

benefit. For example, Phytophthora sojae is attracted to soybean roots that exude
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isoflavone compounds and Aphanomyces cochlioides zoospores display a homing

response to host-specific signals (Morris and Ward 1992; Islam and Tahara 2001).

Chemicals released by plant roots also help orient the spores of fungi and

oomycetes so they do not germinate in the wrong direction away from the host

(Deacon 1996). Other compounds, such as flavonoids, may regulate initial stages of

AM fungal colonisation and influence hyphal growth and branching, while in

pathogenic interactions they are implicated in inhibition of growth (see chapter

“Mitigating Abiotic Stresses in Crop Plants by Arbuscular Mycorrhizal Fungi”,

Hassan and Mathesius 2012 and references therein).

3.4 Systemic Responses to Microbial Colonisation

Colonisation of roots by detrimental microbes can inhibit growth and development

of shoots. Conversely, colonisation of roots by beneficial microbes can induce

systemic responses such as increases in shoot biomass and greater abiotic and

biotic stress resistance in aerial plant tissue. This indicates that root responses to

local microbial interactions induce signalling to influence the shoot. AM fungi,

Trichoderma spp., P. indica and DSE interactions (which can all aid nutrient

uptake) confer increases in shoot biomass in some plant species (Ozgonen and

Erkilic 2007; Fakhro et al. 2010; Andrade-Linares et al. 2011b; Maag et al. 2014).

While such growth increases are probably due to the improved nutrient situation of

the plant, other systemic responses, such as increased stress tolerance, are conferred

by microbe-induced increases in antioxidative capacity through regulation of genes

involved in oxidative stress (Brotman et al. 2013). Interestingly, the AM fungus

Rhizophagus irregularis confers a growth reduction in the non-mycorrhizal plant

A. thaliana, again highlighting that root–microbe interactions are dependent on the

specific organisms involved (see as well Sect. 3.5, Veiga et al. 2013).

As could be expected, signalling between above- and belowground plant tissues

during microbial interactions also works in the other direction—microbial coloni-

sation of leaves influences plant roots. For example, colonisation of bean roots with

AM fungi was reduced if plant leaves were infected with the pathogen

Colletotrichum gloeosporioides (Ballhorn et al. 2014).

3.5 Host-Dependent Responses

The outcome of root–microbe interactions can depend on the plant host. Whereas

the majority of plants that form interactions with AM fungi form a beneficial

symbiotic relationship, in the case of non-mycorrhizal species, the fungi may

actually exert a detrimental effect. This indicates that the response of roots to a

particular microbe and the outcome of an interaction are case-specific depending on

the host and microbe involved. For example, the interaction of AM fungi with
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A. thaliana results in root colonisation without arbuscule formation and plant

growth is reduced (Veiga et al. 2013). Additionally, the interaction with

Trichoderma spp. can be swung from neutral endophytic to detrimental depending

on the host genetic background (Tucci et al. 2011). Encouragingly, these results

suggest that the interaction with these microbes, and the benefits they induce, could

be improved through breeding. Finally, the colonisation strategy and lifestyle of

P. indica also varies in a host-dependent manner, specifically depending on the

availability of nitrogen in colonised tissue (Lahrmann et al. 2013). The root

responses of these specific individual interactions are likely very different and

therefore need to be studied on a case-by-case basis.

4 Parallels in Molecular and Cellular Responses

to Beneficial and Detrimental Microbes

To assess parallels in root responses to beneficial and detrimental filamentous

microbes, it is pertinent to consider the similarities and differences in their infection

strategies and colonisation of root tissue. In order to facilitate effective growth in

the plant host, different filamentous microorganisms must perceive chemical and

physical signals from the host and modify their growth accordingly. There are

different microbial colonisation stages at which root responses can be considered.

These are pre-infection (Sect. 4.1), the targeting of microbes to roots and microbial

recognition by the root; penetration (Sect. 4.2), root responses to microbial attach-

ment and surface invasion of the host; accommodation (Sect. 4.3), the housing of

specialised microbial structures in plant cells; and collaboration or eviction

(Sect. 3), the overall response to the interaction, which can be for better or for

worse for the plant host.

4.1 Pre-infection

Regardless of whether the outcome of the interaction is beneficial or detrimental,

both host plant and invading filamentous microbes release signals signifying their

presence in the soil. There is substantial overlap in root responses to these signals,

which involve activation of plant defences, but beneficial microbes also produce

additional signals to induce symbiosis-related responses in the plant.

4.1.1 Transcriptional Responses Preceding Microbial Contact

In M. truncatula, expression of the GRAS transcription factor encoding gene,

RAM1, is induced before physical contact is made with the AM fungus
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R. irregularis and RAM1 is required for mycorrhizal colonisation and arbuscule

formation. However, it is not required for colonisation by the pathogenic oomycetes

P. palmivora or A. euteiches (Gobbato et al. 2013). RAM1 regulates the expression

of RAM2, a gene encoding a glycerol-3-phosphate acyl transferase, involved in

cutin biosynthesis. Later in the mycorrhizal interaction, both RAM1 and RAM2
expressions are induced (Gobbato et al. 2012). RAM2 function is important for

colonisation ofM. truncatula roots by R. irregularis, P. palmivora and A. euteiches
(Wang et al. 2012; Gobbato et al. 2013). The AM fungi R. irregularis and the

oomycete pathogen P. palmivora both recognise cutin monomers from plant roots

as a signal to promote formation of their respective penetrations structures (Table 2).

Consequently, colonisation of ram2-1 plants by R. irregularis, P. palmivora and

also by A. euteiches was reduced (Wang et al. 2012; Gobbato et al. 2013).

4.1.2 Responses to the Microbe-Associated Molecular Pattern Chitin

Filamentous microbes display their presence to plants by the release of microbe-

associated molecular patterns (MAMPs) (Newman et al. 2013 and references

therein). Typically, the presence of true fungi is announced when chitin polymers

are released from fungal cell walls by the activities of plant chitinases (Kaku

et al. 2006; Silipo et al. 2010). While oomycete cell walls are mainly cellulosic,

evidence indicates that chitin is also integral to the cell wall structure of at least

some groups of root-infecting oomycetes—A. euteiches, for example (Badreddine

et al. 2008; Nars et al. 2013a). In M. truncatula, chitinase expression in roots was

induced by interaction with microbes with different lifestyles. Interestingly, the AM

fungi tested induced some different chitinases compared to the pathogens, indicat-

ing there may be microbe–lifestyle-specific effects for these enzymes (Salzer

et al. 2000).

Most work on chitin perception has been conducted in suspension-cultured rice

cells (Kaku et al. 2006; Kishimoto et al. 2010; Shimizu et al. 2010; Kouzai

et al. 2014). Preferential recognition of octameric chitooligosaccharide polymers

(CO8, chitin) at the plant cell surface triggers a cascade of downstream signalling

leading to the activation of plant defence responses (Hamel and Beaudoin 2010;

Shimizu et al. 2010). The lysin motif (LysM)-containing proteins OsCERK1 and

OsCEBiP are required for pathogen chitin recognition in rice, where they function

as a heterodimer (Miya et al. 2007; Liu et al. 2012; Shimizu et al. 2010). On binding

CO8 from filamentous microbes, OsCEBiP recruits OsCERK1 that then phosphor-

ylates OsRacGEF1, enabling the activation of signalling pathways that lead to

activation of MAPK cascades and the production of reactive oxygen species, PAs

(Sect. 3.3), lignins and pathogenesis-related proteins in rice (see Sanchez-Vallet

et al. 2015). Similarly in M. truncatula roots, chitin fractions induced the produc-

tion of extracellular reactive oxygen species and the transient expression of

defence-associated genes (Nars et al. 2013b).

[Ca2+]cyt increases are also observed in response to MAMP recognition. The use

of [Ca2+]cyt elevation mutants has demonstrated the importance of this response for
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P. indica-mediated growth promotion in A. thaliana (Vadassery and Oelmuller

2009; Vadassery et al. 2009). P. indica induces different [Ca2+]cyt responses in

tobacco, suggesting there are host species-specific responses to the same microbe

(Vadassery and Oelmuller 2009). T. atroviride and AM fungi culture exudates were

also found to increase [Ca2+]cyt levels (Navazio et al. 2007). Therefore, Ca2+

responses in roots are a common feature of interactions with both detrimental and

beneficial microbes (see also Sect. 4.1.4).

Recently, OsCERK1 was shown to be required for colonisation by AM fungi in

rice roots, as well as for pathogenic M. oryzae colonisation in leaves (Zhang

et al. 2015). OsCEBiP, the interacting partner of OsCERK1 in chitin perception,

does not appear to play a role in mycorrhization, as the colonisation phenotype of

mutant cebip plants was normal (Miyata et al. 2014). However, OsCEBiP is

important for resistance to the fungal pathogen M. oryzae in leaves (Kishimoto

et al. 2010; Mentlak et al. 2012; Kouzai et al. 2014). This implies, therefore, that

there are different OsCERK1-dependent signalling complexes responsible for the

detection of different microbes (Table 1). Both OsCERK1 and OsCEBiP are

expressed in rice roots; however, crucial information is still missing about the

role of these genes in pathogen infection in this plant tissue (Shimizu et al. 2010).

4.1.3 Oomycete Elicitins

Phytophthora and Pythium oomycete pathogens also produce elicitin MAMPs

(structurally conserved extracellular proteins with lipid binding roles) that trigger

plant immunity. Plant recognition of elicitin proteins has only recently been

described. The elicitin response (ELR) receptor-like protein was identified in a

wild potato species and mediates extracellular recognition of a conserved pathogen

elicitin domain in leaves (Du et al. 2015). Again it remains to be shown whether

ELR is important for defence responses upon recognition of elicitins in roots.

4.1.4 Responses to Short (Lipo)chitooligosaccharides

In addition to the release of MAMPs, AM fungi also produce MYC factors which

are diffusible lipochitooligosaccharide (LCO) and short-chain chitooligosaccharide

(CO) signals that promote symbiosis-related responses in host–plant roots (Maillet

et al. 2011; Genre et al. 2013). LCOs are mostly tetrameric or pentameric, β-1-4
linked N-acetylglucosamine chitooligosaccharide backbones decorated with vari-

ous chemical groups, including sulphates, while short-chain COs are undecorated

(Gough and Cullimore 2011; Genre et al. 2013; Maillet et al. 2011; Oldroyd 2013).

AM fungal LCOs promote lateral root development (see Sect. 3.2) and enhance the

formation of mycorrhizal symbiosis in Medicago but stimulate symbiosis-related

nuclear Ca2+ spiking (an early event in the development of symbiosis) less effi-

ciently than short-chain COs (Genre et al. 2013).
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Exudates from the pathogenic fungus Colletotrichum trifolii also contain short-

chain COs, but these do not elicit the symbiosis-related nuclear Ca2+ spiking in

M. truncatula root epidermal cells seen with exudates from AM fungi (Genre

et al. 2013). A specific cell wall fraction from the oomycete root pathogen

A. euteiches, however, can induce some form of nuclear Ca2+ spiking in

M. truncatula root cells, suggesting this response may depend on the microbe

(Nars et al. 2013a). The requirement for functional symbiosis pathway genes

DMI1 and DMI2 for AM fungi-induced nuclear Ca2+ spiking, but not for

A. euteiches induced spiking, suggests this response occurs via different pathways

for detrimental and beneficial microbes (Table 1, Genre et al. 2013; Nars

et al. 2013a).

The hypothesis that nuclear Ca2+ responses may be microbe specific is further

supported by evidence from two studies (using beneficial endophytic fungi) that

show that P. indica does and Trichoderma atroviride does not induce nuclear Ca2+

responses, respectively (Vadassery et al. 2009; Lace et al. 2015). The host plant

species, cell type and position of cells along the roots are also important factors in

determining the response to different microbial signals (Chabaud et al. 2011; Sun

et al. 2015). These important findings should influence future research in this area.

4.1.5 Responses to Diffusible Molecules from Other Filamentous

Microbes

A recent report provides evidence for the release of diffusible chemical compounds

from endophytic fungus P. indica in the early stages of an interaction with plant

roots, before contact has been made. These signals induce a number of responses in

the plant including transcriptomic changes in stress and defence-related genes,

accumulation of phytohormones and stomatal closure; however, the compounds

responsible have not yet been identified (Vahabi et al. 2015). Another report

speculates on the production of MYC factor-like compounds by the endophyte

Trichoderma koningii, which may be responsible for mediating its mutualistic

lifestyle in Lotus (Masunaka et al. 2011).

4.1.6 Microbial Effector-Mediated Suppression of MAMP Recognition

The activation of defence responses from recognition of filamentous microbial

MAMPs is unfavourable because it hampers development of both parasitic and

mutualistic interactions. Therefore, filamentous microbes evolved solutions to

suppress host defence and facilitate colonisation—they secrete effector proteins

to manipulate the interaction with the host and suppress host defences. Both

beneficial and detrimental microbes produce chitin-binding LysM domain

containing proteins that interfere with chitin-triggered immunity to protect them-

selves from host recognition (see Sanchez-Vallet et al. 2015). Also, a small secreted

protein, homologous to the leaf pathogen Cladosporium fulvum effector Avr4,
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found in Trichoderma harzianum and T. atroviride may bind chitin and protect the

fungi from plant hydrolytic enzymes (Stergiopoulos and de Wit 2009). Slp1 (which

competes with OsCEBiP for CO sequestration) and ECP6 apoplastic LysM proteins

from M. oryzae and C. fulvum, respectively, also suppress chitin-triggered immu-

nity (de Jonge et al. 2010; Mentlak et al. 2012).

4.2 Microbial Penetration Structures

Once contact is made between microbe and root, the next stage of colonisation

requires penetration of the root surface. There are clear structural similarities

between penetration strategies of beneficial and detrimental microbes. For example,

AM fungi and some root pathogens produce specialised differentiated structures at

the tips of their hyphae termed hyphopodia and appressoria, respectively. Some

endophytes produce appressoria-like structures or swollen cells (Andrade-Linares

et al. 2011a). These structures fulfil similar roles for both detrimental and beneficial

microbes for mediating attachment to the plant surface and penetration of the root

surface/epidermis. While on leaves M. oryzae and C. graminicola produce appres-

soria, on roots M. oryzae forms swollen hyphal tips and C. graminicola produces

hyphopodia (Sukno et al. 2008; Marcel et al. 2010). Therefore, the structures are

more reminiscent of those formed by beneficial AM fungi (see chapter “Mitigating

Abiotic Stresses in Crop Plants by Arbuscular Mycorrhizal Fungi”). P. palmivora,
however, produces appressoria on roots (Rey et al. 2015). The endophyte P. indica
and Verticillium spp. pathogens do not produce appressoria or hyphopodia but

penetrate the root directly or in the anticlinal space between rhizodermal cells

(Deshmukh et al. 2006; Eynck et al. 2007). Similarly, U. maydis penetrates at the
junction of root epidermal cells (Freitag et al. 2011; Mazaheri-Naeini et al. 2015).

Hyphopodia of AM fungi anchor to the root surface using many protrusions that

penetrate the plant cell wall (Bonfante and Genre 2010). In appressoria-forming

microbes, this may be achieved with extracellular matrix-derived glycoproteins, at

least on leaves (Bircher and Hohl 1997). Beneficial microbes such as AM fungi lack

cell wall-degrading enzymes, perhaps to avoid the release of fragments which may

induce immune responses in the host, and thus their mechanism of cell wall

penetration remains elusive (Tisserant et al. 2012, 2013). Both AM fungi and

P. palmivora require cutin monomers produced by RAM2 for surface

penetration-structure development (Sect. 4.1.1, Table 2, Wang et al. 2012).

A. euteiches colonisation is reduced in ram2 mutant plants suggesting surface

penetration may also be impaired for this microbe (Gobbato et al. 2013).

Development of microbial penetration structures on the cell surface triggers

cellular rearrangements (see Takemoto and Hardham 2004). So far, nearly all

work on this subject in roots has been elucidated using AM fungi; therefore, we

can only speculate as to the cellular responses to detrimental and endophytic

surface penetration in this tissue. However, we can draw on knowledge from studies
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with pathogenic microbes in leaves to find parallels between detrimental and

beneficial effects.

4.2.1 Nuclear Repositioning

Plant nucleus repositioning to the point of microbial contact on the cell surface is a

well-characterised cellular response. This could well be a mechanical stimulus,

rather than related to the recognition of MAMPs, as microneedle pinching caused a

similar response in root cells (Genre et al. 2009). Evidence from leaf pathogen

studies suggests that, for oomycete interactions, nuclear movement depends on

whether the interaction is compatible or incompatible (Freytag et al. 1994; Caillaud

et al. 2012). For fungi, however, the nucleus repositions in both types of interaction

(see references in Griffis et al. 2014). Nuclear movement may also be cell type

dependent, as well as microbe dependent, as no organelle movement was detected

for intercellular hyphae of Hyaloperonospora arabidopsidis in A. thaliana meso-

phyll cells (Hermanns et al. 2008). Alternatively, perhaps different cells types in

different tissues have varying mechanical thresholds to stimulate nuclear

repositioning.

4.2.2 Cytoplasmic Aggregations

Cytoplasmic aggregations, the actin filament-driven accumulation of cellular

organelles, are an important response to different types of microbes. These aggre-

gates are associated with defence against fungal and oomycete filamentous patho-

gens as they occur before the development of cell wall apposition, or papillae,

barriers against microbial ingress (see Takemoto and Hardham 2004). Cytoplasmic

aggregations occur under the hyphopodia of the AM fungus Gigaspora margarita,
the pathogens C. trifolii and Phoma medicaginis in M. truncatula roots (Genre

et al. 2009). No aggregations were observed, however, for the ericoid

endomycorrhizal fungus Oidiodendron maius—perhaps because Medicago is a
non-host for this microbe (Genre et al. 2009). While this suggests aggregation of

cytoplasm is a common, general process in compatible microbe–root interactions,

none occurred under contact points ofMedicago roots in the compatible interaction

with T. atroviride (Lace et al. 2015).
In root–AM fungi interactions, but not in root–pathogen interaction, a

pre-penetration apparatus (PPA) forms, after initial cytoplasmic aggregation of

organelles at the plant–fungus contact point, under where the fungus will penetrate

the epidermis (Genre et al. 2005, 2009). The PPA is a transient structure of

microtubule bundles and ER patches that guides the growth of the penetrating

hyphae through the plant cell (Genre et al. 2005). In the interaction of pathogenic

oomycetes on A. thaliana leaves, actin filaments form bundles focused on the

microbial penetration sites and ER and Golgi stacks also accumulate at these

positions (Takemoto et al. 2003). In barley leaf–powdery mildew interactions, the

Belowground Defence Strategies in Plants: Parallels Between Root Responses. . . 27



actin cytoskeleton is differently organised depending on whether the host is sus-

ceptible or resistant. In a resistant host, actin filaments become strongly focused on

the penetration site and are associated with penetration resistance, whereas in

susceptible hosts actin is only weakly focused. If the epidermal surface penetration

event is successful, the resulting powdery mildew haustorium becomes surrounded

by a ring of host actin filaments (Opalski et al. 2005). Similarly to actin, the pattern

of microtubules accumulating at the entry point of powdery mildew in barley leaves

also depends on whether the penetration event is successful or not (Hoefle

et al. 2011).

Genre et al. (2009) found that the symbiosis pathway gene Does not make
infections 3 (DMI3, Table 2) is required for cytoplasmic aggregation in theC. trifolii
and P. medicaginis interaction and PPA development in AM–fungi–root interac-

tions. This suggests the existence of a general genetic pathway in roots that

mediates interactions with filamentous microbes.

4.3 Microbial Accommodation Structures

Intracellular infection structures, listed in Table 2, act as nutrient exchange sites as

well as sites for effector delivery (Fig. 1a). Arbuscules are the site of nutrient

exchange for AM fungi where phosphate, nitrogen and sulphur are transferred to the

plant in exchange for a plant-derived carbohydrate source (Kiers et al. 2011). In

DSE interactions, there is evidence to support both two-way nutrient transfer, as

well as a role in increasing nutrient availability in the rhizosphere by mineralisation

(Usuki and Narisawa 2007; Upson et al. 2009). Detrimental microbes also acquire

nutrients from plant tissue via intracellular structures, although transfer occurs in

one direction only. Evidence for this has been elucidated from work on leaf

pathogens, which acquire phytoassimilates from the host via haustoria, as is the

case for powdery mildews, although in other leaf pathogens some nutrients can be

transferred even before haustoria form (see Harrison 1999).

During AM fungal interactions, evidence suggests neither plant nor microbe is

exploiting the other (or there is mutual exploitation) during this symbiosis and both

are able to enforce an established interaction by enhancing nutrient transfer to

cooperative partners (Kiers et al. 2011). In the case of the endophyte P. indica,
however, an interaction can occur regardless of nutrient availability (Achatz

et al. 2010). This suggests this microbe exerts more control in the interaction.

4.3.1 Arbuscules and Haustoria

After surface penetration, later in the colonisation of plant root tissue, AM fungi

and some hemibiotrophic root pathogens produce specialised intracellular accom-

modation structures termed arbuscules and haustoria, respectively (Table 2,

Fig. 1a). Endophytes such as P. indicamay also produce differentiated intracellular
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structures and also produce coils inside root cells (Fig. 1a, Rafiqi et al. 2013). Other

fungi, such as M. oryzae, produce intracellular hyphae that pass from cell to cell

(Fig. 1a, Marcel et al. 2010). Arbuscules, which senesce 2–3 days after maturity,

and haustoria, which become encased in plant cell wall deposits (at least in leaves),

are both transient structures (Wang et al. 2009; Kobae and Hata 2010). While

active, these structures act as intimate communication points between microbe and

plant cell and mediate the receipt and delivery of nutrients as well as delivery of

effector proteins that suppress plant defence responses. Although the plant cell wall

is breached during the formation of both arbuscules and haustoria, the plasma

membrane remains intact. During microbial ingress, a new membrane, continuous

with the plasma membrane but different in composition, develops to surround the

invading microbial structure—termed periarbuscular membrane or PAM and

extrahaustorial membrane or EHM as appropriate (Yi and Valent 2013). The

complement of proteins included in this membrane help to determine how the

plant can respond to the invading microbial structure.

Again, nearly all work concerning accommodation of intracellular fungal struc-

tures is derived from AM fungi interactions. After surface penetration, AM fungi

grow either intercellularly or intracellularly through root tissue to reach the cortex

where they form arbuscules inside cortical cells. Arbuscules occupy a significant

volume of root cells and induce a substantial reorganisation of host cellular

components (Harrison 2012). Arbuscule formation and intracellular growth dis-

plays similarities with PPA formation in that nuclear-headed cytoplasmic bridges

form to guide the growth of the fungal structure into the cell. Interestingly, in carrot

roots, multiple adjacent cells undergo simultaneous cellular rearrangements to

prepare for the passage of intracellular fungal hyphae en route to the cortex. During

arbuscule formation, localised aggregations of ER around the penetrating hyphae

predict the emergence of lateral arbuscule branches (Genre et al. 2008). Addition-

ally, as the arbuscule develops, microtubules, that are normally helically oriented in

uncolonised cells, orient to outline the hyphal trunk and branches. Microtubule

reorganisation also occurs in adjacent cortical cells, preempting arbuscules forma-

tion (Blancaflor et al. 2001).

Nothing is known about how roots respond to haustoria formation. In leaves, ER

cisternae and Golgi stacks were found to accumulate around the neck of

Peronospora parasitica haustoria (Takemoto et al. 2003). Actin rings form around

developing powdery mildew haustoria in barley (Opalski et al. 2005).

4.3.2 Formation of Specialised Membranes Around Microbial

Structures

Intracellular microbial structures become enclosed in specialised membranes

(Fig. 1a). Work has shown that plant secretory pathways are involved in formation

of these membranes and both endo- and exocytosis are crucial for the accommo-

dation of beneficial and detrimental microbial structures in plant cells (Yamazaki

and Hayashi 2015). VAMP proteins, that mediate exocytosis in plants, are

Belowground Defence Strategies in Plants: Parallels Between Root Responses. . . 29



important for both interactions with beneficial and detrimental microbes.

VAMP721d and VAMP721e are required for AM fungal symbiosome formation

in M. truncatula, while in A. thaliana VAMP721 and 722 function in defence

against powdery mildew (Ivanov et al. 2012; Wang et al. 2013; Kim et al. 2014;

Dormann et al. 2014). So far evidence supports the hypothesis for de novo EHM

and PAM biosynthesis, rather than selective sorting of proteins from pre-existing

membrane (Koh et al. 2005).

The AM fungal PAM is composed of at least two specific domains determined

by plant proteins that specifically localise to the branches, such as phosphate

transporter PT4 (Pumplin and Harrison 2009; Pumplin et al. 2012). Furthermore,

the apoplastic compartment surrounding the trunk and branch domains seems

different, as evidenced through differential GFP-/RFP-labelled blue copper protein

1 (Ivanov and Harrison 2014). Construction of the PAM has been studied with the

use of fluorescently labelled components of the plant secretory pathway, which

have a fundamental role in PAM biogenesis. PAM formation begins inside the PPA

with an accumulation of Golgi stacks and components of the exocytotic pathway

just ahead of the growing hyphae (Ivanov et al. 2012; Genre et al. 2012).

Similar, comparative work with accommodation structures of detrimental root

microbes is lacking. However, we can again compare membranes around symbiotic

accommodation structures from AM fungi with those around structures formed by

biotrophic plant pathogens in leaves. Most information concerning the EHM around

haustoria in detrimental microbe–plant interactions has been elucidated from leaf

studies using P. infestans, downy and powdery mildew pathogens.

The EHM around haustoria in leaves, like the PAM in AM fungi–root interac-

tions, has a protein composition distinct from that of the plant cell plasma mem-

brane (Koh et al. 2005; Micali et al. 2011; Lu et al. 2012; Pumplin et al. 2012).

Additionally, some membrane-localised proteins appear to be restricted to specific

locations of the EHM—corresponding to the neck or the rim of the haustoria

(Micali et al. 2011; Pumplin and Harrison 2009). Studies have also reported the

exclusion of plasma membrane-localised proteins specifically from the EHM, such

as the A. thaliana aquaporin PIP1;4 and calcium ATPase ACA8 in the interaction

with Phytophthora infestans and H. arabidopsidis (Koh et al. 2005; Micali

et al. 2011; Lu et al. 2012). Other proteins such as the immunity-related FLS2

and EFR appear to be differentially targeted depending on the microbe. FLS2

accumulates in the EHM around H. arabidopsidis haustoria but neither FLS2 nor

EFR accumulate around P. infestans haustoria (Lu et al. 2012). Accumulation

patterns of the immune protein RPW8.2 was also different depending on whether

the pathogen was an oomycete or a fungus indicating distinct pathogen-specific

roles for this protein (Wang et al. 2009; Lu et al. 2012). Whether the accumulation

of immunity-related plant proteins is similar around haustoria of pathogens in roots

remains to be seen.
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4.3.3 Cytoplasmic Microbial Effectors

Some plants are capable of perceiving effectors through cognate disease resistance

proteins and mount effector-triggered immunity (ETI) responses. In leaves, ETI is

often, but not always, concomitant with a hypersensitive response resulting in cell

death and resistance (Lo Presti et al. 2015). The activity and role of R genes in

resistance to root pathogens is not well understood, but some evidence suggests R

genes active in leaves are also active in roots. For example, the R gene Pi-CO39(t)
is active against M. oryzae in roots and leaves of rice (Sesma and Osbourn 2004).

The authors speculate that the maintenance of this activity in root tissue implies root

infection by this foliar pathogen may be of biological significance. It remains to be

studied whether hypersensitive cell death also widely occurs during root ETI.

Future research will also reveal whether the effector complement of leaf pathogens

that infect roots (e.g. M. oryzae) is the same during above- and belowground

infection.

Effector proteins have been better characterised from pathogenic microbes that

usually infect leaves while only a couple have so far been characterised from

filamentous microbes that engage in beneficial interactions with plant roots. The

SP7 effector protein from R. irregularis suppresses expression of a pathogenesis-

related transcription factor, ERF19, which is highly induced on root infection with

C. trifolii. Expression of SP7 byM. oryzae resulted in reduced induction of defence-
related genes and delayed root decay, indicating that this protein is involved in the

maintenance of biotrophic growth in plant tissue (Kloppholz et al. 2011). Effector

candidates have also been predicted in silico in the endophyte P. indica (Rafiqi

et al. 2013). A recent report showed that at 6 days after infection with this microbe,

responses that were induced at 2 days were suppressed, suggesting the dampening

of the plant defence response (Vahabi et al. 2015). The identity and function of

cytoplasmic P. indica effectors however is still unknown.

5 Outlook and Conclusions

Filamentous microbes engage with plant roots in a spectrum of interactions and

they share many morphological and biochemical traits that plants must accurately

distinguish between and respond to in order to survive (Fig. 1b). Some of these

responses appear to be more general (i.e. microbe non-specific), such as the

elicitation of defence responses through MAMP perception. Others, such as the

recognition of specific signals (e.g. from AM fungi), induce a cascade of specific

responses that facilitate mutualistic symbiosis and the long-term accommodation of

the microbe in host root tissue—promoting reciprocal exchange of nutrients. We try

to categorise microbes as beneficial or detrimental, but it is clear that plant

responses and interaction outcomes can depend on host genotype, environmental

factors and tissue type. In order to understand what determines the outcome of a
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specific root–microbe interaction, we need to utilise a range of plant and microbial

systems in our research. Conducting comparative experiments between root and

shoot interactions with the same microbe will also be instrumental in elucidating

how defence responses are similar or different in these tissues. Microbes including

M. oryzae, which alters its lifestyle between roots and shoots, and P. palmivora,
which maintains a hemibiotrophic lifestyle in both tissues, will therefore be impor-

tant for these studies.

Due to the overlap in colonisation strategy of root-infecting microbes with

different lifestyles, and the parallels in root responses to them, we may not be

able to develop a molecular handle to promote specific interactions while

suppressing others. One possible solution might be to understand more about the

function of R genes in roots. If R gene-mediated resistance is as effective in roots as

in shoots, we may be able to tailor resistance to certain root diseases while

maintaining symbiotic interactions. However, our current knowledge of R gene-

mediated resistance in roots is lacking behind and requires further attention.

There are many other avenues for further research into root–microbe interac-

tions. In particular, we should focus on elucidating the mechanisms behind mycor-

rhizal and endophyte-mediated suppression of pathogen infection and the roles of

effectors from these microbes in both suppression of host defence responses and

maintenance of biotrophic lifestyles. It also remains to be discovered how the

mutualistic nature of interactions with filamentous microbes such as Trichoderma
spp. and P. indica arise and whether additional symbiotic signals, such as the

MYC-factor LCOs for AM fungi, are required. A focus on underground interactions

and continued collaboration between the fields of immunity and symbiosis will

uncover how roots respond to and balance beneficial and detrimental interactions.
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Root Exudates as Integral Part

of Belowground Plant Defence

Ulrike Baetz

Abstract Root exudates comprise a heterogeneous group of compounds that

display various effects on soilborne organisms, including stimulation, attraction,

but also repellence and inhibition. Therefore, root-secreted chemicals can assist

belowground plant defence through direct and/or indirect mechanisms. Direct

defence strategies exploited by roots include the secretion of phytochemicals with

antimicrobial, insecticide, or nematicide properties. In contrast, other root exudates

recruit or influence beneficial organisms to serve as biological weapons against

plant aggressors, a mechanism termed indirect plant defence. Since rhizosecretion

fundamentally shapes the composition of soil-inhabiting organisms and contributes

to plant survival, the quality and quantity of defence root exudates are tightly

controlled. Various environmental and endogenous factors can stimulate the release

of phytochemicals that exhibit precisely targeted bioactivities. On the molecular

level, several primary active transport proteins have been demonstrated to affect

the composition of defence root exudates in the rhizosphere. In this chapter, we will

focus our attention on direct and indirect defence strategiesmediated by root exudates.

In addition, we will shed light on regulatory mechanisms of defence-related root

exudation that prevent belowground disease and ensure optimal plant performance.

1 Introduction

Plants interact with a multitude of soilborne organisms in complex biological and

ecological processes in the narrow zone surrounding the root system, termed the

rhizosphere. These beneficial, antagonistic, or neutral interactions have a profound

effect on plant health and survival and shape the soil microbiome.

Within the rhizosphere, roots are constantly exposed to biotic stressors, ranging

from plant disease-causing pathogens such as bacteria, fungi, and oomycetes to

nematodes and insects. Although being sessile organisms anchored to the soil,

plants are not just passive victims of these antagonistic microbes and invertebrates
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that occur in the vicinity of roots. In fact, roots are equipped with an arsenal of

defence compounds that can be released into the rhizosphere to counteract plant

attackers (Baetz and Martinoia 2014). However, the significance of root exudates as

a direct or indirect belowground protection has long been underestimated, presum-

ably due to literally being out of sight.

Secreted substances can be of low or high molecular weight. Low-molecular-

weight root exudates include a variety of defence secondary metabolites such as

flavonoids, glucosinolates, and terpenoids. Protective high-molecular-weight com-

pounds such as antimicrobial proteins and secreted extracellular DNA also contrib-

ute to the local belowground resistance. The tremendous metabolic diversity of root

exudates has been progressively elucidated in the past decade through the identifi-

cation and characterization of numerous novel constitutively secreted and inducible

compounds and previously undescribed classes of defence molecules. Equally,

genes and biosynthetic pathways involved in the production of these phytochemi-

cals have been gradually deciphered. A deepened knowledge of phytochemical

properties, their composition in the rhizosphere, and their impact on soil-inhabiting

organisms is crucial to understand the diverse nature of root-exudate-mediated

defence mechanisms that protect plants against pathogens and invaders. It has

been demonstrated that some root exudates exhibit antibacterial, antifungal, nem-

aticide, or insecticide properties that directly assist the plant in coping with antag-

onistic organisms. Other root exudates are released from damaged roots to attract

natural enemies of the attackers (such as carnivorous nematodes) to indirectly

protect plants. Another highly sophisticated indirect defence strategy of plants is

to outsource defence compound production. On that purpose, root exudates attract

beneficial microorganisms that release secondary metabolites such as antibiotics

with an antagonistic effect on the root-attacking pathogen.

In this chapter, we will compile the roles of root exudates in various direct and

indirect, targeted belowground defence processes that protect plants against soil-

borne diseases. In addition, we will discuss regulation mechanisms of root exuda-

tion, e.g., inducible substance production and controlled secretion, that collectively

make root-exudate-mediated belowground plant defence a highly efficient process.

2 Root Exudation as a Direct Defence Strategy Against

Detrimental Soilborne Organisms

In the rhizosphere, roots face relentless harmful attack through the presence of plant

disease-causing pathogens (e.g., bacteria, fungi, and oomycetes), as well as root-

damaging animals (in particular nematodes and insects). In the following, we will

illustrate with selected examples how aggressors are being repelled, inhibited, or

killed by certain root-secreted phytochemicals in order to confer direct defence

against belowground plant diseases.
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2.1 Bacteria

The bacterial community in the soil is diverse in its composition, ranging from

beneficial plant growth-promoting bacteria to bacteria that infect roots and exhibit

harmful effects. Plant-derived molecules can act as chemical signals that stimulate

or repress microbes. Thereby, root exudates fundamentally drive the selection of

bacteria inhabiting the rhizosphere. Shifts in root-exudate blends, as observed in an

Arabidopsis (Arabidopsis thaliana) mutant impaired in root exudation, elicited

significant compositional alterations in bacteria that colonize the rhizosphere

(Badri et al. 2009). Furthermore, it has been recently reported that merely the

application of root exudates collected from Arabidopsis modulated the overall

native bacterial community in the soil, even in the absence of the plant (Badri

et al. 2013). Conversely, the chemical profile of root-secreted molecules is largely

dependent on distinct bacterial members present in the vicinity of roots. For

instance, the formation and release of the antimicrobial monoterpene 1,8-cineole

were induced upon compatible interactions between Arabidopsis roots and the

bacterial pathogen Pseudomonas syringae DC3000 (Steeghs et al. 2004; Kalemba

et al. 2002). In another study, Arabidopsis roots that were exposed to P. syringae
secreted significantly higher amounts of defence-related proteins, whereas the

incompatible interaction with a bacterial symbiont did not induce the secretion of

these protective proteins (De-la-Pe~na et al. 2008).
A phytochemical known to feature direct antibacterial activity particularly

against Pseudomonas aeruginosa is rosmarinic acid (RA) (Bais et al. 2002). This

multifunctional caffeic acid ester is produced in hairy root cultures of sweet basil

(Ocimum basilicum L.) and exuded in response to pathogen attack. However, the

compound is absent from exudates of unchallenged root cultures (Bais et al. 2002).

Arabidopsis root exudates that were supplemented with exogenous RA prior infec-

tion with pathogenic P. aeruginosa strains highly reduced pathogenicity under

in vitro and in vivo conditions (Walker et al. 2004). Without supplementation,

Arabidopsis roots displayed a high level of susceptibility to P. aeruginosa resulting
in mortality. Similarly, the induction of RA secretion by sweet basil roots before

infection conferred resistance to P. aeruginosa (Walker et al. 2004). Hence, host

plants can deliberately release antibacterial molecules into the rhizosphere that

directly counteract root colonization of pathogenic bacteria and plant mortality.

2.2 Fungi and Oomycetes

Tremendous yield losses result from fungal root invasion every year, emphasizing

the necessity to study the cross talk between plants and fungi and to elucidate root

exudates that confer direct disease resistance. In fact, oomycetes are phylogeneti-

cally distinct organisms but show high physiological and morphological similarities

to fungi. Therefore, fungi and oomycetes will be both covered in this section.
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A potent root-secreted antimicrobial compound that is implemented into defence

mechanisms against oomycete pathogens is the pea (Pisum sativum) isoflavonoid
pisatin (Cannesan et al. 2011). Once pea roots were challenged with the oomycete

Aphanomyces euteiches, the biosynthesis and release of pisatin into the rhizosphere
were induced (Cannesan et al. 2011). Interestingly, the inoculation also had a

stimulatory effect on border cell production of pea. Border cells are metabolically

active cells at the root periphery that originate and detach from the root cap

meristem (Stubbs et al. 2004; Vicré et al. 2005; Driouich et al. 2007). They assist

the growing root tip during the mechanical penetration of the soil by decreasing

frictional resistance at the root–soil interface (Driouich et al. 2007). In addition,

antimicrobial molecules in the rhizosphere largely derive from cap and border cells

(Hawes et al. 2012; Griffin et al. 1976; Odell et al. 2008), revealing a link between

the A. euteiches induced formation of border cells and the increased pisatin

exudation (Cannesan et al. 2011). The exposure of pea root tips encompassing

border cells to exogenous pisatin, in turn, led to the upregulation of border cell

production in vitro (Curlango-Rivera et al. 2010). Hence, border cells and their

exudates account for a local protective shield that is strengthened in response to

pathogen invasion (Cannesan et al. 2011; Hawes et al. 2012; Curlango-Rivera

et al. 2010). Because a correlation was observed between border cell separation

and the induction of protein secretion, Wen et al. (2007) proteolytically degraded

the root cap secretome during inoculation with the pea-pathogenic fungus

N. haematococca. The researcher demonstrated that protease treatment increased

the percentage of infected root tips significantly, providing evidence that root-

secreted defence proteins from border cells contribute fundamentally to the resis-

tance of pea roots to fungal infection (Wen et al. 2007). Detailed proteome analysis

of root exudates of several plant species confirmed the secretion of antimicrobial

enzymes and demonstrated dynamic compositional changes during development

and upon pathogenic interactions (De-la-Pe~na et al. 2010; Shinano et al. 2011; Liao
et al. 2012; Ma et al. 2010; De-la-Pe~na et al. 2008; Wen et al. 2007). Unexpectedly,

besides defence-related proteins, also the DNA-binding protein histone H4 was

detected in border cell exudates of pea (Wen et al. 2007). Histone-linked extracel-

lular DNA (exDNA) is thought to have a critical role in defence against microbial

pathogens in mammals (von K€ockritz-Blickwede and Nizet 2009; Brinkmann

et al. 2004; Medina 2009). In plants, exDNA linked to histone proteins has been

found to be exuded from root border cells and suggested to be a component of direct

belowground defence against fungal invasion (Wen et al. 2009). Similar to proteo-

lytic solubilization of exuded proteins, nuclease treatment of pea root tips resulted

in enhanced susceptibility to fungal infection by N. haematococca (Wen

et al. 2009). However, the distinct mechanism of how exDNA inhibits pathogen

infection awaits elucidation (Hawes et al. 2011, 2012). In addition to protective

proteins and exDNA, also low-molecular-weight antimicrobial root exudates are

proved direct chemical weapons against soilborne diseases of fungal origin. For

instance, the phenolic compound t-cinnamic acid potently protects barley

(Hordeum vulgare) against the soilborne fungus Fusarium graminearum (Lanoue

et al. 2010a, b).
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2.3 Nematodes

Nematodes are wormlike eukaryotic invertebrates that consume bacteria, fungi, or

other nematodes, and some can parasitize plants. Intense research on root-secreted

compounds uncovered attractants that influence the chemotaxis response of bene-

ficial nematodes or assist pathogenic nematodes in host recognition. Other phyto-

chemicals have been found to exhibit nematode-antagonistic properties (Reynolds

et al. 2011; Curtis 2008; Hiltpold and Turlings 2012). Lilley et al. (2011) investi-

gated the potency of a root-exuded direct defence compound against nematodes.

The researchers showed that the root cap targeted expression and release of a

nematode-repellent chemodisruptive peptide in Arabidopsis thaliana reduced the

establishment of the beet cyst nematode Heterodera schachtii (Lilley et al. 2011).

In line with this, it was found that transgenic Solanum tuberosum (potato) that

secreted this repellent peptide from their roots suppressed parasitism by the potato

cyst nematode Globodera pallida (Lilley et al. 2011; Liu et al. 2005). In another

study, a genetic approach was used to broaden the resistance of soybean (Glycine
max) against nematodes. An Arabidopsis gene that modulates synthesis of the

antimicrobial camalexin and other defence-related responses was ectopically

overexpressed in roots of soybean (Youssef et al. 2013), resulting in enhanced

resistance to the parasitic soybean cyst nematode (Heterodera glycines) and the

root-knot nematode (Meloidogyne incognita). Lauric acid, a naturally occurring,

highly abundant root exudate from crown daisy (Chrysanthemum coronarium) also
limited parasitic damage by decreasing the number ofM. incognita and suppressing
nematode infection (Dong et al. 2014). Likewise, total root-cap exudates from

various legumes showed the ability to repel root-knot nematodes in sand assays

(Zhao et al. 2000). In summary, root exudates can have direct nematotoxic or

repelling effects to ensure protection of the roots. However, in contrast to com-

pounds with antimicrobial activity, examples for nematicide root exudates remain

limited.

2.4 Insects

As plants cannot escape belowground insects and root feeding causes tremendous

tissue damage, roots employ elegant defence strategies to counteract herbivory. For

instance, the semi-volatile diterpene hydrocarbon, rhizathalene A, is constitutively

produced and released by noninfected Arabidopsis roots (Vaughan et al. 2013).

Plants that are deficient in rhizathalene A production were found to be less resistant

to herbivory by the fungus gnat (Bradysia spp.) and suffered considerable removal

of peripheral tissue at larval feeding sites. In this study it was comprehensively

shown that rhizathalene A is a local antiherbivore metabolite that is implicated in

the direct belowground defence against insect herbivory (Vaughan et al. 2013). The

monoterpene 1,8-cineole is another volatile compound that exhibits defence
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activity. It is released from Arabidopsis thaliana roots upon compatible interaction

with the herbivore Diuraphis noxia (Steeghs et al. 2004). However, little is known

about root-released volatiles and other root exudates with insecticidal properties

that directly defend plants against root-feeding arthropods. Nevertheless, as

discussed in the following, belowground volatile compounds and their protective

role were extensively studied as an indirect defence trait.

3 Root Exudates Are a Tool to Establish Indirect Plant

Defence

Direct defence via root exudation is an effective mean of plants to deal with the

constant exposure to pathogenic microbes and invertebrates in the rhizosphere.

Besides, by root exudation plants can influence the behavior of phytobeneficial soil

organisms to serve defensive roles during belowground diseases. For instance, the

orientation of rhizospheric nematodes that are predators of insect aggressors can be

altered by root-released signals, thereby indirectly conferring resistance to the roots

against herbivory (Rasmann et al. 2005). Furthermore, some rhizobacteria species

are known for their production of toxic compounds targeting plant pathogens, a

process that has been hypothesized to be regulated by root exudates upon infection

(Jousset et al. 2011; Haas and Défago 2005). A scenario in which plants recruit

defence-assisting organisms to counteract pathogen attack is considered indirect

belowground plant defence. This tripartite interaction is mediated by root exudates.

3.1 Recruitment of “Natural Soldiers” by Root Exudates

The concept of indirect defence and the corresponding plant-released signaling

compounds has been examined thoroughly in the aboveground terrestrial environ-

ment. Leaves emit a complex battery of volatile organic compounds to communi-

cate with their environment and attract predators. Intriguingly, when attacked by

belowground herbivores, plants can also attract soilborne mobile predators such as

entomopathogenic nematodes (EPNs). In fact, EPNs are plant protagonists but

obligate parasites that kill insect hosts. The pivotal role of root-emitted volatile

compounds that act as efficient cues to direct natural enemies such as EPNs

specifically to the sites where potential hosts are damaging roots has become

increasingly evident in the last years (Hiltpold and Turlings 2008; Hiltpold

et al. 2011). The best studied example of a volatile signal that mediates below-

ground indirect plant defence is the maize (Zea mays L.) sesquiterpene olefin

(E)-β-caryophyllene (EβC) (Rasmann et al. 2005). EβC is completely absent in

healthy maize roots but emitted upon feeding by voracious larvae of the Western

corn rootworm (WCR), Diabrotica virgifera virgifera. Herbivore attack induces the

50 U. Baetz



expression of the terpene synthase 23 (tps23) gene, which is involved in the

biosynthesis of EβC (Capra et al. 2014; K€ollner et al. 2008). The released volatile

signal strongly attracts the EPN Heterorhabditis megidis, a natural enemy of root-

feeding herbivores that assists maize defence by killing WCR larvae (Rasmann

et al. 2005).

WCR is a severe pest causing tremendous yield losses particularly on maize

roots (Miller et al. 2005). Exploiting naturally produced indirect defence com-

pounds against WCR could provide an effective biological control strategy for crop

protection. Degenhardt et al. (2009) aimed at promoting plant attractiveness to

natural enemies of WCR larvae by genetically introducing EβC emission in maize

varieties that are not capable of synthesizing the sesquiterpene due to a lack of tps23
transcript. On that purpose, a non-emitting maize line was transformed with an

(E)-β-caryophyllene synthase from oregano (Origanum vulgare), resulting in a

constitutive emission of EβC (Degenhardt et al. 2009). In field experiments,

transformed plants attracted EPNs more efficiently and consequently suffered less

root feeding by WCR larvae compared to non-emitting maize plants. In a subse-

quent study, it has been demonstrated that a constitutive emission of the volatile

signal generated also physiological costs such as compromised seed germination,

plant growth, and yield (Robert et al. 2013). This negative effect on plant fitness

was possibly due to an increased attraction of herbivores, including aboveground

pests. Ali et al. (2010, 2012) similarly exercised caution when investigating the

complex effects of belowground volatiles on indirect plant defence. Citrus roots

release volatile compounds such as pregeijerene (1,5-dimethylcyclodeca-1,5,7-

triene) in response to feeding by the larvae of the root weevil, Diaprepes
abbreviatus (Ali et al. 2010, 2012). The herbivore-induced volatile emission

recruited a naturally occurring EPN (Steinernema diaprepesi), resulting in an

increase of root weevil mortality and, hence, the control of herbivore infestation

(Ali et al. 2010, 2012). Yet, further research uncovered that besides the recruitment

of beneficial nematodes, herbivore-induced volatiles also allowed more efficient

host localization by phytopathogenic nematodes (Ali et al. 2011). Collectively these

studies illustrate clearly that consequences evoked by the manipulation of below-

ground volatile emission should be carefully assessed on multitrophic levels and

under field conditions in order to understand their specificity and minimize detri-

mental physiological or ecological effects for plants or nontarget organisms.

Besides targeting volatile emission, another elegant approach to enhance the

effectiveness of indirect plant defence is selective breeding of natural enemies for

increased responsiveness to a volatile host signal in order to obtain a more efficient

natural finding and killing of pests. Hiltpold et al. (2010a) aimed at improving the

attraction of Heterorhabditis bacteriophora, one of the most virulent nematodes

against WCR larvae, toward EβC (Hiltpold et al. 2010a). After few generations of

selection, the researchers isolated an H. bacteriophora strain that was significantly

more attracted to the EβC source than the original strain. Consistently, in field

experiments WCR populations that attacked EβC-emitting maize roots were more

effectively reduced by the selected strain compared to the original strain. Impor-

tantly, control experiments showed that this artificial selection for the
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responsiveness trait of H. bacteriophora toward the volatile signal has not consid-

erably altered other essential properties for controlling WCR populations such as

the infectiveness of H. bacteriophora (Hiltpold et al. 2010a, b).

Taken together, the research shows that plants can recruit natural enemies of

their soilborne aggressors through root-released volatiles to indirectly defend the

root system. Thoroughly exploited manipulation of indirect plant defence has a

great potential as an alternative method to traditional broad-spectrum pesticides in

controlling root pests in agroecosystems.

3.2 Root Exudates Can Stimulate the Antimicrobial Potency
of Phytobeneficial Microbes

Besides attracting natural predators of their enemies, plants have established dia-

logues with beneficial root-colonizing bacteria to protect roots against the attack of

deleterious rhizosphere microorganisms. Defence-assisting microbes belong to

so-called plant growth-promoting rhizobacteria (PGPR) (Compant et al. 2005).

PGPR primarily stimulate plant growth by, e.g., the production of phytohormones

or the enhancement of plant nutrition (Vacheron et al. 2013). In contrast, defence-

assisting PGPR can improve plant health either directly by repelling plant aggres-

sors with the production of antibiotics or indirectly by eliciting induced systemic

resistance in host plants (Compant et al. 2005; Haas and Défago 2005; Doornbos

et al. 2012). However, to date only few studies addressed the role and the chemical

nature of plant-derived exudates in the suppression of soilborne diseases via direct

bacterial antagonism (Neal et al. 2012; Neal and Ton 2013; Santos et al. 2014;

Jousset et al. 2011; Haas and Défago 2005; Notz et al. 2001; Baehler et al. 2005; de

Werra et al. 2008, 2011). Jousset et al. (2011) made an elaborate experiment

providing compelling evidence that plants are able to influence the metabolism of

beneficial rhizosphere-colonizing bacteria through root exudates as part of the

indirect belowground plant defence against pathogens. In order to prevent physical

contact between the microorganisms, barley plants were grown in a split-root

system in which one part of the roots was challenged by the pathogenic oomycete

Pythium ultimum. The other side was inoculated with the biocontrol bacterium

Pseudomonas fluorescens CHA0, a PGPR known to assist crop plant defence by

producing antifungal chemicals against pathogenic fungi (Haas and Défago 2005).

This separation system allowed the investigation of alterations of bacterial gene

expression patterns that are induced by pathogens but mediated by systemic

signaling of plants and root exudation (Fig. 1). The researchers found that the

expression of the bacterial phlA gene was considerably stimulated following path-

ogen infection at the other side of the root (Jousset et al. 2011). The expression of

this gene reflects the production of the antifungal metabolite

2,4-diacetylphloroglucinol (DAPG), a key component of the biocontrol activity of

root-associated bacteria acting in disease suppression (Notz et al. 2001; Bangera
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and Thomashow 1999; de Souza et al. 2003). Interestingly, also the composition of

exudates from the systemic side at which roots were inoculated with P. fluorescens
changed in response to the presence of the pathogen Pythium ultimum at the other

side of the root system (Fig. 1), uncovering candidates of signaling root exudates

that provoke changes in antifungal gene expression of beneficial bacteria (Jousset

et al. 2011). In summary, first insights have been gained on how antifungal

activities of rhizobacteria can be adjusted by root exudates to provide service of

indirect defence against plant pathogens. It will be of interest to further explore this

tripartite interaction and investigate how and which plant-derived compounds are

released under pathogen pressure and subsequently modulate rapidly the activity of

plant growth-promoting rhizobacteria.

Fig. 1 Relevance of systemic plant signaling and root exudation in a tripartite interaction that

confers indirect plant defence. To investigate pathogen-induced but plant-mediated modulation of

bacterial gene expression and antifungal activity, Jousset et al. (2011) grew barley in a split-root

system (Jousset et al. 2011). One part of the root (infected side) was challenged with the pathogen

Pythium ultimum, whereas the other part of the root (systemic side) was exposed to the beneficial

plant growth-promoting rhizobacterium (PGPR) Pseudomonas fluorescens CHA0. Without phys-

ical contact but through systemic plant signaling, pathogen attack induced compositional changes

in root exudates on the systemic side. These changes, in turn, stimulated bacterial phlA expression.

The transcript levels of this gene directly correlate with the production of the antifungal compound

2,4-diacetylphloroglucinol (DAPG)
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4 Root Exudation: A Tightly Regulated and Highly

Efficient Process

Root exudation enormously impacts plants as well as the rhizosphere habitat.

Firstly, photosynthetically fixed carbon is a valuable resource for plants. Since

direct and indirect defence root exudates are a significant carbon cost, sensible and

deliberate use is of importance to avoid excessive consumption but guarantee

efficient plant defence. Secondly, root-exudate blends need to be carefully assem-

bled, since the rhizosphere is composed of a diverse variety of inhabitants such as

beneficial and pathogenic organisms that can be differentially affected by certain

phytochemicals. On the purpose of accurate plant defence and limited damage to

other rhizosphere members, plants have established several strategies to optimize

root exudation, including elicitation-induced compound production, tightly regu-

lated export processes, and multiple beneficial compound activities, which will be

discussed in the following sections.

4.1 Constitutive Versus Induced Exudation
of Phytochemicals

Plants are constantly exposed to soilborne antagonists. To form a protective buffer

zone around roots, certain defence root exudates are constitutively released into the

rhizosphere. For instance, rhizathalene A, an antifeedant involved in direct plant

defence, is synthesized and secreted from Arabidopsis roots even in the absence of

root-feeding insects (Vaughan et al. 2013). Plants secrete a wide array of other

defence molecules before pathogen elicitation (Kato-Noguchi et al. 2008;

Toyomasu et al. 2008; Wen et al. 2009; De-la-Pe~na et al. 2010; Shinano

et al. 2011; Chaparro et al. 2013; Badri et al. 2010; Liao et al. 2012; Ma

et al. 2010; McCully et al. 2008; Dong et al. 2014). Besides a constitutive root

exudation, the biosynthesis, accumulation, and secretion of certain defence mole-

cules can be induced in the presence of aggressors in the rhizosphere. The phenolic

compound t-cinnamic acid is an antifungal exudate of barley roots (Lanoue

et al. 2010a, b). Upon attack of a fungal pathogen, labeling experiments demon-

strated the de novo biosynthesis and secretion of this aromatic defence metabolite

into the rhizosphere. Another example is rosmarinic acid, which is constitutively

produced in root tissue but exclusively released into the rhizosphere in response to

root infection (Bais et al. 2002). These studies illustrate that the profile of root

exudates is not just diverse in its composition but also strikingly dynamic, to adjust

the identity and amount of defence compounds toward necessity in heterogeneous

environments.
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4.2 Stimuli That Control Defence Root Exudation

As discussed above, the belowground attack by antagonistic organisms can induce

the release of a multitude of defence compounds into the rhizosphere. Astonish-

ingly, upon aboveground attack, intraplant chemical signals can be relayed to

influence root exudation (Bezemer and van Dam 2005; Robert et al. 2012; Pangesti

et al. 2013). Secretion of L-malic acid from Arabidopsis roots is stimulated by

infection with the bacterial foliar pathogen Pseudomonas syringae pv. tomato Pst

DC3000 (Rudrappa et al. 2008; Lakshmanan et al. 2012). Elevated levels of malic

acid in the rhizosphere in turn recruit the beneficial Bacillus subtilis FB17 and

promote rhizobacterial colonization to enhance plant defence (Rudrappa et al. 2008;

Lakshmanan et al. 2012).

Under laboratory conditions, the rhizosecretion process can be elicited also by

exogenous application of biotic stress-related signaling molecules such as salicylic

acid, nitric oxide, or methyl jasmonate (Badri et al. 2008b; Badri and Vivanco

2009; Ruiz-May et al. 2009; Schreiner et al. 2011). Likewise, an ectopic expression

of the oomycetal elicitor β-cryptogein in hairy roots of Coleus blumei mimics

pathogen attack resulting in an enhanced level of secreted antimicrobial rosmarinic

acid in the external culture medium (Vuković et al. 2013). Recently it has been

reported that the presence of phytobeneficial bacteria can enhance root volatile

emission required for indirect plant defence (Santos et al. 2014). Root colonization

with Azospirillum brasilense induced higher release of (E)-β-caryophyllene from

maize roots. Furthermore, larvae of the South American corn rootworm,Diabrotica
speciosa, gained less weight when feeding on rhizobacterium-inoculated roots

(Santos et al. 2014).

Besides exogenous stimuli that influence the release of compounds implemented

in direct and indirect plant defence, root exudation is also under the control of

endogenous genetic programs such as the developmental stage of the plant. In

maize benzoxazinoids form a class of defence molecules (Ahmad et al. 2011) that

are released during the emergence of lateral and crown roots when the plant is

locally and temporally more susceptible (Park et al. 2004). Hence, benzoxazinoid

secretion presents a genetically regulated, protective process that alleviates damage

at local sites or during discrete developmental stages when infection is more

deleterious for the plant. In accordance, the peak of defence-related protein exuda-

tion into the rhizosphere can be observed just before flowering (De-la-Pe~na
et al. 2010). Toward later stages of the Arabidopsis life cycle, also the level of

putatively antimicrobial phenolic compounds increases in the root-exudate profile

(Chaparro et al. 2013). Again, the recruitment of phytobeneficial microbes that

indirectly prevent root infection through the production of antibacterial compounds

is dependent on the growth stage of the plant (Picard et al. 2000, 2004).

Taken together, these studies exemplify that the secretion of defence compounds

into the rhizosphere is a tightly controlled, spatiotemporal dynamic process that is

regulated by various endogenous and exogenous factors.
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4.3 The Role of Transport Proteins in Root Exudation

Root exudation is in part mediated by diffusion, channels, and vesicle transport.

However, a substantial proportion of root exudates is also secreted actively by

transport proteins. First indirect evidence of a primary and secondary active secre-

tion process of plant-derived molecules across the root plasma membrane came

from comprehensive pharmacological studies. The use of various inhibitors

revealed that the secretion of some root-derived phytochemicals was dependent

on ATP hydrolysis (Loyola-Vargas et al. 2007), indicating that active transport

systems such as ATP-binding cassette (ABC) transporters might be involved in the

release of constituents of the root phytochemical cocktail into the rhizosphere.

ABC-type proteins constitute a large family of transporters that are involved in

mediating the transport of a wide array of organic substances (Yazaki et al. 2008,

2009; Kang et al. 2011). More than 120 genes in the Arabidopsis thaliana genome

encode for ABC transporter proteins, and some of these genes exhibit strikingly

high expression in root cells, raising the potential for their involvement in

rhizosecretion processes (Badri et al. 2008a). Subsequent studies in which root-

exudate (Badri et al. 2008a, 2009) and microbial (Badri et al. 2009) compositions of

ABC transporter mutants differed significantly from those of corresponding wild-

type plants confirmed the essential role of ABC proteins in root exudation. In

addition, these studies revealed that multiple ABC transporters can release the

same substrate and that a discrete ABC transporter can have low substrate speci-

ficity and export multiple structurally and functionally unrelated substances

(Fig. 2a). The role of AtABCG37/AtPDR9 in mediating the rhizosecretion of not

only auxinic compounds (Ito and Gray 2006; Ruzicka et al. 2010) but also of

phenolics as an iron acquisition strategy (Rodrı́guez-Celma et al. 2013; Fourcroy

et al. 2014) supports this observation. Likewise, AtABCG36/AtPDR8 is suggested

to export cadmium (Kim et al. 2007) as well as indole-3-butyric acid (Strader and

Bartel 2009) into the rhizosphere.

To date, few ABC transport proteins were proposed to be implemented in the

export and accumulation of phytochemicals that confer resistance against soilborne

diseases. For example, silencing NtABCG5/NtPDR5 from tobacco (Nicotiana
tabacum) improved larval performance of the herbivore Manduca sexta but also

increased slightly the susceptibility to the soilborne fungus Fusarium oxysporum,
suggesting a role of this transport protein in defence inter alia through root

exudation (Bienert et al. 2012). More evidently, the transporter NpPDR1 of Nico-
tiana plumbaginifolia was shown to be involved in belowground plant defence

against pathogen invasion (Bultreys et al. 2009; Stukkens et al. 2005). Silencing the

ABC transporter accounted for enhanced sensitivity of roots and petals toward

several fungal and oomycetal pathogens, possibly due to diminished secretion of

antimicrobial compounds such as the diterpene sclareol (Bultreys et al. 2009;

Stukkens et al. 2005; Jasiński et al. 2001). Besides these obvious connections

between a transporter, its substrate, and a direct effect on the rhizosphere

microbiome, further research on ABC proteins implemented in root exudation
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Fig. 2 ABC proteins are complex transport systems that modulate root exudation. (a) Some ABC

proteins transport multiple substrates. Equally, some compounds can be a substrate of several

transporters. (b) Transporter transcript levels, protein abundance, and activity can be dependent on

substrate availability, elicitors, and microbial presence. In addition, rhizosphere stimuli can

influence substrate production. (c) ABC transporters can pleiotropically modulate cell physiology,

e.g., by influencing substrate biosynthesis or the activity of other transporters
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uncovered a complex role for transport systems in determining the composition of

root exudates (Fig. 2). Certain ABC transporter genes are subject of intense

transcriptional regulation. The expression of NtPDR1 from tobacco can be modified

by microbial elicitation and positively correlates with export rates of antipathogenic

diterpenes into the extracellular medium (Crouzet et al. 2013; Sasabe et al. 2002).

In line with this, the transcriptional regulation of ABC transporters in response to

their substrates has been reported (e.g., Kretzschmar et al. 2012). The level of an

external phytochemical can be dependent on the transport protein abundance but

also on the substrate availability. For instance, nitrogen deficiency can elicit the

increased production of the flavonoid signaling molecule genistein resulting in its

secretion from soybean roots to initiate rhizobium symbiosis (Sugiyama

et al. 2008). Interestingly, the transport machinery involved in genistein export is

constitutively active, regardless of the nitrogen availability (Sugiyama et al. 2007)

(Fig. 2b). Yet, other ABC transporters themselves feature regulatory functions

influencing biosynthesis and exudation of defence phytochemicals. Medicago
truncatula roots silenced for MtABCG10, a close homolog of NtPDR1 (Sasabe

et al. 2002; Crouzet et al. 2013), were rapidly infected by Fusarium oxysporum
(Banasiak et al. 2013). The silencing resulted also in a reduction of the antimicro-

bial medicarpin as well as its precursors in root tissue and exudates. Thus, during

belowground biotic stress response, MtABCG10 supposedly modulates

isoflavonoid levels associated with the de novo biosynthesis of defence compounds

(Banasiak et al. 2013). Another persuasive study showed that the root-exudate

profile of the Arabidopsis mutant abcg30 exhibits a decreased secretion of certain

compounds, whereas other exudates accumulated to higher levels in the mutant

plant rhizosphere (Badri et al. 2009). These findings suggest that ABC transporters

have a sophisticated role in mediating substrate export into the rhizosphere but also

in directly or indirectly modifying other physiological processes such as the

biosynthesis of secondary metabolites and/or the expression of other transporters

involved in root exudation (Fig. 2c).

Besides ABC transporters, members of the multidrug and toxic compound

extrusion (MATE) protein family have been demonstrated to actively transport

secondary metabolites across plant membranes (Yazaki et al. 2008). A MATE

transporter in the stele of rice roots was found to facilitate efflux of phenolic

compounds into the xylem (Ishimaru et al. 2011). It has been speculated that similar

transporters might be responsible for the secretion of antimicrobial compounds into

the soil. A crucial root exudation process that has been shown to be mediated by

MATE proteins is the release of citrate into the rhizosphere (Furukawa et al. 2007;

Fujii et al. 2012; Magalhaes et al. 2007; Liu et al. 2009; Maron et al. 2010). Since

citrate is a carbon source for many microorganisms, this exudation may have a vital

impact on microbial soil communities. However, to our knowledge, no evidence

has been provided for an implementation of MATE transport proteins in direct or

indirect belowground plant defence.

Taken together, active transport systems largely influence the composition of

root exudates and can dynamically adjust the quality and quantity of certain

phytochemicals in response to changes in microbial rhizosphere communities.
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Identification and investigation of transporter proteins implemented in regulated

rhizosecretion processes are fundamental to understand belowground direct and

indirect plant defence.

4.4 One Phytochemical- Additive Defence Functions

In the previous sections, we demonstrated that the release of defence-related root

exudates is inducible, how this induction can be elicited, and that regulated secre-

tion is mediated on the molecular level by transport proteins. In this section, we will

highlight that single root exudates can target multiple rhizosphere organisms and

may elicit dissimilar responses. Belowground plant defence becomes highly effi-

cient if different exudate bioactivities are appropriately fine-tuned to allow an

opposite effect on plant mutualists and antagonists.

Some root-secreted defence compounds affect a highly specific spectrum of

rhizosphere organisms. For instance, the legume root-exudate canavanine exhibits

cytotoxic properties against many soil bacteria but initiates the detoxification

machinery of rhizobia, accounting for their resistance to canavanine (Cai

et al. 2009). In Arabidopsis, resistance to Phytophthora capsici relies on the

production of the antimicrobial camalexin (Wang et al. 2013); however, this

defence compound does not confer resistance to the oomycetes pathogen

Phytophthora cinnamomi (Rookes et al. 2008). Notably, this high target specificity

of root exudates can be partially explained by variations in the tolerance to specific

defence molecules based on the efficiency of active detoxification and efflux

processes between different microbes (Cai et al. 2009; Bouarab et al. 2002).

Other root exudates have a broader recipient spectrum and affect various rhizo-

sphere organisms, including beneficial and pathogenic members (Badri et al. 2013).

This can be exemplified by the different effects of green pea (Pisum sativa) root
exudates on the behavior of beneficial and plant-parasitic nematodes (Hiltpold

et al. 2015). Low concentrations of root exudates induced the loss of mobility and

a state of reversible quiescence in antagonistic nematodes, protecting the roots

against infection. In sharp contrast, the activity and infectiousness of beneficial

entomopathogenic nematodes (EPNs) enhanced markedly under low root-exudate

concentrations. Dual bioactivity in the rhizosphere was also observed for

benzoxazinoids, a class of phytochemicals detected in maize root exudates. Plant-

beneficial Pseudomonas putida was found to be recruited in response to exudation

of a benzoxazinoid metabolite from maize roots during relatively young and

vulnerable growth stages (Neal et al. 2012). The root colonization stimulated

jasmonic acid-dependent defence pathways in maize entailing a beneficial systemic

defence priming in the plant (Neal and Ton 2013). Conversely, benzoxazinoids

were previously shown to exert antimicrobial and insecticidal activities and func-

tion in direct above- and belowground plant defence against pests and diseases

(Niemeyer 2009; Park et al. 2004; Ahmad et al. 2011). Hence, released

benzoxazinoids provide coupled profitable service for the plant by attracting
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beneficial microbes (indirect plant defence) and repelling pathogenic organisms in

the maize rhizosphere (direct plant defence). Similarly, dimethyl disulfide emitted

from cabbage (Brassica napus) roots invested by the cabbage root fly Delia
radicum showed multiple defence bioactivities, the inhibition of oviposition by

cabbage root fly females and the attraction of natural enemies of D. radicum (Ferry

et al. 2007, 2009). In summary, root exudates with directed dual functions that

complement each other enhance the efficiency of belowground plant protection by

broadening the spectrum of defence modes and lowering carbon costs for the plant.

5 Summary

Interactions between plants and other organisms are as fascinating as they are

complex. Plants can, for instance, communicate with arbuscular mycorrhizal

fungi to initiate a mutually beneficial symbiosis. However, not all organisms that

plants are exposed to have neutral or even advantageous impacts. Negative inter-

actions and defence strategies against antagonistic organisms are an intensively

investigated field of biology. Previously, researchers focused on interactions and

processes that appear in the visible, more easily accessible half of the plant, the

aerial part. However, since tremendous yield losses are caused by root feeding and

infection, it is equally crucial to study plant defence mechanisms belowground.

Root exudates in the rhizosphere serve as chemical mediators of positive inter-

actions between plants and soilborne organisms and as defence compounds in

negative interactions. During plant attack root exudates are engaged in two types

of defence traits, the direct and the indirect defence. Root exudates with direct

defence properties act repelling, inhibiting, or killing on plant aggressors such as

pathogens and feeders. In contrast, root exudates incorporated in indirect plant

defence initiate the interaction with beneficial organisms that counteract aggressors.

The chemical nature and mode of action of various compounds involved in direct

and indirect defence have been progressively elucidated in the past years. Interest-

ingly, several compounds were found to exhibit multiple bioactivities in the rhizo-

sphere and influence organisms differently. In other words, a single phytochemical

might act synergistically in direct and indirect plant defence. Nevertheless, another

compound might recruit beneficial and detrimental organisms. Therefore, it is of

importance to carefully assess the targets and effects of root exudates on

multitrophic levels. In addition to the discovery of various root-secreted defence

compounds and their role in the rhizosphere, the understanding of the stimulation

and regulation of root exudation has advanced dramatically. Root exudation is a

dynamic and bidirectional process: root exudates shape the soil inhabitants and

rhizosphere members modulate the root-exudate ensemble. Besides the presence of

soilborne organisms, several other exogenous as well as endogenous factors can

rapidly and precisely adjust the nature of root-secreted phytochemicals. On the

molecular level, transporter proteins have been shown to modulate rhizosecretion

processes in a complex manner that goes beyond a role as pure substrate carriers.
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Consequently, also the stimuli and regulatory mechanisms that modify the quality

and quantity of the root-exudate cocktail require thorough investigation.

Taken together, root exudates impact the rhizosphere inhabitants markedly.

Accordingly, they are a powerful tool that can be exploited to enhance natural

defence properties of plants. Deepening our knowledge of the targets and effects of

root exudates, as well as the regulation of root secretion processes, will unravel the

path for more efficient disease management in the rhizosphere.
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Belowground Defence Strategies Against

Fusarium oxysporum

Louise F. Thatcher, Brendan N. Kidd, and Kemal Kazan

Abstract The root-infecting pathogen Fusarium oxysporum (causative agent of

the Fusarium wilt disease) causes widespread losses in many plant species, includ-

ing important crop plants such as cotton, melons, bananas and tomatoes; many

legume species such as chickpeas, peas, lentils and Medicago; and various tree

species such as palms. The spores of this pathogen survive in soil for long periods;

thus, it is notoriously difficult to eradicate following soil contamination. The

pathogen enters into the compatible plants through root tips and lateral root initials,

initially invading the cortex tissue. It then gradually moves through the xylem tissue

to the upper part of the plant. In addition to the secretion of effectors (e.g. toxins)

into the plant cell, the infection by this pathogen can lead to the deposition of plant

defence substances such as gums and tyloses in the xylem, which then blocks the

water and solute transport to the upper parts of the plant. This leads to wilting,

discolouration of xylem, followed by senescence and infection-associated necrotic

symptom development in the leaves of infected plants. A number of other devel-

opmental changes can also be observed in pathogen-infected plants. Here we

describe F. oxysporum–host interactions, highlighting recent updates on pathogen

infection strategies and host resistance mechanisms.

1 Introduction

Fusarium oxysporum strains that are specialised on specific host plants are classi-

fied into formae speciales (ff. spp.) (singular forma specialis, abbr. f. sp.), such as

Fusarium oxysporum f. sp. asparagi (asparagus); f. sp. cubense (banana); f. sp.
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dianthi (carnation); f. sp. lycopersici (tomato); f. sp. melonis (melon); f. sp. niveum
(watermelon); f. sp. pisi (pea); f. sp. zingiberi (ginger); f. sp. vasinfectum (cotton);

f. sp. medicaginis (Medicago); f. sp. ciceris (chickpea); f. sp. citri (orange); f. sp.
cucumerinum (cucumber) and f. sp. conglutinans (canola and Brassica crops).

While most of the above cause vascular wilts, not all formae speciales are primarily

vascular pathogens, but cause foot, root rot, crown or bulb rots such as

F. oxysporum f. sp. radicis-lycopersici (Agrios 2005).
Fusarium wilts are most destructive under warm conditions and thus particularly

to horticultural production in greenhouses or in tropical climates. For example,

Fusarium oxysporum f. sp. cubense (Foc) causes Panama disease on banana.

Bananas are the world’s most popular fruit (FAO: www.fao.org) and have an

estimated value of $44 billion globally (Ploetz 2015). In the 1950s the race 1 strain

of Foc wiped out almost all banana production in South America and subsequently

spread to other banana-growing regions of the world. Due to their susceptibility to

Foc, the commercial Gros Michel banana cultivars were replaced by race

1-resistant Cavendish cultivars. However, the Cavendish variety is now under

threat by Foc TR4 (tropical race 4) (reviewed by Ploetz 2015). Also of major

concern is F. oxysporum f. sp. ciceris, which is a major pathogen of chickpea, the

second most important legume crop worldwide with countries of tropical/sub-

tropical South Asia by far the largest producers (FAO: www.fao.org). Typically

this chickpea pathogen causes yield losses of 10–15%, but complete loss can occur

under conducive conditions (Trapero-Casas and Jiménez-Dı́az 1985; Abera

et al. 2011; Sharma et al. 2014).

2 Disease Symptoms and Pathogen Movement

F. oxysporum causes a number of symptoms depending on plant species, but

common symptoms include leaf vein clearing, epinasty, wilting, stunting,

yellowing of older leaves, browning of vascular tissue, necrosis and plant death

(Agrios 2005). Its saprophytic ability enables it to survive in the soil between crop

cycles in infected plant debris. The fungus can survive either as mycelium or as

asexual spores: microconidia, macroconidia and chlamydospores (Agrios 2005). To

initiate its life cycle (Fig. 1), the pathogen often directly infects the plants by

entering through root tips, wounds or natural openings at lateral root initials. The

pathogen then invades the root cortex first and then the xylem tissue, potentially

blocking water movement leading to the appearance of wilting. The fungus will

stay in xylem vessels (and some surrounding cells) as long as the plant is alive and

move to other cells when the plant is dead so it can sporulate at or near the plant

surface (Agrios 2005). The fungus sporulates on the dead tissue where these spores

can initiate new infection cycles. The pathogen often spreads within short distances

through irrigation water and through the use of contaminated equipment. It is also

possible for the fungus to spread over long distances through infected plant material

or contaminated soil. Therefore, hygiene (disinfection of planting materials/
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equipment) and quarantine measures (e.g. inhibiting the transfer of infected plant

and soil material from one region to another) can be effective to stop the disease

spreading although it is often quite difficult to eradicate the fungus from the soil as

its chlamydospores can survive there for decades. To manage this disease, the use

Fig. 1 F. oxysporum life cycle. Shown is a schematic of F. oxysporum life cycle as represented by

F. oxysporum strain Fo5176 infecting wild-type Arabidopsis (Col-0)
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of resistant cultivar crop rotation with non-host plants is often recommended

(Agrios 2005).

3 Pathogen Infection Strategies

Pathogenic and non-pathogenic strains of F. oxysporum exist, both of which

colonise host roots albeit to different degrees depending on the host but with initial

root penetration favoured through wounds or at natural openings at the base of

lateral root initials (Beckman 1987; Gordon and Martyn 1997; Recorbet et al. 2003;

Michielse and Rep 2009; Kidd et al. 2011; Ma 2014; Perez-Nadales et al. 2014).

Pathogenic strains have evolved to overcome host defence and cause disease. In

such infected plants, wilting and eventual death occur largely as a result of water

stress caused by proliferating spore and hyphae clogging the xylem vessels of roots

and the stem and the action of secreted fungal proteins and toxins potentially

blocking water movement and enhancing the appearance of wilting. The secreted

molecules can differentially affect leaf and root tissues. For example, in roots toxins

can initiate excessive division of parenchyma cells that encompass the xylem

resulting in the collapse of xylem vessels or restricting their water flow, while the

movement of toxins to leaves can affect chlorophyll synthesis (Di Pietro et al. 2003;

Agrios 2005; Czymmek et al. 2007; Ramı́rez-Suero et al. 2010; Perez-Nadales

et al. 2014; Li et al. 2015; Wang et al. 2015).

3.1 Pathogen Versus Non-pathogen

The ability of both pathogenic and non-pathogenic isolates to colonialise and

penetrate the roots of hosts and non-hosts (Olivain et al. 2006; Ma 2014) suggests

following colonisation plants adequately defend themselves against most

F. oxysporum isolates, likely due to their recognition of conserved fungal molecules

called microbe-associated molecular patterns (MAMPs) (also known as pathogen-

associated molecular patterns (PAMPs) as they are present in pathogens). These

include molecules such as chitin and β-glucan. PAMPs are typically recognised at

the plant cell surface by membrane-bound receptor kinases and receptor-like pro-

teins called pattern recognition receptors (PRRs) and induce PAMP-triggered

immunity (PTI). PTI can also be triggered by host-derived products of infection

called damage-associated molecular patterns (DAMPs) (e.g. plant cell wall frag-

ments). Non-pathogenic F. oxysporum isolates would be recognised by these

receptors; however, some isolates have become pathogenic by producing host-

specific effectors that suppress or overcome PTI resulting in effector-triggered

susceptibility (ETS). These effectors may mask MAMPs, manipulate host cell

physiology or modify, inhibit or remove host immune response targets. Although

an increasing list of candidate F. oxysporum effectors have been identified,
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relatively few F. oxysporum effectors have been functionally characterised. These

are discussed in detail in further sections. Under selective pressure, plants have

evolved receptors (resistance (R) proteins) to recognise specific effectors

(avirulence (Avr) gene products) and mount resistance in a process termed

effector-triggered immunity (ETI). ETI only occurs when specific F. oxysporum
f. sp. isolates, known as races, express Avr products recognised by the

corresponding host receptor, and unlike a classical ETI response of hypersensitive

cell death to biotrophic pathogens, ETI in known F. oxysporum Avr–R-gene
responses results in callose deposition, the vascular accumulation of phenolics,

tyloses and gels (Takken and Rep 2010; De Coninck et al. 2015). See recent reviews

for overviews of PTI and ETI triggered against plant–fungal pathogens (Win

et al. 2012; van Schie and Takken 2014; Lo Presti et al. 2015).

3.2 Origins of Pathogenicity

3.2.1 Evolution of Pathogenicity

As stated above, pathogenic strains of F. oxysporum are classified into formae
speciales (ff. spp.) based on the host species they cause disease on. For example,

F. oxysporum f. sp. lycopersici (Fol) causes disease on tomato (Solanum
lycopersicum) but no other plant species. While it was assumed isolates of a f. sp.

arose through descent from a monophyletic origin, it has been demonstrated for

some that this is not the case and that their genetic heterogeneity is polyphyletic in

origin (Gordon and Martyn 1997; O’Donnell et al. 1998; Michielse and Rep 2009).

That is, pathogenicity on a specific host may have arisen independently several

times.

The polyphyletic origins of host specificity observed in some f. sp. can be

explained by the recent demonstration of whole chromosome horizontal transfer.

Experimentally it was shown a so-called pathogenicity chromosome containing

most known effectors from a virulent Fol isolate was transferred to a

non-pathogenic isolate, conferring its virulence on tomato (Ma et al. 2010).

While horizontal gene transfer (HGT) has been demonstrated amongst many

fungi, this was one the first demonstrations of whole chromosome transfer confer-

ring host-specific pathogenicity. This pathogenicity chromosome could also trans-

fer to another f. sp. (melonis); however, virulence of this isolate on tomato was not

conferred suggesting other genetic content defines disease-causing host specificity.

3.2.2 Genomic Organisation of Pathogenicity Components

The sequencing of F. oxysporum genomes and their comparative analysis amongst

ff. spp. and other fusaria has allowed identification of chromosomes and gene

content geared towards pathogenicity. For example, the 15 chromosomes of the
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reference F. oxysporum genome (Fol race 2 isolate 4287) can be divided into “core”
and “lineage specific” (Ma et al. 2010). Core chromosomes are conserved across

fusaria and contain genes required for normal growth and metabolism, while

lineage-specific chromosomes are absent or poorly conserved across fusaria or

other fungi and lack house-keeping genes. For this reason, the latter chromosomes

are also often referred to as “conditionally dispensable” or “accessory”.

The lineage-specific chromosomes of Fol refer to chromosomes 3, 6, 14 and

15 and telomere-proximal parts of chromosomes 1 and 2. These chromosomes are

enriched in rapidly evolving genes and in transposable elements (TEs), remarkably

accounting for nearly 75% of all TEs in the Fol genome with Chr 14 comprised of

87% TEs (Ma et al. 2010; Schmidt et al. 2013; Sperschneider et al. 2015). Further,

only 20% of genes on these chromosomes can be functionally classified and are

enriched for genes related to pathogenicity such as known and putative effectors,

fungal transcription factors and genes with roles in signal transduction and second-

ary metabolism.

The smaller lineage-specific chromosome 14 is referred to as the “pathogenic-

ity” chromosome as it contains the majority of known Fol in planta expressed

effectors and its horizontal transfer of pathogenicity to a non-pathogenic isolate

(Michielse et al. 2009a; Ma et al. 2010; de Sain and Rep 2015). Interestingly, the

most virulent of the newly created pathogenic isolates following HGT also

contained additional parts of the lineage-specific chromosomes 3 and

6 (Ma et al. 2010). Loss of pathogenicity or virulence is also associated with the

spontaneous loss of all or parts of Fol Chr 14 (Rep et al. 2004, 2015). This gain and
loss of genetic material are likely associated with the enrichment of transposable

and/or repetitive elements on the lineage-specific chromosomes surrounding effec-

tors and other pathogenicity-related genes (Ma et al. 2010; Schmidt et al. 2013).

The impact of transposable element activity combined with horizontal gene/chro-

mosome transfer may facilitate the rapid modification of genetic material and

ability for F. oxysporum to cause disease on so many diverse hosts.

With the advent of short-read sequencing technology, the list of available

F. oxysporum genomes is increasing at a solid rate and covers ff. spp. causing

disease over a range of economically important crops such as banana, brassicas,

melons, cotton and legumes (Table 1). This not only facilitates the prediction of

effectors and other pathogenicity components but also enables genome-wide ana-

lyses and comparative studies. For example, it was suggested the Fol (4287)

effector Avr3 and its homologous pseudogene may undergo accelerated evolution

(Rep 2005). Unbiased whole-genome comparative analysis of diversifying selec-

tion between Fol 4287 and another f. sp., conglutinans Fo5176, indeed identified

Avr3, as well as other candidate effectors, as undergoing diversifying selection

(Sperschneider et al. 2015). Even small modifications in avirulence proteins can

affect their recognition by host receptors (e.g. a single amino acid change in Fol
SIX3 (Avr2) confers a loss of recognition by the host receptor I-2 (Immunity-2), but

interestingly does not affect its virulence phenotype (Houterman et al. 2009)).

Comparative genomic analysis of ff. spp. pathogenic to three different legume

species enabled the discovery of several effector candidates and a previously
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unrecognised gene region specifically conserved amongst legume-infecting isolates

(Williams et al. 2016). These types of analyses expedite the identification of

effectors responsible for inciting disease on specific hosts, an area of research

that will hopefully identify the genetic determinants for classifying an isolate into

a f. sp.

3.3 Pathogenicity Machinery

To invade and initiate disease on a host, pathogenic F. oxysporum secrete an arsenal

of enzymes, toxins, secondary metabolites and effectors. Effectors suppress or

overcome PTI to induce host susceptibility, and while typically classified as host

specific, a broader definition of effectors includes many molecules such as toxins

(e.g. fusaric acid), degradative enzymes and even PAMPs/MAMPs (Hogenhout

et al. 2009; Stergiopoulos and de Wit 2009; Dong et al. 2014; Pusztahelyi

et al. 2015). This is supported by the finding that genes encoding some of the latter

molecules are induced upon plant contact. Large-scale fungal mutagenesis and

xylem sap proteomics facilitated the initial discovery of F. oxysporum effectors

and pathogenicity-related proteins, but more recently comparative genomics and

high-coverage in planta transcriptome sequencing (RNA-seq) have increased the

rate of candidate effector identification across ff. spp. The rate-limiting step here is

still functional characterisation which is best studied in knockout and mutant lines.

3.3.1 General Pathogenicity Machinery

Like other pathogenic plant–fungal pathogens, the genomes of F. oxysporum
ff. spp. are enriched in genes encoding plant cell wall-degrading enzymes

(CWDEs) (Ma et al. 2010; Zhao et al. 2013; Williams et al. 2016) and are known

to secrete these enzymes during host colonisation (Beckman 1987; Roncero

et al. 2003). These include polygalacturonases, pectate lyases, xylanases and pro-

teases and act by degrading cell walls and membranes, releasing nutrient sources

such as sugars (Yadeta and Thomma 2013). While these enzymes play key roles in

pathogenicity, are expressed during infection and likely contribute to virulence,

individual gene knockouts have failed to produce altered disease phenotypes, which

is expected in multi-gene families like these where functional redundancy may exist

(Di Pietro et al. 2003; Recorbet et al. 2003; McFadden et al. 2006; Guo et al. 2014;

Kubicek et al. 2014). Functional analysis therefore requires the generation of at

least double deletions, for example, as shown in a Fol polygalacturonase and

endopolygalacturonase double mutant (Δpg1Δpgx6) which exhibited reduced vir-

ulence on tomato (Ruiz et al. 2015).

Two other classes of secreted effector proteins found in F. oxysporum are the

necrosis and ethylene-inducing-like proteins (NLPs) and lysine motifs (LysMs).

Nep1 was first identified in F. oxysporum culture filtrates, but NLPs are present in
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other fungi as well as oomycetes and even bacteria (Bailey 1995; Pemberton and

Salmond 2004; Bae et al. 2006; B€ohm et al. 2014; Oome et al. 2014). LysM

effectors contain the LysM carbohydrate-binding domain that mediates recogni-

tion of fungal chitin, an essential component of the fungal cell wall, and is found

in some membrane-localised plant receptors (Gust et al. 2012; Kombrink and

Thomma 2013). It is proposed that LysM effectors (most well characterised in

Cladosporium fulvum and Verticillium pathogens) contribute to virulence through

mechanisms such as suppression of chitin-triggered PTI. For example, by

protecting fungal hyphae from hydrolytic plant enzymes or to scavenge hydro-

lytically derived chitin oligomers produced during invasion and subsequently

avoid or delay host detection (Kombrink and Thomma 2013). Further, knockouts

in several Fol chitin synthase genes are associated with a loss of pathogenicity

phenotype or reduced virulence (reviewed in Michielse and Rep 2009). Fol also
produces enzymes that neutralise host-produced chitinases that bind chitin. A

recent study identified a secreted metalloprotease and a serine protease that were

responsible for the cleavage of chitinases. When the genes encoding these

enzymes were deleted, the mutant showed reduced virulence against tomato,

suggesting that these enzymes are important for fungal virulence (Karimi Jashni

et al. 2015). Although not functionally characterised in F. oxysporum, LysM
domain-containing proteins are present in most if not all ff. spp. (Thatcher

unpublished) with some expressed in planta (Williams et al. 2016). As effectors

are often defined by the absence of detectable orthologous proteins outside the

genus, the wide distribution of NLPs and LysMs suggests these are best desig-

nated as PAMPs (Thomma et al. 2011).

Other F. oxysporum proteins found to be secreted during infection include a

catalase-peroxidase, a serine protease and the oxidoreductase Orx1 which is a

homologue of the Ave1 avirulence protein from Verticillium dahliae. These pro-

teins were detected in the xylem sap of Fol-infected tomato plants, suggesting they

are important for infection (Houterman et al. 2007; Schmidt et al. 2013). Some

enzymes such as catalase-peroxidase, galactosidase and chitinase might also con-

tribute to the strong virulence of Foc TR4 (Sun et al. 2014).

3.3.2 F. oxysporum Signal Transduction Machinery Involved

in Pathogen Virulence

Signalling processes and the coordinated control of F. oxysporum pathogenicity

machinery have been shown in several cases to be critical for host colonisation,

penetration or virulence. Components of signal transduction such as kinases and

transcription factors are expressed during host infection, and in several cases, their

targeted gene knockouts show reduced pathogenicity (Guo et al. 2014; Michielse

et al. 2009a, b). For example, mutants of G-protein-coupled receptor subunits α
(FGA1, FGA2) and β (FGB1) are impaired in or have lost pathogenicity in Fol and
F. oxysporum f. sp. cucumerinum (Jain et al. 2002, 2003, 2005). Mutants of the Fol
mitogen-activated protein kinase (MAPK) genes FMK1 and SNF1 (Di Pietro
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et al. 2001; Michielse et al. 2009b) are impaired in root penetration and pathoge-

nicity (see reviews by Di Pietro et al. 2003; Michielse and Rep 2009). The

constitutively expressed Fol F-box gene FRP1 may function in SCF-mediated

ubiquitination processes and is required for pathogenicity as knockouts are

non-pathogenic and unable to colonise roots (Duyvesteijn et al. 2005; Jonkers

and Rep 2009).

Several transcription factors with roles in pathogenicity have been functionally

characterised. For example, a knockout of the zinc finger XlnR is severely impaired

in extracellular xylanase activity (Calero-Nieto et al. 2007). The transcription factor

gene FOW2 encoding a Zn(II)2Cys6 family transcriptional regulator appears con-

served amongst F. oxysporum ff. spp. and in Fol, and F. oxysporum f. sp. melonis is
required for colonisation and pathogenicity (Imazaki et al. 2007; Michielse

et al. 2009b). And another transcription factor (SGE1, SIX gene expression 1) is

not required for root colonisation or penetration, but is essential for pathogenicity in

Fol where its expression is upregulated during infection of tomato roots and is

required for expression of most secreted Fol effectors as discussed in the following
section (Michielse et al. 2009a).

3.3.3 Effectors

While general machinery necessary for host colonisation tends to be expressed

constitutively, genes necessary for pathogenicity and virulence are typically only

expressed upon plant contact (lowly or not expressed under axenic conditions) (Rep

2005). The most well-characterised effectors from F. oxysporum belong to a class

termed the secreted in xylem or SIX effectors, first identified in the xylem sap

proteome of tomato plants infected with Fol, with roles in virulence and/or

avirulence determined for some depending on the host genotype (Rep et al. 2004,

2005; Houterman et al. 2007; de Sain and Rep 2015). So far, 14 families of SIX

proteins have been identified (Rep et al. 2004; Houterman et al. 2007; van der Does

and Rep 2007; Lievens et al. 2009; Ma et al. 2010; Rep and Kistler 2010; Schmidt

et al. 2013), and these are typically only found in F. oxysporum isolates, although

some, such as SIX6, are present in other fungi such as Colletotrichum species

(Gawehns et al. 2014). The SIX effectors were originally thought to be unique to

Fol but have since been identified in several F. oxysporum ff. spp. with some

sharing high levels of sequence identity (Lievens et al. 2009; Meldrum

et al. 2012; Thatcher et al. 2012a; Laurence et al. 2015; Schmidt et al. 2016). For

example, the Arabidopsis infecting isolate Fo5176 contains a highly conserved

SIX4 homologue, only differing from the Fol SIX4 by two amino acids (Thatcher

et al. 2012a). Interestingly, in the tomato pathosystem, Fol SIX4 (Avr1) is not

required for general virulence but acts by suppressing ETI mediated by two

resistance genes (immunity-2 (I-2) and immunity-3 (I-3)), whereas in Arabidopsis
lacking immunity resistance genes, Fo5176 SIX4 is required for full virulence (Rep

et al. 2005; Houterman et al. 2008; Thatcher et al. 2012a). Fol SIX4 (Avr1), as well
as Fol SIX6, can also suppress cell death triggered by I-2 (Gawehns et al. 2014).
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Similar to most known fungal effectors, SIX proteins are small and generally

cysteine rich and most contain a signal peptide for secretion (Houterman

et al. 2007; Schmidt et al. 2013), but apart from these characteristics, they share

little similarity with each other and other known fungal proteins (Rep 2005).

Secreted into apoplast or xylem, the cysteine-rich nature of these extracellular

proteins creates disulphide bridges that stabilises the protein against protease

degradation (Takken and Rep 2010). The majority of Fol SIX genes reside on

pathogenicity Chr 14 or in some cases on other dispensable chromosomes and are

located within transposon-rich regions often associated with miniature transposable

elements (MITE) present in their promoters (Ma et al. 2010; Schmidt et al. 2013).

Some are even co-located at the same loci and share common promoters (e.g. SIX3

(Avr2) and SIX5) and may also physically interact with each other at the protein

level (Schmidt et al. 2013; Ma et al. 2015).

For most SIX effectors, their expression requires the core-chromosome-encoded

transcription factor Sge1 (SIX gene expression 1) (Michielse et al. 2009a). The

expression profiles of SIX genes from other F. oxysporum ff. spp. confirm that most

are either highly in planta inducible or only expressed in planta (McFadden

et al. 2006; van der Does et al. 2008; Thatcher et al. 2012a; Gawehns et al. 2014;

Guo et al. 2014; Williams et al. 2016). In planta gene expression has also been used
in other F. oxysporum ff. spp. to identify putative effectors (e.g. f. sp. cubense, f. sp.
vasinfectum, f. sp. medicaginis (McFadden et al. 2006; Guo et al. 2014; Williams

et al. 2016)), and the associated presence of MITEs helped identify the

F. oxysporum f. sp. melonis avirulence protein AvrFOM2 that is recognised by

the melon resistance gene Fom-2 (Schmidt et al. 2016).

4 Host Resistance

The genetic and molecular F. oxysporum–plant interaction is best understood in the
tomato pathosystem where R-gene resistance is available (Takken and Rep 2010),

with other model pathosystems in Arabidopsis thaliana and Medicago truncatula
also studied (Diener and Ausubel 2005; Lichtenzveig et al. 2006; Berrocal-Lobo

and Molina 2008; Ramı́rez-Suero et al. 2010; Lyons et al. 2015a; Rispail

et al. 2015). The following sections will discuss the findings from studying host

resistance to F. oxysporum.

4.1 Transcriptome Studies

Plant responses to F. oxysporum infection have been studied using genome-wide

expression profiling using microarray and RNA-seq analyses (see Table 2 for

examples). Most of the earlier efforts investigated defence responses occurring in

the leaves. A recent study that comparatively analysed defence responses triggered
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Table 2 Recent transcriptome, metabolome and proteome studies analysing F. oxysporum
infection

Fo–plant interaction
Tissue

type Technique Reference

Fo5176—

Arabidopsis
Roots

and

shoots

Transcriptome

(RNA-seq)

Lyons et al. (2015a)

Fo5176—

Arabidopsis
Roots

and

shoots

Transcriptome

(RNA-seq)

Lyons et al. (2015b)

Fo5176—

Arabidopsis
Root Transcriptome

(Agilent

GeneChip)

Chen et al. (2014a)

Fo5176—

Arabidopsis
Seedlings Transcriptome

(RNA-seq)

Zhu et al. (2013)

Fo5176 SIX4
overexpression—

Arabidopsis

Root Transcriptome

(Affy array)

Thatcher et al. (2012a) and this publica-

tion, microarray data deposited at NCBI

under accession number GSE75928

F. oxysporum f. sp.

phaseoli—bean

Seedlings Transcriptome

(cDNA-AFLP)

Xue et al. (2015a)

F. oxysporum f. sp.

ciceris—chickpea

Root Metabolome Kumar et al. (2015)

F. oxysporum f. sp.

ciceris—chickpea

Root Proteome Chatterjee et al. (2014)

F. oxysporum f. sp.

pisi—pea

Root Proteome Castillejo et al. (2015)

F. oxysporum f. sp.

cubense TR4—
banana

Root Transcriptome Li et al. (2012)

F. oxysporum f. sp.

cubense TR1 and

TR4—banana

Root Transcriptome Li et al. (2013a)

F. oxysporum f. sp.

cubense TR4—
banana

Root Transcriptome Wang et al. (2012)

F. oxysporum f. sp.

cubense TR4—
banana

Root Transcriptome Bai et al. (2013)

F. oxysporum f. sp.

cubense—banana

Root Proteome Sun et al. (2014)

F. oxysporum f. sp.

cubense TR4—
banana

Root Proteome Li et al. (2013b)

F. oxysporum f. sp.

radicis-lycopersici—
tomato

Root Proteome Mazzeo et al. (2014)
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by Fusarium infection revealed that the infection triggers expression from separate

classes of defence-associated genes in the roots and shoots (leaves or rosettes),

suggesting that different physiological and defence-associated processes might be

operational in these tissues (Lyons et al. 2015a). Plant development and flowering

time seem to have a major effect on F. oxysporum disease symptom expression. It

was shown recently that diverse Arabidopsis ecotypes and various mutants affected

in flowering time also show altered disease development (Lyons et al. 2015b). In

particular, late flowering time is associated with increased disease resistance. It was

speculated that delayed senescence as a result of late flowering could be a reason

explaining this delay in disease progression.

Other studies (Table 2) have compared differentially expressed genes

between resistant and susceptible genotypes to determine what makes the plant

resistant or susceptible to infection. For instance, Xue et al. (2015a) recently

compared resistant and susceptible bean plants, while Bai et al. (2013) looked at

resistant and susceptible banana cultivars. As a result, large numbers of genes

corresponding to certain defence categories have been identified. These studies

have certainly provided useful candidates that can be further studied function-

ally, and if their association with disease resistance is confirmed, they may be

useful targets for marker-assisted selection studies. However, it should be

remembered that some of the host genes induced by the pathogen may also

be associated with susceptibility.

Interestingly, a recent study comparing transcriptomes of banana roots inocu-

lated with either race 1 or tropical race 4 shows that both Foc race 1 and Foc TR4
triggered similar gene expression profiles in banana roots, despite their differing

pathogenicity/virulence (Li et al. 2013a). Following F. oxysporum Fo5176 infec-

tion, we have also analysed the root transcriptomes of wild-type Arabidopsis plants
and Arabidopsis overexpressing the Fo5176 SIX4 effector (arrays conducted on root
tissue from Col-0 or 35sSIX4 plants (Thatcher et al. 2012a) 4 days postinoculation,

pathogen infection and microarray analysis conducted as described previously

(Kidd et al. 2009), microarray data deposited at NCBI under accession number

GSE75928). This process identified genes downregulated >1.5-fold in the effector

overexpression plants to be enriched in genes associated with oxidative stress and

wound/defence responses suggesting virulence function of the SIX4 effector is

associated with modifying host-signalling processes.

4.2 Genetics of Host Resistance in Arabidopsis

Analysis of mutants affected in disease resistance against F. oxysporum has iden-

tified a number of genes that regulate resistance or susceptibility in Arabidopsis. So
far a number of transcription factors altering disease resistance to F. oxysporum
have been identified. This has also helped in the development of a model that

explains host susceptibility or resistance. In particular, the SA signalling pathway

seems to be required for increased resistance, while F. oxysporum seems to exploit
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the JA signalling pathway to cause disease. The evidence for this comes from the

observation that Arabidopsis JA signalling mutants such as coi1, myc2 and pft1 but
not JA biosynthesis mutants show increased resistance to F. oxysporum (Anderson

et al. 2004; Thatcher et al. 2009; Kidd et al. 2009). The esr1-1 (enhanced stress

response 1) mutant defective in a KH domain containing RNA-binding protein

(At5g53060) also confers increased resistance to F. oxysporum. Similar to other JA

signalling genes that make Arabidopsis susceptible to F. oxysporum infection,

ESR1 seems to modulate JA responses as well (Thatcher et al. 2015). It is possible

that pathogen-produced JA-like compounds secreted by the pathogen activate the

host’s JA signalling pathway, which then promotes senescence (Thatcher

et al. 2009; Cole et al. 2014). In the banana–Foc interaction, fusaric acid secreted

by Foc also seems to play a role in promoting senescence (Dong et al. 2014).

Transgenic expression of JA-responsive transcription factors such as ethylene

response factors (ERFs) can also positively contribute to disease inhibition by

modulating defence gene expression without promoting senescence. For instance,

overexpression of ERF1 in Arabidopsis increases F. oxysporum resistance by

altering the expression of defence-related genes (Berrocal-Lobo and Molina

2004). Similarly, another Arabidopsis ERF transcription factor, ERF14, is required

for wild-type resistance to F. oxysporum in Arabidopsis as erf14 loss-of-function

mutants show reduced defence gene expression and increased susceptibility to this

pathogen (Onate-Sanchez et al. 2007).

In addition, it was reported that auxin signalling and biosynthesis mutants show

increased susceptibility to F. oxysporum as a number of auxin mutants show altered

F. oxysporum resistance (Kidd et al. 2011). A F. oxysporum strain genetically

modified to produce increased levels of auxin shows hypervirulence (Cohen

et al. 2002), further suggesting that auxin is associated with increased disease.

However, how auxin promotes disease susceptibility is currently unknown. One

possibility is that auxin signalling and transport are required for lateral root

formation and increased lateral root formation may provide a higher number of

infection sites. F. oxysporum is known to infect the plant lateral root initials and

root tips that are also auxin-rich regions. Interestingly a recent study showed that

volatiles produced by F. oxysporum improve plant growth and were dependent on a

functional auxin signalling pathway in Arabidopsis (Bitas et al. 2015) (Table 3).

4.3 Deployment of Resistance Genes and Marker-Based
Selection Approaches

In several crops resistance against specific pathogenic f. sp. or races of

F. oxysporum have been identified enabling researchers to develop molecular

markers that can be used for germplasm-screening purposes (Jimenez-Gasco

et al. 2004; reviewed Michielse and Rep 2009; Sharma et al. 2014; Schmidt

et al. 2016). However, only a handful of the underlying R-genes have been cloned
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(Table 4), the majority of which isolated from tomato are based on monogenetic

resistance conferring classical gene-for-gene-mediated interactions. Plant resis-

tance genes can be divided into two main categories, the leucine-rich repeat

(LRR) and intracellular nucleotide-binding site (NBS)-LRR-containing R proteins,

with the latter mediating recognition of intracellular pathogen-derived signals

(Martin et al. 2003). Some transmembrane LRR proteins also have an intracellular

protein kinase (PK) domain and belong to the larger class of receptor-like protein

kinases (RLKs). The extracellular LRR domain of LRR-TM and LRR-TM-PK

proteins is thought to function as receptors for extracellular pathogen-derived

signals such as conserved pathogen molecules (MAMPs) and damage-associated

molecules.

For some R proteins, their cellular localisation has been determined. For exam-

ple, the cytosolic R-protein I-2 from tomato mainly localises to xylem tissues of

roots, stems and leaves, where it intracellularly perceives the Fol effector SIX3
(Avr2) (Mes et al. 2000; Houterman et al. 2009; Gawehns et al. 2014; Ma

et al. 2015). The tomato I-3 protein is a plasma membrane-bound receptor with a

cytoplasmic kinase domain and an extracellular S-domain (Catanzariti et al. 2015).

Table 3 Arabidopsis genes that regulate resistance or susceptibility to the F. oxysporum strain

Fo5176

Gene Signalling pathway Reference

COI1 Jasmonate Thatcher et al. (2009);

Trusov et al. (2009)

LBD20 Jasmonate Thatcher et al. (2012b)

ERF2 Jasmonate McGrath et al. (2005)

ERF14 Jasmonate/ethylene Onate-Sanchez

et al. (2007)

ERF72 Ethylene/ROS Chen et al. (2014a, b)

MYC2 Jasmonate Anderson et al. (2004)

G proteins, AGB1-1, AGB1-2,

AGG1-1 and AGG1-2

G-protein signalling Trusov et al. (2009)

ABA2–1 ABA Anderson et al. (2004)

AXR1, AXR2, AXR3, AXR4,

SGT1B, AUX1, PIN2 and BIG

Auxin signalling and

transport

Kidd et al. (2011)

PFT1 Jasmonate Kidd et al. (2009)

MED8 Defence and development Kidd et al. (2009)

ESR1 Jasmonate Thatcher et al. (2015)

Gigantea Circadian Lyons et al. (2015b)

ARF2 Auxin signalling Lyons et al. (2015a)

PRX33 ROS production Lyons et al. (2015a)

ATAF2 Negative regulator of

defence gene expression

Delessert et al. (2005)

RBOHD and RBOHF ROS production Zhu et al. (2013)

See Swarupa et al. (2014) for additional genes that regulate resistance to other Arabidopsis-
infecting F. oxysporum strains
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Interestingly, I-3 gene expression is higher in leaf tissues compared to root or stem

tissues where initial stages of Fol infection take place. Like I-3, I-7 also contains an
extracellular recognition domain suggesting SIX1 (Avr3) and Avr7 are recognised

at the cell surface and may not be taken up by host plant cells (Catanzariti

et al. 2015; Gonzalez-Cendales et al. 2015).

In the Arabidopsis pathosystem, several resistance loci have been identified

using various f. sp. such as f. sp. conglutinans, f. sp. raphani and f. sp. matthioli

Table 4 Summary of cloned or well-characterised F. oxysporum resistance genes

Plant

Gene/

loci

Resistance

against Protein description

Effector

recognition Reference

Tomato I Fol race 1 – SIX4

(Avr1)

Bohn and

Tucker (1939);

Houterman

et al. (2008)

I-1 – SIX4

(Avr1)

Sarfatti

et al. (1991);

Houterman

et al. (2008)

I-2 Fol race 2 CC-NBS-LRR SIX3

(Avr2)

Simons

et al. (1998);

Houterman

et al. (2009)

I-3 Fol race 3 S-receptor-like

kinase (SRLK)

SIX1

(Avr3)

Rep

et al. (2004);

Catanzariti

et al. (2015)

I-7 Fol race 3 Membrane-anchored

LRR-receptor-like

protein (RLP)

– Gonzalez-

Cendales

et al. (2015)

Melon Fom-1 Toll/interleukin-1

receptor (TIR)–NB-

LRR

Brotman

et al. (2013)

Fom-2 NB-LRR AvrFOM2 Joobeur

et al. (2004);

Schmidt

et al. (2016)

Arabidopsis RFO1 f. sp.

conglutinans,
raphani and
matthioli

At1g79670

WALL-ASSOCI-

ATED KINASE-

LIKE KINASE

22 (WAKL22)

Diener and

Ausubel (2005)

RFO2 f. sp.

matthioli
Extracellular RLP,

At1g17250

Shen and

Diener (2013)

RFO3 f. sp.

matthioli
S-receptor-like

kinase (SRLK)

Cole and

Diener (2013)

RFO7 f. sp.

conglutinans
race 1

Diener (2013)
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(Diener and Ausubel 2005). Crosses between the F. oxysporum f. sp. matthioli-
resistant Col-0 ecotype and the susceptible Ty-0 ecotype identified six resistance

loci (RFO1–6) with RFO1 the largest contributor to resistance encoding a WALL-

ASSOCIATED KINASE-LIKE KINASE (WAKL22) that provides resistance to

three isolates of F. oxysporum (Diener and Ausubel 2005), while RFO2 and RFO3

encode a receptor-like protein and a receptor-like kinase, respectively, which have

undergone duplication in the parent ecotypes (Cole and Diener 2013; Shen and

Diener 2013). Identification of RFO2 also leads to a role for tyrosine-sulphated

peptide signalling in the F. oxysporum interaction (Shen and Diener 2013). There-

fore the identification and characterisation of R-genes effective against

F. oxysporum provide an opportunity to understand effective resistance strategies

against this pathogen. Transcriptome analysis of F. oxysporum infected

Arabidopsis also identified significant upregulation of several receptor-associated

genes including a wall-associated kinase-like gene, lectin receptor kinases,

receptor-like protein kinase 1 and TIR-NBS-LRR genes suggesting roles in resis-

tance (Zhu et al. 2013). Using a comparative transcriptome approach between

resistant and susceptible Chinese cabbage (Brassica rapa var. pekinensis), Shimizu

et al. (2014) were also able to narrow a single dominant R-gene down to two

possible candidates encoding TIR-NBS-LRRs.

4.4 Resistance Through the Application of Biological
and Chemical Agents

Given the long-term survival of F. oxysporum in the soil, attention has been given to

treatments that can suppress disease. Silicon addition has been observed to provide

increased tolerance to Foc in banana (Fortunato et al. 2012a, b). While the role that

silicon plays in protecting plants against plant pathogens is debated, a recent study

found that silicon may act by stimulating lignin and products of the

phenylpropanoid pathway in infected banana plants (Fortunato et al. 2014).

Non-pathogenic isolates of F. oxysporum may also be employed to manage

pathogenic isolates of F. oxysporum (Forsyth et al. 2006). For instance incompat-

ible Foc race 1 was used to induce systemic resistance against Foc TR

4 (Wu et al. 2013). This increased resistance state was accompanied by systemic

upregulation of defence-related genes such asMaNPR1A,MaNPR1B, PR1 and PR3
as well as upregulation of SA and JA pathways (Wu et al. 2013). Similar findings

were found with Fo47, a protective strain of Fusarium wilt in tomato (Olivain

et al. 2006). Fo47 reduces the growth of pathogenic F. oxysporum f. sp. lycopersici
isolate Fol8 and induces the expression of defence genes CHI3, GLUA and PR1a in
tomato (Aimé et al. 2013). Understanding the microbiome may also provide

protection against F. oxysporum. Studying the microbial components of disease-

suppressive soils has been a popular area of research (see Ajilogba and Babalola

2013 for research in tomato), and recent reports have focussed on the banana
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rhizosphere given the current global outbreak of TR4 (Huang et al. 2015; Xue

et al. 2015b). A recent analysis of soils suppressive to Fusarium wilt of strawberry

identified members of the Actinobacteria and the identification of a novel antifungal

thiopeptide from one of these bacteria which targeted fungal cell wall biosynthesis

(Cha et al. 2015). While many microbial isolates appear beneficial in suppressing

the disease in particular soil types, so far those identified haven’t been sufficient to

prevent disease occurrence globally, but this is a promising area of research.

4.5 Engineering of Resistance

Given that F. oxysporum infection leads to widespread cell death and necrosis on

the above-ground tissues, genes that play roles in inhibiting apoptosis or cell death

(namely, Bcl-xL, Ced-9) can play a role in disease resistance. Indeed, transgenic

expression of apoptosis-related genes enhanced banana resistance to Foc and is

undergoing field testing (Paul et al. 2011). Transgenic plants expressing a defensive

gene from Nicotiana alata were recently shown to provide a quantitative resistance
to Fusarium oxysporum and Verticillium dahliae in cotton (Gaspar et al. 2014). The
expression of defensin chitinase and/or thaumatin-like genes from other plant

species also shows promise as candidates for increasing Fusarium wilt resistance

in tomato and banana (Abdallah et al. 2010; Ghag et al. 2012; Mahdavi et al. 2012;

Jabeen et al. 2015).

4.6 Host-Induced Gene Silencing

Inhibiting the expression of genes involved in fungal growth and development and

pathogenicity through host-delivered (host-induced) gene silencing seems to be a

promising way to engineer disease resistance against F. oxysporum. In a recent

study, transgenic banana plants expressing hairpin RNA against Velvet and FTF1
genes (Fusarium transcription factor 1) showed complete resistance to Foc in

greenhouse bioassays (Ghag et al. 2014). In Arabidopsis, survival rates of trans-
genic lines expressing dsRNA against three F. oxysporum genes (FOW2, FRP1 and
OPR) were found to be higher than wild-type plants (Hu et al. 2015). FOW2
encodes a Zn(II)2Cys6 TF that is required for the pathogenicity of F. oxysporum
f. sp. melonis (Imazaki et al. 2007), FRP1 encodes an F-box protein involved in

protein ubiquitination, which was also required for F. oxysporum f. sp. lycopersici
pathogenicity, and OPR encodes a 12-oxo-phytodienoate-10-11-reductase-like pro-

tein potentially involved in JA biosynthesis in F. oxysporum (Hu et al. 2015). These

studies show promising results; however, commercialisation of transgenic plants

is dependent on a number of factors including regulatory (no adverse health

and environmental effects), legal (e.g. patenting and licensing issues) as well as

economic and social consideration (consumer acceptance). Therefore, genetic
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modification approaches can be difficult to commercialise under the current climate

but provide potential solutions for combatting F. oxysporum.

5 Conclusion

The ubiquitous and persistent nature of F. oxysporum as well as its ability to evolve

new pathogenic strains makes F. oxysporum a particularly difficult pathogen to

control. Despite this, significant progress has been made in recent years in under-

standing the factors responsible for both virulence in the pathogen and resistance or

susceptibility in the host. Building upon these studies will hopefully lead to the

identification of additional resistance genes that can be implemented in crops where

resistance is lacking. Hopefully, continual research may lead to protection against

the current forms of F. oxysporum but ideally lead to strategies that may protect

against future evolving strains.
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Belowground Defence Strategies Against

Rhizoctonia

Brendan N. Kidd, Kathleen D. DeBoer, Karam B. Singh,

and Jonathan P. Anderson

Abstract Rhizoctonia solani is a species complex of soilborne fungi that are

known for their ability to infect a broad range of plant species. Notoriously, isolates

of R. solani cause bare-patch and sheath blight diseases on wheat and rice, respec-

tively, and therefore jeopardise global production of these two major cereals. One

of the pressing problems in combating R. solani is the lack of strong genetic

resistance despite broad germplasm screening programmes. In order to determine

future approaches for improving resistance, this chapter summarises the current

research into R. solani pathosystems and the types of control strategies that have

been employed to protect plants against this disease. Opportunities and challenges

for improving resistance to this pathogen will also be discussed.

1 Introduction

The genus Rhizoctonia is home to a broad collection of fungi with diverse lifestyles,

ranging from pathogenic, saprophytic to symbiotic organisms. The plant pathogenic

isolates of Rhizoctonia are predominantly classified into the species complex

Rhizoctonia solani K€uhn (teleomorph, Thanatephorus cucumeris (Frank) Donk)

and are the focus of this chapter. R. solani infects over 188 plant species including a
range of economically important crops such as rice, wheat, potato, canola, maize as

well as legumes and ornamentals (Anderson 1982). Most R. solani host–pathogen
interactions are associated with root rot or hypocotyl rot which leads to plant

collapse or severe stunting. However, in some plant interactions, R. solani can
also infect leaves, for example, in rice where it causes rice sheath blight and in

tobacco and soybean where it causes target spot or aerial blight in addition to

causing root and stem rots (Gonzalez et al. 2011; Okubara et al. 2014).

Globally the largest losses due to R. solani infection occur in rice, with rice

sheath blight, the second most devastating disease after rice blast, and under

favourable conditions R. solani can cause up to 50% decrease in rice yields in
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Asia (Lee and Rush 1983; Wang et al. 2013). In potato, yields can be reduced

around 30% by R. solani (Banville 1989; Carling et al. 1989). Whilst in wheat and

barley, R. solani has been known to cause up to $100 million in losses in the state of

Washington in the United States alone, and worldwide losses are considerably

larger (Okubara et al. 2014). In Australia, R. solani average losses of wheat and

barley are approximately Australian $78 million per year, with a potential loss of

Australian $165 million in wheat and Australian $64 million in barley during heavy

disease years (Murray and Brennan 2009, 2010). R. solani can also infect canola,

legume and tobacco crops with losses in canola up to 36% observed in some

Canadian growing regions (Gugel et al. 1987).

The ability of R. solani to infect rice, wheat, potato and even maize, makes it a

potential threat to the production of the world’s major staple crops. Investigation of

Rhizoctonia pathosystems can help minimise the losses to these important crop

species.

2 Fungal Biology and Taxonomy of Rhizoctonia spp.

R. solani belongs to the class Agaricomycetes in the phylum Basidiomycota and is

therefore phylogenetically quite distant from the more well-known ascomycete

fungal pathogens. Moreover, it is also genetically distant from other notable

Basidiomycete pathogens that cause rust and smut diseases. R. solani is predomi-

nantly found in the asexual form, and the sexual stages are rarely seen on plant

hosts. Also, depending on the isolate, the production of basidiospores can be

difficult to induce in vitro (Stretton et al. 1964). As such the identification of

R. solani is primarily based on vegetative characteristics, such as brown colouration

of hyphae, constriction of hyphae at septa, branching of hyphae near the distal

septum of cells in young hyphae, multinucleate cells and dolipore septa (Parmeter

and Whitney 1970). Within the species complex, isolates differ broadly in their

genetics as well as their ability to cause disease on different hosts. Whilst some

R. solani isolates cause disease on a very broad range of host plants (Fig. 1), others

have a very narrow host range with some even forming symbiotic mycorrhizal

associations with orchids (Sneh et al. 1991). To gain a better understanding of the

diversity within this group of fungi, techniques such as hyphal fusion (Parmeter

et al. 1969), DNA sequence comparison (Kuninaga and Yokosawa 1980;

Pannecoucque and Hofte 2009; Broders et al. 2014), host range analysis and

biochemical methods such as pectin zymograms (Sweetingham et al. 1986) have

been used to further characterise the isolates into subgroups.
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2.1 The Classification of R. solani into Anastomosis Groups

One of the most successful methods for classifying R. solani is based on anasto-

mosis groupings (AGs) (Sneh et al. 1991). There are currently 13 R. solani AGs as
well as a bridging group AG-B1 that can anastomose with more than one group;

however, Carling et al. (2002) have suggested that the bridging group AG-B1 may

potentially be grouped into AG2. In addition AGs 1–4, 6, 8 and 9 have been further

classified into subgroupings (Cubeta and Vilgalys 1997). For example, AG1 can be

divided into AG1-IA, AG1-IB, AG1-IC, AG1-ID, AG1-IE and AG1-IF and AG2

into AG2-1, AG2-2-2 IIIB, AG2-2-2 IV, AG2-2-2 LP, AG2-2-3 and AG2-2-4

(Carling et al. 2002). Although there are exceptions to the rule, DNA sequencing

of ribosomal ITS sequences, as well as host range analysis, has generally confirmed

AG groupings demonstrating their usefulness as an inexpensive and simple classi-

fication system (Salazar et al. 2000; Broders et al. 2014).

2.2 Biochemical Classification of R. solani

An alternate method for classifying R. solani, which can assist in differentiating

members of the same anastomosis group, is through the use of pectin zymograms.

Classifying R. solani isolates through pectin zymograms involves running the

soluble fraction of induced pectinases from liquid culture grown R. solani through
an acrylamide gel and analysing the enzyme separation patterns (Sweetingham

et al. 1986). The technique provides an additional characteristic to divide isolates

within anastomosis groupings and can be useful for matching isolates within an AG

to their different host preferences. However, for a thorough identification of new

Fig. 1 The R. solani AG8 isolate WAC10335 is able to cause root or hypocotyl diseases on a

broad range of host plants. (a) Healthy seedling of the model legume, Medicago truncatula,
accession A17. (b) M. truncatula infected with R. solani WAC10335. (c) Healthy narrow leaf

lupin, Lupinus angustifolius, c.v. tanjil. (d) Narrow leaf lupin infected with R. solani WAC10335.

(e) Healthy wheat c.v. Chinese Spring. (f) Chinese Spring infected with R. solani WAC10335
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isolates, a combination of anastomosis reactions, ITS sequencing and host range

verification is preferable.

3 The Infection Process of R. solani

Being a soilborne pathogen, R. solani has the ability to survive for long periods as

sclerotia in soil, and the presence of suitable hosts or plant debris allows R. solani to
extract nutrients in order to maintain its survival. After obtaining nutrients,

R. solani mycelia grows outwards in a circular pattern, and it is these regions of

increased fungal biomass that lead to the characteristic “bare-patch” phenotype.

However, in rice-infecting isolates, a different infection strategy is employed.

Lesions caused by R. solani are often formed at above the water level where hyphae

derived from floating sclerotia form infection structures on the leaf sheath (Banniza

and Holderness 2001). Successful penetration and colonisation of the host tissue

lead to nutrient acquisition which allows continued hyphal growth to infect aerial

leaves (Sivalingam et al. 2006).

Regardless of the tissue type that the isolate prefers, the infection process

broadly follows the following steps: superficial growth to surround the plant

surface, adhesion and the transition to directed growth along cell walls, formation

of infection structures, penetration which leads to degradation of the host tissue and

increasing proliferation which leads to the formation of sclerotia to complete the

cycle (Keijer 1996).

4 Biocontrol, Chemical and Management Practices

to Control Rhizoctonia Diseases

The ability of R. solani to persist in the soil, as well as the ability of some isolates to

infect a broad range of plants, makes R. solani a difficult pathogen to control. In

addition, its aggressiveness on young seedlings provides an impossibly short

window for chemical control once an outbreak is detected. Despite this, positive

effects have been reported for certain chemical controls applied in furrow or as soil

treatments at the time of sowing (McKay and Huberli 2014). For diseases of

turfgrass, iprodione and propiconazole are reported to assist in preventative and

curative control (Tisserat et al. 1994).

However given the ability of R. solani to survive in the soil, chemical treatment,

in addition to being costly, often leads to reductions in pathogen levels in the field

rather than eradicating the fungus completely. In addition to traditional chemical

fungicides, a novel fungicide in the form of carbon nanohorn particles has recently

been reported (Dharni et al. 2016). The graphene-derived carbon nanohorn

inhibited R. solani growth in vitro and is predicted to bind to R. solani
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endochitinase; however, the cost of such a treatment and its impact on beneficial

fungi such as mycorrhizae have not yet been fully assessed.

The use of fungal or bacterial biocontrol agents such as those belonging to the

genera Bacillus (Elkahoui et al. 2014; Luo et al. 2015), Paenibacillus
(Xu et al. 2014), Pseudomonas (Jung et al. 2011), Streptomyces (Boukaew and

Prasertsan 2014; Harikrishnan et al. 2014) and Trichoderma (Asad et al. 2014) has

shown some success in reducing disease symptoms during R. solani infection

assays or can reduce the growth of R. solani when cocultured in vitro. In addition,

non-pathogenic isolates of Rhizoctonia have also been used as biocontrol agents

with significant reductions in disease severity observed in pot trials (Sneh and

Ichielevich-Auster 1998). Unfortunately, despite small-scale successes, biocontrol

strains have proven difficult to deploy on a broad scale against R. solani and do not
appear to work in all environment and soil types. To improve the utility of these

treatments, Boukaew et al. (2013) assessed a combination of three bacterial bio-

control agents with four chemical fungicides to achieve better control. The authors

found a reduction in rice sheath blight symptoms between 47 and 74% with the

greatest success obtained from a combined treatment with Carbendazim® and

Streptomyces philanthi strain RM-1-138. Further experimentation in field studies

is required to ensure the results are applicable to individual farming systems. Rather

than screening commercial bacterial preparations for efficacy against R. solani, two
recent studies have examined the bacterial populations present in R. solani sup-
pressive fields (Yin et al. 2013; Donn et al. 2014). Yin et al. (2013) looked at

identifying bacterial isolates from soils where R. solani AG8 had declined over an

11-year period. The authors used 16S rRNA sequencing to profile microbial

communities that were enriched in bulk and rhizosphere soils obtained from

R. solani patches as well as recovered patches, to identify candidate bacteria

responsible for R. solani suppression. Six isolates were identified that suppressed

R. solani in vitro, three of which were identified as Chryseobacterium
soldanellicola isolates. Subsequent greenhouse tests showed that the

C. soldanellicola isolates also reduced root rot in wheat seedlings (Yin et al. 2013).
For root-infecting isolates, mechanical disruption and solarisation of mycelia in

bare patches are also possible through tilling. However, conservation cropping and

no-till systems often prevent the use of this form of mechanical control. Therefore,

in-built genetic resistance is the desired form of protection against R. solani in these
systems. Unfortunately for most crop species, a strong source of resistance to

R. solani is not available in commercial varieties.
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5 Identifying Resistance to R. solani Through Germplasm

Screening

Despite the absence of strong resistance in commercial populations of wheat, a

slightly improved level of resistance to R. solani has been identified in wild

relatives compared to the commercial cultivars. Smith et al. (2003) used two

isolates of R. solani AG8 to screen a commercial and synthetic wheat gene pool

as well as secondary and tertiary gene pools consisting of germplasm from wheat

relatives, Aegilops cylindrica and Dasypyrum villosum as well as barley (Hordeum
vulgare). Amongst the different genetic sources, D. villosum showed some

improved resistance against one isolate of R. solani (Smith et al. 2003). In another

study, the addition of chromosome 4E from wheatgrass, Thinopyrum elongatum
into Chinese Spring wheat was found to provide enhanced resistance to R. solani
AG8 (Okubara and Jones 2011). However as the Thinopyrum chromosome does not

recombine with wheat chromosomes, introgression of these genes for the propaga-

tion of commercial wheat may be difficult. To improve genetic resistance in the

existing commercial wheat population, a mutant wheat line, Scarlet-RZ1, with

increased resistance to R. solani, was generated through ethyl methanesulfonate

(EMS) mutagenesis (Okubara et al. 2009). The Scarlet-RZ1 mutant displayed

substantial root and shoot growth after R. solani AG8 and R. oryzae inoculation

in greenhouse assays. Efforts to replicate this resistance in other wheat varieties are

ongoing (Okubara et al. 2014). Recently, an initial study to assess the resistance of

different accessions of the model grass Brachypodium distachyon to R. solani AG8
was performed (Schneebeli et al. 2015). Variation in resistance was found within

the accessions screened, and given the tools available within the B. distachyon
community for molecular biology as well as its high level of synteny with wheat,

this pathosystem could prove to be an interesting resource to study the response of

wheat to R. solani AG8 infection. Meanwhile, continued screening of synthetic

wheat lines is also continuing in the hope of finding a resistance source that can be

integrated into commercial wheat varieties (Okubara et al. 2014).

Lastly, commercial rice cultivars have also been screened for R. solani resis-
tance (Srinivasachary et al. 2011; Jia et al. 2012). One cultivar, Yangdao 4, has

shown some resistance to R. solani (Pan et al. 2001), and when crossed with a

susceptible cultivar, Lemont, several resistance-associated quantitative trait loci

(QTL) were recently found in F2 mapping populations (Wen et al. 2015). The

ability of these QTL from the Yangdao 4/Lemont cross to provide stable resistance

in subsequent generations as well as in other rice cultivars will need to be explored

further. Continued investigation of rice germplasm using association mapping (Jia

et al. 2012) as well as further targeted dissection of the many rice QTL that have

been identified may one day lead to a resistant variety for better sheath blight

protection.
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6 Transgenic Strategies for Enhancing Resistance

to R. solani

Over the last 20 years, molecular research in plant pathology has focused on

studying the transcriptional responses of the pathogen and host to design novel

strategies to boost plant immunity. Whilst comparatively less studied relative to

leaf fungal pathosystems, the knowledge gained from plant defence research on a

whole has provided a platform for studying R. solani–host interactions. The next

few paragraphs of the chapter focus on the ways in which knowledge from defence

signalling may be applied to improve R. solani resistance in crop species and also

what has been learned from studying the molecular response to R. solani infection.

6.1 Overexpression of PATHOGENESIS-RELATED Genes

One of the earliest findings from studying plant–pathogen interactions was an

observed increase in the expression of PATHOGENESIS-RELATED (PR) genes
(van Loon 1985). Given their involvement in the plant defence response and often

direct antifungal effect in vitro, several attempts have been made to overexpress

these genes in the hope of achieving increased resistance to R. solani. For example,

transgenic tobacco and canola plants overexpressing a bean endochitinase were

found to be more resistant to R. solani (Brogue et al. 1991). In a subsequent study, it
was shown that fungal penetration in these plants was restricted, and hyphae

showed evidence of degradation by the host-expressed chitinases (Benhamou

et al. 1993). In Arabidopsis thaliana, expression of a sugar beet GERMIN-LIKE
PROTEIN (BtGLP-1) led to increased resistance to R. solani as well as Verticillium
longisporum (Knecht et al. 2010). The authors found increased reactive oxygen

species (ROS) levels as well as higher expression of PR1 to PR4 and the PLANT
DEFENSIN1.2 (PDF1.2) gene in the transgenic Arabidopsis plants. This suggests
that overexpression of the BtGLP-1 gene using the constitutive cauliflower mosaic

virus (CaMV) 35S promoter leads to increased activation of broader defence

pathways and may contribute to the increased resistance observed to the two fungal

root pathogens.

Given the importance of R. solani to rice production, several attempts have been

made to overexpress PR genes in rice, with the use of rice chitinase genes either

singularly or together with an additional PR protein being a popular approach (Lin

et al. 1995; Datta et al. 2002; Kalpana et al. 2006; Maruthasalam et al. 2007; Sridevi

et al. 2008; Shah et al. 2009; Mao et al. 2014). For example, Kalpana et al. (2006)

used a rice THAUMATIN-LIKE protein (OsTLP) together with the rice

CHITINASE11 (OsCHI11) gene and found increased resistance in T2-transformed

lines. Sridevi et al. (2008) co-transformed OsCHI11 and a tobacco B-1,3-
GLUCANASE gene into rice and observed decreased disease symptoms in T3

transgenic, whilst Maruthasalam et al. (2007) transformed basmati rice with
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OsCHI11, OsTLP and a serine–threonine kinase from wild rice Oryza
longistaminata (XA21) involved in bacterial resistance against Xanthomonas
oryzae pv. oryzae (Xoo) (Song et al. 1995). The authors found resistance to both

sheath blight and bacterial blight in transgenic plants; however, yield penalties or

the effect of other agriculturally important traits due to the transgenes were not

investigated. More recently, co-expression of a RICE BASIC CHITINASE10 gene

(OsRCH10) and an ALFALFA B-1,3-GLUCANASE1 gene (AGLU1) was found to

provide increased resistance to R. solani and Magnaporthe grisea in field disease

studies (Mao et al. 2014). Whilst the mature transgenic plants appeared morpho-

logically normal, the transgenic lines had lower germination and seed vigour

compared to untransformed lines, suggesting that the transgenic lines are not

without side effects.

Recently, an additional study using a rice POLYGALACTURONASE-
INHIBITING PROTEIN (OsPGIP1) overexpressed in Zhonghua 11 rice, a japonica
variety, has had success in field trials (Wang et al. 2015). PGI proteins act by

inhibiting the polygalacturonase enzymes expressed by pathogens. Wang

et al. (2015) found that rice OsPGIP1 possessed polygalacturonase inhibition

activity in vitro and showed that two independent transgenic lines expressing the

OsPGIP1 gene had reduced disease symptoms in field trials. Whilst the symptom

suppression was not dramatic, in areas where R. solani causes yield decline,

transgenic lines such as those mentioned above could be an option, if given

regulatory and public acceptance.

Whilst seemingly a good choice for improving pathogen defence, constitutive

expression of PR genes often comes at a cost to yield as PR proteins can be

damaging to the cell homeostasis or activate additional plant defence responses.

Previously identified Arabidopsis mutant lines with increased PR gene expression

show either spontaneous lesions or dwarf phenotypes, e.g. constitutive PR (Bowling

et al. 1994, 1997) and accelerated cell death mutants (Greenberg and Ausubel 1993;

Greenberg et al. 1994). Therefore, linking defence proteins such as

polygalacturonase proteins or chitinases to a temporal or spatially specific promoter

might be a more successful approach for improving resistance in crops. Continued

examination of the transcriptome of R. solani-infected plants may provide better

candidates for such a task. One recent study went someway to addressing this

problem by using a green tissue-specific promoter to express the rice OXALATE
OXIDASE 4 (OsOXO4) gene (Molla et al. 2013). The authors used GUS staining to

delineate the regions that the OsOXO4 gene would be expressed. Oxalic acid is a

nonhost-selective toxin that is secreted by some isolates of R. solani as well as other
necrotrophic pathogens to manipulate the host redox environment to suppress plant

defences and promote cell death (Dutton et al. 1993; Cessna et al. 2000;

Nagarajkumar et al. 2005; Williams et al. 2011). Oxalate oxidases such as

germin-like proteins can degrade oxalic acid and subsequently initiate an efficient

immune response (Lane 1994; Dunwell et al. 2000; Livingstone et al. 2005). Molla

et al. (2013) found that expression of rice OsOXO4 in leaves using the D540
promoter led to reduced disease symptoms in detached leaf experiments as well

as whole plant experiments. The transgenic plants also had no significant difference
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in agronomic traits such as panicle number or 100 seed weight compared to a

non-transgenic control.

6.2 Manipulation of the Ethylene Pathway for Improved
Resistance

An alternative approach to using one or two PR genes for overexpression is to use

plant hormone modulation or an upstream transcription factor (TF) to activate plant

defence. This would have the advantage that resistance comes from a pathway with

multiple endpoint genes and may potentially be more difficult for the pathogen to

break resistance. For instance, expressing the rice OsACS2 gene under a pathogen-

inducible promoter leads to enhanced resistance to both R. solani and M. grisea
(Helliwell et al. 2013). OsACS2 encodes one of six 1-aminocyclopropane-1-car-

boxylic acid (ACC) synthase enzymes in rice that converts S-adenosyl-L-methio-

nine to ACC as part of the first steps in ethylene (ET) synthesis (Chae and Kieber

2005). Despite being controlled by a pathogen-inducible promoter, transgenic

OsACS2 lines had increased basal expression of OsPR1b and OsPR5 genes and

showed a 35–45% reduction in lesion size using a mycelial ball inoculation method

(Park et al. 2008; Helliwell et al. 2013). Interestingly, despite having increased

basal levels of PR gene expression, the transgenic lines showed no difference in

yield characteristics such as the number of panicles per plant, the number of seeds

per panicle and the weight of 100 seeds under glasshouse conditions.

A role for ethylene in R. solani resistance had previously been shown in the

Medicago truncatula (Penmetsa et al. 2008; Anderson et al. 2010) and soybean

pathosystems (Hoffman et al. 1999). The Medicago ethylene-insensitive mutant

sickle, which is an EMS mutant inMtSkl, the homolog of the Arabidopsis ethylene-
signalling gene EIN2 (Guzman and Ecker 1990; Ju et al. 2012) shows increased

susceptibility to R. solani AG8 with a tenfold decrease in survival recorded when

infected with R. solani AG8 (Penmetsa et al. 2008; Anderson et al. 2013). The

sickle mutant also shows susceptibility to other legume-infecting isolates of

R. solani, as well as the root rot pathogen Phytophthora medicaginis, suggesting
that the ET pathway plays an important role in Medicago defence against

necrotrophic root-infecting fungi. In addition, overexpression of MtERF1-1, an
ethylene response transcription factor (ERF) in M. truncatula composite roots,

led to increased resistance to both R. solani and P. medicaginis (Anderson

et al. 2010). MtERF1-1 belongs to the B3 clade of ERFs which in Arabidopsis
are associated with plant defence (Onate-Sanchez and Singh 2002; McGrath

et al. 2005; Nakano et al. 2006), and other M. truncatula B3 ERFs were found to

be inducible by R. solani (Anderson et al. 2010). These results suggest that

overexpression of ERF TFs is sufficient to boost the defence response ofMedicago
against root pathogens. However, loss of function mutations in AtERF14, a master

regulator of ERFs and homolog of MtERF1-1 in Arabidopsis, did not increase
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susceptibility to the same R. solani isolate even though susceptibility to another

root-infecting fungus, Fusarium oxysporum, was increased (Onate-Sanchez

et al. 2007; Anderson and Singh 2011). These findings suggest that different plant

species may employ different defence strategies against the same pathogen.

Importantly, whilst the overexpression of some ERF TFs in Arabidopsis has

shown growth penalties due to the overexpression of defence genes (Solano

et al. 1998; Onate-Sanchez et al. 2007), the composite plants with MtERF1-1
expressed in the roots did not show any phenotypic differences in growth and

development. Also of interest was that nodulation of the MtERF1-1 roots occurred

at frequencies similar to a GFP-expressing root, and overexpression of MtERF1-1
in the sickle mutant could restore the hypernodulation phenotype to clearly defined

nodules (Anderson et al. 2010).

7 The Role of Arabidopsis Defence Pathways in R. solani
Infection

The model plant Arabidopsis has provided substantial advances in the field of plant
pathology and has helped to identify the genes involved in defence responses

against a wide range of plant pathogens (Thatcher et al. 2005; Piquerez

et al. 2014). Recently, the genetic resources of Arabidopsis were utilised to try to

identify key components for resistance and susceptibility to R. solani. To identify

novel sources of resistance, 36 Arabidopsis ecotypes and 14 mutants associated

with plant defence and hormone signalling were assessed for resistance or suscep-

tibility to two isolates of R. solani: the wheat-infecting AG8 isolate which is

non-pathogenic on Arabidopsis and an AG2-1 isolate which infects Arabidopsis
and crucifers (Perl-Treves et al. 2004); however, none of the mutants or ecotypes

tested showed a pathogen phenotype that differed from the wild type Columbia-

0 phenotype (Foley et al. 2013). The results suggested that resistance and suscep-

tibility against R. solani in Arabidopsis are not affected by the major defence

pathways such as the jasmonate (JA), salicylate (SA) and ET pathways or by

defence-associated phytoalexins (camalexin) or the auxin and abscisic acid path-

ways. As mutation in the ethylene regulatory gene ein2 did not affect resistance or

susceptibility to either of the two R. solani pathogens in Arabidopsis but it did in

Medicago, this suggests that R. solani adopts different infection strategies on

different hosts (Anderson and Singh 2011).

To delve further into what might be occurring during R. solani infection in

Arabidopsis, Foley et al. (2013) examined gene expression profiles of Arabidopsis
seedlings infected with AG8 or AG2-1 using Affymetrix microarray experiments.

Cell wall-associated proteins were one of the largest responses to R. solani infec-
tion, but significant changes were also observed in genes involved in stress

responses, such as heat shock proteins and oxidative stress such as the ALTERNA-
TIVE OXIDASE 1D (AOX1D) gene and the RESPIRATORY BURST OXIDASE
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HOMOLOG D (RBOHD) gene. Screening loss of function mutants for four heat

shock proteins as well as an rbohd mutant failed to identify a change in disease

phenotypes against AG8 and AG2-1. However, inoculation of an rbohd rbohf
double mutant was found to have increased susceptibility to AG8 (Foley

et al. 2013). RBOHD and RBOHF are thought to be the main respiratory burst

oxidases involved in pathogen-responsive reactive oxygen species (ROS) produc-

tion (Torres et al. 2002). The breakdown in resistance of the rbohd rbohf double
mutant to the AG8 isolate of R. solani suggests a role for ROS production in the

maintenance of nonhost resistance in Arabidopsis against the wheat-infecting

isolate. Additional support for this hypothesis came from the Arabidopsis dsr1
mutant (Gleason et al. 2011). The dsr1 mutant possesses a point mutation in the

mitochondrial SUCCINATE DEHYDROGENASE 1 gene and displays diminished

mitochondrial ROS production. The dsr1 line was identified from a genetic screen,

involving an Arabidopsis line expressing luciferase from a stress-responsive GLU-
TATHIONE S-TRANSFERASE 8 (GSTF8) promoter (Perl-Treves et al. 2004;

Gleason et al. 2011). The GSTF8 promoter is known to be inducible by auxin, SA

and ROS treatments (Chen et al. 1996; Chen and Singh 1999) but also by R. solani
AG8 (Perl-Treves et al. 2004). Interestingly, compatible isolates of R. solani did not
induce GSTF8:LUC, expression suggesting that this gene may act as a marker of an

effective defence response against R. solani infection, and compatible isolates of

R. solani may have a way of preventing this host response. Together these studies

suggest an important role for ROS as a signalling component in resistance to

R. solani AG8.

7.1 Assessment of Resistance Pathways Induced
in Arabidopsis thaliana by Hypovirulent Rhizoctonia
spp. Isolates

As compatible isolates of R. solani may potentially avoid or suppress defence

responses in their respective hosts to cause disease, a key challenge is to be able

to activate these defence pathways to provide better protection against R. solani. As
mentioned previously, the use of biocontrol organisms can provide an enhanced

level of protection against R. solani, but the mechanism behind this enhanced

resistance responses is relatively unknown. To investigate the underlying mecha-

nism of biocontrol-enhanced resistance further, a study was performed to analyse

the effectiveness of enhanced protection by non-pathogenic binucleate isolates of

Rhizoctonia in known Arabidopsis defence mutants (Sharon et al. 2011). The

authors showed that defence genes belonging to both SA- and JA-associated

defence pathways were induced by the protective isolates. In addition, using an

agar plate assay, reduced protection from the binucleate Rhizoctonia strains was

observed in almost all of the Arabidopsis defence mutants that were screened

compared to the protection provided to the WT Arabidopsis plants from R. solani
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infection. These results suggest that non-pathogenic Rhizoctonia isolates can acti-

vate Arabidopsis defence pathways, and this may be one of the factors contributing

to the enhanced protection phenotype provided by these isolates.

7.2 Gene Expression Responses to R. solani in Other Plant
Species

RNA transcript profiling has not been limited to Arabidopsis, and efforts have been
made to identify cDNAs that are induced in response to R. solani infection in bean,
rice and potato. Guerrero-Gonzalez et al. (2011) identified 136 cDNA transcripts

using a suppressive subtraction library from a moderately resistant variety of

common bean infected with R. solani. Interestingly, the authors identified

pathogenesis-associated proteins such as PR1, a PGIP protein and an ethylene

response factor, confirming the role of these genes in R. solani defence. Induction
of genes associated with the phenylpropanoid pathway was also identified such as

phenylalanine ammonia lyase (PAL), 4-coumarate-COA-ligase and chalcone

synthase (Guerrero-Gonzalez et al. 2011). Additional studies in bean (Guillon

et al. 2002), soybean (Chen et al. 2009) and rice (Deborah et al. 2001; Venu

et al. 2007) also show upregulation of genes involved in the phenylpropanoid

pathway in response to R. solani infection. The PAL enzyme catalyses the first

step in the phenylpropanoid pathway, a pathway that produces a number of sec-

ondary metabolites with roles in plant defence as well as being a biosynthetic

pathway for the production of SA (Mauch-Mani and Slusarenko 1996).

The expression of PAL was also induced systemically in the apical tip of potato

sprouts inoculated with R. solani AG3 at 48 h; however, the expression declined by
the 120 h time point (Lehtonen et al. 2008). Using a potato cDNA microarray,

Lehtonen et al. (2008) identified 122 and 779 genes differentially expressed in

systemic tissue of infected potato sprouts, with a number of pathogenesis-related

proteins induced at both time points. The systemic defence response provided some

protection against R. solani, as challenging the non-inoculated portions of the

potato sprout at 120 h after the initial infection at the base of the sprout resulted

in reduced infection structures on the apical sprout surface. Therefore, upregulation

of defence pathways by R. solani can provide protection to adjacent surfaces; the

question remains how to enhance this resistance at the initial infection site, to

prevent root and stem rots from impacting yield and ultimately plant survival.
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8 Conclusions and Future Research Priorities

It has been 200 years since the conception of the Rhizoctonia genus by De Candolle
(1815); however, there is still much to uncover regarding the interaction of Rhi-
zoctonia with host plants and its role within the rhizosphere. Despite significant

research efforts to find durable genetic resistance to R. solani, an effective source of
resistance has so far been elusive in the major crop species that R. solani infects.
Given the extent of germplasm screening that has already occurred, finding

enhanced natural genetic resistance to R. solani is becoming increasingly unlikely.

New sources of resistance may need to be sourced from distant relatives that

possess nonhost-type resistance to the major crop-infecting isolates. However,

given the genetic distance between wild relatives and elite crop varieties, identify-

ing and then transferring these resistance loci are a significant challenge. Research

into understanding nonhost resistance mechanisms in model organisms may help to

narrow down the genes or QTL responsible to be able to transfer the resistant

phenotype through genetic engineering approaches.

Whilst a limited amount of transcriptional profiling has been performed in

moderately resistant and susceptible crop plants, the studies performed have pri-

marily used cDNA-based subtractive libraries or custom microarrays and therefore

do not capture the full dynamic range of the transcriptional response to infection.

The advancements in gene expression profiling such as second- and third-

generation sequencing technologies have not yet been fully exploited to studying

R. solani interactions and therefore present an opportunity to uncover new strate-

gies for improving resistance. In addition, whilst outside of the scope of this review,

recent genome sequencing as well as subsequent comparative genomics of different

R. solani AG groups will also provide valuable insight into the virulence strategies

that R. solani employs to cause disease (Wibberg et al. 2013; Zheng et al. 2013;

Cubeta et al. 2014; Hane et al. 2014; Wibberg et al. 2015). Again, the reduced cost

and increased depth of sequencing technologies will enable an unprecedented

window into the molecular processes that occur during R. solani infection.
To improve current levels of resistance, management practices such as crop

rotations and chemical applications have been utilised, and whilst they continue to

be useful strategies to manage the disease, these practices often fail to truly control

or eradicate the pathogen. One research area that has gained significant attention in

recent years is the investigation of both the composition and relationships between

soil microbiota in the rhizosphere. A strategy to exploit the soil microbial commu-

nity to suppress soilborne diseases such as R. solani levels is a potential outcome for

research in this area. Regardless of the approach taken, a sustainable and durable

solution to combat R. solani would be a valuable discovery for improving crop

yields necessary to sustain a growing population.
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Belowground Defence Strategies Against

Verticillium Pathogens

Eva Häffner and Elke Diederichsen

Abstract Plant pathogenic Verticillium species cause vascular infections in many

dicot species and show a complex interaction with their hosts. The soil-borne fungi

start infections on roots, traverse the root cortex to enter the xylem and spread

systemically inside the vasculature. The disease symptoms include wilting, leaf

necrosis, stem discoloration and/or premature senescence. Finally the host plant is

systemically colonized, and resting structures are formed in the infected tissue.

Control of this disease relies primarily on quantitative host resistance, and many

studies have built a multifaceted picture of the many factors that are involved in

defence on different levels. Once the first major barrier—the endodermis—has been

overcome, defence reactions are primarily targeting the fungus in the vascular

system and involve many components that have been described for pathogen-

associated molecular pattern (PAMP)-triggered but also for effector-triggered

immunity. Results from the recently described interaction between Verticillium
longisporum and Brassicaceae hosts are reviewed more comprehensively, and own

data on the gene expression pattern characterizing the defence response against

systemic colonization in Arabidopsis thaliana are presented. Gene expression

analysis in line with contrasting reactions revealed the absence of multiple defence

gene induction in the susceptible line at the onset of systemic colonization. With

respect to the available knowledge on Verticillium and its interactions, it should be

possible to support the control of Verticillium by applying a plethora of science-

based strategies that will more and more meet practical demands.
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1 Plant Pathogenic Verticillium Species and Their Impact

on Different Crops

Verticillium pathogens are causing important vascular diseases that affect many

plants in nearly all cropping areas in temperate and subtropical regions. They are

members of the ascomycete genus Verticillium, which contains ten species that are

regarded as plant pathogens. The taxonomy of these species has recently been

revised based on DNA sequence information such as the ITS region (Inderbitzin

and Subbarao 2014), and key facts characterizing the five major plant pathogenic

Verticillium species are summarized in Table 1. Verticillium spp. have formerly

been regarded as fungi imperfecti, and still no sexual stage has been observed in any
of these species. Based on morphology and ITS sequences, two major lineages can

be distinguished, the Flavexudans and the Flavnonexudans, a term that refers to the

yellow colour of young, growing mycelium in vitro (Inderbitzin et al. 2011). All

Table 1 Major characteristics of the most relevant plant pathogenic Verticillium species (sum-

marized after Inderbitzin and Subbarao 2014; Inderbitzin et al. 2011; Novakazi et al. 2015)

Species Major hosts

Resting structures/

morphological features Comment

V. albo-atrum Potato (Solanum
tuberosum), hop
(Humulus lupulus)

Melanized resting

mycelium and

microsclerotia/growing

mycelium white with

yellow tinge

In literature, < 1990

V. albo-atrum and

V. dahliae are not
always correctly

differentiated

V. tricorpus Lettuce (Lactuca sativa) Melanized mycelium,

chlamydospores and

microsclerotia/growing

mycelium white with

yellow tinge

Minor relevance as a

pathogen, also

described as endophyte

V. alfalfae Alfalfa (Medicago
sativa)

Melanized resting

mycelium/growing

mycelium white

V. dahliae Cotton (Gossypium
hirsutum), olive (Olea
europaea), tomato

(Lycopersicon
esculentum), potato
(Solanum tuberosum),
sunflower (Helianthus
annuus); >200 hosts

described

Microsclerotia/growing

mycelium white

Conidia are ca. 6 μm in

length

Major relevance

Defoliating and

non-defoliating

pathotypes, VCG

groups

V. longisporum Brassicaceae, such as

oilseed rape (Brassica
napus), cauliflower
(B. oleracea),
A. thaliana

Microsclerotia/growing

mycelium white; long

conidia (8.5 μm� 2.5)

Diploid hybrid species

with V. dahliae as one
ancestor and two

unknown ancestors,

resp.; also pathogenic

on non-Brassicaceae in

pathogenicity tests
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Verticillium pathogens are soil-borne; they survive for many years in soil as resting

structures such as dark-resting mycelium, microsclerotia or, in some cases, chla-

mydospores. Host colonization is based on mycelium and conidiospores which are

produced on phialides that arise from conidiophores in a whorl-like or verticillate
structure or by budding from a hypha.

Verticillium infections cause a bunch of typical symptoms, such as stunted

growth (Fig. 1a–c) and leaf chlorosis (Fig. 1a) that develops into necrosis and is

often characterized by an asymmetric occurrence on individual leaves (Fig. 1a).

Wilting of at least parts of the plant is a prominent symptom and often coincides

with reduced growth and vascular discoloration. Not all Verticillium species induce

identical symptoms; V. longisporum infections, for example, do not lead to wilting

symptoms but are mainly characterized by premature seed ripening during the final

growth stages of the host (Heale and Karapapa 1999; Fig. 1d, e). Certain highly

aggressive strains of V. dahliae cause defoliation in cotton and, more recently, also

in olive trees (Mercado-Blanco et al. 2002). Variation inside V. dahliae is mainly

described by the vegetative compatibility grouping system (VCG, Joaquim and

Rowe 1991), apart from race designations that can be made according to the

pathogenicity on tomato or lettuce hosts (Klosterman et al. 2009). Chromosome

variations due to rearrangements have been demonstrated by de Jonge et al. (2013)

in V. dahliae and can be expected to contribute to variation in pathogenicity.

V. dahliae can be regarded as the most relevant pathogen in this genus due to its

extremely broad host spectrum of more than 200 plant species, including major

crops like cotton, tomatoes or potato (Pegg and Brady 2002). It also infects trees

and causes significant damage in olives or maple trees (Goud et al. 2004; López-

Escudero and Mercado-Blanco 2011). In cotton, yield losses of 0.5–3.5% have

been reported for the USA (Blasingame and Patel 2005); in Turkey, an average

yield loss of 7% in cotton has been found in a cultivar survey (Karademir

et al. 2012). In potato crops, yield losses are commonly in the range of 10–15%

but may reach up to 50%, whereas in lettuce, complete losses of a crop are regularly

reported (Klosterman et al. 2009). A more recently described plant pathogenic

Verticillium species is V. longisporum, which is the only species having a signif-

icant impact on Brassicaceae, such as oilseed rape (Brassica napus) or cauliflower
(B. oleracea, Karapapa et al. 1997; Zeise and von Tiedemann 2002). Yield effects

of V. longisporum in oilseed rape have been estimated in single-plant experiments

to reach up to 80% depending on disease severity (Dunker et al. 2008).

Epidemiology of Verticillium is characterized by the high persistence of the

resting structures and its usually monocyclic nature. Spatial spread can occur by

seed transmission, as it has been shown for V. dahliae on spinach (Spek 1973),

cotton (G€ore et al. 2011), lettuce (Vallad et al. 2005) and olives (Karajeh 2006).

Only for V. albo-atrum wind dispersal of conidiospores has been described

(Jiménez-Dı́az and Millar 1988). Weeds can be assumed to play a significant role

for the multiplication and rejuvenation of inoculum (Vallad et al. 2005). Severe

disease symptoms and yield losses seem to depend on very high inoculum levels,
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Fig. 1 Verticillium longisporum: symptoms and fungal structures. (a–c) Stunting caused by

V. longisporum in greenhouse inoculation assays in Brassica napus (a) and A. thaliana (b, c).

Left side: mock-inoculated controls, right side: V. longisporum inoculated plants. (a, b) Chlorosis

of inoculated B. napus and A. thaliana plants (right side of each panel). The arrow (a) denotes

asymmetric chlorosis in B. napus. Bar panel (b): 5 cm. (d) Premature senescence caused by

V. longisporum in the susceptible oilseed rape cultivar ‘Falcon’. (e) Protection from premature

senescence in a breeding line carrying partial V. longisporum resistance. (f) V. longisporum
hyphae in malt agar forming microsclerotia (bar¼ 1 mm). (g) V. longisporum microsclerotia on

an oilseed rape stem. (h, i) V. longisporum outgrowth from apical stem segments of infected

A. thaliana plated on malt agar medium. (h) Colonization-susceptible ecotype ‘Landsberg erecta’
(Ler), (i) colonization-resistant ecotype ‘Burren’ (Bur)
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which was indicated by the study of Dunker et al. (2008) for V. longisporum and

described as a general attribute of Verticillium diseases by Schnathorst (1981).

Chemical control of Verticillium is not possible once the pathogen has

established itself inside the host; other means of control such as reducing the

amount of inoculum in the soil are still more of academic value and not yet

established in cropping systems. Therefore, host resistance is a major control

means, and resistant accessions have been described in many crops or related

species; many of these are described by Pegg and Brady (2002). Different types

of resistance have been reported, such as the race-specific and monogenic resistance

conferred by the Ve1 gene in tomato (Kawchuk et al. 2001) or on the other hand

many reports on quantitative resistance/quantitative trait loci in several crops

(Bolek et al. 2005; Jakse et al. 2013; Rygulla et al. 2008; Simko et al. 2004) and

in Arabidopsis thaliana (Häffner et al. 2010, 2014; Veronese et al. 2003). The

molecular basis of resistance to Verticillium has been studied intensively, and

excellent reviews summarizing in particular the defence responses towards

V. dahliae have been provided by Daayf (2015), Fradin and Thomma (2006) and

Klosterman et al. (2009). During the last decade, a substantial knowledge increase

has been generated on host reactions to control infections by V. longisporum; hence,
this will be a focus of this review.

2 Life Cycle and Pathogenesis

The life cycle of Verticillium can be divided into a dormant phase, a parasitic phase

and a saprophytic phase. The dormant phase is initiated by the formation of resting

structures that are characterized by melanization and condensed accumulation of

hyphal contents in either resting mycelium (V. albo-atrum) or microsclerotia

(V. dahliae and V. longisporum, Fig. 1f, g), see Table 1. Unlike V. dahliae,
V. longisporum produces also short melanized hyphae in between microsclerotia

(Fig. 1f). Microsclerotia of V. dahliae (and most likely also those of V. longisporum)
stay viable in soil for up to 15 years (Wilhelm 1955), while the resting mycelium of

V. albo-atrum loses its germination capacity after 4 years (Fradin and Thomma

2006). Germination of fungal resting structures in the soil is inhibited until root

exudates stimulate the germination of the melanized mycelium or the

microsclerotia.

2.1 Infection Process and Disease Progression

Excess carbon and nitrogen amounts in root exudates seem to be the chemical

stimulus that induces germination (Huisman 1982; Mol 1995; Olsson and

Nordbring-Hertz 1985; Schreiber and Green 1963). Microsclerotia can germinate

multiple times in a cell-by-cell manner to increase the number of successful
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infections. Hyphae that grow out of the resting structures can traverse only a limited

distance (ca. 300 μm, Huisman 1982) to reach the host root.

Verticillium enters the parasitic stage by infecting either close to the root tip or at

the sites of lateral root formation (Bishop and Cooper 1983). After establishing its

mycelium on the rhizodermis, the fungus needs to grow through the cortex and the

endodermis to reach its major niche, which is the xylem part of the vascular system.

To get to the xylem, the hyphae can either grow inter- or intracellularly (or both) to

trespass the cortical zone. The endodermis has been described as a physical barrier

against infection in many interactions, and when comparing V. dahliae with

V. longisporum infections on oilseed rape, this barrier seemed to explain non-host

resistance towards V. dahliae (Eynck et al. 2007; Eynck et al. 2009). Often, crossing
the endodermis may only be achieved when it is not yet fully developed or when it

is damaged by wounding or nematode infection (Bowers et al. 1996; Eynck

et al. 2007; Huisman 1982; Pegg 1974; Reusche et al. 2014; Schnathorst 1981).

After crossing the endodermis, the fungus enters the xylem vessels. Usually, only a

few vessels are initially affected, and horizontal spread into adjacent xylem vessels

can start from here. Eynck et al. (2009) observed only a limited number of vessels

colonized by V. longisporum in oilseed rape and concluded that this could explain

the absence of wilting symptoms in this interaction. From the initial xylem coloni-

zation, disease progress is primarily based on acropetal spread inside the host. The

fungus spreads inside the vasculature by hyphal growth (short distance) or by the

formation of conidiospores. Conidia are carried with the sap stream and can be

trapped in pit cavities or at vessel ends, where they can germinate and grow into

adjacent vessel elements in order to continue colonization. Heinz et al. (1998)

reported that the colonization during the systemic spread on V. dahliae in the

vasculature appeared to occur in cycles of fungal spread and fungal elimination,

which might reflect the struggle between defence responses and fungal attack. For

V. longisporum, it has been demonstrated that the onset of systemic spread into the

upper stem depended either on the onset of host flowering (Dunker et al. 2008;

Häffner et al. 2010; Zhou et al. 2006) or on susceptibility—only very susceptible

hosts seem to be colonized systemically at early stages (Dunker et al. 2008).

The final infection stage is characterized by the onset of host tissue necrosis and

the saprophytic growth of Verticillium into the dead host tissue. The fungus grows

into the adjacent necrotic parts of the host, proliferates extensively and finalizes its

development at these sites by the formation of resting structures (Fig. 1g). This can

be restricted to single leaves or happen on all infected plant tissues but is usually

most profound on lower parts of the stem. For V. longisporum, this is the stage

where the most typical symptom becomes apparent, the premature ripening.

Infected plants undergo precocious senescence which is thought to affect the

yield by shortening the seed-filling phase (Gladders 2009). The newly formed

resting structures are released to the soil after decomposition of plant materials.

In perennial hosts, the mycelium can also overwinter within the plant or in prop-

agative organs such as tubers, bulbs or seeds, if the maternal part of the seed coat is

infected.
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2.2 Pathogenicity and Virulence Factors

Verticillium spp. employ a variety of pathogenicity and virulence factors such as

enzymes, toxins and elicitors to successfully establish in the host and to manipulate

host physiology to meet their own requirements. After the definition of Sacristán

and Garcı́a-Arenal (2008), pathogenicity refers to the capacity of a pathogen to

cause disease, whereas virulence refers to the degree of damage caused in the host.

A detailed description of Verticillium pathogenicity and virulence factors is given,

for example, by Fradin and Thomma (2006) and by Luo et al. (2014). Here, a short

summary is given to illustrate major pathogenicity and virulence mechanisms

against which some of the defence responses described below are directed.

Among the pathogenicity factors first detected to influence host colonization

capacity of Verticillium are cell wall-degrading enzymes (CWDE). Most promi-

nently, pectinases are produced by Verticillium. Their role seems plausible since

Verticillium spp. have to penetrate cell walls to grow intracellularly in the root

cortex and to overcome pit membranes between xylem vessels. Indeed, a CWDE

secretion mutant strain caused less symptoms and had very low colonization

capacity in tomato (Durrands and Cooper 1988). Among the pathogenicity factors

are also all those enzymes that allow survival under the low-nutrient conditions of

xylem sap. Examples are genes mediating cross-pathway control (CPC), a mecha-

nism by which amino acid synthesis is activated if external supply is scarce.

Impairment of CPC has been shown to reduce V. longisporum proliferation in the

host (Timpner et al. 2013). A V. dahliae mutant deficient in thiamine synthesis is

unable to cause disease in tomato (Hoppenau et al. 2014). Confirmed virulence

factors that are also elicitors of defence responses known from Verticillium spp.

include necrosis and ethylene-inducing proteins (NEP; Wang et al. 2004) and Ave1,
a plant-type natriuretic peptide possibly interfering with host ion homeostasis

(de Jonge et al. 2012). V. dahliae SPECIFIC SECRETED PROTEIN 1 (VdSSP1)

increased virulence of V. dahliae in cotton and has a function in cell wall degrada-

tion (Liu et al. 2013). Isochorismate hydrolase is an enzyme putatively involved in

host defence suppression. It is expressed in many pathogenic fungi and was

characteristic for a highly aggressive V. dahliae isolate in a proteomic study (El‐
Bebany et al. 2010). Isochorismate is the immediate precursor of salicylic acid

(SA), an important defence phytohormone.

3 Belowground Defence Mechanisms Against Verticillium

3.1 Tolerance and Resistance

There are two fundamental ways of hosts to defend themselves against an infection:

resistance and tolerance. Here, the definition of Roy and Kirchner (2000) is used,

defining ‘resistance’ as all host strategies limiting infection, while ‘tolerance’ does
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not limit infection itself but reduces its fitness consequences for the host. In

pathogenesis caused by Verticillium spp., both strategies can be observed, often

within the same host species. For olive, it was repeatedly reported that symptoms

caused by V. dahliae were strongly correlated with the extent of systemic coloni-

zation (Markakis et al. 2010; Mercado-Blanco et al. 2003). However, Arias-

Calderón et al. (2015) found no correlation between root or stem colonization and

the disease intensity in the olive progenies tested. Some genotypes showing mild

symptoms were strongly colonized with respect to intensity and extent, supporting

the concept of tolerance for the olive—V. dahliae pathosystem. Reduced defence

gene activation seems to be a common principle in tolerant genotypes (Robb

et al. 2007; Tai et al. 2013). Defence responses can be inadequate and lead to

susceptibility rather than resistance (Robb et al. 2012). Robb (2007) interpreted

Verticillium tolerance as a step on the way to a mutualistic relationship. The

molecular mechanisms underlying tolerance are less understood than active

defence responses leading to the elimination of pathogens. Tai et al. (2013) found

a pronounced up-regulation of chlorophyll biosynthesis genes in a tolerant potato

clone as compared to a resistant clone. Resistance and tolerance against

Verticillium are both quantitative traits that rely on a multitude of genes and

mechanisms. In the following, examples for both types of defence will be given.

While tolerance to Verticillium is reported for some species, most hosts depend on

pathogen restriction or elimination to maintain plant health.

3.2 Vascular Defence in Root and Hypocotyl

Verticillium spp. invade roots of susceptible and resistant host genotypes equally

(e.g. Eynck et al. 2009; Robb et al. 2007; Vallad and Subbarao 2008). Major

differences in host resistance exist in the extent of systemic colonization and

symptom development in various hosts such as olive (López-Escudero and

Mercado-Blanco 2011; Mercado-Blanco et al. 2003), lettuce (Vallad and Subbarao

2008), cotton (Cui et al. 2000), oilseed rape (Eynck et al. 2009) and model plant

Arabidopsis thaliana (Häffner et al. 2010; Johansson et al. 2006; Veronese

et al. 2003; Fig. 1h, i). This leads to the conclusion that defence mechanisms

against Verticillium are focused on the xylem of the root, hypocotyl and shoot of

hosts. Studies comparing defence reactions in susceptible and resistant hosts

emphasize the significance of induced defences that are activated more quickly

and more strongly in resistant hosts. Over the last decades, induced vascular

defences against Verticillium spp. have been studied in various host–pathogen

interactions, and molecular components mediating pathogen perception, signal

transduction and execution of defence have been elucidated. Preventing systemic

spread of Verticillium spp. has been associated with vessel occlusions of various

kinds: tyloses, which are invaginations of adjacent xylem parenchyma cells, have

been shown to occur as a consequence of Verticillium infection in various hosts

such as hop (Talboys 1958), tomato (Dixon and Pegg 1969), chrysanthemum (Robb
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et al. 1979) and olive (Báidez et al. 2007). Cells respond to Verticillium with a

marked ultrastructural reorganization involving changes of the cytoskeleton and the

vacuole (Wang et al. 2011; Yao et al. 2011; Yuan et al. 2006). Vessels can also be

blocked by compounds secreted by neighbouring xylem parenchyma cells

(Benhamou 1995; Eynck et al. 2009). The benefit of vessel occlusion consists in

preventing the fungus from further spread, but if vessels are blocked in excess,

wilting can occur as a consequence (Fradin and Thomma 2006; Talboys 1972). A

mechanism of escaping the deleterious effects of vessel obstruction is de novo

xylem formation. V. longisporum was shown to cause xylem hyperplasia in

A. thaliana and B. napus, which hardly occurred after V. dahliae infection.

Transdifferentiation of xylem parenchyma cells into functional xylem vessels and

reactivation of secondary cambium to produce new xylem elements occurred under

the control of the transcription factor VASCULAR-RELATED NAC DOMAIN

7 (VND7; Reusche et al. 2012). This adaptation not only prevented wilting but even

rendered the host more tolerant to drought stress (Reusche et al. 2012). It is further

hypothesized that various processes contribute to fungal elimination from the

xylem in resistant hosts and that this elimination is overcome in susceptible hosts

(Heinz et al. 1998). There is experimental evidence for a diverse set of antifungal

enzymes and substances to be involved in vascular defence against Verticillium.
The most important compounds discussed are phenolic compounds such as lignin

and soluble phenylpropanoids, terpenoids, glucosinolates and camalexin. Proteins

involved in Verticillium defence are, for example, enzymes that degrade fungal cell

walls or proteins inhibiting fungal enzymes. The defence strategies and the signal-

ling events leading to their activation are reviewed for the most important

pathosystems in the following sections.

3.2.1 Antimicrobial Compounds

Among the low molecular weight antimicrobial compounds, phytoalexins and

phytoanticipins are distinguished depending on whether they are induced upon

infection or constitutively present in the plant (Van Etten et al. 1994). The distinc-

tion does not refer to particular classes of substances. Compounds of one and the

same class could either act as phytoanticipins or phytoalexins.

Phenylpropanoids

Many studies emphasize the role of phenolic compounds such as lignin and soluble

phenylpropanoids in the restriction of systemic spread of Verticillium in the host.

The built-up of these compounds has been shown to be quicker and stronger in

resistant compared to susceptible hosts (e. g. Smit and Dubery 1997; Xu

et al. 2011). Phenylpropanoids are synthesized from phenylalanine. The initial

step leading to cinnamic acid via deamination is catalysed by phenylalanine

ammonia lyase (PAL). Simple, soluble phenylpropanoids include, e.g. sinapic

Belowground Defence Strategies Against Verticillium Pathogens 127



acid and the lignin precursors coniferyl alcohol and sinapyl alcohol. Via polymer-

ization or condensation, more complex compounds like lignin, tannins or flavo-

noids are formed (Dixon et al. 2002). The signalling molecule SA, also a phenolic

compound, is related to phenylpropanoids because it shares the precursor chorismic

acid with phenylalanine (Wildermuth et al. 2001). The involvement of lignin in

response to Verticillium spp. has long been known. So-called lignitubers or papillae

are known to form at sites of attempted hyphal penetration in root epidermis and

cortical cells (Bishop and Cooper 1983; Griffiths 1971; Talboys 1958). Beckman

(2000) attributed a role to phenolic storage cells in facilitating rapid lignification.

Xu et al. (2011) determined expression profiles of enzymes involved in

phenylpropanoid biosynthesis in roots of resistant sea-island cotton (Gossypium
barbadense) and susceptible upland cotton (G. hirsutum). G. barbadense showed a

quicker and stronger induction of enzymes in the lignin biosynthesis pathway like

PAL, cinnamate 4-hydroxylase, cinnamoyl-CoA reductase and cinnamyl alcohol

dehydrogenase. The activities of PAL and peroxidase, the enzyme required for

polymerization of lignin monomers, were much higher in roots of G. barbadense
following infection compared to G. hirsutum. Intraspecies variability of resistance

in G. hirsutum has also been attributed to differences in lignification of hypocotyl

tissue (Smit and Dubery 1997). In olive, various flavonoids with antifungal activity

like rutin, luteolin glucoside, oleuropein and tyrosol were detected in the vascular

tissue of stems (Báidez et al. 2007). Phenolics also played a role in resistance of

B. napus to V. longisporum (Eynck et al. 2009). While fungal entry into roots was

similar for a resistant and a susceptible accession, systemic colonization of the

shoot system was inhibited in the resistant genotype ‘SEM 05-500256’. Micro-

scopic analyses of the hypocotyl revealed a much higher extent of vessel occlusions

as well as cell wall reinforcements with lignin and cell wall-bound phenolics as

compared to the susceptible accession ‘Falcon’. The resistant genotype also accu-

mulated more soluble phenolics after infection compared to the susceptible geno-

type, and phenolic storage cells were more abundant (Eynck et al. 2009).

Metabolomic analyses have shown that soluble phenylpropanoids accumulated in

A. thaliana after V. longisporum challenge (K€onig et al. 2014). Correspondingly,

genes encoding enzymes in the phenylpropanoid pathway were induced upon

infection, and the sinapate-deficient fah1-2 mutant was more susceptible to the

fungus. Moreover, the soluble phenylpropanoids sinapoyl glucose, coniferyl alco-

hol and coniferin inhibited fungal growth in vitro. Although metabolomic analyses

have been performed in leaves, it is conceivable that phenylpropanoids also play a

role in lower parts of A. thaliana since hypocotyls and petioles of infected plants

exhibited stronger lignification of the xylem (K€onig et al. 2014). Natural variation

in genes controlling the phenylpropanoid pathway may well account for observed

V. longisporum resistance QTL: the vec3QTL that controlled systemic colonization

to V. longisporum in A. thaliana co-localized with the phenylpropanoid biosynthe-

sis genes encoding cinnamyl alcohol dehydrogenase (Cad5, Cad8) and

UDP-glycosyltransferase (Ugt84a3; Häffner et al. 2014). These genes were induced
upon infection (K€onig et al. 2014). In B. napus, V. longisporum resistance QTL
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were also found to co-localize with QTL for contents of some phenylpropanoids in

the hypocotyls of the host plants (Obermeier et al. 2013).

Increased lignification in response to Verticillium is not restricted to roots and

hypocotyls, but is also reported for stem tissue of various hosts (Báidez et al. 2007;

Cui et al. 2000).

Terpenoids

Terpenoid phytoalexins synthesized via the isoprenoid pathway have been shown to

be potent inhibitors of V. dahliae growth in G. barbadense. Four major

hemigossypol derivatives in cotton stems killed conidia and mycelium in vitro,

and one of them (desoxyhemigossypol) reached fungicidal concentrations in the

cotton stele and had the required water solubility to act in xylem sap (Mace

et al. 1985). But also in roots of G. barbadense, sesquiterpene aldehydes

(e.g. hemigossypol) were correlated with resistance, as could be shown with plants

that were silenced for (+)-δ-cadinene synthase (Gao et al. 2013), an important

enzyme in the gossypol biosynthetic pathway (Chen et al. 1995). The same enzyme

has been induced in roots of G. barbadense by V. dahliae infection (Wang

et al. 2011). Terpenoids also seemed to play a role in root defence of a resistant

G. hirsutum genotype compared to a susceptible genotype, as transcription of a

respective biosynthesis gene was up-regulated after infection only in the resistant

genotype (Zhang et al. 2012a).

Glucosinolates and Camalexin

Glucosinolates are a class of defensive compounds that are characteristic for

Brassicaceae. Glucosinolates are amino acid derivatives and consist of glucose

which is bound via a sulphur atom to a (Z)-N-hydroximinosulfate ester. A variable

side chain renders considerable chemical diversity to this class of compounds

(Halkier and Gershenzon 2006). The antibiotic effect is not exerted by

glucosinolates themselves but by their degradation products: nitriles, epithionitriles

and isothiocyanates that are produced after hydrolysis of glucosinolates by specific

β-glucosidases (myrosinases). Most myrosinases are located in the vacuole, and

glucosinolates are only cleaved upon tissue damage, for example, after insect

herbivory. However, the atypical myrosinase PENETRATION 2 (PEN2) has been

shown to cleave indole glucosinolates derived from tryptophan (Trp) also in living

cells to produce potent antimicrobial glucosinolate degradation products (Bednarek

et al. 2009). Glucosinolates are mostly regarded as phytoanticipins, but the pattern

has been shown to change as a consequence of infection (Witzel et al. 2015). The

idea that glucosinolates and their degradation products contribute to defence of

crucifers against Verticillium has been investigated in recent studies. Iven

et al. (2012) could show that genes involved in converting Trp to secondary

metabolites like indole glucosinolates and camalexin were up-regulated in
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A. thaliana roots after infection with V. longisporum. Likewise, transcription of the
PEN2 homologue PEN2-LIKE 1 (PEL1) was increased. The authors found that a

double mutant lacking the enzymes CYP79B2 and CYP79B3, which catalyse the

bottleneck biosynthesis step from Trp to indole glucosinolates and camalexin, was

more susceptible to V. longisporum and contained higher amounts of fungal

biomass. However, deficiency in camalexin or indole glucosinolates alone did not

significantly increase susceptibility. Witzel et al. (2013) investigated whether

resistance against V. longisporum was correlated with glucosinolate profiles in

different ecotypes of A. thaliana. They found a correlation between the presence

of alkenyl glucosinolates in leaf extracts and fungal growth inhibition. A degrada-

tion product of 2-propenyl glucosinolate, 2-propenyl isothiocyanate, proved to be a

potent inhibitor of V. longisporum growth in vitro. Further analyses (Witzel

et al. 2015) showed that concentrations of glucosinolates and their breakdown

products responded to V. longisporum infection in an organ- and genotype-specific

manner. In the ecotype ‘Burren’ (Bur), which has been shown to be highly resistant
against systemic colonization by V. longisporum (Häffner et al. 2010),

glucosinolate contents in the roots increased after infection. In the colonization-

susceptible genotype ‘Landsberg erecta’ (Ler), this was not the case (Witzel

et al. 2015). These findings suggest that glucosinolates at least contribute to

attacking V. longisporum in the root, while other mechanisms are active as well.

3.2.2 Antifungal Proteins and Enzymes

Pathogenesis-related (PR) proteins are inducible proteins with antimicrobial activ-

ity that have been classified according to their structure and function (van Loon

et al. 2006). Root transcriptomics and proteomics following V. dahliae infection

have been most intensively studied in cotton. Up-regulated defence proteins in the

cotton root include peroxidase (Dong and Cohen 2002; Hanson and Howell 2004;

Zhang et al. 2012a), beta-glucanase (PR2; Zhang et al. 2013a), chitinase (Wang

et al. 2011), Bet v1 protein (PR10), whose mode of action is not yet elucidated

(Wang et al. 2011; Zhang et al. 2012b, 2013a), thaumatin-like protein (PR5; Zhang

et al. 2013a) and polygalacturonase-inhibiting protein (PGIP), which can inactivate

fungal cell wall-degrading enzymes (James and Dubery 2001). Furthermore, lectins

have been shown to respond to infection in the cotton root (Wang et al. 2011). Root-

specific lectins also played a role in hop (Humulus lupulus) resistance to V. albo-
atrum. They were present in high concentrations in a resistant hop cultivar but

absent from a susceptible cultivar (Mandelc et al. 2013). Interestingly, the suscep-

tible cultivar showed a marked induction of PR proteins like chitinase, beta-

glucanase and thaumatin-like proteins, which the resistant cultivar did not. This

situation is reminiscent of tolerance, and indeed both genotypes were colonized to a

comparable degree (Mandelc et al. 2013). In studies with biocontrol agents, the

induction of PR proteins like PR1, a protein of yet unknown mode of action which

is typically induced via the SA pathway, PR2 (beta-glucanase) and PR4 (chitinase)

correlated well with increased resistance (Angelopoulou et al. 2014; Tjamos
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et al. 2005, Sect. 3.3.3). PR proteins also play a role in the V. longisporum–
Brassicaceae pathosystem. While PR1 and PLANT DEFENSIN1.2 (PDF1.2), a

peptide with antifungal activity responsive to jasmonic acid (JA) and ethylene, were

not up-regulated in A. thaliana roots shortly after infection (Iven et al. 2012), both

genes have been found to respond to V. longisporum infection locally in Brassica
hypocotyls at defined infection stages (Kamble et al. 2013). Johansson et al. (2006)

deduced PR2 induction in A. thaliana roots from promoter-GUS studies, and Iven

et al. (2012) showed that chitinases, peroxidases, germin-like proteins and protease

inhibitors were up-regulated in A. thaliana roots upon V. longisporum infection.

PR5, a thaumatin-like protein presumably attacking cell membranes of pathogens,

was up-regulated by V. longisporum in hypocotyls of A. thaliana (see Sect. 3.3.3).

3.3 Pathogen Perception and Defence Signalling

To mount an effective defence response against Verticillium involving the

abovementioned and potentially further unknown mechanisms, pathogen recogni-

tion and subsequent defence signalling are indispensable. While the signalling

events leading to immunity in leaves are well characterized, defence signalling in

the roots or the hypocotyl is less investigated. However, several studies have

addressed this topic recently (de Coninck et al. 2015; Millet et al. 2010; Yadeta

and Thomma 2013).

3.3.1 Immune Receptors Mediating Defence Responses Against

Verticillium

Receptor-mediated immunity has traditionally been divided into two fundamental

processes: pathogen-associated-molecular-pattern (PAMP)-triggered immunity

(PTI) that occurs upon perception of widespread molecular patterns of pathogens

like flagellin or chitin by pattern recognition receptors (PRR) and effector-triggered

immunity (ETI) acting specifically against certain pathogens by perceiving effec-

tors, or their effects on hosts, through resistance genes (R-genes; Jones and Dangl

2006). Recently, this strict division has been challenged, since PAMPs and effec-

tors and their specificity cannot always be clearly separated (Thomma et al. 2011).

A good example for the sometimes unclear distinction between R-genes and PRR is

the receptors involved in the interaction between Verticillium spp. and their hosts.

Among the receptors induced by Verticillium are definitive PRR like chitin recep-

tors (Sect. 3.3.3) but, for example, also the Ve-genes that recognize the effector

Ave1, which is, however, surprisingly widespread among pathogenic basidiomy-

cetes. Furthermore, the resistance conferred is quantitative and relatively weak

compared to the effect of typical R-genes (de Jonge et al. 2012). The experimental

evidence reviewed in the following suggests that other still uncharacterized recep-

tors take part in the recognition of Verticillium.
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Ve-Genes

Ve-genes have first been cloned from tomato (Kawchuk et al. 2001) and later been

identified in other hosts as well (Chai et al. 2003; Fei et al. 2004; Vining and Davis

2009; Zhang et al. 2011). Ve1 and its homologue Ve2 from tomato have been

characterized as receptor-like proteins with an N-terminal hydrophobic signal

peptide, extracellular leucine-rich repeats (LRR) containing potential glycosylation

sites, a membrane-associated domain, and an intracellular endocytosis signal

(Kawchuk et al. 2001). Both genes mediated resistance against race 1 of V. albo-
atrum in potato (Kawchuk et al. 2001). Fradin et al. (2009) found that only Ve1, but
not Ve2 mediated resistance against V. dahliae in tomato. Ve1 has been shown to

respond to the fungal effector Ave1 that was most likely acquired by pathogens

through horizontal gene transfer (de Jonge et al. 2012). Ve-genes were induced

upon V. dahliae infection, while resistant accessions with active alleles responded

more quickly. Downstream signalling involved ENHANCED DISEASE SUSCEP-

TIBILITY 1 (EDS1) and NON-RACE-SPECIFIC DISEASE RESISTANCE

1 (NDR1) as well as the NB-LRR protein NRC1, the F-box protein ACIF, the

mitogen-activated protein kinase (MAPK) MEK2 and SOMATIC EMBRYOGEN-

ESIS RECEPTOR KINASE 3 (SERK3)/BRASSINOSTEROID-ASSOCIATED

KINASE 1 (BAK1) as deduced from virus-induced gene silencing (Fradin

et al. 2009). The resulting defence response has been shown to include induction

of hydrogen peroxide, PAL and peroxidase in roots of resistant tomato cultivars.

The concentration of selected metabolites from the phenylpropanoid pathway

increased more quickly and more strongly in roots of a resistant tomato line

compared to a susceptible line (Gayoso et al. 2010). Ve homologues from other

hosts include Stve from Solanum torvum (Fei et al. 2004) and SlVe from Solanum
lycopersicoides (Chai et al. 2003). Yet another Ve1 ortholog has been found in

Nicotiana glutinosa (Zhang et al. 2013b). Ve homologues have been identified

outside the Solanaceae as well: for mVe1 from Mentha spp. (Vining and Davis

2009) a resistance effect against V. dahliae is likely, while Gbve1 from island

cotton G. barbadense has been shown to mediate resistance against V. dahliae race
1 (Zhang et al. 2012c). The resistance effect exerted by Gbve1 was expression-

dependent, and promoter activity was shown to be highest in the vasculature of

roots and stems (Zhang et al. 2012c). Although Ve-genes have not been identified in
Brassicaceae, it has been shown that expression of Ve1 and Gbve1 in A. thaliana
mediated resistance against race 1 of V. dahliae (Fradin et al. 2011; Zhang

et al. 2011). This shows that the molecular machinery for Ve-mediated resistance

is present in A. thaliana. An interesting difference in the immune response between

different hosts consists in the occurrence of a hypersensitive response (HR). While

HR occurred in tomato and Nicotiana tabacum plants where Ave1 and Ve1 were

co-expressed (de Jonge et al. 2012; Zhang et al. 2013b), Ve1-mediated resistance in

transgenic N. benthamiana and in A. thaliana was independent of an HR (Zhang

et al. 2013b, c).
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Other Verticillium Receptors

While Ve-genes are the most extensively characterized Verticillium immune recep-

tor genes, other Verticillium-specific receptors have been found especially in

cotton. The Gbvdr5 gene codes for a membrane-localized receptor-like protein in

G. barbadense. A putative loss-of-function mutation in Gbvdr5 was found in all

Verticillium-susceptible island cotton genotypes (Yang et al. 2014). Gbvdr5 pro-

moter activity was observed in all tissues in a reporter gene approach in A. thaliana,
but expression was strongest in roots and shoot apices. Gbvdr5 was induced by

some V. dahliae isolates in G. barbadense but interestingly was unaffected or even

suppressed in susceptible G. hirsutum. Gbvdr5 was also induced by the stress

phytohormones JA, abscisic acid (ABA) and ethylene. Silencing of Gbvdr5
compromised resistance, and as shown for Ve-genes, resistance could be transferred
to A. thaliana by expressing Gbvdr5 in transgenic plants. Gbvdr5-mediated resis-

tance was race-specific (Yang et al. 2014). In G. raimondii, another V. dahliae-
resistant cotton species, resistance gene analogues were found to be arranged in

clusters. Within these clusters, V. dahliae response loci were identified using RNA

sequencing (RNA-seq) of root tissue. Some of these response loci were located in

the vicinity of known V. dahliae resistance QTL (Chen et al. 2015). This leads to the

conclusion that more as yet uncharacterized immune receptor genes mediating

V. dahliae resistance are present in the cotton genome.

3.3.2 Root Defence Signalling in the Cotton–V. dahliae Pathosystem

Phytohormones play an important role in the defence response of plants to patho-

gens. Complex and highly cross-linked signalling cascades affecting many biolog-

ical processes in the plant are triggered by relatively few phytohormones. The most

important defence-related phytohormones are ethylene, jasmonic acid and salicylic

acid. All three hormones participate in PTI. During more specific defence reactions,

the SA-signalling pathway and the defence response triggered by JA and ethylene

are mutually antagonistic: SA signalling mediates defence against biotrophic path-

ogens, while JA and ethylene together are required to fight necrotrophic pathogens

(Glazebrook 2005). Signalling pathways involved in the response of the cotton root

to V. dahliae have been identified in various cotton genotypes with different

methods. The ethylene-signalling pathway has been found to respond in most

studies, but its role is ambiguous: ethylene biosynthesis and response genes were

induced in roots of resistant G. barbadense and susceptible G. hirsutum but with

different patterns (Xu et al. 2011). A quick up-regulation of aminoacyl-

cyclopropane oxidase (ACO), the enzyme catalysing the last step in ethylene

biosynthesis, seems typical and important for resistance of G. barbadense (Wang

et al. 2011). An interesting new mechanism involving an element of the ethylene-

signalling cascade has recently been discovered by Yang et al. (2015a): cotton

major latex protein 28 (GhMLP28) enhanced the transcription factor activity of

ETHYLENE RESPONSE FACTOR 6 (ERF6) and led to enhanced transcription of

Belowground Defence Strategies Against Verticillium Pathogens 133



some GCC-box genes that are responsive to ERFs. Cotton plants silenced for

Ghmlp28 showed increased susceptibility towards V. dahliae, and transgenic

tobacco plants overexpressing Ghmlp28 were more resistant. Ghmlp28 had the

highest expression levels in the root and was inducible by V. dahliae, ethylene,
JA and SA (Yang et al. 2015a).

JA signalling contributes to early defence against V. dahliae in cotton roots (Gao
et al. 2013; Zhang et al. 2013a). The expression of the key JA biosynthesis enzyme

allene oxide synthase (AOS) was much higher in roots of a resistant G. barbadense
genotype as compared to a susceptible G. hirsutum genotype (Zhang et al. 2013a).

Although the gene expression study of Xu et al. (2014) was not specific for root

tissue, the role of JA signalling in V. dahliae defence was confirmed. Li et al. (2014)

discovered an interesting regulatory node influencing the defence–growth equilib-

rium while confirming the role of JA in V. dahliae defence of cotton. The tran-

scription factor GbWRKY1 negatively regulated JA-mediated defences against

V. dahliae in cotton roots. Interestingly, it is induced by V. dahliae and methyl

jasmonate, possibly as an element of negative feedback control. In accordance with

the antagonism between JA/ethylene- and SA-mediated defence responses, cotton

plants over-accumulating SA and reactive oxygen species due to silencing of the

Gbssi2 gene were more susceptible to V. dahliae in a leaf-inoculation assay (Gao

et al. 2013). However, these plants also accumulated the SA-induced PR proteins

PR1, PR2 and PR5 that have been associated with increased resistance in roots (see

Sect. 3.2.2). It may be concluded that these hormones act synergistically rather than

antagonistically in early belowground defences against V. dahliae.
Experimental evidence exists that brassinosteroids contribute to cotton resis-

tance against V. dahliae. Brassinosteroid-signalling components like the receptor

BRASSINOSTEROID INSENSITIVE 1 (BRI1) and the response factor

BRASSINAZOLE RESISTANT 1 (BZR1) were up-regulated upon infection in

cotton roots, and exogenously applied brassinolide reduced V. dahliae symptoms

and activated JA signalling (Gao et al. 2013). A resistance-promoting role of

brassinosteroids has also been reported by Roos et al. (2014) in the A. thaliana–
V. longisporum pathosystem (see Sect. 3.3.3).

3.3.3 Defence Signalling and Gene Expression in Cruciferous Hosts

After V. longisporum Infection

V. longisporum is recognized by A. thaliana roots within less than an hour after

spore germination and before hyphal penetration as evidenced by gene expression

studies (Tischner et al. 2010). Ten minutes after the first contact with spores, the

phosphorylation pattern of proteins changed not only in the root but also in the

shoot. This suggested a highly mobile signal. A transient nitric oxide (NO) burst

occurred 35 min after spore contact, which was possibly the initial signal for root-

to-shoot communication. After 50 min, the expression pattern of 732 genes in the

root and 474 genes in the shoot had changed. As expected, many genes related to

signalling such as receptor-like kinases (RLKs), genes related to calcium signalling
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and transcription factors changed their expression pattern but also genes related to

the cell wall, to proteolysis, to defence and to secondary metabolism. Whereas most

of the differentially expressed genes in the root were transcription factors or

associated with the cell wall or with proteolysis, the focus in the shoot was on

regulation of genes related to defence, proteolysis and signalling (Tischner

et al. 2010).

The transcriptional response of A. thaliana roots in the phase of V. longisporum
spore germination (1 day post-infection, dpi) and of hyphal penetration into the root

(3 dpi) was studied by Iven et al. (2012). 269 genes were differentially expressed at

1 dpi, 490 at 3 dpi with only minor overlap. Again, transcription factors, genes

related to defence and stress response and genes encoding apoplastic proteins

dominated. Over-representation of the gene ontology terms ‘indole phytoalexin

biosynthetic process’, ‘camalexin biosynthetic process’, and ‘tryptophan metabolic

process’ suggested that these metabolites may play a crucial role in early defences

against V. longisporum as mentioned above. In the first 8 days after inoculation,

phytohormone levels did not change significantly upon V. longisporum infection.

Mutant analysis revealed a role of additional signalling molecules in the

A. thaliana–V. longisporum interaction. A prominent role of the F-box protein

CORONATINE INSENSITIVE 1 (COI1) in V. longisporum pathogenesis was

discovered by Ralhan et al. (2012). COI1 is a central component of the

JA-signalling pathway. The authors showed that functional COI1 in A. thaliana
roots is required for symptom development such as stunting and early senescence.

This function of COI1, however, was shown to be JA-independent. It was con-

cluded that V. longisporum exploits COI1 for the induction of early senescence,

which allows the fungus to grow necrotrophically on senescent tissue. Conse-

quently, wild-type A. thaliana showed much stronger V. longisporum colonization

at the late stage of infection compared to coi1 mutants. However, coi1-mediated

resistance did not prevent host colonization. A similar disease-promoting function

of COI1 was also detected in Fusarium oxysporum pathogenesis (Thatcher

et al. 2009). Rab GTPase-ACTIVATING PROTEIN 22 (RabGAP22) is another

signalling component that was found to promote V. longisporum resistance (Roos

et al. 2014). It was expressed in root meristems, vascular tissue and stomata and

showed increased expression after infection. The authors provide evidence that

suggests a role of RabGAP22 in brassinosteroid signalling. Moreover,

brassinosteroid treatment could reduce V. longisporum colonization of the host

(Roos et al. 2014).

Transcriptional Response to V. longisporum in the Hypocotyl–Shoot

Transition Zone of a Susceptible and a Resistant A. thaliana Line

In order to monitor molecular processes that underlie ecotype-specific resistance to

systemic colonization, we performed a microarray analysis on tissue of the hypo-

cotyl and the shoot basis. Two developmental stages were chosen for analysis: at

the onset of flowering, systemic colonization has been shown to start (Häffner

Belowground Defence Strategies Against Verticillium Pathogens 135



et al. 2010; Zhou et al. 2006), whereas at the onset of silique maturity, extensive

fungal proliferation occurred (Häffner et al. 2010). The analysis was performed

with two (Bur�Ler) near-isogenic lines (NILs) differing for the major colonization

resistance QTL vec1 (Häffner et al. 2010, 2014). NIL9 contained only alleles of the
colonization-susceptible parent Ler in the variable region, whereas tmNIL130

contained a maximum 530 kb introgression of the resistant parent Bur (Fig. 2a,

Häffner et al. 2015). Both NILs showed significantly different shoot colonization by

V. longisporum at the onset of silique maturity (Fig. 2b). The transcriptional

response of the more resistant tmNIL130 at the onset of flowering was comparable

to the aforementioned studies: 295 genes were differentially expressed in infected

plants compared to mock-inoculated plants (Fig. 2c). Among them, 117 genes were

related to biotic stress based on their annotations. Many of them could be attributed

to processes characteristic for innate immune response (Fig. 3): genes associated

with pathogen recognition, such as chitin receptor genes, with calcium signalling,

MAPK signalling or production of reactive oxygen species (ROS), were

up-regulated. Specifically, transcripts of ENHANCED DISEASE SUSCEPTIBIL-

ITY 1 (EDS1) and PHYTOALEXIN-DEFICIENT 4 (PAD4) were up-regulated,

which is typical for pathogen-associated molecular pattern (PAMP)-triggered

immunity but also for effector-triggered immunity (ETI). While there was no

evidence for phytohormone action at the early stages of infection (Tischner

et al. 2010; Iven et al. 2012), there was a clear indication that ethylene and salicylic

acid played a role in the systemic phase of the infection. Genes involved in ethylene

biosynthesis were up-regulated, and SARD1, the main activator of isochorismate

synthase, the key enzyme in SA biosynthesis, was up-regulated sixfold. A role of

SA in V. longisporum defence was also observed by Ratzinger et al. (2009) who

demonstrated that SA was present in the xylem sap of B. napus after infection and

that disease symptoms were negatively correlated with the levels of SA and its

glucoside in the shoot. WRKY transcription factors played a major role in

V. longisporum defence signalling, as has also been demonstrated by Tischner

et al. (2010) and Iven et al. (2012). In the present study, WRKY33, which is

essential for an effective immune response against necrotrophic pathogens

(Zheng et al. 2006), was up-regulated in the resistant NIL. Some of the induced

genes were shown or hypothesized to play a role in glucosinolate metabolism: the

transcription factor MYB51 was shown to control indole glucosinolate synthesis in

roots and shoots of A. thaliana (Frerigmann and Gigolashvili 2014), and the

cytochrome P450 protein CYP83B1 catalyses the formation of aromatic and indole

glucosinolates (Bak et al. 2001). Interestingly, the jacalin-lectin domain containing

protein JAL4 and the β-glucosidase BGLU11 were also up-regulated. Proteins of

both families have been shown to be involved in glucosinolate degradation to

produce antimicrobial compounds (Nagano et al. 2008). These findings support

the idea that indole glucosinolates are involved in fighting V. longisporum in the

vascular phase. The most striking finding, however, was the almost complete

absence of a defence response in the susceptible NIL9 at the onset of flowering.

Only 18 genes responded to V. longisporum infection in the hypocotyl and the shoot

basis during this stage, and only three of them were defence-related (Häffner
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Fig. 2 Differential gene expression and systemic colonization after V. longisporum infection in

two (Bur�Ler) near-isogenic lines (NILs) differing in a region within the colonization resistance

QTL vec1. (a) Genotype of NIL9 and tmNIL130. Red parts stand for Ler alleles, green parts for
Bur alleles in the variable regions. Grey parts are isogenic with respect to the tested marker loci.

Names and physical positions in kilobases (kb) of markers delimiting variable regions are given

next to the bars representing chromosomes. (b) Systemic colonization of NIL9 and tmNIL130 at

the onset of silique maturity. N¼ 12, t-test. Samples were taken from 30 plants per replicate,

among which were also the plants sampled for microarray analysis. (c) Genes differentially

expressed by V. longisporum infection in the hypocotyl–shoot transition zone of NIL9 and

tmNIL130 at two time points after infection. For growth, inoculation and RNA extraction protocol,

see GEO accession GSE70021. Modified from Häffner et al. (2015)
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et al. 2015). This suggests the suppression of a defence reaction by the pathogen in

the systemic phase. It is currently not known which fungal effector caused this

suppression and which gene(s) within vec1Bur could counteract it.

At the late stage of infection at the onset of silique maturity, when the fungus

showed extensive proliferation in the host (Häffner et al. 2010), massive transcrip-

tional changes could be observed in both genotypes. Still, the resistant tmNIL130

showed a much stronger overall response (Fig. 2c). Especially genes related to

auxin metabolism, signalling and response and to the mitigation of oxidative stress

responded much more strongly in the resistant NIL. This was interpreted as the

capacity to exert a stricter control on damaging senescence-like processes that

would benefit the pathogen and to keep up tissue viability and pathogen defence

(Häffner et al. 2015).

Fig. 3 A model for defence responses triggered by V. longisporum in the hypocotyl–shoot

transition zone of colonization-resistant A. thaliana tmNIL130 at the onset of flowering. Genes

and their up-regulation (fold change) upon V. longisporum infection are shown in blue. Gene
assignment to biological roles in the A. thaliana–V. longisporum interaction is hypothetical and

based on information from MAPMAN (Thimm et al. 2004) and The Arabidopsis Information

Resource (TAIR). For a full record of differentially expressed genes and experimental procedures,

see Gene Expression Omnibus (GEO) accession GSE70021
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3.3.4 RNA Silencing and Defence Signalling

Regulation of gene activity by small RNAs (sRNAs) is increasingly recognized as a

mechanism that controls responses to pathogens (Voinnet 2008). sRNAs occur

either as small interfering RNAs (siRNAs) or as microRNAs (miRNAs) mediating

transcriptional or post-transcriptional gene silencing (TGS or PTGS; Pumplin and

Voinnet 2013). Sequencing of sRNAs in cotton roots following V. dahliae infection
showed that a resistant G. barbadense genotype had a different sRNA response

pattern compared to a susceptibleG. hirsutum genotype (Yin et al. 2012). PTGS has

been shown to play an important role in defence against V. dahliae in A. thaliana, as
mutants defective in PTGS were much more susceptible to the pathogen compared

to wild type (Ellendorff et al. 2009). Interestingly, resistance to other necrotrophic

and hemibiotrophic pathogens such as Fusarium oxysporum or Alternaria
brassicicola was not compromised in the mutants. This suggests that a

Verticillium-specific defence mechanism depends on PTGS (Ellendorff

et al. 2009). Evidence exists that miRNAs are not only involved in defence but

also in promoting the disease. For example, microRNA 482e (miR482e) of potato

targets a CC–NBS–LRR resistance protein involved in mediating resistance to

V. dahliae. Overexpression of miR482e greatly compromised resistance to

V. dahliae. In wild-type plants, miR482e was downregulated in defence against

V. dahliae, which led to the accumulation of the target resistance gene (Yang

et al. 2015b). In other cases, disease-promoting microRNAs are manipulated by

the pathogen to counteract host defence: B. napus miR168 has been shown to be

strongly downregulated in V. longisporum-infected roots. This led to the induction

of its target ARGONAUTE 1 (AGO1) which is required for V. longisporum
development in the host (Shen et al. 2014). Presumably, AGO1 helps in suppressing

host innate immunity by delivering sRNAs to targets with a role in pathogen

defence. The necrotrophic pathogen Botrytis cinerea has even been shown to

deliver such sRNAs into the host as pathogenicity factors (Weiberg et al. 2013).

3.4 Defence Strategies Based on Microbial Biocontrol
Agents

Resistance to Verticillium can be greatly enhanced by beneficial microorganisms in

the rhizosphere of the host. The meta-analysis of Bonanomi et al. (2010) confirmed

that suppressiveness of soil amendments is most strongly correlated with the

composition of the microbial community and especially with the presence of

fluorescent pseudomonads and Trichoderma fungi. Biocontrol using selected

microorganisms for host inoculation is therefore a promising approach to support

plant health. In most cases where the biocontrol mechanism has been studied at the

molecular level, the effect was rather due to the induction of host defences instead

of a direct inhibitory effect on the pathogen. Diverse fungal and bacterial
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microorganisms have been shown to increase resistance of different hosts to

Verticillium. The studies described in the following illustrate some facets of

biocontrol agents (BCA) as an important belowground defence strategy.

An enormous diversity of potential biocontrol organisms against V. dahliae has
been described for solanaceous hosts including the fungal root endophytes

Heteroconium chaetospira, Phialocephala fortinii and species of Penicillium,
Fusarium and Trichoderma (Narisawa et al. 2002). Colonization of eggplant and

tomato roots with the arbuscular mycorrhizal fungus Glomus mosseae prevented

fresh weight loss caused by V. dahliae from hosts (Karagiannidis et al. 2002).

Pepper (Capsicum annuum) colonized by Glomus deserticola showed induction of

acidic chitinases, superoxide dismutases and peroxidases and, after V. dahliae
infection, also an increase of PAL and peroxidase activity in roots (Garmendia

et al. 2006). Non-pathogenic Fusarium oxysporum 47 (Fo47) prevented fresh

weight- and dry weight loss caused by V. dahliae from pepper plants (Veloso and

Dı́az 2012). This was associated with the increased induction of three defence genes

(a PR1 protein, a sesquiterpene cyclase and a chitinase) in roots following

V. dahliae infection compared to plants that were not colonized by Fo47 (Veloso

and Dı́az 2012). In potato, Pseudomonas fluorescens Biotype F isolate DF37 and

Bacillus pumilus isolate M1 were successful in controlling V. dahliae wilt symp-

toms depending on the host genotype (Uppal et al. 2008). Colonization with these

biocontrol agents was associated with accumulation of phenylpropanoids, espe-

cially the flavonol glycoside rutin. In eggplant, the biocontrol agents Paenibacillus
alvei K165 and non-pathogenic Fusarium oxysporum F2, which reduced V. dahliae
symptoms, induced PR1 and PR4 in the stems in a manner that depended on the

rhizosphere size of the BCA population (Angelopoulou et al. 2014).

Non-pathogenic V. dahliaeDvd E6 had a protective effect on tomato plants infected

with pathogenic V. dahliae isolate VD1. When applied in advance of or together

with VD1 infection, Dvd E6 almost completely excluded the pathogen from host

roots. When applied after infection, both isolates competed at an equal basis (Shittu

et al. 2009). Gene expression analysis suggests that Dvd E6 induced defence genes

that were efficient in inhibiting VD1 colonization of the host.

A class of lipopeptides, iturins, shows high antifungal activity. A Bacillus
amyloliquefaciens strain endophytic to cotton showed a high biocontrol efficacy

against V. dahliae based on iturin production. Iturins not only had a direct toxic

effect on V. dahliae but also induced PTI in cotton roots (Han et al. 2015).

Trichoderma viride, another Verticillium BCA of cotton, led to increased terpenoid

concentrations and peroxidase activity in seedling radicles (Hanson and Howell

2004).

In olive, the use of BCA is an important measure to control V. dahliae,
complementing resistance breeding in an integrated approach that is needed to

control its most important soil-borne pathogen (López-Escudero and Mercado-

Blanco 2011). Aranda et al. (2011) have isolated rhizosphere microorganisms

from wild olive and assessed the isolates for their biocontrol potential. About

14% of the isolates had an antagonistic effect on V. dahliae. Typical compounds

produced by the antagonists were indoleacetic acid (IAA) and siderophores, which
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are generally associated with growth promotion of the host and growth inhibition of

pathogens, respectively (Arshad and Frankenberger 1993; Scher and Baker 1982).

Furthermore, chitinolytic, lipolytic and proteolytic enzymes were produced that can

potentially attack pathogenic fungi (Aranda et al. 2011). In an inoculation exper-

iment with nursery material, root endophytic pseudomonads have proven to be

effective BCA of V. dahliae. Growth promotion under V. dahliae challenge and

symptom reduction was highest with the Pseudomonas fluorescens isolate PICF7.

Pseudomonads even exerted an antagonistic effect on V. dahliae in vitro, which

was, however, not correlated with the effect in planta (Mercado-Blanco et al. 2004).

Microscopic studies with fluorescent V. dahliae and PICF7 showed that endophytic
growth of PICF7 greatly inhibited root and xylem colonization by V. dahliae.
Studying the underlying mechanisms in the model plant A. thaliana revealed that

siderophore production was not required for the biocontrol effect. At least part of

the effect was systemic, as root colonization by PICF7 also promoted resistance

against Botrytis cinerea applied to leaves. This led to the conclusion that induced

resistance contributes to biocontrol by PICF7.

Verticillium has been reported to be successfully controlled by BCA in

Brassicaceae. Nejad and Johnson (2000) identified bacterial isolates that promoted

growth and at the same time reduced symptoms from a Swedish Verticillium isolate

from oilseed rape. Paenibacillus alvei K165, a plant growth promoting

rhizobacterium, significantly reduced chlorosis caused by V. longisporum in

A. thaliana (Tjamos et al. 2005). Since the BCA did not have a direct antagonistic

effect on V. longisporum, induced resistance is the likely cause for the biocontrol

effect. Molecular components which were necessary for induction of resistance

were identified by mutant analysis and included SID1/EDS5, SID2/EDS16 and

NPR1, which all act in the salicylic acid pathway. Consequently, the defence genes

Pr1, Pr2 and Pr5 were most strongly activated in V. longisporum infected plants

that were pretreated with K165 (Tjamos et al. 2005). Apart from bacteria, endo-

phytic fungi also exerted a biocontrol effect against V. longisporum: the dark

septate endophytic (DSE) fungi contain several potent BCAs. Two isolates of the

DSE Phialocephala fortinii and a third unidentified DSE fungus reduced

V. longisporum symptoms in Chinese cabbage up to 88% (Narisawa et al. 2004).

Piriformospora indica, which also belongs to the DSE fungi, is well known for its

manifold beneficial effects on plant growth and health (Pham et al. 2008; Varma

et al. 1999). P. indica protected A. thaliana from disease development through

V. dahliae. Interestingly, P. indica-colonized plants that were infected with

V. dahliae did not show the same degree of phytohormone accumulation and

defence gene expression as infected plants without P. indica (Sun et al. 2014).

This suggests that P. indica exerts its biocontrol effect via other mechanisms than

induced resistance, possibly by a direct antagonistic effect. Indeed, P. indica
inhibited growth of V. dahliae on agar plates (Sun et al. 2014).
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4 Conclusions

The interaction of Verticillium spp. with their host plants is characterized by

complexity in every respect. A great variety of symptoms is met by a diversity of

defence mechanisms constituting quantitative resistance that relies on a complex

genetic basis. Nevertheless, some common principles about belowground defences

against Verticillium can be deduced from the research reviewed in this article:

(1) Hyphae of pathogenic Verticillium spp. are always capable of entering the

host root cortex. Penetration resistance has not been observed so far. However, root

colonization can be prevented or strongly reduced by beneficial endophytic or

rhizosphere microorganisms. (2) The mature and intact endodermis is an impene-

trable barrier for Verticillium spp., and infection of vascular tissue occurs via

injuries or in young root tissues where the endodermis is not yet fully developed.

(3) Induced defences are relying on a wide variety of signalling processes and lead

to extensive proteomic and metabolomic changes that mostly take place in the

xylem, ideally resulting in the elimination of the fungus from the xylem. Defence

mechanisms are most strongly expressed in roots and hypocotyl, but are not

restricted to these tissues. (4) In some cases, Verticillium is tolerated, and the host

benefits from constrained or even suppressed defences.

Two main approaches in the control of Verticillium based on biological knowl-

edge are resistance breeding and biocontrol. Many encouraging results have been

obtained from experiments with biocontrol agents in various hosts. Researchers

have started to study host prerequisites for biocontrol effects with experiments on

defined mutants. Studying natural genetic variation of hosts with respect to their

response towards biocontrol agents might lead to the identification of synergistic

effects. By far, the most molecular knowledge about genetic resources of

Verticillium resistance has been gained in cotton. There is a rich basis for combin-

ing different genes or QTL conferring Verticillium resistance in future breeding

efforts. Ve-genes make an important contribution to quantitative resistance espe-

cially in solanaceous hosts and in cotton, but their effect needs to be complemented

by other sources of resistance. In Brassicaceae, the host–pathogen interaction is

well understood at the molecular level, mainly owing to numerous studies in the

model plant A. thaliana. However, unlike in cotton, genetic variation leading to

natural differences in Verticillium resistance is still poorly understood at the

molecular level. Ve-like genes do not exist in crucifers, and only few QTL have

been elucidated at the gene level. A more thorough understanding of how genetic

variation leads to Verticillium resistance will greatly stimulate resistance breeding.

Generally, translational approaches where homologues of known resistance genes

from A. thaliana or cotton are studied in other crops should be extended. They may

contribute to enhancing Verticillium resistance in crops where its genetic basis is

still poorly understood.

Future research and applications can build upon a plethora of evidence from

Verticillium research, which has received great impetus from molecular biology

research within the last years. The high number of studies is more than justified to
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keep up with the complexity of the defence mechanisms. To achieve a high level of

resistance, several defence mechanisms have to add up in each host. This illustrates

the necessity of an integrated approach to achieve Verticillium control.
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Mandelc S, Timperman I, Radišek S et al (2013) Comparative proteomic profiling in compatible

and incompatible interactions between hop roots and Verticillium albo-atrum. Plant Physiol
Biochem 68:23–31

Markakis EA, Tjamos SE, Antoniou PP et al (2010) Phenolic responses of resistant and susceptible

olive cultivars induced by defoliating and nondefoliating Verticillium dahliae pathotypes.

Plant Dis 94:1156–1162
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Belowground and Aboveground Strategies

of Plant Resistance Against Phytophthora
Species

Daigo Takemoto and Yuri Mizuno

Abstract The oomycete genus Phytophthora includes some of the most destruc-

tive plant pathogens in the world. Plant diseases caused by Phytophthora species

have an extremely significant impact on a wide range of agriculturally important

crops and plants in natural ecosystems such as trees and shrubs in forests. In this

chapter, we will describe the infection processes and strategies of Phytophthora
pathogens and the counter defence mechanisms of belowground and aboveground

tissues of host plants.

1 Introduction

As the genus name implies, Phytophthora (phyto¼ plant and phthora¼ destroyer in

Greek) species include a large number of the destructive plant pathogens. The most

known pathogen in this genus is P. infestans, the potato late blight pathogen, causal
agent of Irish potato famine in the 1840s (Fry 2008). Damage and associated control

costs caused by potato late blight is estimated to be more than 1 billion € in Europe
and $3 billion worldwide per year (Fry 2008; Haverkort et al. 2008). Root and stem

rot of soybean caused by P. sojae is the most damaging and widespread disease of

soybean, with an annual cost worldwide of $1–2 billion (Tyler 2007). Other

Phytophthora species (e.g., P. cactorum, P. cinnamomi, P. citrophthora) cause

root, crown, and collar rots on a wide range of fruit trees such as apples, citrus,

cherries , peaches, pears, olives, and avocados (Erwin and Ribeiro 1996).

In addition to the impacts on agricultural production, many Phytophthora
species are known as serious threats to trees and shrubs in natural ecosystems

(Hansen et al. 2012). P. cinnamomi is an aggressive soilborne pathogen with an

extremely wide host range, which includes over 3000 plant species (Hardham

2005). P. cinnamomi is the causal agent of ink disease in chestnuts, oak decline,

little leaf disease in pines, dieback of eucalyptus, and many more. P. ramorum
causes sudden oak death (or ramorum blight and dieback) in Tanoak (Lithocarpus
densiflorus), Coast live oak (Quercus agrifolia), and other Quercus species
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(Gr€unwald et al. 2008). Destructive effects of Phytophthora species on natural trees
affect other organisms in ecosystems such as animals and insects dependent on

infected trees as foods and shelters.

Mechanisms of plant resistance against Phytophthora pathogens have been

extensively investigated in pathosystems between Solanaceae plants and

P. infestans and soybean and P. sojae. Recent advances on transcriptome, prote-

ome, and metabolome analyses have opened up the opportunity for studies to

understand the resistance mechanisms of trees to soilborne Phytophthora patho-

gens. In this chapter, we overview the infection processes and ingenious infection

strategies employed by Phytophthora pathogens and the mechanisms of plant

defence against infection by Phytophthora species.

2 Infection Process of Phytophthora Pathogens

Phytophthora species produce motile asexual spores, zoospores, which have two

flagella to swim in flooded soil or on the wet surface of plant tissues (Fig. 1).

Zoospores of Phytophthora species are attracted to amino acids (Deacon and

Donaldson 1993); thus, the root exudates of any plant species can attract

Fig. 1 (a) Zoospore of Phytophthora sojae. f flagellum. (b) Sporangia of P. sojae. sp sporangium.

(c) Oospores production by P. sojae. o oogonium, an antheridium. (d) Encystment and germina-

tion of P. sojae cysts. c cyst, gc germinated cyst. (e) Penetration attempt by P. sojae on the leaf

surface of Arabidopsis thaliana. gc germinated cyst, ap appressorium-like swelling. Bars¼ 10 μm
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Phytophthora zoospores, though there are some reports showing that metabolites

produced by particular plant species can attract specific Phytophthora species. For

example, isoflavones in the root exudates of soybean, daidzein and genistein,

specifically attract zoospores of P. sojae (Morris and Ward 1992; Tyler

et al. 1996). Once zoospores reach the surface of plant roots, they rapidly produce

cell walls, lose flagella, and become round shaped and adhesive (encystment,

Fig. 1). On the surface of roots, attached cysts germinate and form appressorium-

like swellings on the junction of the epidermal cells and penetrate mainly between

the anticlinal walls of the root cells (Enkerli et al. 1997, Fig. 2). Recently, the RAM2
gene of barrel medic (Medicago truncatula) was identified as an essential gene for

the appressoria-mediated root infection of P. palmivora as well as root colonization
by mycorrhizal fungi (Wang et al. 2012). RAM2 encodes a glycerol-3-phosphate

acyl transferase (GPAT) involved in the production of cutin monomers. Expression

of potato RAM2 was enhanced upon infection with P. infestans, suggesting that the
cutin monomer acts as a plant signal that promotes the invasion of Phytophthora
species into plant tissues (Kaschani et al. 2010; Wang et al. 2012).

In susceptible plants, intracellular hyphae produce a large number of haustoria in

root cortical cells and the penetrating hypha further invade into the vascular tissues

(Enkerli et al. 1997, Fig. 2). In resistant plants, thickening of the cortical cell walls,

wall appositions, collapse of cortical cells, and accumulation of osmophilic gran-

ules are observed around penetrating hyphae (Oh and Hansen 2007).

Though the majority of Phytophthora species are soilborne pathogens, there are

some airborne Phytophthora species (e.g., P. infestans) that utilize sporangia as the
primary source of propagation. Sporangia are produced on the top of aerial hyphae

of P. infestans and transferred via wind or insects. Sporangia can germinate directly

(Fig. 1) or release zoospores on the wet surface of a host leaf, and germinated

Fig. 2 Representative infection processes of Phytophthora pathogens to root (a) and leaf (b)

tissues of host plant
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sporangia or cysts form appressorium-like swelling on the surface of leaf epidermal

cells (Figs. 1 and 2). Hyphae reaching to mesophyll cell layer form haustoria in

contacting cells.

Most of the Phytophthora species are hemibiotrophic pathogens, which form

haustoria to uptake nutrients from living plant cells in the early stages of infection

(biotrophic phase) and become necrotrophic in the later stages of plant coloniza-

tion. Haustoria also act as the center of production of virulence factors (effectors),

which can suppress the defence mechanisms of host plants (see Sect. 5).

3 Phytophthora-Derived Molecules Recognized by Plant

One of critical process for plants to induce effective defence responses against

pathogens is the recognition of molecules derived from microorganisms. Conserved

molecules of potential pathogens, called pathogen-associated molecular patterns

(PAMPs), are recognized by plant cells to induce the innate immunity of host plants

(Jones and Takemoto 2004). Several molecules derived from mycelial walls or

secretory proteins of Phytophthora and related species could act as PAMPs of

oomycete pathogens.

Twenty-carbon poly-unsaturated fatty acids derived from the cell wall of

P. infestans, eicosapentaenoic acid and arachidonic acid, elicit production of

phytoalexins in potato (Bostock et al. 1981). Eicosapentaenoic acid and arachidonic

acid are generally not found in plant tissues but are abundant in Phytophthora
species. In the early stages of infection into a host plant, these fatty acids are

released from spores of Phytophthora (Ricker and Bostock 1994). Glucans derived

from cell walls of Phytophthora species have the activity to elicit or enhance

defence responses of the host plant. Arachidonic acid alone can induce active

defence reactions, but glucans from P. infestans, inactive as elicitors, enhanced

accumulation of the sesquiterpenoid phytoalexins and defence response induced by

arachidonic acid (Preisig and Kuć 1985). Cell wall β-glucan of P. sojae is the

elicitor of defence responses in a wide range of Fabaceae plant species including

soybean, alfalfa, and other plant species such as tobacco and sunflower. The

essential minimum structure for elicitor activity of P. sojae glucan elicitor was

determined as β-1,6-1,3 heptaglucan (Cheong et al. 1991). Such principal mole-

cules in cell wall of Phytophthora species act as PAMPs for the induction of plant

defence.
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4 Apoplastic Elicitor Proteins Produced by Phytophthora
Species

A large number of secretory proteins are produced by Phytophthora species in the

apoplast of a host plant during the infection process, and some of them act as

elicitor molecules for defence induction in host plants. Elicitins are the sterol-

binding proteins secreted by Phytophthora and Pythium species. Studies determin-

ing the three-dimensional solution structure of elicitins from P. cryptogea
(cryptogein) and P. cinnamomi (β-cinnamomin) revealed that the hydrophobic

core of elicitins would have the capacity to capture sterols derived from the plasma

membrane of host plant (Boissy et al. 1996, 1999). Given that Phytophthora species
cannot produce sterols, elicitins are probably essential factors for their growth in

host plants as the scavenger of phytosterols. Phytophthora species have multiple

genes for elicitins and elicitin-like proteins (Tyler 2002). Class I elicitins (e.g.,

INF1 for P. infestans and cryptogein for P. cryptogea) are generally secreted most

abundantly in culture and have robust elicitor activity for a limited range of plant

species including most of the Nicotiana species, some cultivars of Brassica,
Raphanus species, and a few Solanum species (Kamoun et al. 1993; Takemoto

et al. 2005; Vleeshouwers et al. 2006). Usually, responsive plants can recognize

elicitins from different Phytophthora species; thus, elicitins have a conserved

molecular pattern of Phytophthora and Pythium species. Gene silencing of the

elicitin inf1, which enhanced the virulence of P. infestans on the non-host Nicotiana
benthamiana, indicated that elicitins are avirulence factors for responsive plant

species (Kamoun et al. 1998). Recently, a gene for the receptor of elicitins, elicitin

response (ELR), was identified from elicitin-responsive genotype of Solanum
microdontum (Du et al. 2015). ELP is a receptor-like protein, structurally similar

to the tomato R proteins Cf9 and Cf2 for resistance to Cladosporium fulvum and

Ve1 for Verticillium resistance (Jones et al. 1994; Dixon et al. 1996; Kawchuk

et al. 2001). Introduction of ELR to the highly susceptible potato cultivar Désirée

enhanced resistance to P. infestans, indicating that ELR is an extracellular pattern

recognition receptor for Phytophthora elicitins (Du et al. 2015).

NPP1 of P. parasitica, PsojNIP of P. sojae, and NPP1.1 of P. infestans are

members of the Nep1-like proteins (NLPs), which induce cell death in dicotyle-

donous, but not in monocotyledonous plants (Fellbrich et al. 2002; Qutob

et al. 2002). Induction of cell death by NLPs facilitates the virulence of some

pathogens, including P. parasitica and Pythium aphanidermatum. As elicitors of
plant defence, it is expected that the cell death-inducing activity of NLPs may

induced the release of immunogenic damage-associated molecular patterns

(DAMPs) from plant cells (Ottmann et al. 2009). Homologue of NLPs can be

found in some species of bacteria, fungi, and oomycete, including plant symbiotic

fungi, insect pathogens, and animal-related fungi (Oome and Van den Ackerveken

2014). A large number of NLP genes can be identified from the genome sequences

of Phytophthora species. In the genome of P. sojae, 33 NLP-like genes were

predicted, and the expression of 20 genes was detected. However, only 8 out of
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19 P. sojaeNLP have cell death induction activity (Dong et al. 2012). Expression of

many nontoxic NLPs were induced during biotrophic stage, whereas genes for cell

death-inducing NLPs were expressed during the necrotrophic phase, probably

indicating the functional diversification of NLPs (Judelson et al. 2008; Dong

et al. 2012).

A 42-kDa cell wall glycoprotein, GP42, was isolated from the cell wall of

P. sojae as an elicitor protein of parsley suspension cells (Parker et al. 1991).

GP42 is a calcium-dependent transglutaminase conserved among Phytophthora
species. A sequence of C-terminal 13 amino acids, Pep-13, is highly conserved

among Phytophthora species and is essential and sufficient for the elicitor activity.

This indicates that this peptide is a conserved molecular pattern in Phytophthora
species (N€urnberger et al. 1994).

Cellulose-binding elicitor lectin, CBEL, is another cell wall glycoprotein with

elicitor activity isolated from root rot pathogen of tobacco P. parasitica (Séjalon-

Delmas et al. 1997). CBEL has elicitor activity in a variety of plant species

including tobacco (Solanaceae), Arabidopsis (Brassicaceae), French bean

(Fabaceae), and Zinnia (Asteraceae) (Khatib et al. 2004). CBEL of P. parasitica
has been shown to be required for the organization of the hyphal cell walls (Gaulin

et al. 2002). Homologues of CBEL were identified from various Phytophthora
species, and the highly conserved cellulose-binding domain (CBD) of CBEL is

sufficient for the induction of defence responses (Gaulin et al. 2006). Therefore,

CBD is considered as a PAMP in Phytophthora species.

P. parasitica OPEL was recently identified as an elicitor in Nicotiana species

(Chang et al. 2015). OPEL can induce a series of defence responses such as HR-like

cell death, callose deposition, and ROS production. Application of OPEL can

induce the resistance of tobacco to a wide range of pathogens, including virus,

bacteria, and oomycete. OPEL has a signature motif in active site of laminarinases,

ExDxxE, which is probably essential for the enzymatic activity of OPEL. This

conserved motif is also required for the elicitor activity (Chang et al. 2015). As

OPEL is an oomycete-specific secretory protein, the laminarinases domain of

OPEL is another conserved molecular pattern of oomycete, but elicitor activity of

OPEL homologues from other oomycete species have not been tested.

5 RXLR Effectors of Phytophthora Species

Phytophthora species produce a large number of secretary proteins with a con-

served RXLR-dEER motif, called RXLR effectors (Bozkurt et al. 2012). Approx-

imately, 560, 400, and 350 genes for potential RXLR effectors are identified from

the genome of P. infestans, P. sojae, and P. ramorum, respectively (Haas

et al. 2009). RXLR effectors secreted from haustoria of Phytophthora are

translocated from the extrahaustorial matrix into the cytoplasm of host cells and

targeted to the site of their actin in plant cells. RXLR effectors suppress a wide

range of plant mechanisms for disease resistance. P. infestans Avr3a stabilizes and

156 D. Takemoto and Y. Mizuno



modifies the activity of an E3 ligase of the host plant, while CMPG1 is required for

the induction of cell death by the plant. Disease symptoms caused by P. infestans
were significantly reduced by the suppression of Avr3a (Bos et al. 2010), indicating
the crucial role of Avr3a in the pathogenicity of P. infestans. AVRblb1 and

AVRblb2 are RXLR effectors highly conserved among strains of P. infestans
(Vleeshouwers et al. 2008; Oh et al. 2009). The host target of AVRblb1 is the

lectin receptor kinase LecRK-I.9, a putative mediator of cell wall–plasma mem-

brane adhesions. The expected function of AVRblb1 as a virulence factor is the

destabilization of the interaction between the host cell wall and plasma membrane

continuum (Bouwmeester et al. 2011). AVRblb2 suppress the secretion of a host

immune cysteine protease C14 at the haustorial interface to promote infection

(Bozkurt et al. 2011). P. infestans PexRD2 is an interactor of MAPKKKε of

Solanaceae plants, a positive regulator of cell death for plant immunity. Expression

of PexRD2 or gene silencing of MAPKKKε in N. benthamiana enhanced disease

symptoms caused by P. infestans (King et al. 2014). Another RxLR effector of

P. infestans, Pi03192, directly interacts with the host’s NAC transcriptional factors

NTP1 and NTP2 and inhibits their translocation from the ER membrane to the

nucleus, which is required for disease resistance (McLellan et al. 2013).

P. sojae Avr3b is an ADP-ribose/NADH pyrophosphorylase, which suppresses

the resistance reaction of N. benthamiana. Silencing of Avr3b compromised the

virulence of P. sojae on susceptible soybean cultivar, suggesting that Avr3b is an

essential virulence factor for P. sojae (Dong et al. 2011). P. sojae PSR1 and PSR2

(Phytophthora suppressors of RNA silencing) are inhibitors of the biogenesis of

small RNAs (Qiao et al. 2013). PSR1 can bind to a host nuclear protein PINP1,

which contains a RNA helicase domain. The localization of the dicer protein

complex in the nucleus is impaired in PSR1-expressing or PINP1-silenced cells,

indicating that PSR1 targets PINP1 to disturb the assembly of dicing complexes

(Qiao et al. 2015).

Isolated avirulence proteins of P. infestans (e.g., Avr1, Avr2, Avr3a, Avr4,

Avrblb1, and Avrblb2) and P. sojae (e.g., Avr1a, Avr1b, Avr3a/5, Avr3c, and

Avr4/6) so far have been identified as RXLR effectors (Birch et al. 2009). Despite

the diversity of functions of RXLR effectors as virulence factors, plant resistance

(R) proteins for effector-induced defence are generally coiled coil domain

nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR) or Toll/interleukin-1

receptor domain (TIR)-NBS-LRR type proteins. Generally, Phytophthora resis-

tances of potato and soybean determined by R proteins are effective in both

aboveground and belowground tissues (Fig. 3).
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6 Resistance Mechanisms of Potato Against Phytophthora
infestans

Interactions between potato tubers and P. infestans have been used as a model

system to investigate the plant defence responses against Phytophthora species. The
susceptibility and resistance of potato tubers against P. infestans are principally

determined by the combination of R proteins of potato and avirulence factors

(effectors) of the pathogen (Fig. 3). There are several R genes, encoding

NBS-LRR type resistance proteins, cloned from Solanum species, including R1,
R2, R3a, and R3b from S. demissum for race-specific resistance and RB/Rpi-blb1
and Rpi-blb2 of S. bulbocastanum for broad-spectrum resistance to P. infestans
(Ballvora et al. 2002; Song et al. 2003; van der Vossen et al. 2003, 2005; Huang

Fig. 3 Resistance of potato leaf and tuber determined by R gene. (Top) Leaves of potato cv. Rishiri
(R1) are inoculatedwithPhytophthora infestans isolate PI0-1 (race 0, left panel) or isolate PI1234-1
(race 1.2.3.4, right panel). (Bottom) Tubers of potato cvs. Rishiri (R1, Resistant) and Irish cobbler
(r, Susceptible) are inoculated with Phytophthora infestans isolate PI0-1 (race 0)
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et al. 2005; Lokossou et al. 2009; Li et al. 2011). Where a potato cultivar shows

resistance to P. infestans, rapid responses of potato tuber cells are induced almost

immediately after the invasion of the pathogen. One of rapid responses is the

production of reactive oxygen species (ROS) (Doke 1983). Change of plant cyto-

plasmic streaming is also promptly induced at the invasion sites of P. infestans,
resulting in the translocation of cellular components to the site of pathogen attack

(Tomiyama 1956). Such quick defence responses are followed by induction of

programmed cell death (hypersensitive cell death) and production of

sesquiterpenoid phytoalexin, risitin (Kitazawa and Tomiyama 1969; Ishizaka

et al. 1969). The death of infected cells and accumulation of phytoalexins together

restrict the further growth of an invading pathogen.

Salicylic acid (SA) is recognized as an important signaling factor for the

induction of plant disease resistance in a wide range of plant species (Vlot

et al. 2009). In Arabidopsis, mutations of SID2/ICS1, which encodes an enzyme

for SA production, or heterologous expression of NahG (gene for bacterial salicy-

late hydroxylase), reduces resistance against bacterial and oomycete pathogens

(Delaney et al. 1994; Wildermuth et al. 2001). In contrast, potato plants expressing

NahG didn’t show any significant effect on the development of disease symptoms

caused by P. infestans, although the expression of NahG increased the biomass of

P. infestans in potato (Yu et al. 1997; Halim et al. 2007). Pep-13-induced resistance

reactions such as hypersensitive cell death and ROS production are impaired in

potato expressing NahG, indicating that SA is a key regulator for the induction of

potato resistance to a PAMP of Phytophthora. Silencing of genes for jasmonic acid

(JA) production, such as allene oxide cyclase and 12-oxophytodienoic acid reduc-

tase, compromised Pep-13-induced accumulation of ROS and hypersensitive cell

death. Therefore, both SA and JA signaling are involved in PAMP responses and

basal defence of potato against P. infestans (Halim et al. 2009).

Studies employing gene silencing or overexpression of target genes identified

several potato genes involved in defence against P. infestans. Du et al. (2013)

performed virus-induced gene silencing (VIGS) of candidate potato genes highly

expressed during the infection of P. infestans. Several genes including a

lipoxygenase and a suberization-associated anionic peroxidase were identified as

genes involved in the resistance of potato against P. infestans. (Du et al. 2013).

Transient expression of StPRp27, encoding a secreted protein, in potato as well as

in Nicotiana benthamiana enhanced resistance to P. infestans indicating its poten-

tial contribution to disease resistance. However, gene silencing of PRp27 homo-

logues in N. benthamiana showed no effects on the resistance conferred by R

proteins, suggesting that StPRp27 contributes to race-nonspecific resistance against

P. infestans (Shi et al. 2012). Xyloglucan-specific endoglucanase inhibitors (XEIP)
located in the extracellular regions of the plant are often embedded in the cell wall.

Silencing of XEIP resulted in a significant increase in lesion size and water-soaked

disease symptoms caused by P. infestans (Jones et al. 2006).
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7 Resistance of Nicotiana benthamiana Against

Phytophthora infestans

N. benthamiana is commonly used as a model Solanaceae host plant for

P. infestans. Infection attempts by encysted zoospores or sporangia of

P. infestans are generally stopped on the surface of mature N. benthamiana plants

before penetration, through the induction of a few HR-like cell death events in the

epidermal cells (Shibata et al. 2010). This is in contrast to the frequent penetration

and induction of HR cell death on potato leaves inoculated with a zoospore

suspension of P. infestans (Kitazawa and Tomiyama 1969, Fig. 3), implying that

preinvasion resistance plays a key role in the resistance of N. benthamiana against

P. infestans. Nicotiana species produce the sesquiterpenoid phytoalexins such as

capsidiol (Bailey et al. 1975). Silencing of NbEAS (5-epi-aristrochen synthase) and

NbEAH (5-epi-aristrochen dihydroxylase) genes of specialized enzymes for

capsidiol production significantly compromises the resistance of N. benthamiana
to P. infestans (Shibata et al. 2010). Silencing of NbEIN2 (ethylene insensitive 2), a
gene required for ethylene signaling, resulted in the suppression of NbEAS and

NbEAH expression, and subsequent capsidiol production, indicating that the pro-

duction of this phytoalexin is regulated by ethylene in N. benthamiana (Shibata

et al. 2010; Ohtsu et al. 2014). A gene for plant-specific calreticulin NbCRT3 was

isolated as a required gene for resistance to P. infestans. NbCRT3 encodes an

endoplasmic reticulum (ER) quality control chaperone for the maturation of

secreted glycoproteins. Several recent reports indicated that plant CRT3 is required

for the maturation and stable accumulation of cell surface receptors; thus, it was

expected that extracellular LRR receptor(s) are involved in the recognition of

elicitors derived from P. infestans in N. benthamiana (Matsukawa et al. 2013).

Consistently, the receptor-like kinase SERK3/BAK1 is also isolated as an essential

factor for the resistance of N. benthamiana to P. infestans (Chaparro-Garcia

et al. 2011). Functional analyses of P. infestans RXLR effectors identified several

factors of N. benthamiana involved in disease resistance (as the virulence targets of
effectors), including the E3 ligase CMPG1, the lectin receptor kinase LecRK-I.9,

the cysteine protease C14, MAPKKKε, the NAC transcription factors NTP1 and

NTP2, and machineries for biogenesis of small RNAs (see Sect. 5.5).

8 Resistance Mechanisms of Soybean Against Root Rot

Pathogen P. sojae

Resistance of soybean to the root rot pathogen P. sojae is generally determined by R

proteins encoded by Rps genes that provide effective resistance against P. sojae
races with corresponding Avr genes. Fourteen Rps genes have been identified (Grau
et al. 2004). Cloned Rps genes so far encode NBS-LRR type disease resistance

proteins. Two functional Rps1k (Rps1k-1 and Rps1k-2) were identified from the
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Rps1k locus, which encode CC-NBS-LRR class R proteins. (Bhattacharyya

et al. 2005). Of these, Rps2 encodes a TIR-NBS-LRR class R protein (Graham

et al. 2002), whereas Rps4 (identified form the Rps1 locus) is a CC-NBS-LRR

resistance protein (Sandhu et al. 2004). The Rps gene-based resistance in soybean is
usually effective for roots as well as aboveground tissues, but Rps2 confers

incomplete resistance only in roots (Kilen et al. 1974). Some soybean cultivars

have partial resistance determined by dominant R genes. Partial resistance is

effective against all races of P. sojae (Dorrance et al. 2003).
Soybean roots and aboveground tissues produce isoflavonoid phytoalexin,

glyceollin, after inoculation with P. sojae, or treatment with the β-glucan elicitor

(Ayers et al. 1976; Ebel and Grisebach 1988). Production of glyceollin is positively

and negatively regulated by ethylene and abscisic acid (ABA), respectively

(Yoshikawa et al. 1990; Mohr and Cahill 2001). Application of norflurazon, an

ABA biosynthesis inhibitor, to susceptible soybean enhanced the production of

glyceollin and reduced the disease symptom caused by P. sojae, whereas ABA

treatment to the resistant soybean cultivar reduced glyceollin accumulation and

resistance to P. sojae. Given ABA treatment did not change the induction of HR in

resistant soybean inoculated with P. sojae, glyceollin plays the most important role

in the resistance of soybean against P. sojae (Mohr and Cahill 2001). Some fungal

pathogens of soybean, such as Colletotrichum truncatum and Rhizoctonia solani,
can detoxify glyceollin, but P. sojae cannot metabolize this phytoalexin. Consis-

tently, the growth of P. sojae is significantly inhibited by glyceollin (Lygin

et al. 2010). Silencing of genes for isoflavone synthase (IFS) or chalcone reductase
(CHR), encoding enzymes for isoflavonoids production, compromised Rps-medi-

ated resistance of soybean, further supporting the importance of isoflavonoids in the

resistance of soybean to P. sojae (Graham et al. 2007).

Recently, the roles of small RNAs in soybean resistance against P. sojae were

reported. MicroRNAs (miRNAs) miR393 and miR166 are induced by heat-treated

P. sojae hyphae in soybean roots. Silencing of miR393 causes reduction of genes

for glyceollin biosynthesis and enhances susceptibility of soybean roots to P. sojae.
These data suggest that miR393 promotes soybean defence against P. sojae. Infec-
tion of P. sojae also increases the accumulation of phased siRNAs generated from

genes encoding NB-LRR proteins and genes for pentatricopeptide repeat-

containing proteins. Thus, specific miRNAs and phasiRNAs are involved in the

regulation of defence genes in soybean during attack by P. sojae (Wong

et al. 2014). Interestingly, RXLR effectors of P. sojae (PSR1 and PSR2) prevent

the biogenesis of small RNAs (Qiao et al. 2013, see above). Given that homologous

effectors of PSR2 can be identified from various Phytophthora species, regulation

of defence genes by small RNAs is probably a common key event for the induction

of plant resistance.
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9 Resistance Mechanisms of Trees Against Phytophthora
Species

In contrast to potato–P. infestans and soybean–P. sojae interactions, little is known
about the resistance mechanisms of trees against Phytophthora species, but there

are several reports indicating the importance of antimicrobial compounds produced

by host plants. P. citrophthora is the causal agent of citrus collar and root rot. Citrus
species resistant to P. citrophthora (e.g., macrophylla, trifoliate orange) produced

much higher amount of scoparone, a phenylpropanoid phytoalexin, than susceptible

species (e.g., rough lemon, shamouti). Mycelial growth of P. citrophthora was

inhibited by scoparone. Treatment of resistant citrus with aminooxyacetic acid

(AOA), an inhibitor of phenylpropanoid production, reduced the resistance to

P. citrophthora, indicating that scoparone plays a crucial role for the resistance of

citrus to P. citrophthora (Afek and Sztejnberg 1988). In the interaction between

coast live oak and P. ramorum, productivity of ellagic acid, a phenolic compound,

was associated with the resistance of oak to P. ramorum (Nagle et al. 2011). Ellagic

acid has also been shown to inhibit the growth of P. ramorum (McPherson

et al. 2014).

Recent advances made in omics-based approaches also have revealed new

insights into the mechanisms of tree root resistance to Phytophthora species. For

example, transcriptome analysis was performed for European chestnut, Castanea
sativa, inoculated with the ink disease pathogen, P. cinnamomi. Gene ontology

annotation and differential gene expression analysis for the root transcriptome of

the susceptible C. sativa and the resistant C. crenata after inoculation with

P. cinnamomi enabled the selection of candidate genes for ink disease resistance

in Castanea species (Serrazina et al. 2015). Similar transcriptome analyses were

performed for avocado–P. cinnamomi (Reeksting, et al. 2014), citrus–P. parasitica
(Rosa et al. 2007), and tanoak–P. ramorum interactions (Hayden et al. 2014).

10 Arabidopsis–P. parasitica Pathosystem for Dissecting

the Resistance of Plant Roots to Phytophthora Species

Arabidopsis thaliana is the most commonly used model plant to investigate all

kinds of plant activities including plant–microbe interactions. Arabidopsis as model

host has great advantages, because of available genetic and genomic resources,

established research techniques, and a large collection of mutants. Recently, a

model Arabidopsis–P. parasitica pathosystem has been established (Attard

et al. 2010). In compatible interactions, P. parasitica forms appressoria on the

surface of Arabidopsis roots to penetrate into the cortex layer of the root.

P. parasitica produces a lot of haustoria during biotrophic phase of infection but

becomes necrotrophic in later stage of the infection. Arabidopsis mutants with

impaired salicylic acid (SA), jasmonic acid (JA), or ethylene (ET) signaling
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pathways are more susceptible than the wild type, indicating that SA, JA, and ET

are all involved in the basal resistance of Arabidopsis to P. parasitica. Importantly,

the interactions between Arabidopsis ecotypes and P. parasitica isolates have been
tested, and there are natural variations in susceptibility and resistance between

Arabidopsis ecotypes and P. parasitica isolates (Wang et al. 2011). Larroque

et al. (2013) reported that the Arabidopsis mutant bak1-4 (encode receptor coupled

protein kinase) and rbohD/F (NADPH oxidases for ROS production) are signifi-

cantly more susceptible to P. parasitica than the wild type, indicating that BAK1

and RBOH are required for the basal resistance of Arabidopsis against

P. parasitica. Evangelisti et al. (2013) reported the function of an RXLR effector

of P. parasitica, penetration-specific effector 1 (PSE1). Expression of PSE1 in

Arabidopsis altered the distribution of auxin efflux carriers and suppressed the

induction of elicitor-induced cell death. PSE1 expression in Arabidopsis also

increases susceptibility to P. parasitica, and auxin treatment suppressed the disease

symptom of PSE1-expressing Arabidopsis, indicating that PSE1 is an effector that

modulates the local auxin content for the root infection of P. parasitica. Draft
genome sequencing for P. parasitica was recently completed, and transcriptome

analysis for the Arabidopsis–P. parasitica interaction was reported (Phytophthora
parasitica assembly dev initiative, Broad Institute, Attard et al. 2014). Such new

resources will further reveal the belowground mechanisms involved in plant

defence against Phytophthora species.
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Belowground Signaling and Defence in Host–

Pythium Interactions

Patricia A. Okubara, Jin-Ho Kang, and Gregg A. Howe

Abstract Members of the genus Pythium interact with plants and microbial mem-

bers of the rhizosphere using a variety of signaling mechanisms. Biochemical

signaling has a role in pathogen–host specificity, host defence response induction,

and antagonism between Pythium and biocontrol microorganisms. Pythium
irregulare, P. aphanidermatum, and P. arrhenomanes are among the plant-

pathogenic species that share a common mode of infection but vary in host range

and virulence, possibly due to differences in nutrient acquisition and sensitivity to

host and biocontrol interactions. Host innate immunity to Pythium is conferred by

the jasmonic acid (JA) and ethylene (E) signal pathways in roots; triggers of these

pathways include pathogen cell surface components, and metabolite and protein

effectors. Roots also can mount chemical (metabolite-based) defences against

specific Pythium spp., and, reciprocally, Pythium can degrade defence metabolites.

In contrast, P. oligandrum is a mycoparasite of other Pythium species and also

sends signals that trigger defence responses in plants. Interactions between plant-

pathogenic Pythium and biocontrol bacteria have revealed additional complexities

of belowground signaling. In this chapter, we summarize current knowledge about

rhizosphere signaling between Pythium spp., other microbial community members,

and plant roots in agricultural production venues, with emphasis on molecular

mechanisms. We also report new findings for the role of JA-mediated defence in

protection of tomato from P. aphanidermatum.
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About 130–150 species of the genus Pythium have been characterized on the bases

of spore morphology and ribosomal DNA intergenic transcribed spacer sequence

(Benhamou et al. 2012; Schroeder et al. 2013). These species colonize plants, algae,

fish, and mammals in soil, freshwater, and aboveground niches (Davis et al. 2006;

Schroeder et al. 2013); generally are rapid growers; and are necrotrophic, acquiring

nutrients from dying or dead cells. Pythium are oomycetes, related to diatoms and

brown algae, and hence harbor cellulose and β-glucans in their cell walls, in

contrast to the true fungi having chitin-containing cell walls. Many plant-

pathogenic species are generalists that attack a wide range of crops and persist in

wet, clay soils (Schroeder et al. 2006); others are more specialized in host and

environmental niches. In a survey of Pythium in 80 cereal production sites of

Washington, USA, 12 major species, including P. irregulare Buisman,

P. intermedium de Bary, P. abappressorium Paulitz and M. Mazzola, and

P. ultimum Trow, were grouped into six communities based on prevalence (Paulitz

and Adams 2003). The most abundant and widespread species was the moderately

pathogenic P. abappressorium, whereas the highly pathogenic, broad host range

species P. ultimumwas a minority in all but one of the six communities. Occurrence

of certain Pythium species in a range of soil types, meteorological zones, and hosts

indicate that species survival depends on a complex set of factors.

Soilborne Pythium causes Pythium root rot and damping-off and seed (embryo)

and crown rot in agricultural soils throughout the world (Paulitz and Adams 2003;

Schroeder et al. 2013). The pathogen attacks the seminal, crown, and lateral roots of

young seedlings and interferes with root hair development (Schroeder and Paulitz

2006; Van Buyten and H€ofte 2013). Hyphae of germinating oospores or zoospores

penetrate the epidermis of host roots, likely due to production of cell wall degrading

enzymes (see Schroeder et al. 2013). Extent of infection is an indicator of virulence.

For example, the virulent rice pathogen P. arrhenomanesDrechsler invades the root
inner cortex and stele, causing extensive cellular breakdown and disruption of the

vascular system (Van Buyten and H€ofte 2013). Infection of rice and tomato roots by

less virulent isolates, such as Pythium group F, is slower and less invasive, such that

the host can mount cell wall fortifications and other defences (Rey et al. 1998; Van

Buyten and H€ofte 2013). In contrast, the nonpathogen Pythium uncinulatum Plaäts-

Nit. & I. Blok colonizes the outer cell layers of the tomato root and does not evoke a

defence response (Rey et al. 1998). A comprehensive review of the Pythium life

cycle, host recognition and infection, and disease management is available (Martin

and Loper 1999).

1 Biochemical Aspects of Pathogenicity

The Pythium–host interaction is first evident when Pythium zoospores perceive and

swim toward a prospective host root. Chemotaxis of zoospores to specific hosts

appears to be governed by root exudate composition and zoospore perception in a

manner that reflects the coevolution of the association. Zoospores of the cereal
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pathogens P. arrhenomanes and P. graminicola Subraman preferentially accumu-

lated and encysted on the roots of field-grown grasses and cultivated cereals relative

to dicot weeds, whereas those of the generalists P. ultimum and P. aphanidermatum
(Edson) Fitzp. accumulated on both monocot and dicot hosts (Mitchell and Deacon

1985). In the Pythium–cucumber system, zoospore attraction was correlated with

pathogenicity. Zoospores of pathogenic P. aphanidermatum and Pythium group F

accumulated behind the root tips of cucumber at higher densities compared to those

from nonpathogenic P. oligandrum Drechsler (Wulff et al. 1998). Electrical fields

generated by ion pumps at the root tip and zone of elongation of wheat, ryegrass,

and cress roots attracted P. aphanidermatum zoospores in an exudate-independent

manner (van West et al. 2002). While the charge differential and direction of the

electrical field was predicted to vary with host species, physiology, and environ-

ment, this mechanism could account for the nonspecific migration of zoospores

from multiple Pythium spp. to the roots of the same host.

During the encystment stage of infection, motile zoospores of

P. aphanidermatum become embedded in host-derived surface glycoproteins and

cell wall polysaccharides of cress roots (Estrada-Garcia et al. 1990). A fraction of

host mucilage containing 5% fucose and low uronic acid triggered the encystment

in vitro. Encystment also was observed using the lectin concanavalin A and a

monoclonal antibody, PA1, that binds to the zoospore surface and flagella

(Estrada-Garcia et al. 1990), suggesting active roles of both zoospore and host

surface components. Encystment was not necessarily correlated to pathogenicity,

however. When zoospores of P. aphanidermatum, a generalist on dicots, were

exposed to roots of tomato, alfalfa, or sugar beet (Beta vulgaris L.), the density of

encysted zoospores at the zone of elongation was correlated to extent of root

pruning only on alfalfa (Raftoyannis and Dick 2006). Varietal and isolate differ-

ences in encystment also were observed. P. dissimile Vaartaja, moderately patho-

genic to wheat and oat, encysted less densely on roots of those hosts relative to

P. aphanidermatum on alfalfa roots, but similar extents of root pruning were seen

on all hosts. The data indicated that Pythium pathogenicity is mediated by factors or

processes downstream of encystment.

Root exudates provide carbon and nitrogen that attract and support rhizosphere

microbial members, so it is not surprising that certain hosts preferentially interact

with Pythium. A stable isotope (13CO2) pulse labeling approach was used to trace

exudates from switchgrass roots into bacteria and fungi (Mao et al. 2014). On the

assumption that microbes in strong association with host roots were more enriched

for 13C than transiently or distantly associated microbes, the authors concluded that

Pythium was a major genus on switchgrass roots. Further characterization will be

needed to determine the species of Pythium. Extensive utilization of exudates can

account for more aggressive and persistent associations. The virulence of rice

pathogens was attributed to their ability to metabolize a wide range of amino

acids, including the host defence compounds L-threonine and hydroxyl-L-proline

(Van Buyten and H€ofte 2013).
Root exudates also can include secondary metabolites that have antimicrobial

activities; several examples of anti-Pythium metabolites have been reported
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(Fig. 1). Roots of oat produce families of glycosylated triterpenes and steroid

aglycone derivatives, called saponins, having antifungal activity against a number

of soilborne pathogens, including Pythium spp. (Deacon and Mitchell 1985). The

activity of the saponin avenacin A-1 (Fig. 1a) is attributed to its ability to

permeabilize fungal and oomycete membranes (see Osbourn et al. 2011). As

preformed or constitutively produced root exudates, the saponins represent one of

the first lines of defence against soilborne pathogens, but direct interaction with soil

biota predisposes these compounds to biodegradation, especially by microbes that

are susceptible to their action (Bouarab et al. 2002). Susceptibility or resistance to

avenacin A-1 was found to be host-dependent in three oat–wheat rotation regimens

(Carter et al. 1999). Of 47 morphologically distinct fungi that were isolated in the

continuous oat regimen, 44 (94%) were resistant. However, if wheat, which does

not produce avenacin A-1, was planted after two seasons of oat, only 6 of 14 (43%)

associated fungi were resistant. No resistance was observed in 18 isolates collected

from wheat that followed an oat–wheat rotation. Resistance was correlated with the

removal (detoxification) of glucose residues of avenacin and to disruption of host

defence signaling by the products of detoxification (Bouarab et al. 2002). While

none of the isolates were Pythium, these findings demonstrate the importance of

signaling and the transient and host-dependent composition of rhizosphere

inhabitants.

Roots of American ginseng (Panax quinquefolius L.) produce ginsenosides

(Fig. 1b), a class of antifungal triterpenoid saponins having anti-inflammatory and

other health benefits (Leung and Wong 2010). Ginsenosides are synthesized from

mevalonate via the dammarenediol synthase pathway (Oh et al. 2014). These

secondary metabolites reduced the growth of nonpathogenic fungi and a foliar

pathogen about 20-fold, compared to a 3–8-fold reduction of soilborne root and

crown pathogens (Nicol et al. 2002). Degradation or enzymatic detoxification of

ginsenosides by the latter group was implicated but not quantified. In a separate set

of studies, isolates of P. irregulare were found to secrete glycosidases and other

enzymes, collectively called ginsenosidases, that partially or completely detoxified

ginsenosides (Ivanov and Bernards 2012). The enzymes were induced in

P. irregulare by the substrates, and detoxification was correlated with greater

disease severity (decreased root vigor and increased chlorophyll fluorescence, a

stress response) in ginseng seedlings. The findings indicated that specific isolates of

P. irregulare can overcome biochemical defences mounted by its host, with

consequences to pathogenicity. In the case of the P. irregulare–ginseng interaction,
additional growth benefits of ginsenosides for the pathogen were observed in vitro

(Nicol et al. 2003).

Collagen served as a substrate for Pythium in culture, indicating an alternative

nutrient source to cell wall polysaccharides. This prompted a study of protease

secretion by the cereal pathogen P. graminicola, the algae pathogen

P. grandisporangium Fell and Master, and the mammalian pathogen

P. insidiosum De Cock, L. Mend., A. A. Padhye, Ajello, and Kaufman (Davis

et al. 2006). Despite their distinctive ecological niches, all three species secreted

serine proteases in vitro. However, proteases could act on wall-associated proteins
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Fig. 1 Examples of metabolites having activity against Pythium spp. (a) The saponin avenacin

A-1 produced by oat roots (Osbourn et al. 2011); (b) a JA-responsive (PPD type) saponin,

ginsenoside Rb1, from American ginseng roots (Ivanov and Bernards 2012; Oh et al. 2014); (c)

the cyclic lipopeptide surfactant massetolide A produced by the biocontrol strain Pseudomonas
fluorescens SS101 (de Souza et al. 2003b; de Bruijn et al. 2008). Structures were generated using

ChemDraw Pro vers. 4.0.1 (Cambridge Soft Corp., Cambridge, Massachusetts, USA)
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to weaken the integrity of plant and fungal cell walls. The role of proteases in

Pythium pathogenicity and rhizosphere persistence requires further testing.

2 Role of the Jasmonic Acid Pathway in Host Defences

Against Pythium

The jasmonic acid (JA) signal pathway confers broad spectrum, innate immunity

against insect damage, wounding, and abiotic stress; mediates induced systemic

resistance elicited by biocontrol bacteria (Pieterse et al. 2002; van Loon 2007); and

is required for pollen development in Arabidopsis and seed maturation in tomato

(reviewed in Campos et al. 2014). Molecular components of the JA pathway have

been well-characterized, and inducers of the pathway, such as cell surface compo-

nents and microbial effectors, have been identified over the past 20 years. The JA

pathway is stimulated by JA, methyl JA (MeJA), and an isoleucine conjugate of JA

(JA-Ile), the bioactive and mobile form of JA in plant (Staswick and Tiryaki 2004).

Applied MeJA induced the production of ginsenosides (Fig. 1b) in the stele of

American ginger (Oh et al. 2014), indicating ginsenoside synthesis was regulated

by the JA pathway. Ginsenoside accumulation was the result of reduced flux

through cycloartenol synthase branch of the mevalonate pathway leading to sterol

production and increased flux through dammarenediol synthase, the first committed

step in ginsenoside production.

In belowground interactions, roots of nearly all host species are susceptible to

pathogenic Pythium, but the JA pathway provides a degree of protection.

Arabidopsis mutants deficient in JA biosynthesis and in CORONATINE INSEN-

SITIVE1 (COI1), the key component of JA perception and signal transduction,

displayed more chlorosis and foliar wilting than wild-type plants in the presence of

a soilborne pathogen later identified as P. mastophorum (Vijayan et al. 1998). The

wilting phenotype and low expression of the JA-regulated defensin gene PDF1.2 in
the mutants were rescued by MeJA. In addition, Arabidopsis jar1 mutants deficient

in the accumulation of JA-Ile (Staswick and Tiryaki 2004; Thines et al. 2007;

Sheard et al. 2010), due the absence of a functional Ile-conjugating enzyme,

displayed more severe disease symptoms after challenge with P. irregulare
(Staswick et al. 1998, 2002). Since the jar1 mutants are insensitive to JA, native

roots did not display the typical growth inhibition observed in wild type after JA

treatment. The role of the JA defence pathway in tomato roots is presented in the

following section.

Resulting root-localized defence responses include accumulation of defence

metabolites and proteins (van Loon 2007; Campos et al. 2014). The inducible

nature of these responses has implications for host vigor, fitness of specific com-

munity members, and composition of the rhizosphere microbial community. How-

ever, as part of the stress response, this pathway also might promote cell disruption

and death favored by Pythium and other necrotrophic pathogens, thereby offsetting
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the benefits of partial protection. For instance, the rapid colonization of rice root

tissues by the virulent species P. arrhenomanes is accompanied by production of

reactive oxygen species and necrosis-associated induction of JA-Myb, a stress

response transcription factor gene (Van Buyten and H€ofte 2013).

3 JA-Mediated Protection Against Pythium
aphanidermatum in Tomato Roots

3.1 Rationale and Hypothesis

Leaves of tomato plants harboring mutations in COI1, the co-receptor for JA

perception and signaling, were more susceptible to insect feeding (Li et al. 2004).

These mutants, called jasmonic acid insensitive1 ( jai1), also displayed substantial

wilting, chlorosis, roots stunting, and mortality compared in wild-type plants when

grown in a field at Michigan State University, East Lansing, Michigan. The

symptoms were typical of Pythium root rot, and the soil was diagnosed for

P. ultimum (Campos et al. 2014). The JA defence pathway conferred partial

protection to Pythium spp. in Arabidopsis and maize (Staswick et al. 1998; Vijayan

et al. 1998; Yan et al. 2012). Here, we hypothesized that the jai1mutants also would

be more susceptible to the tomato pathogen P. aphanidermatum and to other

soilborne necrotrophic pathogens of tomato, such as Rhizoctonia solani AG-8 and

R. solani AG-2-1 (data not shown).

3.2 Materials and Methods

3.2.1 Tomato Plants, Field Experiments, and Sample Collection

Tomato cultivar Castlemart has a functional JA signal pathway and served as a

wild-type control for responses to Pythium. The jai1-1mutant of tomato, which was

isolated in the cv. Micro-Tom genetic background, harbors two copies of the null

allele ( jai1-1) of the tomato COI1 gene and is deficient in JA signaling

(Li et al. 2004). jai1-1 homozygous plants display a number of developmental

phenotypes, including reduced fruit weight, decreased pollen fertility, and defective

seed maturation (Li et al. 2004); hence, the jai1-1 mutation was maintained in the

heterozygous state. Our experiments were done with a (BC2F5) line in which the

jai1-1 mutant (cv. Micro-Tom) was backcrossed twice to cv. Castlemart followed

by self-pollination. Homozygous jai1 individuals were distinguished from Jai1
homozygotes and from Jai1/jai1-1 heterozygotes on the basis of PCR product

size (Li et al. 2004) using genomic DNA from a single cotyledon (Lin et al. 2001).

Twenty-eight-day-old Castlemart and jai1-1 homozygotes were planted in alter-

nating rows, two rows per genotype and 15 plants per row (Fig. 2a) in a field plot
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located at Michigan State University, East Lansing, MI. The field was known to

cause early foliar necrosis and root stunting, symptoms typical of Pythium root rot,

and to harbor P. ultimum (Campos et al. 2014). Plants were spaced about 1 m apart

at the time of planting. In 2009, the planting date was June 8, and plants were

harvested on June 16 and June 23, 8, and 15 days post inoculation (dpi). The field

experiment was repeated in 2010 using similar planting and harvest dates. Root

samples were dried in a laminar flow hood for 2–3 h prior to DNA extraction.

Rhizosphere soil also was collected by shaking the roots over clean bench paper. At

the time of planting in 2009, field soil was collected at sites of planting (Fig. 2a).

The soil was used to grow 28-day-old Castlemart and jai1-1 plants in the green-

house at Michigan State University. Greenhouse-grown plants were harvested after

7 days.

3.2.2 Extraction of Total DNA from Soil and Root Samples

Soil extracts were obtained from triplicate 0.8-g dried samples, and each dried root

mass was extracted in one to four batches of 100–400 mg per batch. To improve

DNA extraction efficiency, both soil and root samples were subjected to 15 cycles

of ambient pressure for 10 s alternated with 35,000 psi (235 MPa) for 20 s using the

Barocycler™ NEP 3229 (Pressure BioSciences, Inc., Bridgewater, Massachusetts,

USA) as described in Okubara et al. (2007). Pressure cycling was performed in

FT500-ND PULSE Tubes™ (Pressure BioSciences, Inc.) containing premeasured

lysis solution, 120 μL of S1 (sodium dodecyl sulfate solution), 400 μL of inhibitor

removal solution, and 600 μL of guanidine thiocyanate bead solution (UltraClean

Fig. 2 Planting and sampling scheme used for field experiments (a). Blue circles indicate the

location of soils collected for greenhouse experiments done at Michigan State University. Foliar

symptoms of wild-type Castlemart (b) and homozygotes of jai1-1 (c) 9 days after planting in a

Pythium-infested field in 2010
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Soil DNA Kit, MO BIO Laboratories, Solana Beach, California, USA). Clarified

supernatants were incubated with 400 μL S2 acetate solution and 1.8 mL S3

guanidine HCl/isopropanol solution, passed through spin filter columns, and

washed with 300 μL S4 ethanol solution as recommended by the manufacturer.

Total soil or root DNA was eluted in 60 μL S5 TRIS buffer solution into a clean

Eppendorf tube containing 5 mg of insoluble polyvinylpyrrolidone (PVP; Sigma

Chemical Co., St. Louis, Missouri, USA) to remove residual low molecular weight

fluorescent compounds. The PVP was dispensed as 50 μL aliquots of a 10% (w/v)

aqueous suspension. Excess water was removed from the PVP by centrifugation

prior to adding column-eluted DNA (Okubara et al. 2007). DNA extracts containing

PVP were clarified by centrifugation immediately before real-time PCR.

3.2.3 Real-Time PCR Quantification of Pythium ultimum
and P. aphanidermatum

Real-time PCR primers were designed to amplify the intergenic transcribed spacer

(ITS) regions of the nuclear ribosomal DNA of Pythium aphanidermatum or

P. ultimum. PCR primers for P. ultimum were ULT1F (50)
GACACTGGAACGGGAGTCAGC (30) and ULT4R (50)
AAAGGACTCGACAGATTCTCGATC (30) (Schroeder et al. 2006); primers for

P. aphanidermatum were PaphF2 (50) GGGCTGCTTAATTGTAGTCTGCC (30)
and PaphR2 (50) CTAACCGAAGTCGCCCAAATG (30) (P. Okubara, this study).
Each PCR reaction consisted of 5.8 μL nanopure water, 1 μL FastStart DNAMaster

SYBR Green I reagent (Roche Applied Science, Indianapolis, Indiana, USA),

1.2 μL 25 mM MgCl2, 5 pmol of each primer, and 1 μL of DNA extract in a total

volume of 10 μL. Samples were amplified in duplicate using the Roche Light

Cycler (Roche Applied Science) and the following amplification protocol: 95 �C
for 10 min; 95 �C for 10 s/70 �C at 5 s/72 �C at 10 s for 50 cycles; and 40 �C for 30 s.

Amplicon melting and fluorescence data were transformed as described earlier

(Okubara et al. 2008). Pythium DNA (pg) was calculated from average Ct values

(y) using the equation y¼ –3.734 log(x) + 24.741 (Schroeder et al. 2006). Pathogen
DNA in each soil sample was the average of three extracts per sample normalized to

a gram of soil (pg g–1). Pathogen DNA in each root was the sum of all extracts from

a single root (pg root–1).

3.2.4 Pythium Isolates, Inocula, and Greenhouse Pathogenicity Assays

Pythium ultimum isolate 0900119 and P. irregulare group I isolate 0900101 were

obtained from no-till plots in Garfield, Washington (Schroeder et al. 2006), and

maintained on potato dextrose agar. An isolate of P. aphanidermatum was isolated

from pepper in Florida (Chellemi et al. 2000). Pythium inocula consisted of

colonized oat particles inoculated with cubes of fungi from agar cultures. Green-

house pathogenicity assays were performed essentially as described in Okubara and
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Jones (2011). Pythium on oats was enumerated and used to infest soil at rates of

0, 100, 250, and 500 propagules g–1 soil (ppg). Seven-day-old tomato seedlings

were transferred to 10-cm2 plastic pots containing infested soil and grown for

14 days at 15� 1 �C with 12-h daily supplemental lighting (66–90 μmol m�2 s�1).

Six to eight plants of each genotype were used per treatment. Disease severity was

assessed on the basis of root fresh weight and total root length. The latter was

quantified using digital scans of roots and WinRHIZO 5.0 (Regents Instruments,

Inc., Quebec, Canada). To normalize for endogenous differences in root mass

among the Castlemart and jai1-1 genotypes, the root variables were expressed as

ratios of the means of inoculated to non-inoculated plants. Experiments with

P. aphanidermatum and P. ultimum were done twice.

3.2.5 Statistical Analyses

Mean pathogen DNA values were calculated from three independent soil or root

samples; mean root fresh weight and total root length were the averages of six to

eight plants per treatment. Fisher’s protected least significant difference (LSD) test

at P< 0.05 was used to compare mean values from Castlemart and jai1-1 plants in

all field and greenhouse experiments (Statistix 8.1, Analytical Software, Tallahas-

see, Florida, USA). Significant differences among the means were indicated by

different letters.

3.3 Results and Discussion

3.3.1 jai1-1 Homozygotes Showed Enhanced Susceptibility to Pythium
ultimum in the Field and Greenhouse

Roots and rhizosphere soils of homozygous jai1-1 plants harbored substantially

more P. ultimum DNA than those of Castlemart after growth in naturally infested

soil (Table 1). Differentials of about 300- and 60-fold were observed in jai1-1 roots
in 2009 and 2010, respectively, and about 5–120-fold in jai1-1 rhizosphere soils in

2009 and 2010. Our findings indicated that a deficiency in JA signaling enhanced

the susceptibility of tomato to the pathogen.

A single amplicon was obtained in PCR assays, indicating that P. ultimum was

the sole or predominant species in field-grown roots and rhizosphere soils. The

differential in P. ultimum DNA was observed in roots of the two genotypes when

they were grown in the greenhouse using soil taken from the 2009 field plot. The

roots of jai1-1 plants harbored an average of 321 pg DNA root–1 compared to those

of Castlemart, at 2.4 pg DNA root–1 (data not shown).

The roots of these jai1-1 plants displayed an additional PCR product, likely a

second Pythium species. To test the hypothesis that the second species was the

common tomato pathogen P. aphanidermatum, primers were designed for the ITS
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region of this pathogen and found to amplify total DNA samples from the roots. The

P. aphanidermatum primers did not amplify DNA from P. ultimum or nine other

Pythium species and detected P. irregulare group IV DNA with 104–105 less

sensitivity than P. aphanidermatum DNA (data not shown).

3.3.2 jai1-1 Was Susceptible to P. aphanidermatum in Greenhouse

Pathogenicity Assays

The BC2F5 population in the Castlemart genetic background segregated for the

jai1-1 mutation, The BC2F5 seedlings resembled the Castlemart parental line.

Nevertheless, we compared the root variables of Pythium-infected seedlings rela-

tive to noninfected seedlings for each genotype, to normalize for subtle inherent

differences in root development.

In greenhouse assays, root dry weights of Castlemart were reduced about 40%

after 14 days of growth in 500 ppg of P. aphanidermatum, whereas root weights of
jai1-1 homozygotes dropped about 85% (Table 2), supporting the observation that

loss of the JA signal pathway resulted in enhanced susceptibility.

Roots of Castlemart and homozygous jai1-1 generally were indistinguishable in

the absence of the pathogen, but roots of the latter were more severely stunted with

100–500 ppg of P. aphanidermatum (Fig. 3). As expected, Jai1 homozygotes and

wild-type Castlemart showed similar reductions in root dry weight and total root

length, and Jai1/jai1-1 heterozygotes were somewhat less sensitive to the pathogen

than the jai1-1 homozygotes (Table 3). The latter genotype also showed enhanced

susceptibility to P. irregulare group I (data not shown). Our data demonstrates that

the absence of a functional JA signal pathway in tomato results in enhanced root

susceptibility to Pythium species and supports observations reported in other plant

species.

Table 1 Real-time PCR quantification of Pythium ultimum DNA (pg)a in roots and rhizosphere

soils of wild-type Castlemart and homozygous jai1-1 tomato plants in 2009 and 2010 field plots

Genotype

Harvest point

2009b 2010b

pg root–1 pg g–1 soil pg root–1 pg g–1 soil

8 dpi in field

Castlemart 12.7 b 0.5 b 53.3 b 29.7 b

jai1-1 4226 a 57.9 a 3195 a 1572 a

15 dpi in field

Castlemart 5.8 b 2.9 b 29.3 b 129 b

jai1-1 1730 a 19.4 a 1854 a 470 a
aLetters indicate significant (P< 0.05) differences between means of three independent root or soil

samples from wild-type and jai1 plants at each harvest point
bTwenty-eight-day-old plants were transferred to field plots and harvested 8 and 15 days after

planting (dpi)
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Table 2 Root dry weights (mg)a of Castlemart and homozygous jai1-1 tomato plants after 14 days

of growth in non-infested soil or in soil infested with Pythium aphanidermatum in the greenhouse

Inoculum

Expt 1 Expt 2

Castlemart jai1-1 Castlemart jai1-1

0 ppg 57.0� 9.3 59.0� 7.1 65.8� 4.9 69.0� 5.0

500 ppg 33.9� 1.9 8.0� 1.3* 39.5� 2.3 9.7� 0.8*

Ratiob 0.59 0.13 0.60 0.14
aMeans and standard errors of 6–8 control (0 ppg) and Pythium-treated roots (500 ppg). Asterisks
indicate significant (P< 0.05) differences between means of the genotypes at a given inoculum

density
bRatio of average weights of pathogen infected and noninfected roots for each genotype

Fig. 3 Roots of wild-type Castlemart (a) and jai1-1 homozygotes (b) after 14 days of growth in

soil infested with 0, 100, 250, and 500 propagules g–1 soil (ppg) of Pythium aphanidermatum
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4 Tritrophic Signaling in Pythium oligandrum Biocontrol

Interactions

Among the 130 recognized species of Pythium, several are distinctive for their

disease-suppressive properties. The best characterized is Pythium oligandrum (PO),
a ubiquitous mycoparasite of Phytophthora, Trichoderma, and other Pythium spp.

The mycoparasite uses a number of signaling strategies to interact with target fungi

in the soil and to induce defence responses in tomato, wheat, sugar beet, and other

plants (reviewed in Benhamou et al. 2012; Gerbore et al. 2014). Mycoparasitism is

manifest as a coiling of the hyphae of PO around that of its target, followed by

proliferation of PO hyphae and cytoplasmic disorganization and loss within target

cells (Benhamou et al. 2001, 2012). This species is not an endophyte, as the hyphae

decline after an initial rapid colonization of host roots (Picard et al. 2000; Takenaka

et al. 2008), possibly due to the inability of PO to tolerate host defences or of the

host to support fungal replication. PO responds to an uncharacterized chitin com-

plex from the cell wall of the target Fusarium oxysporum f. sp. radicis-lycopersici
and undergoes adhesion to the target surface. Induction of cellulases and proteases

in PO by the Fusarium is proposed to be involved in adhesion (Horner et al. 2012).

Certain pathogen-suppressive PO appears to modulate rhizosphere phytohor-

mone levels, leading to plant growth promotion. In one case, PO produced trypt-

amine and low levels of an auxin-like metabolite in vitro if the precursor tryptophan

was added at specific concentrations to the culture media. Furthermore, tomato

roots exposed to the culture media appeared to take up the auxin-like metabolite and

accumulated more biomass than roots grown in medium without tryptophan

(reviewed in Benhamou et al. 2012). In contrast, an auxin-producing isolate of

moderately pathogenic Pythium group F, which caused yield reduction without

visible symptoms, produced abnormal root morphology and browning lesions

(Le Floch et al. 2003), indicating that the activity of plant growth promoting factor

Table 3 Mean root weight (mg)a and total root length (cm)a of wild-type Castlemart and Jai1
tomato genotypes after 14 days of growth in soil infested with Pythium aphanidermatum

Genotype

Inoculum

(ppg)

Root dry wt

(mg) Weight ratiob
Root length

(cm) Length ratiob

Castlemart 0 207 bcd 0.78 127 ab 0.60

500 161 cd 77 bc

Jai1/Jai1 0 230 abc 0.79 157 a 0.50

500 181 cd 78 bc

Jai1/jai1 0 254 ab 0.66 157 a 0.54

500 168 cd 85 bc

jai1/jai1 0 301 a 0.38 165 a 0.33

500 115 d 55 c
aLetters indicate mean significance classes determined using Fischer’s protected LSD test

(P< 0.05) for all values within the column
bRatios of values at 500 ppg relative 0 ppg for each genotype
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is threshold-sensitive and likely conditions host defence reactions. PO colonization

was not accompanied by the hypersensitive response that is common in pathogenic

host interactions (Picard et al. 2000).

PO reduced populations of P. dissotocum Drechsler in a hydroponic tomato

growing system (Vallance et al. 2009), indicating that its activity is based in part on

external signals. Isolates of PO produce small secreted protein and peptide signal

molecules that trigger systemic resistance and reduce disease symptoms caused by

a range of foliar and soilborne pathogens (Picard et al. 2000; Hase et al. 2006;

Takenaka et al. 2003, 2006, 2008). Oligandrin, a 10 kDa secreted peptide found in

the supernatant fraction of PO cultures, was translocated from the site of applica-

tion at the petiole or excised leaf to intact leaves, indicating its potential for

inducing systemic resistance. In an interesting variation, oligandrin applied to

tomato stems without leaves was able to elicit root defences against the soilborne

pathogen Fusarium oxysporum f. sp. radicis-lycopersici (Benhamou et al. 2001).

A second group of proteinaceous signal molecules, called POD, are present in

cell wall protein fractions of PO and have been shown to induce defence responses

in host roots. POD proteins harbor elicitin domains initially found as conserved

motifs in Phytophthora effectors, but the POD form a phylogenetic cluster distinct

from the elicitins ELI and ELL of Phytophthora (Takenaka et al. 2006; Masunaka

et al. 2010). The effects of POD on defence and protection vary with both host and

pathogen species (Benhamou et al. 2012). Unlike the elicitins, oligandrin and POD

do not trigger a hypersensitive response in host plants or in Nicotiana benthamiana
leaf assays (Picard et al. 2000; Takenaka et al. 2006; Masunaka et al. 2010).

PO genotypes produced different structural isoforms of POD, including POD-1

and POD-2, which varied in ability to induce defence proteins. In sugar beet roots,

POD-1 and POD-2 differentially regulated phenylalanine ammonia lyase (PAL),

chitinase and cell wall-associated ferulic acid, and defence genes encoding oxalate

oxidase and glutathione S-transferase (Takenaka et al. 2003, 2006). When roots of

tomato seedlings were treated with hexameric (bioactive) forms of POD-1, mRNAs

encoding PR-6, proteinase inhibitor II, PR-2b, a basic glucanase, and LeCAS, an

enzyme in the hydrogen cyanide detoxification pathway, were induced in the roots

(Takenaka et al. 2011). The induction of PR-6 and LeCAS implicated the involve-

ment of the JA and ethylene (ET) defence pathways, respectively. Mycelial

homogenates and cell wall proteins extracts of PO induced the accumulation of

ET in tomato roots (Hase et al. 2006; Takenaka et al. 2011) and induced ETR4
(E receptor), ERF2 (ET-responsive transcription factor), and three pathogenesis-

related mRNAs known to regulated by the ET pathway (Hase et al. 2006). Using a

similar system, Hase et al. (2008) demonstrated that the JA-responsive PR-6
(Kunitz trypsin inhibitor) gene was induced by PO extracts in wild-type but not

in jai1-1 tomato plants. In Arabidopsis mutants coi1, jar1, ein2, and etr1 that were

deficient in JA or E signaling, cell wall proteins fractions of PO failed to induce

defence gene expression (Kawamura et al. 2009). PO-mediated defence was also

systemic, as indicated by defence gene induction in leaves and suppression of foliar

pathogens (Hase et al. 2006, 2008; Kawamura et al. 2009). The induction of ET by

secreted peptides of PO distinguishes this defence signaling pathway from that of
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induced systemic resistance following Pseudomonas root colonization (Sect. 5), in

which JA and ET levels remain constant (Pieterse et al. 2000). Host receptors of the

PO peptides remain unidentified.

Despite having activity against soilborne plant pathogens, PO appears to have

minimal impact on rhizosphere microbial populations per se. For instance, growth

of the pathogen Rhizoctonia solani K€uhn was not substantially suppressed in vitro

or in the rhizosphere, and niche competition was not indicated by the transient

nature of PO populations (Takenaka et al. 2003, 2008). Production of diffusible and

stable antimicrobial compounds by PO has not been documented, with the excep-

tion of possible volatiles (Gerbore et al. 2014). The diversity of rhizoplane bacterial

communities from hydroponically grown tomato roots shifted over an 8-month

sampling period, but the changes were not consistently associated with the presence

or absence of PO (Vallance et al. 2012). The effectiveness of PO as a biocontrol

organism might lie with its nonspecific but localized and transient activities.

5 Signaling Between Pathogenic Pythium, Plants,

and Biocontrol Bacteria

Plant pathogenic species of Pythium are subject to suppression by biocontrol

bacteria, such as Pseudomonas and Bacillus spp. Suppression results from the

action of antifungal metabolites, nutrient competition, iron chelation, phytohor-

mone (growth hormone) production, and induced systemic resistance in the host

(reviewed in Martin and Loper 1999; Lugtenberg and Kamilova 2009; Mavrodi

et al. 2006). The antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), phen-

azine-1-carboxylic acid and derivatives, cyclic and straight-chain lipopeptide sur-

factants, hydrogen cyanide (HCN), and other volatile compounds disrupt hyphal

integrity, cytoplasmic organization, or cellular functions, or interfere with the life

cycle of Pythium spp. For instance, Bacillus cereus UW85 and the germ tube

elongation inhibitor zwittermicin A reduced movement of P. torulosum zoospores

around roots of tomato, although a higher degree of disease suppression was

conferred by intact B. cereus cells (Shang et al. 1999). Applied DAPG was

particularly effective against zoospores of the sugar beet pathogen P. ultimum
var. sporangiiferum Drechsler, causing rapid zoospore immobility and disintegra-

tion. Hyphae of the pathogen displayed abnormal plasma membrane morphology,

cytoplasmic vesiculation, and disorganization of cellular contents (de Souza

et al. 2003a). Siderophores pyoluteorin, pyoverdin, and pyochelin sequester iron

to the detriment of Pythium (Buysens et al. 1996). Inhibition of hyphal growth by

bacterium-derived antifungal metabolites often has been observed on Petri plates,

in which the bacterium is grown adjacent to the target pathogen. However, metab-

olite activity in the rhizoplane or field depends on biotic and abiotic factors that

favor niche establishment of the bacterium and production, dispersal, and stability

of the metabolite in order to attain bioactive thresholds. Furthermore, Pythium spp.
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and isolates exhibit differential sensitivity to antifungal metabolites (e.g., Nielsen

et al. 2002; de Souza et al. 2003a; Mazzola et al. 2007).

Quantity and quality of native root exudates differ among hosts of the same

pathogen and can be modulated by biocontrol metabolites (Martin and Loper 1999;

Phillips et al. 2004), so it is not surprising that host genotype is a major driver of

rhizosphere microbial activity. Two sugar beet cultivars harboring different rhizo-

sphere Pseudomonas differentially regulated P. aeruginosa transcripts in a cultivar-
specific manner (Mark et al. 2005). Many transcripts were identified as having

metabolic functions, allowing the bacterium to adapt to quality and quantity of host

exudates. Pseudomonas fluorescens isolates from the sugar beet rhizosphere con-

trolled P. ultimum on barley and sugar beet roots in vitro and in planta (Nielsen

et al. 1998; Jousset et al. 2011). In the sugar beet interaction, disease suppression

was correlated to growth in high glucose medium and attributed to DAPG (Nielsen

et al. 1998). In the barley interaction, the DAPG biosynthetic locus was upregulated

in the bacterium (Jousset et al. 2011).

Systemic induction of defence by P. fluorescens strain CHA0 was demonstrated

in barley using a split root system, in which roots were physically separated into

two portions; the proximal half was treated with the bacterium and the distal half

was treated with the pathogen. Pythium infection was associated with increased root

exudation of the secondary metabolites vanillic, fumaric, and p-coumaric acids in

the distal portion. Application of these compounds to roots induced PhlA expres-

sion (Jousset et al. 2011). In this case, DAPG might be the systemic signal, as has

been observed in induced systemic resistance in Arabidopsis (Weller et al. 2012),

but the signal pathway remains unknown. However, these findings demonstrate

both indirect and direct effects of strain CHA0 on Pythium disease suppression.

Cyclic lipopeptide surfactants (CLP) represent a diverse structural class of anti-

Pythiummetabolites that also are involved in motility and biofilm formation. These

compounds are synthesized by non-ribosomal peptide synthesis and polyketide

synthesis loci in bacteria and vary in the numbers and types of amino acids in the

peptide ring backbone and in the composition of the fatty acid side chains

(Raaijmakers et al. 2006). The amphipathic nature of the peptide ring and lipid

side chain renders the CLP somewhat soluble, with potential for membrane and cell

wall disruption (Schneider et al. 2014). A novel CLP, named viscosinamide,

produced by Pseudomonas fluorescens strain DR54A, suppressed damage by the

sugar beet pathogen P. ultimum (Nielsen et al. 1998, 1999). Viscosinamide caused

abnormal hyphal morphology in and encystment of zoospores. A more extensive

survey of pseudomonads from sugar beet revealed additional Pseudomonas spp.

that controlled P. ultimum (Nielsen et al. 2002). The isolates grouped into two

biovars based on CLP production and carbon utilization profiles; isolates active

against the pathogen all produced a common CLP having an 11-amino acid peptide

ring and a 3-hydroxydecanoyl side chain. In this collection, HCN did not appear to

be the primary active metabolite in Pythium suppression. A CLP produced by

P. fluorescens strain SS101 caused rapid lysis of zoospores of P. ultimum var.

sporangiiferum and P. intermedium, causal agents of Pythium root rot of hyacinth

(de Souza et al. 2003b), and was identified as massetolide A (de Bruijn et al. 2008)
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(Fig. 1c). However, a transposon mutation in the massetolide biosynthetic locus of

strain SS101 did not compromise suppression of P. irregulare, P. sylvaticum, and
P. ultimum var. ultimum nor systemic resistance in wheat or apple seedlings

(Mazzola et al. 2007). Since these Pythium spp. are not prolific zoospore producers,

factors other than CLP might be involved in suppression. The data suggest that a

biocontrol strain that produces multiple factors having different mechanisms of

disease suppression and utilizes non-overlapping biosynthetic pathways for pro-

duction of the factors is the most competitive (Xu et al. 2011). Synergy between

phenazines and rhamnolipid biosurfactants was observed against P. splendens Hans
Braun of bean and P. myriotylum Drechsler of cocoyam (Xanthosoma sagittifolium
L. Schott) (Perneel et al. 2008).

Biocontrol bacteria harbor type III secretion systems (TTSS), as do symbiotic

rhizobia and plant-pathogenic bacteria. In the latter, the TTSS plays a role in the

delivery of virulence proteins to host cells, leading to disease. If the host has

adapted to recognize the virulence protein and protein recognition has been linked

to a defence pathway, then the outcome can be disease resistance. The role of the

TTSS in biocontrol interactions generally is understudied, and it is not clear

whether it conditions interactions with the host, or with the target pathogen, or

both. In the case of P. fluorescens strain KD, which protects cucumber seedlings

against P. ultimum, several lines of evidence indicate that the TTSS is involved in

pathogen rather than host interactions (Rezzonico et al. 2005). The expression of

the TTSS locus, monitored using the hrpJ0:inaZ reporter construct, was induced

in vitro by P. ultimum but not by autoclaved cucumber seedlings. Expression was

also induced in the rhizosphere if the pathogen was present. An insertional mutation

in the TTSS gene hrcV of strain KD did not affect cucumber seedling growth and

vigor, or bacterial rhizosphere populations in absence of P. ultimum. However, the
mutant was reduced in suppressiveness when the pathogen was present, and activity

of the pathogenicity factor pectinase polygalacturonase in Pythium was reduced

more in wild type compared to the mutant. The findings provide a framework for

future signaling studies between pathogen, biocontrol bacteria, and plants.

6 Concluding Remarks

The JA and ET pathways have been recruited for defence signaling in roots during

interactions with other types of microbes, including rhizobia and Trichoderma, and
it is natural to ask whether pathway components can be modulated for defence

against Pythium. One unique JA-dependent signaling of innate immunity to

Pythium involves endogenous host peptides (Huffaker et al. 2006; Huffaker and

Ryan 2007). The propeptides are induced by JA, the ET mimic ethephon, and

wounding and also are auto-induced. Overexpression of the propeptides results in

increased expression of JA-responsive defence genes and root biomass in the

presence of P. irregulare in Arabidopsis (Huffaker and Ryan 2007). This intriguing
signal pathway has yet to be explored in roots of Pythium-susceptible crops.
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Few clues regarding Pythium defence signaling in plants have been obtained

from disease-resistant genotypes of small grain cereals (Okubara and Jones 2011).

Resistance or tolerance is considered to be multigenic in most cases, as is the case

for P. ultimum resistance in bean, attributed to seed coat color, seedling emergence,

and vigor (Campa et al. 2010). One exception is the CzR1 locus for resistance to

P. aphanidermatum in wild turmeric (Curcuma zedoaria Loeb.) which encodes a

protein structurally similar to the barley powdery mildew resistance proteins Mla1

and MLO (coiled-coil nucleotide binding site leucine-rich repeat domain protein, or

CC-NBS-LRR) and other proteins conferring race-specific resistance to biotrophic

pathogens (Joshi et al. 2013; Kar et al. 2013). Structural modeling indicated that six

amino acid residues in the folded protein potentially can form hydrogen bonds with

a β-1,3-D-glucan ligand from the cell wall of P. aphanidermatum (causal agent of

rhizome rot of ginger), possibly leading to enzymatic cleavage of wall polymers

(Joshi et al. 2013). Recognition of structural components of microbes by plants also

is a feature of pathogen-triggered immunity. Genomic approaches are being used to

identify Pythium genes involved in pathogenicity (Horner et al. 2012; Lévesque

et al. 2010) and might provide leads to host-induced gene silencing (HIGS) for

control of specific Pythium spp.

Finally, Pythium in native and agroecosystems is one genus in a complex and

dynamic community of organisms interconnected by different signals.

Metagenomic profiling is beginning to shed light on community composition, but

time and effort is required to understand the biological function of genes and of

rhizosphere community members relative to Pythium disease and management.

Expanded knowledge about signals used by other mycoparasitic and nonpathogenic

Pythium spp. will expand our understanding of the perception and responses of host

plants and target pathogens, and, possibly, the evolution of mycoparasitic Pythium
interactions.
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Belowground Defence Strategies Against

Clubroot (Plasmodiophora brassicae)

Jutta Ludwig-M€uller

Abstract The clubroot disease is one of the most devastating root-borne diseases

of brassica crops. While breeding of resistant cultivars is still a method of choice,

the control of clubroot by either biocontrol agents or even plant strengtheners could

be improved. More environmentally friendly alternatives or additional means to

make the resistance response of crop plants more durable are needed. Chemical

control of clubroot is in many cases not successful; only liming has been used

traditionally with good success. In some cases, the model plant Arabidopsis
thaliana has been used; a plethora of work however has been done on oilseed

rape/canola (in this chapter, the common name for Brassica napus will be chosen
according to the name in the respective publications, mainly canola in Canada and

oilseed rape in Europe) (Brassica napus). The clubroot pathogen is called

Plasmodiophora brassicae and constitutes an obligate biotrophic protist that lives

in close relationship with its host cell. The roots of the host plants are colonized, and

the plant growth is altered upon infection. While shoots can be stunted and show

wilt symptoms after longer infection periods, the root system is converted to a

tumorous root tissue, called “clubroot” by alterations of plant hormones and

metabolic pathways essential for pathogen nutrition. In this chapter, the major

focus will, however, be on biocontrol of clubroot by either endophytic organisms

or by plant strengtheners or plant growth regulators; and some mechanisms behind

it, independent of which host plant was employed, will be discussed.

1 Introduction

The clubroot disease is caused by the obligate biotrophic protist Plasmodiophora
brassicae on roots of the host plants mainly from the Brassicaceae. This disease

affects economically important crops and can be considered a worldwide threat to

brassica crop farming (Dixon 2009, 2014). Many recent review articles have dealt
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with the economic problem of this worldwide disease by publishing the proceedings

of the various recent clubroot meetings and workshops. For instance, one series of

review articles has been published in 2014 in the Canadian Journal of Plant

Pathology and another one several years earlier (2009) in the Journal of Plant

Growth Regulation. The roots of clubroot work go back to the discovery of its

causal agent P. brassicae by the Russian scientist Woronin (Woronin 1878). Since

then, the main structures of P. brassicae as well as the major parts of the complex

intracellular life cycle have been elucidated (Kageyama and Asano 2009). Never-

theless, there are still many open questions concerning specific stages of develop-

ment and colonization. The major problem when dealing with this root pathogenic

protist is its obligate biotrophic lifestyle. Despite many efforts, there has been no

progress in cultivating the pathogen outside of its host until now. For instance,

Arnold et al. (1996) reported the cultivation of P. brassicae in Escherichia coli, but
the resulting amoeba failed to infect host plants. As noted by Dixon (2014), the

protist “P. brassicae exists in a highly protected environment for the majority of its

life cycle. Here, P. brassicae has immediate access to all the nutrition that is

required for growth and reproduction.”

1.1 Disease Cycle

The disease starts by infection of host root hairs (Kageyama and Asano 2009). The

resting spores germinate in the vicinity of host roots and produce biflagellate

zoospores, which then move through the capillary water of the soil and penetrate

a root hair mechanically (Aist and Williams 1971). The root hair elongates, and

eventually, the plasmodia produce zoospores again which are either released into

the soil or enter the cortex by yet unknown mechanisms (Kageyama and Asano

2009). Donald and Porter (2004) observed what they called “secondary zoospores

drifting within root hairs,” indicating that the movement could occur directly from

the root hair to the cortex. In the cortex, the first structure visible within the host cell

is a binucleate myxamoeba (Kobelt 2000), which develops into a so-called second-

ary multinucleate plasmodium (Mithen and Magrath 1992). This secondary plas-

modium reorganizes host metabolism and ultimately host tissues (Ludwig-M€uller
et al. 2009). Cell division of plasmodia might occur concomitantly with the

respective host cell (Kageyama and Asano 2009), leading to cell clusters that all

contain large secondary plasmodia. These infected cells are then induced to

undergo hypertrophic growth (Fig. 1). Once the disease symptoms are fully devel-

oped, the vasculature is partially destroyed, and therefore, the upper plant parts

suffer from drought stress symptoms (Ludwig-M€uller 2009). Using the plant

hormonal network, the plasmodia induce cell divisions and cell elongation in

their host which is dependent on auxin, cytokinin, and brassinosteroids (Siemens

et al. 2006; Ludwig-M€uller et al. 2009; Jahn et al. 2013; Schuller et al. 2014). These
events ultimately lead to the development of visible clubroot symptoms on a
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Fig. 1 (a) An example of Plasmodiophora brassicae-infected roots of Brassica rapa 6 weeks

after inoculation with resting spores of the pathogen. (b) Thin section stained with methylene blue/

Azure II/basic fuchsine (Buczacki and Moxham 1979) through an Arabidopsis thaliana root

4 weeks after inoculation with P. brassicae. RS resting spores, PL secondary plasmodia. The

bar represents 50 μm. Microscopic picture was taken by Claudia Seidel, Technische Universität

Dresden, Germany
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cellular and organ level (Fig. 1). Finally, the mature plasmodia develop into

millions of resting spores which are released into the soil.

Many mechanisms have been described on how the clubroot pathogen can

benefit from the changes in host metabolism and also host hormone homeostasis.

However, using the findings of such approaches to control clubroot is difficult due

to the effect of these approaches on the overall growth and development of the host

plant, in particular, if the hormone homeostasis or essential metabolites are altered

(Siemens et al. 2006, 2011; Schuller et al. 2014). Dwarfed plants have been

described for cytokinin- and brassinosteroid-deficient mutants, although they

showed a resistance phenotype against clubroot (Siemens et al. 2002, 2006;

Schuller et al. 2014). Thus, clubroot is mainly controlled by using resistant culti-

vars. The challenge is to find environmentally friendly means to control clubroot.

While in most cases the administered treatment is equally effective for different

hosts, in other cases it was shown that treatments were effective for one, but not for

the other organism, which will be explained in more detail below. Also, in many

cases, successful treatments under different environmental conditions have been

reported, but the question remains whether the treatment would also be effective in

the field.

Belowground control methods against clubroot that will only be briefly

described include pH and liming, fungicides, and biofumigation, because excellent

reviews exist to which references will be made. Biocontrol agents (i.e., bacteria and

fungi), as well as plant-strengthening formulations and growth regulators, will be

covered in more detail. It will also be tried to give the most likely point(s) in the life

cycle of the pathogen, where the method might be more effective and where

possible mechanistic insights will be presented. In the end, some remarks on

integrated control of clubroot will be made.

2 Liming, pH, and Ca2+

The clubroot pathogenesis is successful in the field at lower pH values (Einhorn and

Bochow 1990). Therefore, liming is a good method to increase the pH of the soil,

but this is not the only effect of this treatment on disease development since calcium

ions could also directly affect P. brassicae growth. One of the most effective

products against clubroot is calcium cyanamide (Donald et al. 2004), which also

acts as fertilizer. Treatments with cyanamide can lead to reduced resting spore

germination (Fig. 2) and diminished infections (Naiki and Dixon 1987; Niwa

et al. 2008). However, the release of the active compound depends on soil type

and moisture as well as pH, and nitrogen input also needs to be considered

(Diederichsen et al. 2014). Moreover, the form of lime, its particle size, mixing

with the soil, and finally the time point of application are other important factors

(Donald and Porter 2009). However, alkaline pH does not result in the reduction of

clubroot if other conditions are still conducive for infection (Gossen et al. 2014).
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Calcium ions have been considered to act against P. brassicae together with high
pH (Webster and Dixon 1991a). Ca2+ alone inhibited either sporangial dehiscence

at higher inoculum pressures or development of sporangia (here this will be called

sporulating plasmodia) at low inoculum pressures (Fig. 2). However, it was noted

that application of salts that simultaneously increase Ca2+ and pH had a stronger

effect on reducing clubroot symptoms than those raising only the pH (Webster and

Dixon 1991a). Other studies have suggested that calcium and magnesium ions in

lime have additional effects on disease control that are independent of pH

(Murakami et al. 2002). However, this interrelation between minerals and soil is

complex (Myers and Campbell 1985; Donald and Porter 2009; Dixon 2014). In

addition, fertilizer treatments can potentially alter soil microbes (Dixon 2014), so

Fig. 2 Brief life cycle of Plasmodiophora brassicae with indications where the different control

methods might be most effective. While all control mechanisms may ultimately reduce clubroot

symptoms, the reduction of the hypertrophied tissue is given as a possible point where a control

agent might interfere with. Not all control mechanisms described in the text have been included.

The numbers refer to the selected references given here in the legend. 1Donald et al. (2004), Naiki

and Dixon (1987); 2Einhorn and Bochow (1990); 3Webster and Dixon (1991a), Murakami

et al. (2001); 4Deora et al. (2011); 5Hwang et al. (2014a); 6Agarwal et al. (2011), Lovelock

et al. (2013); 7Narisawa et al. (2005), Lahlali et al. (2014); 8Wite et al. (2015); 9Kammerich

et al. (2014); 10Jäschke et al. (2010); 11Devos and Prinsen (2006); 12Arie et al. (1999); 13Päsold and

Ludwig-M€uller (2013); 14Schuller et al. (2014); 15Murakami et al. (2002), Ahmed et al. (2011)
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that there might be an indirect beneficial effect of this treatment on biocontrol

agents.

To elucidate at which point in the life cycle of the pathogen the respective

treatment has the major influence may require the establishment of specific in vitro

growth systems that allow the direct observation of growth stages of P. brassicae.
Since the pathogen is an obligate biotroph, it is difficult to observe its growth stages

in the soil. To overcome this problem, Donald and Porter (2004) designed a sand-

solution cultivation technique that enabled them to observe the effect of Ca2+ and

pH on root hair and cortical infection. The system was later adapted for other

experimental approaches, i.e., transcriptome analyses of early stages in the life

cycle using Arabidopsis thaliana (Agarwal et al. 2011).

When the effect of Ca2+ on clubroot is discussed, this is mainly attributed to the

factors mentioned above. However, Ca2+ is also a signal in various pathways that

regulate biotic stress responses (Lecourieux et al. 2006). Backing this thought up is

a publication by Takahashi et al. (2002) showing that endogenous Ca2+ is required

for transient induction of phenylalanine ammonia lyase after P. brassicae infection
in resistant turnip cells. Whether the exogenous Ca2+ from soil might also have this

effect is not clear, but it is an alternative to think about the role of calcium as a

signal for defence induction rather than an inhibitor of spore germination or other

direct effects on P. brassicae.
In addition to Ca2+, boron was able to reduce clubroot on Chinese cabbage

(Brassica rapa ssp. pekinensis) (Webster and Dixon 1991b), where boron had a

better effect at higher pH values compared to lower pH. A similar effect was

observed on canola (Brassica napus) (Deora et al. 2011). Through boron applica-

tion, development of the infection within root hair and cortex was reduced (Fig. 2)

as well as the incidence and severity of the disease (Deora et al. 2011). Therefore,

the authors concluded that boron can be used as a component of an integrated

management program (see Sect. 7).

3 Chemical Control

As noted by Donald and Porter (2009), the use of the term “fungicide” in clubroot

control is misleading since P. brassicae is a protist and not a true fungus. Never-

theless, several compounds were reported to be applied against clubroot, i.e.,

cyazofamid (Zhou et al. 2014) or pentachloronitrobenzene, the latter is stable and

persists in the soil for a long time (Arie et al. 1999). Some of the chemicals effective

on clubroot are not allowed by regulatory authorities due to their potentially

undesirable effects. Consistent control of clubroot in the field was reported only

for a few fungicides (Donald and Porter 2009). One example that should be

mentioned is mercurous chloride (Calomel™), but its high toxicity and persistence

in the environment has led to the withdrawal of the compound from the market.

However, up to now no other comparable chemical effective against clubroot has

been reported (Donald and Porter 2009). A summary of fungicides that have been
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used against clubroot is given in Table 1, which is mainly based on the extensive

review published by Donald and Porter (2009). Alternatively, or in addition to these

fungicides, surfactants have been used in clubroot control (Hildebrand and McRae

1998; Donald and Porter 2009).

In Canada, the fumigant Vapam (dithiocarbamate; sodium N-
methyldithiocarbamate) was used to investigate its effect on P. brassicae primary

and secondary infection, clubroot severity, and growth of canola under greenhouse

and field conditions (Hwang et al. 2014a). The effect of Vapam has been mainly

attributed to its conversion to methyl isothiocyanate, a volatile compound that

diffuses as a gaseous form through the soil after application (Smelt and Leistra

1974). Both primary and secondary infection could be reduced as well as the overall

clubroot symptom severity through the use of Vapam (Fig. 2). Concomitantly, the

seed yield was increased. The authors suggest its use in brassica vegetable

Table 1 Compilation of fungicides used against clubroot mainly based on the review by Donald

and Porter (2009)

Compound (Trade) name

Clubroot

control Problem/remark

Cyazofamid Ranman™ Yes Specificity against oomycetes

Pentachloronitrobenzene Yes Persistence in environment

Hexachlorobenzene as

impurity

Mercurous chloride Calomel™ Highly

efficient

Toxic to mammals

Persistence in environment

Dithiocarbamate

Sodium N-
methyldithiocarbamatea

Vapam Efficient Fumigant

Benzimidazoles (benomyl

derivatives)

Methyl

benzimidazol-

2-ylcarbamate

Efficient only

when incorpo-

rated into the

soil

Precursor used which is

converted to active compound

in soil

Some compounds toxic to

plant

Alkylene

bisdithiocarbamates

Maneb,

mancozeb,

zinep

Yes

N-(1-alkoxy-2,2,2-
trichloroethyl)-2-

hydroxybenzamides

Trichlamide Yes High concentrations needed

for efficient control

4-chloro-N-(2-chloro-4-
nitrophenyl)-a,a,a-trifluoro-
m-toluene sulfonamide

Flusulfamide Inhibits spore

germination

3-chloro-N-(3-chloro-5-
trifluoro-methyl-2-pyridyl)-

a,a,a-trifluoro-2,6-dinitro-p
toluidine

Fluazinam

(Shirlan™ or

Omega™)

Yes Interrupts the production of

energy in fungal pathogens by

an uncoupling effect on oxi-

dative phosphorylation

AG3 phosphonate Yes
aFrom Hwang et al. (2014a). For more information, see Sect. 3
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production, for example, in transplant propagation beds, as well as for controlling

clubroot in small patches of clubroot incidents (Hwang et al. 2014a).

4 Biocontrol Agents

Biocontrol aims to use natural enemies to reduce the population size of a plant’s
pest to a level where the host is not or less strongly affected by the pest. Two main

mechanisms are proposed so far: antimicrobial compounds and/or induction of

plant defence mechanisms. Some biocontrol agents mentioned here are summarized

in Table 2. The pests could be insects, nematodes, fungi, or bacteria. In a molecular

Table 2 Summary of biocontrol organisms presented here together with their possible point in the

life cycle where they exert their function (see also Fig. 2) and if known possible mechanism of

clubroot control

Organism Name Product Point and mechanism of clubroot control

Actinomycetes Microbispora
rosea ssp. rosea

n.d.

Streptomyces
olivochromogenes

n.d.

Streptomyces
griseoviridis

n.d

Streptomyces
lydicus

n.d.

Other bacteria Bacillus subtilis
QST713

Serenade® Suppression of root hair and cortical infec-

tion; induction of defence

Bacillus subtilis
XF-1

Chitosanase production

Lysobacter
antibioticus

Release of antimicrobial compound?

Bacillus
megaterium

n.d.

Clostridium
tyrobutyricum

n.d

Fungi Acremonium
alternatum

Reduction of resting spore production;

induction of defence

Clonostachys
rosea
f. catenulate

Prestop® Suppression of root hair and cortical infec-

tion; antibiosis; induction of defence

Gliocladium
catenulatum

n.d.

Heteroconium
chaetospira

Resting spore germination, root hair and

cortex infection; induction of defence

Phoma glomerata Synthesis of epoxydon

Trichoderma
harzianum

Slight control

n.d., mechanism not yet determined. For more information, see Sect. 4
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sense, biocontrol agents could also induce the defence response of a plant by

triggering systemic acquired resistance (SAR) or induced systemic resistance

(ISR). The latter mechanism is also called priming (Conrath et al. 2001) and can

not only be induced by live organisms but also by elicitor molecules.

Work on biocontrol of clubroot has possibly started with the observation that

some soils were suppressive toward the pathogen (reviewed in Dixon 2014). In

some cases, the suppressiveness was retained after autoclaving the soil, while in

other cases, it was not. In light of the knowledge gained nowadays on the mecha-

nisms induced by biocontrol agents, this observation could mean that either heat-

stable antimicrobial compounds were still present in the soil or that even autoclaved

spores could induce plant defence as elicitors (see Sect. 4.2). Chitosan is also an

elicitor, and it was shown that the compound was able to reduce clubroot symptoms

(Wang et al. 2012). However, the authors only showed a direct effect of chitosan on

resting spores (i.e., spore germination was inhibited). Therefore, it is unknown

whether defence pathways in the plant were also induced.

At which stage should an effective biocontrol agent (BCA) against clubroot be

affecting the pathogen? At best, the biofungicide treatment should target the release

of the zoospores, which can occur shortly after sowing into infested and moist soils

(Peng et al. 2014). In addition, there should be the possibility to control a later step

if the zoospores were too numerous to be completely controlled. However, it is not

trivial to find novel biocontrol organisms. While it was reported recently from

China that novel organisms were found (Zhou et al. 2014), the screen of more than

5000 soil microbial isolates from the Canadian prairies showed no promising

candidate for clubroot control (Peng et al. 2014).

The first trials with potential BCA certainly need to be carried out under

controlled environmental conditions, i.e., in a temperature-controlled chamber or

greenhouse, where not only the environment but also the inoculum density can be

controlled. However, often the efficacy of the biofungicides varies among trials

when moved to the field conditions. This is true especially across crops and test

sites as well as application methods (Peng et al. 2014). Therefore, finding a

biocontrol agent that is reducing clubroot in the greenhouse is only the beginning

in finding a cure in the field. Commercial BCAs include Serenade® (Bacillus
subtilis), Prestop® (Clonostachys rosea f. catenulate), Mycostop® (Streptomyces
griseoviridis), and RootShield® (Trichoderma harzianum Rifai) (Peng et al. 2014),

but not all have been tested against clubroot. Furthermore, formulations need to be

developed that can be used easily in fields. This has been done as granular and seed

treatment formulations for canola (Peng et al. 2014).

4.1 Bacteria

Antagonistic bacteria used to control clubroot include Bacillus subtilis (Lahlali

et al. 2011; Guo et al. 2013), Lysobacter antibioticus (Zhou et al. 2014),

Belowground Defence Strategies Against Clubroot (Plasmodiophora brassicae) 203



Streptomyces sp. (Cheah et al. 2001; Joo et al. 2004), or various actinomycetes

including Microbispora rosea ssp. rosea and Streptomyces species such as

S. olivochromogenes (Lee et al. 2008), S. griseoviridis, and S. lydicus (Peng

et al. 2011).

Results from Zhou et al. (2014) indicated that 6 out of 14 bacterial strains that

were isolated from the soil around the roots of vegetables reduced disease severity

of Chinese cabbage by more than 50% under greenhouse conditions, but no

mechanism was elucidated even though the authors speculated antibiotic factors

might be responsible. Also field trials were performed and resulted in similar data

concerning the disease reduction. The authors compared the efficacy of BCAs, e.g.,

L. antibioticus, to a fungicide (cyazofamid) and found comparable results. Inter-

estingly, the treatment of seeds with the biocontrol strain also reduced clubroot

severity later in the greenhouse, albeit to a lesser extent than the soil drench method

(Zhou et al. 2014).

One of the biocontrol agents already in the market is B. subtilis, and respective

products have already been tested successfully against clubroot on canola in

Canada, albeit so far only in the greenhouse (Lahlali et al. 2011). The effect of

the commercial biocontrol agent Serenade® (B. subtilis QST713) on reducing

clubroot incidents had been attributed to suppressing root hair and cortical infection

by P. brassicae (Fig. 2), because resting spore germination was only marginally

affected (Lahlali et al. 2011). In addition, Serenade® and another biofungicide

Prestop® suppressed the disease on canola via antibiosis and induced host resistance

under controlled-environment conditions (see also Sect. 4.2). Lahlali et al. (2013)

showed the induction of a set of defence genes involved in phenylpropanoid,

jasmonic acid (JA), and ethylene (ET) pathways upon treatment with the BCA.

They also positively correlated the amount of P. brassicae DNA with the reduction

of clubroot symptoms (Lahlali et al. 2013). Granular and seed treatment formula-

tions were developed to facilitate the delivery of biofungicides in field trials (Peng

et al. 2014). Other bacteria tested were S. griseoviridis and S. lydicus which also

showed some control potential against clubroot (Peng et al. 2011).

Another B. subtilis strain, XF-1, which showed high potential to suppress

P. brassicae, was sequenced, and it was shown that a gene cluster involved in the

synthesis of chitosanase is related to the suppression of clubroot (Guo et al. 2013).

This might indicate that the chitin in the resting spores could be a target. Gao and

Xu (2014) used a cocktail of three different biocontrol organisms (Bacillus
megaterium, Clostridium tyrobutyricum, and Saccharomyces cerevisiae) to analyze
their potential to control clubroot. It was shown that their mixture of organisms

could diminish clubroot symptoms.

4.2 Fungal Endophytes

The initial reports on the possible use of fungal endophytes came from reports

published in the 1990s, where endophytic fungi such as Heteroconium chaetospira
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were isolated from the rhizosphere (Narisawa et al. 1998, 2000). In these initial

experiments, no mechanism was postulated, even though reduction of clubroot

incidence was shown. Some data pointed to the germination of resting spores as a

target site (Fig. 2). Later, Lahlali et al. (2014) showed that the clubroot resistance

induced by Heteroconium chaetospira can be related to the induction of plant

defence pathways via jasmonic acid (JA), ethylene (ET), and auxin (indole-3-acetic

acid; IAA) in canola, but not via salicylic acid (SA).

Using the fungus Phoma glomerata, Arie et al. (1999) showed reduction of

clubroot on various brassica crops. They were able to attribute the effect to a

compound, epoxydon, that was isolated as active principle from fungal cultures.

They found that the compound could neither exert antifungal activity against a

variety of plant pathogenic fungi in vitro nor induce acquired resistance (Arie

et al. 1999). However, the compound was reported to display antiauxin activity

(Sakai et al. 1970), and it was shown that another antiauxin (2,3,5-triiodobenzoic

acid; TIBA) had similar effects on clubroot control (Arie et al. 1999). The authors

concluded that the control of clubroot was most likely conferred via an alteration of

auxin levels or distribution, since TIBA is an auxin transport inhibitor (see Sect. 6).

Other endophytes were tested as BCA against clubroot. Doan et al. (2010),

Jäschke et al. (2010), and Auer and Ludwig-M€uller (2014) evaluated the fungus

Acremonium alternatum for its potential to control clubroots of Chinese cabbage,

oilseed rape, and Arabidopsis. While for Chinese cabbage (Doan et al. 2010) and

Arabidopsis (Jäschke et al. 2010) a good biocontrol effect was observed, the effects
on oilseed rape were not very strong (Auer and Ludwig-M€uller 2014), but maybe

the conditions that are needed to exert the full biocontrol potential have yet to be

identified for the latter species.

In Arabidopsis, the endophyte A. alternatum slowed down the development of

P. brassicae (Fig. 2), because the major form found in infected roots were second-

ary plasmodia (Jäschke et al. 2010). This was confirmed by the observation that

genes of P. brassicae expressed at different time points during the disease cycle

were upregulated at later time points under the influence of the endophyte. The

resting spore germination, however, was not inhibited. Since autoclaved spores of

A. alternatum were also able to induce the tolerance against clubroot, it was

speculated that the defence mechanism of the plant was induced. This assumption

was confirmed by microarray analyses which showed that several defence genes

were upregulated more in the co-inoculation with A. alternatum and P. brassicae
than in the inoculation with only one of the two organisms (S. Auer and J. Ludwig-

M€uller, unpublished results). Contrary to H. chaetospira (Lahlali et al. 2014), the

endophyte A. alternatum seems to induce SA-dependent defence pathways, because

some typical pathogen-associated molecular pattern genes were upregulated

(S. Auer and J. Ludwig-M€uller, unpublished results).

Formulations containing the biocontrol agent Gliocladium catenulatum reduced

clubroot severity as well (Peng et al. 2011). G. catenulatum reduced clubroot

severity by more than 80% relative to controls only inoculated with P. brassicae
on a highly susceptible canola cultivar. This efficacy was comparable to that of the

fungicides fluazinam and cyazofamid (Peng et al. 2011). In this study, Trichoderma
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harzianum was also tested, which was somewhat less efficient in clubroot control

compared to G. catenulatum. Based on experiments with cell-free filtrates which

also suppressed clubroot, it was concluded that there might be also antimicrobial

compounds present (Peng et al. 2010).

A biocontrol agent available as commercial product, Clonostachys rosea
(Prestop®), reduces clubroot symptoms via induced host resistance (Lahlali and

Peng 2014). Pathways probably involved, as identified by gene expression analyses,

included the phenylpropanoid pathway and JA and ET signaling, but not SA

(Lahlali and Peng 2014). Since the authors found that this biofungicide did not

reduce the germination or viability of P. brassicae resting spores, they concluded

that the suppression of clubroot disease probably results from the reduction of root

hair and/or cortical infection (Lahlali and Peng 2014). To elucidate the functional

principle, they partitioned the key product components and found that the whole

product gave the most efficient clubroot control compared to C. rosea spore

suspension or product filtrate. They also observed that high treatment doses were

necessary for full efficacy, which might be a problem for the application in the field

(Lahlali and Peng 2014).

4.3 Other Organisms

Studies on the interaction of the clubroot pathogen and earthworms were carried out

since it was reasoned that earthworms can alter soil properties by changing minerals

and/or microbial communities and thereby may also change the outcome of specific

diseases (Winding et al. 1997; Clapperton et al. 2001). While the effect might be

more indirect via (biocontrol) microbes, a treatment with several earthworm species

on clubroot incidence was carried out. It was considered that since the galls

disintegrate at the end of the disease cycle and the spores are liberated into the

soil, these might be consumed by soil grazers feeding on microbes (Friberg

et al. 2008). The fate of plant pathogen propagules during the passage through the

gut of earthworms can vary from complete survival to complete digestion (Moody

et al. 1996). Therefore, it is not predictable what would happen to the very resistant

resting spores of P. brassicae. In their experiments, Nakamura et al. (1995) found

that the presence of the earthworm Pheretima hilgendorfi reduced clubroot disease

severity in experimental pots, but not the number of resting spores. It was therefore

suggested that the effect was based on a chemical inactivation of the resting spores,

resulting in reduced ability of the pathogen to infect the host plants. Contrary to

these promising results, the presence of the earthworm Aporrectodea caliginosa did
not change clubroot disease severity in Brassica rapa var. pekinensis in various

treatment combinations (Friberg et al. 2008).
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4.4 Biofumigation

As for chemical fumigants (see Sect. 3), toxic compounds leaching out from plant

material can be used to control diseases in the soil. Alternatively, the plant materials

containing these compounds are composted in the soil, thereby it is assumed that the

volatile toxic compounds diffuse through the soil (Gimsing and Kirkegaard 2009).

This process is called biofumigation. Treatments with high glucosinolate-

containing plants, for example, B. napus and B. rapa cultivars, were shown to

reduce soil inoculum of P. brassicae (Cheah et al. 2001, 2006). It is important to

note that for clubroot, the second technique using composted plant material is more

promising, because it avoids host plants for P. brassicae in the field (Donald and

Porter 2009).

5 Plant Growth Stimulants

The application of plant growth stimulants in the field or greenhouse should

increase plant performance in general and often under abiotic stress conditions

(Metting et al. 1990; Mancuso et al. 2006). They can be grouped according to their

ingredients such as inorganic mixtures (e.g., sodium or potassium hydrogen car-

bonate), organic mixtures (e.g., algal extracts, humic acids, plant extracts, animal

products), and microbial extracts or components (K€uhne et al. 2006). Recently,

members of such compounds have also been noticed to increase plant resistance

against pathogens (Kofoet and Fischer 2007). Thus, they may also be considered as

biocontrol agents. While the composition of fungicides is better documented, the

specific components within strengthening formulations are sometimes not

completely freely available (Kammerich et al. 2014).

Despite these possible drawbacks, the use of such strengtheners for clubroot

control has been tested. Kammerich et al. (2014) tested the liquid strengthener

formulation Frutogard® that consists essentially of algal extract, amino acids, and

phosphonate and a similar product on the basis of a granulate formulation,

PlasmaSoil®, on possible clubroot control. They showed that both mixtures reduced

clubroot symptoms on Chinese cabbage and oilseed rape, but the granulate formu-

lation was more effective. In addition, light microscopy has indicated reduction of

pathogen structures, especially plasmodia, in treated root sections as well as several

anatomical changes compared to untreated controls and infected roots (Kammerich

et al. 2014). These anatomical changes induced by PlasmaSoil® were summarized

as follows: “(i) strengthening of the vascular cylinder to prevent P. brassicae from
entering the vasculature; (ii) larger cortex cells, which could absorb and transport

more nutrients; and (iii) a suberin layer, which is only one cell layer in clubroot

infected roots, but is at least two cell layers thick in controls and PlasmaSoil®-

treated roots” (Kammerich et al. 2014).
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Seaweed extracts are another prominent class of plant strengtheners (Metting

et al. 1990). Wite et al. (2015) used a commercial seaweed extract (Seasol Com-

mercial®) containing two different brown algal species, Durvillaea potatorum and

Ascophyllum nodosum, to control clubroot in broccoli (Brassica oleracea var.

italica). The seaweed extract had a better effect on the suppression of the secondary
infection phase than on the reduction of root hair colonization (Wite et al. 2015).

The authors speculated that the seaweed extract might induce the plant’s defence
mechanisms possibly due to their laminarin content or growth regulators present.

These results are not in agreement with the observation made by Kammerich

et al. (2014) that one single component of the plant strengthener used in their

study, the seaweed constituent consisting of Ascophyllum nodosum and Laminaria
species, could not reduce clubroot symptoms alone. Furthermore, it was not possi-

ble to reduce clubroot symptoms of Chinese cabbage in the greenhouse using a

commercial seaweed extract (Afrikelp® LG-1) containing the giant brown seaweed

Ecklonia maxima (J. Ludwig-M€uller, unpublished results). Clearly, different host

plants, cultivation conditions, and algal species could be the reason for this dis-

crepancy, and this needs more research in the future.

6 Plant Growth Regulators

Plant growth regulators can be used to regulate the performance of a plant. Often

they directly target the biosynthesis, perception, or transport of plant hormones.

Many of them inhibit gibberellin (GA) biosynthesis (Rademacher 2000) and thus

act as antagonists of the plant’s growth response. Such compounds might therefore

be successfully employed against the clubroot pathogen, because the plant hor-

monal system is dramatically altered in these infected roots (Ludwig-M€uller
et al. 2009; Diederichsen et al. 2014). While the mutation of a specific pathway

most likely results in unwanted growth changes, treatments with inhibitors could

circumvent this problem by applying them only when needed. Thus, the unwanted

effects on plant growth and development might be reduced.

Since it was shown that flavonoids accumulated in clubroots (Päsold et al. 2010),

it was tested whether an inhibitor for enzymes belonging to the class of oxoglutaric

acid-dependent dioxygenases, prohexadione-calcium (ProCa), would have an influ-

ence on the development of the clubroot symptoms (Päsold and Ludwig-M€uller
2013). The compound does not only inhibit an enzyme from the flavonoid biosyn-

thetic pathway but also enzymes occurring in GA synthesis (Rademacher 2000). To

investigate the specificity of the results, another growth regulator

chlorcholinechloride (CCC) that targets specifically the GA biosynthetic pathway

was also employed (Rademacher 2000). Evaluation of clubroot symptoms showed

that the effect was surprisingly specific for ProCa, but not for CCC, since a

reduction of Arabidopsis root symptoms was observed only with the former com-

pound (Päsold and Ludwig-M€uller 2013). This also demonstrates that GAs are not

involved in the hypertrophy symptoms after P. brassicae infection. However,
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whether the observed accumulation of the flavanone naringenin is responsible for

the suppression of clubroot symptoms could not be determined. So it cannot be

ruled out that the inhibition of the flavonoid pathway results in other defects in the

plant.

Auxin homeostasis plays a role for club development (e.g., Jahn et al. 2013).

Auxin transport inhibitors such as TIBA and naphthylphthalamic acid (NPA)

(reviewed in Muday and Murphy 2002) seem to suppress clubroot symptoms.

Arie et al. (1999) called TIBA an antiauxin and showed its suppressive effect on

clubs of various brassicas (see Sect. 4.2). Later, it was shown that application of the

polar auxin transport inhibitor NPA reduced root galls (Devos and Prinsen 2006).

However, it seems important during which period of infection the inhibitor was

applied. Application during later time points, when the disease was already

established in the roots, did not result in the reduction of clubroot symptoms even

though the treated plants showed a dwarfed phenotype (Päsold et al. 2010). Treat-

ment with the auxin influx inhibitor 1-naphthoxyacetic (NOA) acid resulted in

somewhat reduced disease symptoms (Päsold et al. 2010). The reduction of auxin

by means of auxin transport inhibition could directly result in reduced gall size,

because it has been assumed that the increase in auxin is one prerequisite for

hypertrophied cells (Ludwig-M€uller et al. 2009).
An effect of the potassium channel blocker tetraethylammonium (TEA) was

reported on clubroot disease symptoms of Arabidopsis (Jahn et al. 2013). While the

overall phenotype of the treated plants was surprisingly normal, the reduction of

clubroot incidence of treated roots compared to untreated ones was reduced by

about 50%. Also the green plant parts were as healthy as uninoculated plants (Jahn

et al. 2013). This effect was attributed to the inhibition of the K+-mediated cell

elongation process in which auxin also is involved. To be more specific, K+

channels are needed for the auxin-mediated cell elongation response (Christian

et al. 2006). If the cells in infected roots can no longer perform the cell elongation

via increase of turgor pressure, galls will remain small, and P. brassicae cannot

develop into large sporulating plasmodia which would then result in the reduction

of resting spore numbers as well.

Recently, a role for brassinosteroids (BR) for the development of clubroots, in

addition to auxin and cytokinin, was reported (Schuller et al. 2014). Propiconazole,

an inhibitor targeting the BR biosynthetic pathway (Hartwig et al. 2012), reduced

clubroot symptoms of Arabidopsis substantially. While the growth of the treated

plants was reduced, this phenotype was not as dramatic as found for the dwarfed

biosynthesis mutants in the BR pathway (reviewed in, e.g., Choe 2004).

Brassinosteroids are also involved in cell elongation, and therefore, their reduction

has a direct effect, like auxin, on gall size.

In a sense, SA is also a plant (growth) regulator. It is definitely considered a

regulator of the induction of plant resistance against pathogens and also involved in

systemic acquired resistance (SAR). Direct treatment with SA during infection

stages where the pathogen was already established in the plant could not be used

to reduce clubroot symptoms of Chinese cabbage (Ludwig-M€uller et al. 1995).

Based on microarray data for early (root hair) infection, Agarwal et al. (2011)
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identified a downregulation of the SA pathway in infected roots. They pretreated

Arabidopsis plants with a SA solution and found a significant reduction of clubroot

symptoms. This is in contrast to the observations by Ludwig-M€uller et al. (1995)
where the infected plants were treated with SA when infection by P. brassicae had
already occurred. In line with the results of Agarwal et al. (2011), Lovelock

et al. (2013) have shown that early treatment of broccoli roots with SA could

reduce clubroot symptoms significantly. Concomitantly, the gene expression for

two PR genes was upregulated already 24 h after SA treatment (Lovelock

et al. 2013). A possible explanation for these different results concerning SA

comes from recent work where it was shown that P. brassicae possesses a

methyltransferase that can methylate SA (Fig. 3) (Ludwig-M€uller et al. 2015). It
was also shown that the respective gene was expressed as early as day 4 after

inoculation. Thus, treatment with SA at a time point where P. brassicae is already
established in the plant could lead to methylation of SA in infected roots, and the

methyl ester of SA is better transported than SA in Arabidopsis plants from the

roots to the leaves (Ludwig-M€uller et al. 2015). It was concluded that methylation

of SA by P. brassicae is one possibility to suppress the plant’s defence response

(Fig. 3a). If SA is administered at an early time point, as in the work of Agarwal

et al. (2011) and Lovelock et al. (2013), then the P. brassicae methyltransferase

would not yet be active to reduce SA concentrations, so that exogenous SA can

induce resistance (Fig. 3b).

7 Integrated Clubroot Control

Main factors considered in integrated clubroot control management include a

combination of soil treatment with fertilizers and lime, resistant cultivars, and

hygiene measures in field plots and greenhouses (summarized in great detail by

Donald and Porter 2009). Biocontrol agents, in conjunction with soil factors, are

also being considered (Narisawa et al. 2005; Peng et al. 2011), whereas plant

growth regulators and plant strengtheners are not included into thoughts about

integrated control as yet. While most of the experiments with BCAs have been

performed in controlled environmental conditions, their field performance is yet to

be tested. In Australia, integrated clubroot control was shown to work effectively

(Donald and Porter 2009, 2014), and also in Canada, integrated clubroot manage-

ment was investigated for canola (Strelkov et al. 2011; Hwang et al. 2014b; Peng

et al. 2014). In China, mainly resistant cultivars and BCAs are being investigated

against clubroot (Chai et al. 2014).

For the integrated approach, also environmental factors have to be taken into

account (Dixon 2014). Besides the pH value of the soil (see Sect. 2), temperature,

rain, wind, etc. can play important roles in the outcome of the disease symptoms

(e.g., Einhorn and Bochow 1990; Dixon 2009; Gossen et al. 2014; Hwang

et al. 2014b). Temperature, in contrast to soil-related factors, is a factor often

neglected because it cannot be controlled in the field. In a screen of Arabidopsis
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mutants, Siemens et al. (2002) showed a reduction in colonization at lower (18 �C)
compared higher temperature (24 �C) under controlled conditions. In crop plants,

for example, canola, temperatures below 17 �C also reduced the development of

P. brassicae at all life stages (Gossen et al. 2014), and growth at 10 �C completely

Fig. 3 Model on the role of SA and a methyltransferase from Plasmodiophora brassicae that can
methylate SA (PbBSMT). The model is based on data from Ludwig-M€uller et al. (2015).

P. brassicae could secrete PbBSMT into the host cell, then the enzyme would methylate the

defence signal SA. Since MeSA is not activating plant defence responses, the upregulation of the

respective reaction in the host root would be suppressed. Also, MeSA is a better transport

substance in clubroot-infected Arabidopsis thaliana plants than SA and is ultimately emitted

from the leaves (or possibly converted back to SA). Whether MeSA can also be emitted from

the root has not yet been determined. Ultimately, the SA levels in roots can be at least partially

downregulated by this strategy of the protist. This model would also explain why addition of SA at

a time point where P. brassicae is already established in the host root does not lead to the induction
of defence responses. However, if SA is administered early enough at a time point where PbBSMT

is not yet made, then the SA-dependent defence pathways in the plant can be induced as shown by

Agarwal et al. (2011) and Lovelock et al. (2013). Both datasets together point to a role of PbBSMT

as a possible important pathogenicity factor. In the gray box, the situation for exogenous SA

without PbBSMT is shown. The cartoon in (a) was created by Donna Gibson, Institute for Plant &

Food Research, Christchurch, New Zealand
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suppressed clubroot symptoms (Sharma et al. 2011). Based on laboratory experi-

ments and literature reviews, Dixon (2014) concluded that temperatures required

for symptom development and expression are lower than those needed for move-

ment and penetration of zoospores.

A range of alternative management strategies have been evaluated for their

usefulness in clubroot suppression, including manipulation of sowing time (Gossen

et al. 2012; Hwang et al. 2012) and the use of bait crops (Kroll et al. 1983; Ikegami

1985; Murakami et al. 2001; Ahmed et al. 2011). Moreover, the distribution of

clubroot from infested field plots is also a problem that needs to be considered

(Gossen et al. 2014). In this context, controlling farm and nursery hygiene is very

important (Donald and Porter 2009, 2014), since P. brassicae spores can be easily

spread, for example, by wind (Rennie et al. 2015) or through irrigation water

(Gossen et al. 2014). It was shown that these resting spores remain viable in

water for over 30 months, and repeated irrigation with water containing as few as

10 spores per ml resulted in clubbed roots (Donald 2005).

Crop rotation can also help to keep the disease manageable (Robak 1994), but

the growers need to follow the recommended schemes, meaning at least only once a

brassica crop within a 4-year rotation (Diederichsen et al. 2014). In Canada, a

2-year interval of nonhosts was recommended, but only when resistant canola

cultivars are employed, to reduce P. brassicae resting spore load (Peng

et al. 2014). Wallenhammar already determined in 1996 a half-life for

P. brassicae resting spores of 3.6 years which indicates the need for even longer

periods between brassica crops. Dixon (2014) calculated that it would take 18 years,

in the absence of a suitable host, for a field population of P. brassicae to decrease to
less than 10% of the original spore population. The avoidance of host plants is,

however, difficult to achieve when considering the presence of volunteers of oilseed

rape or cruciferous weeds (Diederichsen et al. 2014). Weed control might therefore

be another—indirect—factor that could lead to successful control of clubroot in an

integrated approach. Many weeds are hosts for P. brassicae and need to be spotted

in the given environment (Howard et al. 2010).

In general, these management approaches hold some potential, but they are still

not cost-effective in many areas where clubroot is a problem on crops. For example,

the most cost-effective method to control clubroot on canola is by using resistant

cultivars (Strelkov et al. 2011). A major problem however here is that the number of

clubroot resistance genes available for breeding is low (Hirai 2006) and that single-

gene-dependent resistance can be broken down rather quickly by the development

of more virulent pathotypes of P. brassicae (Kuginuki et al. 1999). Therefore, it is
recommended to complement the cultivation of resistant cultivars by at least one or

two other methods to reduce clubroot in the field (Fig. 4). On the other hand, it was

reported that when the soil resting spore load was too high, neither biocontrol nor

chemical control agents could be effective in reducing disease development. There-

fore, resistant cultivars and crop rotation need to be employed in conjunction with

other measures (Peng et al. 2014). In Brazil, the clubroot control of cauliflower

(Brassica oleracea var. botrytis) and Chinese cabbage was possible on highly

infested fields using a combination of liming, fungicide (flusulfamide), and
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solarization treatment (hydrothermal treatment employing solar radiation to heat

the soil under a transparent plastic film), showing that high temperatures can be

employed against P. brassicae (Kowata-Dresch and May-De Mio 2012).

In this context, a good prediction of clubroot formation can be important as well.

A good knowledge of the site, the severity of disease in the most recent brassica

crop, the rotational history, soil properties, and treatments applied in previous crops

would be very helpful (Donald and Porter 2009). However, for the evaluation of

success during various treatments, the determination of the clubroot pathogen in the

soil is necessary. Many (q)PCR-based methods for detecting spores of P. brassicae
in water and soils have been developed over the years (Faggian et al. 1999; Faggian

and Strelkov 2009) as sensitive as detecting 1000 spores per gram soil

(Wallenhammar et al. 2012). These can be used to determine not only actual soil

Fig. 4 Scheme for integrated clubroot control comparing the effect of a susceptible and resistant

cultivar on resting spore (RS) numbers (no). In the case of a susceptible cultivar (in red), the
inoculation leads in a linear chain of events to the development of the (severe) clubroot symptoms.

The club produces a high number of resting spores which are liberated into the soil for another

infection cycle. The spore load will stay high, unless measures (displayed in box) for reducing
infection will take place. These ultimately reduce the spore numbers to medium (med) which in

turn leads to reduced clubroot symptoms, eventually the spore load will gradually get lower. In the

case of a resistant cultivar (in green), the club development is blocked either at the root hair or

cortex infection, so that the clubroot symptoms are very small or nonexisting. That will reduce the

spore load via medium to low numbers. However, eventually more virulent spores can develop

which can now infect the resistant cultivar. After some time, the resistant cultivar turns into a

susceptible one, producing high spore loads of the more virulent form. If at any stage before this

happens the spore load can be reduced by methods to control clubroot (boxes), then the time frame

that a resistant cultivar can retain the resistance mechanism is quite high
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spore load but also detect heavily infested patches within a field. So far, it has not

been easy to determine individual pathotypes, to follow up on new more virulent

P. brassicae strains, but this may become feasible within the next few years. In the

last century, methods such as PCR on clubroot spores were unthinkable, and

researchers were trying to develop methods for improved detection of resting spores

in soil (Takahashi and Yamaguchi 1987) followed by methods to distinguish

between viable and dead spores and antibody-linked assays (Wakeham and White

1996). In fact, one disadvantage of PCR is that it cannot give any information on the

viability of resting spores, so some of these “older” methods are still important for

some applications. Nevertheless, given the tremendous advances in the molecular

methods, detection of pathotype and viability of spores seems to be just around the

corner or may already be facilitated by the genome draft of the single-spore isolate

e3 (Schwelm et al. 2015). In conclusion, clubroot, a disease with worldwide

importance to agriculture, can be controlled at least to some extent. Further

progress in this area requires strong collaboration among agronomists, plant pathol-

ogists, breeders, farmers, and molecular biologists.
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Belowground Defence Strategies Against

Sedentary Nematodes

Marta Barcala, Javier Cabrera, Carmen Fenoll, and Carolina Escobar

Abstract Plant parasitic nematodes (PPN) represent a major threat to agriculture

as they produce high economic losses. Among them, the sedentary endoparasites

(root-knot nematodes, RKNs, and cyst nematodes) complete their life cycle inside

the host roots where they induce a special feeding site for nutrient uptake, namely,

giant cells for RKNs and syncytia for cyst nematodes. The root system represents

the first physical barrier for nematode penetration. Cell wall hardening strategies

used against many pathogens are not very effective against them, as they use a

robust stylet during penetration or migration to apply mechanical force and/or to

secrete a mixture of cell wall degrading enzymes from the subventral esophageal

glands. Plant defences against endoparasitic nematodes include mechanisms as

pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), the last

one leading to the hypersensitive response. The development of sensitive “omics”

techniques, sometimes combined with feeding cell isolation, allowed global anal-

ysis of gene expression during this interaction. Hence, transcriptional changes

associated to compatible and incompatible interactions of different plant species

such as Arabidopsis, soybean, tomato, Medicago, etc. with different species of

either cyst or RKN nematodes brought up a vast amount of genes induced or

repressed during both interactions. Some of them will be useful for future applica-

tions on nematode control, as functional studies indicated their role in nematode

resistance. Information on the molecular effectors used by nematodes during the

cross talk with susceptible or resistant plants leading to plant defence responses is

continuously increasing. Furthermore, in the recent years, some effectors that

suppress plant defences were described, increasing the complexity of this particular

plant–pathogen interaction.
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1 Plant Parasitic Nematodes: Introduction to Life Style

PPNs are roundworms within the Nematoda phylum. They are obligate parasites

with a simple body structure and can be isolated from almost every vascular plant

(crops, ornamental plants, and trees). They represent a major threat to agriculture,

as yearly economic losses due to crop infestation by PPN have been estimated in

more than $100 billion (Bird et al. 2009).

According to their lifestyle, PPN are classified into sedentary or migratory

(either ectoparasites or endoparasites). Sedentary endoparasitic PPN represent

one of the most important groups in terms of agricultural damage, economical

losses, and cost of pest eradication. So far, more than 2500 species have been

described (Zhang 2013), and they affect relevant staple crops such as potato, rice,

corn, or wheat.

Sedentary endoparasitic nematodes complete their life cycle inside the host roots

where they trigger the formation of a special feeding site for nutrient uptake

(Fig. 1A). They deprive plant–host from food resources and water what in turn

results in stunted and dwarf plants, lowering yields. The most representative

members of this group are the root-knot nematodes (RKN, Meloidogyne spp.) and
the cyst nematodes (represented mainly by Heterodera spp. and Globodera spp.),

which are named based on the typical structures that can be observed in the host root

system after nematode infection: the gall and the cyst, respectively (Fig. 1B, D).

Both RKN and cyst nematodes display morphological similarities, as unicellular

esophageal glands, sexual dimorphism, and the presence of a stylet. The esophageal

glands are essential for parasitism, during penetration and migration stages and

during establishment of the feeding site (nematode feeding site, NFS) (reviewed

in Mitchum et al. 2013). During the first stages of parasitism, two subventral

esophageal glands produce secretory granules containing a cocktail of cell wall

(CW)-modifying enzymes that will help the nematode to penetrate and move

through the host root. Among the CW-degrading enzymes, several endoglucanases

and pectate lyases have been described to be actively secreted during invasion

and/or migration (Davis et al. 2011), facilitating the parasitism. Similar

CW-modifying enzymes have been reported from bacteria, suggesting a putative

acquisition via gene horizontal transfer (Davis et al. 2011). At later stages, the

dorsal esophageal gland enlarges and becomes more relevant in detriment of the

subventral glands, producing nematode effectors involved in NFS formation and

maintenance. The composition of the gland secretions varies among nematode

species and throughout their developmental stages (reviewed in Hussey and Davis

2004; Rosso and Grenier 2011; Gardner et al. 2015; Truong et al. 2015).

The stylet is a distinctive PPN morphological feature, although not exclusive of

them. It is a structure in the anterior part of the body in the shape of a needle. This

can be protruded outside in repetitive thrusts providing mechanical force that,

together with the enzymatic activity of secreted cellulases and endoglucanases,

facilitates penetration and migration in the host root. The stylet is also used for
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Fig. 1 Overview of life cycles of plant sedentary endoparasitic nematodes inside roots. (A)

Schematic representation of the course of the interaction during invasion, migration, and feeding

site (NFS) formation with a root-knot nematode (upper panel) and a cyst nematode (lower panel).
From left to right, see preparasitic J2 larvae (black) invading the roots, initial stages of GC, and
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piercing host cells, injecting secretions and withdrawing nutrients (Perry and

Moens 2011).

Typically, the life cycle of both types of nematodes begins once infective

juveniles (J2) hatch from eggs (reviewed in Escobar et al. 2015). Freshly hatched

J2s are attracted to young roots, which penetrate using different strategies. Cyst

nematodes possess a robust stylet that allow them to mechanically break cell walls

and migrate directly from the point of entrance to the vascular cylinder trespassing

the Casparian strip (Wyss and Zunke 1986). RKNs show a more elaborate behavior

and they enter mainly in the elongation zone very close to the root meristem. Then,

they first move intracellularly toward the root tip where they turn 360o to enter the

vascular cylinder where they will establish and initiate feeding site formation

(Wyss et al. 1992). NFS development is a crucial step; so far, the J2s have survived

using their own lipid reservoir, but unless they succeed on feeding site develop-

ment, they will starve. During evolution, RKNs and cyst nematodes have developed

different strategies for inducing feeding sites, in both cases involving selection of

root cells to reprogram their gene expression (through injected nematode secre-

tions) which eventually lead to morphological and metabolic changes. A RKN

punctures several cells (around 5–8) in the vascular tissues and injects its secre-

tions. The most distinctive morphological change in these cells is their enlarge-

ment; thus, they are known as giant cells (GC, Fig. 1A, C). GC formation involves

several rounds of mitosis with partial cytokinesis and endoreduplication events

(reviewed in de Almeida Engler et al. 2015). Cyst nematode feeding cells, called

syncytia (Fig. 1A, E), have a different ontogeny. Syncytia derive from one single

cell (initial syncytial cell, ISC) that increases its size by fusion of adjacent cells

after their cell wall dissolution (reviewed in Sobczak and Golinowski 2011). Thus,

both NFSs, GC and syncytia, result in multinucleate cells, with dense cytoplasm

and fragmented vacuoles. Root cortical cells around NFSs hypertrophy, forming a

root swelling that is more prominent in the case of RKN, originating the typical

structure after RKN infection, the gall (Fig. 1A–C).

Upon NFS initiation, J2 musculature degenerates and the nematode becomes

sessile. From then on, the juvenile will enlarge and suffer several molts

encompassing the developmental stages J3 and J4, until reaching the adult stage

(Fig. 1A). At this point, the differences in the life cycle between both nematode

Fig. 1 (continued) syncytia development within the vascular cylinder and mature NFS with adult

females. The eggs are deposited inside the females in the cyst nematodes (lower panel), and egg

masses filled with eggs from RKN are deposited outside the female body (upper panel). See the
main text for further details. (B) Mature gall in Cucumis sativus afterM. javanica infection. Adult
female body protrudes outside the gall (black arrow) with the gelatinous matrix containing the

eggs (black arrowhead). (C) Semithin section of a gall 7 days postinfection from A. thaliana
stained with toluidine. GCs are indicated with asterisks. (D) Sinapis alba root infected with

H. schachtii. (E) Arabidopsis thaliana syncytia close-up micrograph. Adult females containing

egg masses inside its body (cysts) are indicated by black arrows. Scale bars, (C, E) 100μm;
(B) 500μm; (D) 200μm
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groups are remarkable. Contrary to cyst nematodes that reproduce sexually, RKN

present apomixis and reproductive individuals are all female, albeit a few adult

males that appear under stress conditions (i.e., low nutrient availability). RKN adult

females show a pear-like shape (Fig. 1B), and their head remains attached to the

feeding cells while the posterior part of the body is exposed to the outside. These

females deposit parthenogenetic eggs embedded in a gelatinous matrix (Fig. 1B),

where the larvae will develop into J1 and J2 that will hatch to complete a new

infective cycle. In cyst nematodes, the adult female is fertilized by a free-moving

male, while its head stays inside the host root and the majority of its body protrudes

outside the root. The fertilized female shows a lemonlike shape and deposits the

eggs inside its body. Once the female dies, its body hardens to provide extra

protection for eggs and serve as a resistance form called the cyst (Fig. 1D). Inside

the eggs, the nematode will pass through the developmental stages J1 and J2, and it

will remains inside the egg until favorable conditions for hatching. Nematodes

remain viable inside the cyst for long periods, which makes their eradication from

fields very difficult . The narrow host range that show the cyst nematodes, restricted

mainly to Solanaceae (as for Globodera spp.) or Poaceae (for Heterodera spp.),

could be a consequence of having this resistance from what allows them to remain

quiescent for long periods and eliminates the urgent necessity to find a suitable host

upon hatching as for RKN (Lambert and Bekal 2002).

2 Belowground Defences Against Endoparasitic Nematodes

Resistance to nematode infection is usually referred to as the result of a low

capacity of the nematode to reproduce, so that no substantial increase in final

nematode population can be observed. In most resistant plants, nematodes are

able to penetrate and migrate inside the root, and even to initiate a NFS, although

its development is usually blocked by plant defence responses after a while. Thus,

the root system represents the first barrier for nematode penetration, and by

hardening the CW, e.g., increasing the lignin content, plants try to protect them-

selves from nematode attack through preinfective mechanical defences. Chemical

preinfective defences have been described for some plants whose exudates contain

compounds with repellent or nematicidal activity (Tomczak et al. 2009). However,

this hardening strategy that can be reliable for pathogens such as fungi or bacteria is

not very effective against endoparasitic nematodes, as they enter very young roots

using a stylet and/or a mixture of CW-degrading enzymes to loosen cell walls, thus

facilitating penetration. Among CW-degrading enzymes, several endoglucanases or

pectate lyases are actively secreted during cyst nematode invasion and/or migration

(reviewed by Bohlmann and Sobczak 2014). Polygalacturonases have also been

found in RKN secretions (Jaubert et al. 2002).

Plants have a battery of strategies to protect themselves against pathogen and to

achieve plant immunity. These general responses are usually sufficient to avoid a

broad range of pathogen attacks and are comprised in what has been called nonhost
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resistance. Basically, after any attempt of invasion, plants can recognize either

conserved pathogen-derived molecules (i.e., flagellin, flg22, from bacteria), known

as pathogen-associated molecular patterns (PAMPs), or molecules derived from the

infection process itself. This process is usually executed by transmembrane pattern

recognition receptors (PRRs) that activate pattern-triggered immunity or innate

immunity (PTI; Macho and Zipfel 2014). Degradation products from

CW-degrading enzymes (i.e., cellulases and pectate lyases (Lozano and Smant

2011)) or peptides derived from cleaved and degraded proteins that are produced

as a result of the activities of the invading pathogen could also act as PAMPs

(Tomczak et al. 2009; Albert 2013; Malinovsky et al. 2014). So far, no nematode

PAMP that could induce plant defence responses has been reported (Mantelin

et al. 2015). After PAMP recognition, plants initiate a response that involves

transcriptional activation of defence genes encoding oxidases, peroxidases, or

MAPKs and genes involved in the synthesis of defence compounds such as

phytoalexin, flavonoids, or reactive oxygen species (ROS), etc. However, since

nematodes and other pathogens deliver effectors that suppress PTI, some plants

have a second layer of immune receptors encoded by resistance (R) genes. These

proteins recognize effectors leading to effector-triggered immunity (ETI; Jones and

Dangl 2006). After ETI signaling, plants initiate a cascade of events (i.e., synthesis

of pathogenesis-related proteins (PR) or defence compounds such as phytoalexins)

leading to the hypersensitive response (HR) (Smant and Jones 2011; Mantelin

et al. 2015). Then, a cross talk among attack–defence strategies is initiated by

pathogen and plant, and depending on the ability of the pathogen to evade or

overcome these plant responses, it results in a compatible interaction, where the

pathogen is able to feed and/or reproduce, or an incompatible interaction where

plant is resistant.

The gene-for-gene resistance is so far the most successful plant tool to counter-

act PTI evasion and to fight nematode infection. This type of resistance is elicited

by an effector from the pathogen, known as avirulence (Avr) factor, recognized by a

plant plasma membrane or cytosolic receptor, the R protein, in a gene- and allele-

specific fashion. For this reason, gene-for-gene resistance is highly specific for

nematode pathotypes or races and specific plant species and cultivars, which

represents a disadvantage for breeding. Identification of Avr or putative Avr

genes from PPN is still scarce (e.g., Mj-Cg-1, Gr-VAP1, or Gp-RBP1; reviewed
in Kaloshian et al. 2011; Rosso and Grenier 2011; Lozano-Torres et al. 2012). In the

cases studied, the rapid resistance response (termed hypersensitive response, HR)

involves the production of ROS and changes in the phosphorylation state of pro-

teins and Ca2+ uptake (Jones and Dangl 2006; Lozano and Smant 2011), and it

resembles an exacerbated and rapid PTI. This HR has been described in tomato

plants carrying the Hero A gene after infection with the potato cyst nematode

G. rostochiensis (Sobczak et al. 2005) or in tomato plants carrying the Mi-1.2
gene after infection with Meloidogyne incognita (reviewed in Williamson and

Roberts 2009). R-gene defence in most cases cannot prevent nematode infection/

penetration, and it drives nematode population decrease by interfering with NFS
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development or promoting male formation, so that only in few cases some females

complete their life cycle.

Besides these examples of direct interaction between the R protein and the Avr

effector, there are evidences suggesting also indirect interactions (reviewed in

Bogdanove 2002). For instance, the Cf-2 resistance gene from Solanum
pimpinellifolium guards an apoplastic papain-like cysteine protease (Rcr3) that

recognizes the GrVAP1 effector from G. rostochiensis (Lozano-Torres

et al. 2012; Mitchum et al. 2013). In this respect, the fungal effector Avr2 was

first reported to activate defence signaling by perturbing Rcr3, sensed by Cf-2 that

eventually triggers cell death (Kr€uger et al. 2002). Similarly, the G. pallida
Gp-RBP-1 gene encodes a secreted protein which induces effector-triggered immu-

nity (ETI) mediated by the Solanum tuberosum disease resistance gene Gpa2,
which encodes a nuclotide binding-leucin rich (NB-LRR) protein, but requires

the Ran GTPase-activating protein 2 (RanGAP2), a protein known to interact

with the Gpa2 N terminus (Sacco et al. 2009). Similarly, the potato (Solanum
tuberosum) disease resistance protein Rx, which mediates resistance to the potato

virus X (PVX), also interacts with the cofactor RanGAP2 for effective immune

signaling (Tameling et al. 2010). Hence, it has been suggested that pathogens may

target a limited number of host proteins that act as essential regulators of the plant

defence responses (Mantelin et al. 2015). This agrees with the fact that several

R genes provide protection against diverse pathogens, such as Mi-1.2 that protects

against several Meloidogyne species, aphids and whiteflies (Nombela et al. 2003)

and Cf-2 conferring resistance to G. rostochiensis and to the fungus Cladosporium
fulvum (Lozano-Torres et al. 2012).

2.1 Defences Against Cyst Nematodes

The first R gene against cyst nematodes that was cloned is the sugar beet Hs1pro-1

(Cai et al. 1997), which conferred resistance against Heterodera schachtii. Since
then, other sources of resistance have been described, but few have been cloned. In

plants harboring R genes such as Hspro-1 in sugar beet, Hero A in tomato or Gpa2 in
potato, the defence response is delayed and syncytia are initiated. Necrotic zones

around and/or in syncytia, when observed, are not evident until a further develop-

mental stage when syncytia degenerate. Sometimes nematode development is

allowed but mainly males are produced. Syncytia collapse takes place at different

times depending on different R genes (reviewed in Sobczak and Golinowski 2011).

In barley carrying the Rha2 gene (cv. Chebec), syncytia degenerate later than in

cv. Galleon carrying the Rha4 gene, suggesting that different defence cascades are

elicited depending onR gene uponHeterodera avenae infection (Aditya et al. 2015).
Most reported R genes encode receptors of the nucleotide-binding–leucine-rich

repeat (NB-LRR) family. This large family has been described in defence responses

of other plant–pathogen interactions such as viruses, bacteria, fungi, or oomycetes

(Grant et al. 2006; Kamoun 2006; Hogenhout et al. 2009; Stergiopoulos and de Wit
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2009; Kaloshian et al. 2011). Activation of ETI by NB-LRR type of R proteins

initiates defence cascades through MAP kinases what will probably activate in turn

the jasmonic acid/salicylic (JA/SA) defence signaling pathway (Hammond-Kosack

and Parker 2003). R genes such as Gro1.4 from potato against G. rostochiensis are
toll/interleukin 1 receptor (TIR) NB-LRR, whereas Hero A from tomato and Gpa2
from potato against G. rostochiensis and G. pallida are members of the coiled-coil-

NB-LRR (CC-NB-LRR), respectively (Caromel and Gebhardt 2011). All of them

are located in the cytoplasm, contrary to another structural type of NB-LRR pro-

teins that carry an extracellular LRR domain such as those encoded by Hs1pro-1

from sugar beet or the Cf from tomato against H. schachtii and G. rostochiensis,
respectively (reviewed in Fosu-Nyarko and Jones 2015).

Genome-wide mapping revealed that monogenic R genes are usually located in

clusters of homologous genes, called “hot spots.” Hero A is located within a region

of 14 homologous genes (Ernst et al. 2002),Gro1 is clustered with another 13 genes
(Paal et al. 2004) and Gpa2 locates in a small cluster (van der Vossen et al. 2000).

Unfortunately, only for the Gpa2 cluster, other resistance genes have been func-

tionally identified, as the Rx1 gene which confers resistance to PVX (van der Voort

et al. 1997).

Although these R-encoded plant receptors are probed to be sufficient to confer

complete resistance, in many cases, plants show intermediate resistance phenotypes

that have been ascribed to polygenic resistance loci instead of single dominant

R genes. In fact, quantitative trait loci (QTLs) are responsible for most of the

resistances. Most studied QTL in soybean resistance against Heterodera glycines
is the Rhg locus. Initially, three recessive loci were described (Rhg1-Rhg3; Cald-
well et al. 1960), but Rhg1 on chromosome 18 had the greatest impact on soybean

cyst nematode (SCN) resistance, providing resistance against a broad range of SCN

in the soybean cv. PI88788 (Melito et al. 2010). However, it is the combination of a

resistance allele of Rhg1, with the corresponding dominant action Rhg4 allele,

which provides full resistance against some Heterodera races in resistant

cv. Peking and Forrest (Melito et al. 2010). Mapping of this QTL located Rhg1 in

a 67 kb segment containing also 11 predicted genes. Among them, there is a gene

encoding an LRR-receptor kinase (LRR-RK) (Glyma18g02680, GmRLK18-1);

unfortunately, functional assays have revealed that this LRR-RK is not the major

source of resistance for this locus (Melito et al. 2010). On the other hand, in vitro

binding assays indicate the capacity of the GmRLK18-1 LRR domain to bind both

nematode and plant signal peptides from the CLE protein family with high affinity

(Afzal et al. 2013), in addition to other major effectors/molecules such as

cyclophilins and methionine synthase. In a fine mapping of the Rhg1 locus, a

narrower region of 31 kb containing noncanonical R genes was described (Cook

et al. 2012). Among them is the previously reported α-SNAP (Glyma18g02590),

whose contribution to the resistance phenotype has been demonstrated by Matsye

et al. (2012) and that is likely involved in vesicle trafficking and may influence

exocytosis of products that alter feeding site development or nematode physiology.

Another of these genes (Glyma18g02580) encodes a predicted amino acid trans-

porter from the tryptophan/tyrosine permease family, which may affect auxin levels
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or distribution, yet another one (Glyma18g02610) encodes the WI12 protein that

may participate in the production of compounds toxic to the nematodes. These three

genes contribute to the resistance against SCN described for the Rhg1-b allele in the
SCN-resistant soybean line PI 88788. Interestingly, higher resistance levels corre-

late with higher number of copies for this cluster. Fiber-FISH assays revealed a

single cluster copy in the susceptible cultivar Williams82, whereas resistant culti-

vars Peking and Fayette had 10 and 4 copies, respectively (Cook et al. 2012).

The Rhg4 QTL was mapped and cloned in soybean cv. Forrest by Liu

et al. (2012). Within the cloned genes, some unrelated to the typical LRR R proteins

were identified: one encoding a serine hydroxyl methyl transferase (SHMT) and the
other a subtilisin-like protease (SUB1). Functional assays indicated that SHMT is

responsible for the Rhg4 resistance although its molecular mechanism of action is

unknown. SHMT is involved in folate one-carbon metabolism, so its role during

SCN resistance could be related to folate deficiency, by triggering HR and subse-

quent cell death or leading to nurturing deficiencies that eventually starve the SCN

(Liu et al. 2012).

Global transcriptomic analysis of plants infected by cyst nematodes representing

compatible and incompatible interactions revealed differential expression patterns

of defence-related genes (Table 1). Many of those were involved in the basal

defence, usually common to both interaction types, but a group of genes was

more specific to plant resistance, mostly analyzed in crops of agronomical interest

as soybean and tomato (Khan et al. 2004; Klink et al. 2005, 2007a, b, 2010a;

Alkharouf et al. 2006; Ithal et al. 2007a; Ithal et al. 2007b; Puthoff et al. 2007;

Uehara et al. 2010). Some studies were centered in soybean transcriptomes from

different cultivars, one susceptible and the other resistant to a particular nematode

race (Klink et al. 2011; Matsye et al. 2011; Mazarei et al. 2011; Wan et al. 2015).

Alternatively, the same cultivar was tested against virulent and avirulent nematode

races (Klink et al. 2007a, b, 2009a, b, 2010b; Hosseini and Matthews 2014). In

some cases, near-isogenic lines (NILs; Klink et al. 2010a; Kandoth et al. 2011) were

compared, and differences in responses to a certain pathogen can be presumably

attributed to a narrow defined region of the genome. Similar results during incom-

patible interactions were observed throughout different host–cyst nematode inter-

actions, showing upregulation of general plant disease and defence genes. Kandoth

et al. (2011) used laser microdissection coupled with comparative microarray

profiling of syncytia isolated from soybean-resistant and susceptible NILs differing

at the locus Rhg1 after infection with H. glycines type 0. They reported that the

resistant NIL overexpressed genes encoding proteins related to plant defence or

oxidative stress, like a homolog to the BCL-2-ASSOCIATED ATHANOGENE

6 (AtBAG6; its overexpression causes cell death in Arabidopsis and yeast), heat-

shock proteins and factors, PRs, WRKY family transcription factors, proteins

associated with HR, apoptotic cell death and the SA-mediated resistance pathway,

or members of the canonical resistance family of CC-NB-LRR proteins. Interest-

ingly, 23 NBS-LRR resistance genes and one LRR-receptor-like kinase from the

biotic stress category were constitutively expressed in resistant lines, suggesting a
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Table 1 Transcriptomic assays involving incompatible interactions of cyst nematodes with

different plant species

Reference Technique

Type of

interaction

Nematode

species Plant species

Biological

material

Puthoff

et al. (2003)

Microarray Compatible/

incompatible

H. schachtii
H. glycines

A. thaliana Roots 3 days

postinoculation

(dpi)

Klink

et al. (2007a)

Microarray Compatible/

incompatible

H. glycines
NL1-RHg
H. glycines
TN8

G. max
cv. Peking
(PI 548402)

Roots 3 and

8 dpi

Klink

et al. (2007b)

LCM and

microarray

Compatible/

incompatible

H. glycines
NL1-RHg
H. glycines
TN8

G. max
cv. Peking
(PI 548402)

LCM syncytia

3 and 8 dpi

Klink

et al. (2009a)

Microarray Compatible/

incompatible

H. glycines
NL1-RHg
H. glycines
TN8

G. max
cv. Peking
(PI 548402)

Roots 12 h

postinoculation

(hpi), 3 or 8 dpi

Klink

et al. (2009b)

LCM and

microarray

Compatible/

incompatible

H. glycines
NL1-RHg
H. glycines
TN8

G. max
cv. Peking
(PI 548402)

LCM syncytia

3, 6, and 9 dpi

Klink

et al. (2010a)

LCM and

microarray

Incompatible H. glycines
NL1-RHg
(HG type 7)

G. max
(PI 88788)

LCM syncytia

3, 6, and 9 dpi

Klink

et al. (2010b)

LCM and

microarray

Compatible/

incompatible

H. glycines
NL1-RHg
(HG type 7)
H. glycines
TN8
(HG type
1.3.6.7)

G. max
cv. Peking
(PI 548402)

LCM syncytia

3 dpi and 8 dpi

Klink

et al. (2011)

LCM and

microarray

Incompatible H. glycines
NL1-RHg
(HG type 7)

G. max
cv. Peking
(PI 548402)
G. max
(PI 88788)

LCM syncytia

3, 6, and 9 dpi

Kandoth

et al. (2011)

LCM and

microarray

Compatible/

incompatible

H. glycines
PA3

(HG type 0)

H. glycines
TN19

(HG type

1–7)

G. max
cv. Williams 82

G. max
cv. (PI 437654)

LCM syncytia

5 and 8 dpi

Matsye

et al. (2011)

Microarray Compatible/

incompatible

H. glycines
NL1-RHg
(HG type 7)
H. glycines
TN8

G. max
cv. Peking

(PI548402)

G. max
(PI 88788)

Roots 3, 6, and

9 dpi

(continued)
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possible role in regulating resistance to multiple SCN races in these soybean lines

(Wan et al. 2015). In this respect, the KR3 gene (encoding a TIR-NBS-LRR protein)

was exclusively induced in a soybean-resistant cultivar at 3 and 6 dpi (Mazarei

et al. 2011). Unique differentially expressed genes induced in resistant cultivars

upon H. glycines infection were also those coding PR10, peroxidases, or cyto-

chrome p450 proteins, as well as the β-1,4-glucanases and defence proteins belong-
ing to the thioredoxin reductase family (RnDR and PDI, respectively; Hosseini and

Matthews 2014; Klink et al. 2010a). Thioredoxin could act mediating SA defence

through interaction with nonexpressor of PR genes 1 (NPR1). Moreover,

transcriptomic studies pointed out the importance of the pathway of

phenylpropanoids in the defence response to nematodes, not only because of their

known role in lignin biosynthesis but because it is a branch for the synthesis of SA

and flavonols. Thus, Hosseini and Matthews (2014) reported the induction of

transcripts of key genes of phenylpropanoid and flavonoids pathway, such as

chalcone synthase (ChS), chalcone isomerase (ChI), or chalcone reductase (ChR),
and also two lipoxygenases (A-8 LOX and LOX2) in a resistant line upon

H. glycines. Similar induction patterns of key genes from these former pathways

were described in soybean-resistant cultivar transcriptomes after SCN infection

(Klink et al. 2010a, b; Mazarei et al. 2011). Surprisingly, Matthews et al. (2013)

observed no alteration of the reproductive index, female index (FI), as compared to

the control when enzymes of this route were overexpressed, except for a moderate

decrease in the case of ChS and C4H (cinnamate-4-hydroxylase).

Table 1 (continued)

Reference Technique

Type of

interaction

Nematode

species Plant species

Biological

material

(HG type
1.3.6.7)

Mazarei

et al. (2011)

Microarray Compatible/

incompatible

H. glycines
(race 2)

G. max TN02-
275
G. max TN02-
226

Roots 3, 6, and

9 dpi

Hosseini and

Matthews

(2014)

mRNA

sequencing

Compatible/

incompatible

H. glycines
TN8 (race
14)
H. glycines
NL1-RHg
(race 3)

G. max
cv. Peking
(PI 548402)

Roots 6 and

8 dpi

Wan

et al. (2015)

Microarray Compatible/

incompatible

Heterodera
glycines
Ichinohe

G. max
cv. Magellan
G. max
(PI 437654)
G. max
(PI 567516C)

Roots 3 and

8 dpi
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Other genes related to defence responses as those encoding lipoxygenases

(LOXs) involved in the biosynthesis of oxylipins and JA were induced in multiple

SCN-resistant Glycine max genotypes (Ithal et al. 2007b; Klink et al. 2007a; Klink

and Matthews 2009; Hosseini and Matthews 2014) and also in NFS and surround-

ing cells in resistant pea plants after infection with H. goettingiana (Veronico

et al. 2006). According to this, overexpression of the lipoxygenase

Glyma08g14550.1 in soybean significantly reduced FI to 42% after SCN infection

(Matthews et al. 2013). Other genes with a functional implication in nematode

resistance and relevant for plant defence responses/syncytia formation are a cell

wall modifier (Gm endo-b-1,4-glucanase), the ascorbate peroxidase 2, a

lipoxygenase or the momilactone-A synthase implicated in the phytoalexin synthe-

sis. Those were identified among 100 differentially expressed genes in a soybean-

resistant cultivar as compared to those susceptible and tested for FI (Matthews

et al. 2013). Peroxidases (PRXs) have a relevant role in defence response, as they

are responsible for ROS production (Sharma et al. 2012). PRXs were induced after

Heterodera spp. infection in resistant plants as compared to susceptible ones

(Alkharouf and Matthews 2004; Simonetti et al. 2010; wheat and soybean respec-

tively), contributing to the increase of ROS. ROS are not only toxic compounds but

also trigger activation of MAPKs in downstream defence signaling cascades to

elicit an HR. However, different types of these PRX, such as an ascorbate perox-

idase 2 and a cationic peroxidase, are not acting in the same pathway for nematode

resistance, as when overexpressed in soybean, the former reduced up to 70% the FI,

whereas the latter substantially increased FI (160% to the control) (Matthews

et al. 2014). In conclusion, a general trend in transcriptomes of resistance cultivars

after cyst nematode infection, as compared to the compatible interaction, is the

induction of defence-related genes, such as those encoding peroxidases,

thioredoxins, and genes related to secondary metabolism (i.e., phenylpropanoids

pathway) or lipid metabolism (i.e., phytoalexins or JA synthesis pathway).

The transcription factor category is usually numerous among the global

transcriptomic analysis and are crucial regulators of entire transduction cascades.

This category was also overrepresented in soybean-resistant lines such as those

from the WRKY (e.g., ZAP1), AP2, or MYB families as compared to susceptible

lines (Hosseini and Matthews 2014; Wan et al. 2015). Regarding cyst infection,

WRKYs are either repressors of basal defence or positive regulators of ETI in

compatible interactions (Eulgem and Somssich 2007).

2.1.1 Plant Susceptibility Factors with Functions in Resistance to Cyst

Nematodes

Transcriptomic analysis of compatible interactions has contributed to the increase

in knowledge about the battle between nematodes and their host during pathogen-

esis. The identification of plant genes required for a successful infection either

induced or repressed (plant susceptibility factors) provides novel sources of resis-

tance, as their loss of function or overexpression may effectively compromise
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nematode progression. Experimental approaches to identify susceptibility factors

include the use of root samples enriched in syncytia, as well as techniques such as

microaspiration or laser capture microdissection (LCM) to increase the enrichment

in syncytia content and thus the sensitivity of the transcriptomic analysis. A general

downregulation of defence genes was reported on microaspirated syncytia in

Arabidopsis at 5 dpi (Szakasits et al. 2009), e.g., genes coding peroxidases or the

RAP2.6 ethylene response transcription factor. Overexpression of the RAPD 2.6
gene in Arabidopsis plants leads to enhanced resistance, probably by increasing

callose deposition, albeit in loss-of-function rapd2.6 mutant lines, susceptibility to

H. schachtii was not altered (Ali et al. 2013). Interestingly, other transcriptomic

analysis performed with either whole root or isolated syncytia in soybean or

Arabidopsis indicate that, similar to the incompatible interaction, genes related to

defence and to secondary metabolism, in particular, the phenylpropanoids path-

ways, are induced (Alkharouf et al. 2006; Ithal et al. 2007b). This last route is

involved in the biosynthesis of cell wall components such as lignin, and it is the

pathway used for biosynthesis of phytoalexin and other defence compounds. The

upregulation of these defence-related genes may also be a collateral response

induced by the wounding damage performed during nematode migration rather

than an expression of susceptibility (Escobar et al. 2011).

In Arabidopsis, the biosynthesis of the phytoalexin camalexin is initiated after

activation of a MAPK signaling cascade, and it is dependent of WRKY33. This

transcription factor is one of the most downregulated genes in the microaspirated

syncytia transcriptome (Szakasits et al. 2009). Infection studies of a mutant from an

interactor of WRKY33 (PHYTOALEXIN-DEFICIENT3; pad3) indicated a higher

susceptibility to cyst nematode infection, with larger syncytia and larger nematodes

as compared to the controls (Ali et al. 2014). Overexpression of the gene AtPAD4,
corresponding to other pad mutant (Glazebrook et al. 1997) also showed an impact

in H. glycines resistance in soybean roots (Youssef et al. 2013). Other WRKYs

involved in biotic stress responses (WRKY6) or acting as negative regulators of

basal resistance to Pseudomonas syringae (WRKY11 and WRKY17) were also

downregulated in syncytia (Szakasits et al. 2009). WRKY6 overexpression

decreased the number of females, whereas mutant lines for either WRKY 11 or

17 were more susceptible, displaying a higher number of females (Ali et al. 2014)

suggesting that their loss of function or overexpression influence nematode

resistance.

Contrary to Szakasits et al. (2009), other transcriptomic analysis at the initial

stages of parasitism revealed induction of plant defences (Puthoff et al. 2003;

Alkharouf et al. 2006; Ithal et al. 2007b; Mazarei et al. 2011). Accordingly, an

increase in the promoter activity of two lipoxygenases (LOX) LOX3 and 4 after cyst
nematode infection in Arabidopsis was reported (Ozalvo et al. 2014). However,

opposite phenotypes were observed in functional assays for both proteins. Whereas

lack of the LOX4 activity increased plant susceptibility, the knockdown of LOX3

decreased plant susceptibility, suggesting that both elicit different defence path-

ways (Ozalvo et al. 2014). Other assays supporting the role of LOX in plant defence

(Matthews et al. 2013) indicate their participation in signaling during basal defence.
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Lipoxygenases are also linked to the JA signaling pathway (Kammerhofer

et al. 2015). In this respect, hormone levels from infected roots were compared to

uninfected roots at initial stages of H. schachtii parasitism in A. thaliana
(Kammerhofer et al. 2015). An increase in JA and in the ethylene precursor

1-aminocyclopropane-1-carboxylic acid (ACC) were observed that was corrobo-

rated by qPCR of hormone marker genes such as some LOXs (LOX3, LOX4, LOX6)
in accordance to Ozalvo et al. (2014). In the tomato compatible interaction,

G. rostochiensis triggered the suppression of SA-mediated defences, as no increase

in PR1 (P4) marker was observed upon nematode infection. On the contrary, PR-6,
a JA response gene, showed higher levels of expression in the compatible interac-

tion as compared to the resistant one, as did other JA-associated genes (Uehara

et al. 2007, 2010). In this respect, when the genes AtNPR1, AtGA2, and AtPR-5,
encoding specific components involved in SA regulation, synthesis, and signaling,

were overexpressed in soybean roots, resistance to SCN was highly enhanced

(decreasing infection by 60%; Matthews et al. 2014). However, overexpression

of other JA-related genes such as AtAOS, AtAOC, and AtJAR1 did not influence

nematode reproduction (Matthews et al. 2014). In contrast, Kammerhofer

et al. (2015) did not find significant transcriptional changes in genes related to SA

signaling.

2.2 Defences Against Root-Knot Nematodes

Several resistance genes or loci have been described in different plant species that

confer resistance against species of RKNs (reviewed in Williamson and Roberts

2009). The physiological mechanisms involved in the incompatible interactions

with RKNs have been at least partially characterized for a few plant species like

tomato, pepper, or Prunus spp.
The resistance response in tomato, consisting in an early HR in the area of

infection, is the best characterized (Milligan et al. 1998; Williamson et al. 1994;

Martinez De Ilarduya et al. 2001; Ammiraju et al. 2003; Martinez de Ilarduya

et al. 2004; Bhattarai et al. 2007; Schaff et al. 2007; Atamian et al. 2012; Mantelin

et al. 2013; Iberkleid et al. 2014; Molinari et al. 2014; Zhou et al. 2015). Several

accessions of Solanum peruvianum (formerly Lycopersicon peruvianum) pos-

sessed natural resistance to RKN what was used by genetic crosses to obtain

resistant lines of the common tomato S. lycopersicum (Smith 1944; Watts 1947).

However, the molecular mechanisms underlying this resistance have not been yet

fully understood, although during the last years, molecular biology techniques

helped to describe some of the transduction cascades involved in this complex

process. In tomato, two main resistance genes were cloned, named Mi-1.2 and,

Mi-9, both encoding proteins belonging to the largest class of R proteins with

central NB and C-terminal LRR domains. Only Mi-1.2 confers resistance against

the three main species of RKNs (M. javanica, M. incognita, M. arenaria) but
also against potato aphids (Rossi et al. 1998) and the potato whitefly
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(Nombela et al. 2003); however, it does not confer resistance against other species

of RKNs, such as M. hapla (Brown et al. 1997) or M. enterolobii (Kiewnick
et al. 2009). Additionally, it is inactive at soil temperatures above 28 �C (Dropkin

1969). Interestingly, the only putative Avr gene described for Mi-1 is Cg-1 that is

present in an avirulentM. javanica strain but not in the virulent strain. It encodes a
small nematode protein (the longest open reading frame of 32 amino acids) that is

required for Mi-1 resistance (Gleason et al. 2008). Mi-9-mediated resistance in

Solanum arcanum L. is functional at soil temperatures as high as 32 �C conferring

resistance only to M. incognita and M. javanica (Veremis et al. 1999; Ammiraju

et al. 2003; Jablonska et al. 2007). Although most of the seven remaining Mi-1.2
paralogs (Seah et al. 2004) are transcribed to detectable levels, their ability to

confer resistance remains unknown. The Rme1 locus is required for the early steps
of the resistance response mediated by Mi-1.2 (Martinez De Ilarduya et al. 2001,

2004), as the rme1 mutant was compromised in resistance to M. javanica and to

the potato aphid. Rme1 acts early in theMi-1.2 pathway, either at the same step as

the Mi-1 protein product or upstream of Mi-1 (Martinez de Ilarduya et al. 2004).

However, the precise function and molecular nature of RMe1 in the incompatible

interaction needs to be further analyzed. Another protein involved in the signal

transduction pathway mediated by Mi-1.2 gene is HSP90, a chaperone capable to

form hetero-multimeric recognition complexes together with R proteins, which

remain in an inactive but signaling-competent state (Kaloshian et al. 2011).

Silencing of HSP90-1 by virus-induced gene silencing (VIGS) in Nicotiana
benthamiana demonstrated the role of this gene in Mi-1.2-mediated resistance

as it was attenuated (Bhattarai et al. 2007). Transcriptomic approaches have been

used as well to decipher the differences between the resistant (Mi-1+) and

susceptible (Mi-1–) tomato plants (Schaff et al. 2007). In the absence of nema-

todes, they showed only one differentially expressed gene corresponding to a

glycosyltransferase (Table 2; Schaff et al. 2007), and, strikingly, silencing this

gene restored the susceptibility to nematode infection of the resistant line (Schaff

et al. 2007). Three key transcription factors mediating the signaling cascade for

Mi-1-mediated resistance have been described so far, SlWRKY70, SlWRKY72a,
and SlWRKY72b, whose silencing in resistant plants restored also the infection by
M. incognita (Bhattarai et al. 2010; Atamian et al. 2012). The comparison

between the transcriptomes of resistant and susceptible lines indicated that the

JA signaling pathway had a role in basal defence but not in Mi-1-mediated

resistance to RKNs, while low SA levels might be sufficient because Mi-1-1
resistance to RKN was not compromised in Mi-1 NahG tomato lines that fail to

accumulate SA (Table 2; Bhattarai et al. 2008). The participation of ethylene in

the Mi-1-mediated resistance to RKN seems also minor, as impairing ethylene

biosynthesis or perception using VIGS, the ethylene-insensitive mutant Never
ripe, or 1-methylcyclopropene treatment, did not attenuate the resistance

(Mantelin et al. 2013).

Contrasting to the restricted resistance conferred byMi genes, in Prunus spp. the
Ma gene identified in P. cerasifera confers resistance to over 30 RKN species and

isolates (Esmenjaud et al. 1994, 1996; Lecouls et al. 1997). Ma has been cloned
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as the gene TNL1 (a TIR-NBS-LRR gene), and it conferred the same complete-

spectrum and high-level resistance using its genomic sequence and native promoter

region in Agrobacterium rhizogenes-transformed hairy roots and composite plants

(Claverie et al. 2004, 2011).

In pepper, the resistance to RKN is driven by several heat-stable resistance genes

(namedMe genes; Djian-Caporalino et al. 1999, 2001) and the N-gene (Hare 1957),
which cluster together in the P9 chromosome (Djian-Caporalino et al. 2007). Other

important crop species present natural resistance against RKN infection, although

the molecular knowledge of these sources of resistance is still scarce. However, the

“omics” techniques like proteomic and transcriptomic have greatly contributed to

the study of host defence responses related to the plant resistance (Table 2). The

study of the transcriptome of a resistant cotton line uncovered a 14 kDa protein

(Callahan et al. 1997), later identified in a cDNA library from 10 dpi M. incognita
galls that was induced in a nematode-resistant line, Meloidogyne-Induced Cotton3

(MIC-3 ; Zhang et al. 2002). MIC-3 overexpression in a susceptible line reduced

egg production by 60–75% (Callahan et al. 1997, 2004; Wubben et al. 2015). In

resistant cotton cultivars, there was a negative correlation between the presence of

MIC-3 in the roots and the developing of nematode-induced galls (Callahan

et al. 2004). Since then, 15 MIC-like cDNAs have been identified in cotton roots,

showing their maximum induction before the appearance of visible signs of resis-

tance (Wubben et al. 2008). Therefore, the MIC gene family has been proposed as

part of a root-specific defence response mechanism in cotton (Wubben et al. 2008).

The proteomic profiling of cotton and coffee resistant lines were further studied,

showing differential expression of proteins related to disease resistance like a

chitinase, a pathogenesis-related protein and a quinone reductase 2 (Franco

et al. 2010).

The comparison of cDNA libraries from infected roots at 12, 24, 48, and 72 h

post-inoculation withM. arenaria of the resistant peanut cultivar NemaTAM and a

susceptible one showed expression of a higher number of stress-related genes in

NemaTAM, including specific transcripts as those encoding PR proteins, patatin-

like proteins and universal stress proteins (USP; Tirumalaraju et al. 2011).

In cowpea, the Rk locus drives the resistance against RKNs in a different way of
the early response mediated by Mi-1 in tomato, as it confers a later response

without early hypersensitive signs but blocking the nematode reproduction. When

genes expressed in RK plants were compared to those from a susceptible nearly

isogenic line, the typical defence response was partially suppressed in resistant

roots, even at 9 days postinoculation, allowing development of juvenile nematode

stages. Differences in ROS concentrations, induction of toxins, and other defence-

related genes seem to play a role in this unique resistance mechanism (Das

et al. 2010). Other aproaches based on proteomics on cowpea resistant lines

revealed 13 unique proteins including some related to oxidative stress (e.g., a

multicatalytic endopeptidase complex (proteasome), hydroxyacid oxidase,

gamma-type carbonic anhydrase family protein, ferredoxin-NADP reductase iso-

zyme 2, and glutathione S-transferase), those proteins increased or were unique to

the highly resistant CE 31 and could be involved in nematode defence and

Belowground Defence Strategies Against Sedentary Nematodes 237



resistance mechanisms (Villeth et al. 2015). A complementary proteomics study

comparing different resistant lines described the induction of enzymatic activities

such as superoxide dismutase, chitinase, b-1,3-glucanase, peroxidase, and cysteine

proteinase inhibitor in the highly resistant line as compared to the rest. This

suggests that these activities may contribute to the high resistance of this cowpea

cultivar against infection and colonization by M. incognita (Oliveira et al. 2012).

The resistance of alfalfa cv. Moapa 69 toM. incognita does not rely on apoptotic
cell death, but may occur due to the inability of the RKN to enter the developing

vascular cylinder of the root, as J2s remain at the root apex as early as 48–72 h after

inoculation (Potenza et al. 1996). Massive sequencing of the transcriptomes of

M. sativa susceptible and resistant lines (cv. Lahontan and cv. Moapa 69, respec-

tively) at 10 days postinoculation with M. incognita showed the contribution of a

high number of unique R genes in both interactions and identified nearly a thousand

of differentially expressed genes that are presumably involved in basal defence

responses (cv. Lahontan) and in resistance pathways (cv. Moapa). Interestingly, a

number of transcripts potentially associated with resistance to nematodes, in par-

ticular two R genes (Medtr3g056585, an LRR and NB-ARC domain disease

resistance protein and Medtr0277s0020.3, a disease resistance protein of TIR-

NBS-LRR class) are upregulated during infection in cv. Moapa and repressed in

cv. Lahontan, supporting typical gene-for-gene interaction (Postnikova et al. 2015).

The data also suggest that the R genes could have a dual role as part of a general

defence in the susceptible lines and as part of the resistance reaction in the

incompatible lines (Postnikova et al. 2015).

In soybean, PR genes such as PR-1, PR-2, PR-5, or PR-14 were upregulated in

infected roots of a resistant line, being PR-14 exclusive of the incompatible

interaction (Beneventi et al. 2013). From this transcriptomic study, a complex

model was proposed integrating putative crosstalk mechanisms between plant

hormones, mainly gibberellins and auxins, which can be crucial to modulate the

levels of ROS in the resistance reaction to nematode invasion (Beneventi

et al. 2013). Furthermore, the ectopic expression of the Arabidopsis gene PAD4
that encodes a lipase-like protein that plays a role in SA signaling and is required for

the expression of multiple defence responses such as camalexin biosynthesis,

resulted in a 77% decrease in gall number (Youssef et al. 2013). Additionally,

the analysis of soybean infected with M. incognita revealed six responsive genes

encoding heat-shock proteins from the HSP20 family (GmHSP20 genes) by

qRT-PCR. Some of them were downregulated in a susceptible line but upregulated

in the resistant genotype (Lopes-Caitar et al. 2013).

2.2.1 Plant Susceptibility Factors with Functions in Resistance to Root-

Knot Nematodes

As discussed for cyst nematodes, knowledge of factors involved in the susceptibil-

ity to RKN has provided important insights in the mechanisms of infection as well

as molecular candidates for developing resistance. A good example is the analysis
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of the transcriptomes of early developing isolated GCs from Arabidopsis and

tomato (Barcala et al. 2010; Portillo et al. 2013). In both transcriptomes, a massive

downregulation of genes was observed at early infection stages, particularly in GCs.

Those genes repressed in GCs were robustly conserved between Arabidopsis and
tomato (Portillo et al. 2013). Many of these genes were related to stress, particularly

to secondary metabolism as the phenylpropanoid pathway that was significantly

overrepresented among the repressed genes in both tomato and Arabidopsis GCs.
Among them are genes involved in lignin biosynthesis, such as those coding a

group of peroxidases, together with genes from a biotic stress subcategory encoding

protease inhibitors (Portillo et al. 2013). In this respect, infection tests with a tomato

line overexpressing the TPX-1 peroxidase, highly repressed in Arabidopsis and

tomato GCs, showed a 35% reduction in the number of galls formed. In contrast, a

remarkable induction of TPX-1 (above ninefold) was observed in a resistant cultivar
carrying the Mi-1 gene, S. lycopersicum cv. Motelle (Mi-1/Mi-1) as compared to

the susceptible near-isogenic line S. lycopersicum cv. Moneymaker (Portillo

et al. 2013) both infected withM. javanica. Similarly, downregulation of secondary

metabolism and defence-related genes as compared to the neighboring cells was

also observed inMedicago spp. GCs. Therefore, defence and secondary metabolism

(as the phenylpropanoids biosynthetic pathway) repression seems to be a hallmark

of the GC transcriptome (Barcala et al. 2010; Damiani et al. 2012; Ji et al. 2013;

Portillo et al. 2013).

Lipoxygenases are also crucial enzymes for the biosynthesis of oxylipins, which

have an important function in the plant defence response against wounding and

pathogen attack. Interestingly, significant roles during RKN interaction has been

reported for some of the gene members encoding LOXs. Maize lox3-4 mutants

displayed increased attractiveness to RKN and an increased number of juveniles

and eggs (Gao et al. 2008), and in Arabidopsis, lox4 mutants were more susceptible

to RKNs than control plants, but lox3 mutants showed less susceptibility (Ozalvo

et al. 2014). Additionally, the expression of six PAL genes related to the

phenylpropanoids pathway, in three maize genotypes that were good, moderate,

and poor hosts for M. incognita showed that ZmPAL4 was most strongly expressed

in the most resistant maize line (Starr et al. 2014), suggesting a role for this pathway

in the defence against the RKNs.

The ability of nematodes to suppress local defence pathways (mainly ethylene

and SA-related pathways) in feeding sites during the compatible interaction has

been further confirmed in monocots as rice. Similar to what was described in

Arabidopsis (Barcala et al. 2010), genes involved in the phenylpropanoid pathway,

responsible for the biosynthesis of different metabolites, such as lignin precursors,

flavonoids, and hydroxycinnamic acid esters and salicylic acid, most of them

involved in plant defences, were strongly suppressed in 3 dai galls in rice (Kyndt

et al. 2012). The downregulation of thionins, peptides involved in plant defence, in

galls induced by M. graminicola at early and medium stages of development was

shown to have a functional role during infection as overproducing OsTHI7

decreased susceptibility to M. graminicola infection (Ji et al. 2015). The proteins

encoded by these genes are promising targets for developing crop varieties that are

better adapted to biotic and abiotic stresses.
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3 An Overview of Nematode Effectors Involved

in Suppression of Plant Defences

In this section, we will only center in the most relevant effectors with described

functions in suppression of plant defences. However, it is important to mention that

there are many effectors with different roles in the plant–nematode interaction, for a

complete review (Gardner et al. 2015; Truong et al. 2015; Mantelin et al. 2015).

The PTI and the ETI mechanisms protect the plant against nematode attack.

Nematodes try to suppress these two immunity responses with molecules coating

their surface or through the secretion of effector molecules. In the first case, it has

been shown that G. rostochiensis presents a peroxiredoxin in the surface that could

act as an inhibitor of the plant oxidative burst response (Robertson et al. 2000;

Robertson et al. 1999). Similarly, glutathione peroxidases and superoxide

dismutase (SOD) have been identified in G. rostochiensis (Robertson et al. 1999;

Jones et al. 2004).G. pallida andM. javanica coat their surfaces with the fatty-acid-
and retinol-binding proteins Gp-FAR-1 and Mj-FAR-1, respectively, that bind

precursors of plant defence compounds and JA-related defensive molecules (Prior

et al. 2001; Iberkleid et al. 2013). The silencing of Mj-FAR-1 in tomato hairy roots

expressing a complementary double-stranded RNA rendered a decrease in the

number of infections, while plants overexpressing this protein were most suscepti-

ble to nematode attack (Iberkleid et al. 2013).

Similar results to those described for Mj-FAR-1 were obtained when silencing

by RNA interference or overexpressing a calreticulin (CRT) secreted by

M. incognita (Jaubert et al. 2005; Dubreuil et al. 2009; Jaouannet et al. 2012).

CRT are calcium-binding proteins highly conserved in plants and animals. Mi-CRT

overexpression in A. thaliana suppressed the induction of defence marker genes, as

well as callose deposition after treatment with the pathogen-associated molecular

pattern elf18 (Dubreuil et al. 2009). GpRBP-1 from G. pallida, an effector of the

SPRYSEC family, triggers Gpa2-mediated cell death in N. benthamiana (Sacco

et al. 2009; see Sect. 2 on this chapter); however, SPRYSEC-19 enables the

supression of programmed cell death and disease resistance mediated by several

CC-NB-LRR proteins in plants (Postma et al. 2012). R gene-mediated cell death

was also suppressed by the effector GrUBCEP12 from G. rostochiensis. Transgenic
potato lines expressing GrUBCEP12 showed increased susceptibility to

G. rostochiensis, and its suppression by RNAi led to a decrease in the infection.

The gene GrUBCEP12 encodes two functional units separated once secreted into

the cells, one acting to suppress plant immunity (GrCEP12) and the other poten-

tially affecting the host 26S proteasome, to promote feeding cell formation (Chronis

et al. 2013). It is also known that the overexpression of the effector Hs10A06 from

H. schachtii increases the number of infections in Arabidopsis. The model proposed

involved 10A06 through the interaction with a spermidine synthase (SPDS2),

thereby increasing spermidine content and consequently polyamine oxidase activity

that will stimulate the induction of the cellular antioxidant machinery in syncytia.
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Hs10A06 seems also to interfere with SA defence signaling (Hewezi et al. 2010).

Similarly, the expression of Hg30C02 in Arabidopsis increased plant susceptibility,
probably interfering with the function of a β-1,3-endoglucanase. The 30C02 protein
also interacted with a β-1,3-endoglucanase in both yeast and plant cells, possibly

interfering with its activity during pathogenesis (Hamamouch et al. 2012).

The annexin-like effector 4F01 (Gao et al. 2008) from Heterodera spp.

interacted in a yeast two-hybrid screening with an oxidoreductase (Patel

et al. 2010) previously described in the response to Hyaloperonospora parasitica
(Van Damme et al. 2008). Constitutive expression of Hs4F01 in Arabidopsis
increased susceptibility to H. schachtii infection. Experiments with Arabidopsis
plants expressing double-stranded RNA complementary to Hs4F01 resulted in a

decrease in the number of infections and in the transcript levels in the nematode

(Patel et al. 2010).

Both CNs and RKNs secrete effectors homologous to plant chorismate mutases

(Bekal et al. 2003; Jones et al. 2003; Huang et al. 2005; Vanholme et al. 2009)

which could prevent the SA-mediated host defence by competing for the

chorismate (Doyle and Lambert 2003).More recently, it has been demonstrated

that RKN and CN produce ascarosides, a group of conserved nematode pheromones

(Manosalva et al. 2015). Pretreatment of Arabidopsis roots with 10 nM ascr#18,

which is found in the exo-metabolome of M. incognita and H. schachtii, signifi-
cantly reduced infection by these nematodes and induced the expression of the

defence-related genes PHI1, FRK1, and WRKY53 (Manosalva et al. 2015). The

activation of PTI components such as mitogen-activated protein kinases, as well as

SA- and JA-mediated defence signaling pathways by this ascaroside suggests that

plants recognized this pheromone as a feature of these nematodes (Manosalva

et al. 2015). Other effectors as Avr genes were already mentioned along the chapter.

By all means, the signaling molecules from the nematode that participate in the

complex cross talk with the plant during the interaction provide a wide open and

promising field. Although several plant genes conferring various levels of natural

resistance to different endoparasitic nematodes in different plant species have been

described, the transduction cascades involved in the underlying molecular pro-

cesses have not been yet fully understood. This includes the mode of action of

nematode effectors that are putative Avr genes. In addition, during the last years,

transcriptomic analysis helped to identify a substantial amount of genes differen-

tially expressed during the incompatible and/or compatible interactions. Some of

them are plant susceptibility factors that play important roles in the interactions

with cyst and/or root-knot nematodes, providing insights in the mechanisms of

infection. Hence, these susceptibility factors are promising candidates to provide

additional resistance, as their loss/gain of function impairs nematode success.
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Belowground Defence Strategies Against

Migratory Nematodes

Michael G.K. Jones, Sadia Iqbal, and John Fosu-Nyarko

Abstract The biology of migratory plant parasitic nematodes has been less studied

than that of the sedentary endoparasites. The damage they cause is less obvious,

their presence and number are more difficult to quantify and they are difficult

organisms to study. Nevertheless, they are economically serious pests of many

crops, from wheat and barley grown in low rainfall areas to horticultural crops

(e.g. Lilium longiflorum) and tropical crops such as coffee, banana and sugarcane.

The most studied migratory nematodes are the root lesion nematodes, Pratylenchus
spp., the burrowing nematode Radopholus similis and the rice root nematode

Hirschmanniella oryzae. In the life cycle of migratory nematodes apart from the

egg, all stages of juveniles and adults are motile and can enter and leave host roots.

They do not induce the formation of a permanent feeding site, but feed from

individual host cells. They create pathways for entry of other root pathogens,

often resulting in lesions, stunted roots, yellowing of leaves and plants showing

symptoms of water stress, leading to yield loss and decreased quality of produce. In

terms of genetic plant defences, no major genes for resistance to migratory nema-

todes have been found, and resistance breeding is usually based on QTL analysis

and marker-assisted selection to combine the best minor resistance genes. Feeding

damage reduces root function, and root damage and necrotic lesions the nematodes

cause can then make them leave the root and seek others to parasitise. Infestation

induces classical plant defence responses and changes in host metabolism which

reflects the damage they cause, although detailed studies are lacking. New genomic

resources are becoming available to study migratory endoparasites, and the knowl-

edge gained can contribute to improved understanding of their interactions with

hosts. Notably transcriptomes of Pratylenchus coffeae, Pratylenchus thornei,
Pratylenchus zeae, R. similis and H. oryzae and the first genomic sequence, for

P. coffeae, are now available. From these data, some candidate effector genes

required for parasitism have been identified: many effectors similar to those

found in sedentary endoparasites are present, with the exception of those thought

to be involved in formation of feeding sites induced by the sedentary parasites.

Belowground defence, in the form of enhanced resistance to migratory parasites,
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may also be achieved by transgenic expression of modified cysteine protease

inhibitors (cystatins), anti-root invasion peptides and host-induced gene silencing

(RNAi) strategies, demonstrating that migratory nematodes are amenable to control

by these technologies. New more environmentally friendly nematicides, combined

with better biological control agents, can be applied or used in seed coatings in

integrated pest management approaches to defend roots from attack by migratory

nematodes.

1 Introduction

The health status of roots at the soil–root interface is thought to underlie about 80%

of all problems of plant growth: root infestation with plant parasitic nematodes is a

major contributor to these problems. The responses of plant roots to nematode

attack depend on the invading nematode and its lifestyle. Feeding and lifestyle

strategies used by plant parasitic nematodes vary and can be divided into ectopar-

asitic, in which the nematodes remain outside the plant and penetrate tissues with

only a small portion of their body, and endoparasitic in which nematodes enter plant

tissues completely or with a large portion of their body—the latter are subdivided

into migratory and sedentary groups, depending on whether all life stages remain

motile or whether they induce feeding sites and become sedentary (Dropkin 1989).

These parasitic habits are summarised in Table 1.

The sedentary endoparasites which attack plant roots are discussed in chapter

‘Belowground Signalling and Defence in Host–Pythium Interactions’: in this chap-
ter the biology and plant defence strategies against migratory parasitic nematodes

Table 1 Parasitic habits of plant nematodes

Ectoparasites Endoparasites

Nematodes remain outside the plant or there is

minor tissue penetration

Nematodes which enter plant tissues mostly

or completely

• Surface tissue feeders

For example, Paratylenchus, Trichodorus,
Tylenchorhynchus

• Migratory

Roots, e.g. Pratylenchus,
Hirschmanniella, Radopholus
Stems and leaves, e.g. Ditylenchus
Buds and leaves, e.g. Anguina,

Aphelenchoides
Trees, e.g. Bursaphelenchus,

Rhadinaphelenchus

• Subsurface feeders

E.g. Belonolaimus, Criconemoides,
Helicotylenchus, Hemicycliophora, Longidorus,
Rotylenchulus, Scutellonema, Xiphinema

• Sedentary, semi-endoparasites in roots

E.g. Heterodera, Rotylenchus,
Tylenchulus

• Sedentary endoparasites, completely within

roots, e.g. Meloidogyne, Nacobbus
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are discussed. The focus is on migratory endoparasites, in particular Pratylenchus
species usually referred to as root lesion nematodes, the burrowing nematode

R. similis and Hirschmanniella species, which include the rice nematode

H. oryzae. This largely reflects the view that, from an economic point of view,

root lesion nematodes are regarded as the third most important group of plant

parasitic nematodes after root-knot (Meloidogyne spp.) and cyst nematodes

(Heterodera and Globodera), with the burrowing nematode R. similis the fourth

most important (Jones et al. 2013).

This ranking for economic importance perhaps partially reflects the fact that

infestation by the sedentary endoparasites is much easier to recognise than that for

the migratory nematodes, since obvious galls or cysts are not present, and the

ranking clearly does not hold for all crops and environments. Migratory nematodes

are the most damaging nematodes in cereal crops in many areas of dry land

agriculture, such as in the Australian wheat belt (Vanstone et al. 2008) and the

Pacific Northwest of the USA (Smiley et al. 2014): the increasing practice of no-till

agriculture in such regions to preserve topsoil and moisture tends to increase the

occurrence of root lesion nematodes. They are also major pests in tropical regions

for crops such as sugarcane grown on fine-textured soils (Blair and Stirling 2007)

and horticultural crops including coffee and banana (Castillo and Vovlas 2007). In

addition, migratory endoparasites such asHirschmanniella spp. are significant pests
of rice crops in flooded ecosystems (Bauters et al. 2014; Kyndt et al. 2014).

2 The Biology of Migratory Parasitic Nematodes

Three genera of the Pratylenchidae family are documented as significant pests:

these include genera belonging to the subfamilies Pratylenchinae,

Hirschmanniellinae and Radopholinae (De Ley and Blaxter 2002; Haegeman

et al. 2010). Although many of the root lesion nematodes (Pratylenchus species)
have been described as economically significant plant pests, of the Radopholinae

only R. similis is regarded as a major pest, particularly of banana, citrus and black

pepper, and of the Hirschmanniella species (rice root nematode), H. oryzae is the

predominant pest (Kyndt et al. 2014).

The number of species of root lesion nematodes (Pratylenchus spp.) described so
far is between 70 and 89 (Castillo and Vovlas 2007; Subbotin et al. 2008). They are

mostly polyphagous, as evidenced by the ability of species such as P. thornei and
P. zeae, isolated, respectively, from the monocots wheat and sugarcane, to be

maintained on dicot carrot discs (Tan et al. 2013; Jordaan and De Waele 1988).

Pratylenchus spp. are migratory, intracellular root endoparasites, and depending on

species, host and temperature, their life cycle lasts between 3 and 9 weeks.

A diagrammatic representation of the life cycle of a root lesion nematode is

provided in Fig. 1 (from Jones and Fosu-Nyarko 2014), and the life cycles of

R. similis and Hirschmanniella spp. are essentially similar. These migratory nem-

atodes develop within the eggshell to the first stage juvenile (J1), which moults to
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the second-stage juvenile (J2) and then emerges from the eggshell (Fig. 1). How-

ever, the difference between migratory and sedentary nematodes is that all subse-

quent juvenile and adult stages (J2, J3, J4, adults) of the former are worm-like and

mobile, and both juvenile and adult stages can enter and leave host plant roots.

Some migratory species also infest tuber tissues, and nematodes such as P. coffeae
and the migratory Scutellonema bradys cause major losses when infesting yam

tubers in West Africa, in which they continue to multiply in storage. Although these

species are migratory endoparasites which usually spend most of their life cycle in

host plant roots, they can also be found at the root surface and in nearby soil. Mature

females lay eggs both inside infested roots and in nearby soil, and under adverse

conditions, these nematodes can survive in soil for several years (Castillo and

Vovlas 2007). Reproduction is usually by parthenogenesis, but males occur in

some species.

As for other plant parasitic nematodes, root-feeding migratory parasitic nema-

todes feed by puncturing cells using their hollow mouth stylet. For root lesion

nematodes, the J2s tend to feed from the epidermis and root hair cells, but with

maturity the nematodes enter roots using their mouth stylet, possibly aided by

secretion of plant cell wall-modifying enzymes, and migrate within the root cortex,

feeding from the cytoplasm of individual cells, which subsequently die. Dead cells

become necrotic, and with additional feeding and tissue damage, typical dark

lesions develop in the roots. Development of lesions and further root damage occurs

Fig. 1 A diagrammatic representation of the life cycle of Pratylenchus (from Jones and Fosu-

Nyarko 2014, with permission)
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because the nematodes provide entry points for other soil pathogens, such as

bacterial (e.g. Pseudomonas spp.) and fungal pathogens (e.g. Fusarium and

Verticillium spp.), developing disease complexes which add to the necrosis and

root damage (Castillo and Vovlas 2007). The nematodes may leave the roots,

particularly from necrotic areas, to feed from new cells or find new host roots.

Affected plants are stunted, leaves show early signs of yellowing and roots are short

and stubby, with dark lesions. Field infestation is often manifested as patches of

poor growth, with more severely affected plants at the centre. Severity is greater

under conditions of poor nutrition or water stress.

3 Diagnosing Migratory Nematodes

Understanding the effects of migratory nematodes and finding appropriate strate-

gies for their control first require their identification, and conventional taxonomy

based on morphometric measurements is a specialist activity. This has been largely

superseded by the development of molecular diagnostic tests, based on differences

in ribosomal gene DNA, particularly the Internal Transcribed Spacer (ITS) regions

(Al-Banna et al. 2004; Subbotin et al. 2008; Holterman et al. 2009; De Luca

et al. 2011; Subbotin et al. 2013), further developed as quantitative polymerase

chain reaction (PCR) tests (e.g. Sato et al. 2007; Berry et al. 2008; Yan et al. 2012).

Correct identification of the species present is important, because plant resistance to

one species does not mean it will be resistant to any other species. For example,

wheat cultivars with resistance or tolerance to P. thornei are not necessarily

resistant or tolerant to P. neglectus and vice versa: resistance and tolerance to

each species are genetically independent (Smiley and Nicol 2009). A measure of

nematode numbers is also important, because overall crop damage reflects the

number of nematodes present, and the number of nematodes per gramme of soil

at the start of a growing season can be used to predict potential losses and can

determine the best cultivar to grow or treatment to apply. The reason why each plant

resistance, tolerance or susceptibility may differ when attacked by different root

lesion species may be explained partly by differences in the effectors that different

nematodes use to enable successful parasitism, and for root lesion nematodes, this is

still a developing research topic (see Sect. 5.2).

4 Virus Transmission by Migratory Ectoparasitic

Nematodes

It is now well established that many species of migratory ectoparasitic nematodes

from the Dorylaimida (Longidorus, Paralongidorus, Xiphinema) and Triplonchida

(Trichodorus, Paratrichodorus), such as the dagger nematodes Xiphinema index
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and Xiphinema diversicaudatum, can act as vectors to transmit viruses of the viral

genera Nepovirus and Tobravirus. They acquire and transmit the viruses by feeding

on infected and then uninfected roots, either persistently or non-persistently: viruses

they transmit include Tobacco ringspot virus (TRSV) and Tobacco rattle virus

(TRV). The nepoviruses Grapevine fanleaf virus (GFLV) and Arabis mosaic

virus (ArMV) are transmitted in a non-circulative manner and are economically

important viruses of vines: precise interactions are required between the compo-

nents both of the virus and the nematode stylet for virus transmission

(Schellenberger et al. 2011). The main defence against virus diseases transmitted

by these migratory nematodes is to avoid the introduction of virus-transmitting

nematodes using plant biosecurity strategies, if infested to eradicate the nematodes

using chemical nematicides or if available to use nematode resistance germplasm or

rootstocks.

5 Natural Mechanisms of Plant Resistance to Nematode

Attack

Under natural growing conditions, plants are exposed to a range of biotic and

abiotic stresses. Among the biotic stresses are various herbivorous organisms

feeding on the aboveground and belowground parts of the plant. Belowground

attack involves various microorganisms which include nematodes, a diverse and

abundant group of multicellular organisms. Plants normally have structural barriers

and physiological processes in place that are able to exclude some microbes,

parasites and pests from attack or invasion. Conversely, some parasites and pests

have evolved mechanisms which aid successful parasitism or infestation of host

plants. A compatible parasite–host interaction is when development and reproduc-

tion of the parasite are fully supported: the host plant is then referred to as

susceptible to infection or infestation. When the development of a parasite is still

supported because the host defences do not confer resistance but the parasite grows

reasonably well with little apparent damage to the host plant, then the host is

tolerant. However, in an incompatible interaction, in which a plant is considered

resistant to infection or infestation, its natural, structural, biochemical or physio-

logical defences can prevent invasion, development and/or reproduction of the

invading organism. The strategies used by plants to defend themselves against the

arsenal of effectors employed by migratory nematodes are discussed in the next

sections.
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5.1 Root Structure and Barriers to Nematode Infection

For higher plants the root is the main belowground organ and can be invaded by

soil-inhabiting migratory parasitic nematodes (although other belowground organs

such as tubers can also be attacked). Plants have many natural physical and

chemical barriers which can provide protection against pathogens and pests. During

root growth in soil, border cells of the root cap become detached (a process termed

rhizodeposition) and can secrete antimicrobial proteins, phytoalexins,

arabinogalactan proteins and pectins into the extracellular matrix or rhizosphere

(Driouich et al. 2013). Border cells or associated extracellular matrix can both

attract and repel pathogenic microorganisms. There is ample evidence that

M. incognita second-stage juveniles (J2) are attracted to and accumulate rapidly

around a 1- to 2-mm apical region of pea roots ensheathed by border cells, whereas

no such reaction occurs at the root tip of snap bean, indicating possible differences

in the perception or response of different plant species to similar root parasites

(Zhao et al. 2000). A similar study on the mechanism of resistance to R. similis
examined the effect that rhizodeposition (root cap cells and exudates) has on

infective nematodes: rhizodeposition from both susceptible and resistant cultivars

of banana (Musa acuminata) attracted nematodes, but the susceptible cultivar

appeared to induce temporary quiescence in R. similis which lasted for 24 h,

whereas nematode quiescence lasted for up to 3 days for the resistant cultivar

Yangambi km5 (Wuyts et al. 2006a). Although these authors concluded that overall

there was no indication that rhizodeposition played a part in preformed resistance of

Yangambi km5 against R. similis, the relatively longer period of induced quies-

cence, and cellular responses of border cells to other factors such as aluminium and

fungi, suggests that the tightly regulated production of border cells and associated

extracellular matrix may play a role in the protection of root tips from some biotic

and abiotic stresses (Hawes et al. 2000).

For migratory nematodes or pathogens that reach epidermal cells of the root of

host plants, the next physical barrier to overcome is the cell wall. For both monocots

and dicots, the plant cell wall is complex: it is composed of polysaccharides, mainly

held together by non-covalent bonds, and cell wall proteins. Cellulose constitutes the

most abundant polysaccharide and forms the framework to which matrix compo-

nents are bound. These cellulose microfibrils are composed of associated linear β-1,
4-glucan chains linked by hydrogen bonds, to form an inelastic and insoluble

structure. The cellulose microfibrils are embedded in a matrix of non-cellulosic

sugar polymers, which include pectins and hemicelluloses, which is further

reinforced by structural proteins such as glycoproteins and aromatic compounds

(Carpita and Gibeaut 1993; McCann and Roberts 1994). The matrix of primary cell

walls of higher plants consists of pectic substances, and the matrix of secondary cell

walls are composed of hemicelluloses. Although the overall structures of cell walls

of higher plants are similar in both monocots and dicots, there are substantial

differences in polysaccharide composition that vary with cell type, cell function,

phase of growth and differentiation. Differences in wall composition may well
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account for some level of resistance/inhibition to invading nematodes (Carpita and

McCann 2000). However, the variation in cell wall composition in many instances

seems not to present an insurmountable barrier to migratory endoparasitic nema-

todes, as reflected by the wide host range of many nematodes, encompassing both

monocot and dicot plants. With the exception of some migratory ectoparasites, such

as dorylaimids with long stylets, which may only use mechanical penetration of host

cells, this suggests that successful invasion of host roots reflects strategies that

enable invading nematodes to modify cell walls with a range of differences in

composition. The latter seems to be a specialty for plant parasitic nematodes in

general and migratory endoparasitic nematodes in particular.

5.2 How Migratory Endoparasitic Nematodes Overcome
Plant Defences

Many migratory endoparasites have wide host ranges: for this they must have

physical attributes, and physiological and evolutionary strategies, that enable them

to avoid detection and successfully parasitise many plants. In a compatible interac-

tion, a nematode can breach the barriers presented by cell walls, feed from host cell

cytoplasm and suppress host defences. However, in reality, not all available infec-

tive juveniles actually succeed in finding and penetrating roots and develop to adults:

this suggests that after the initial invasion, host plants may still employ structural,

molecular or physiological defences to limit nematode growth and reproduction.

Secretions of the pharyngeal gland cells are thought to play a number of roles.

These include suppression of host defences, enabling migration in plant tissues,

promotion of nematode feeding (e.g. anticoagulation for migratory endoparasites,

formation of feeding tubes for sedentary endoparasites) and digestion of ingested

cytoplasm. (Additional functions are proposed for effectors of endoparasites which

are involved in processes of host cell modification in the induction of syncytia or

giant cells.) The secreted components which are responsible for these activities are

generally described as ‘effectors’. Here we include cell wall-modifying enzymes as

effectors, since they are an important component of the gene products required for

plant parasitism and are a unique feature of plant parasitic nematodes.

Study of sedentary endoparasites has been underpinned by the availability of

genomic and transcriptomic resources for the bacterial feeding model nematode

Caenorhabditis elegans and more recently for root-knot and cyst nematodes:

similar studies on migratory endoparasites are now emerging. Sequencing of

ESTs of R. similis and the application of ‘next-generation’ sequencing technologies
to sequence transcriptomes of H. oryzae and mixed stages of P. coffeae, P. thornei
and P. zeae and more recently the genome of P. coffeae now provide the opportu-

nity to identify and characterise effectors that make these migratory nematodes

successful parasites (Jacob et al. 2008; Haegeman et al. 2010, 2011;

Nicol et al. 2012; Bauters et al. 2014; Fosu-Nyarko et al. 2015; Burke et al. 2015;
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Fosu-Nyarko and Jones 2016). Putative effectors of migratory nematodes can now

be predicted using software that identifies sequences for proteins likely to be

secreted, combined with in situ hybridisation to identify transcripts expressed in

gland cells, and sequence similarities and common structural features with effectors

already characterised for sedentary endoparasites. Although the focus of nematode-

secreted effectors has been on proteins or peptides secreted from the pharyngeal

gland cells, other sources of secretions include the chemosensory amphids, the

hypodermis, the cuticle, the excretory system and the rectal glands (Truong

et al. 2015). For migratory nematodes, little is known about possible secretions

from these sources. The current status of potential effectors of migratory nematodes

is provided in Table 2.

Probably the best-characterised group of effectors present in plant parasitic

nematodes are the cell wall-modifying enzymes. A cocktail of these enzymes

(including a range of pectinases, hemicellulases, cellulases and expansins,

Wieczorek 2015) appear to be secreted during nematode–host entry and migration

and contribute to modifying the structure of host cell walls. Combined with probing

with the sclerotised stylet, these enzymes enable nematodes to penetrate and move

either intracellularly or intercellularly through root tissues to select appropriate

cells to feed from. In situ hybridisation of transcripts and the presence of granules

(implying secretory activity) in the subventral gland cells of sedentary endopara-

sites during migration suggest that these cells are the source of cell wall-modifying

enzymes. However, for Pratylenchus spp., the subventral glands do not contain

obvious granules. Nevertheless, identification of similar transcripts of effectors

from recent transcriptomes and genome sequencing data of Pratylenchus spp.

indicates that they also employ a similar range of cell wall-modifying enzymes to

those identified for sedentary endoparasites. Their function is expected to be

similar, that is, in hydrolysis of bonds of various polymeric components of primary

and secondary cell walls, including pectins, hemicellulose and cellulose (Table 2,

Jones and Fosu-Nyarko 2014). Current analysis of available sequences for R. similis
(7,726 sequences in NCBI) and published reports suggest that this nematode

employs only four of the cell wall-modifying enzymes identified for sedentary

types; these are beta 1, 4- endoglucanase, xylanase, pectate lyase and cellulose-

binding proteins. More work needs to be done to understand how these wall-

modifying enzymes function, particularly the role of each in the host–parasite

interaction (Jacob et al. 2008; Maier et al. 2013). The transcriptome analysis of

H. oryzae provides evidence for transcripts putatively encoding a similar repertoire

of cell wall-modifying enzymes to that of Pratylenchus spp. (Jones and Fosu-

Nyarko 2014; Bauters et al. 2014).

In considering the roles of other candidate effectors, the presence of genes

encoding proteins secreted by the dorsal glands of plant nematodes further reflects

the battle between plants and invading nematodes. In this battle these nematode

effectors are responsible for counteracting the effects of plant defences. Such

effectors have been characterised better in sedentary nematodes and include pro-

teins suggested to be secreted by nematodes to counter reactive oxygen species

(ROS) produced by plants in response to nematode invasion. For example,
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Table 2 Nematode effectors of the migratory endoparasites Pratylenchus spp., R. similis and

H. oryza

Nematode effector

Pratylenchus
spp. R. similis H. oryzae Putative or known function

Cell wall-modifying enzymes

Endoglucanases Y Y Y Hydrolysis of beta 1,4-glucan

Pectate lyase Y Y Y Hydrolysis of alpha

1,4-linkages in pectin

Xylanase Y Y Y Hydrolysis of xylan

Expansin-like

proteins

Y Not

found

Y Cell wall softening or

extension

Endo-

1,3-β-glucanase
Y Not

found

Unknown Hydrolysis of beta 1,3-glucan

Polygalacturonase Y Not

found

Y Hydrolysis of alpha 1,4-D-

galactosiduronic linkages

Arabinogalactan

galactosidase/

arabinase

Y Not

found

Unknown Hydrolysis of pectin

Cellulose-binding

proteins

Y Y Unknown Promote hydrolysis of crystal-

line cellulose

β-Mannanase Not found Not

found

Y Hydrolysis of -1,4-mannosidic

linkages

Poly-α-D-
galacturonosidase

Not found Not

found

Y Hydrolysis of pectic polymers

Protection from host defences

Thioredoxin Y Y Unknown Detoxification of ROS

Peroxiredoxin Y Not

found

Unknown Detoxification of ROS

Superoxide

dismutase

Y Y Unknown Detoxification of ROS

Glutathione-S-
transferase

Y Y Unknown Detoxification of ROS

Glutathione

synthetase

Y Not

found

Unknown Detoxification of ROS

Glutathione

peroxidase

Y Y Unknown Detoxification of ROS

SPRYSEC-RBP-1/

SXP-RAL2

Y Y Y Suppression of host defences

Sec-2/FAR Y Y Unknown Reduction in host defence

response

Transthyretin-like

proteins

Y Y Unknown Expressed at parasitic stages,

no functional evidence

available

Venom allergen-like

proteins

Y Y Unknown Suppression of host defences

Targeting regulation and signalling pathways

Annexin Y Y Unknown Protection of plant cells against

stress

(continued)

262 M.G.K. Jones et al.



superoxide dismutase and glutathione peroxidase present at the surface of plant and

animal parasitic nematodes have been associated with the role of neutralising

oxyradical attack by their host (Waetzig et al. 1999; Robertson et al. 2000; Jones

and Fosu-Nyarko 2014). There is also ample evidence that sedentary endoparasites

secrete effectors that modulate host cellular functions during establishment and

functioning of feeding sites. Some effectors found in root-knot nematodes are

involved in the formation of giant cell formation, such as 7E12, CLE peptide and

16D10 CLE-related proteins, whereas others interact with host metabolism to

facilitate development of syncytia by cyst nematodes, such as the Hs19C07,
Hg30C02 and 10A06 effectors (Huang et al. 2006; Hewezi et al. 2010; Lee

Table 2 (continued)

Nematode effector

Pratylenchus
spp. R. similis H. oryzae Putative or known function

14-3-3 and 14-3-3b

proteins

Y Y Unknown No determined function

SKP-1 Y Not

found

Unknown Involved in ubiquitination,

signal transduction

Ubiquitin extension

protein

Y Y Unknown Involved in ubiquitination

Calnexin/

calreticulin/annexin

Y Y Unknown Calcium spiking

Beta-galactoside-

binding lectin

(galectin)

Y Y Unknown No functional data available

for nematodes

Feeding

Cathepsin L Y Y Unknown Protein digestion/degradation

Aminopeptidase Y Not

found

Unknown Protein digestion/degradation

Initiation and maintenance of feeding site

C-terminally

encoded proteins

(CEPs)

Not found Not

found

Unknown Possibly required for giant cell

formation

CLE peptides Not found Not

found

Unknown Mimic plant CLEs, no func-

tional evidence available

16D10 CLE-related

peptide

Not found Not

found

Unknown Promotion of giant cell

induction

Chorismate mutase Unclear Not

found

Y Plant defence suppression, tar-

gets SA pathway

19C07 effector Not found Not

found

Unknown Modification of auxin influx in

syncytium

10A06 effector Not found Not

found

Unknown Indirect induction of antioxi-

dant genes in syncytium

7E12 effector Not found Not

found

Unknown Promotion of giant cell

formation

(Data derived from Jacob et al. 2008; Bauters et al. 2014; Haegeman et al. 2010, 2011; Nicol

et al. 2012; Jones and Fosu-Nyarko 2014; Fosu-Nyarko and Jones 2016; Burke et al. 2015)
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et al. 2011; Souza et al. 2011; Hamamouch et al. 2012). Because migratory

nematodes do not induce such intricate feeding structures in host tissues, it is not

surprising that homologues of the effectors thought to be required for giant cell or

syncytium formation have not been identified in migratory nematodes. Neverthe-

less, in addition to cell wall-modifying enzymes which have now been found in all

plant nematodes where there is sufficient molecular data, other common effectors

have been identified in secretions and genomes of both sedentary and migratory

nematodes. Some are thought to be expressed highly at the parasitic stages

(e.g. venom allergen-like proteins, transthyretin-like proteins) or to have roles in

other interactions with plant hosts, including targeting and modifying plant signal-

ling pathways (e.g. calreticulin, galectin) (Table 2). Haegeman et al. (2010) suggest

a note of caution when extrapolating molecular insights from one group

(e.g. Pratylenchus spp.) to another (e.g. Radopholus spp.) because the taxonomic

relationship of R. similis and Pratylenchus spp. is not firm. Nevertheless, with

increasing genomic information on migratory nematodes, our understanding of

the function of demonstrated and candidate effectors from specific nematodes

will shed more light on how plants defend themselves against migratory nematodes

and how in turn the nematodes overcome plant defences.

5.3 Pathogen- and Damage-Associated Molecular Patterns
During Nematode Infection

Apart from physical barriers and other basal mechanisms that contribute to resis-

tance to plant pests and pathogens, several defence responses are triggered follow-

ing root parasitism, including the innate immunity response. Host plants can detect

the presence of pathogens using molecules present on the exterior or secreted by the

invaders. These molecular signatures, often referred to as pathogen- or microbe-

associated molecular patterns (PAMPs or MAMPs), are detected by cell surface

receptors or pattern recognition receptors, PRRs. When PRRs of plants survey the

apoplast and detect the presence of PAMPs, a PAMP-triggered immunity (PTI) is

induced against the invading pathogen (Zipfel 2009). Characteristics of PAMPs and

PTI defence against fungi and bacteria have been well studied, and parallels of the

process have been drawn for nematode–host interactions. It has been suggested that

derivatives of chitin of plant parasitic nematodes may induce PTI, although the

nematode cuticle does not contain chitin (Libault et al. 2007). It is however possible

that chitin or some of its derivatives may be present in nematode stylets, and on

insertion into the plant cell walls, these molecular signatures could be detected by

plants, which could lead to responses such as callose deposition which may reduce

further invasion by the pathogen (Golinowski et al. 1997). Another facet of PAMP

is effector-triggered immunity (ETI), which is specific to strains of a pathogen

which secrete unique effectors. As part of the continuing battle between pathogen

and host, there is good evidence that fungal plant pathogens and pests can evolve to
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counteract PAMP-induced plant defences, by selection of mutations of effectors

such that they are no longer recognised by the plant or by secreting proteins which

prevent PAMP recognition by plant receptors (De Jonge and Thomma 2009).

Candidate ETI suppressors or genes linked to possible ETI to nematodes have

been reported for sedentary endoparasitic nematodes (Semblat et al. 2001; Sacco

et al. 2009; Rehman et al. 2009). For example, the SPRYSEC 19 effector, secreted

by the cyst nematode Globodera rostochiensis, is known to interact with the

leucine-rich repeat domains of receptor proteins in tomato and in doing so possibly

suppresses receptor activity (Rehman et al. 2009). At present there is no functional

evidence that migratory nematodes secrete such an effector, and for Pratylenchus
spp., H. oryzae and R. similis for which transcriptomic and/or genomic sequence

data are available, no such specific effector that could trigger ETI has yet been

identified (Haegeman et al. 2011; Nicol et al. 2012, Fosu-Nyarko et al. 2015).

Plants also respond to cell damage and stresses that cause mechanical injury to

aboveground and belowground parts. This response is mostly against damage-

associated molecular pattern (DAMP) molecules released following cellular injury

or damage caused by pathogens such as bacteria and fungi (Lotze et al. 2007).

Responses to DAMPs are usually systemic and can include the release of redox-

sensitive proteins as well as trigger induction of hormone signalling pathways.

Movement of migratory nematodes through host roots and the mechanical probing

of host cells with the stylet during feeding are likely to cause injury that may elicit

such responses from host plants. Generally, plant hormone signalling pathways

such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) pathways are

activated upon infection by many pathogens. While biotrophic pathogens would

normally induce the SA pathway, wounding or infection by necrotrophic pathogens

often activates the JA and ET pathways (Pieterse and van Loon 1999). It has been

suggested that ETI initially activates all three signalling pathways and the plant

mobilises resources to support the most effective pathway in combating a particular

pathogen (Katagiri and Tsuda 2010). On infection of rice with the migratory

nematode H. oryzae, JA and ET pathways are activated, while the SA pathway is

suppressed, but one week after infection, JA and ET signalling is repressed. Foliar

application of JA and ethephon, an exogenous ET, induces systemic defence

response in roots against the sedentary endoparasite Meloidogyne graminicola,
whereas for the migratory endoparasitic H. oryzae in rice, all three SA, JA and

ET hormonal pathways appear to be essential for defence (Nahar et al. 2011, 2012).

5.4 Biochemical Responses in Host Plants Following
Migratory Nematode Infection

In response to mechanical damage caused by nematodes, plants produce a range of

compounds including ROS. These compounds are toxic to nematodes, but both

animal and plant parasitic nematodes are well equipped to metabolise ROS, for
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example, via the secretion of proteins with antioxidant properties such as

peroxiredoxins (Robertson et al. 2000). Production of ROS is associated with a

suite of plant defence responses which include activation of signalling pathways

and processes which can result in cell wall deposition, synthesis of terpenes,

phenolic compounds and nitrogen- and sulphur-containing compounds (Mazid

et al. 2011). These responses can be generic and are normally induced locally to

eliminate or counteract the invading pathogen but can also be systemic in nature

(Bezemer et al. 2004; van Dam 2009). For example, infection of black mustard

(Brassica nigra) by P. penetrans results in increased synthesis of phenolic com-

pounds and glucosinolates in roots, and this innate defence response was also

effective in reducing the growth rate of larvae and number of pupae produced by

the shoot feeding crucifer insect Pieris rapae (L.) (van Dam et al. 2005). The

accumulation of isoflavonoid conjugates in roots of alfalfa (Medicago sativa)
following infection by the stem nematode Ditylenchus dipsaci is a classical exam-

ple of how some plant defence responses are generic and presumptive in nature

(Edwards et al. 1995). Transcriptional changes in genes involved in metabolic

pathways such as the phenylalanine metabolism, carotenoid biosynthesis and

phenylpropanoid biosynthesis following infection by Pratylenchus spp. have been
associated with induction of plant defence mechanisms (Baldridge et al. 1998; Zhu

et al. 2014).

6 Breeding for Resistance to Migratory Nematodes

Some natural genes which confer host resistance to plant parasitic nematodes

have been identified in cultivated and wild relatives of crop plants. For sedentary

endoparasites, several dominant or semi-dominant resistance genes have been

identified, mapped to chromosomal locations or linkage groups, characterised at

the molecular level and implemented in a range of economically important crops

(Fuller et al. 2008). There has been much less study of genes that confer

resistance to migratory nematodes compared to sedentary types, and major

dominant genes conferring resistance to migratory species have not yet been

found. Not surprisingly, research on mechanisms of host resistance to migratory

species has been undertaken mainly in countries and on crops where they cause

most damage. For example, for Pratylenchus spp., the most detailed work to

identify and combine sources of natural resistance to these species has been done

with cereals and in most detail on bread wheat (Triticum aestivum) and barley

(Hordeum vulgare) in Australia and the Pacific Northwest of the USA, where

infection levels of root lesion nematodes and losses in wheat growing areas are

significant (Vanstone et al. 2008; Smiley and Machado 2009; Jones and Fosu-

Nyarko 2014).

Eight Pratylenchus species are known to attack wheat. In the southern and

western wheat belts of Australia, P. neglectus, P. thornei, Pratylenchus
quasiterioides (former species teres), P. penetrans, P. zeae, P. brachyurus and
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P. scribneri are present, with P. neglectus the most important (Vanstone

et al. 2008), whereas in the northern wheat belt, P. thornei and P. penetrans
cause the most damage (Smiley and Nicol 2009). Genotypes of wheat with

different levels of resistance (and tolerance) to specific Pratylenchus species

have been identified in many breeding programmes using tools for marker-

assisted breeding (Table 3). This usually involves large-scale screening of

germplasm from wild ancestors or progenitors of crop plant cultivars and

mapping of quantitative trait loci (Table 3). A recent marker-assisted selection

study for resistance in barley has also identified five QTLs contributing to

resistance to P. neglectus in barley germplasm (Table 3). However, no major

gene conferring resistance to root lesion nematodes has been found, and the

mechanisms that underlie resistance to Pratylenchus spp. in wheat and barley are

not known. Although the identification of QTLs for resistance to migratory

Table 3 Quantitative trait loci of wheat and barley linked to resistance and/or tolerance to

Pratylenchus species

Nematode species

Major QTLs identified on

chromosomes Plant References

P. thornei Examples of QTLs on 2BS,

6DS and 6DL, 6D, 1B, 2B,

3B, 4D, 6D, 7A

Wheat Thompson et al. (1999)

Zwart et al. (2005)

Toktay et al. (2006)

QRlnt.lrc-6D.2, QRlnt.lrc-

6D.1 on chromosome

6DL

Wheat Zwart et al. (2005)

P. neglectus Examples of QTLs on

chromosome 2B, 4DS,

6DS, 7AL

QRlnn.lrc-4D.l, QRlnn.lrc-

6D.l on chromosome

4DS

Wheat Zwart et al. (2005)

Rlnn1 resistance locus on

chromosome 7A

Wheat Williams et al. (2002)

Pne3H-1, Pne3H-2,

Pne5H, Pne6H and Pne7H

on Chromosomes 3H, 5H,

6H and 7H

Barley Sharma et al. (2011)

P. penetrans Rlnn1 resistance locus on

chromosome 7A

Wheat Williams et al. (2002)

P. neglectus and P. penetrans Examples of QTLs on

chromosome 1B, 2B and

6D

Wheat Toktay et al. (2006)

Rlnnp6H resistance on

chromosome 6H

Barley Galal et al. (2014)

P. thornei and P. neglectus Xbarc 183 on chromosome

6DS

Wheat Zwart et al. (2005)
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endoparasites is an important advance, there is a need for further detailed study

to identify new, more effective and durable sources of natural resistance to these

nematodes.

7 Resistance to Migratory Nematodes in Tropical Crops

Banana and plantain (Musa spp.) constitute the eighth most important staple food

crop worldwide. The most damaging migratory nematodes of these crops are the

endoparasites R. similis, Pratylenchus goodeyi, P. coffeae and the spiral nematode

Helicotylenchus multicinctus, together with Meloidogyne spp., with combinations

of these nematode pests varying with locality (Karakaş 2007; Tripathi

et al. 2015). The search for resistance genes against these species, especially

against R. similis, has largely focussed on Musa spp. Using traditional nematode

screening methods either by inoculating samples in vitro or in glasshouses or

using existing infection at field conditions, many recent Musa cultivars have been

scored for resistance to nematodes, mainly to R. similis but to a lesser extent to

Pratylenchus spp. and H. multicinctus (Elsen et al. 2002; Moens et al. 2005).

Among the most well-known nematode-resistant Musa spp. are a triploid AAA

cultivar, Yangambi km5, with high resistance to both R. similis and P. goodeyi,
and the AA diploid Pisang Jari Buaya, resistant to R. similis (Pinochet and Rowe

1979; Wehunt et al. 1978; Sarah et al. 1993; Price 1994; Fogain and Gowen

1998). Accessions from gene pools of these resistant cultivars have been used as

sources of resistance in Musa breeding programmes with some success (Pinochet

and Rowe 1979; Viaene et al. 2003). In one of the few reports on genetic

resistance screening, using 81 banana diploid hybrids, it appeared that resistance

to R. similis is controlled by two dominant genes, both with additive and

interactive effects (Dochez et al. 2009).

Otherwise, investigations on mechanisms of resistance ofMusa spp. to R. similis
and Pratylenchus spp. have largely focussed on characteristics of root structures

and the biochemical responses of resistant and susceptible cultivars on infection.

The presence of more preformed phenolic cells in roots of the resistant cultivar

Yangambi km5 suggests that the formation and this type of cell play a role in its

defence (Fogain and Gowen 1998). However, resistant cultivar Pisang Jari Buaya
may have a different resistance mechanism, because it has fewer preformed phe-

nolic cells in roots, but appears to have more cells with lignified walls than cultivars

susceptible to R. similis (Fogain and Gowen 1998). A possible role of cell wall

lignification may also be evident for other resistant and partially resistant Musa
cultivars, and this suggests that infection by migratory endoparasites may induce

lignification and suberisation of endodermal cells, so limiting invasion of the

vascular bundle (Collingborn et al. 2000; Valette et al. 1998). Differential accumu-

lation of the secondary metabolites phenylalanine ammonia-lyase, peroxidase and

polyphenol oxidase in roots of resistant and susceptible cultivars of banana infected
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with R. similis has been associated with levels of resistance to the nematode pest

(Wuyts et al. 2006b).

8 Cultural, Biological and Chemical Control of Migratory

Nematodes

8.1 Rotations with Non-host Crops

Apart from natural resistance genes or transgenic approaches, the three main

approaches used to control plant parasitic nematodes are cultural, biological and

chemical. Cultural control relates to developing crop rotation systems which

include one or more crop plants which are non-hosts for a particular nematode.

The nematode population should then be reduced substantially during the non-host

period of the rotation, with the aim of reducing the threshold levels of the damaging

nematode to levels below those that result in crop losses. Rotation is more effective

if more than one non-host crop species is available in the rotation, and the

effectiveness depends on the nematode species and also whether it has an ability

to survive for long periods in the absence of a good host. For migratory nematodes

with a wide host range, this strategy may not always work well.

In order to study alternative crops suitable for rotations with wheat in the

Pacific Northwest of the USA, Smiley et al. (2014) surveyed 30 crop species and

cultivars to look for cultivars with reduced reproductive efficiency or as potential

non-hosts of P. neglectus and P. thornei. Poor hosts of both species were

identified in chickpea, pea, safflower and sunflower cultivars and some grasses,

but more crop cultivars were found to be good hosts for both species: the latter

included cultivars of oat, chickpea and lentil. Ten brassica species (canola,

mustard, camelina), sudan grass and a sudan grass/sorghum hybrid were good

hosts only of P. neglectus, and other cultivars of lentil and pea were good hosts

for P. thornei. The defence mechanisms of these non-host plants to migratory

nematodes have not been investigated: such information would contribute to

development of resistance to economically important hosts of these damaging

nematode pests. Similar studies have been undertaken in Australia, which

showed, for example, that densities of P. neglectus, but not of P. thornei, were
likely to be increased after canola (Taylor et al. 2000; Hollaway et al. 2000),

although in Australian environments the choices available for alternative cash

crops to wheat or barley are relatively limited. The use of non-host crops in

rotations to reduce populations of migratory nematodes is a simple approach but

needs further study. Smiley et al. (2014) commented that it is likely that reduced

efficiency of wheat production is associated with rotations that include multiple

crops that are each good hosts of Pratylenchus spp., such as now appears to be

very likely for some wheat–food legume or wheat–brassica rotations.
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8.2 Biological and Chemical Control of Migratory
Nematodes

A range of nematophagous bacteria and fungi can be found in nematode-

suppressive soils, but in the past the success of biological control agents, such as

natural predators or pathogens, used to reduce nematode numbers, was limited

(Kerry 1997). Biological control was more inconsistent, less effective and slower

acting than control normally achieved with chemicals. The use of nematicidal

chemicals for nematode control is not always cost effective or environmentally

acceptable, especially for broadscale agriculture or for small-scale farms in devel-

oping countries. In addition, the phasing out of long-standing chemical nemati-

cides, such as Temik (aldicarb), Mocap (ethoprophos) and Nemacur (fenamiphos),

has spurred research to develop more effective and environmentally benign

methods of chemical and biological control of plant nematodes. Research by

various commercial organisations has led to the development of new seed coating

technologies and biocontrol agents which are now commercially available and are

much more effective than previous generations of biological control agents. For

example, Bayer CropScience now markets VOTiVO, based on Bacillus firmus root
colonising bacteria which colonises root surfaces and reduces nematode access to

root-feeding sites, and Velum (fluopyram), a new class of chemical nematicide

which inhibits mitochondrial respiration in nematodes; Syngenta markets AVICTA

(abamectin), which has broader anthelmintic and insecticidal properties; and a

contact nematicide Nimitz (fluensulfone) has been passed for nematode control

for vegetable crops. Other biological control agents such as the entomopathogenic

fungus Paecilomyces and the parasitic bacterium Pasteuria penetrans are also

available commercially (the latter was initially developed to control sting nema-

todes in turfgrass by Pasteuria Bioscience, which was acquired by Syngenta in

2012). Such biological control agents can be included in an integrated pest man-

agement approach and are stable enough to be applied as a seed coating, so reducing

the chemical load on the field: most are toxic to migratory nematodes. Early

protection and establishment of crop seedlings provides a much greater opportunity

for a crop to reach its full yield potential.

9 Transgenic Approaches to Migratory Nematode

Resistance

Much research has been undertaken to develop transgenic (biotechnological) strat-

egies for nematode control. These include interfering with nematode location of

roots, reducing entry into and migration in roots, preventing formation or disturbing

the functions of feeding cells of endoparasites and delivery of compounds via plants

that interfere with different aspects of nematode life cycles (Fosu-Nyarko and Jones
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2015). The focus of the vast majority of such studies has been on sedentary

endoparasites.

The earliest transgenic strategies for nematode control were based on plant

cystatins, inhibitors of nematode cysteine proteases which interfere with nematode

digestion (Urwin et al. 1997; Vain et al. 1998; Samac and Smigocki 2003). The

range of available cystatins has been expanded, with reports of effective resistance

against the migratory endoparasite Ditylenchus destructor (Gao et al. 2011). The

focus of these and subsequent experimental work was on cyst and root-knot

nematodes.

To find and enter host roots, invading nematodes must respond to root stimuli

and physical and chemical gradients in the rhizosphere: these are mediated by

chemosensory and mechanosensory neurons. Interference with nematode chemo-

receptors can reduce the ability of nematodes to find host roots, and this strategy has

been followed by development of peptides that inhibit acetylcholinesterase, which

appear to be taken up by chemoreceptor sensillae via retrograde transport along

their neurons to cholinergic synapses (Lilley et al. 2011a). Transgenic plants that

secreted this peptide from roots driven by a constitutive promoter (CaMV35S)

reduced establishment of Globodera pallida (Lilley et al. 2004; Liu et al. 2005): the
delivery was refined using expression of the peptide driven by a root cap promoter

(MDK4-20) (Lilley et al. 2011b).

The two experimental approaches outlined above have been progressed to

confined field tests for transgenic plantain (Musa spp.) in Uganda, Africa, to control
key migratory nematode pests, which include R. similis, H. multilinctus, P. coffeae,
P. goodeyi and also endoparasitic root-knot nematodes (Tripathi et al. 2015). In this

work, an antifeedant cysteine proteinase inhibitor from maize and an anti-root

invasion synthetic peptide were expressed either jointly or separately in banana

and subjected to nematode challenge. The results focussing on R. similis and

H. multicinctus showed that the best peptide-expressing transgenic line showed

improved agronomic performance relative to non-transgenic controls and provided

about 99% nematode resistance at harvest and that the anti-root invasion peptide

appeared to be more effective than the cystatin: in plants expressing both genes, the

cystatin appeared to contribute little additional resistance (Tripathi et al. 2015).

This work demonstrated that expression of cystatins and/or an anti-root invasion

peptide can confer resistance to migratory endoparasites as well as sedentary

endoparasites and provide a potential new mode of control of nematodes for banana

and other tropical crops (e.g. yam, cassava) which are staple foods of small-scale

farmers in Central and West Africa.

As further evidence that root lesion nematode infestation can be reduced by a

cystatin, expression of a modified rice cystatin (Oc-IDD86) in the flower crop

Lilium longiflorum also conferred enhanced resistance to Pratylenchus penetrans,
reducing nematode numbers by about 75%, resulting in enhanced growth perfor-

mance (Vieira et al. 2014).

An alternative approach to that described above is generally described as ‘host-
induced gene silencing’ (HIGS) and involves using transgenic plants to deliver a

gene silencing (RNAi) signal in the form of dsRNA to silence a vital gene in the
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nematode when it ingests cell contents (e.g. Lilley et al. 2012; Jones and Fosu-

Nyarko 2014). Research in this area on migratory endoparasitic nematodes lagged

behind that on sedentary endoparasitic nematodes, partly because of a lack of

genomic resources, combined with the fact that migratory nematodes are more

difficult to work with than most sedentary endoparasites. However, increasing

genomic and transcriptomic data is now becoming available for migratory endo-

parasitic nematodes, providing a new resource to identify target genes for their

control. As discussed above, ‘next-generation sequencing’ has been used to gener-

ate transcriptome data on P. coffeae, P. thornei, P. zeae, H. oryzae and R. similis
(Haegeman et al. 2011; Nicol et al. 2012; Fosu-Nyarko et al. 2015; Bauters

et al. 2014), and genomic data for P. coffeae is now also available (Burke

et al. 2015). These data now enable identification of new gene targets for RNAi-

based control of migratory nematodes (Fosu-Nyarko and Jones 2015).

The most common approach to determining what target genes to use for nem-

atode control involves (1) a bioinformatics phase to identify potential target genes,

often based on comparative data from the effects of gene knockout in C. elegans, or
identified effectors required for successful plant parasitism; (2) their cloning and

generation of dsRNA to their sequences; (3) in vitro feeding of motile stages with

dsRNA, often in the presence of a neurostimulant to make the nematodes take up

the external solution, and assessment of the effects of gene knockdown in the

nematodes; (4) based on results from in vitro feeding, production of transgenic

plants expressing dsRNA to the nematode target gene; and (5) challenge of the

transgenic plants with nematodes in glasshouse experiments to quantify the effects

on nematode reproduction.

Optimisation of in vitro feeding conditions and treatment with dsRNA of target

genes show that P. coffeae, P. thornei and P. zeae are all amenable to a level of

control using RNAi (Haegeman et al. 2011; Tan et al. 2013), and this also holds for

transgenic plant resistance (Tan 2015). Thus, there is good reason to expect that all

the migratory endoparasitic nematodes are equally amenable to control by the

RNAi-based HIGS strategy. Such plant-mediated gene silencing traits in nematodes

may be transmitted to the next generation and reduce pathogenicity of nematode

offspring on non-RNAi plants, which suggests that there can be epigenetic inher-

itance of the silencing effect (Elling 2015). The level of resistance obtained by

HIGS, if expressed as the percentage reduction in the number of nematodes present

compared with susceptible controls, is never 100%, but a percentage reduction in

nematode numbers of up to 90% or more can be obtained, and this will greatly

reduce nematode populations over time. There are many reasons why 100%

resistance by this measure is not achieved (Fosu-Nyarko and Jones 2015), but

stacking two (or more) different modes of resistance, such as an RNAi trait and

an antifeedant peptide or cystatin, might provide the most effective and durable

form of transgenic resistance, preferably in a crop cultivar genotype which

expresses the best levels of conventional resistance.
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10 Conclusions

The losses caused to crops by infestation with migratory nematodes are difficult to

quantify accurately, but in many cases they are equal to or more important than

losses caused by sedentary endoparasites. The biology of migratory nematodes is

becoming better understood, especially with the availability of new genomic

resources. In terms of conventional plant breeding, host plant defences can be

improved by marker-assisted selection, which is valuable in combining the best

QTLs contributing to resistance against major species. There is also clear evidence

that migratory nematodes are amenable to various forms of transgenic control, and

new integrated approaches to chemical and biological control are also showing

success in protecting crop plant roots against migratory nematodes. In many ways

understanding of migratory parasitic nematodes and their interactions with host

roots is now emerging from biological darkness into the light.
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Root Interactions with Nonpathogenic

Fusarium oxysporum

Hey Fusarium oxysporum, What Do You Do in Life

When You Do Not Infect a Plant?

Christian Steinberg, Charline Lecomte, Claude Alabouvette,

and Véronique Edel-Hermann

Abstract In this review, we tried to present Fusarium oxysporum in an ecological

context rather than to confine it in the too classic double play of the nonpathogenic

fungus that protects the plant against the corresponding forma specialis. Moreover,

F. oxysporum is sometimes one, sometimes the other, and only the fungus can

reveal its hidden face, according to it is or not in front of the target plant. Despite the

quality and richness of the studies conducted to date, molecular approaches high-

light some of the evolutionary mechanisms that explain the polyphyletic nature of

this species, but still they do not identify a nonpathogenic F. oxysporum.
This soilborne fungus has primarily an intense saprophytic life, and it finds its

place in the functioning of the ecosystem of which it actively occupies all com-

partments, thanks to an impressive metabolic flexibility and a high enzyme poten-

tial. This adaptability is exploited by F. oxysporum first to get carbon from different

organic sources and energy through variable strategies including nitrate dissimila-

tion under severe anaerobic conditions and also to colonize extreme environments,

some of which being dramatically anthropized. This adaptability is also exploited

by man for bioremediation of polluted sites, for detoxification of xenobiotic com-

pounds including pesticides, and furthermore for industrial and biotechnological

processes. The presence of the fungus in water distribution networks of city stresses

again the adaptable nature of the fungus, but more precisely, this highlights the

presence of clonal populations worldwide and raises the question of the role of man

in the transfer of biological resources.

We conclude in a provocative manner by asking if nonpathogenic F. oxysporum
would not be the all-purpose fungal tool needed to ensure a good soil functioning.
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1 Introduction

If there are microorganisms, especially soilborne fungi, that fascinate mycologists,

plant pathologists, doctors, and microbial ecologists, without forgetting evolution-

ists, geneticists and taxonomists, Fusarium or more precisely Fusarium oxysporum
is one of those. We should probably also mention in the list that growers and

horticulturists are equally concerned with survival, evolution, and activities of

F. oxysporum Schlecht, but maybe they do not feel the same fascination as the

aforementioned corporations. Indeed, F. oxysporum is primarily known for its

ability to cause disease on a large number of host plants, while the predominant

role of this fungus in soils is essentially determined by its saprophytic activity in

raw and rhizospheric soils whether they are cultivated or not, by its biochemical

activity in anthropic environments, and by its long survival in various environments

(Burgess 1981; Bao et al. 2004; Christakopoulos et al. 1991; Holker et al. 1999).

2 To Be or Not to Be a Nonpathogenic F. oxysporum?

F. oxysporum is an ascomycete, belonging to the family of Nectriaceae and the

order of Hypocreale. This is an asexual fungus whose teleomorph is unknown.

Actually, the F. oxysporum species complex includes both pathogenic and non-

pathogenic populations, the former being split into more than 100 formae speciales,
each of them being specific of a plant species (Armstrong and Armstrong 1981;

Correll 1991; Baayen et al. 2000). This morphological species is now recognized as

a species complex because of its high level of phylogenetic diversity (O’Donnell
et al. 2009). Phylogenetic analyses also revealed how diverse is the origin of the

pathogenicity of most of the various formae speciales. Only a few of them such as

F. oxysporum f. sp. albedinis, ciceri, and loti are monophyletic (Tantaoui

et al. 1996; Wunsch et al. 2009; Demers et al. 2014). Therefore, a great effort of

research is devoted to characterize the diversity of formae speciales of peculiar

interest in agriculture (Elias and Schneider 1992; Kistler 1997; Abo et al. 2005;

Lievens et al. 2008; Edel-Hermann et al. 2012) and in horticulture (Loffler and

Rumine 1991; Lori et al. 2012; Canizares et al. 2015; Lecomte et al. 2016), in order

to identify some specific molecular markers allowing to detect and monitor both

pathogenic and nonpathogenic populations in the rhizosphere of host plants

(Recorbet et al. 2003; Edel-Hermann et al. 2011). However, to date and despite

these efforts, it is still not possible to generally discriminate nonpathogenic

populations from pathogenic populations except by the fact that a strain is said to

be nonpathogenic if it does not cause any symptom on the plant on which it has been

inoculated, but even so it is not possible to say whether this strain is definitively

nonpathogenic regardless of the plant species. Thus, the very definition of

nonpathogen is blurred because it relies on the absence of a trait that can only be

expressed by a pathogenic strain in the presence of the host plant on which it is
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specifically subservient; we talk about compatibility. So, while highlighting that the

polyphyletic nature of the origins of the pathogen status has been acquired in the

course of evolution by a fungus that originally is not pathogenic, doubt always

exists that a strain incapable of causing symptoms on a given plant is not pathogen

of a plant species with which the compatibility was not tested. Nevertheless, the

notion of risk associated to this doubt is limited and should not be considered as a

foil to the positive role that F. oxysporum plays in the biological functioning of the

soil and can also play in the protection of plants as a biocontrol agent. Indeed, the

already mentioned polyphyletic nature of the origin of pathogenicity in most of the

formae speciales can be explained especially by the presence and mobility of a

large number of transposable or repetitive elements, responsible for timely and

random mutations in the genomes of pathogenic strains, and by horizontal transfers

of chromosomal regions (Daboussi and Langin 1994; Daviere et al. 2001; Ma

et al. 2010; Inami et al. 2012; Schmidt et al. 2013). The presence of many

transposable elements in F. oxysporum, as in other Deuteromycetes, is probably a

consequence of the asexual lifestyle of these fungi and the resulting absence of the

meiosis process that normally eliminates repetitive elements (Daboussi 1996). In

the case of formae speciales, it can be assumed that the ongoing compatible

interaction of the pathogen with the plant is an additional selection pressure that

strengthens the interest for the phytopathogenic fungus to have generators of

diversity and adaptation mechanisms to overcome the defence reactions opposed

by the plant. In the case of the few nonpathogenic populations that have been

studied so far on that point, it seems they harbor much less transposable elements

than pathogenic strains (Migheli et al. 1999). Therefore, one could assume a greater

genetic stability from a nonpathogenic population than from a pathogenic popula-

tion. However, this putative genetic stability for a given population is probably

compensated by an incredible diversity within the species giving F. oxysporum the

ability to colonize a huge variety of environments (Edel et al. 2001; Lori et al. 2004;

O’Donnell et al. 2004; Sautour et al. 2012). In addition, the host pathogen-plant

compatibility is a mark enabling to appreciate the diversity and evolutionary history

of a given forma specialis. This kind of reference is not available for the nonpatho-
genic populations, and although nonpathogenic strains are generally used as a

control in the analyses of diversity of pathogenic populations, rare phylogenetic

studies are dedicated to the evolutionary history of nonpathogenic populations;

therefore, it is difficult to comment on their genetic stability (Inami et al. 2014).

3 Is F. oxysporum Only a Soilborne Fungus?

The geographic distribution of formae speciales is probably affected by that of host

plants and by anthropogenic activities; however, all the various data in the literature

for many years issuing from local surveys have shown that F. oxysporum occurs

primarily in soils in most parts of the world without recourse to pathogenesis (Park

1963; McKenzie and Taylor 1983; Backhouse et al. 2001). Anyway, the
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terminology “nonpathogenic” is a default appellation regarding the very likely

initial saprotrophic status of this species complex, and studies on the ecology of

F. oxysporum do not discriminate between pathogenic and nonpathogenic

populations. So we will do the same. The places over the world where

F. oxysporum can be found include natural extreme conditions such as saline soil

habitats of the hot arid desert environment (Mandeel 2006), tropical dry forests

(Bezerra et al. 2013), Arctic circle (Kommedahl et al. 1988), and environments

affected by human activities such as industrially polluted sediments (Massaccesi

et al. 2002), metal mine wastes (Ortega-Larrocea et al. 2010), biofilms in household

appliances such as washing machines (Babic et al. 2015), and water system of

hospitals (Anaissie et al. 2001; Steinberg et al. 2015). It is likely that the diversity

hosted by F. oxysporum explains the adaptation of the fungi to various niches under

various soil and climatic conditions, as well as in water and in the air. Their

concentration was estimated to vary between 102 and 104 propagules per gram of

soil (Park 1963; Alabouvette et al. 1984; Larkin et al. 1993,) while it is much less

(a few propagules per liter) in seawater or springwater (Palmero et al. 2009). It can

reach up to 103 propagules per mL when accidentally colonizing water pipes

(Sautour et al. 2012). Spores of F. oxysporum have been found associated with

rain dust (0.1–45 propagules per gram of dust) and transported over long distances

including overseas (Palmero et al. 2011). Spores of F. oxysporum are also found in

the air outdoor as well as in air-conditioned indoor environments (Debasmita

et al. 2014; Khan et al. 2009). So clearly F. oxysporum is a ubiquitous fungus

that is able to adapt to many types of environments, although it is more frequently

encountered in the soil where its density is important both in cultivated and

noncultivated ecosystems. Focus is generally made on the diversity of pathogenic

populations to understand the origins of this particular trait (Baayen et al. 2000;

Groenewald et al. 2006; Luongo et al. 2015; O’Donnell et al. 1998, 2004). How-
ever, many studies have revealed an incredible intraspecific diversity within

F. oxysporum (Demers et al. 2015; Edel et al. 2001; Edel-Hermann et al. 2015;

Laurence et al. 2012; Lori et al. 2004). It is not forbidden to think that this diversity,

although it is often assessed by the analysis of noncoding DNA regions, could

explain the ability of F. oxysporum to colonize such different environments, among

which is the rhizosphere of putative host plants. Abundant and more or less specific

exudates released by plant roots in the rhizosphere are a main food source for

microorganisms and a driving force of their population density and activities.

F. oxysporum populations are particularly affected by this privileged habitat, and

they are actively involved in the colonization of the rhizospheric soil, the rhizo-

plane, and also root tissues (Fravel et al. 2003; Landa et al. 2001; Ling et al. 2012;

Toyota and Kimura 1992). The selective nature of root exudates linked to the

genotype of the host plant determines the composition of the populations of

F. oxysporum associated with the plant (Edel et al. 1997; Demers et al. 2015).

Actually, all the strains do not respond in the same way to released exudates, what

explains that the abundance ratios between strains of the same population are

different from one to another rhizosphere. This difference in ability to use root

exudates of a given plant depends on the own characteristics of each strain but is not
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linked to the pathogenicity or nonpathogenicity of the strains (Steinberg

et al. 1999a, b). Consequently, the ability in using efficiently the root exudates

determines the issue of the competition for trophic sources between pathogenic and

nonpathogenic F. oxysporum and therefore the selection for efficient biocontrol

agents (Eparvier and Alabouvette 1994; Olivain et al. 2006) (see below). Non-

pathogenic strains of F. oxysporum can cross the epidermis cells of the root surface,

but they are unable to cause disease (Olivain and Alabouvette 1997). They colonize

the root cortex of a plant and may establish as endophytes (Belgrove et al. 2011;

Demers et al. 2015), but the main point is that this narrow interaction between

nonpathogenic F. oxysporum and the host-plant results in the so-called priming

effect, i.e., the implementation of defence reactions of the plant that slow down their

progress and prevent any further invasion by a pathogenic strain (Aime et al. 2013;

Benhamou and Garand 2001). Similarly to the absence of preferential selection

between pathogenic and nonpathogenic populations of F. oxysporum at the root

surface of the host plant (Olivain et al. 2006), there is no clear genetic differenti-

ation in the composition of endophyte populations and rhizosphere populations

(Demers et al. 2015).

All these interactions in the rhizosphere of the host plant between pathogenic

and nonpathogenic populations of F. oxysporum reveal protective ability of the

latter against the pathogen and invite to consider the use of nonpathogenic strains in

biocontrol strategy against formae speciales of F. oxysporum or other pests

(Alabouvette et al. 2009; Vos et al. 2014).

4 Would There Be a New Robin Hood in the Rhizosphere

of Plants to Be Protected?

Evidence of a possible role of nonpathogenic Fusarium spp. in controlling patho-

gens resulted from the observation that soils suppressive to Fusarium wilt harbored

high populations of nonpathogenic F. oxysporum and F. solani whose involvement

in the mechanism of soil suppressiveness was confirmed experimentally (Rouxel

et al. 1979). Strains of F. oxysporum were much more efficient in establishing

suppressiveness in soil than other species of Fusarium (Tamietti and Alabouvette

1986). Moreover, there is a great variability among soilborne nonpathogenic strains

of F. oxysporum for their capacity to protect plants against their specific pathogens

(Forsyth et al. 2006; Nel et al. 2006), and some effective strains have not been

isolated from soil but from the stem of healthy plants (Ogawa and Komada 1984;

Postma and Rattink 1992). In addition, it is well established that a pathogenic strain

applied to a non-host plant is able to protect this plant against further infection by its

specific forma specialis. A review was recently published by Alabouvette

et al. (2009) describing the main modes of action of biological control agents in

soil and listing a large number of situations in which selected strains of nonpatho-

genic F. oxysporum succeeded or not in protecting the plant against pathogenic
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formae speciales. Since the publication of this review, many other examples of the

protective potential of nonpathogenic F. oxysporum were also published (Belgrove

et al. 2011; Morocko-Bicevska et al. 2014), and it would be tedious to list them all.

Actually what is noticeable is the fact that nonpathogenic F. oxysporum have been

shown to control not only pathogenic F. oxysporum but also Verticillium dahliae
causing wilting of eggplant, pepper, and cotton (Gizi et al. 2011; Veloso and Dı́az

2012; Zhang et al. 2015), nematodes causing damage on banana and tomato roots

(Paparu et al. 2009; El-Fattah et al. 2007), and insects such as the sucking Aphis
gossypii and the whitefly Trialeurodes vaporariorum affecting tomato (Martinuz

et al. 2012; Menjivar et al. 2012). While in the case of V. dahliae on eggplant and

cotton, volatile organic compounds produced by the strains of F. oxysporum control

the pathogen; in the case of nematodes, weevils, and insects, the F. oxysporum
strains are endophyte and elicit the plant defence reactions of the host plants.

It must be admitted that most of the examples cited here and in the review

published in 2009 (Alabouvette et al. 2009) correspond to controlled situations that

reveal the potential of nonpathogenic strains, but a very limited number of the most

powerful strains are licensed, registered, and available in the market with a bio-

control allegation. The protective capacity in F. oxysporum is not a simple trait and

many genes are likely to be involved. Identifying some traits linked to the protec-

tive capacity would help in differentiating pathogenic from protective strains and in

screening among soilborne strains to identify potential protective strains. Success of

microbiological control requires a sufficient understanding of the modes of action

of the antagonist and also of its interactions with the plant, the pathogen, and the

rest of the microbiota. All these studies take time, and most of the biocontrol agents

other than F. oxysporum and already on the market have been studied for more than

20 years before registration. The work already done and the results obtained with

nonpathogenic strains of F. oxysporum augur an imminent placing on the market of

representatives of this species to control pathogens. It is however necessary to be

wary of the too rapid interpretation found in recent papers (Schmidt et al. 2013)

concerning the results of Ma et al. (2010). Ma et al. showed that under very special

laboratory conditions, the nonpathogenic strain Fo47, isolated from the suppressive

soil of Châteaurenard (France) and whose protective capability was already proved

(Olivain et al. 2004), was likely to integrate by horizontal transfer, a fragment of

chromosome 14, bearer genes involved in the pathogenicity of a strain of

F. oxysporum f. sp. lycopersici. Actually, the experimental conditions were such

that the likelihood of such a natural realization is zero; the authors simply wanted to

show that the horizontal transfer was possible, which is different from likely. We

can thus consider as reliable the strains of nonpathogenic F. oxysporum to be used

in biological control strategies.
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5 Dormant or Active Actor of the Biological Functioning

of Soils?

5.1 Carbon Utilization

The distribution of F. oxysporum in numerous, complex, and varied environments

is explained by the enzymatic machinery at its disposal and its ability to modify its

metabolism within the constraints of these environments including microaerobic

and very-low-oxygen conditions, which gives it this remarkable adaptability and an

important role in the biodegradation of the organic matter. F. oxysporum produces

indeed a large spectrum of extracellular oxidative enzymes of various types includ-

ing cellulases, laccases, xylanases, lignin-degrading enzymes, and manganese

peroxidases (Falcon et al. 1995; Rodriguez et al. 1996; Silva et al. 2009; Zhou

et al. 2010; Xiros et al. 2011; Huang et al. 2015). Apart from study cases dedicated

to the ability of F. oxysporum to metabolize a given C source or to denitrify a

nitrogen-containing substrate (Rodriguez et al. 1996; Takaya and Shoun 2000; Ali

et al. 2014), there is no global data to quantify the relative importance of the role of

F. oxysporum, within the fungal community, in the decomposition, reorganization,

and mineralization of organic matter in soils and litter. However, its ubiquitous

presence and its high abundance mean that the contribution of this fungus in the

carbon and nitrogen cycles must be significant. Beyond its ecological role in the

saprophytic phase of F. oxysporum, this important enzymatic potential is usable in

processes for bioproduction and/or biodegradation of natural resources under solid-

state fermentation but also in bioremediation process and phytoextraction of heavy-

metal under field conditions. For instance, F. oxysporum is used to produce ethanol

from agricultural sources such as cereal straw, thanks to its ability to combine both

the cellulose and hemicellulose degradation system and the capability to ferment

hexoses and pentoses to ethanol (Christakopoulos et al. 1989; Ruiz et al. 2007;

Anasontzis et al. 2011; Xiros et al. 2011; Ali et al. 2012). Similarly, F. oxysporum
appears as an efficient biotechnological partner. It is grown in solid-state fermen-

tation process to degrade by-products of the olive oil production or the citrus-

processing industry (Sampedro et al. 2007; Mamma et al. 2008).

5.2 Nitrogen Utilization

Nitrogen sources in the environment including soil are variable in nature (organic

and mineral) as in structural complexity. It is often difficult to separate the use of

nitrogen from that of carbon, but it nevertheless appears that biomass production

and secretion of hydrolytic enzymes to use carbon by F. oxysporum is strongly

impacted by the nitrogen source at its disposal (Da Silva et al. 2001; Escobosa

et al. 2009). This phenomenon has been mainly shown in biotechnology processes

to solicit the enzyme potential of F. oxysporum to degrade a carbon substrate such
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as lignin or agriculture by-products or to obtain a product of interest (Cheilas

et al. 2000; Panagiotou et al. 2003, 2005; Lee et al. 2011). It is also noticeable

that, thanks to the incredible flexibility of its metabolism, F. oxysporum adapts to

moderately up to severe anaerobic conditions by replacing the energy-producing

mechanism of O2 respiration with the reduction of NO3
� and NO2

� to

N2O. Denitrification is a dissimilating metabolic mechanism for nitrate and was

described in F. oxysporum not so long ago (Shoun and Tanimoto 1991). This

dissimilatory nitrate reduction allows F. oxysporum to regenerate the cofactor

NAD(þ) during the denitrification process to then efficiently hydrolyze xylose to

achieve its anaerobic growth (Panagiotou et al. 2006). F. oxysporum could not only

denitrify nitrate through the classical sequential reactions of nitrate and nitrite

reductases but it can also reduce nitrate to ammonium through ammonia fermen-

tation (Takaya 2002; Takasaki et al. 2004; Zhou et al. 2010). A deep focus has been

given to the specific pathways used by this fungus to denitrify nitrate and nitrite to

gain energy. It was shown that F. oxysporum denitrification activities are localized

in the mitochondria and are coupled to the synthesis of ATP (Kobayashi et al. 1996)

and that cytochrome P-450, designated as P450nor, was involved in the respiratory

nitrite reduction of F. oxysporum, while the equivalent NO reductase (NOR) system

in bacteria is derived from cytochrome c-oxidase (Shoun and Tanimoto 1991;

Takaya and Shoun 2000; Dalber et al. 2005). Recent studies related to the use of

nitrogen by F. oxysporum help at explaining the role of soilborne fungi in the

nitrogen cycle and more specifically in soils (Long et al. 2013; Mothapo

et al. 2015). For instance, fungal denitrifiers including F. oxysporum generally do

not have the gene encoding N2O reductase (NosZ) as bacteria have and thus are

incapable of reducing N2O to N2 (Shoun et al. 2012). Many studies dedicated to the

fungal release of N2O as a powerful greenhouse gas contributing both to global

warming and ozone depletion underlined the contribution of F. oxysporum to this

phenomenon (Shoun et al. 2012; Jirout et al. 2013; Chen et al. 2014; Maeda

et al. 2015). An equivalent strategy allows F. oxysporum to reduce sulfur in anoxic

condition to recover energy (still via NADH cofactor) and ensure efficient oxida-

tion of the carbon source and subsequent fungal growth. As for nitrate dissimilation,

the anaerobic sulfur reduction by F. oxysporum results in the release of a gas, the

hydrogen sulfide (H2S), but in amounts that are less than those noted for N2O (Abe

et al. 2007; Sato et al. 2011). This reveals how the fungus adapts to anaerobic

conditions and replaces the energy-producing mechanism of O2 respiration by a

dissimilative strategy. This ability to reduce sulfide in anoxic conditions can confer

a competitive advantage to populations of F. oxysporum when Brassica, rich in

sulfur, are ground and incorporated into the soil to reduce densities of primary

inoculums of plant pathogenic fungi (Larkin and Griffin 2007).
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5.3 Bioremediation

As mentioned above, F. oxysporum has also attracted interest for bioremediation of

soil and purification of water due to its capability to detoxify and colonize polluted

environments. For instance, F. oxysporum excretes alkaline substances that

increase the pH of the medium around its mycelium, which affects the status of

certain minerals. Thus, by issuing chelators produced during its growth in the

presence of glutamate, F. oxysporum hydrolyzes coal without producing specific

enzymes. On the other side, Trichoderma viride produces enzymes attacking coal

under alkaline conditions; therefore, these fungi combine solubilization of coal and

ligninolyse of humic acids, which enables them to colonize mineral soils (Holker

et al. 1999). In an iron ore area in Brazil, F. oxysporum associated with mycorrhizal

fungi facilitates the solubilization of phosphorus, thus facilitating the installation of

legumes to ensure revegetation of the soil (Matias et al. 2009). F. oxysporum was

isolated from industrially polluted effluents highly contaminated with cadmium

alone or cadmium and lead. Thanks to its ability to grow in the presence of heavy

metals and its associated metabolic activity, F. oxysporum may, in aqueous

medium, either sequester cadmium in its mycelial biomass (Massaccesi

et al. 2002) or turn Pb2+ and Cd2+ metal ions into the corresponding carbonates

that can then be recovered. Besides the removal of toxic heavy-metal ions from

water, the crystals thus created have a specific morphology making them exploit-

able as biominerals for biological and materials sciences (Sanyal et al. 2005).

Moreover, the capability of F. oxysporum to reduce extracellularly metal ions and

in particular silver ions into silver nanoparticles which have an antibacterial effect

has been proposed for the production of sterile clothing for hospitals to prevent

infection with pathogenic bacteria such as Staphylococcus aureus. In this case, the

bioremediation of water is ensured by the cyanogenic bacterium Chromobacterium
violaceum (Duran et al. 2007). It may be admitted that despite the anthropogenic

character of mining and the presence of heavy metals at industrial sites, pollutants,

although toxic, are natural constituents of the environment that man has concen-

trated, certainly, but that F. oxysporum particularly ubiquitous fungus was

confronted to and was able to adapt to their presence, tolerate them, and even

exploit them. By cons, it is notable that the enzymatic equipment of F. oxysporum
makes it capable of degrading synthetic molecules. So F. oxysporum was used to

degrade and to detoxify a new chemical class of textile dyes called glycoconjugate

azo dye and is proposed in the frame of remediation strategies of textile effluents

(Porri et al. 2011). The ability of F. oxysporum to grow in the presence of arsenic

and to volatilize this element present in polluted environments allows considering

its exploitation for the bioremediation of As-contaminated soils, sediments, and

effluents (Zeng et al. 2010; Feng et al. 2015). As well, the efficiency with which

F. oxysporum is capable of extracting the iron from asbestos fibers due to a change

of its metabolism and thereby reduce its toxicity makes the fungus a potential

candidate for the bioremediation of contaminated sites. First, the internalization of

asbestos fibers is prevented in F. oxysporum, thanks to its rigid cell wall. Then a
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proteomic analysis revealed an upregulation of two proteins, homologous of

already known proteins in F. graminearum and Coccidioides immitis, and a

rerouting of F. oxysporum metabolism to the pentose-phosphate pathway to coun-

teract the deleterious consequences of oxidative stress (Chiapello et al. 2010).

Indirectly, F. oxysporum also contributes to the bioremediation of soils contami-

nated with zinc and cadmium or mining soils by facilitating the phytoextraction of

heavy metals from the soils by plants introduced for that purpose in the areas

concerned (Ortega-Larrocea et al. 2010; Zhang et al. 2012).

6 Adaptation to Human Activities

6.1 A Ticket for the Degradation of Xenobiotics?

With a stated goal of protecting crops, chemical control against pests, either weeds,

insects, or plant pathogenic microorganisms, results in a spill of more or less

complex molecules, most of which being xenobiotic compounds. The accumulation

of these molecules can negatively impact human, animal, plant, and microbial

populations under increasing pressure. The enzymatic equipment of F. oxysporum
allows the fungus to degrade pesticides, including organophosphates such as

malathion and fenitrothion which are neurotoxic insecticides (Hasan 1999; Peter

et al. 2015). According to the initial concentration (400–1000 ppm) and to the

availability of additional nutrients (carbon, nitrogen, phosphate), F. oxysporum was

capable of degrading malathion in less than 8 days up to 3 weeks of incubation. The

insecticide chlordecone is a contaminant found in most of the banana plantations in

the French West Indies. Microbial communities were severely negatively affected

by this organochlorine, but F. oxysporum was able to tolerate the presence of the

toxic molecules in soil as well as some few other fungal genera belonging to the

Ascomycota phylum (Merlin et al. 2013). However, F. oxysporum was the only

species able to grow on chlordecone as only carbon source in controlled conditions

and to dissipate up to 40% of chlordecone. So also there, the enzyme potential

confers to the fungus a ubiquitous adaptability leading to exploit those skills to

address the presence of xenobiotic pesticides in soil and water (Pinto et al. 2012).

6.2 A Ticket for the Hospital?

Nosocomial infections are more and more frequently attributed to the presence of

Fusarium in hospital settings (Girmenia et al. 2000; Anaissie et al. 2001; Dignani

and Anaissie 2004; Sautour et al. 2012). The diseases often affect dramatically

immunocompromised patients (Nucci and Anaissie 2007) but can also target more

specifically and less dramatically contact-lens wearers and patients with infectious
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keratitis (Jureen et al. 2008). F. oxysporum and F. solani are the most dominant

species involved among the various Fusarium species that have been detected so far

(Anaissie et al. 2001; O’Donnell et al. 2007; Short et al. 2011; Scheel et al. 2013).
An epidemiological investigation conducted over 2 years in hospital and

nonhospital buildings in France revealed the existence of homogeneous populations

of F. oxysporum and F. dimerum common to all contaminated hospital sites

(Steinberg et al. 2015). The waterborne isolates tolerated higher concentrations of

chlorine dioxide used to disinfect the hospital water distribution systems and of

copper sulfate released by copper pipes and higher temperatures than did soilborne

isolates but did not show any specific resistance to fungicides. These populations

are present at very low densities in natural waters, making them difficult to detect,

but they are adapted to the specific conditions offered by the complex water systems

of public hospitals in France and probably other localities in the world (Steinberg

et al. 2015). Molecular analyses on the genetic diversity of populations of

F. oxysporum in hospitals brought evidence for the recent release of a clonal lineage

geographically widespread (O’Donnell et al. 2004).
These studies conducted by doctors, mycologists, taxonomists, and ecologists

led the different hospital departments to take measures to reduce the risk of spread

of the fungus in the premises, including minimizing the effects of aerosolization to

prevent nosocomial infections, what is quite good of course. They especially

highlight the impact of man on the evolution of microorganisms and their distribu-

tion throughout the world because here are clonal populations of F. oxysporum
adapted to urban water supply systems that are found in countries from different

continents.

7 Conclusion

There is no doubt that nonpathogenic F. oxysporum interact firstly with pathogenic

formae speciales of F. oxysporum or other pathogenic fungal species for the use of

trophic resources and space in the rhizosphere of host plants and also with the plant,

and they elicit defence reactions. These are the reasons why many strains of

nonpathogenic F. oxysporum are proposed as biocontrol agents to control the

infectious activity of pathogens or pests and reduce the severity of the disease

even if not so many strains are actually registered and available on the market.

Although this biocontrol activity is particularly important, it would be a shame to

reduce F. oxysporum to a simple role-playing in the rhizosphere of a plant that

distributes the game depending on its compatibility with one or the other of the

strains. Indeed, only the interaction with the plant discriminates pathogenic strains

from nonpathogenic ones. Molecular markers exist for a few number of formae
speciales, but for most of the others, these markers, if any, are difficult to identify.

The reasons are the very high genetic diversity within this species and the poly-

phyletic origin of the pathogenicity. In return, this diversity is a major asset for

F. oxysporum that can colonize and exploit all the compartments of the terrestrial
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ecosystem, even the most unexpected, whether they are extreme in nature or a result

of excessive anthropization. Thanks to a diverse enzymatic equipment and a

flexible metabolism, F. oxysporum is able to adapt to many environmental condi-

tions and above all to actively contribute to the biochemical processes governing

the functioning of the niches used by the fungus, whatever they are.

Beyond the biocontrol activity of F. oxysporum, the mechanisms of which are

beginning to be elucidated, at least partially, the bioremediation of contaminated

soils and the detoxification of harmful xenobiotics used in agriculture become

particularly attractive, as well as the potential its enzymatic equipment offers for

biotechnological processes including food processing. Finally, its ability to reduce

nitrates makes F. oxysporum the preferred study model to understand the role of

fungi in the denitrification process and particularly in their contribution to the

production of N2O and the resulting greenhouse gas. F. oxysporum, whether it is
pathogenic or nonpathogenic F. oxysporum, deserves its qualification as a ubiqui-

tous fungus because actually it is everywhere and it is active throughout. It appears

as the multipurpose fungal toolbox that pathologists sometimes ignore but which

nevertheless actively contributes to the global functioning of soil.
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Belowground Defence Strategies in Plants:

The Plant–Trichoderma Dialogue

Ainhoa Martinez-Medina, Maria J. Pozo, Bruno P.A. Cammue,

and Christine M.F. Vos

Abstract Trichoderma spp. are cosmopolitan soil fungi that hold great promise as

biocontrol organisms. Their biocontrol capacity was initially thought to be based on

their direct suppressive effects on plant pathogens, with most strains showing

mycoparasitic potential and producing a large variety of enzymes and secondary

metabolites. More recently however Trichoderma was also recognized as an oppor-
tunistic plant root colonizer that can trigger induced systemic resistance (ISR) in the

plant, typically leading to a more rapid and robust systemic activation of defences

after pathogen attack. As our understanding of the Trichoderma–plant interaction
advances, it is becoming increasingly clear that Trichoderma is initially also

perceived by the host plant as a potential invader. Trichoderma thus needs to find

a way to deal with the plant defence response, either by avoiding or suppressing it,

in order to establish a durable interaction with their host. In this chapter, we cover

our current knowledge on the initial dialogue between Trichoderma and its host,

including the defence responses mounted by the host plant and how Trichoderma
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attempts to circumvent it. Next, we describe how the host plant can benefit from this

interaction. Trichoderma colonization can indeed prime the host defence, enabling

it to react faster and stronger to subsequent pathogen attack. We then conclude with

examples of Trichoderma-induced resistance and direct antagonism against differ-

ent types of soil pathogens and pests.

1 Introduction

Trichoderma spp. are among the most commonly isolated saprotrophic fungi in the

soil (Harman et al. 2004). They are highly opportunistic and can adapt to a wide range

of climatological and ecological conditions. This is illustrated by the fact that

Trichoderma strains cannot only be found in soils all over the world, but some are

also capable of colonizing plant roots, aboveground plant parts, and numerous other

substrates such as wood and even other fungi (Druzhinina et al. 2011). While

Trichoderma reesei strains are widely used in industrial applications due to their

prolific production of cellulose- and chitin-degrading enzymes (Seidl et al. 2009),

other strains have been of interest for many years due to their biocontrol potential

(Lorito et al. 2010). Originally the direct antagonistic potential of Trichoderma
against plant pathogenic fungi was assumed to be the main explanation for the

observed biocontrol effects (Shoresh et al. 2010). A survey of 1100 Trichoderma
strains found that all strains possessed mycoparasitic potential, thus illustrating the

importance of this trait in the genus (Druzhinina et al. 2011). In addition, an

overrepresentation of genes encoding cell-wall-degrading enzymes (CWDEs) was

found in the genome of three sequenced Trichoderma species as compared to other

related fungi (Kubicek et al. 2011; Mukherjee et al. 2013). Mycoparasitism is indeed

thought to be the ancestral lifestyle of Trichoderma, but they also produce an

impressive amount of antimicrobial compounds and enzymes (Kubicek

et al. 2011). These comprise both volatile and nonvolatile compounds, including

pyrones, trichothecenes and terpenoids, as well as non-ribosomal peptides such as

peptaibols, which are all able to kill plant pathogens (Mukherjee et al. 2013; Hermosa

et al. 2013). More recently, however, it was shown that Trichoderma can also protect
the host plant against infection even when there is no direct contact between the

Trichoderma and the pathogen, indicating that Trichoderma-mediated biocontrol

may also occur through plant-mediated mechanisms (reviewed in Vos et al. 2014).

In addition, specific Trichoderma strains can promote plant growth or protect

against abiotic stresses (Shoresh et al. 2010; Brotman et al. 2013). The combination

of these different modes of action, together with their high reproductive capacity,

ability to survive under unfavorable conditions, and high nutrient utilization effi-

ciency, makes Trichoderma species highly promising biocontrol organisms

(Benitez et al. 2004). As a consequence, several Trichoderma strains such as

Trichoderma harzianum T22 have already been registered as biopesticide or

biofertilizer (Lorito et al. 2010), and a better understanding of the mechanisms

driving the beneficial effects will probably lead to the selection of additional strains

for future agronomic applications.
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Despite their numerous beneficial properties for plants, it is now becoming

increasingly clear that plants originally perceive Trichoderma as an invading

microbe and mount a defence response in an attempt to limit root colonization. It

is highly interesting to decipher the dialogue that takes place between the plant and

the colonizing Trichoderma. This knowledge can lead to a better understanding

about the thin red line between beneficial and pathogenic plant–microbe interac-

tions and could lead to the discovery and selection of strains with increased

rhizosphere competence.

2 Root Immune Signaling During Trichoderma
Colonization

2.1 Plant Immune Signaling

Immune signaling in plants is initiated upon the recognition of general elicitors,

which are broadly conserved within a wide range of microbes, including pathogenic

and beneficial ones. These compounds are called microbe-associated molecular

patterns (MAMPs or PAMPs in the case of pathogens) and include a diversity of

molecules such as flagellin, bacterial lipopolysaccharide, chitin, or peptidoglycans

(Gomez-Gomez and Boller 2002; Erbs and Newman 2003; Montesano et al. 2003).

MAMPs are recognized by the plant as “nonself molecules” by transmembrane

pattern recognition receptors (PRRs) located in the plasma membrane in the plant

(reviewed in Boller and Felix 2009), leading to a signal transduction cascade and

the activation of MAMP- or PAMP-triggered immunity (MTI or PTI) (Jones and

Dangl 2006). The latter response can also be triggered by specific plant components

released upon pathogen attack which are recognized by the plant as “nonself

activities.” Such components are termed damage- or danger-associated molecular

patterns (DAMPs) and can include cutin monomers and cellodextrins resulting

from the degradation by the pathogen of the plant’s cutin and cell wall (Fauth

et al. 1998; Aziz et al. 2007). In an ongoing evolutionary arms race, successful

pathogens have evolved to minimize host immune stimulation and secrete effector

molecules to bypass this first line of defence, by suppressing PTI signaling, thus

facilitating colonization and causing effector-triggered susceptibility of the plant to

the disease (Jones and Dangl 2006). In turn, plants can perceive these effectors or

their modified target proteins and activate immune responses that are quicker, more

prolonged, and more robust than those in PTI, resulting in effector-triggered

immunity (ETI) (Jones and Dangl 2006; Boller and He 2009). Typically, the

activation of PTI/MTI and ETI triggers a series of common early defence-related

events including the generation of reactive oxygen species, activation of mitogen-

activated protein kinases (MAPKs), extracellular alkalinization, and protein phos-

phorylation with associated gene regulation that ultimately restricts the growth of

the microbial invader (Gimenez-Ibanez and Rathjen 2010). The onset of PTI and
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ETI often triggers induced resistance in tissues distal from the site of infection,

enhancing the defence-related capacity in still undamaged plant parts (Dempsey

and Klessig 2012). This form of pathogen-induced resistance is commonly known

as systemic acquired resistance (SAR) (Spoel and Dong 2012) and confers

enhanced resistance against a broad spectrum of shoot and root pathogens.

Plant defence responses are in general coordinated by small molecules that act as

signal transducers and regulate the production of downstream defence molecules

(Ausubel 2005; Jones and Dangl 2006). Among them is the well-established

importance of salicylic acid (SA), jasmonic acid (JA), and ethylene (Et) as primary

signals in the regulation of the plant immunity (reviewed in Pieterse et al. 2009).

Although there are some exceptions, biotrophic pathogens are generally sensitive to

the defence responses regulated by SA, while necrotrophs and chewing insects are

commonly deterred by defences controlled by JA and ET (reviewed in Pieterse

et al. 2009). Further SA- and JA-/ET-regulated pathways often interact in an

antagonistic manner, through a complex network of regulatory interactions termed

cross talk. It is indeed the hormonal cross talk between different signaling pathways

that provides the plant with a powerful capacity to finely regulate its immune

response to specific invaders (reviewed in Pieterse et al. 2009).

2.2 Modulation of Host Immunity by Root Beneficial
Microbes

In nature, plants normally grow in the presence of hundreds of microbial species,

including nonpathogenic and beneficial microbes. Well-known examples of bene-

ficial microbes are arbuscular mycorrhizal fungi (AMF) that aid in the uptake of

water and minerals (van der Heijden et al. 1998) and rhizobial bacteria that fix

atmospheric nitrogen for the plant (Spaink 2000). Although it would seem coun-

terproductive to raise a defence response against beneficial microbes, a growing

body of evidence suggests that beneficial microbes in the rhizosphere are initially

recognized by the plant as potential invaders, triggering an immune response in the

host roots upon MAMP perception (reviewed in Zamioudis and Pieterse 2012). In

order to establish a mutualistic plant–microbe relationship, it is therefore essential

that the beneficial microbes interfere with the host immune system.

Symbiotic microbes have evolved different strategies to reduce stimulation of

the host’s immune system and/or to suppress the immune response elicited in the

host root after MAMP perception (reviewed in Zamioudis and Pieterse 2012). For

example, some previous studies on plant interaction with AMF revealed that during

early stages of the interaction, the plant reacts to the presence of AMF by activating

some defence-related responses that are subsequently suppressed (reviewed in Jung

et al. 2012). These studies suggest that hosts initially treat symbiotic fungi as

potential invaders and activate a defence program, which is then countered by the

mycorrhizal symbionts. Indeed, the AMF Rhizophagus irregularis (formerly
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Glomus intraradices) secretes a protein, SP7, in the apoplastic or periarbuscular

space during the interaction with the host which acts as effector in order to short-

circuit the plant defence program, leading to the accommodation of the fungus

within the plant roots (Kloppholz et al. 2011). Similarly, leguminous hosts initially

recognize their symbiotic rhizobial partners as a potential threat and incite a

defence program which includes the transcriptional activation of defence- and

stress-related genes. However, the same cluster of genes is downregulated at later

stages of root nodule formation (reviewed in Soto et al. 2009). Several rhizobial

MAMPs, including common structural components such as lipopolysaccharides

and exopolysaccharides, suppress the immune response in leguminous hosts (Albus

et al. 2001; Tellstroem et al. 2007). Collectively, these observations indicate that

root endosymbionts have adapted and refined some of their strategies to interact

with their hosts, whereas plant hosts may have also evolved to discriminate between

friends and foes in the rhizosphere, adapting their perception mechanisms and

defence responses to the encountered invader.

2.3 Trichoderma Colonization Elicits Host Defences

Although the rhizosphere is among the most common ecological niches for

Trichoderma, several species seem to have evolved further toward new ecological

niches and are able to grow endophytically inside the roots as facultative endo-

phytes (Fig. 1a; Druzhinina et al. 2011). Their plant endophytic behavior is prob-

ably a more recent evolution compared to their ancestral mycoparasitic lifestyle

(Kubicek et al. 2011). It seems reasonable to assume that Trichoderma has been

attracted to the plant rhizosphere due to the presence of fungal prey as well as

Fig. 1 Root colonization by Trichoderma. Confocal laser scanning microscopy images from

Trichoderma-colonized Arabidopsis roots showing (a) green fluorescing Trichoderma harzianum
T78 mycelium (WGA-Alexa Fluor 488) in the root surface and inside cortical cells (indicated by

arrow) and (b) red fluorescing T78 hyphae (Texas Red) forming an appressoria-like structure on

the Arabidopsis root surface (indicated by arrow)
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nutrients derived from plant roots. Phylogenetic analyses position some of the

endophytic Trichoderma spp. indeed on a terminal position in their clades,

supporting the idea that the ability to endophytically colonize plant tissues is a

selected trait acquired more recently in evolution (Druzhinina et al. 2011). The

observation that T. harzianum was able to use the extraradical hyphae of AMF as a

gateway entry into potato roots also fits into this context (De Jaeger et al. 2010).

Development of new technological (in vivo confocal microscopy) and molecular

(transformed fungi expressing GFP markers) tools has allowed us to provide a

clearer description of the sequence of events leading to Trichoderma colonization

of roots. During root colonization, Trichoderma hyphae coil around the roots and

form appressoria-like structures on the root surface (Fig. 1b), and after penetrating

the root, they grow intercellularly in the epidermis and cortex (Yedidia et al. 1999;

Chacon et al. 2007; Velazquez-Robledo et al. 2011; Alonso-Ramirez et al. 2014).

Occasionally intracellular growth has been observed too, in which case the colo-

nized cells appeared to remain viable (Chacon et al. 2007). Penetration of the

epidermis by Trichoderma and subsequent ingress into the outer cortex require

the secretion of a battery of cell-wall lytic enzymes and other proteins by the fungal

hyphae (Viterbo et al. 2004; Brotman et al. 2008).

Previous studies have evidenced that host recognition of Trichoderma MAMPs

and/or molecules released during the initial stages of the interaction results in the

activation of a quick and often transient defence response, with the concurrent

accumulation of defence-related compounds including callose deposition, antimi-

crobial reactive oxygen species, and phytoalexins (Yedidia et al. 1999, 2000;

Chacon et al. 2007; Contreras-Cornejo et al. 2011; Salas-Marina et al. 2011).

Indeed Trichoderma expresses a collection of MAMPs and elicitors that activate

the plant basal immunity upon recognition by the host (Mukherjee et al. 2013).

These MAMPs/elicitors include enzymes or peptides, oligosaccharides, and other

low-molecular-weight compounds released by the action of specific Trichoderma
enzymes on fungal and plant cell walls (Woo et al. 2006). Table 1 gives some

examples of MAMPs/elicitors that are produced by various Trichoderma strains.

Other than through MAMPs, Trichoderma colonization can also be detected by

the plant through the production of DAMPs. By proteomic, genomic, and

transcriptomic approaches, Moran-Diez et al. (2009) characterized the gene

Thpg1 coding an endopolygalacturonase, a plant cell-wall-degrading enzyme

required for efficient root colonization by T. harzianum. ThPG1 hydrolyzes plant

pectin and produces oligogalacturonides that act as DAMPs, activating innate

immunity in the host plant (de Lorenzo et al. 2011; Benedetti et al. 2015).

Trichoderma colonization triggers, therefore, a wide array of plant defence

responses during early stages of the asymptomatic colonization of the roots.
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Table 1 Examples of MAMPs/elicitors produced by Trichoderma spp.

MAMP/

elicitor Species Process involved Plant responses References

Xylanases T. viride
T. reesei
T. harzianum

Degradation of

xylans constitut-

ing plant cell wall

Hypersensitive

response

Et biosynthesis

Cell death

Oxidative burst

Defence gene

expression

Avni

et al. (1994)

Yano

et al. (1998)

Do Vale

et al. (2012)

Cellulases T. longibrachiatum
T. harzianum

Degradation of

cellulose consti-

tuting plant cell

wall

Oxidative burst

Induction of Et and

SA pathway

Induction of peroxi-

dase and chitinase

activities

Martinez

et al. (2001)

Do Vale

et al. (2012)

Swollenin

protein Swo

T. reesei Cell-wall disrup-

tion during sap-

rophytic growth

Host root

colonization

Expression of

chitinase and beta-

glucanase genes

Brotman

et al. (2008)

Cerato-

platanin pro-

tein SM1

T. virens
T. reesei

Hyphal growth

Conidiation

Oxidative burst

Expression of

defence genes

Djonovic

et al. (2006),

Gaderer

et al. (2015)

Cerato-

platanin pro-

tein SM2

T. virens Spore maturation Induced resistance

against

Cochliobolus
heterostrophus

Gaderer

et al. (2015)

Cerato-

platanin pro-

tein Epl-1

T. harzianum Self cell-wall

protection and

recognition

Regulation of

mycoparasitism-

related gene

expression

Modulation of

mycoparasitic

hyphal coiling

Expression of

defence-related

genes

Gomes

et al. (2015)

avr4 and

avr9

homologues

T. atroviride
T. harzianum
T. viride

Avr4 protects

Trichoderma
against plant

chitinases

Hypersensitive

response

Expression of

defence genes

Harman

et al. (2004),

Marra

et al. (2006),

18-Mer

peptaibols

T. virens Trichoderma–
host

communication

Induction of JA and

SA pathway

Induction of defence

responses against

Pseudomonas
syringae

Viterbo

et al. (2007)

Trichokonins T. pseudokoningii Unknown Oxidative burst

Induction of pheno-

lic compounds

Luo

et al. (2010)
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2.4 Trichoderma Counteracts Host Defences to Establish
Successful Root Colonization

Similar to the situation that occurs during mycorrhizal and rhizobial symbiosis,

endophytic Trichoderma minimize stimulation of the host’s immune system, to

successfully colonize the roots. Large-scale gene expression profiling studies have

revealed that, already a few hours after Trichoderma inoculation, a widespread gene

transcript reprogramming occurs in the host roots, which is preceded by a transient

repression of the plant immune responses, most likely to allow root colonization

(Moran-Diez et al. 2012; Brotman et al. 2013). The transcriptional response activated

in roots upon Trichoderma colonization seems to share some similarities with the

two-wave transcriptional reprogramming reported for mycorrhizal and rhizobial

symbioses (Liu et al. 2003; Heller et al. 2008; Maunoury et al. 2010). For instance,

the upregulation of the WRKY group III transcription factors WRKY41, WRKY53,

and WRKY55 induced 24 h after root colonization by Trichoderma asperelloides
T203 was repressed at 48 h, together with the expression of other defence-related

transcripts. Among the downregulated genes by T203 were several genes coding for

plant cytochrome P450 monooxygenases (CYP712A2, CYP712A1, CYP93D1, and

CYP76G1), which are involved in the synthesis and metabolism of diverse plant

defence compounds (Morant et al. 2003; Brotman et al. 2013). In a similar study,

Moran-Diez et al. (2012) found that colonization ofArabidopsis roots byT. harzianum
T34 was accompanied by the downregulation of defence-related genes and transcrip-

tion factors as PR-1 (pathogenesis related 1), FMO1 (flavin monooxygenase 1),

WRKY54, and two glutathione transferases. The authors suggested that T203 and

T34 can fine-tune the transcriptional regulation of defence-regulated genes in roots to

allow colonization (Moran-Diez et al. 2012; Brotman et al. 2013). Similarly, Gupta

et al. (2014) recently suggested the ability of T. asperelloides to manipulate host nitric

oxide (NO) production, which is an important regulator of plant defences. The authors

found a weak and transient increase in NO accumulation in Arabidopsis roots follow-
ing T. asperelloides inoculation.

Although the molecular basis for the manipulation of plant defences by

Trichoderma is still lacking, a recent study made it clear that large transcriptional

changes also occur in the fungus when coming into contact with plant roots. Moran-

Diez et al. (2015) demonstrated the large transcriptional reprogramming occurring

in Trichoderma virens hyphae when establishing contact with tomato or maize

roots. Interestingly, this response seemed to be partially dependent on the host plant

species involved in the interaction. In addition, genome-wide screening approaches

showed that some filamentous fungi including Trichoderma have large numbers of

proteins containing LysM motifs (Gruber et al. 2011; Kubicek et al. 2011; Seidl-

Seiboth et al. 2013). Some of these proteins are involved in suppressing host

defences by sequestering chitin oligosaccharides, which act as elicitors of plant

defence responses (Gust et al. 2012). During infection, plant chitinases release

chitin oligomers from the fungal cell wall. For example, the LysM proteins Ecp6

and Slp1 from the fungal pathogens Cladosporium fulvum andMagnaporthe grisea,
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respectively, bind to the released chitin oligomers, thus preventing recognition of

these molecules by the plant, which otherwise would elicit defence responses. The

LysM protein TAL6 from Trichoderma atroviride also shows an ability to sequester
some forms of polymeric chitin. These findings might suggest a role for TAL6 in

attenuating plant defences to facilitate root colonization. However, the authors

found a more important role of this protein in self-signaling processes during fungal

growth rather than fungal–plant interactions (Seidl-Seiboth et al. 2013).

Trichoderma also has the ability to manipulate the phytohormone regulatory

network. Salicylic acid (SA) is an important regulator of defence signaling against

biotrophic pathogens (Pieterse et al. 2009). Being mutualistic microbes, endophytic

Trichoderma strains are likely to be sensitive to SA-regulated defence responses, as

has also been demonstrated for mycorrhizal (de Roman et al. 2011) and rhizobial

(Stacey et al. 2006) symbioses. Indeed, Alonso-Ramirez et al. (2014) reported a

negative effect of SA signaling on the intensity of Trichoderma colonization. Several
studies evidenced the ability of Trichoderma to produce substantial amounts of

phytohormone-like compounds and/or to induce de novo biosynthesis of several

phytohormones in their host such as auxins, cytokinins, and gibberellins (Contreras-

Cornejo et al. 2009; Sofo et al. 2011; Martinez-Medina et al. 2014). Several of these

phytohormones have been demonstrated to negatively cross-communicate with the

SA signaling pathway, affecting the outcome of the immune response (reviewed in

Pieterse et al. 2009). Furthermore, certain Trichoderma strains produce

1-aminocyclopropane-1-caboxylic acid deaminase (ACCD), which degrades the ET

precursor ACC, resulting in reduced ET production in the plant (Viterbo et al. 2010;

Martinez-Medina et al. 2014). Hence, Trichodermamight produce phytohormones or

interfere with hormonal plant biosynthesis and signaling, in order to attenuate the

relative strength of the defence response via hormonal cross-talk mechanisms.

Besides the attempts to avoid detection and broad-spectrum suppression of the

plant innate immunity, it has also been suggested that Trichoderma has the capacity
to neutralize host defence responses. A proteome analysis identified a protein that is

a homologue of Avr4 from C. fulvum in T. harzianum T22 and T. atroviride P1

(Harman et al. 2004). It has been demonstrated that Avr4 protects Trichoderma
viride against hydrolysis by plant chitinases by binding to chitin present in its cell

wall (van den Burg et al. 2006). Taken together, it thus seems that Trichoderma has
evolved different strategies for reducing stimulation and/or evading the host’s
immune system, similarly to obligate root symbionts.

2.5 Trichoderma Affects Root System Architecture

Activation of the symbiotic (SYM) program in host roots by mycorrhizal fungi or

rhizobial bacteria leads to remodeling of root architecture, even before physical

contact between both partners (Olah et al. 2005), most likely to promote coloniza-

tion (Gutjahr and Paszkowski 2013). Although no activation of a SYM program has

been described during Trichoderma colonization (Lace et al. 2015), some
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Trichoderma species can actively influence root system architecture, mainly by

enhancing lateral root formation, which could be interpreted as a means of increas-

ing colonization success. Contreras-Cornejo et al. (2009) observed an increased

number of lateral roots in Arabidopsis, after inoculation with T. atroviride or

T. virens, showing the ability of both species for promoting root branching through

an auxin-dependent mechanism. Noticeably, no effects were observed in primary

root length. Apart from auxin, also ET- and mitogen-activated protein kinase

6 (MAPK6) signaling seems to be further required for the modulation of root

system architecture by Trichoderma (Contreras-Cornejo et al. 2015). In addition,

the cysteine-rich cell-wall protein QID74 of T. harzianum has been described to

modify the architecture of cucumber roots, increasing the number and length of

secondary roots (Samolski et al. 2012). Furthermore, this remodeling in root

architecture can take place even without physical contact between both partners.

Hung et al. (2013) found an increase in lateral roots of Arabidopsis plants exposed
to volatile organic compounds from T. viride. This might indicate a reprogramming

in host roots occurring even before physical contact. Similarly, 6-pentyl-2H-pyran-

2-one (6-PP), a major volatile produced by Trichoderma, induced lateral root

formation in Arabidopsis (Garnica-Vergara et al. 2015). It has been suggested

that root responses to 6-PP involve components of auxin transport and signaling

and the ET-response modulator EIN2 (Garnica-Vergara et al. 2015). These findings

suggest that some Trichoderma volatiles may be interpreted by plants as trans-

kingdom signals to modulate plant morphogenesis.

2.6 The Host Plant Regulates Trichoderma Colonization

Although Trichoderma seems to be able tomanipulate host immunity, the fact that the

colonization is limited to the root epidermis and the first layers of cortical cells (Fig. 1a)

indicates a feedback system in the plant that controls the colonization. Indeed,

Trichoderma intercellular growth induces the surrounding plant root cells to deposit

cell-wall material and produce phenolic compounds. This plant reaction limits the

Trichoderma growth inside the root (Yedidia et al. 1999, 2000; Chacon et al. 2007). A
similar regulation of colonization is commonly observed during mycorrhizal and

rhizobial symbiosis, balancing the cost and benefits of the symbiosis. This phenome-

non is termed autoregulation of the symbiosis and prevents excessive colonization over

a critical threshold (Vierheilig et al. 2008; Mortier et al. 2012). Although the mecha-

nisms by which the host can control Trichoderma colonization are not yet understood,
the importance of the hormone SA in controlling Trichoderma root colonization was

recently reported. By studying the colonization pattern of T. harzianum in the

Arabidopsis SA-impaired mutant sid2, Alonso-Ramirez et al. (2014) observed that

SA signaling plays an important role in controlling Trichoderma colonization, as

T. harzianum colonization in sid2 was not restricted to the epidermal and cortical

level, but extended into the vascular vessels. This uncontrolled Trichoderma invasion
had a detrimental effect on plant growth. Similarly, SA signaling seems to have a
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negative effect on mycorrhizal colonization (de Roman et al. 2011) and on rhizobial

infection and nodulation (Van Spronsen et al. 2003). This means that in a well-

established Trichoderma root endophytic association, plant defence mechanisms are

tightly regulated by the two partners to allowmaintaining the interaction at mutualistic

levels. As a side effect, this regulation may directly impact the plant interaction with

other community members (Pieterse et al. 2014). Furthermore, often the effects of

Trichoderma on host immunity are not restricted to the root, but they are also

manifested in aboveground plant tissues rendering the complete plant more resistant

to a broad spectrum of plant pathogens (Martinez-Medina et al. 2010, 2013; Mathys

et al. 2012).

3 Induced Systemic Resistance Triggered by Trichoderma

3.1 The Biocontrol Effect of Trichoderma Can Be Plant
Mediated

As stated above, protection ofTrichoderma-colonized plants against diseases has also
often been observed in the absence of direct contact between the biocontrol organism

and the pathogen. This has been evidenced in several studies investigating the

biocontrol effect of Trichoderma root colonization against leaf pathogens (Segarra

et al. 2009; Martinez-Medina et al. 2013). In these studies it was verified that the

Trichoderma strain did not colonize the aboveground plant parts, thus indicating that
the two microbes were clearly spatially separated. A reduction in disease symptoms

using such a setup has been demonstrated for a wide range of pathogens, including

bacteria, fungi, and oomycetes (reviewed by Shoresh et al. 2010). But also for

soilborne pathogens and nematodes, it has been demonstrated several times that the

biocontrol effect caused byTrichoderma root colonizationwas plant mediated and not

through direct antagonism. This effect could be demonstrated by using a split-root

setup, physically separating the part of the root system inoculated with a Trichoderma
strain from the root part infected by a pest or pathogen. For example, using

Trichoderma hamatum T382, Khan et al. (2004) demonstrated that the significant

reduction in root and crown rot caused byPhytophthora capsici in cucumberwas plant

mediated. Similarly, Trichoderma koningiopsis and T. harzianum induced systemic

protection in roots against the pathogen F. oxysporum (Moreno et al. 2009) and the

root-knot nematode Meloidogyne javanica, respectively (Selim et al. 2014). Addi-

tional evidence is provided by Howell et al. (2000), who showed that despite muta-

tions affecting its capacity for mycoparasitism or antibiotic production, T. virens was
still able to control Rhizoctonia solani infection in cotton. Furthermore, Shoresh

et al. (2010) demonstrated that the biocontrol effect on Pythium ultimum by

T. harzianum T22 was not only due to mycoparasitism, as it also required a functional

NPR1 (non-expressor of PR gene 1) in Arabidopsis, which is a central transcriptional
regulator in the activation of SA-dependent defence responses and a mediator of SA–

JA cross talk (Shoresh et al. 2010; Pieterse et al. 2014).
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3.2 Induced Systemic Resistance and Priming

In the above examples, the biocontrol effect has occurred because Trichoderma has
induced systemic resistance (ISR) in its host. The classic definition of ISR is based

on our understanding of the systemic plant defence response induced by plant

growth-promoting rhizobacteria (PGPR; Van Loon et al. 1998). It is typically

described as a systemic response initiated by root colonization of a beneficial

microbe, in contrast to SAR which is typically conceived as triggered by local

pathogen infection. While SAR is furthermore defined as an SA-dependent defence

response leading to the activation of PR genes, ISR is typically JA/ET mediated and

does not involve the direct activation of PR genes. However, experimental evidence

suggests a considerate overlap between both induced resistance responses (Mathys

et al. 2012; Pieterse et al. 2014).

As detailed in the previous section, the initial detection of Trichoderma by the

plant activates plant signaling pathways and leads to the reprogramming of plant

gene expression. These modulations may result in preconditioning of the plant

tissues for a more efficient activation of plant defences upon pathogen attack, a

phenomenon referred to as priming. Besides by Trichoderma root colonization, the

plant can be primed by treatment with various other beneficial microbes as well as

by pathogen infection, wounding, or treatment with chemicals. Priming precondi-

tions the plant to be in an alert state. Only upon attempted pathogen invasion, this

alert state leads to a faster and/or stronger activation of defences in the plant,

resulting in an enhanced level of resistance. Defence responses are costly for the

plant, which has to seek a balance between investing in growth or defence. In

comparison to constitutively activated defences, the principle of priming thus pro-

vides a great fitness benefit to the plant (Conrath 2011).

Several reviews have been published on the molecular mechanisms driving

defence priming (Balmer et al. 2015; Conrath et al. 2015). Although priming by

beneficial microbes is typically JA/ET dependent, the involvement of other signal-

ing pathways such as SA or abscisic acid (ABA) is also becoming evident (Mathys

et al. 2012; Martinez-Medina et al. 2013). In addition, the root-specific transcription

factor R2R3-type MYB gene MYB72 was identified as crucial for both

Trichoderma- and rhizobacteria-induced ISR, suggesting that MYB72 is a node

of convergence in the ISR signaling pathway triggered by different beneficial

microbes (Segarra et al. 2009). Apart from the potentiation of defence-related

gene expression, the plant can also be primed for the formation of structural barriers

such as callose depositions at pathogen entry sites (Fig. 2; Pieterse et al. 2014).

Below we will discuss the two phases that can be distinguished in the systemic

response of the plant to Trichoderma, termed the ISR-prime and ISR-boost phase,

which refer to the defence status of the plant in the absence or presence of pathogen

infection, respectively (Mathys et al. 2012).

312 A. Martinez-Medina et al.



3.3 The Induced Root Response in the Trichoderma–Plant
Interaction: The ISR-Prime Phase

As detailed in the previous section, various MAMPs can be released by

Trichoderma and evoke a plant defence response. Several studies have investigated
the plant response to Trichoderma colonization in great detail, however, mainly

focusing on the leaf instead of the root transcriptome (Alfano et al. 2007; Mathys

et al. 2012; Moran-Diez et al. 2012; Perazzolli et al. 2012). The changes induced by

Trichoderma during plant root colonization include in general alterations in the

Fig. 2 Trichoderma primes for enhanced callose deposition. Microscopic images of the

biotrophic pathogen Hyaloperonospora parasitica growing on leaves of Arabidopsis plants not
induced with Trichoderma harzianum T78 (a, b) or induced with T78 (c, d). In (c), the arrow
shows callose deposition below the appressoria at the end of the germ tube of the pathogen. In (d),

the arrow indicates a hypersensitive respons (HR) in Trichoderma–plants
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aboveground plant parts in terms of hormone signaling, production of secondary

metabolites, and control of ROS damage (reviewed by Vos et al. 2015).

Activation of hormone signaling regulates the defence network of the plant,

translating the early signaling events after TrichodermaMAMP perception into the

activation of effective defence responses. Both JA-/ET- and SA-mediated signal

transduction pathways can be activated by Trichoderma, but the impact of a

particular pathway seems to vary depending on the experimental conditions, the

specific Trichoderma strains, and the plant species involved. The most comprehen-

sive study so far of the global transcriptome response of Arabidopsis roots to

Trichoderma was performed by Brotman et al. (2013). The authors used microarray

analysis revealing extensive reprogramming of the root transcriptome as early as

24 h after the onset of colonization by T. asperelloides T203. Enriched functional

categories according to GO analysis included response to biotic and abiotic stress,

response to different stimuli such as chitin, as well as the biological processes of

hormone biosynthesis and signaling. Interestingly, up to 7% of the total

upregulated genes in the roots appeared to be related to the biosynthesis of

oxylipins, including several LOX genes, involved in JA biosynthesis. Via qPCR

analysis of 137 stress responsive genes and transcription factors, gene modulation

in the roots by T. asperelloides was followed at 9, 24, and 48 h after colonization. A
large proportion of the Trichoderma-induced genes appeared to function in JA, ET,
and auxin metabolism and response. For example, various WRKY and ERF tran-

scription factors, related to JA/ET regulation and JA signaling, were induced, as

well as JA-responsive genes such as vegetative storage protein (VSP). The EIN2

and EIN4 transcription factors, positive regulators of ET responses, were induced as

well. The T203 strain furthermore enhanced the expression of WRKY18 and

WRKY40, which stimulate JA signaling via suppression of JAZ repressors

(Brotman et al. 2013). Other studies focusing on the plant root response to

Trichoderma colonization also observed the upregulation of LOX1 (lipoxygenase

1) in the roots of Arabidopsis after colonization by T. atroviride IMI206040,

together with the upregulation of PDF1.2a, a marker gene for JA-/ET-mediated

signaling in Arabidopsis encoding plant defensin 1.2 (Penninckx et al. 1998; Salas-
Marina et al. 2011). On the other hand, the SA-inducible PR genes PR1 and PR2

also showed increased expression in Arabidopsis roots in the same study. The

activation of gibberellin (GA) production in the Trichoderma ISR prime was

demonstrated by Chowdappa et al. (2013), who reported an increase in GA in

tomato roots after application of T. harzianum OTPB3.

As is observed for aboveground responses in the plant–Trichoderma spp. inter-

action (Mathys et al. 2012), secondary metabolite production is another important

aspect of the response of plant roots to Trichoderma in the ISR-prime phase. The

phenylpropanoid pathway is a major source for antimicrobial phenolics and SA

precursors and is found involved in the ISR-prime response in various studies. In

T. asperelloides-colonized Arabidopsis roots, Brotman et al. (2013) observed

increased expression of PAL1 and PAL2, encoding phenylalanine ammonium

lyase which is a key enzyme in the first step of the pathway, as well as of 4CL,

which encodes 4-coumarate–CoA ligase, involved in the final step of the
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phenylpropanoid pathway (Fraser and Chapple 2011). The last step in the biosyn-

thesis of the most abundant phytoalexin in Arabidopsis, camalexin, is catalyzed by

the cytochrome P-450 enzyme CYP71B15 or PAD3 (Ferrari et al. 2003), and

upregulation of PAD3 (phytoalexin deficient 3) was found in Arabidopsis roots

after colonization by various Trichoderma strains (Salas-Marina et al. 2011;

Brotman et al. 2013). Trichoderma colonization also affects the oxidative stress

response in plant roots. A peroxidase-encoding gene was observed to be induced in

Arabidopsis roots colonized by T. atroviride (Salas-Marina et al. 2011), and

Brotman et al. (2013) also reported the increased expression of genes encoding

antioxidant enzymes such as MDAR (encoding a monodehydroascorbate reductase)

in the T. asperelloides-colonized roots of Arabidopsis and cucumber. From the few

studies that have focused on the plant root response to Trichoderma, it is thus clear
that the colonization already leads to elaborate changes in the plant. However, these

are still altered and/or magnified when a pathogen enters into the equation, indi-

cating the start of the ISR-boost phase.

3.4 The Induced Root Response in the Trichoderma–Plant–
Pathogen Interaction: The ISR-Boost Phase

The plant-mediated biocontrol effect of Trichoderma against soilborne pathogens

has been reported in various studies, but in-depth investigations of the three-party

Trichoderma–plant–pathogen interaction are scarce. This type of studies could,

however, provide us with valuable insights into how disease is controlled in

Trichoderma-treated plants. So far, research on the plant side of this three-party

interaction has focused primarily on aboveground plant parts rather than on roots

(Mathys et al. 2012; Perazzolli et al. 2012). Gupta et al. (2014) investigated the

interaction of T. asperelloides and F. oxysporum in Arabidopsis roots, focusing on

the production of NO. Infection of Arabidopsis roots by F. oxysporum leads to rapid

formation of NO, a response that was actively suppressed in T. asperelloides-
colonized roots and that was linked to transcriptional changes in NO-responsive

genes. The induction of defence-associated receptor kinases by F. oxysporum,
which may be required for disease development, was also reduced by

T. asperelloides colonization. The authors observed a similar plant response with

this particular Trichoderma strain against the soilborne pathogens Verticillium
dahliae and Pseudomonas syringae pv. tomato DC3000 (Gupta et al. 2014).

Martinez-Medina et al. (2010, 2014) investigated the effect of Trichoderma strains

against Fusarium wilt in melon caused by F. oxysporum f. sp. melonis and found

that the biocontrol activity of several Trichoderma strains against the pathogen

correlated to the induction of ABA and ET and the cytokinin transzeatin riboside in

melon shoots, while also attenuating the pathogen-induced responses in the plant.

In the three-party interaction T. harzianum Tr6–cucumber–F. oxysporum f. sp.

radicis-cucumerinum, Alizadeh et al. (2013) observed a primed expression of the
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defence-related genes encoding a chitinase, glucanase, and PAL. Similarly, Gallou

et al. (2009) investigated the expression of defence-related marker genes in the

three-party interaction of T. harzianum MUCL29707 and R. solani in potato roots.

Both organisms were co-inoculated and the expression of defence-related genes

was followed from 1 to 7 days after inoculation. A biocontrol effect was observed

even though the T. harzianum strain did not penetrate the root cells. The authors

reported the primed expression of the LOX and GST1 (glutathione-S-transferase 1)
genes in potato roots, since these genes were highly induced in the three-party

interaction but not by the pathogen or the beneficial fungus alone (Gallou

et al. 2009). Howell et al. (2000) also observed an ISR effect of T. virens against
R. solani in cotton seedlings, with a strong correlation between the abilities of the

strains to induce the biosynthesis of terpenoid phytoalexins and their biocontrol

capacity against R. solani. Even extracts from the mycelium of Trichoderma
longibrachiatum have been shown to induce ISR in tobacco seedlings against

Phytophthora parasitica, which was concomitant with the induced expression of

PR1b and PR5c (Chang et al. 1998).

Altogether these studies indicate that Trichoderma can indeed protect its host

plant by priming it for defence responses upon pathogen attack, although the

precise defence responses may vary according to the specific biological interaction.

Our knowledge on Trichoderma–plant–pathogen tripartite interactions is at this

point still fragmentary and especially so when considering root responses and

soilborne pathogens, but this is expected to improve in the future with scientific

attention increasingly shifting toward the roots (De Coninck et al. 2015).

4 Impact of Trichoderma on Other Rhizosphere Organisms

Upon association of their roots with Trichoderma, plants can also benefit from the

impact that Trichoderma can have on other rhizosphere organisms, both beneficial

and detrimental. In this section we give some examples on the impact of

Trichoderma on root pathogens, nematodes, and root-feeding insects, as well as

on other beneficial root symbionts.

4.1 Impact of Trichoderma on Root Pathogens

Trichoderma species are well known for their direct antagonistic capacity against

various microbes, and numerous studies have addressed this topic. Mycoparasitism

is thought to be the ancestral lifestyle of the genus, and most strains thus display this

capacity (Kubicek et al. 2011). It is a multistep process in which an early recogni-

tion stage precedes the actual physical contact. In order to locate its prey,

Trichoderma constitutively releases low levels of cell-wall-degrading enzymes

(CWDEs) such as chitinases, glucanases, and proteases. When cell-wall fragments
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of a possible target are detected, the fungus grows directionally toward it, while

producing higher amounts of CWDEs. Trichoderma then attaches to its prey, the

mycelium coils around it, and appressoria are formed to penetrate the hyphae

(Mukherjee et al. 2013). For example, T. harzianum is highly efficient as a

mycoparasite and produces a large amount of CWDEs in the presence of

F. oxysporum cell walls (Lopez-Mondejar et al. 2011). Transformants of T. virens
overexpressing specific glucanases were more effective in their in vitro inhibition

of P. ultimum and R. solani, and the higher enzymatic activity of these strains also

correlated with the enhanced protection of cotton seedlings against the same

pathogens (Djonovic et al. 2007). Atanasova et al. (2013) reported that the specific

mycoparasitic strategies can differ between Trichoderma species. The authors

performed a comparative transcriptomic study of the hyphal response of strongly

mycoparasitic T. virens and T. atroviride strains, just before physical contact with
R. solani. While in T. atroviride genes encoding secondary metabolites as well as

CWDEs were highly expressed, induced genes in the T. virens strain were mainly

involved in the biosynthesis of gliotoxin. Trichoderma can indeed also produce a

wide array of antifungal compounds to directly antagonize their rhizosphere com-

petitors (reviewed by Hermosa et al. 2014). The commercially available strain

T. harzianum T22 produces, for example, an azaphilone, which was shown to

inhibit the growth of P. ultimum, Gaeumannomyces graminis, and R. solani (Vinale
et al. 2006). Cardoza et al. (2007) partially silenced a gene encoding a key enzyme

in the biosynthesis of terpene compounds in T. harzianum and demonstrated that the

strain had reduced antifungal activity against R. solani and F. oxysporum. This
finding indicates again the importance of such metabolites in the direct antagonistic

activity of Trichoderma.

4.2 Impact of Trichoderma on Root-Parasitic Nematodes
and Root-Feeding Insects

Many studies have shown the protective effect of Trichoderma against infection by
root-parasitic nematodes in a range of monocot and dicot hosts, including econom-

ically important crops such as tomato (Sharon et al. 2007), potato (El-Shennawy

et al. 2012), wheat (Zhang et al. 2014), bean (El-Nagdi and Abd-El-Khair 2014),

and eggplant (Bokhari 2009). The majority of these studies focus on the most

damaging parasitic nematodes, i.e., the root-knot nematodes Meloidogyne and the

cyst nematodes Heterodera and Globodera. Additionally, a few studies have also

demonstrated the potential of Trichoderma to protect plants against the migratory

nematodes Xiphinema index (Darago et al. 2013) and Pratylenchus penetrans
(Miller and Anagnostakis 1977) and the reniform nematode Rotylenchulus
reniformis (Bokhari 2009). Several Trichoderma spp. including T. harzianum,
T. asperellum, T. longibrachiatum, T. viride, and T. atroviride have shown to

strongly reduce the population of nematodes in the rhizosphere by affecting egg
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hatching (Sahebani and Hadavi 2008; Szabo et al. 2013) and/or increasing second-

stage juveniles mortality (Sharon et al. 2009; Zhang et al. 2015). Furthermore,

Trichoderma can also affect nematode root penetration or slow down their further

life-stage development in the host plant (Oyekanmi et al. 2007; Affokpon

et al. 2011). Apart from the direct impact of Trichoderma on plant–nematode

interactions, several studies further demonstrated the capability of Trichoderma
to improve the performance of other biocontrol organisms such as nematode-

trapping fungi (Szabo et al. 2012) or Pseudomonas fluorescens (Siddiqui and

Shaukat 2004). The efficacy of Trichoderma to reduce nematode pressure seems

to be influenced by the time of Trichoderma inoculation, i.e., before, during, or after
nematode infection. In general, application of Trichoderma before planting or

co-inoculation with the nematodes optimizes the plant protection, as a good

preestablishment of the fungus in the rhizosphere seems to be important for

nematode control (Dababat et al. 2006; Tariq Javeed and Al-Hazmi 2015).

In contrast to the well-known effect on nematodes, to our knowledge, the impact

of Trichoderma on root-feeding insects has been considered in only a few systems,

and the mechanistic basis for their interactions is often unclear. Indeed, despite

Trichoderma and root herbivores sharing the same ecological niche, the vast

majority of research in this area derives from the effects of Trichoderma on

aboveground, rather than belowground, insect herbivores. This is surprising given

that Trichoderma might affect root-feeding insects via both direct and indirect

plant-mediated effects. In the studies performed by Razinger et al. (2014a, b), an

increased mortality of the cabbage maggot (Delia radicum) due to the activity of

different Trichoderma strains was observed in either in vitro or soil tests.

4.3 Impact of Trichoderma on Other Beneficial Root
Symbionts

Beneficial organisms that share the rhizosphere can also be influenced by the

presence of Trichoderma, including plant growth-promoting rhizobacteria and

fungi (Bae and Knudsen 2005), nematode-trapping fungi (Maehara and Futai

2000), and even meso- and macrofauna (Maraun et al. 2003). Here we focus mainly

on the impact of Trichoderma on the plant interaction with other root endophytic

organisms that also establish intimate relationships within plant roots. Among

them, the establishment of mycorrhizal and rhizobial symbiosis has been shown

to be influenced by Trichoderma. This is not surprising given the strong impact of

Trichoderma on the defence response of roots. However, more intriguing are the

contrasting effects for the outcome of the interaction, ranging from positive to

detrimental effects on the mycorrhizal or rhizobial symbiosis. For example,

T. harzianum T78 increased the mycorrhization by AMF such as R. irregularis,
but did not affect the mycorrhization by Funneliformis mosseae (formerly known as

Glomus mosseae) (Martinez-Medina et al. 2009; Martinez-Medina et al. 2011a, b).
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In a previous study, on the other hand, a different isolate of T. harzianum was found

to decrease colonization of soybean roots by F. mosseae. The reduction of mycor-

rhizal colonization by Trichoderma has been attributed mainly to the induction of

antimicrobial compounds in the plant roots and to its mycoparasitic activity (Wyss

et al. 1992). For instance, by using in vivo imaging of green fluorescent protein-

tagged lines, Lace et al. (2015) observed the strong ability of T. atroviride to

parasitize Gigaspora gigantea and Gigaspora margarita hyphae through wall

breaking and degradation. It seems that the outcome of the interaction between

Trichoderma and AMF can be strongly influenced by both the partner’s genotypes
and the experimental setup.

Some Trichoderma species have been shown to affect the interaction between

legumes and their rhizobial partners. Likewise, positive, negative, or neutral effects

have been observed. For example, a promotion of the rhizobial symbiosis by

different isolates of Trichoderma was observed in the field (Gupta et al. 2005;

Rudresh et al. 2005; Saber et al. 2009). There is less information regarding the

impact of Trichoderma on plant interaction with Piriformospora indica. To our

knowledge, only one study performed by Anith et al. (2011) addressed the impact of

Trichoderma on root colonization by this sebacinal fungus. In their study the

authors found an inhibition of P. indica by T. harzianum in vitro and in root

colonization of black pepper. However, inoculation of plants with P. indica and

subsequently with T. harzianum resulted in higher root colonization by P. indica
and synergistic beneficial effects on plant growth.

5 Conclusions

The great versatility of Trichoderma species, displaying a wide array of character-

istics, explains why they are the most widespread fungi used for biocontrol pur-

poses. While mycoparasitism is perceived as their ancestral lifestyle, the fact that

they can colonize and protect plants remains highly promising and intriguing. The

dialogue between a root-colonizing Trichoderma and its host plant comprises many

stages, which we have tried to address in this chapter. Evidence is accumulating that

plants in first instance also react to beneficial root colonizers as if they were

potential pathogens. Successful root colonizers such as Trichoderma spp. have

found a way to escape or suppress this defence response so that a mutualistic

relationship can be established to the benefit of both organisms. The plant will be

primed for a faster and stronger defence against pathogen attack and can also take

advantage of the impact of Trichoderma on other microorganisms residing in the

rhizosphere.

When compiling recent literature that addresses the different stages in the

Trichoderma–plant interaction, it becomes apparent how little we actually know

about the plant responses to Trichoderma taking place in the roots. This seems

counterintuitive, since roots are the first points of contact of the plant with its

colonizer. When we stop looking at plant roots as a black box, we can start
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uncovering the initial processes taking place in plant root–microbe interactions. We

will not only gain a deeper insight into the plant–Trichoderma interaction, which

might give us additional clues on the mechanisms of ISR, but also on the differ-

ences that separate a pathogen from a beneficial microbe. This knowledge can guide

us to improve the use of our current biocontrol arsenal of Trichoderma strains and

aid in the discovery of new ones for eventual agricultural applications.
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Defence Reactions in Roots Elicited by

Endofungal Bacteria of the Sebacinalean

Symbiosis

Ibrahim Alabid and Karl-Heinz Kogel

Abstract The Alphaproteobacterium Rhizobium radiobacter F4 (RrF4) was orig-
inally detected as an endofungal bacterium associated with the endophytic basid-

iomycete Piriformospora indica that forms a beneficial symbiosis with a wide range

of green plants. While attempts to cure P. indica from RrF4 repeatedly failed, the

bacterium could be isolated and grown in pure culture. In contrast to some other

endofungal bacteria, the genome size of RrF4 is not reduced. Instead, it shows a

high degree of similarity to the plant pathogenic R. radiobacter (formerly:

Agrobacterium tumefaciens) C58, except vibrant differences in both the tumor-

inducing (pTi) and the accessor (pAt) plasmids, which can explain the loss of

RrF4’s pathogenicity. Similar to its fungal host, RrF4 colonizes plant roots without
host preference and forms aggregates of attached cells and dense biofilms at the root

surface of maturation zones. RrF4-colonized plants show increased biomass and

enhanced resistance against bacterial and fungal leaf pathogens. Resistance medi-

ated by RrF4 is dependent on the plant’s jasmonate-based induced systemic resis-

tance (ISR) pathway while the systemic acquired resistance (SAR) pathway is non-

operative as shown by genetic analysis. Based on these findings we concluded that

RrF4- and P. indica-induced pattern of defence gene expression are similar.

However, in clear contrast to P. indica, but similar to plant growth promoting

rhizobacteria (PGPR), RrF4 colonized not only the root outer cortex but spread

beyond the endodermis into the stele. Based on our findings RrF4 is an efficient

plant growth promoting bacterium.

1 The Sebacinalean Symbiosis

Land plant strategies to protect themselves from invading pathogens and abiotic

stress include establishing beneficial associations with soilborne microbes such as

plant growth-promoting rhizobacteria and fungi from various taxa (Zamioudis and
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Pieterse 2012). A wide range of monocotyledonous and dicotyledonous plants are

associated with higher fungi of the order Sebacinales (Basidiomycota) to form the

sebacinalean symbioses (Selosse et al. 2009; Weiss et al. 2011; Riess et al. 2014).

The root endophyte Piriformospora indica is a representative fungus of the

Sebacinales; it was discovered in the Indian Thar Desert in 1996 (Varma

et al. 1999) and since then studied in many laboratories (Peškan-Bergh€ofer
et al. 2004; Waller et al. 2005; Pedrotti et al. 2013; for review see Qiang

et al. 2012). Unlike true endomycorrhizal fungi, P. indica is not an obligate

biotroph and thus can be cultured without host plants on synthetic media containing

complex and minimal substrates (Deshmukh et al. 2006; Oelm€uller et al. 2009;
Lahrmann et al. 2013). The fungus asexually produces pear-shaped chlamydo-

spores with 8–25 nuclei (Verma et al. 1998). Having a surprisingly wide range of

host plants, P. indica and related Sebacina vermifera species support plant biomass,

along with local and systemic resistance to a variety of microbial pathogens (Waller

et al. 2005; Deshmukh et al. 2006; Stein et al. 2008; Glaeser et al. 2016). Several

studies also have demonstrated that P. indica increases yield as judged from

agronomic parameters (Peškan-Bergh€ofer et al. 2004; Waller et al. 2005; Achatz

et al. 2010; Fakhro et al. 2010). P. indica has been studied intensively in barley

(Hordeum vulgare) and Arabidopsis (Arabidopsis thaliana) although nonhost

plants have not been identified yet.

P. indica improves the nutritional status of plants such as tobacco, where around

50% increase in NADH-dependent nitrate reductase (NR) activity was observed in

the roots colonized by the endophyte (Sherameti et al. 2005). Its growth-promoting

effect on maize was dependent on a fungal phosphate transporter (PiPT) that

probably mediates phosphate transport to the host plant (Yadav et al. 2010). Plant

growth also could be induced by hyphal wall fragments, suggesting the involve-

ment of receptors at the plant cell surface. Consistent with this, a fungal cell wall

extract induced a rapid increase in the root cells’ intracellular calcium concentra-

tion, suggesting signaling and reprogramming of host cells early in the root

colonization (Vadassery et al. 2009).

2 Piriformospora indica Elicits Systemic Resistance

to Microbial Pathogens

Upon root colonization, P. indica induces systemic resistance in leaves of barley

and Arabidopsis against the respective appropriate powdery mildew fungi Blumeria
graminis f. sp. hordei and Golovinomyces orontii (Waller et al. 2005; Stein

et al. 2008). In Arabidopsis, resistance requires jasmonic acid (JA) signaling and

the cytoplasmic activity of non-expressor of pathogenesis-related 1 (NPR1). Such a

requirement is indicative of the canonical induced systemic resistance (ISR)

defence pathway. Interestingly, operable JA signaling and biosynthesis not only

is required for P. indica’s potential for enhancing the plant’s immune status but also
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is essential for successful root colonization. Thus, it has been argued that P. indica
exploits the antagonistic action of the plant defence hormones JA and salicylic acid

(SA) to suppress at least part of the SA-mediated plant response as a prerequisite for

successful root colonization (Jacobs et al. 2011).

3 Endofungal Bacteria in the Sebacinalean Symbioses

Sharma and coworkers showed that members of the Sebacinales fungi regularly

undergo complex tripartite interactions involving plants and bacteria of different

genera (Sharma et al. 2008). Endofungal bacteria identified in association with the

genera Piriformospora and Sebacina belong to two genera of Gram-negative

(Rhizobium and Acinetobacter) as well as two genera of Gram-positive

(Paenibacillus and Rhodococcus) bacteria. The most comprehensively studied

example of a tripartite sebacinalean symbiosis is the association of P. indica with

the Alphaproteobacterium Rhizobium radiobacter RrF4 (syn. Agrobacterium
tumefaciens). Fluorescence in situ hybridization (FISH) using a Rhizobium-specific
probe confirmed the endocellular association of RrF4 with fungal hyphae and

chlamydospores. RrF4 could be isolated from P. indica and propagated in axenic

cultures, demonstrating that the bacterium is not entirely dependent on its fungal

host. However, attempts to cure P. indica of its bacterial associate have failed

(Sharma et al. 2008). Antibiotics, which killed or inhibited bacterial growth with

high efficacy in in vitro axenic cultures, were virtually ineffective in stably remov-

ing the bacteria from the fungus, suggesting an intricate association, and possibly a

critical role of RrF4 in fungal survival. Sharma and allies also could show that RrF4
contains a virD2 gene indicating that a Ti plasmid is present; however, the

isopentenyltransferase (IPT) gene, which is associated with cytokinin biosynthesis,
could not be detected, which explained the nonpathogenic nature of the bacterium.

A more detailed comparative analysis of RrF4’s genome showed a high degree of

similarity to the plant-pathogenic R. radiobacter C58 (formerly: Agrobacterium
tumefaciens C58), except clear differences in both the tumor-inducing (pTi) and the

accessor (pAt) plasmids, which can explain the loss of RrF4’s pathogenicity

(Glaeser et al. 2016).

4 Beneficial Activity of Rhizobium radiobacter RrF4

Intriguingly, when roots are inoculated with RrF4, plants reach higher biomasses

and develop systemic resistance to microbial pathogens, reminding of P. indica’s
activity. All plant species tested, including Arabidopsis and barley, had increased

shoot and root fresh weights in various growth substrates when their roots were

initially dip-inoculated with the bacterium. Quantitative PCR analyses showed

increased amounts of RrF4 cells over time of infection, demonstrating that the
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bacterium is capable to multiply outside its fungal host in association with roots

(Glaeser et al. 2016). Bacteria tagged with beta-glucuronidase (GUS) or green

fluorescence protein (GFP) could be visualized to show typical accumulation

patterns in root hair zones of primary and lateral roots, mostly at the sites of lateral

root protrusion (Fig. 1). Importantly, the cross section of barley roots confirmed

colonization of the central cylinder by bacteria at 21 days after inoculation (dpi).

Scanning electron microscopy additionally showed that the bacterium forms

biofilms and aggregates on the rhizoplane (Fig. 2).

5 Rhizobium radiobacter RrF4 Mediates Disease Resistance

via the Induced Systemic Resistance Pathway

RrF4-colonized Arabidopsis developed resistance to the plant-pathogenic bacte-

rium Pseudomonas syringae pv. tomato DC3000 (Pst). Similarly, RrF4-treated
wheat was protected against the leaf streak disease caused by the bacterium

Fig. 1 Colonization of barley and Arabidopsis roots by GUS- and GFP-expressing Rhizobium
radiobacter RrF4. (a) Barley root segment infected with GUS-expressing bacteria at 5 dpi; the root

hair zone shows a GUS positive stain. (b, c) Arabidopsis roots uninfected (b) and infected (c) with
GFP-expressing bacteria at 30 dpi. (d) Arabidopsis root hair zone colonized by GFP-expressing

bacteria at 7 dpi with single attached bacteria and aggregates. (e) RrF4 forms biofilms and

aggregates at the surface of Arabidopsis primary root, mostly at the sites of lateral root protrusion

at 21 dpi. (f) Cross section of barley roots showing colonization of the central cylinder by

GFP-tagged bacteria at 21 dpi cells. Images (b–f) were taken by confocal laser scanning

microscope
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Xanthomonas translucens pv. translucens (Xtt; Glaeser et al. 2016). These results

show that RrF4, like its host P. indica, induces root-initiated systemic resistance

against leaf-associated microbial pathogens. In an attempt to define the mechanism

of the plants’ higher immune status, Arabidopsismutants indicative of both the ISR

and the systemic acquired resistance (SAR) pathways were assessed. To this end,

RrF4-treated NahG plants that overexpress SA-degrading salicylate hydroxylase
and the mutants npr1-3 and ethylene-insensitive 1 (ein2-1) displayed systemic

resistance against Pst, similar to wild-type plants. In contrast, the mutants

jasmonate-resistant1-1 ( jar1-1), jasmonate-insensitive1-1 ( jin1-1), and npr1-1,
all of which are indicative of the JA pathway, were fully compromised for RrF4-
mediated resistance to Pst. The data show that JA signaling is required for RrF4-
mediated resistance in Arabidopsis, while the SA pathway, along with the nuclear

localization of NPR1, which is abolished in npr1-3, is not. Consistent with this, the

JA marker genes Vegetative storage protein 2 (VSP2) and Plant defensin 1.2
(PDF1.2) were strongly induced in Pst-infected plants when they were pretreated

with RrF4 compared to non-pretreated plants at 24 and 48 h post inoculation (hpi).

In contrast, induction of SA-regulated Pathogenesis-related 1 (PR1) and the ethyl-

ene (ET)-regulated gene Ethylene receptor factor 1 (ERF1) was not detected in

these plants. The data show that RrF4 mediates systemic resistance via the same

mechanism as its fungal host P. indica, thereby raising the yet unresolved question

whether the beneficial activity in the sebacinalean symbiosis may stem at least

partly from the bacterium. The data also are consistent with the observation that

ISR is commonly accompanied by only weak systemic up- or downregulation of

defence genes before challenge inoculation, a phenomenon termed “priming” (Van

Wees et al. 1999; Conrath et al. 2006). Priming does not require major metabolic

changes in the absence of a challenging pathogen or pest. However, due to previous

priming by inducing biotic or abiotic agents, plants can more efficiently activate

cellular defence in response to a subsequent challenge inoculation (Conrath

Fig. 2 Colonization of barley primary roots by Rhizobium radiobacter RrF4 analyzed by scanning
electron microscopy. (a) Single bacteria attached to the root surface distal to the tip area. (b)

Different stages in biofilm formation at the rhizoplane of the root hair zone: single bacteria

attached to the rhizoplane (s); microcolonies formed through multiplication of single attached

cells (m); larger cell aggregates (a); root hairs (rh) (the figure was taken from Dr. Martin Hardt,

Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Germany)
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et al. 2006). Overall the defence mechanisms mediated by endofungal RrF4 further
support the view that rhizobacteria-mediated ISR is dependent on JA and indepen-

dent of SA signaling (Pieterse et al. 1998; Van Wees et al. 2008), although there are

reports that showed convincing evidence for rhizobacteria-induced systemic resis-

tance via the SA pathways (Barriuso et al. 2008; De Vleesschauwer and H€ofte
2009). For instance, the root-colonizing Pseudomonas fluorescens strain SS101 (Pf.
SS101) induced resistance in Arabidopsis against Pst via the SAR pathway (van de

Mortel et al. 2012).

JA and its derivatives play an important role in the symbiosis of plants with other

higher fungi (Van der Ent et al. 2009). Like in the sebacinalean symbiosis (Schäfer

et al. 2009), the hormone also accumulated in the arbuscular mycorrhizal symbiosis

(Hause et al. 2002), supporting the idea that JA signaling is a mutual strategy of

plants to control colonization by beneficial endophytic fungi. Interestingly, JA is

not required for P. indica-mediated growth promotion and higher seed yield in

Arabidopsis (Camehl et al. 2010), suggesting that pathways leading to either

immunity or growth can be molecularly separated.

6 Ethylene Signaling in the Sebacinalean Symbiosis

The Arabidopsis ein2-1 mutant, which is impaired in ET signaling, showed about

29% less colonization by RrF4 compared with the wild type, suggesting that ET

also supports bacterial development in plant roots (Alabid, unpublished data).

Consistent with this, ET supported root colonization of P. indica in barley and

Arabidopsis (Khatabi et al. 2012). These authors found increased concentrations of
free 1-aminocyclopropane-1-carboxylic acid (ACC) during early colonization

stages (60 and 120 hpi) with P. indica in barley roots and induction of

1-aminocyclopropane-1-carboxylic acid synthase 1 (ACS1) and ACS8 in

Arabidopsis. ET-responsive ERF1 transcripts were elevated both in local and distal
P. indica-colonized Arabidopsis roots at 3 and 5 dpi (Pedrotti et al. 2013). In line

with these results, two ESTs encoding 1-aminocyclopropane-1-carboxylic acid
oxidase (ACC oxidase), which is involved in ET synthesis by P. indica, were
induced at early time points of the colonization (3 dpi, Schäfer et al. 2009). Also

in agreement with these results, the Arabidopsis mutants constitutive triple
response 1 (ctr1-1) and ET over expresser 1 (eto1-1), which encode constitutive

ET signaling and enhanced ET biosynthesis, respectively, were significantly more

colonized with P. indica at 14 dpi, while less fungal colonization (about 20%) was

detected in the ET-insensitive mutant ein2-1 at 3 dpi compared to the wild type

(Khatabi et al. 2012).
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7 Salicylic Acid Signaling in the Sebacinalean Symbiosis

Several studies have demonstrated negative effects of SA signaling on the rate and

intensity of rhizobial infection and nodulation (Martinez-Abarca et al. 1998; Van

Spronsen et al. 2003; Stacey et al. 2006). This plant hormone has long been fixed as

a key factor of the plant immune system (Feys and Parker 2000; Vlot et al. 2009;

Dempsey and Klessig 2012). RrF4, like its host P. indica, induced SA-responsive

(PR1b and PR10) genes as well as Calmodulin binding protein 60-like (CBP60)
only at early time points (3 dpi), while they were downregulated later in the

symbiosis (Deshmukh and Kogel 2007; Pedrotti et al. 2013; Glaeser et al. 2016).

In accordance with this finding are studies that revealed upregulation of defence-

related genes during early stages of plant–fungus interaction, while they were

downregulated as the symbiosis progressed (Gao et al. 2004; Grunwald

et al. 2004; Harrison 2005; Hause and Fester 2005). Remarkably, overexpression

of NPR1 in Medicago truncatula suppressed root hair deformation in response to

Sinorhizobium meliloti, whereas RNAi-mediated NPR1 knockdown resulted in

accelerated root hair curling, suggesting that SA affects this symbiosis through

NPR1 (Peleg-Grossman et al. 2009).

8 Gibberellin Signaling in the Sebacinalean Symbiosis

It is common knowledge that beneficial microbes initially are recognized by plants

as potential pathogens. As a result, a transient defence response is induced, typi-

cally including generation of reactive oxygen species (ROS) and callose deposition

(Vos et al. 2014). At a first glance, it seems paradoxical that P. indica can

successfully colonize so many plants while at the same time inducing local and

systemic resistance to challenger root pathogens. An explanation for this has only

recently been found. As a prerequisite of successful colonization, P. indica actively
suppresses part of the plant’s immune system by interfering with phytohormone

signaling (Schäfer et al. 2009: Jacobs et al. 2011). A global transcriptome analysis

of P. indica-colonized barley roots showed that the fungus suppressed SA-mediated

defence and additionally altered gibberellin (GA) metabolism. Plants that were

impaired in GA synthesis and perception could hardly be colonized by P. indica
(Schäfer et al. 2009). During root colonization the fungus induced genes involved in

the C-methyl-D-erythritol 4-phosphate (MEP) pathway as well as genes immedi-

ately lying downstream of this pathway. For example, the gene encoding a putative

geranylgeranyl diphosphate synthase (GGPS), which catalyzes the conversion of

isopentenyl pyrophosphate (IPP) and dimethylallyl diphosphate (DMAPP) into

geranylgeranyl diphosphate (GGDP), was induced at 3 and 7 dpi. In addition,

downstream of GGPS, two Kaurene synthase genes [ent-KS1a and ent-KS-like
4 (ent-KSL4)] were differentially regulated in P. indica-colonized barley roots at

1, 3, and 7 dpi. The terpene cyclases Copalyl diphosphate synthase (CPS) and
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Kaurene synthases play key roles in GA biosynthesis (Otomo et al. 2004). Con-

sistent with these findings, the GA biosynthesis mutant ga1-6 showed lower

degrees of colonization, suggesting that P. indica recruits GA signaling to help

root cell colonization (Jacobs et al. 2011). Importantly, 1-Deoxy-D-xylulose
5-phosphate synthase (DXS) as well as ent-KS1a and ent- KSL4 also were induced
in barley roots colonized by RrF4 (Glaeser et al. 2016). This finding is in line with
previous results showing that GA-regulated gene Exp-PT1 (Phosphatidylinositol
N-acetylglucosaminyltransferase subunit P-related), which is suppressed by GA

(Zentella et al. 2007), was downregulated in P. indica-colonized Arabidopsis
roots at 7 dpi (Jacobs et al. 2011).

9 Auxin Signaling in the Sebacinalean Symbiosis

P. indica is able to produce the plant growth-promoting auxin indoleacetic acid

(IAA) in liquid culture (Sirrenberg et al. 2007; Hilbert et al. 2012). The induction of

auxin signaling is an active strategy employed by pathogens to establish plant–

microbe compatibility (Navarro et al. 2006; Wang et al. 2007). For instance,

exogenous application of auxin increased the susceptibility to microbial coloniza-

tion via manipulation of root defence (Hilbert et al. 2013). However, P. indica
produced only low amounts of auxins, and the expression of auxin-regulated genes

was not altered in colonized Arabidopsis roots (Vadassery et al. 2008). Thus, these

authors claimed that the auxin levels had little or no effect on P. indica-mediated

growth promotion. Instead, P. indica produced relatively high levels of cytokinins,

and the cytokinin levels in colonized Arabidopsis roots were higher than in

non-colonized roots (Vadassery et al. 2008). Since auxin inhibits cytokinin biosyn-

thesis, both hormones can interact to control plant development (Nordstrom

et al. 2004), and the observed root growth promotion induced by both P. indica
and RrF4, respectively, may be due to changes in the auxin-to-cytokinin ratio.

Regardless of the significance of auxin produced in the sebacinalean symbiosis,

it is interesting to note that RrF4 can produce IAA in the presence of tryptophan

(Sharma et al. 2008). Thus, it remains unclear whether the fungus itself, the

bacterium, or even both partners contribute to production (or induction) of that

and probably all other phytohormones. This question is part of the key issue about

what is the critical contribution of either microbial partner to the beneficial effects

in the sebacinalean symbiosis. Moreover, this question must be extended in gaining

clarity on which partner regulates defence reactions in the plant. To answer either

question, more attempts are required to cure Piriformospora indica from Rhizobium
radiobacter RrF4.
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Peškan-Bergh€ofer T, Shahollari B, Giong PH, Hehl S, Markert C, Blanke V, Kost G, Varma A,

Oelm€uller R (2004) Association of Piriformospora indica with Arabidopsis thaliana roots

represents a novel system to study beneficial plant-microbe interactions and involves early

plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol

Plant 122:465–477

Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon

LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis.
Plant Cell 10:1571–1580
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Mitigating Abiotic Stresses in Crop Plants

by Arbuscular Mycorrhizal Fungi

Katia Plouznikoff, Stéphane Declerck, and Maryline Calonne-Salmon

Abstract Abiotic stresses [i.e., salinity, drought, high temperatures, and pollutants

such as trace elements (TEs) and/or petroleum, crude oil, and PAHs] have detri-

mental effects on plant growth, fitness, and yield. They can cause significant

production losses at a time when food needs are constantly increasing. The devel-

opment of tolerant/resistant crops and innovative/alternative methods to alleviate

abiotic stresses have thus become of major concern in our societies. One promising

strategy is the use of arbuscular mycorrhizal fungi (AMF) that form symbiotic

associations with the vast majority of agricultural and horticultural important crops.

Here we summarized the impact of abiotic stresses on the AMF life cycle and

physiology. If these organisms are usually affected by abiotic stresses, they are also

frequently reported to improve growth and tolerance of plants under these condi-

tions. The mechanisms most often described concern (1) improved plant nutrition;

(2) accumulation and use of sugars, polyamines, abscisic acid (ABA), and lipids;

(3) tolerance to induced oxidative stress; (4) modification in plant physiology; and

(5) root and fungal chelation and inactivation of pollutants. The association of crops

with AMF thus offers interesting perspectives to increase/maintain crop production

under stressed environmental conditions.

1 Introduction

Earth is expected to be inhabited by some 9000 million people by 2050, and a recent

report by the FAO estimates that farmers will have to produce 70% more to meet

the needs of this population (FAO 2009). Within the same period, the global

temperature is projected to increase by 2.5 �C with major impacts on plant growing

conditions, on the emergence of new pests and diseases and on an increase in water

scarcity and desertification. The challenges that agriculture has to face to feed the

future population are thus becoming more and more pressing. Their fulfillment will

require wide-ranging solutions, including improved crop varieties with higher
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yield; increased N, P, and water use efficiency; ecologically sustainable manage-

ment practices; the converting of marginal lands into productive areas and resto-

ration of degraded areas (Lal 2000); and optimal use of agricultural inputs without

increasing negative environmental impacts associated with agriculture. There is

thus a need for new flexible crop varieties that can resist abiotic and biotic stress

factors without putting unacceptable pressure on scarce land and water resources.

Multiple abiotic stresses defined as outside (non-living) factors which can cause
harmful effects to plants, such as soil conditions, drought and, extreme temper-
atures (Newell-McGloughlin and Burke 2014) affect negatively plant growth,

development, and crop productivity. Soils, earth’s nonrenewable resources, can

be deeply affected and degraded by abiotic stress factors, and 2015 has been chosen

by the FAO as the international year of soils (http://www.fao.org/soils-2015/en/) in

order to promote their protection. Managing plant environmental stresses is the

foundation of sustainable agriculture (http://www.fao.org/emergencies/emergency-

types/drought/en/).

Salinity, drought, and high temperature have become serious problems in many

regions, not only because of a higher risk for public health and the environment but

also because of negative effects on the yield. These abiotic stresses are also

common to many agricultural areas around the globe and severely affect plant

productivity. For instance, in the USA between 1980 and 2004, drought stress

caused some $20 billion in damages (Mittler 2006). Finally, the contamination of

agricultural soils with trace elements (TEs) and organic pollutants may represent

under some specific conditions a threat to agricultural soil. The loading of eco-

systems with TEs can be due to excessive fertilizer and pesticide use, irrigation,

atmospheric deposition, and pollution by waste materials. The risks caused by

polyaromatic hydrocarbons (PAHs) are anecdotic, although a recent study reported

pollution in agricultural soil and vegetables from Tianjin (China), a site close to an

urban district and irrigated with wastewater (Tao et al. 2004). Interestingly, the

current concern in the application of biochar in agricultural soil may warn about the

risks caused by PAHs. Indeed, biochar contains PAHs at various levels and its high

sorptive capacity may facilitate the persistence of PAHs in soil.

The usage of crop varieties with improved root architecture associated with a

beneficial rhizosphere microbiome to boost yield and protect plants against biotic

and abiotic stresses is likely to prove crucial for increasing future agricultural

production. Among the microorganisms, arbuscular mycorrhizal fungi (AMF) are

of particular interest. They live at the interface between plant and soil; help plants

fend off disease; stimulate growth; crowd out space that would be taken up by

pathogens; promote resistance to drought, salinity, TEs, etc.; or influence crop yield

by more efficient acquisition of nutrients. Thus, an increasing number of scientists

and farmers alike think their exploitation and valorization represent the next

revolution in agriculture.

Here we review the impact of abiotic stresses (salinity, drought, high temper-

atures, TEs, and PAHs) on the symbionts and symbiotic association in the first part

and examine the role of AMF in mitigating these stresses in crop plants and depict

the mechanisms involved in the second part.
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2 Impact of Abiotic Stresses on AMF

2.1 Environmental Abiotic Stresses

2.1.1 Soil Salinity

Salinity is one of the major problems affecting soil in the world. Salinization results

from natural factors or anthropogenic activities. It results in the degradation of soils

and, in some cases, is responsible for irreparable losses to their productive capacity,

with great extensions of arable land becoming sterile (Maganhotto de Souza Silva

and Francisconi Fay 2012). Irrigation with groundwater, irrational use of easily

soluble fertilizers, and poor drainage conditions are the main causes for salinity in

agroecosystems (Copeman et al. 1996; Al-Karaki 2000; Priyadharsini and

Muthukumar 2015; Singh 2015). Estimates by FAO indicate that of the 250 million

hectares of irrigated land in the world, approximately 50% already show salini-

zation and soil saturation problems. More than 250 million hectares of irrigated

land are damaged by salt, and 1.5 million hectares are taken out of production each

year as a result of high salinity levels (Bot et al. 2000; Munns and Tester 2008;

Priyadharsini and Muthukumar 2015). In India, about 8.1 million hectares are

salinized, of which 3.1 million in coastal regions (Yadav et al. 1983; Tripathi

et al. 2007). In Europe, salt excess affects 3.8 million hectares, mainly in the

Mediterranean countries (EEA 1995), and this tendency is increasing, mainly in

Spain, Hungary, and Greece (de Paz et al. 2004; Jones et al. 2012). In Nordic

countries, the use of salt to remove ice from highways in winter produces localized

salinization phenomena (Jones et al. 2012). Moreover, salinization is expected to

increase in the future due to the increasing temperatures and decrease in rainfall

worldwide (Maganhotto de Souza Silva and Francisconi Fay 2012).

Salinity is one of the cosmopolitan threats to crop production worldwide (Munns

and Tester 2008; Priyadharsini and Muthukumar 2015). It affects seed germination,

plant growth and vigor, and thus crop productivity (Giri et al. 2003; Mathur

et al. 2007; Munns and Tester 2008; Carillo et al. 2011). Salt deposition in the

soil results in hyperionic and hyperosmotic stresses in organisms (Evelin

et al. 2013), which may limit the growth of organisms such as plants and fungi

due to specific ion toxicity or osmotic stress. The stressed plants present nutritional

disorders, oxidative stress, alteration of metabolic processes, membrane disorgani-

zation, reduction of cell division and expansion, and genotoxicity (Hasegawa

et al. 2000; Munns 2002; Zhu 2007). However, the importance of these factors is

relative to species and concentration of ions involved (Brownell and Schneider

1985).

AMF have been repeatedly mentioned in saline environments (Khan 1974; Allen

and Cunningham 1983; Pond et al. 1984; Rozema et al. 1986; Ho 1987; Juniper and

Abbott 1993). Species such as Funneliformis geosporum or belonging to the

Rhizophagus irregularis clade have been reported in roots of halophytes (Bothe

2012). The dominant salt marsh grass Puccinellia sp. showed variable degrees of
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AMF colonization, with many specimens recorded without any traces of AMF

colonization (Hildebrandt et al. 2001; Landwehr et al. 2002). Conversely, salt

aster (Aster tripolium) was reported to be strongly dependent on AMF (Mason

1928; Boullard 1959). Recently, Yamato et al. (2008) identified two different

Glomus spp. in salt coastal vegetation on Okinawa Island (Japan), and a phylo-

genetic analysis showed that one AMF is closely related to R. irregularis. The
authors also reported that colonization rates of this AMF were not reduced when

cultivated in pots in the presence of 200 mM of NaCl.

Under controlled laboratory conditions, most studies did not separate the direct

effects of salinity on AMF from plant-mediated effects. Indeed, spore germination

is the sole stage that can be studied independently of the symbiotic association with

a plant (Daniels and Graham 1976; Hepper 1979; Daniels and Trappe 1980; Elias

and Safir 1987; Gianinazzi-Pearson et al. 1989; Juniper and Abbott 1993, 2006).

The available literature indicated that concentrations of NaCl from 4.30� 10�2 M

to 2.14� 10�1 M inhibited spore germination (Hirrel 1981; Estaun 1990, 1991;

Juniper and Abbott 1991, 1993, 2006; Al-Karaki 2000). This impact seemed to be

fungistatic since Hirrel (1981) and Koske (1981) reported a “germination recovery”

following incubation of the stressed spores in the absence of salt.

Salt was also reported to impact the growth of hyphae and germ tube. For

instance, the germ tube of F. mosseae was inhibited by NaCl and mannitol below

0.75 MPa osmotic potential in vitro (Estaun 1990). In some AMF, the germ tube

growth is stimulated by the proximity of a root (Mosse and Hepper 1975) and by

root exudates (Graham 1972). This stimulation could be altered in saline conditions

since exudation is greatly influenced by soil chemistry and soil moisture (Rovira

1969). This impact on spore germination and germ tube growth and morphology

could thus negatively affect the association process and AMF survival as suggested

by Calonne et al. (2010).

Most studies reported a decrease in root colonization under salt stress conditions

at electric conductivity ranging from 1.4 dS/m (control condition), 4.7 dS/m

(moderate), and 7.4 dS/m (high) (Poss et al. 1985; Pfeiffer and Bloss 1988;

Al-Karaki 2000; Tian et al. 2004; Kaya et al. 2009; Hajiboland et al. 2010; He

and Huang 2013). Curiously, at 150 mM NaCl, inhibition appeared more pro-

nounced during the early stages of root colonization than in the late stages

(McMillen et al. 1998). Beltrano et al. (2013) showed that under the high salt

condition (200 mM NaCl), root colonization was reduced by 28% compared to

control. Arbuscule and vesicle abundance decreased by 75% with 200 mM NaCl.

Viability of hyphae, expressed by SDH activity, was reduced over 50% at 200 mM.

A few studies also demonstrated an increase in AMF colonization under salt

stress conditions under salinity levels ranging from 7.3 to 92.0 dS/m

(Aliasgharzadeh et al. 2001; Porcel et al. 2012). This contrasting observation may

be related to various factors among which the AMF species (Daei et al. 2009). For

instance, Ruiz-Lozano and Azcón (2000) compared the growth and colonization of

two AMF species, one isolated from a saline soil (Glomus sp.) and one isolated

from a nonsaline soil (G. deserticola), under increasing salt concentrations (0.25,

0.50, or 0.75 g NaCl/kg dry soil). In the presence of low salt levels, root
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colonization by the Glomus sp. was lower than that of G. deserticola. In contrast, at
the highest salt levels, both species showed a similar percentage of colonization

(Ruiz-Lozano and Azcón 1995). Furthermore, the authors observed that

G. deserticola was more efficient to establish common mycelial networks and

colonize neighbor plants than the AMF isolated from the saline soil (Ruiz-Lozano

and Azcón 1995). In a study conducted by Jahromi et al. (2008) under in vitro

conditions, the spore production of R. irregularis was drastically reduced under

NaCl conditions. These results invite researchers to search for salt-tolerant AMF

species and to test if these AMF isolates maintain colonization capacity and

symbiosis efficiency under saline conditions (Evelin et al. 2009).

2.1.2 Drought

Salt and drought stresses share some common properties and generally result in

impaired key physiological functions in living organisms such as fungi (Daffonchio

et al. 2015). One component of salinity is hyperosmotic stress, resulting in a water

deficit that is comparable with a drought-induced water deficit (Daffonchio

et al. 2015). Under salty or drought conditions, water moves from plant cells to

the soil solution, and as a result, cells shrink and ultimately collapse and die (Brady

and Weil 2008).

In drought-stressed soils, Egerton-Warburton et al. (2007) and Querejeta

et al. (2009) reported a dominance of Glomus/Rhizophagus species in AMF com-

munities in soils of xeric habitats, while species belonging to the genus

Scutellospora, Gigaspora, or Acaulospora were less abundant. Moreover, they

demonstrated that under drought stress conditions, the proportion of Gigaspora
species within the AMF tended to decrease, whereas the proportion of Glomus
species tended to increase proportionally (Querejeta et al. 2009). Some AMF

species were isolated from Arabian arid regions and deserts: F. mosseae,
Claroideoglomus etunicatum, R. fasciculatus, and G. aggregatum, Diversispora
aurantia, D. omaniana, S. africanum, and undescribed Paraglomus species (Dhar
et al. 2015; Symanczik et al. 2015).

Up to date, only a few studies have investigated the impact of different water

regimes on the AMF life cycle and ecology. This may be related to technical

difficulties to observe the mycorrhizal development in drought stress experiments.

Spore germination was increased (Douds and Schenck 1991), decreased

(Tommerup 1984; Estaun 1990; Douds and Schenck 1991), or unaffected (Douds

and Schenck 1991) by soil drying. These differences were partially related to the

AMF species considered (Augé 2001).

Similarly, root colonization was investigated under drought stress conditions, in

laboratory as well as in the field. As previously reviewed by Augé (2001), a large

number of studies showed that drought only affected root colonization in about half

of the reports examined, and curiously the level of root colonization was increased

rather than decreased. These surprising results could be explained by the differ-

ences in host plant and AMF species studied, the origin of fungi, and the culture
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conditions (controlled or field conditions). For instance, root colonization in lettuce

changed under different water regimes: under dry conditions, the level of coloni-

zation decreased in roots inoculated by F. mosseae or P. occultum but remained

constant when inoculated by G. deserticola or C. etunicatum (Ruiz-Lozano

et al. 1995). Aroca et al. (2008) observed that lettuce plants cultivated under

well-watered conditions showed 45–50% of mycorrhizal root length by

R. irregularis BEG121, while in contrast, plants subjected to drought showed

62–70% of root colonization. Recently, it has been shown that the AMF species

composition in hyperarid plain of Oman changed with water regimes (Symanczik

et al. 2015). Under well-watered and drying cycle conditions, it was dominated by

D. omaniana, while under drought stress conditions, S. africanum and Paraglomus
spp. were more abundant (Symanczik et al. 2015). Again, a decline in AMF

colonization was observed in greenhouse (Manoharan et al. 2010; Zou

et al. 2015) and field experiments (Ryan and Ash 1996; Al-Karaki et al. 2004)

under drought stress. However, Augé (2001) reported that in field situations,

chronic drought periods may promote more extensive colonization. Upon

43 flowering plants examined on a fallow agricultural site in Germany, 40 were

heavily colonized by AMF in a low soil moisture habitat, and 29 were heavily

colonized on a comparable but high soil moisture habitat (K€uhn 1991; K€uhn
et al. 1991). Plant colonization was shown to vary between seasons (Clark

et al. 2009), with the highest values observed during fall and the lowest during

summer drought periods (Apple et al. 2005) and according to wet and dry years

(Querejeta et al. 2009).

In more detail, changes in water availability due to changes in precipitation were

shown to influence the abundance of arbuscules and vesicles (Martı́nez-Garcı́a

et al. 2012; Symanczik et al. 2015). These authors noticed that the abundance of

vesicles and arbuscules drastically decreased in plants subjected to rainfall reduc-

tion. Martı́nez-Garcı́a et al. (2012) concluded that when precipitation changed

seasonally but annual precipitation remained the same, a shrub species endemic

from the most arid systems in SE Spain had mycorrhiza with a highest production of

arbuscules. However, when there was a reduction in annual precipitation, the

number of vesicles decreased suggesting less investment in the production and

maintenance of these structures because they are storage structures rather than

transfer structures. To summarize, they suggested that increased drought conditions

consequently to climate change in the region of study may enhance arbuscule

production to favor water transfer as long as drought intensity does not affect

growth of internal fungal structures (Martı́nez-Garcı́a et al. 2012).

The production of extraradical mycelium was also reported to be impacted by

drought conditions. For instance, the production of extraradical mycelium under

drought conditions was the highest in soils colonized by native species of

F. mosseae and R. irregularis as compared to exotic species (Marulanda

et al. 2007). Symanczik et al. (2015) suggested that a community of native AMF

species can buffer against different water regimes, as reflected by the constant

production of extraradical mycelium in well-watered, drying cycles and drought-
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stressed regimes. From these studies, it appeared that native AMF species are better

adapted to drought stress than introduced species.

2.1.3 High Temperatures

Global climate is predicted to change dramatically over the next century (Houghton

et al. 2001) becoming a major threat to agriculture (Maya and Matsubara 2013).

Temperature is one of the main factors that regulate the growth and productivity of

plants (Allakhverdiev et al. 2008). High temperatures cause a series of morpholog-

ical, physiological, and biochemical changes in plants via their effects on photo-

chemical and biochemical reactions, as well as on photosynthetic pigments (Wahid

et al. 2007; Zhu et al. 2011a).

It is generally admitted that low temperature impacts the AMF development

(Smith and Bowen 1979; Baon et al. 1994; Zhang et al. 1995; Gavito et al. 2003;

Heinemeyer and Fitter 2004; Liu et al. 2004a, b; Hawkes et al. 2008; Wu and Zou

2010; Zhu et al. 2010a, b; Latef and Chaoxing 2011a; Karasawa et al. 2012; Chen

et al. 2013, 2014; Liu et al. 2013; Barrett et al. 2014). Most of these studies

demonstrated a decrease in root colonization, extraradical length, and spore pro-

duction in the presence of temperature under 18 �C, whatever the origin (warm or

cold soil) of the AMF. However, species diversity remains high as shown by Gai

et al. (2012). These authors identified 52 AMF species in cold elevated areas in

Tibet mountains. This included ten species belonging to Acaulospora; 18 to Glo-
mus; five to Funneliformis; three to Ambispora and Gigaspora; two to

Scutellospora, Rhizophagus, Claroideoglomus, Sclerocystis, and Pacispora; and
one to Diversispora, Archaeospora, and Paraglomus. The dominant species were

G. aggregatum, F. geosporum, and R. clarus (Gai et al. 2012).
High temperatures may affect differently the development of AMF. However,

only one study to our knowledge reported on the effect of high temperatures on

spore germination (Schenck et al. 1975). These authors demonstrated that the

germination of spores of Racocetra coralloidea and Fuscutata heterogama
decreased when cultivated in Petri dishes incubated above 34 �C.

Most studies reported that warm soil conditions differentially alter AMF acti-

vity. Root colonization generally decreased under temperatures exceeding 30 �C
(Bowen 1987; Martin and Stutz 2004), and soil temperatures above 40 �C were

generally lethal to AMF (Bendavid-Val et al. 1997; Martin and Stutz 2004).

However, the degree to which temperature affected the AMF varied with species

(Schenck and Smith 1982) and their origin. With F. mosseae, root colonization
reached its maximum at 24–25 �C in pots heated in a water bath (Schenck and

Smith 1982) or when the pots were stored in growth chambers at temperature of

25 �C (Wu 2011) and decrease at higher temperatures. For other species (i.e.,

C. claroideum, R. clarus, A. laevis, S. pellucida, Endogone macrocarpa, Endogone
sp.), root colonization only declined at soil temperatures above 30 �C (Schenck and

Schroder 1974; Schenck and Smith 1982) or when pots were stored in growth

chambers at temperature of 30 �C (Raju et al. 1990). One work focusing on
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R. irregularis also showed an optimal colonization temperature when pots were

stored in growth chambers at temperature of 30 �C and was severely reduced when

the chamber reached temperatures between 32.1 and 38 �C (Martin and Stutz 2004).

Temperatures above 35 �C generally induced important decrease in root coloniza-

tion. Nevertheless, some species seemed not impacted and showed increase in root

colonization. Indeed, Racocetra gregaria, Gi. margarita, G. ambisporum, and
R. irregularis had their maximum percentage of root colonization when soil was

heated at 36 �C (Schenck and Smith 1982; Smith and Roncadori 1986). Martin and

Stutz (2004) studied two Glomus/Rhizophagus species (R. irregularis and Glomus
sp. AZ112), the last isolated in Arizona where high temperatures are usually

recorded. They demonstrated that in the presence of high temperatures in the

growth chamber (between 32.1 and 38 �C), root colonization and abundance of

arbuscules decreased with R. irregularis, whereas it increased with Glomus
sp. AZ112. In other studies, no difference in C. etunicatum and R. fasciculatum
root colonization was noticed in a range of temperatures of 25–40 �C in the growth

chamber (Zhu et al. 2011a; Maya and Matsubara 2013).

A number of studies also reported the impact of temperature on the development

of the extraradical mycelium. For instance, the hyphal length of R. irregularis
isolated from Quebec increased at temperatures between 18 and 30 �C under in vitro

culture conditions. To the contrary, G. cerebriforme also isolated from Quebec

showed a decline in extraradical growth at temperatures above 24 �C (Gavito

et al. 2005).

High temperatures (above 30 �C) affected sporulation of C. claroideum,
S. pellucida, Racocetra gregaria, and R. clarus, while F. mosseae, Gi. decipiens,
and A. laevis spore productions were impacted in soils heated at 32–36 �C (Schenck

and Smith 1982) or incubated in Petri dishes (Costa et al. 2013). Sporulation of

Endogone sp. was optimal in soils heated at 35 �C but was inhibited at 41 �C, in
parallel to plant senescence (Schenck and Schroder 1974).

2.2 Anthropogenic Abiotic Stresses

2.2.1 Trace Elements (TEs)

Soil contaminations by TEs, originating from anthropogenic activities, are of great

concern worldwide because of their persistence and toxicity for humans and the

environment (Wong et al. 2002; Huang et al. 2006). Unfortunately, estimations of

accumulated TEs in soils are scarce. One global estimation mentioned that TEs are

the major pollutants found in European soils (Panagos et al. 2013). They are

released into the environment via various anthropogenic activities such as mining,

energy and fuel production, electroplating, wastewater sludge treatment, and agri-

culture (Abioye 2011). The study of Nicholson et al. (2003) conducted in England

and Wales demonstrated that atmospheric deposition, livestock manures, sewage

sludge, inorganic fertilizers and lime, agrochemicals, irrigation water, and
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industrial by-product “wastes” and composts accounted for the principal sources of

TE in agricultural soils. In China, Huang et al. (2007a, b) noticed that the increase

of Cd and Hg in agricultural soils was attributed to the long-term use of agrochem-

icals. Indeed, many P fertilizers and pesticides contain TEs, including Cd and Cu

(Lugon-Moulin et al. 2006; Nziguheba and Smolders 2008; Kabata-Pendias 2011).

Moreover, TE atmospheric deposition induced by traffic at the vicinity of roads and

highways was demonstrated all over the world (Albasel and Cottenie 1985; Kelly

et al. 1996; Pagotto et al. 2001; Turer et al. 2001; Sezgin et al. 2004; Viard

et al. 2004; Saeedi et al. 2009).

Several studies reported a high diversity of AMF in TE-contaminated areas (Del

Val et al. 1999a; Vallino et al. 2006; Long et al. 2010; Zarei et al. 2010; Hassan

et al. 2011; Schneider et al. 2013; Krishnamoorthy et al. 2015; Yang et al. 2015)

with F. mosseae and R. irregularis as dominant species (Zarei et al. 2010; Hassan

et al. 2011; Krishnamoorthy et al. 2015). However, the species’ richness and

diversity were reported to decrease from un- or low-contaminated sites to highly

contaminated sites (Del Val et al. 1999a; Hassan et al. 2011; Yang et al. 2015).

Even some authors observed the absence of change in mycorrhizal colonization

in the presence of TEs (Andrade et al. 2010); more generally, these pollutants have

been reported to affect spore germination, root colonization, extraradical mycelium

development, and sporulation of AMF (Weissenhorn et al. 1993, 1994, 1995; Del

Val et al. 1999b; Regvar et al. 2001; Shalaby 2003; Pawlowska and Charvat 2004;

González-Guerrero et al. 2005; Zarei et al. 2008, 2010; Cornejo et al. 2013; Kelkar

and Bhalerao 2013; Abdelmoneim et al. 2014; Gavito et al. 2014; Spagnoletti

et al. 2014; Spagnoletti and Lavado 2015). The main cause was attributed to a

fungitoxic effect, resulting in a certain inability of AMF to colonize the root system

and/or to propagate in the rhizosphere. The AMF can also be indirectly affected by

TEs in soils. Indeed, carbohydrate concentrations in plant tissues can be modified

by Cd toxicity (Seregin and Ivanov 2001) and may thus indirectly affect arbuscule

abundance (Repetto et al. 2003). However, AMF isolated from sludge-polluted sites

showed higher tolerance to TEs in comparison to isolates from unpolluted soils

(Gildon and Tinker 1983; Weissenhorn et al. 1993, 1995; Dı́az et al. 1996; Del Val

et al. 1999b). For instance, Del Val et al. (1999b) compared four AMF isolates

colonizing Sorghum bicolor and Allium porrum for their tolerance to heavy metals.

They noticed that Glomus sp. isolated from a nonpolluted soil was the most

sensitive AMF, while C. claroideum 7 isolated from a contaminated soil was the

more tolerant. In non-contaminated soils, F. mosseae and Glomus spp. were the

most effective in terms of root colonization as compared to the two C. claroideum
species, whereas C. claroideum 7 was slightly more efficient in the polluted soil as

compared to the other isolates (Glomus sp., F. mosseae, and C. claroideum 2) from

nonpolluted soils (Del Val et al. 1999b). A similar observation was made by

Weissenhorn et al. (1995). These authors noticed that root colonization in a polluted

soil was higher with a strain of F. mosseae isolated from a polluted soil than with a

strain isolated from a nonpolluted soil.

The impact of TEs on the AMF life cycle was often attributed to the induction of

an oxidative stress in AMF. This was suggested by the increase in malondialdehyde
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(MDA, a lipid peroxidation biomarker) in the extraradical mycelium (González-

Guerrero et al. 2007). González-Guerrero et al. (2009) described the antioxidant

mechanisms involved in the resistance to oxidative stress caused by TEs. Some

genes involved in reactive oxygen species (ROS) homeostasis have been identified

and characterized in AMF: two CuZn-SODs (CuZn-superoxide dismutases), ten

genes putatively encoding GSTs (glutathione S-transferases), one Grx

(glutaredoxin), one gene encoding a protein involved in vitamin B6 biosynthesis,

and three MTs (metallothioneins) (Ouziad et al. 2005; Waschke et al. 2006;

Benabdellah et al. 2009a, b; González-Guerrero et al. 2010a). Other strategies

possibly contributing to TE tolerance appear to be involved as well, which is

indicated by the significantly enhanced expression of an MT and a Zn transporter

gene, particularly under Cu stress (Hildebrandt et al. 2007).

2.2.2 Petroleum and Polycyclic Aromatic Hydrocarbons

PAHs originate mainly from pyrolysis of organic matter and fossil fuel. Anthropo-

genic sources of PAHs are car traffic, industries, waste incinerators, and domestic

heating via both atmospheric transport and local activities (Manoli and Samara

1999; Blanchard et al. 2004).

Mineral oil and PAHs are frequently encountered in polluted soils. They con-

tribute jointly to nearly 35% of pollutants found in soils in Europe (Panagos

et al. 2013). Most of the studies were conducted near industrial sites (Bewley

et al. 1989; Ellis et al. 1991; Mueller et al. 1991; Erickson et al. 1993; Juhasz

1998; Leyval and Binet 1998; Bispo et al. 1999; Bogan et al. 1999; Joner et al. 2002,

2006; Joner and Leyval 2003; Nadal et al. 2004; Potin et al. 2004; Biache

et al. 2008; Rezek et al. 2008; Kacálková and Tlustoš 2011), whereas agricultural

fields and rural sites were less investigated (Wild and Jones 1995; Trapido 1999;

Nam et al. 2003; Cai et al. 2007; Zuo et al. 2007; Maliszewska-Kordybach

et al. 2008). PAH deposition in agricultural fields close to roads and airports has,

however, been demonstrated (Tuháčková et al. 2001; Crépineau et al. 2003;

Crépineau-Ducoulombier and Rychen 2003). Similarly, accumulation of PAHs in

rural sites and agricultural soils may result from atmospheric transport over long

distances (Halsall et al. 2001). In some rural sites in Poland, concentration of PAHs

between 100 and 395 μg/kg of soil, with a maximum of 7264 μg/kg soil, have been
reported (Maliszewska-Kordybach et al. 2008).

Wastewater and sewage sludge could also pose a problem of PAH contamination

of agricultural soils. Indeed, sewage sludge applied as fertilizer may increase

content of PAHs in soils (Cai et al. 2008). Consequently, there is an increasing

concern about the accumulation of organic contaminants in plant-soil systems

amended with sewage sludge (Cai et al. 2008). These authors demonstrated that

most of the PAHs recovered in radish resulted from a soil-to-root transfer and

translocation. Tao et al. (2006) further demonstrated the accumulation of PAHs in

rice grown in soils contaminated by wastewater irrigation. These authors measured
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a higher PAH accumulation in roots than in shoots. Moreover, grains and internodes

accumulated much lower amounts of PAHs than leaves, hulls, or ear axes.

Another potential source of PAH in agricultural soils is the biochar amendment.

Biochar is a solid by-product obtained by the pyrolysis or gasification of biomass in

a low or zero oxygen environment (Yargicoglu and Reddy 2014). Biochar is

considered much more effective than other organic matter to make nutrients

available to plants and increasing crop yields. However, biochar usually contains

phytotoxic and potential carcinogenic compounds such as PAHs and heavy metals

(Zheng et al. 2010; Hale et al. 2012; Hilber et al. 2012; Keiluweit et al. 2012; Kloss

et al. 2012; Yargicoglu and Reddy 2014; Yargicoglu et al. 2015). It is worth to

notice that the biochar feedstock, as well as the temperature and duration of

pyrolysis, can make a significant difference to the final concentration of PAHs

(Hale et al. 2012; Quilliam et al. 2013; Yargicoglu and Reddy 2014). Recently,

Quilliam et al. (2013) showed that biochar can reduce the degradation of PAHs in

agricultural soils, which could increase the concentration of soil PAHs in the short

term but also affect the long-term persistence of PAHs in the environment. Impact

of long-term biochar application on soil beneficial microorganisms should thus be

investigated in the future.

AMF species diversity is searched in petroleum-contaminated soils for less than

10 years (Huang et al. 2007a, b; Hassan et al. 2014; Iffis et al. 2014; de la

Providencia et al. 2015). For instance, in a sedimentation basin dedicated to the

storage of petroleum-hydrocarbon wastes from a former petrochemical plant,

21 AMF taxa were detected belonging to Claroideoglomus, Diversispora,
Rhizophagus, and Paraglomus (de la Providencia et al. 2015). In highly polluted

soils in Canada, R. irregularis dominated the relative abundance of AMF species,

whereas it was dominated by Claroideoglomeraceae species in low-contaminated

ones (Hassan et al. 2014; Iffis et al. 2014). F. constrictum and F. mosseae were

predominant species in a petroleum-contaminated soil in China (Huang

et al. 2007a, b).

PAHs and diesel have been reported to impact the AMF life cycle (Leyval and

Binet 1998; Gaspar et al. 2002; Liu et al. 2004a, b; Rabie 2004, 2005; Kirk

et al. 2005; Alarcón et al. 2006; Verdin et al. 2006; Franco‐Ramı́rez et al. 2007;

Debiane et al. 2008, 2009, 2011; Tang et al. 2009; Aranda et al. 2013; Calonne

et al. 2014a; Driai et al. 2015). Only the works of Kirk et al. (2005) showed no

differences on spore germination of R. irregularis andG. aggregatum under in vitro

conditions with increased concentrations of petroleum or diesel [0.5, 1, 2, and 3 %

(vol/vol)] in the absence or presence of roots. Curiously, in the presence of plant

roots, a decrease in germ tube length between AMF in contaminated and

non-contaminated medium with 0.5 % of diesel was marked. The authors suspected

that the signals released by the plant roots were perhaps not reaching the AMF in

diesel-contaminated substrate (Kirk et al. 2005).

PAHs were demonstrated to induce an oxidative stress in AMF. This was

evidenced by the increase in MDA content and the perturbations in unsaturated

fatty acid quantities in the extraradical mycelium of R. irregularis (Debiane

et al. 2011). Lipid metabolism is one of the major metabolisms in AMF since the
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fungus can be qualified as “oleaginous” (Gaspar et al. 1994). A number of studies

have reported on the impact of PAHs on the AMFmetabolism, as reviewed in Dalpé

et al. (2012). PAHs affected the sterol biosynthesis pathway via a decrease of [1-14

C]acetate incorporation in sterol precursors (i.e., 4α-methylsterols) (Calonne

et al. 2014b, c). This finding is in agreement with Debiane et al. (2011), which

reported a decrease in the 4-demethylsterol content in R. irregularis exposed to

PAHs. Secondly, when the fungus developed in the presence of benzo[a]pyrene (B

[a]P, a high molecular weight PAH), whereas the phosphatidylcholine (the major

phospholipid in AMF) quantity decreased, the [1-14C]acetate incorporation in this

phospholipid increased. These data could indicate that the AMF promotes the

phosphatidylcholine biosynthesis probably in order to regenerate this phospholipid

altered by the PAH (Debiane et al. 2011; Calonne et al. 2014c). Storage lipids are

also affected by PAHs. Indeed, despite the biosynthesis activation of triacyl-

glycerols (TAGs) in the presence of B[a]P, their quantity decreased in the

extraradical phase of the fungus when R. irregularis was exposed to this pollutant.

This suggested the involvement of the fungal TAG metabolism to cope with B[a]P

toxicity by (1) providing carbon skeletons and energy necessary for membrane

regeneration and/or for B[a]P translocation and degradation or (2) activating the

phosphatidic acid and hexose metabolisms which may be involved in cellular stress

defence (Calonne et al. 2014c).

3 AMF-Mediated Plant Protection Mechanisms Against

Abiotic Stresses

3.1 Preamble

In the last decade, most studies on abiotic stress factors described a better growth of

AMF-colonized crops as compared to non-colonized controls (see Table 1),

suggesting an increased tolerance of mycorrhizal plants to abiotic stresses (Dodd

and Ruiz-Lozano 2012).

This was reported under salt stress for onions (Hirrel 1981), lettuce (Ruiz-

Lozano et al. 1996; Ruiz-Lozano and Azcón 2000), tomato (Al-Karaki 2000),

maize (Feng et al. 2002), and pearl millet (Borde et al. 2011) and drought stress

for tomato (Beltrano et al. 2013; Latef and Chaoxing 2011b), wheat (Zhou

et al. 2015), strawberry (Boyer et al. 2015), and sunflower foxtail millet (Gong

et al. 2015). A better growth was also recorded in maize, trifoliate orange, and

cyclamen associated with AMF under heat stress (Zhu et al. 2010a, b; Wu 2011;

Maya and Matsubara 2013). Finally, in the presence of TEs and petroleum, mineral

nutrition was improved in the presence of AMF and resulted in an increased plant

growth (Andrade et al. 2004) (see Table 1).

Several mechanisms were suggested by Rivera-Becerril et al. (2005) and Smith

and Read (2008):
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lá
v
y
’
F
1

F
ie
ld

ex
p
er
im

en
t

in
tr
ay
s

+
+

+
tr
an
sp
ir
at
io
n
ra
te
,

+
g
s,
+
W
U
E
,
+
p
h
o
to
-

sy
n
th
et
ic

ra
te

Je
zd
in
sk
ý
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• Improved mineral nutrition

• Qualitative and quantitative changes of sugars, polyamines, and lipids

• Increased tolerance to oxidative stress

• Modifications in plant physiology (photosynthetic activity, osmotic balance,

etc.)

• Root and fungal chelation and inactivation/exclusion of pollutants

3.2 Improved Mineral Nutrition

In the literature from the last 10 years, most studies on the impact of abiotic stresses

on nutrition of AMF-colonized plants were focused on P, N, and K and to a

lesser extent Ca, Mg, Cu, Fe, or S (see Table 1).

The principal mechanisms explaining the increased nutrient content in M plants

as compared to NM plants were related to the capacity of extraradical hyphae to

extend far beyond the root depletion zone and to solubilize mineral nutrients by the

release of organic acids and enzymes. A faster movement of nutrients, mainly P

and N, into the hyphae as well as a stimulation of plant P transporters was also

noticed. Finally, an increased nodule formation in leguminous plants was observed

in the presence of AMF (Bolan 1991; Smith and Read 2008; Christophersen

et al. 2009).

3.2.1 Phosphorus

Salinity, drought, high temperatures, TEs, and PAHs have been reported to impact

P uptake and accumulation as well as P use efficiency in NM plants. In the presence

of AMF, these effects were less marked (Table 1).

Root colonization was mentioned as a key aspect in P accumulation under stress

conditions. For instance, in a soil contaminated with lead, Sudová and Vosátka

(2007) observed that maize plants heavily colonized by AMF had higher P contents

than plants poorly colonized. One reason could be related to the expression of

specific P gene transporters in AMF-colonized plants. Similarly, Christophersen

et al. (2009) observed in Hordeum vulgare L. colonized by R. irregularis MUCL

43194 and grown in the presence of As at 2.5 mg/kg soil the downregulation of two

plant P transporter genes in M roots as compared to NM roots, while the specific

mycorrhizal P transporter gene HvPht1;8 was upregulated. This indicates that the

mycorrhizal P transport pathway is the preferred. By this specific mechanism, the

AMF protects its host against the root absorption of As, which can enter the roots

via P transporters (Christophersen et al. 2009). Indeed, because As(V) is a P

analogue, it is effectively transported across the plasma membrane of plants via P

transporters, apparently competing with P (Asher and Reay 1979; Meharg

et al. 1994; Christophersen et al. 2009).
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3.2.2 Nitrogen

Salt reduces the uptake of N by competition of chloride with nitrate at the level of

membrane transporters (Talaat and Shawky 2013). Interestingly, in AMF-colonized

crops, several studies mentioned an increased accumulation of N under salt stress

conditions (see Table 1). Colonization of leguminous plant by AMF can increase

the number of nodules and thus the N content (Giri and Mukerji 2004; Rabie and

Almadini 2005; Garg and Manchanda 2008). For instance, Giri and Mukerji (2004)

reported a strong effect of AMF inoculation on nodule formation in Sesbania
aegyptiaca and Sesbania grandiflora under salt stress. These authors observed

higher leghemoglobin content and nitrogenase activity in M plants.

Several studies focusing on the impact of TEs and diesel on N accumulation

reported marked differences between M and NM plants (see Table 1). For instance,

a higher accumulation of N was observed in leguminous plants (Glycine max L.,

Sesbania rostrata, Sesbania cannabina) colonized by G. macrocarpum and

F. mosseae in a TE multi-contaminated soil (Andrade et al. 2004; Lin

et al. 2007), while in the presence of diesel (Hernández-Ortega et al. 2012), an

equal content of N was reported in M and NM plants. As explained by Hernández-

Ortega et al. (2012), the equal content of N in M and NM diesel-stressed roots could

be explained by a reduction in nitrate reductase activity in M roots. Indeed, M

plants could reduce their direct N uptake because of an increase in inorganic N

transfer to the host by the AMF.

3.2.3 Na
+
, Cl

�
, and Other Minerals

The role of AMF in Na+ accumulation in plants remains controversial. Some studies

reported an increased Na+ uptake and concentration in shoots of AMF-colonized

plants under high saline soils (Allen and Cunningham 1983; Evelin et al. 2009),

while others, in most cases, noticed a decrease (Sharifi et al. 2007; Zuccarini and

Okurowska 2008; Talaat and Shawky 2011). AMF decreased the Na:Ca ratio and

increased the K:Na ratio in Vicia faba plants and pepper seedlings thus reducing Na+

toxicity effects (Rabie and Almadini 2005; Turkmen et al. 2008).

Differences in Cl� uptake and accumulation in M plants were reported (Evelin

et al. 2009). The increase in Cl� uptake and accumulation could be related to the

carbon drain imposed by mycorrhizal hyphae on plants, which enhances the

translocation of highly mobile anions like Cl� from the soil (Buwalda et al. 1983;

Graham and Syvertsen 1984).

In saline soils, Talaat and Shawky (2013) noticed a substantial reduction of K

accumulation in wheat tissues. They attributed this observation to the competition

between Na+ and K+ at the level of absorption sites (Epstein and Rains 1987).

However, in the presence of AMF, these authors demonstrated that K+ uptake was

significantly increased in wheat, highlighting the regulation of the expression of K+/

Na+ pumps and their increased activity.
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Mycorrhizal plants have shown greater absorption of Mg under salt stress

(Wu et al. 2010), while Cantrell and Linderman (2001) reported increased Ca2+

uptake in M lettuce (Table 1).

3.3 Qualitative and Quantitative Changes of Sugars, PAs,
Abscisic Acid, and Lipids

3.3.1 Sugars

The accumulation of soluble sugars or carbohydrates in AMF-colonized plants has

been proposed as a defence mechanism against salt, drought, or Cd and Cu (Porcel

and Ruiz-Lozano 2004; Liu et al. 2011; Sheng et al. 2011; Malekzadeh et al. 2012;

Talaat and Shawky 2013; Latef 2013). This accumulation, as compared to NM

plants, may result from an increased plant photosynthesis (Sheng et al. 2011; Ruiz-

Lozano et al. 2012a, b) or growth (Wu and Xia 2006).

Under heavy saline or drought conditions, the structure and function of the PSII

reaction center may be damaged and the electron transport in photosynthetic

apparatus disrupted (Baker 2008), while these impacts are less marked in

AMF-colonized plants (Zhu et al. 2012). In TE-contaminated soils, the alleviated

effect of Cu on chlorophyll content and carbohydrate metabolism was explained by

a reduced concentration of this pollutant in the shoot (Malekzadeh et al. 2012).

3.3.2 Polyamines

Polyamines (PAs) are aliphatic nitrogen compounds involved in a wide range of

regulatory processes such as plant growth promotion, cell division, DNA repli-

cation, and cell differentiation (Evans and Malmberg 1989; Groppa and Benavides

2008). They play a specific role in preventing photooxidative damage (Løvaas

1997). The involvement of PAs in abiotic stress response has been proved. An

accumulation of putrescine, spermidine, and spermine (three major PAs) and

betaine was reported (Groppa and Benavides 2008; Lingua et al. 2008). However,

their role in stress alleviation remains to be elucidated (Alcázar et al. 2006).

Under saline conditions, PAs have been proposed as candidates for the regu-

lation of root development (Sannazzaro et al. 2007). Indeed, in AMF-colonized

plants, a higher content of total free PAs and glycine betaine was noticed and thus

resulted in improved root growth as compared to NM plants (Al-Garni 2006;

Sannazzaro et al. 2007). In a recent study, Talaat and Shawky (2013) reported an

increase in putrescine associated with low contents of spermidine and spermine in

one genotype of wheat colonized by an AMF, while the second wheat genotype

showed a decrease in putrescine and increase in spermidine and spermine. In both

cases, mycorrhizal symbiosis protected these genotypes (especially the first one)

against salinity. They concluded that modulation of PA pool can be one of the
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mechanisms used by AMF to improve wheat adaptation to saline soils. Although

salt stress strongly promotes diamine oxidase activity and PA oxidation (Xing

et al. 2007), resulting in ROS accumulation, Talaat and Shawky (2013) reported a

reduced activity of diamine oxidase and PA oxidase in salt-stressed M wheat thus

reducing oxidative damage.

In the presence of Zn, free and conjugated putrescines decreased and increased,

respectively, in NM poplar grown with the TE (Lingua et al. 2008). This demon-

strates a Zn-induced stress in this plant. On the other hand, both free and conjugated

putrescine concentrations reached values in M-stressed plants which were identical

to those obtained for NM poplar grown in the absence of Zn. This suggests that the

metal toxicity is mitigated by the presence of the AMF (Lingua et al. 2008).

The molecular basis behind the role of PAs in alleviating stress is still unclear.

However, there is evidence that they can act at several metabolic levels, as

antioxidant scavengers, and facilitate metal ion compartmentation (Bors

et al. 1989; Sharma and Dietz 2006; Lingua et al. 2008).

3.3.3 Proline

Proline can act in the antioxidant system, regulating redox potentials and acting as a

hydroxyl radical scavenger and as a mean of reducing acidity in the cell (Prasad and

Saradhi 1995; Sharma and Dietz 2006; Zhu et al. 2010a; Ruiz-Lozano et al. 2012a,

b). In the osmotic balance, accumulation of proline has been reported to increase

plant osmoprotection and to protect macromolecules against denaturation (Kishor

et al. 1995, 2005).

Several studies have described a higher proline concentration in M plants as

compared to NM plants at different salinity, drought, TEs, or petroleum levels

(Hare et al. 1999; Herrera-Rodrı́guez et al. 2007; Sharifi et al. 2007; Tang

et al. 2009; Talaat and Shawky 2011; Xun et al. 2015). This indicates a role in

mediating osmotic adjustment by lowering water potential in stressed plants

(Sharma and Dietz 2006; Ashraf and Foolad 2007). In a recent study conducted

on lettuce grown under drought stress conditions, Ruı́z-Lozano et al. (2011) demon-

strated that NM plants accumulated more proline in their shoots than M plants,

while the reverse was observed in roots.

Conversely, in other studies (Wang et al. 2004; Rabie and Almadini 2005;

Alarcón et al. 2008; Jahromi et al. 2008; Andrade et al. 2010; Tang et al. 2009;

Zhu et al. 2010a; Sheng et al. 2011; Xun et al. 2015), NM plants were reported to

accumulate more proline than M plants under salt, drought, high temperatures, TEs,

or petroleum. In this way, proline can only be regarded as a stress indicator

suggesting that a less stressed plant accumulates less proline in cells.
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3.3.4 Abscisic Acid

Abscisic acid (ABA) is a key hormone in several physiological processes. It affects

ion transport in guard cells and influences stomatal conductance and aperture in

response to changing water availability and thus plant turgescence (Roelfsema

et al. 2004).

A number of studies have reported that AMF plant colonization can alter ABA

levels in the host plant under abiotic stresses (Duan et al. 1996; Ludwig-M€uller
2000; Estrada-Luna and Davies 2003). Higher foliar water status was associated

with lower xylem sap ABA concentrations in M plants (Duan et al. 1996). Reduced

ABA content in leaves may be a strategy of AMF plants to improve water relations

under drought stress (Barker and Tagu 2000; Ruiz-Lozano 2003; Hause et al. 2007).

3.3.5 Lipids

In a recent study, Debiane et al. (2012) suggested that root colonization by AMF

may decrease lipid peroxidation in plants under PAH stress. A decrease of polyun-

saturated fatty acids (C18:1, C18:2, and C18:3) was noticed in NM roots, while it

remained unchanged in M roots grown in the presence of benzo[a]pyrene (Debiane

et al. 2012) or was superior in M sunflower as compared to NM ones grown in the

presence of Cd (Abd-Allah et al. 2015). Moreover, modification of root sterol

composition was hypothesized to help avoiding translocation of PAHs in root

tissues and consequently protect the host against these toxicants (Debiane

et al. 2012). A quantitative modification of fatty acids, especially unsaturated

fatty acids (C18:1, C18:2, and C18:3) in leaves and the ratio saturated/unsaturated

fatty acids in roots, was also observed in MMiscanthus � giganteus plants (Firmin

et al. 2015). These modifications could be considered as a restoration of the

membrane optimal lipid properties. In addition, protein expression of an annexin

was increased in M plants (Repetto et al. 2003; Aloui et al. 2009). The putative

major function of this protein in Golgi-mediated secretion and maturation of newly

synthetized cell membrane and wall materials (Repetto et al. 2003) suggests an

increase in membrane lipid production in M plants.

3.4 Increased Tolerance to Oxidative Stress

Numerous studies have focused on environmental factors inducing an oxidative

stress and the production of ROS that could interact with polyunsaturated fatty

acids to generate malondialdehyde (MDA) or with DNA and proteins and cause cell

damage or death (Gill and Tuteja 2010). The control of oxidant levels is achieved

by antioxidative systems composed of nonenzymatic (e.g., ascorbate, glutathione,

polyphenols, tocopherol, vitamins C, E, B6) and enzymatic [e.g., superoxide
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dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase

(APX)] ROS scavengers (Sch€utzend€ubel and Polle 2002; Ferrol et al. 2009).

AMF have been reported to protect plants against abiotic-induced oxidative

stresses (Ouziad et al. 2005; Hildebrandt et al. 2007; Andrade et al. 2009) caused

by salt, drought, high temperatures, or pollutants. This was demonstrated by

reduced accumulation of MDA (see Table 1), mainly in roots, and decreased

genomic alteration (Zhu et al. 2010a; Wu 2011; Latef and Chaoxing 2011a, b,

2014; Latef 2013; Firmin et al. 2015). Concomitantly, AMF contribute to enhance

antioxidant enzymatic and nonenzymatic scavenging systems (SOD, CAT, POD,

APX) in plants grown in the presence of excess salt, high temperatures, TEs,

petroleum, or PAHs (see Table 1).

SOD activity in AMF was reported about 20 years ago, but genes involved in

SOD expression and regulation are still to be identified. Indeed, F. mosseae pos-

sesses a CuZn-SOD activity, and mycorrhizal clover roots exhibit two additional

SOD isoforms as compared to NM roots: a mycCuZn-SOD, specific for the

mycorrhizal association, and a Mn-SOD in nodules (Palma et al. 1993). Ruiz-

Lozano et al. (2001) observed a marked increase in the expression of the Mn-sod
II gene in mycorrhizal lettuce plants under drought stress conditions. This

overexpression was correlated to an enhanced tolerance of plants to drought.

These authors suggested that mycorrhizal protection against oxidative stress caused

by drought may be an important mechanism of protection. The gene encoding a

CuZn-SOD has been identified in Gi. margarita by Lanfranco et al. (2005).

More recently, a GintSOD1 gene encoding a functional protein that scavenges

ROS was identified in R. irregularis by González-Guerrero et al. (2010a). The

upregulation of GintSOD1 transcripts in the R. irregularis fungal mycelia treated

with Cu indicated that the gene product might be involved in the detoxification of

ROS. Salinity also induced an upregulation of this gene, providing evidence for a

role of GintSOD1 in the fungal response to the induced oxidative stress (Estrada

et al. 2013a).

The involvement of nonenzymatic antioxidant systems such as GSSG/GSH

(glutathione and its oxidized form) was also reported in AMF-colonized

Miscanthus � giganteus protection against oxidative stress (Firmin et al. 2015).

Indeed, GSH is considered as a major scavenger of ROS and a precursor of

phytochelatins which chelate metals. Nonenzymatic mechanisms induced in

AMF-colonized plants under abiotic stresses also include compounds able to

scavenge directly several ROS, such as ascorbic acid (AsA), glutathione (GSH),

α-tocopherol, polyphenols, or flavonoids (Wu et al. 2006a, b; Huang et al. 2008;

Wu and Zou 2009; Matsubara 2010; Wu et al. 2010; Scheibe and Beck 2011;

Abbaspour et al. 2012; Ruiz-Lozano et al. 2012a, b; Maya and Matsubara 2013).

Recently, Aloui et al. (2012) described that R. irregularis colonization of

M. truncatula roots alleviates cadmium stress via the accumulation of isoflavonoids

and their derivates, reinforcing the hypothesis that AMF colonization buffered the

effect of TE in plant roots.

The improved tolerance of M poplar clones to TEs was mainly associated with a

reduced expression of antioxidant genes, both in roots and in leaves (Pallara
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et al. 2013). In a comparative proteomic approach, Aloui et al. (2009) provided

evidence for R. intraradices-dependent down-accumulation of Cd stress-plant

responsive proteins and concomitant up-accumulation of mycorrhiza-related pro-

teins putatively involved in reducing Cd oxidative toxicity in M plants.

Up-accumulated proteins included a cyclophilin, a guanine nucleotide-binding

protein, an ubiquitin carboxyl-terminal hydrolase, a thiazole biosynthetic enzyme,

an annexin, a glutathione S-transferase (GST)-like protein, and an

S-adenosylmethionine synthase (Aloui et al. 2009).

3.5 Modifications in Plant Physiology

3.5.1 Osmotic Adjustment/Gas Exchange

Many authors have reported that plants inoculated with AMF are more resistant to

drought conditions (Ruiz-Lozano 2003; Allen 2007; Ruiz-Lozano et al. 2012b; see

Table 1). This is mostly related to the capacity of extraradical hyphae to reach

smaller pores inaccessible to root hairs (Smith and Read 2008). Increased root or

plant hydraulic conductivity, adjustment of osmotic balance, and composition of

carbohydrates in the presence of AMF are similarly involved in plant resistance to

water shortage (Ruiz-Lozano 2003; Augé 2004; Evelin et al. 2009; Zhu et al. 2010b,

2011a). K+ and Cl�, glycine betaine, and carbohydrates such as sucrose, pinitol, and
mannitol mainly participate in osmotic adjustments (Ruiz-Lozano et al. 2012a, b).

Zhu et al. (2010b, 2011a) further demonstrated that AMF-colonized maize plants

had higher leaf relative water content and a better water use efficiency as compared

with NM plants stressed by heat. This was probably related to an improved water

absorption capacity by C. etunicatum and to a lesser content of proline in leaf of M

maize plants.

In parallel, AMF interfere in plant water uptake via the production of glyco-

proteins, such as glomalin, which shapes the soil structure through the formation of

microaggregates retaining water (Rillig et al. 2002). In addition, hyphae maintain

liquid continuity in the substrate and limit the loss of soil hydraulic conductivity

caused by air gaps (Allen 2007; Smith et al. 2010; Ruiz-Lozano et al. 2012b).

Finally, aquaporins, which are key proteins involved in water transport (Javot

et al. 2003; Katsuhara et al. 2008; Chaumont and Tyerman 2014; Bárzana

et al. 2015), have been reported to be regulated by AMF (Aroca et al. 2007,

2008; Ruiz-Lozano et al. 2009; Ruiz-Lozano and Aroca 2010; Bárzana

et al. 2014, 2015). Consequently, M plants regulate better the transcellular water

flow and cellular water content (Javot andMaurel 2002; Marjanović et al. 2005; Lee

et al. 2010; Ruiz-Lozano et al. 2012b; Bárzana et al. 2014, 2015). Nevertheless, the

effects of the AM symbiosis on aquaporin genes depend on the severity of drought

stress imposed, on the plant species, and on the specific aquaporin gene considered

(Aroca et al. 2007; Ruiz-Lozano and Aroca 2010; Bárzana et al. 2014, 2015).

Ouziad et al. (2006) showed that after continuous salt treatment in M Lycopersicon
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esculentum, AMF significantly reduced the mRNA transcripts of LePIP1 and LeTIP
but not of LePIP2 in non-treated controls and salt-stressed roots. Therefore, regu-

lation of PIP and TIP aquaporins was expected to be a key player in the regulation

of plant water transport by AM symbiosis.

The role of aquaporins in AM symbiosis was suggested to be more complex than

simply regulating plant water status (Maurel and Plassard 2011). As reviewed by

Bárzana et al. (2014) and Srivastava et al. (2014), they can participate in glycerol,

nitrogen, metalloids, and H2O2 transport.

To date, a few studies were conducted on AMF aquaporins (Aroca et al. 2009; Li

et al. 2013a, b; Bárzana et al. 2015) located in the extraradical mycelium and in the

periarbuscular membrane (Li et al. 2013a). The GintAQP1 expression was

upregulated in the extraradical structures when only a fraction of the mycelium

developed in the presence of NaCl (Aroca et al. 2009). Recently, an upregulation of

GintAQP1 gene was observed at 75 mM NaCl in an AMF from a collection,

whereas this was not the case in a fungus isolated from a salt-contaminated soil.

In contrast, at the highest salinity level (150 mMNaCl), the upregulation was found

only in the salt-isolated fungus. Thus, this AMF was able to induce the expression

of this aquaporin gene when salt in the culture substrate reached high levels

(Bárzana et al. 2015). In the presence of salt stress, Aroca et al. (2009) and Bárzana

et al. (2015) found some evidences supporting the idea that fungal aquaporins could

compensate the downregulation of host plant aquaporins caused by osmotic stress.

Furthermore, under drought stress, aquaporin expression in arbuscule-enriched

cortical cells and extraradical mycelia of maize roots were also enhanced signifi-

cantly, as demonstrated in the presence of polyethylene glycol (Li et al. 2013a, b).

Mycorrhizal plants were found to exhibit a higher stomatal conductance thereby

increasing transpiration (Duan et al. 1996; Ruiz-Lozano et al. 1996; Dell’Amico

et al. 2002; Jahromi et al. 2008; Sheng et al. 2008). The gas exchange capacity thus

increases in M plants (Graham and Syvertsen 1984). As explained by Zhu

et al. (2011a), the AM symbiosis provides a high gas exchange capacity by

decreasing stomatal resistances and by increasing CO2 assimilation and transpi-

ration fluxes, as they demonstrated in maize plants submitted to high-temperature

stress.

3.5.2 Relative Permeability and Electrolyte Leakage

Electrolyte leakage is a measure of ion leakage caused by membrane damage.

Enhancement of membrane lipid peroxidation also causes an increase in membrane

permeability, exosmosis of electrolytes, and finally injury to the cell membrane

system (Zhu et al. 2010b). Under abiotic stresses, AMF-colonized plants maintain a

higher electrolyte concentration and a lower membrane permeability than NM

plants by preserving the integrity and stability of the membrane (Feng et al. 2002;

Garg and Manchanda 2008; Kaya et al. 2009). This was demonstrated by decreases

in MDA production and electrolyte leakage (Zhu et al. 2010b; Garg and Aggarwal

2012; Abd-Allah et al. 2015).
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3.5.3 Photosynthesis

Under saline conditions, chlorophyll content of AMF-colonized plants was higher

as compared to controls (Giri and Mukerji 2004; Sannazzaro et al. 2006; Zuccarini

2007; Colla et al. 2008; Sheng et al. 2008; see Table 1). This suggested that salt

interfered less with chlorophyll synthesis in M plants (Giri and Mukerji 2004),

leading to a photosynthetic activity (estimated by chlorophyll content) even supe-

rior to the nonstressed NM plants (Feng et al. 2002; Giri et al. 2003; Zuccarini 2007;

Colla et al. 2008; Kaya et al. 2009; Hajiboland et al. 2010; Latef and Chaoxing

2011a).

High temperatures, Cd, and petroleum were also reported to impact photo-

synthesis. However, their effects were less pronounced in M plants than in NM

ones (see Table 1). The increase in chlorophyll content may be related to an

improved transfer of Mg2+ by AMF (Giri et al. 2003; Latef 2013) or a lesser

pollutant translocation from soil to roots and aerial part (Malekzadeh et al. 2012).

Improvement of photosynthetic activity, structure, and function of photo-

synthetic apparatus, photosynthetic index, and PSII reactions has been reported in

mycorrhizal plants growing under abiotic stress as compared to NM plants (Sheng

et al. 2008; Zuccarini and Okurowska 2008; Hajiboland et al. 2010; Zhu

et al. 2011a; Shahabivand et al. 2012). Mycorrhiza-inoculated plants also showed

higher non-photochemical quenching as compared to NM plants, which can occur

as a result of processes that protect the leaves from light-induced damage (Maxwell

and Johnson 2000; Sheng et al. 2008). AM symbiosis also triggers the regulation of

energy bifurcation between photochemical and non-photochemical events (Sheng

et al. 2008).

The Fv/Fm ratio is a chlorophyll fluorescence measuring parameter that

expresses the maximum efficiency of PSII (Lazár 2003). Under abiotic stresses,

this ratio is generally higher in M plants as compared to NM plants (see Table 1).

3.6 Root and Fungal Chelation and Inactivation/Exclusion
of Pollutants

3.6.1 Plant Intracellular Chelation and Inactivation Is Increased

in Mycorrhizal Plants

The role of AMF in the accumulation or exclusion of TEs is mixed. Indeed, a higher

(Andrade et al. 2008; Punamiya et al. 2010; Ali et al. 2015), equal (Kelkar and

Bhalerao 2013; Aghababaei et al. 2014; Caporale et al. 2014; Pigna et al. 2014), or

lower (Aloui et al. 2009; Christophersen et al. 2009; Zhang et al. 2009; Garg and

Aggarwal 2011; Liu et al. 2011; Aghababaei and Raiesi 2015) TE concentration

was noticed in AMF-colonized plants as compared to NM plants. These contrasting

results are more than likely related to the association between the fungus and the

plant. Indeed, recent results demonstrated that S. constrictum enhanced Cd
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phytostabilization, whereas F. mosseae reduced Cd uptake in maize (Liu

et al. 2014). These authors suggested that the mechanisms involved in the TE

uptake differ among fungi. Similar results were obtained by Rivera‐Becerril
et al. (2002), Andrade et al. (2005), and Marques et al. (2006). Redon

et al. (2009) and Orłowska et al. (2012) also observed that the origin of AMF

(isolated from a polluted or nonpolluted soil) could influence the root and shoot TE

accumulation. The site of TE accumulation also differs between AMF-colonized

and controls plants. For instance, a lesser accumulation of Cd was observed in

shoots of M plant, whereas an equal or increased accumulation was measured in M

and NM roots (Huang et al. 2006; Redon et al. 2009; Latef 2013; Aghababaei

et al. 2014). The TE considered and its concentration also affected the accumu-

lation. For instance, Shahabivand et al. (2012) observed a lower accumulation of Cd

in mycorrhizal roots at 0.3 mM as compared to NM ones, while the accumulation

was identical between M and NM roots at concentrations 0.6 and 0.9 mM. It is also

important to remind that a lower TE concentration found in M plants may be a

consequence of the dilution effect caused by a higher biomass of these plants

(Plenchette et al. 1983).

It has been proposed that a shift in root-to-shoot biomass partitioning allowed

plants to reduce the incidence of TE-induced stress in photosynthetic organs, a

process referred to as allocation plasticity (Audet and Charest 2008; Aloui

et al. 2011).

A higher Cu-sorption capacity was observed in the cell walls of M roots

compared to NM roots, which could be correlated with a significant increase in

uronic acids (Zhang et al. 2009). To avoid free metals in the cell cytosol, cytosolic

chelators may induce metal chelation. The best-known chelators are

metallothioneins (MTs) (González-Guerrero et al. 2009) and phytochelatins

(PCs), involved in the cellular detoxification mechanism by forming stable metal-

PC complexes (Garg and Aggarwal 2011). The presence of AMF has been reported

to induce MT and PC genes in plant grown in the presence of TEs. This confirmed

the important role of the fungal symbiont in the regulation of genes involved in TE

chelation (Cicatelli et al. 2010; Pallara et al. 2013). However, in tomato grown in

the presence of high concentration of Zn or Cd, Northern blot analysis and

qRT-PCR showed an equal expression of Lemt1, Lemt3, Lemt4 (encoding MT),

Nramp2 (probably encoding a Zn transporter), and LePcs1 in any conditions tested

(the presence of heavy metal or mycorrhizal association). On the other hand, Lemt2
and Nramp1 and Nramp3 expressions were downregulated upon mycorrhizal colon-

ization under heavy metal stress (Ouziad et al. 2005). The decrease of the transcript

formation could be explained by a lower concentration of heavy metal inside the

plant cells (Ouziad et al. 2005). According to Rivera-Becerril et al. (2005), whereas

the expression of PsMTA did not differ between M and NM pea plants in the

presence of heavy metal, the expression of hgsh2 (encoding a homoglutathione

synthetase, precursor of homophytochelatines) gene was significantly enhanced in

AMF-colonized pea roots. This suggested a possible role of the homoglutathione

pathway in the plant tolerance to Cd, which was enhanced by mycorrhizal coloni-

zation (Rivera-Becerril et al. 2005). This also indicated that Cd chelation pathways
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does not contribute significantly to metal tolerance strategies operating in the AM

symbiosis and argues for an alternative action of the symbiosis at the molecular

level (Rivera-Becerril et al. 2005). An increased protein expression of vacuolar H+-

ATP synthase was quantified in F. mosseae-colonized pea roots, suggesting a

better vacuolar compartmentalization of TEs (Repetto et al. 2003).

PAHs were reported to be stored in lipid bodies of transformed chicory roots

cultivated in vitro (Verdin et al. 2006). These authors also demonstrated a lower

anthracene accumulation in M roots as compared to non-colonized roots, demon-

strating a protective role of AMF in decreasing the pollutant accumulation in the

host plant. However, divergent results on PAH accumulation in M and NM plants

grown in pot culture were also reported (Binet et al. 2000; Rabie 2005; Verdin

et al. 2006; Gao et al. 2011; Wu et al. 2011; Yu et al. 2011). As stated above,

this could be explained by the fungal symbiont, plant host, culture conditions,

soil properties, and PAHs studied.

3.6.2 TEs’ Fungal Intracellular Binding and Inactivation

Ultrastructural localization of TE in AMF demonstrated that these pollutants are

accumulated in all fungal structures, but mainly in the fungal wall and vacuole

(González-Guerrero et al. 2008). Vesicles within roots have been shown to store

more TE than extraradical hyphae (Weiersbye et al. 1999; Orłowska et al. 2008).

Three transporters were identified so far: GintZnT1 (encoding a putative Zn trans-

porter),GintABC1 (encoding an ABC transporter), and a P-type ATPase (González-

Guerrero et al. 2005, 2010b). The cytosolic chelators were identified as organic

acids, amino acids, glutathione, and MTs (Lanfranco et al. 2002; González-Guer-

rero et al. 2007, 2009). Three MTs were identified in AMF (GrosMT1, GmarMT1,
and GintMT1 in Gi. rosea, Gi. margarita, and R. irregularis, respectively)

(Stommel et al. 2001; Lanfranco et al. 2002; González-Guerrero et al. 2007).

Nevertheless, these molecules seemed to be more involved in oxidative stress

alleviation than in metal homeostasis, as previously thought (González-Guerrero

et al. 2007).

Concerning PAHs, only one study demonstrated the accumulation of anthracene

in AMF extraradical hyphae and spores (Verdin et al. 2006). These authors demon-

strated that the pollutant is accumulated in fungal lipid bodies. However, the exact

mechanism of transport from the soil to the AMF lipid bodies remains unknown.

All these data indicate that AMF operate an intracellular compartmentalization in

order to protect themselves against the negative damage caused by pollutants

(Ferrol et al. 2009). Moreover, as reported by Aloui et al. (2009), Cd stress

alleviation in M plants grown in contaminated soils is mainly attributed to reduced

heavy metal translocation from soil to roots and roots to shoots likely due to Cd

immobilization by the extraradical mycelium and intraradical hyphae of AMF,

respectively (Joner and Leyval 1997; Joner et al. 2000; Gonzalez-Chavez

et al. 2002).
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3.6.3 Fungal Extracellular and Cell Wall-Binding Immobilization/

Chelation and Inactivation of Pollutants

AMF exude organic acids such as citric, malic, and oxalic acids and amino acids

into the rhizosphere, to increase the mobility of metal ions or immobilize and

detoxify them through precipitation and complexation (Saraswat and Rai 2011).

Glomalin has been reported to stabilize soil. Its concentration in soil however

depends on the plant and associated AMF (Rillig et al. 2002). This glycoprotein

produced by AMF has been postulated to play a role not only in soil aggregation

(Wright and Upadhyaya 1998) but also in Cu, Cd, Zn, As, and Pb sequestration and

inactivation in soil (Gonzalez-Chavez et al. 2002; 2004; Cornejo et al. 2008; Ferrol

et al. 2009; Amir et al. 2014). Glomalin is also partly located at the AMF wall

(Purin and Rillig 2008), which is responsive for 50% of metal retained (Joner

et al. 2000; González-Guerrero et al. 2008). The fungal cell wall also has a high

content of chitin with potential metal-binding sites, such as hydroxyls, carboxyls, or

amino acids (Strandberg et al. 1981; González-Guerrero et al. 2009). Decreasing

the TEs’ plant availability plants in soils could be a protective effect conferred by

the AMF to its host.

4 Conclusion

Abiotic stresses (i.e., salinity, drought, high temperatures, TEs, and hydrocarbons)

are major threats to agriculture, impacting crop yield. Global warming and its

cohort of effects (e.g., water scarcity, emergence of new pests, and diseases),

combined to an alarming increase of the world population, are major challenges

that agriculture has to face in the coming decades. Improved crop varieties, the

converting of marginal lands into productive areas, the modifications in manage-

ment practices, and optimal use of agricultural inputs are among the solutions often

considered. In addition, the rhizosphere microbiome and, more precisely, the AMF

are increasingly considered since they have been widely reported to increase plant

tolerance to several biotic and abiotic stresses. Their application is encouraged by

the green wave emerging in the context of sustainable development.

AMF are obligate root symbionts that can develop in disturbed environments

and affect plant development in many ways. Under the abiotic stress conditions

mentioned above, we noticed that AMF generally improve plant mineral nutrition,

especially phosphorus. They induce a better balance of soluble carbohydrate,

polyamine, ABA, and lipid content known to be involved in stress alleviation.

Oxidative stress mitigation is also frequently reported in AMF-colonized plants as

well as pollutant compartmentalization and inactivation.

These observations support the role of AMF in the alleviation of abiotic stresses.

The understanding of plant/AMF relationships has increased significantly in the last

decade, and although physiological plant parameters affected by AMF under
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abiotic stress conditions have been well described in the literature, molecular

mechanisms behind these effects need further attention.

Only an insignificant fraction of AMF species were isolated from abiotic-

stressed soils and their potential investigated. The combination of species adapted

to stress environment with, for instance, new crop varieties that can resist abiotic

stress factors may represent a novel strategy under agriculture constraints. Indeed,

stress alleviation remains fungus, host, and stress level specific. In parallel, the

developments of adequate inocula adapted to field applications or agricultural

practices favoring local AMF populations are major challenges in the coming

years to consider these root symbionts as key players for plant productivity under

a changing world.
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Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis.

Mycorrhiza 11:3–42
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Crépineau C, Rychen G, Feidt C et al (2003) Contamination of pastures by polycyclic aromatic

hydrocarbons (PAHs) in the vicinity of a highway. J Agric Food Chem 51:4841–4845
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