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      Identifi cation of Small Novel 
Coding Sequences, 
a Proteogenomics Endeavor                     

     Volodimir     Olexiouk      and     Gerben     Menschaert    

    Abstract  

  The identifi cation of small proteins and peptides has consistently proven 
to be challenging. However, technological advances as well as multi- 
omics endeavors facilitate the identifi cation of novel small coding 
sequences, leading to new insights. Specifi cally, the application of next 
generation sequencing technologies (NGS), providing accurate and sam-
ple specifi c transcriptome / translatome information, into the proteomics 
fi eld led to more comprehensive results and new discoveries. This book 
chapter focuses on the inclusion of RNA-Seq and RIBO-Seq also known 
as ribosome profi ling, an RNA-Seq based technique sequencing the +/− 
30 bp long fragments captured by translating ribosomes. We emphasize 
the identifi cation of micropeptides and neo-antigens, two distinct classes 
of small translation products, triggering our current understanding of biol-
ogy. RNA-Seq is capable of capturing sample specifi c genomic variations, 
enabling focused neo-antigen identifi cation. RIBO-Seq can identify trans-
lation events in small open reading frames which are considered to be 
non-coding, leading to the discovery of micropeptides. The identifi cation 
of small translation products requires the integration of multi-omics data, 
stressing the importance of proteogenomics in this novel research area.  
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4.1        Introduction 

  Unraveling         protein  biosynthesis   is undoubtedly 
a multi- omics integration   endeavor. From the 
DNA template ( genomics  ) a region is transcribed 
(transcriptomics) and subsequently translated 
(translatomics) into protein products ( pro-
teomics  ). The aforementioned omics fi elds defi -
nitely intertwine, but are likewise considered 
self-suffi cient, demonstrated by their vast com-
plexity. Integration of matching multi-omics 
datasets, although challenging, can lead to more 
sound results and even new insights. Advances 
in  bioinformatics   have facilitated this multi-
 omics integration   and expert tools became avail-
able to tackle specifi c parts of proteogenomics 
analyses ( e.g. , PROTEOFORMER (Crappé et al. 
 2014a ), PEPTIDESHAKER (Vaudel et al. 
 2015b ), also see (Menschaert and Fenyö  2015 ) 
for a review of  bioinformatics   tools available in 
the proteogenomics fi eld). An intriguing multi-
omics empowered fi eld tries to identify novel 
protein coding sequences. Direct assessment of 
proteins through mass  spectrometry   based  pro-
teomics   analysis, combined with  genomics  , tran-
scriptomics and translatomics information 
provides the necessary means to unravel the 
information fl ow from DNA to proteins (Wang 
and Zhang  2014 ). Particularly, the identifi cation 
of  micropeptides  , translation products of small 
open reading  frames  , and neo- antigens, peptides 
resulting from proteins variants conceivably rec-
ognized by the immune system, are discussed in 
this book chapter. First, we will briefl y describe 
the MS-based  proteomics   technology, highlight-
ing the necessity for multi-  omics integration   in 
the research fi elds mentioned above. 

 As mentioned, the preferred methodology for 
protein /  peptide identifi cation   is mass  spectrom-
etry   (MS)   , a technique with high sensitivity and 
specifi city (Cheng et al.  2014 ; Ryu  2014 ), capa-

ble of detecting up to 10,000 proteins from a 
single sample (Nagaraj et al.  2011 ). The global 
workfl ow in  MS   consists of enzymatic digestion 
of proteins extracted from the sample into pep-
tides that are subsequently fragmented and ana-
lyzed by a mass spectrometer, providing peptide 
fragmentation spectra by registering the mass-to- 
charge ratio of ionized peptide fragments. 
Peptides are identifi ed through database search 
engines ( e.g. , X!tandem (Craig and Beavis  2004 ), 
Myrimatch (Tabb et al.  2007 ), MS-GF+ (Kim 
and Pevzner  2014 ; Granholm et al.  2014 ), Comet 
(Eng et al.  2015 ), MS Amanda (Dorfer et al. 
 2014 )). A peptide-spectrum match (PSM) score 
is calculated by comparing experimental spectra 
against theoretical spectra, generated after  in 
silico  digestion of all proteins provided in a 
sequence database. Statistical validation methods 
in  MS  -based  proteomics   compute the false dis-
covery rate (FDR) by means of a target-decoy 
approach assuming the reference database to 
contain the “true” pool of sequences represented 
in the sample (Hernandez et al.  2014 ). 
Consequently, deviation from this assumption 
impairs validation, implying that the main para-
digm here is not to use the most exhaustive refer-
ence database, but to adversely focus on the most 
suitable reference database representing the true 
nature of the biological sample (Gupta et al. 
 2011 ; Nesvizhskii  2010 ; Wang et al.  2009a ; 
Keller et al.  2002 ). Obviously, small proteins 
( micropeptides  ) produce less cleaved peptides 
and are often not present in reference  protein 
databases  , implicating their  MS   identifi cation. 
Also, distinguishing resembling peptides can be 
complicated, as is frequently the case for neo- 
antigen identifi cation. 

 Search engines and algorithms will defi nitely 
infl uence the  peptide identifi cation   rate, but the 
reference database construction is pivotal, as 
inclusion is a prerequisite for identifi cation. 
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Uniprot-KB (EMBL et al.  2013 ; Apweiler et al. 
 2014 ) is mostly used as the reference database in 
the  MS  -based  proteomics   identifi cation process. 
This database is incomplete as it (partly) lacks 
information on novel proteoforms (isoforms), 
single nucleotide variation (SNV), indels (inser-
tions and deletions), and gene fusion products. A 
more suitable reference database for novel pro-
tein identifi cation is constructed containing all 
ORFs from the translation of the genome in its 
six reading frames. This strategy makes that all 
possible protein forms except for peptides span-
ning the exon junctions are included. That is why 
these are widely used for prokaryotes by virtue of 
a small genome and lack of splicing (Baudet 
et al.  2010 ). Since 98 % of the human genome is 
predicted to be non-coding (Lander et al.  2001 ), 
this approach would massively increase the 
search space resulting in an unattractive approach 
in terms of both computation time and error rate, 
while also omitting  mutations  , small open read-
ing  frames   and non-AUG start sites. 

 Considering the 6 frame translation approach, 
only one sixth are true candidates, impairing the 
statistical validation model used (Hernandez 
et al.  2014 ; Blakeley et al.  2012 ). Furthermore, 
splice isoforms, single nucleotide variation and 
indels remain undetectable in a 6-frame trans-
lated reference database. A smaller reference 
database can be constructed from cDNA libraries 
or expressed sequence tags (EST), ensuring that 
the corresponding sequences are transcribed as 
they are derived from RNA (Hernandez et al. 
 2014 ). Furthermore, as the reference database 
has been constructed from RNA, alternative 
splice proteoforms may be included. 
Implementing such strategy in human has suc-
ceeded to compress the database to 3 % compared 
to a 6-frame reference database, with minimal 
sacrifi ces to the peptide sequence content 
(Edwards  2007 ). Another study using the 
Ensembl (Cunningham et al.  2014 ) database, 
including all isoforms, observed a 7 % increase in 
 peptide identifi cation   compared to the non- 
redundant Swiss-Prot database (Fei et al.  2011 ). 
Tools as GENQUEST reduce the search space by 
fi ltering peptides on their mass and isoelectric 
point (Sevinsky et al.  2008 ). Although the afore-

mentioned database choices have proven to be 
useful, the generated reference database contains 
sequences on a species wide level, where sample 
specifi c  genomic   (SNVs, indels) and RNA splice 
variations remain unregistered.  Next generation 
sequencing (NGS)   techniques enable the user to 
capture the transcriptome and/or translatome rel-
atively accurate, fast and cost-effi cient, thus 
enabling sample-specifi c reference database con-
struction (Bahassi and Stambrook  2014 ). This 
review discusses how the integration of NGS 
techniques with  MS  -based  proteomics   enables 
the identifi cation of novel, small proteins, 
strongly focusing on  ribosome profi ling   and 
 RNA-Seq  . To illustrate the relevance of these 
techniques in current novel research fi elds, RNA- 
Seq mediated neo-antigen discovery and  RIBO- 
Seq   empowered  micropeptide    identifi cation   are 
discussed.  

4.2       RNA-Seq   

 The majority of  MS  -based  proteomic   studies 
consist of comparing the obtained spectra against 
 protein databases   of known / predicted proteins, 
resulting in a high number of unidentifi ed spec-
tra. These unidentifi ed spectra may map to novel 
peptides absent from the used  protein database  , 
represent splice variants, alternative open reading 
frames ( e.g. , stop codon read-through, alternative 
start sites) or genetic variations (Ning and 
Nesvizhskii  2010 ). RNA-Seq provides a compre-
hensive profi le of the transcriptome and enables 
the construction a database refl ecting the native 
transcript composition, including those novel 
sequences (Woo et al.  2014 ; Marguerat and 
Bähler  2010 ; Wang et al.  2009b ). A study per-
formed by  Wang   et al. ( 2012 ) describes a work-
fl ow to derive a  protein database   from RNA-Seq 
data and records a substantial increase in  peptide 
identifi cations   in comparison to searches against 
an Ensembl database. Furthermore, RNA-Seq 
data allowed the detection of peptides containing 
SNPs associated with cancer. A workfl ow 
designed by  Sheynkman   et al. ( 2013 ), establish-
ing a database focusing on splice junctions 
derived from RNA-Seq, identifi ed unannotated 
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transcript junctions from Jurkat cells. Compared 
to cDNA and EST libraries, RNA-Seq provides a 
more advanced and comprehensive methodology 
to identify novel splice junctions (Sheynkman 
et al.  2013 ). Moreover, RNA-Seq enables  pro-
teomics   studies on non-model organisms with 
limited  genome annotation   (Lopez-Casado et al. 
 2012 ; Song et al.  2012 ; Armengaud  2013 ). Many 
RNA-Seq datasets are publically available ( e.g. , 
in the Sequence Read Archive (Leinonen et al. 
 2011b ) or European Nucleotide Archive 
(Leinonen et al.  2011a )) and can be utilized in 
proteogenomics applications. It is advised to 
pool multiple RNA-Seq experiments cumula-
tively (Woo et al.  2014 ) to construct a search 
space when non-matching  proteomics   and tran-
scriptomics datasets are used. 

4.2.1     Neo-antigens 

 The immune system recognizes an extensive 
range of antigens, which are distinguished as 
either ‘self’ or ‘non-self’ molecules. All human 
cells present peptide antigens on major histocom-
patibility complex (MHC) molecules, which 
interact with T-cell receptors (TCR), present on 
the plasma membrane of T-cells. When a peptide 
presented on the MHC is not recognized as ‘self’, 
this elicits a T-cell response, causing apoptosis or 
inactivation of the corresponding target cell. The 
presentation of ‘non-self’ peptide antigens may 
be induced by various reasons, ranging from viral 
infection to disturbed homeostasis (Singhal et al. 
 2013 ; Attaf et al.  2015 ). As tumor cells evolve 
from ordinary cells, they develop distinct charac-
teristics recognizable by the immune system. 
Hence, the immune system is clearly of great 
importance in cancer development. The immune 
system can promote tumor growth by impairing 
tumor cell immunogenicity or act as a tumor sup-
pressor by destroying or restraining tumor expan-
sion (Koebel et al.  2007 ; Shankaran et al.  2001 ; 
Dunn et al.  2002 ). Immunotherapy, where T-cell 
activity is stimulated through the inhibition of the 
T-cell deactivation pathway (checkpoint block-
ade (Gubin et al.  2014 )), has been shown to be an 
effective treatment in a variety of human malig-

nancies (Wolchok and Chan  2014 ; Sharma and 
Allison  2015 ). For instance,  Rosenberg   (Hinrichs 
and Rosenberg  2014 ) demonstrated how infusion 
of tumor-infi ltrating lymphocytes can be an 
effective treatment option in metastatic mela-
noma and  antibody   treatment sensitizing T-cell 
activation improved overall survival of metastatic 
melanoma patients (Hodi et al.  2010 ). The ability 
of T-cells to elicit a T-cell response based on the 
interaction with MHC molecules on tumor cells 
indicates the existence of tumor specifi c epitopes 
on antigens. These antigens can be derived from 
native proteins for which T-cell tolerance is 
incomplete ( e.g.,  tissue / time restricted proteins 
being expressed) or they can be formed from pro-
teins absent from the human genome ( e.g.,  
mutated proteins), called neo-antigens. Neo- 
epitopes are a product of tumor-specifi c DNA 
alterations and thus result in novel protein 
sequences (Schumacher and Schreiber  2015 ). 

 Studies in mouse models indicate that vacci-
nation with neo-antigens increased tumor control 
in immunotherapy (Gubin et al.  2014 ; Yadav 
et al.  2014 ). However neo-antigen identifi cation 
is tedious and limitations in  MS   sensitivity result 
in a substantial fraction of false negatives. Also, 
the identifi cation of  genomic   variations in pro-
teins does not guarantee MHC presentation. 
Combining transcriptomics sequencing tech-
niques (RNA-Seq) to identify mutated proteins 
absent in native cells with  proteomics   identifi ca-
tion of MHC presented antigens provides a fea-
sible workfl ow useable in clinical studies. The 
global design of this workfl ow consists of the 
identifi cation of tumor-specifi c  genomic   varia-
tion trough RNA-Seq, followed by an optional  in 
silico  fi ltering by algorithms to predict MHC 
antigen presentation and the construction of a 
database consisting of possible neo-antigen (Lu 
et al.  2014 ; Linnemann et al.  2014 ; Robbins et al. 
 2013 ). Next  MS  -based  proteomics   matches the 
experimentally identifi ed MHC bound antigens 
against the RNA-Seq derived database, selecting 
high confi dence neo-antigen. Functional essays 
can be performed to experimentally identify neo- 
antigens as demonstrated in mouse models, suc-
cessfully treating cancer (Rizvi et al.  2015 ; Yadav 
et al.  2014 ; Bassani-Sternberg et al.  2015 ). 
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Figure  4.1  provides a summary of the neo- antigen 
identifi cation workfl ow .

4.3           RIBO-Seq   

 In the late 1960s, the ability of ribosomes to 
protect mRNA from endonuclease digestion 
was demonstrated (Steitz  1969 ). Despite this 
early discovery, it was not until the advent of 
 NGS   and the accompanying  bioinformatics   
toolsets, that genome-wide translatome profi l-
ing became attainable. At the end of the twenti-
eth century a technique named polysome 
profi ling emerged (Johannes et al.  1999 ), yield-
ing large scale analysis of translation. In sum-
mary, polysome profi ling captures mRNA 
immobilized on translating ribosomes, separates 
these polyribosomes ( e.g.,  ultracentrifugation 
on a sucrose gradient) and subsequently 
sequences the obtained RNA fragments (Faye 
et al.  2014 ). This technique, identifying mRNA 
with ribosomal occupancy, saw various use-
cases throughout the years and is still frequently 
applied (Piccirillo et al.  2014 ). However, it was 

with the advent of RIBO-Seq, enabling massive 
parallel sequencing of the +/− 30 nt mRNA 
fragments protected by ribosomes (RPFs), that 
in-depth assessment of the translatome was 
empowered (Ingolia et al.  2009 ,  2012 ,  2014 ). 
The main advantage of RIBO-Seq over poly-
some profi ling is the ability to retrieve posi-
tional information obtained from these RPFs 
with sub-codon resolution, enabling accurate 
prediction of the ribosome A-site positions. The 
RIBO-Seq technique diverged into two comple-
mentary implementations, capturing either 
elongating ribosomes or initiating ribosomes. 
RIBO-Seq of elongating ribosomes is feasible 
through the addition of antibiotics inhibiting 
ribosome translocation ( e.g.,  cycloheximide 
(Ingolia et al.  2009 ) and emetine (Ingolia et al. 
 2012 )), peptidyl transferase ( e.g. , chloramphen-
icol) or by thermal freezing (Oh et al.  2011 ). 
Initiating ribosomes, allowing the deduction of 
translation initiation sites (TIS), is achieved 
through the addition of initiation blocking anti-
biotics ( e.g.,  harringtonine (Ingolia et al.  2012 ) 
or lactimidomycin (Lee et al.  2012 )). Figure  4.2  
sketches an overview of RIBO-Seq protocol.

  Fig. 4.1    A simplifi ed neo-antigen identifi cation workfl ow. 
Tumor cells are sequenced to identify  genomic   variations 
specifi c to these tumor cells, next a database is generated 
consisting of neo-antigen candidates. Optionally,  in silico  

algorithms can be used to predict MHC antigen presenta-
tion, resulting in a more confi dent dataset. Next, MS-based 
proteomics identifi es MHC bound antigens followed by 
functional analysis confi rming candidate neo-antigens       
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4.3.1       RIBO-Seq Unravels 
the Translatome 

 Although many variations are attributable to 
changes in gene transcripts, RIBO-Seq likewise 
reveals pervasive translational regulation (Michel 
and Baranov  2013 ). For example,  Ignolia   et al .  
( 2009b ) examined the ability of  ribosome profi l-
ing   to monitor changes in protein synthesis in 
response to starvation in yeast, observing transla-
tion changes in approximately one-third of the 
genes. Two other studies examining the transla-
tome in response to heatshock (Shalgi et al.  2013 ) 
and proteotoxic stress (Liu et al.  2013 ) revealed 
interesting properties of the infl uence of chaper-
ones on elongating ribosomes in response these 
stresses. In a study performed by  Brar   et al .  
( 2012 ), exploring changes in expression during 
meiosis in yeast by performing RIBO-Seq over 
stage-specifi c time points, numerous dynamic 

events (including translation products of small 
open reading  frames  ) were captured, unidentifi ed 
by other techniques. A study performed by Stern- 
 Ginossar   et al .  ( 2012 ) analyzed gene expression 
changes of human foreskin fi broblasts during 
cytomegalovirus infection. Measurements across 
different time-stamps revealed prominent viral 
gene translational regulation, where translation 
varied at least fi vefold in 82 % of ORFs. 

 Furthermore, RIBO-Seq can identify novel 
translated regions, until now undetectable with 
other techniques. For instance several 5’-UTR 
ORFs, associated to a regulatory function (Ingolia 
et al.  2009 ,  2011 ; Brar et al.  2012 ), have been 
identifi ed by  ribosome profi ling  . The ORFs in 5’ 
untranslated regions are diffi cult to identify due 
to their specifi c characteristics: short length, lim-
ited coverage, non-AUG initiation, sometimes 
overlapping with canonical ORFs.  Michel   et al .  
( 2012 ) demonstrated that given suffi cient 

  Fig. 4.2    A general overview of the  RIBO-Seq   protocol. 
First, cell lysates are prepared in conditions accurately 
refl ecting in vivo translation. Secondly, addition of nucleases 
will digest RNA (nuclease footprinting), however the 
+/−30 nt mRNA fragments encapsulated by ribosomes are 
protected from digestion (ribosome footprints). Next, ribo-
some-footprints are separated from cell lysates followed by 

purifi cation of ribosome protected RNA. Ligation of single-
stranded adaptors enables reverse transcription. Subsequently, 
fi rst strand reverse transcription products are circularized and 
transcript products hybridized to rRNA probes are depleted. 
Finally, PCR amplifi es the remaining sequences that are sub-
sequently sequenced. An in depth description of the protocol 
is provided by  Ignolia   et al. ( 2012b )       
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 ribosome coverage, alternative reading frames 
are discernible by analyzing the triplet codon 
periodicity characteristic to translation and 
observable with the  ribosome profi ling   tech-
nique. They reported on 5’-UTR ORFs with 
higher RPF intensity than the main canonical 
downstream ORF. In many cases these upstream 
ORFs (uORFs) partly overlapped with the canon-
ical ORF. Furthermore Michel et al. identifi ed 
frame transitions in translation, confi rming well-
known cases of frame shifts in humans. In a study 
performed by  Gerashchenko   et al .  ( 2012 ) in 
yeast, four novel frame shift events were identi-
fi ed that correlated to oxidative stress. Also, the 
start site determination with the  ribosome profi l-
ing   technique enables the identifi cation of ORFs 
with non-AUG start sites, resulting in numerous 
identifi ed near-cognate initiation sites. Wan and 
 Qian      ( 2014 ) developed a database containing 
alterative translation initiation sites and their 
associated ORF identifi ed by RIBO-Seq. 
Ribosomal activity was also observed in non-
coding regions, revealing putative novel protein 
coding regions (Ingolia et al.  2012 ; Lee et al. 
 2012 ).  

4.3.2     RIBO-Seq, a Bridge 
Between    RNA-Seq   
and  Proteomics   

 Protein inference from transcript abundance 
assumes constant RNA stability as well as stable 
translation rates. This assumption is erroneous as 
RNA stability can be highly variable and transla-
tion rates are volatile across transcripts. RIBO- 
Seq bridges the gap between RNA-Seq and 
proteomics by providing translational informa-
tion, enabling improved inference from the tran-
scriptome to the proteome and  vice versa . 
RIBO-Seq is capable of detecting coding tran-
scripts, but no direct evidence is provided whether 
these translated sequences ultimately yield stable 
protein products. Ribosomal occupancy could 
yield regulatory functions, but couls also point to 
unstable protein products or noise (Ingolia et al. 
 2014 ; Guttman and Rinn  2012 ). Several  in silico  
tools and metrics were devised to predict the cod-

ing potential of ORFs (based on ribosome pro-
tected fragment length (Ingolia et al.  2014 ), 
triplet periodicity (Bazzini et al.  2014 ) and con-
servation (Lin et al.  2011 )). However,  MS  -based 
validation remains a crucial confi rmation tech-
nique in most cases. In turn, MS-based pro-
teomics requires a database consisting of sample 
specifi c protein sequences. RIBO-Seq assisted 
database generation has several advantages over 
RNA-Seq generated databases. Novel proteo-
forms can be identifi ed thus optimizing the search 
space (Calviello et al.  2015 ; Menschaert et al. 
 2013 ; Van Damme et al.  2014 ; Koch et al.  2014 ). 
This approach has been used by  Fritsch   et al .  
( 2012 ) to identify 546 N-terminal protein exten-
sion in human,  Menschaert   et al .  ( 2013 ) observed 
a 2.5 % increase in the overall protein identifi ca-
tion rate using this approach. In a recent study 
performed by  Fields   et al .  ( 2015 ), 1990 protein 
isoforms, 696 truncations, 341 extension and 
1379 upstream ORFs were identifi ed by RIBO- 
Seq. Automated pipelines facilitating RIBO-Seq 
integration in  MS  -based experiments, such as 
PROTEOFORMER (Crappé et al.  2014a ), are 
readily available and easy to implement. 
Moreover  Xie   et al .  ( 2015 ) developed an online 
database to query, analyze, visualize and down-
load RIBO-Seq data set  s.   

4.4       Micropeptides   

 Micropeptides are defi ned as functional transla-
tion products originating from  small open read-
ing frames (sORFs)  . No consensus was reached 
regarding the sORF size and some studies con-
sider an upper threshold of 200–250 codons 
(Hayden and Bosco  2008 ; Yang et al.  2011 ). 
However, the most widespread  sORF   size limit is 
100 codons, a rule that we endorse here. A pio-
neering genome-wide study in 2003 on yeast 
suggested the functional importance of sORFs 
(Kessler et al.  2003 ), describing functionally 
conserved sORFs discovered by means of cross- 
species BLAST analysis. Only a few years later, 
 Savard   et al .  ( 2006 ) identifi ed mille-pattes in the 
red fl our beetle by means of EST screening, a 
polycistronic peptide encoding four  sORFs   
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 regulating HOX-genes.  Kondo   et al .  ( 2007 ) and 
Galindo et al .  ( 2007 ) examined mille-pattes ana-
logs in  Drosophila melanogaster  resulting in the 
discovery of the tarsal-less (tal) and polished rice 
(pri) genes, respectively. This polycistronic 
mRNA, previously categorized as being non- 
coding, apparently was miss-annotated based on 
the ORFs size (Tupy et al.  2005 ). At the moment 
of writing, the  tal  and  pri  translation products are 
among the best characterized examples of micro-
peptides, regulating embryonic development 
throughout numerous insect species (Chanut- 
Delalande et al.  2014 ). The discovery of these  tal  
and  pri  genes, together with the advent of  ribo-
some profi ling  , boosted the research into sORF- 
encoded micropeptides. Several different 
research groups reported on the discovery of 
putatively coding  sORFs   using various tech-
niques, pointing to novel functional micropep-
tides (Saghatelian and Couso  2015 ; Chu et al. 
 2015 ; Bazzini et al.  2014 ; Magny et al.  2013 ; 
Slavoff et al.  2013 ; Tonkin and Rosenthal  2015 ; 
Crappé et al.  2013 ; Pauli et al.  2014 ). Toddler, for 
example, is an embryonic signal that promotes 
cell movement (Pauli et al.  2014 ), Myoregulin 
regulates Ca 2+  handling in muscle cells (Magny 
et al.  2013 ) and Sarcolipin regulates muscle- 
based thermogenesis in mammals (Tonkin and 
Rosenthal  2015 ). This is a relatively new research 
fi eld (Crappé et al.  2014b ; Andrews and 
Rothnagel  2014 ; Albuquerque et al.  2015 ), where 
the results of many  in silico  based studies and 
proteogenomics endeavors need further experi-
mental validation. 

4.4.1     In Silico Micropeptide 
Identifi cation 

 Automated  gene annotation   systems correctly 
identify the majority of verifi ed protein coding 
ORFs based on recognizable  genomic   sequence 
characteristics ( e.g.,  canonical initiation codons, 
splice sites, promoter sequences) (Sleator  2010 ). 
Most  gene annotation   algorithms set a lower 
threshold of 100 base triplets to exclude false 
positive annotations (Carninci et al.  2005 ; Frith 
et al.  2006a ,  b ; Dinger et al.  2008 ). Recently, 

studies suggest that applying this lower threshold 
precludes the identifi cation of numerous small 
proteins (Pauli et al.  2014 ; Bazzini et al.  2014 ; 
Ma et al.  2014 ; Frith et al.  2006a ,  b ; Chng et al. 
 2013 ; Galindo et al.  2007 ; Crappé et al.  2013 ). 
Some computational approaches have been 
developed, such as uPEPperoni (Skarshewski 
et al.  2014 ) and  sORF  fi nder (Hanada et al.  2009 ), 
providing  in silico  assessment of putatively cod-
ing  sORFs  , based on phylogenetic conservation. 
While the identifi cation of sORFs is relatively 
straightforward, it does require a start and stop 
codon separated by at most 98 codons, the dis-
crimination of coding vs. non-coding sORFs of 
this excessive pool of sORFs has proved to be 
more diffi cult. Due to their small size, many 
sORFs lacking any coding potential occur by 
chance. Cross-species conservation can be used 
as a proxy to function, but solely relying on phy-
logenetic conservation could prevent the identifi -
cation of biologically relevant species-specifi c 
 sORFs   (Clamp et al.  2007 ). PhyloCSF (Lin et al. 
 2011 ) models phylogenetic relations between 
species by analyzing conservation at the amino 
acid level, rather than the nucleotide level and is 
most regularly used for small open reading  frame   
assessment. It outperforms other methodologies 
(Reading Frame Conservation metrics, the regu-
lar CSF method or a  d   n   /d   s   test) and is capable of 
identifying micropeptide coding  sORFs   as short 
as 13 amino acids (Guttman and Rinn  2012 ). 
Using mainly conservation as a criterion, 
 Mackowiak   et al .  ( 2015 ) identifi ed numerous 
conserved  sORFs   in different species (831 in  H. 
sapiens , 350 in  M. musculus , 211 in  D. rerio , 
194 in  D. melanogaster , and 416 in  C. elegans ), 
some of which have been described and charac-
terized previously.  

4.4.2      RIBO-Seq   Enables 
the Identifi cation 
of Translated      sORFs 

 RNA-based transcriptomics is ignorant to ORF 
delineation; therefore most studies rely on con-
servation and pattern recognition for sORF iden-
tifi cation. A recent study in yeast identifi ed 
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several micropeptides, one of which was also 
functionally characterized in infl uencing osmotic 
stress. The technique was based on using a 
6-frame translation database derived from  RNA- 
Seq   data as a search space for subsequent  MS   
fragmentation spectra matching (Yagoub et al. 
 2015 ). However, RNA-Seq does not indicate 
translation of the sORFs as opposed to RIBO- 
Seq. On top of pinpointing translated mRNA 
regions, RIBO-Seq can also reveal TIS, enabling 
the detection of non-AUG sORFs.  In silico  detec-
tion of non-AUG sORFs is laborious and diffi -
cult, since the search space becomes extensively 
larger, but from previous RIBO-Seq studies it has 
become clear that non-canonical start codons are 
more common than previously expected (Ingolia 
et al.  2011 ). Also,  Slavoff   et al .  ( 2013 ) identifi ed 
translation products from sORFs having non- 
AUG start sites using an  MS  -based proteoge-
nomics approach. Recently,  Fields   et al .  ( 2015 ) 
used a regression method on  ribosome profi ling   
data to identify sORFs that demonstrate an RPF 
length pattern and resemble that of annotated 
protein-coding ORFs. They discovered numerous 
sORFs, of which a subset shows very weak 
sequence conservation. 

 sORFs can be located in coding sequences 
(CDS), in 5’-untranslated regions (5’-UTR), in 
3’-untranslated regions (3’-UTR), in intergenic 
regions (in-between genes) or in non-coding 
RNA regions. A fi rst proof of 5’-UTR sORFs 
being translated was observed by  Crowe   et al .  
( 2006 ). They revealed that 20 % of human 
5’-UTR ORFs have TIS in an optimal Kozak 
sequence context, competent of ribosomal recog-
nition. Follow-up studies revealed approximately 
6750 conserved upstream TIS in mice (Lee et al. 
 2012 ) and approximately 3000 novel 5-UTR 
sORFs in human (Fritsch et al.  2012 ). A few 
5’-UTR sORFs were identifi ed encoding micro-
peptides ( e.g. , MKKS in human (Akimoto et al. 
 2013 ), CPA1 in yeast (Werner et al.  1987 )) with 
regulatory functions.  Jorgenson   (Jorgensen and 
Dorantes-Acosta  2012 ) claimed that 5’-UTR 
sORFs can regulate the downstream translation 
of the canonical ORF (also called the peptoswitch 
mechanism) as exemplifi ed by CPA1. The dis-
covery of dually coding transcripts (transcripts 

where more than one overlapping ORF can be 
translated), enabled the discovery of CDS- 
overlapping sORFs ( e.g.,  CASP1 (Ronsin et al. 
 1999 ) and altPrP (Vanderperre et al.  2011 ) in 
human). Most 3’-UTR sORFs are considered 
non-coding and are confi rmed by the RIBO-Seq 
profi les that closely resemble those of non- coding 
ORFs. Still, a limited set of 3’-UTR sORFs was 
identifi ed by  MS  -based techniques ( e.g.,  Bazzini 
et al .  ( 2014 ) identifi ed ten 3’-UTR sORFs using 
 MS   in combination with RIBO-Seq in a prote-
ogenomics approach). Both sORFs in intergenic 
as well as in non-coding regions have been 
observed with RIBO-Seq (Lee et al.  2012 ). In 
particular, ribosomal activity on long non-coding 
RNA (lncRNA) fuelled a debate in the scientifi c 
community (Pauli et al.  2015 ) on whether or not 
lncRNAs are truly non-coding (Ruiz-Orera et al. 
 2014 ; Smith et al.  2014 ). Figure  4.3  provides an 
overview of sORFs identifi ed in different (anno-
tated)  genomic   region  s.

4.4.3        Multi- omics Integration   Is Still 
Indispensable 

 Ribosome occupancy does not necessarily mean 
translation into functional protein products; fur-
thermore,  RIBO-Seq   is susceptible to noise. 
Besides conservation, several tools and metrics 
were developed to distinguish coding from non- 
coding  sORFs  . For example  Ignolia   et al .  ( 2014 ) 
observed that the ribosome protected fragment 
(RPF) length distribution differs signifi cantly 
between truly coding and non-coding ORFs and 
developed the FLOSS-score to distinguish 
between both categories (Fig.  4.4 ).  Bazzini   et al .  
( 2014 ) developed the ORFscore, which calcu-
lates the preference of RPFs to accumulate in the 
fi rst frame of coding sequences (Fig.  4.5 ), mak-
ing full use of the triplet periodicity in the  RIBO- 
Seq   signal. The Ribosome Release Score (RRS) 
examines the release of translating ribosomes 
after hitting a stop codon (Guttman and Rinn 
 2012 ) (Fig.  4.4 ). More complex statistical meth-
ods are based on learning algorithms such as 
Coding Potential calculator (Kong et al.  2007 ), 
CRITICA (Badger and Olsen  1999 ), CSTMiner 
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  Fig. 4.3     sORFs   classifi cation. sORFs can be classifi ed according to their  genomic   location, here an overview is pro-
vided of the different sORF classifi cations       

  Fig. 4.4    Overview of coding potential assessment meth-
ods based on  RIBO-seq  . The FLOSS score compares the 
RPF-length distribution of  sORFs   with the RPF-length dis-
tribution of canonical protein-coding transcripts; strong 
disagreement between the two RPF-length distributions 

indicates non-coding behavior. The ORFscore calculates 
the preference of RPFs of coding ORFs to accumulate in 
the fi rst frame of the coding sequence and the RRS pro-
vides a score based on the tendency of ribosome to dissoci-
ate from RNA after hitting a stop coding in coding ORFs       
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(Castrignanò et al.  2004 ) and the recently 
described ORF-RATER (Fields et al.  2015 ) and 
RiboTaper (Calviello et al.  2015 ). ORF-RATER, 
a regression based translating ORF identifi er 
based on RIBO-Seq data, discovered numerous 
novel ORFs, including  sORFs   with  MS  -evidence 
(Fields et al.  2015 ). Likewise, RiboTaper exploits 
a statistical approach to identify translated ORFs 
based on the nucleotide periodicity of  RIBO-Seq   
data and correctly identifi ed annotated protein 
coding  sORFs  , such as the aforementioned 
Toddler sORF (Calviello et al.  2015 ). However, 
in the novel fi eld of micropeptide discovery,  MS  - 

based identifi cation still remains indispensable. 
A proteogenomics approach generating a data-
base of putatively coding sORFs derived from 
RIBO-Seq (or  RNA-Seq  ) information, followed 
by MS-based  proteomics   identifi cation creates an 
ideal setting for  sORF   discovery. Numerous 
sORFs have been identifi ed using this approach 
(Ma et al.  2014 ; Bazzini et al.  2014 ; Mackowiak 
et al.  2015 ). A public database for  sORFs   (  http://
www.sorfs.org    ) exists, gathering multi-omics 
( RIBO-Seq   and  MS  ) evidence and  in silico  met-
rics. The resource currently harbors 266,342 
 sORFs   across three model species (human, 

  Fig. 4.5    A simplifi ed  micropeptide   identifi cation work-
fl ow .  First, translating  sORFs   are identifi ed using  RIBO- 
seq  . Next, candidate protein coding sORFs are predicting 
using methods described in the “Multi- omics integration   

is still indispensable” section and a database of translated 
sORFs is generated for proteomics identifi cation. Results 
from both pathways can be combined in order to select 
 micropeptides   for functional analysis       

 

4 Identifi cation of Small Novel Coding Sequences, a Proteogenomics Endeavor

http://www.sorfs.org/
http://www.sorfs.org/


60

mouse, fruit fl y) (Olexiouk et al.  2015 ), but will 
expand in the near future, with more data on 
other organism and cell types and including the 
latest “coding potential” metrics. Figure  4.4  pro-
vides an overview of the micropeptide identifi ca-
tion workfl ow    .

4.5          Conclusion and Future 
Perspectives 

 A multi-omics identifi cation workfl ow for trans-
lation products is certainly advantageous, and is 
indispensable for novel (small) proteoform 
identifi cations. Such a proteogenomics approach 
is in many cases sample specifi c, enabling the 
analysis of sample specifi c variations. In  cancer 
research  , where variations obtained in a single 
cell may result in tumorous behavior and where 
these variations are frequently distinct between 
different tumor types, capturing such sample 
specifi c variations is crucial. Identifi cation of 
neo-antigens in essence holds the identifi cation 
of sample specifi c variation, obtainable by tran-
scriptome sequencing technologies. However 
 MS  -based  proteomics   identifi cation remains 
essential in order to perceive whether these tran-
script changes yield non-synonymous peptide 
variations. While still in its infancy, neo-antigen 
research increases the overall understanding of 
the immune system and moreover holds impor-
tant therapeutic value. 

 The  RIBO-Seq   enabled genome-wide assess-
ment of translation (translatomics) bridges two 
omics fi elds: transcriptomics and  proteomics  . 
Genome wide analysis of this  ribosome profi ling   
information already resulted in the identifi cation 
of numerous  sORFs   with coding potential, ques-
tioning the non-coding character of sORFs. 
Follow-up analyses observed sORFs that resem-
ble canonical coding ORFs and some are in the 
mean fully characterized as being coding. Over 
the last years, various tools and metrics were 
devised to assess the coding potential of  sORFs   
(both conservation and sequence based). Also, 
workfl ows aiding the integration of  RIBO-Seq   
information and  MS  -based  proteomics   are 
becoming available,  e.g. , PROTEOFORMER 

(Crappé et al.  2014a ). The scientifi c community 
is becoming aware of  sORFs   as potentially pro-
tein coding units. As a result, public sORF data-
bases, such as   http://www.sorfs.org    , will be 
highly useful in the experimental design of future 
experiments (Olexiouk et al.  2015 ). Moreover, 
already conducted experiments (with an empha-
sis on  MS  -based  proteomics   studies) must be 
reprocessed to account for  micropeptides  . The 
scientifi c community is becoming aware of the 
large amount of publically available proteomics 
data accumulated over the past years that is cur-
rently being left untouched, while our scientifi c 
knowledge and technology evolved tremendously 
(Vaudel et al.  2015a ,  b ; Verheggen et al.  2015 ). 
The  sORFs  .org database already holds a pilot 
study where 1172 publically available  MS   datas-
ets from PRIDE were reprocessed, providing 
MS-evidence for more than 5000 micropeptides. 
Cumulative evidence that  sORFs   are able to 
encode functional  micropeptides   has been gath-
ered, but their exact biological relevance often 
remains to be determined. Undoubtedly, future 
research on overexpression or knock-down will 
reveal more about the functional roles of specifi c 
sORF-encoded micropeptides.  
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