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v

 The concept of  proteogenomics  , utilizing advances from the fi elds of  pro-
teomics   and  genomics  , was introduced at around the time of the completion 
of the sequencing of the human genome. The emergence of proteogenomics 
is mainly due to the rapid development of two key technologies: high- 
throughput DNA sequencing and mass  spectrometry  -based  proteomics  . The 
ability to determine protein sequences by mass  spectrometry   has provided a 
unique tool to the identifi cation and the verifi cation of novel genes, predicted 
exons, and open reading frames. Consequently, proteogenomics has been 
used for  genome annotation  , including the validation of known or annotated 
protein-coding genes; the improvement of  gene annotations   assigning correct 
start sites; the mapping of signal peptides, proteolysis, and other posttransla-
tional modifi cations (an important element of biological function that is not 
encoded directly in the genome); as well as the identifi cation of splicing vari-
ants and mutant proteoforms often associated with disease progression. 

 Considering the rapid advancement in the fi eld, it is perhaps appropriate to 
defi ne  proteogenomics   as an intensive research area that investigates the cor-
relations between  proteomic   data and their corresponding  genomic   and tran-
scriptomic data, keeping the goal to improve our knowledge about life at the 
molecular level, which is a more complete view that has been initially sug-
gested. The interplay between the two data streams of  genomics   and  pro-
teomics   certainly allows for a better understanding of biological functions 
and molecular mechanisms in health and disease. Today, genome sequencing 
provides nearly complete coverage, including transcriptome profi ling, while 
targeted  proteomics   can be focused on specifi c regions of the proteome and 
determine predicted proteins. 

 The goal of this book is to display this extended view on  proteogenomics  , 
depicting research areas where  proteogenomics   is actively playing an essen-
tial role and also highlighting some emerging research arenas without pre-
tending to cover all fi elds of application. The chapters of this book offer the 
readers a general insight to the integrative analyses of various types of omics 
data and present advances within specifi c principles, such as next-generation 
sequencing of DNA, mRNA sequencing,  ribosome profi ling  , as well as mass 
 spectrometry  - and antibody-based  proteomics     . The applications are selected 
to exemplify the great potential of proteogenomics to contribute to human 
disease research, particularly to cancer and personalized medicine. 

  Pref ace   
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 Importantly, this book attempts to identify some common features that 
integrate the various fi elds and areas where intensive efforts should be made 
to drive research more effi ciently in the near future. One of these is certainly 
 bioinformatics  , which has shown amazing power and development during the 
last couple of years and which is anticipated to provide powerful approaches 
to improve our ability to work with and combine the large data sets that 
 genomics  , transcriptomics, and  proteomics   generate. 

 At last, I would like to thank all the authors of this book for their excep-
tional contributions, sharing their expert views of the fi eld, and presenting 
their original research. Their enthusiasm and timely delivery of their manu-
scripts helped me tremendously to realize this project. It is my sincere hope 
that the readers would enjoy this book as much as I enjoyed preparing it.  

  Galveston, TX, USA     Ákos     Végvári    
  March 1, 2016 

Preface
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      Proteogenomic Tools 
and Approaches to Explore Protein 
Coding Landscapes of Eukaryotic 
Genomes                     

     Dhirendra     Kumar     and     Debasis     Dash    

    Abstract  

  Proteogenomic strategies aim to refi ne genome-wide annotations of pro-
tein coding features by using actual protein level observations. Most of the 
currently applied proteogenomic approaches include integrative analysis 
of multiple types of high-throughput omics data,  e.g. , genomics, transcrip-
tomics, proteomics, etc. Recent efforts towards creating a human proteome 
map were primarily targeted to experimentally detect at least one protein 
product for each gene in the genome and extensively utilized proteoge-
nomic approaches. The 14 year long wait to get a draft human proteome 
map, after completion of similar efforts to sequence the genome, explains 
the huge complexity and technical hurdles of such efforts. Further, the 
integrative analysis of large-scale multi-omics datasets inherent to these 
studies becomes a major bottleneck to their success. However, recent 
developments of various analysis tools and pipelines dedicated to prote-
ogenomics reduce both the time and complexity of such analysis. Here, we 
summarize notable approaches, studies, software developments and their 
potential applications towards eukaryotic genome annotation and clinical 
proteogenomics.  

  Keywords  

  Shotgun proteomics   •   Peptide identifi cation   •   RNA-Seq   •   HUPO   •   Genome 
annotation  

1.1       Introduction 

     Biological         systems are complex, self-replicable 
machineries of which major components are pro-
teins. Understanding the dynamics of protein 
expression in these systems may lead to a better 
interpretation of the underlying mechanisms and 

        D.   Kumar    •    D.   Dash      (*) 
  G.N. Ramachandran Knowledge Centre for Genome 
Informatics ,  CSIR-Institute of Genomics and 
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the predictability of potential outcomes. However, 
the techniques for probing these proteome com-
ponents are not completely unbiased,  i.e. , knowl-
edge of each component of the proteome is 
necessary and prerequisite to probe their expres-
sion. These  proteomic   techniques are largely 
dependent on  mass spectrometry (MS)   based 
 shotgun proteomics  . Mass spectra, containing 
mass to charge ratios and intensities for pep-
tides and their fragments are searched against a 
database of known proteins to identify the 
expressed proteins and their quantities (Eng et al. 
 2011 ). One of the limitations of this method lies 
in the database itself, against which the spectral 
data generated in  MS   are searched. A protein 
missing from the database cannot be probed for 
its expression, despite being present in the sam-
ple (Frank et al.  2007 ). Thus, for comprehensive 
proteome profi ling, the search database should be 
complete. However, most of these databases are 
neither complete nor error free (Kumar et al. 
 2016b ). Proteogenomic techniques address this 
problem by designing custom databases to iden-
tify the errors and achieve the completeness of 
the proteome defi nition for any organism 
(Castellana and Bafna  2010 ; Nesvizhskii  2014 ). 
Contrary to the routine  proteomic   searches, pro-
teogenomic databases include proteins beyond 
the annotated proteome. Proteins from any organ-
ism are generally annotated by computationally 
predicting protein coding genes in the genome. 
While largely correct, these predictions also con-
tain several inaccuracies. Proteogenomics relies 
on the detection of unique peptides from the  MS   
data to correct these inaccuracies and refi ne the 
protein annotations on a genome wide scale 
(Jaffe et al.  2004 ; Yates et al.  1995 ). 

 Although very useful, these approaches are 
full of conceptual and technical challenges 
(Castellana and Bafna  2010 ). The order of com-
plexity of proteogenomic approaches varies for 
different organisms. For example, for a prokary-
otic genome, a six frame translated genome data-
base should represent almost all possible protein 
coding  genomic   regions (Armengaud  2013 ; 
Kelkar et al.  2011 ; Kumar et al.  2013 ,  2014 , 
 2016a ). However, in the case of complex eukary-
otes it would represent only a fraction of the pos-

sible protein species arising from the genome 
(Tanner et al.  2007 ). This is primarily due to 
alternative splicing of transcripts and only a tiny 
fraction of the eukaryotic genome being protein 
coding. Alternatively, proteogenomic databases 
for eukaryotes, to discover novel protein iso-
forms, generally integrate high-throughput tran-
scriptomic information to discover new proteins 
from  MS   data searches. The high error rate, a 
byproduct of searching an extremely large data-
base, is one of the major concerns in most of 
these studies (Krug et al.  2013 ; Yadav et al.  2013 ). 
Another factor contributing to potential false pos-
itive identifi cations is  genomic   polymorphism 
between individual genomes and the reference 
genome. These individual polymorphisms may 
result in new peptides from known genes, which 
may be mapped incorrectly to other places in the 
genome, leading to incorrect assignment of novel 
translated  genomic   regions. Additionally, infer-
ring the exact isoform expressed in a given bio-
logical state is a diffi cult task in eukaryotic 
proteogenomics. Since various proteogenomic 
studies utilize a translated transcriptome as 
search database, which comprises of sequences 
of several transcripts from the same gene, many 
of the  peptide identifi cations   are shared among 
multiple database entries. Inferring the expressed 
protein isoform/s from the identifi ed peptide list 
then becomes a non-trivial exercise and if incor-
rect it may adversely affect the conclusions. In 
addition to these, proteogenomic approaches are 
compute resource intensive (Castellana and 
Bafna  2010 ). Modern day approaches integrate 
multiple layers of omics information to discover 
novel protein isoforms. Each of these omics data-
sets, for example  genomics  , transcriptomics,  pro-
teomics  , etc., is diffi cult to analyze independently. 
Further, their integration requires multivariate 
analyses (Horvatovich et al.  2015 ; Zhang et al. 
 2014 ) and considerations of multiple possible 
explanations for the observation (Omenn et al. 
 2015 ). 

 The complexity of such an analysis is refl ected 
in several of the recent studies. For example, even 
after a decade since the human genome got 
sequenced, the characterization of the human 
proteome was achieved only recently and only as 
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a draft version (Kim et al.  2014 ; Wilhelm et al. 
 2014 ). Nearly 20 % of the defi ned human protein 
coding genes are yet to be characterized at the 
protein level. Several worldwide initiatives are 
underway to detect at least one protein product 
for each of the human protein coding genes 
(Deutsch et al.  2015 ; Kumar et al.  2015 ; Nilsson 
et al.  2015 ; Paik et al.  2015 ). Similar incomplete 
proteome scenario exists for other model organ-
isms, like mouse (Brosch et al.  2011 ), rat (Kumar 
et al.  2016b ; Low et al.  2013 ), zebrafi sh (Kelkar 
et al.  2014 ), corn ( Zea maize ) (Castellana et al. 
 2014 ), etc. Despite various advances in  MS   
instrumentation and analysis methods, defi ning 
the protein coding fraction for any genome 
remains incomplete. While the dynamics of pro-
tein expression is certainly one of the causes, the 
limited sensitivity of the method to detect low 
abundant proteins remains an open challenge and 
a primary cause of not detecting many proteins. 
Complexity of data analysis is another bottleneck 
in the detection of many proteins. Proteogenomic 
analyses directly address this point but are yet to 
be adapted in mainstream  proteomic   practice. 
Several of the recent tools and software packages 
that have been developed for use in proteoge-
nomic analyses should make it an easy to imple-
ment approach and should expand its applications. 
Here, we would describe various analysis tools 
and pipelines targeted for eukaryotic proteoge-
nomic pipelines.  

1.2     Basics of Proteogenomics 

  Proteomics   allows probing the expression of pro-
teins from biological samples in a high- 
throughput manner (Steen and Mann  2004 ). 
Peptides are identifi ed from mass spectra by 
searching against a protein sequence database 
using a search engine (Geer et al.  2004 ; Yadav 
et al.  2011 ) and identifi ed peptides are mapped 
back to protein sequences to infer the expressed 
proteins (Eng et al.  2011 ). Proteogenomic 
approaches integrate these large-scale peptide 
discoveries with  genomics   and transcriptomics 
data to refi ne or enrich the annotation of protein 
coding genes (Armengaud  2009 ). Novel pep-

tides, identifi ed from proteogenomics, may reveal 
translation at the intergenic, intronic or annotated 
untranslated regions (UTRs) which may facilitate 
discovery of new genes, exons, splice variants 
and mutated proteins. However, such an analysis 
would require creation of custom search data-
bases which maximizes the representation of 
such novel proteoforms; isoforms of proteins. 
Figure  1.1  highlights various possible custom 
database approaches and associated potential dis-
coveries. Recently, various software tools and 
pipelines have been developed which either cre-
ate a custom database or provide an end to end 
solution for proteogenomic data analysis and 
conclusions. The most signifi cant contribution of 
these software solutions is to expand the outreach 
of such approaches to a larger scientifi c commu-
nity, in addition to reducing the technical com-
plexity and potential errors.

1.3        Proteogenomics Software 
Tools and Pipelines 

 A typical proteogenomic analysis includes cus-
tom database creation, peptide  identifi cation  , 
 genomic   mapping of identifi ed peptides and 
inferring the corrected or new gene model. 
Several of the recently developed tools offer only 
a part of the proteogenomic analysis, whereas 
few pipelines offer a complete proteogenomic 
workfl ow imlementation. For example:

 –     CustomProDB  (Wang and Zhang  2013 ), an R 
package that allows for the creation of custom 
proteogenomic databases by incorporating 
single nucleotide polymorphism information 
from a common variant call format (vcf) fi le 
or from  RNA-Seq   data  

 –    SpliceDB  (Burset et al.  2001 ) allows creation 
of highly sensitive yet compact splice graph 
database in FASTA format which can be search 
by any of the peptide  identifi cation   tools  

 –    MSProGene  (Zickmann and Renard  2015 ) is 
another standalone application that allows 
creation of a sample specifi c search database 
from  RNA-Seq   data with network information 
of peptide sharing among the database entries  

1 Proteogenomic Tools and Approaches to Explore Protein Coding Landscapes of Eukaryotic Genomes
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 –    TheProteogenomic Mapping Tool  (Sanders 
et al.  2011 ) allows mapping of peptides back to 
the genome in a quick and effective manner  

 –    SpliceVista  (Zhu et al.  2014 ) is a Python 
package that maps identifi ed peptides on all of 
the known splice-variants of proteins. It also 
allows integrated visualization of  proteomics   
data with transcript information  

 –    dasHPPboard  (Tabas-Madrid et al.  2015 ) is a 
 HUPO   endorsed data integration platform 
which permits analysis and visualization of 
multiple omics datasets including  proteomics    

 –    VESPA  (Peterson et al.  2012 ) is a JAVA based 
application that enables integrated visualiza-
tion of transcriptomic and  proteomics   datasets 
in proteogenomic context  

 –    iPiG  (Kuhring and Renard  2012 ) allows inte-
gration of peptide  identifi cation   into genome 
browser and thus, enables concurrent analysis 
of multiple omics information  

 –    PGx  (Askenazi et al.  2015 ), a recent tool con-
verts  peptide identifi cations   into browser 
extensible format (BED) which contain 
 genomic   co-ordinates of features and can be 
visualized in genome browsers like UCSC  

 –   Among the earliest proteogenomic pipelines, 
 Genome Annotating Proteomic Pipeline 

(GAPP)  (Shadforth et al.  2006 ) was designed 
specifi c to the human genome. This web based 
application improved the annotation for vari-
ous genes by analyzing publicly available  pro-
teomics   data. However, this pipeline is no 
longer active for use  

 –    PepLine  (Ferro et al.  2008 ) is standalone soft-
ware for  genome annotation   which is indepen-
dent of database search method. It rather relies 
on a hybrid tag based search to identify pep-
tide tags and then maps and clusters these tags 
back to genome to discover potential trans-
lated regions. Due to the suspected low sensi-
tivity and high-error rates of tag based peptide 
detection and genome mapping approach, it 
has only seen limited application in proteoge-
nomics research  

 –    Peppy  (Risk et al.  2013 ) is one of the earliest 
developed pipelines for proteogenomic analy-
sis. It is a fast and automated framework for 
quickly searching  MS   data against the 
extremely large eukaryotic genome translated 
databases to discover novel translated regions. 
Use of advanced computational methods in 
this tool makes proteogenomic searches 
implementable on simple desktop even for 
higher eukaryotic genomes which generally 

  Fig. 1.1     Proteogenomic   databases and refi nement of 
 genome annotations  .  ORF  Open Reading Frame,  CDS  cod-
ing DNA sequences,  TIS  translation initiation site,  UTR  

untranslated regions (Annotated).  Blue color rectangles  for 
CDS and peptides correspond to gene on positive strand 
whereas  red  colored ones for gene on negative strand       
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necessitate higher memory and compute infra-
structure. Additionally, it allows a blind modi-
fi cation search to account for novel post 
translation modifi cations which otherwise are 
very diffi cult to detect by regular  proteomics   
searches. Despite these positive features, 
Peppy has limited eukaryotic analyses appli-
cation as a large fraction of novel proteins in 
eukaryotes originate from alternate splicing of 
transcripts which cannot be represented in a 
genome translated search database as imple-
mented in this pipeline  

 –    Enosi  (Castellana et al.  2014 ) proteogenomic 
pipeline is comprised of two functionalities. 
First, SpliceDB tool (Burset et al.  2001 ) is 
used to create a comprehensive yet compact 
database of splice junctions from  RNA-Seq   
reads. This fasta formatted splice graph data-
base is then searched with  MS   data using 
MS-GF+ search engine (Kim and Pevzner 
 2014 ) which is a sensitive tool to detect more 
peptides. To evaluate novel proteogenomic 
events including splice junctions, Enosi uti-
lizes a probabilistic scoring which takes into 
account the number of spectra and peptides 
assigned to the locus, the quality of the 
assigned peptide spectral matches and the 
shared mapping of the peptide. The  eventProb  
probabilistic score allows Enosi to rank and 
fi lter the proteogenomic fi ndings according to 
their confi dence. Further, the framework can 
utilize  ab initio  gene predictions and  RNA- 
Seq   information to estimate the boundaries of 
alternate gene models which accommodate 
the identifi ed novel peptides. Additionally, 
Enosi pipeline is fully automated software and 
utilizes multi-threading to speed up the  MS   
data searches  

 –    PGTools  (Nagaraj et al.  2015 ) is an end to end 
solution which seamlessly integrates multiple 
components of proteogenomic analysis. It is 
an open source software suite which offers 
fully automated searches along with the meta- 
analysis and visualization of novel fi ndings. It 
allows searches against multiple custom data-
bases,  e.g. , databases containing translated 
entries from transcripts, non-coding genes, 
UTRs, six frame translated genome, splice 

junctions and somatic variations. By enabling 
searches against cancer specifi c variations 
from COSMIC database and fusion proteins, 
PGTools also allows human cancer specifi c 
proteogenomic studies. Further, its multiple 
search engine approach adds sensitivity to the 
overall peptide detection process. However, 
due to differences in peptide detection confi -
dence inherent to variable database sizes, 
result integration from these different data-
bases presents new challenges. Additionally, 
the approach lacks the strength of individual 
or tissue specifi c proteogenomic searches as 
that from  RNA-Seq   data  

 –    ProteoAnnotator  (Ghali et al.  2014 ) is a 
recent, open source and powerful pipeline for 
proteogenomic discoveries from  MS   datasets. 
It addresses one of the common problems of 
 proteomics   and proteogenomics research: fi le 
format standards. The entire pipeline supports 
and exports  HUman Proteomics Organization 
(HUPO)   – Proteomics Standards Initiative 
(PSI) supported fi le formats like 
MzIdentML. Proteoannotator also allows 
multiple database searches but primarily relies 
on gene predictions. Searching  MS   data 
against gene predictions is an excellent 
approach for a newly sequenced genome pri-
marily due to increased sensitivity of peptide 
detection attributable to small search database 
compared to  genomic   or transcriptomic data-
bases. The pipeline also introduces a “non-
canonical gene model score” calculation 
which allows to assign confi dence values to 
novel discoveries and thus automated assess-
ment of quality of novel fi ndings. In addition 
to these new features, it also presents an auto-
mated framework which integrates multiple 
peptide search engines and comprehensive 
statistical algorithm, FDRscore for result inte-
gration. Although it is very effective for prote-
ogenomically annotating new genomes, 
individual or sample based database searches 
are diffi cult to implement in this framework  

 –    Integrated transcriptomic-proteomic pipe-
line (ITP)  (Kumar et al.  2016b ) is a recently 
published pipeline and comprises two analysis 
modules, each for transcriptomics and  pro-

1 Proteogenomic Tools and Approaches to Explore Protein Coding Landscapes of Eukaryotic Genomes
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teomics   data. The transcriptomic analysis 
module uses Tuxedo suite of tools to align and 
assemble  RNA-Seq   reads into transcripts by 
utilizing the reference genome. Second mod-
ule creates a translated transcriptome database 
from the assembled transcripts and then 
searches mass spectra against this database 
using multiple search engines. Although the 
pipeline lacks an entirely automated structure 
for public use, the approach has several advan-
tages. For example, using a reference genome 
guided transcriptome assembly provides a 
defi nitive transcript model for the discovered 
novel peptides and thus, proper reannotation 
of exon boundaries and coding splice variants 
are possible. Similarly, quantities of transcript 
isoforms may indicate most probable protein 
coding isoform despite extensive peptide shar-
ing among isoforms. It also allows creation of 
tissue or individual specifi c search databases 
specifi cally useful in clinical studies. In addi-
tion to these, multiple search engines and 
FDRscore (Jones et al.  2009 ; Kumar et al. 
 2013 ) based result integration within the sec-
ond module  EuGenoSuite , maximize both 
the sensitivity and specifi city of peptide detec-
tion. Identifi ed peptides are also exported into 
gene transfer format (GTF) which can be eas-
ily integrated into most of the genome brows-
ers and thus enabling easy visualization of 
novel regions  

 –    PPLine  (Krasnov et al.  2015 ) is a Python 
language based automated proteogenomic 
pipeline which integrates  proteomics   with 
exome sequencing and transcriptome 
sequencing technologies. Its major focus is 
to discover variant novel peptides resulting 
from single nucleotide polymorphism (SNP), 
insertions- deletions in the  genomic   DNA and 
due to alternative splicing. It integrates sev-
eral tools to accurately call SNPs from exome 
sequencing reads, align  RNA-Seq   reads, 
assemble transcripts including splice junc-
tion isoforms from reads and then allows 
 proteomics   data searches against variant pep-
tide database. This comprehensive software 
enables sample/tissue specifi c database cre-

ation and thus facilitates clinical  proteoge-
nomic   analysis  

 –    GALAXY-P  (Jagtap et al.  2014 ) is among the 
few web-based frameworks for proteogenom-
ics. Despite its web based implementation, it 
allows extensive analysis for eukaryotic 
genomes with fl exibilities at every step of 
analysis. It extends the Galaxy  bioinformatics   
framework for  proteomics   data analysis and 
allows user to create custom integrative analy-
sis workfl ows. Default workfl ows within 
Galaxy- P allow  MS   data format conversion, 
creation of proteogenomic databases from 
various web resources, two step database 
search and statistical assessment of identifi ed 
peptides, sequence similarity searches of 
novel fi ndings, evaluation of peptide-spectral 
matches by visualization and comprehensive 
 genomic   visualization of novel peptides. The 
Galaxy framework allows smooth integration 
of various  genomics   and transcriptomics data 
analysis and with the Galaxy-P development, 
integration of  proteomics   with other omics 
datasets becomes easy to implement. For 
example,  Sheynkman   et al .  ( 2014 ) developed 
three analysis workfl ows which enable  pro-
teomics   data searching within Galaxy-P 
framework against single amino acid poly-
morphism (SAP) and splice variant database 
developed from  RNA-Seq   data  

 –    QUILTS  (Zhang et al.  2009 ) is a software to 
create individual specifi c human proteoge-
nomic search databases by integrating SAP 
variations, splice variants, gene fusions to 
canonical protein sequences. Individual spe-
cifi c  genomic   and transcriptomic variations 
have been attributed to different diseases pri-
marily cancers and thus, it should allow clini-
cal  proteogenomic   studies focused to detect 
disease specifi c variants. However, it is lim-
ited to human only and does not allow similar 
analysis for other model organisms, used to 
study human diseases.    

 With so many alternatives, one compelling 
question still remains: Which one is the best? 
Although, there have not been many studies 
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which compare the various pipelines available 
for eukaryotic proteogenomics, our recent study 
suggests that many of these are actually comple-
mentary in their results (Kumar et al.  2016b ). We 
concluded that due to differences in their search 
database compositions ITP, Enosi, 
ProteoAnnotator and Peppy bring complemen-
tary peptide detections. Although, there are many 
technical challenges to run multiple proteoge-
nomic pipelines on a large scale  proteomic   data-
set, the strategy would help achieve a 
comprehensive catalogue of novel translation 
events across genome.  

1.4     Future Perspectives 

 Although these tools have reduced the technical 
complexity of proteogenomic searches, quality 
assessment of novel discoveries still remains a 
formidable challenge. Many studies indicate the 
necessity of manual inspection of identifi ed pep-
tide spectrum matches to ascertain true identifi -
cations (Omenn et al.  2015 ). However, it is not 
feasible to implement manual inspection on large 
scale studies. Tools like Enosi and 
ProteoAnnotator devised automated scoring sys-
tems to evaluate the novel identifi cations sepa-
rately for their authenticity, but a comprehensive 
statistical framework dedicated to large scale 
proteogenomic studies is still needed. For exam-
ple, both of the studies claiming to achieve a draft 
human proteome map have been heavily criti-
cized for their high number of “low quality” 
identifi cations, adding up to false positives 
(Ezkurdia et al.  2014 ). There have been few 
approaches suggested to overcome these hurdles 
(Shanmugam and Nesvizhskii  2015 ; Zhang et al. 
 2015 ). However, these are yet to be implemented 
in automated pipelines. Other than statistical 
attributes, false positives may also arise due to 
incorrect  genomic   mapping of identifi ed pep-
tides. The genome of an individual can vary con-
siderably from the reference genomes at various 
places, characterized by  genomic   variations like 
SNPs, insertions and deletions. If these are not 
taken into account, many of the  peptide identifi -
cations   may be incorrectly assigned to novel loci. 
Proteogenomic pipelines need to include this 

consideration while evaluating a novel translated 
region. 

 Integration of other omics readouts in prote-
ogenomic frameworks could also be extremely 
benefi cial. Particularly, ribosome bound RNAs 
( Ribosome profi ling  ), rather than entire tran-
scriptome, to create a custom search database 
that would allow for a better profi ling of trans-
lated proteins and thus a better  genome annota-
tion  . The recently developed PROTEOFORMER 
(Crappe et al.  2014 ) pipeline integrates ribosome 
profi ling with  MS   based  proteomics   and prote-
ogenomics analysis and could be extremely use-
ful in eukaryotic  genome annotations  . However, 
a similar integration in other existing pipelines 
would expand the reach of such methods. These 
pipelines also need to include provisions for 
unsequenced genomes. Custom  de novo  assem-
bled transcriptomes may provide templates for 
proteome profi ling from  MS   data (Brinkman 
et al.  2015 ). Proteogenomic pipelines need to be 
extended to include genome independent data-
base creation, to facilitate similar analysis for 
unsequenced or partially sequenced genomes. 

 Proteogenomic analyses hold promise for 
human disease related studies as well. Recent 
studies suggest the potential of proteogenomics 
in the discovering novel candidates in different 
cancers (Alfaro et al.  2014 ; Rivers et al.  2014 ; 
Woo et al.  2014 ; Zhang et al.  2014 ). However, 
most of the existing pipelines do not consider dis-
ease related genetic components. Extending these 
analysis frameworks would not only benefi t new 
studies, they would also assist in revisiting previ-
ous datasets for proteogenomic reanalysis   .     
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      Next Generation Sequencing Data 
and Proteogenomics                     

     Kelly     V.     Ruggles      and     David     Fenyö    

    Abstract  

  The fi eld of proteogenomics has been driven by combined advances in 
next-generation sequencing (NGS) and proteomic methods. NGS tech-
nologies are now both rapid and affordable, making it feasible to include 
sequencing in the clinic and academic research setting. Alongside the 
improvements in sequencing technologies, methods in high throughput 
proteomics have increased the depth of coverage and the speed of analy-
sis. The integration of these data types using continuously evolving bioin-
formatics methods allows for improvements in gene and protein annotation, 
and a more comprehensive understanding of biological systems.  

  Keywords  

  Next generation sequencing   •   Proteogenomic integration   •   Bioinformatics   
•   Peptide identifi cation   •   Gene annotation  

2.1       NGS Overview 

 NGS     itself  refers            to a number of techniques, all of 
which perform massively parallel sequencing, in 
which millions of DNA fragments from a sample 
are sequenced at the same time (Muzzey et al. 
 2015 ). This produces a vast amount of data, in 

some cases adding up to 1 TB per run. With this 
level of data volume and faster data generation, 
 bioinformatics   has emerged as the true challenge 
in NGS data analysis and integration. 

 The most frequently used NGS methods at the 
DNA level are whole exome sequencing and 
whole genome sequencing (WGS). In whole 
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exome sequencing, only protein-coding regions 
of the genome are sequenced, removing the 
remaining ~99 % of the DNA and thereby signifi -
cantly lowering the required time and cost. This 
method has been most often employed in studies 
of gene discovery and the identifi cation of dis-
ease causing  mutations  . For WGS however, the 
entire genome is sequenced, which is useful for 
novel gene identifi cation and for the analysis of 
non-coding regions including promoters and 
enhancers. 

 DNA NGS technologies have enabled 
researchers to detect differences between an 
experimental and a reference genome. These typ-
ically fall into two categories:

    1.    Large deletions/duplications (copy number 
variation (CNV))   

   2.    Changes to the DNA sequence, also known as 
“variants”, either as single nucleotide poly-
morphisms (SNPs) or short insertion/dele-
tions (indels)    

Both require alignment of NGS reads to a refer-
ence genome (Fig.  2.1 ).

   NGS is also performed on RNA using  RNA- 
Seq  , a technique which is now frequently used in 
lieu of micro-arrays to assess gene expression. 
RNA-Seq enables researchers to investigate 
alternative splicing events, gene fusion events, 
SNPs and gene expression. The experimental 
procedure is similar to that of DNA sequencing, 
with an additional step of fi rst deriving cDNA 
sequences from all RNA present in the sample. 

 Although different sequencing methods can 
produce different raw data types, these data are 
most often combined to create a FASTQ fi le, con-
taining information on both sequence and quality. 
This data is fi rst aligned to the reference genome 
and stored in a sequence alignment map (SAM) 
or binary alignment map (BAM) fi le using a 
sequence alignment algorithm (Li et al.  2009 ) 
(Fig.  2.1 ). A number of algorithms have been 
developed for this purpose, using Burrows- 
Wheeler Transformation (BWT) techniques ( e.g. , 
Bowtie/Bowtie 2 (Langmead and Salzberg  2012 ), 
BWA/BWA-SW (Li and Durbin  2010 )) and/or 
Smith-Waterman (SW) dynamic programing 
( e.g. , SHRiMP/SHRiMP2 (David et al.  2011 ; 
Rumble et al.  2009 )).  
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  Fig. 2.1     Proteogenomic   overview       
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2.2     Variant Identifi cation Using 
Proteogenomics 

2.2.1     Single Nucleotide 
Polymorphisms (SNPs) 

 Following alignment of the DNA or RNA 
sequence, subsequent variant calling, fi ltering 
and annotation can be completed. Variants are 
found through the identifi cation of small devia-
tions between the experimental and the reference 
genome (Figs.  2.1  and  2.2 ). These variants may 
be disease drivers, or  mutations   having little to 
no functional impact. Several programs have 
been developed specifi cally for the purpose of 
variant calling and each produces a list of variant 
positions stored in a Variant Call Format (VCF) 
fi le (Danecek et al.  2011 ).

   A primary challenge with SNP variant calling 
is in identifying “true” variants and fi ltering out 
those due to errors in sequencing or alignment 
(Nielsen et al.  2011 ). Informatics packages have 
been developed for variant calling, including 
the popular Genome Analysis Toolkit (GATK) 
(McKenna et al.  2010 ) and VarScan (Koboldt 
et al.  2012 ). Indel  mutation   identifi cation pres-
ents an additional set of complications, because it 
requires a more sophisticated approach to gapped 
alignment and paired-end sequence inference. 

Pattern growth approach software ( e.g. , Pindel 
(Ye et al.  2009 )), baysian-based algorithms ( e.g. , 
Dindel (Albers et al.  2011 )) and the variant call-
ing algorithm GATK (McKenna et al.  2010 ) have 
all been refi ned for accurate indel identifi cation 
(Neuman et al.  2013 ). 

 Following variant calling, fi ltering and anno-
tation are common steps for isolating variants 
most likely to contribute to the pathology of 
interest. Although quality cutoffs for variant 
identifi cation should always be employed, addi-
tional fi ltering becomes less important in prote-
ogenomic analysis because  proteomic   data can 
be leveraged for variant validation.  

2.2.2     Single Amino Acid 
Polymorphisms (SAAP) 

 Identifying variants that are expressed at the pro-
tein level presents a non-trivial informatics chal-
lenge in that mass  spectrometric   identifi cation of 
peptide sequences is dependent upon the inclusion 
of that sequence in the  protein database  . Protein 
sequence database searching algorithms such as 
X!Tandem (Craig et al.  2005 ), Mascot (Perkins 
et al.  1999 ) and MSGF+ (Granholm et al.  2014 ) 
match the MS/ MS   spectra against a list of candi-
date peptide sequences and score the similarity of 
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a theoretical or library spectrum to the acquired 
spectrum based on mass. Databases with missing 
sequences will fail to identify these peptides in the 
MS/MS data and ideally, the  protein database   
would contain all proteins present in the sample 
with minimal irrelevant sequences (Fig.  2.1 ). 

 Therefore, in order to identify single amino 
acid polymorphisms (SAAPs) occurring from 
non-synonymous  genomic   SNPs, one must cre-
ate a protein sequence database that incorporates 
the sequencing data to contain corresponding 
SAAPs. These changes are integrated into the 
protein sequence data by fi rst modifying the 
 genomic   reference sequence to include SNPs in 
the genome and/or transcriptome (Fig.  2.2a ) and 
then completing an  in silico  protein translation of 
the modifi ed sequences to attain a list of peptides 
containing SAAPs (Fig.  2.2b ).  

2.2.3      Bioinformatics   Tools 
for Creating SAAP Protein 
Sequence Databases 

 Several tools have been developed to create 
NSG-integrated databases containing potential 
variant SAAPs. With the inclusions of these 
novel peptide sequences in the database, variant 
peptides can be identifi ed from  MS  /MS data. 

 These tools include:

•     QUILTS : Open source tool that incorporates 
SNPs from either DNA sequencing or  RNA- 
Seq   and allows for up to two variant VCF 
input fi les to accommodate cancer studies 
which require both germline and somatic 
(cancer specifi c) SNP options. QUILTS then 
creates a FASTA-formatted protein sequence 
database that can be used by common data-
base searching algorithms (Ruggles et al. 
 2015 ).  quilts.fenyolab.org   

•    customproDB:  R package developed for cus-
tomized  protein database   construction using 
SNPs and indels from  RNA-Seq   data. The 
output is also a FASTA-formatted sequence 
fi le (Wang and Zhang  2013 ).    www.bioconduc-
tor.org/packages/release/bioc/html/custom-
ProDB.html           

2.3     Alternative Splicing 
and   Gene Annotation   

 Coding of novel gene regions and alternative 
splicing provides additional biological complex-
ity. The advent of  RNA-Seq   has shown alterna-
tive splicing to occur in over 90 % of human 
genes (Pal et al.  2012 ), emphasizing the role of 
diverse protein isoforms in cellular function. 
RNA-Seq analysis provides information on 
splice junctions (intron / exon boundaries) pres-
ent in a given sample, providing insight into both 
normal gene annotation and novel expression. 
Splice sites are identifi ed following sequence 
alignment using splice-alignment software such 
as TopHat (Kim et al.  2013 ), BLAT (Fonseca 
et al.  2012 ) and MapSplice (Wang et al.  2010 ) 
(Fig.  2.1 ). 

 Comparing intron / exon boundaries identifi ed 
through NGS to known junction boundaries can 
identify novel splice sites, including unannotated 
alternative splicing (two known exons) (Fig. 
 2.3a ), partially novel splicing (one known exon) 
(Fig.  2.3b ) and completely novel splicing (no 
known exons) (Fig.  2.3c ) (Ruggles et al.  2015 ; 
Mertins et al.  2016 ). Hundreds of thousands of 
novel splice sites can be identifi ed by one  RNA- 
Seq   experiment, but the fraction of functional 
versus “spurious” splicing requires additional 
information to be determined. Since  ab initio  
methods for the identifi cation of novel splice 
sites are limited (Barash and Garcia  2014 ), the 
validation of splice-junctions requires peptide 
evidence spanning these intron / exon 
boundaries.

2.3.1       Novel Splice Junction (NSJ) 
Peptides 

 As with SAAPs, NSJ peptide  identifi cation   relies 
on the construction of a comprehensive  protein 
database   incorporating alternatively spliced iso-
forms and novel expression as coded in the 
 transcriptome. These databases should contain 
all possible NSJ peptides in the sample to insure 
corresponding peptide  identifi cation   from tan-
dem  MS   analysis. Approximately one quarter of 
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peptides cross a splice junction in humans, and 
these are particularly useful for intron / exon 
boundary and splicing verifi cation. The identifi -
cation of novel splice sites is most frequently 
used in:

 –    Improving gene annotation  
 –   Cancer studies, where alternative splicing and 

novel expression have been reported to effect 
disease progression (Ning and Nesvizhskii 
 2010 )    

 Gene annotation is the process of identifying 
genes and determining gene function. Prior to 
NSG, the identifi cation of protein coding regions 
was done using comparative sequence analysis 
and gene prediction algorithms, both of which 
have inherent limitations. These limitations 
include diffi culties in identifying gene start and 
stop sites and translational reading frames (Brent 
 2008 ), diffi culty identifying splice boundaries 
(Reese et al.  2000 ), and issues in determining 
boundaries of short and overlapping genes 
(Warren et al.  2010 ).  RNA-Seq   has addressed 
most of these limitations, but studies have shown 
that many transcripts show no evidence of pro-
tein translation (Clamp et al.  2007 ; Eddy  2001 ). 
Proteogenomics is able to fi ll this gap by using 
MS-based  proteomics   in combination with RNA 

sequencing to verify gene coding regions and 
novel splice junctions.  

2.3.2      Bioinformatics   Tools 
for Identifying NSJ Peptides 

 A frequently applied method for proteogenomic 
gene annotation is the use of a six-frame transla-
tion of the DNA sequence of interest as the pro-
tein sequence database for the MS/MS peptide 
search, removing all bias based on the estab-
lished  genome annotation  . This method is able to 
validate existing gene models and start / stop 
sites, and can also identify novel open reading 
frames (ORFs) (Fermin et al.  2006 ; Gupta et al. 
 2007 ; Kalume et al.  2005 ). Two limitations to 
this method are:

 –    The inclusion of a six-frame translation con-
siderably increases the search space thereby 
reducing search sensitivity  

 –   Splicing information cannot be determined, 
only intron / exon boundaries.    

 Tools for six-frame translation database 
searches include:

•     Peppy:  A Java-based software that searches a 
given six-frame translation database, return-
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ing  peptide identifi cations   at a user-specifi ed 
false discovery rate (Risk et al.  2013 ).    http://
geneffects.com/pepp       

•    PIUS (Peptide    Identifi cation     by Unbiased 
Search):  Online tool that identifi es peptides 
through a spectral match search of high- 
throughput MS/MS data using a six-frame 
translation database (Costa et al.  2013 ).    

 An alternative to a six-frame translation 
search is to use  RNA-Seq   derived splice junction 
data to identify novel alternative splicing in addi-
tion to unannotated ORFs. This requires more 
sophisticated informatics tools, which incorpo-
rate cases of unannotated alternative splicing 
(Fig.  2.3a ), splicing at a novel intron / exon 
boundary (Fig.  2.3b ), and splicing of novel, 
hypothetical open reading frames (Fig.  2.3c ) to 
the  genomic   reference sequence. A Browser 
Extensible Data (BED) fi le, containing informa-
tion on the location of these junctions, is created 
by most  RNA-Seq   alignment algorithms and 
used in the sequence modifi cation step. The  pro-
tein database   is then created using an  in silico  
protein translation of these modifi ed sequences to 
obtain a full NSJ peptide list. Translation of these 
splice junctions can then be verifi ed by the iden-
tifi cation of peptide sequences bridging the tran-
scribed intron / exon boundaries. 

 Tools that create NSJ protein sequence data-
bases include:

•     QUILTS:  In addition to incorporating 
SNPs from NSG data to the protein 
sequence database, QUILTS accepts a 
Browser Extensible Data (BED) file con-
taining  RNA-Seq   predicted splice junc-
tions as input and creates FASTA files 
containing NSJ peptides corresponding to 
the transcriptome data (Ruggles et al. 
 2015 ).  quilts.fenyolab.org   

•    customproDB:  In addition to SNP-based  pro-
tein database   creation, customproDB creates 
FASTA database fi les using a putative junc-
tion BED fi le     (Wang and Zhang  2013 )    www.
bioconductor.org/packages/release/bioc/html/
customProDB.html           

2.4     Coordinated Gene 
and Protein Expression 

 In addition to facilitating the identifi cation of 
SAAPs and NSJ peptides, proteogenomics can 
also support coordinated expression analysis 
based on  genomic   location. Copy number varia-
tion (CNV), defi ned as large (>1 kb) genomic 
deletions / duplications, can be derived from 
whole genome and exome sequencing. CNVs 
often result in gene dosage effects in multiple 
genes and have been shown to play a signifi cant 
role in genetic variation and disease (Iafrate et al. 
 2004 ). Most methods for CNV detection can be 
categorized into two types: pair end mapping 
(PEM) methods and depth of coverage (DOC) 
methods. The more popular DOC algorithms 
such as SegSeq (Chiang et al.  2009 ) and CNV- 
seq (Xie and Tammi  2009 ) align reads on the 
genome and calculate read counts using sliding 
bins, which are further processed to determine a 
normalized copy number (Duan et al.  2013 ). 

 At the transcript level, differential gene 
expression is determined using methods that use 
read coverage to quantify transcript abundance. 
For example, RPKM (reads per kilo base per mil-
lion mapped reads) and FPKM (fragments per 
kilobase per million) are commonly used meth-
ods to quantify normalized expression of a gene 
(Marioni et al.  2008 ) and many programs have 
been developed for the subsequent determination 
of differential gene expression, these include 
Cuffdiff (Trapnell et al.  2013 ), edgeR (Robinson 
et al.  2010 ), and DESeq (Anders and Huber 
 2010 ). 

 Proteogenomic tools have been developed 
that allow for coordinated expression analysis 
across data types, by converting  proteomic   loca-
tion to  genomic   coordinates. This mapping 
allows researchers to analyze expression based 
on  genomic   location, for example in large areas 
of gene duplication / deletion, or at the exon 
level, rather than requiring gene-based analysis. 
This is particularly useful when displaying 
expression levels using genome browsers ( e.g. , 
UCSF genome browser, Integrative Genomics 
Viewer (IGV)). 
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  Bioinformatics   tools for peptide mapping 
include:

•     PGx:  Open-source tool that maps peptides 
onto their putative  genomic   coordinates using 
a user-defi ned reference database. The soft-
ware maps many peptides simultaneously, 
returning a BED (qualitative) and bedGraph 
(quantitative) fi le, which can be used to then 
be loaded into a genome browser for visual-
ization (Askenazi et al.  2015 ).  pgx.fenyolab.
org   

•    The Proteogenomic Mapping Tool:  Java- 
based software that searches peptides against 
a six-frame translated sequence database. 
Output includes a fi le containing the  genomic   
location of each peptide match that can be 
visualized using a genome browser (Sanders 
et al.  2011 ).   www.agbase.msstate.edu/tools/
pgm/         

2.5     Conclusions 

 Informatics-based proteogenomic methods 
help to determine which  genomic   variants and 
alternatively spliced gene forms are translated, 
revealing their biological potential. For exam-
ple,  mutations   and novel splice junctions that 
are found at the peptide level have a higher 
likelihood of being a driver of disease. 
Additionally, integrating NGS and  proteomic   
data using proteogenomic mapping tools 
allows for the simultaneous analysis of gene 
expression, which can help to better under-
stand the complexities of gene regulation. We 
expect that as NGS and high throughput  pro-
teomic   techniques continue to improve, the 
quantity and quality of associated data will 
continue to rise and will demand continuously 
evolving  bioinformatics   tools for  proteoge-
nomic integration   and analysis.         
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    Abstract  

  Proteogenomics is a multi-omics research fi eld that has the aim to effi ciently 
integrate genomics, transcriptomics and proteomics. With this approach it is 
possible to identify new patient-specifi c proteoforms that may have implica-
tions in disease development, specifi cally in cancer. Understanding the 
impact of a large number of mutations detected at the genomics level is 
needed to assess the effects at the proteome level. Proteogenomics data inte-
gration would help in identifying molecular changes that are persistent 
across multiple molecular layers and enable better interpretation of molecu-
lar mechanisms of disease, such as the causal relationship between single 
nucleotide polymorphisms (SNPs) and the expression of transcripts and 
translation of proteins compared to mainstream proteomics approaches. 
Identifying patient-specifi c protein forms and getting a better picture of 
molecular mechanisms of disease opens the avenue for precision and per-
sonalized medicine. Proteogenomics is, however, a challenging interdisci-
plinary science that requires the understanding of sample preparation, data 
acquisition and processing for genomics, transcriptomics and proteomics. 
This chapter aims to guide the reader through the technology and bioinfor-
matics aspects of these multi- omics approaches, illustrated with proteoge-
nomics applications having clinical or biological relevance.  
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3.1        Introduction 

        Genome  sequencing                     technology aims to reveal 
the nucleotide sequence of the genome and stage- 
specifi c transcriptome states across different cells 
and tissues. The proteome is defi ned as “the pro-
tein complement of the genome”. Proteins are the 
product of the translated part of the genome and 
transcriptome. Proteins are biologically active 
molecules, while genomes and transcriptomes, 
besides exerting a regulatory role, hold informa-
tion on possible protein primary sequences that 
the cells of an organism can express and use to 
fulfi ll their molecular activities and biological 
functions. 

 Sequencing DNA or mRNA requires an ana-
lytical system that distinguishes precisely 
between the nucleobases cytosine, guanine ade-
nine (DNA, RNA), thymine (DNA) and uracil 
(RNA). Combinations of these fi ve bases repre-
sent a much simpler chemical system compared 
to the chemical space spanned by the twenty 
amino acids and their possible chemical modifi -
cations, e.g. through post-translational modifi ca-
tions that form the proteins (Chuh and Pratt  2015 ; 
Walsh et al.  2005 ; Markiv et al.  2012 ; Bischoff 
and Schlüter  2012 ). This larger and more diverse 
chemical space and the currently available pep-
tides and protein sequencing technologies are not 
sensitive and powerful with respect to sequenc-
ing length compared with current state-of-the-art 
DNA and RNA sequencing technologies. 
Additionally, the information content at the 
 genomics   and transcriptomics level can be easily 
amplifi ed, but no such technology exists for  pro-
teomics  . The main difference between main-
stream next generation  sequencing   technology 
and shotgun bottom-up LC-MS/MS proteomics 
is that the former provides hypothesis-free  de 
novo  sequencing data, from which the sequence 
of base pairs can be determined without prior 
information. However,  proteomics   analysis deter-

mines the primary amino acid sequence from an 
often incomplete list of fragment ions resulting 
from the fragmentation of peptides constituting 
the initial protein. Not all the obtained fragment 
ion or MS/MS spectra are suitable for a 
hypothesis- free  de novo  sequence determination 
of the fragmented peptide. Therefore the most 
popular approach to analyze shotgun LC-MS/MS 
spectra are based on targeted database search 
(DBS) algorithms, which uses a list of protein 
sequences that are expected to be present in the 
analyzed sample. This approach is therefore 
hypothesis-driven and the success of the identifi -
cation relies on the accurate prediction of the pro-
tein sequence that is expected to be present in the 
sample. In order to provide accurate sequence 
information, the  proteomics   community uses 
sequences assembled by consortia or large groups 
that have been quality-controlled either manually 
(SwissProt) or computationally (TrEMBL and 
Ensembl). The defi nition of canonical sequences 
according to the most widely used UniProtKB/
SwissProt database (Consortium  2015 ) is:

    1.    The protein sequence of all the protein prod-
ucts encoded by one gene in a given species is 
represented in a single entry to reduce protein 
sequence redundancy   

   2.    The canonical sequence includes the protein 
sequence that has the highest occurrence   

   3.    The canonical protein sequence shows the 
highest similarity to orthologous sequences 
found in other species   

   4.    The length of the sequence or amino acid 
composition allows the clearest description of 
protein domains, isoforms, polymorphisms 
and post-translational modifi cations (PTMs)   

   5.    In the absence of any other information the 
longest sequence is chosen    

  For organisms – amongst them humans, for 
which the genome sequence is completed – the 
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protein sequence derived from genome transla-
tion is used, unless there is clear evidence that a 
different polymorphism is more frequent at a 
given position. 

 It is clear from the defi nition of the canonical 
sequence that it represents an average sequence 
of the proteome, but it cannot be used to detect 
peptides specifi c for low frequency variants or 
new variants. The proteogenomics approach per-
forms next generation  sequencing   of a genome 
and/or transcriptome in the same sample and 
composes the protein sequence used during DBS 
of peptide and protein inference. This composi-
tion is not a trivial task and gene models that pre-
dict the translation of  genomics   sequences into 
proteins are used. In the early days of the  genom-
ics   era, proteogenomics was defi ned as a descrip-
tion of “studies in which  proteomic   data are used 
for improved  genome annotation   and character-
ization of the protein-coding potential” 
(Nesvizhskii  2014 ; Menschaert and Fenyo  2015 ; 
Bischoff et al.  2015 ). Therefore in the early days 
the  proteomics   dataset helped to provide accurate 
 genome annotation  . Nowadays it is more fre-
quent to use the  genomic   sequence information 
to obtain sample, or in clinical research patient- 
specifi c protein sequence information and predict 
which protein forms are present in a given sam-
ple. Therefore, proteogenomics data analysis 
allows better and more accurate protein identifi -
cation and better refl ects the biological processes 
that are active in the cell and/or tissue of the ana-
lyzed sample. Since a high quality patient spe-
cifi c database is used for peptide and protein 
identifi cation, proteogenomics enables a person-
alized approach to identify patient specifi c 
molecular heterogeneity and novel patient phe-
notypes within a disease. Furthermore, it allows 
discovery of  biomarkers   for its specifi c diagno-
sis, as well as the discovery of new drug targets 
that allow more precision and personalized treat-
ment. Importantly, proteogenomics analysis has 
become more affordable by the reduction of 
sequencing costs, which has enabled the genera-
tion of more precise information of clinical sam-
ples, and thus patient specifi c proteomes, when 
compared to mainstream  proteomics   analysis 
using public databases. 

 This chapter has the primary aim to provide an 
overview of the main characteristics of data 
obtained with next generation  sequencing   tech-
nology combined with the shotgun LC-MS/MS 
 proteomics   approach, to describe the key data 
processing steps and the integrated data interpre-
tation of these two molecular layers. The chapter 
is intended for readers interested in the data anal-
ysis and interpretation of one or both -omics 
fi elds with the ultimate goal to perform a prote-
ogenomics analysis. Best practice in data acquisi-
tion, data processing approaches and challenges 
with respect to data and analysis tools will be 
thoroughly discussed.  

3.2     RNA and DNA Sequencing 

3.2.1      Genomic   Sequencing 
Technologies 

 The translated protein sequence can be deduced 
from full genome, exome and transcriptome 
sequencing data but the most widely used 
approach is polyadenylated transcriptome 
sequencing ( RNA-Seq  ). Figure  3.1  summarizes 
the starting molecular level (DNA, mRNA), and 
the applied protocols and factors that should be 
taken into account during sequencing. Sequencing 
the full genome costs an order of magnitude more 
than sequencing exomes or transcriptomes. For 
DNA sequencing, the two main options are 
Whole Genome Sequencing (WGS) and Whole 
Exome Sequencing (WES). While the fi rst gives 
a complete overview of variations in the genome, 
the second covers the coding part of the genome 
(exome), which accounts only for several percent 
of the complete genome. For these reasons WES 
could be a good choice as source of genetic infor-
mation for a proteogenomics approach. 
Sequencing polyadenylated mRNA has the 
advantage that the majority of the transcripts 
were already processed by the splicing machin-
ery, resulting in a high fraction (>90 %) of mature 
transcripts with spliced introns, which provide 
the highest quality of sequence information to 
predict the sequence of the translated proteome. 
The other alternative is the removal of highly 
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abundant ribosome mRNA with special kits 
(Ribo-zero kits), which enables the user to 
sequence the complete transcriptome that 
contains the translated and non-translated 
transcripts.

   There are different  technologies   for transcrip-
tome and genome sequencing. In the early days 
of sequencing technology, DNA sequencing was 
used to obtain the fi rst complete genomes. The 
most important milestones were deciphering of 
the genome of the bacteriophage ΦX 174 (Sanger 
et al.  1977 ) (fi rst complete genome) by Frederick 
 Sanger   and the human genome by the Human 
Genome Project (Lander et al.  2001 ). The tech-
nique developed by Frederick Sanger was the 
fi rst to be automated and is considered as “fi rst 
generation” of sequencing technology. The “sec-
ond generation” (also called Next Generation 
 Sequencing  ) started with MPSS (Massively 
Parallel Signature Sequencing) from Lynx 
Therapeutics and was characterized by cheaper, 
faster and more effi cient sequencing, which led 
to the acquisition of an enormous amount of 
genomic information. Nowadays, the most 
widely used sequencing technology is short-read 
based sequencing, with the Illumina HiSeq 
sequencing machines. Figure  3.1  shows the stan-
dard protocol for DNA sequencing, which tech-
nology has not only drastically reduced the time 
necessary for sequencing but also the cost of each 
analysis run, leading to complete transcriptome 

sequencing in a matter of hours. Typical fragment 
sizes range from 100 bps up to 600 bps. Fragments 
are then read from one (single-end) or both sides 
(paired-end) up to 250 bps. 

 There are various options when preparing 
samples for the sequencing run(s), based on dif-
ferent protocols that focus on different types of 
transcripts or different ways to analyze them. 
While at fi rst only the coding messages of the 
transcriptome were sequenced, through a selec-
tion of polyadenylated transcripts (the mRNAs 
that are most likely to be translated into proteins), 
the growing interest in the non-coding transcrip-
tome has led to a different approach, where only 
the major non-coding RNA type, the ribosomal 
RNA (rRNA), is depleted. This protocol is 
defi ned as rRNA depletion or the Ribo-zero 
approach and is achieved with special ribosomal 
mRNA removal kits. For a proteogenomics 
approach, it is often considered a good choice to 
use the polyadenylated mRNA protocol and thus 
focus only on protein-generating transcripts, to 
minimize the error rate and provide the most 
accurate protein sequence information that is 
supposed to be expressed in the cells of the target 
organism. Conversely, the rRNA-depletion pro-
tocol retains long non-coding RNAs (or lncRNAs) 
and other non-polyadenylated transcripts, which 
are thought to have a regulatory function. 
However, there is growing evidence that some of 
the lncRNAs might be translated. lncRNAs are 

  Fig. 3.1    Chart showing the different molecular classes 
that can be sequenced using next generation  sequencing   
(RNA  red , DNA  green ), showing the starting material, the 
sequencing protocols and experimental factors ( purple 

rectangles ) that can be set by the user.  WGS repre-
sents w hole genome sequencing and  WES  repre-
sents whole exome sequencing       
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lineage-specifi c and it is hypothesized that they 
show similar characteristics as evolutionary 
young protein coding genes (Ruiz-Orera et al. 
 2014 ).  Proteomics   identifi cation of lncRNA from 
large public database such as the PRIDE reposi-
tory (  http://www.ebi.ac.uk/pride/archive/    ) 
showed high FDR rates of translated lncRNA 
sequences and therefore the results should be 
taken with care (Volders et al.  2013 ,  2015 ). 

 In addition to the  decision   of what should be 
sequenced, there are various factors that should 
be taken into account when designing an RNA or 
DNA-sequencing experiment. For example, the 
sequencing depth or the number of reads for each 
sample determine the quality of data and infl u-
ence important properties such as the quality of 
the alignment to a reference genome, the number 
of identifi ed sequence variants that differ from 
the reference genome and affect the reliability of 
quantifi cations. The optimal sequencing level 
should be determined based on the aim of the 
experiment. However, it is obvious that a com-
plex sample (for example from biopsies that typi-
cally contain different types of cell from different 
tissues) requires higher sequencing depth when 
compared to a simpler sample consisting of one 
cell or tissue type. 

 In a similar fashion, the  length   of the reads 
may have a consistent effect on the quality of the 
post-sequencing alignment to a reference genome 
and thus the ability to correctly determine the 
transcripts structure and amount. Longer reads 
tend to minimize the effect of sequencing errors 
and capture splicing events or multi-nucleotide 
deletions and insertions more effi ciently. On the 
other hand, if the intention is only to quantify the 

amount of transcript(s) present, short reads (such 
as 50 bp) may be suffi cient, leading to reduced 
cost and analysis time. 

 Sequencing can be performed with two 
approaches concerning the reading directions of 
500 base pair transcript fragments, these are 
known as single and paired-ends. The effect of 
longer reads is magnifi ed when paired-end reads 
are used. There are sample preparation kits that 
cannot discriminate whether a sequence is read in 
forward or reverse direction ( e.g. , TruSeq from 
Illumina) and there are kits that can deliver this 
information ( e.g. , BioO Scientifi c’s NextFlex). 
When strandedness information is lacking, it is 
still possible to predict from which strand the 
reads originate by exploiting the unique sequence 
of introns and exons of each transcript. 
Information on the exact sequenced strand is 
important when identifying variants, as each 
strand may carry a different allele (a different 
base in the corresponding position on each 
strand), could be coding (contain the translated 
amino acid sequence) or template (contains the 
complementary nucleotide base sequence) and 
strands originate from maternal and paternal 
chromosomes. In paired-end sequencing the 
sequence is fi rst read in one direction and then 
from the opposite direction having around 500 
bps of distance between the two ends (Fig.  3.2 ). It 
is important to note that one read covers a rela-
tively small part of a fragment, but taking the 
fragment length into account for alignment to a 
reference genome provides more accurate align-
ment than with single-end reading. The two reads 
in paired-end sequencing are also called a “mate- 
pair”. Paired-end reads provide more accurate 

300 bps100 bps 100 bps

reference

paired-end read
intron exonexon

transcript fragments

  Fig. 3.2    Paired-end sequencing of fragments using the 
Illumina sequencer and alignment of the sequence reads 
to a reference genome matching the reads at both ends and 

taking the length of fragments into account. Reference 
genome sequence part with two exons and one intron is 
shown       
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data when trying to detect large modifi cations of 
the genome and transcriptome, like large inser-
tions, deletions and translocations (also called 
Copy Number Variations, or CNVs). Single-end 
reads are less potent in this respect, but their gen-
eration is less expensive and requires shorter 
analysis time. Single-end sequencing is a suitable 
approach when transcript quantifi cation is the 
 sole   aim of the experiment.

3.2.2        Sequencing Technology 

 A typical protocol for short read sequencers is 
shown in Fig.  3.3  and is composed of the follow-
ing steps:

     1.    DNA/ RNA   extraction and isolation from sam-
ple to retrieve the DNA/polyadenylated 
mRNA fraction. Extraction can be performed 
with different protocols using chemical 
approaches such as phenol-based extractions, 
direct lysis of DNA and RNA strands or using 
a mechanical approach such as centrifugation 
trough molecular fi lters of defi ned size and 
recovery of the nucleic acids with magnetic 
beads coated with DNA/RNA binding 
molecules.   

   2.    This is followed by fragmentation of the 
extracted DNA and mRNA to obtain shorter 
pieces that can be effi ciently sequenced. 
Fragmentation can be achieved with different 
methods. The most common is using enzymes 
that cut the nucleic acids randomly (though 
the sites where each enzyme cuts is known, it 
is therefore possible to infer the fragment dis-
tribution), by sonication (use of high ampli-
tude sound waves to break DNA and RNA 
strands) or by intense heating. These steps are 
followed by selecting fragments of desired 
length, which is usually performed using a 
size exclusion gel electrophoresis. There are 
alternative approaches for size selection such 
as using magnetic beads by adjusting the con-
centration of the nucleic acid-binding agents 
present on the surface of the beads and thus 
selecting shorter or longer fragments. 
Extraction, fragmentation and fragment selec-

tion with a desired size are often performed by 
standardized protocols using commercial kits 
such as the widely used TruSeq Sample 
Preparation Kit from Illumina.    

  In the case of mRNA analysis, transcript frag-
ments are reverse-transcribed into cDNA, which 
turns the mRNA sequence into a DNA sequence 
(Fig.  3.4 ). Adapters of 6–8 nucleotides in length 
are ligated to each end of the fragments, which 
permits them to be immobilized on the surface of 
a fl ow-cell, which is a container where the 
sequence amplifi cation and sequencing reaction 
take place. The adapters are complementary to 
primers already present and fi xed on the surface 
of the fl ow-cell where they act as anchors when a 
transcript is fi xed on the surface. Adapters may 
contain a short signature which is unique for each 
sample, and is called “barcode” (4–12 nucleo-
tides long, with unique sequence for each sam-
ple). This allows multiple samples to be 
sequenced at the same time.

     3.    Polymerase-based amplifi cation takes place 
and creates clusters of clones of the same frag-
ment in a limited area called “spot”. Fragments 
are fl exible and can bend in a way that the 
“free-end” of the adapter binds to another 
immobilized primer on the cell-fl ow surface. 
The polymerase can still bind to the immobi-
lized primer and produce the second strand for 
each fragment. Due to this behavior this step 
is also called “bridge amplifi cation”. This is 
necessary to create a cluster that can provide a 
signal strong enough to be measured by the 
light-sensitive sensor of the sequencer.   

   4.    At this point, it is possible to start sequencing. 
To do so specially modifi ed nucleotides called 
“labeled reversible terminators” are used. 
Four terminators are needed for each base 
(Adenine, Cytosine, Thymine and Guanine). 
Each is labeled with a different fl uorescent 
fl uorophore group, a light-sensitive molecule 
that will emit light at specifi c wavelength (red, 
green, blue and yellow) when excited by 
lasers of different wavelengths. The fl ow-cell 
is made of glass allowing the emitted fl uores-
cence to be detected by a photo-sensitive 
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detector. Terminators stop the polymerase 
chain reaction as well without requiring an 
extra chemical reaction with this purpose that 
led to the name of “terminators”. Reading the 
intensity of the emitted fl uorescence at the 

three wavelengths emitted by the 4 termina-
tors allow to “read” which base was added by 
the polymerase. Following fl uorescence mea-
surement a chemical reaction is performed to 
cleave the dye and the terminator group from 

  Fig. 3.3    Main step of 
the library preparation 
( a ) and of the DNA/
mRNA fragment 
sequencing ( b ). Further 
details are described in 
details in the main text 
(Figure adapted with 
permission from 
(Metzker  2010 )) 
Copyright (2010) Nature 
Publishing Group       
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the incorporated nucleotide allowing to con-
tinue the polymerase chain reaction. This 
cycle is then repeated for a fi xed number of 
times (determined by the read length), which 
is typically 100 or 125 in an Illumina short 
read sequencer.    

  The sequencer uses internal software to trans-
form the measured raw fl uorescence information 
to base pairs and includes parameters that refl ect 
the quality of the reads. The measured base 

sequence is collected and saved in FastQ format 
(Fig.  3.5 ). FastQ is a simple, text based format, 
composed of 4 parts per entry (read): the fi rst line 
starts with an “@” symbol and is an identifi er of 
the read, which may include various kinds of 
information such as the length of the read, a batch 
ID and a read individual ID; the second part is the 
read itself, which may occupy more than one line 
depending on its length; the third part is a single 
line of comment starting with a ‘ + ’ symbol and 
which may repeat the fi rst line, report additional 

  Fig. 3.4    Scheme of DNA and mRNA sample preparation 
for sequencing ( left column ) and pre-processing of raw 
data ( right column ) (Figure is reproduced with permission 

from (Martin and Wang  2011 ). Copyright (2011) Nature 
Publishing Group)       
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information or left blank; the last part is a string 
of symbols, one for each letter in the read 
sequence. These symbols encode for numbers 
that represent an estimate of the quality of the 
resulting sequence. The numbers are calculated 
through a –log 10  (estimated error rate) where the 
estimated error rate is the probability that the let-
ter in a single position is correct.

   The described Illumina short read sequencing 
technology has the advantage to deliver large 
amounts of sequencing data but the relatively 
short sequencing length of 100/125 base pairs, 
which information is insuffi cient to reconstruct 
large repeated regions in the genome and to 
reconstruct the exact transcript profi le for genes 
with a high number of splicing events. The 
obtained data require signifi cant efforts to recon-
struct the transcriptome through a complex  bioin-
formatics   pipeline. Third generation sequencers 
are emerging, such as the PacBio sequencing 
technology, which provide much longer sequence 
reads, up to tens of thousands of consecutive bases, 
an approach that should resolve these issues.  

3.2.3      Bioinformatics   Processing 
of Raw Data 
for Proteogenomics 
Application 

 The obtained raw short sequence read data in 
FastQ format is processed with complex bioin-

formatics workfl ows. A workfl ow typically con-
sists of the following steps:

    1.    Quality assessment of the reads and trimming 
(removing) of low quality reads   

   2.    Assembly of short reads and alignment to the 
reference genome   

   3.    Variant calling and transcript quantifi cation   
   4.    Prediction of translated protein sequence by 

fi nding open reading frames (ORFs) and stop 
codons and saving the results in protein 
sequence Fasta fi le format    

The obtained protein sequence information is 
then used for protein and peptide  identifi cation   
using DBS of LC-MS/MS  proteomics   data, while 
the quantitative transcript profi le is used to deter-
mine the differentially expressed transcripts in a 
group of samples, such as controls and samples 
from different stages of disease. Different tools 
are available for each processing step. The align-
ment of the raw data to the reference genome can 
be replaced with  de novo  hypothesis-free tran-
script assembly. Bioinformatics processing and 
the subsequent statistical analysis is an error- 
prone process and the quality of the obtained 
results should be thoroughly assessed. Each tool 
in the bioinformatics workfl ow makes different 
assumptions which are based on different math-
ematical models and algorithmic approaches, 
which in turn tend to capture only a part of the 
biological signifi cance contained in the data. 
With respect to proteogenomics, the best perfor-
mance assessment is to check the number of 
identifi ed peptides and proteins. This assessment 
can be performed for different workfl ows built 
from different tools and parameters. The sample 
preparation protocol and the bioinformatics 
workfl ow to process  RNA-Seq   data is  presented   
in Fig.  3.4 :

    1.    The quality assessment and trimming is per-
formed with the FastQC (Patel and Jain  2012 ), 
FastX Toolkit (Pearson et al.  1997 ) and 
Trimmomatic tools (Bolger et al.  2014 ) which 
provide a quality control report in html format 
for each raw FastQ fi les. Obviously trimming 
is performed only if the quality-control reports 

  Fig. 3.5    Example of a sequence read of transcript frag-
ment in FastQ format (Adapted with permission from 
Cock et al. ( 2010 ). Copyright (2010) Oxford University 
Press)       
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indicate that this is necessary due to low qual-
ity of the sequence. A very common case is a 
drop in quality in the fi nal part of the read due 
to the degradation of the effi ciency of the 
chemical reaction of the sequencing process. 
These lower quality bases are generally 
removed at this step. The FastQC, FastX 
Toolkit and Trimmomatic tools are easy to use 
and require low computation power.   

   2.    The trimmed FastQ fi les are either aligned to 
the reference genome using aligner tools such 
as STAR (Dobin et al.  2013 ) or Tophat2 (Kim 
et al.  2013 ). The output is then the alignment 
of the reads to the reference genome and the 
result is stored in a Binary Alignment/Map 
(BAM) fi le format. A BAM fi le is a com-
pressed or binary version of a SAM or 
Sequence Alignment/Map format fi le. The 
SAM format follows precise specifi cations 
(see details in Lee et al. ( 2009 )), which give 
the format a fi xed scheme and defi nes where a 
read maps on a reference genome/transcrip-
tome. It is composed of several lines of TAB 
separated fi elds in a fi xed order, preceded by a 
header that gives general information on the 
alignment. The other option is to perform  de 
novo  assembly of the short reads without the 
use of a reference genome. This task is typi-
cally performed with tools such as  ABySS   
(Simpson et al.  2009 ) and Trinity (Grabherr 
et al.  2011 ).  De novo  assembly is a computa-
tionally intensive task, as the tool needs to cal-
culate several possible combinations of reads 
(grouped together in “contigs”). However ref-
erence genomes or transcriptomes are not per-
fect, they do contain errors, and the use of a 
reference genome also restricts the possibility 
to discover novel transcripts. Using a refer-
ence genome is a conservative choice, and can 
be suffi cient when the analysis does not have 
the goal to attempt to capture all the possible 
transcripts in a sample or aims for maximum 
reliability of the assembled sequence of the 
transcripts.   

   3.    The BAM fi le is processed by an assembler 
 tool  , which has the aim to identify the full 
transcript constitution in the measured sample 
and estimate the amount of each transcript. 

Commonly used transcriptome assemblers 
include genome reference-guided tools, such 
as Cuffl inks (Trapnell et al.  2010 ), and 
reference- free or  de novo  transcriptome 
assemblers, for example Trinity (Grabherr 
et al.  2011 ). In addition a BAM fi le can be 
used as input for a  genomic   viewer tool, such 
as IGV (Integrative Genome Viewer) 
(Robinson et al.  2011 ) or Savant (Fiume et al. 
 2010 ). These genome browsers can show 
exactly how the reads are aligned and distrib-
uted through an easy-to-use graphical user 
interface, which may also include peptide 
 abundance which data is available in a prote-
ogenomics study.   

   4.    At this point it is also possible to discover 
sequence variations in the analyzed samples. 
This operation is performed through the use of 
dedicated tools, the “variant callers”, such as 
the HaplotypeCaller algorithm of GATK 
(Genome Analysis Toolkit) (McKenna et al. 
 2010 ) or the SNP Caller which is part of 
SAMTools (Li et al.  2009 ). These algorithms 
are able to effi ciently evaluate if a SNP or 
insertion and deletion (indel) is present at a 
certain position and calculate the probability 
of the correctness of the fi ndings.   

   5.    The fi nal steps consist of prediction of  tran-
scripts   that are most likely translated into pro-
teins and obtain the corresponding protein 
sequence. For this operation specialized tools, 
such as Transdecoder are used. This tool was 
conceived as an additional step to the Trinity 
pipeline but it can also be used as a standalone 
program. Transdecoder accepts fi les in 
General Transfer Format (GTF), which is a 
text- based TAB separated scheme used to 
describe  genomic   entities, such as transcripts 
or genes. GTF fi les are normally used for 
annotation of the transcripts. An alternative 
tool is the recently developed GeneMarkS-T 
(Tang et al.  2015 ), which is an adaptation of 
GeneMarkS (Besemer et al.  2001 ), where pro-
karyotic-only ORF predictor implemented in 
GeneMarkS was modifi ed to translate eukary-
otic transcriptomes. Transdecoder output 
results in a Fasta formatted protein sequence 
list derived directly from the transcript list 
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used as input. Fasta is a very simple text for-
mat for biological sequences, similar to FastQ 
but with only two parts, an identifi er line pre-
ceded by a ‘ > ’ symbol and the sequence itself 
in amino acid or nucleotide sequence of the 
transcripts/ proteins. Example of fasta fi le for-
mat showing the nucleotide base sequence of 
Apex nuclease 1 gene and corresponding 
amino acid sequence of the translated protein 
highlighting  single amino acid variant (SAAV)   
is shown in Fig.  3.6 . The sample-specifi c pre-
dicted amino acid sequence of translated pro-
teins is subsequently used in DBS to identify 
peptides and proteins in raw LC-MS/MS data 
and to determine the proteome constitution of 
the samples. After pre-processing the tran-
script sequence, transcript identity and quan-
tity is obtained. The bioinformatics workfl ow 
used to process  transcripts   including concrete 
tools with the input data is shown in Fig.  3.7 .

        NCBI Gene Expression Omnibus (GEO)    
(Barrett et al.  2013 ) provides repositories for raw 
sequencing data that can be mined and reana-
lyzed, for example to obtain additional informa-
tion on genome or transcript expression profi les 
of the same or similar cell and tissue that is the 
aim of the study.   

3.3       Proteomics   Analysis 

 As mentioned in the introduction, the most popu-
lar shotgun bottom-up LC-MS/MS based pro-
teomics technology is not a sequencing 
technology, but is based on the fragmentation of 
protein-derived peptides. Intact large proteins 
cannot be fragmented effi ciently and large pro-
teins show problems for separation by liquid 
chromatography (LC), a step that is required to 
reduce sample complexity prior to analysis with 

>ENST00000398030_D148E [organism = homo sapiens] APEX nuclease
CCGCTACCCACGTGGGGGCTCAGCGTGCACCCTTCTTTGTGCTCGGGTTAGGAGGAGCTAGGCTGCCATCGGGCCGGTGCAGATACGGGGTTGCTC
TTTTGCTCATAAGAGGGGCTTCGCTGGCAGTCTGAACGGCAAGCTTGAGTCAGGACCCTTAATTAAGATCCTCAATTGGCTGGAGGGCAGATCTCGC
GAGTAGGGCAACGCGGTAAAAATATTGCTTCGGTGGGTGACGCGGTACAGCTGCCCAAGGGCGTTCGTAACGGGAATGCCGAAGCGTGGGAAAA
AGGGAGCGGTGGCATGCCGAAGCGTGGGAAAAAGGGAGCGGTGGCGGAAGACGGGGATGAGCTCAGGACAGAGCCAGAGGCCAAGAAGAGT
AAGACGGCCGCAAAGAAAAATGACAAAGAGGCAGCAGGAGAGGGCCCAGCCCTGTATGAGGACCCCCCAGATCAGAAAACCTCACCCAGTGGCA
AACCTGCCACACTCAAGATCTGCTCTTGGAATGTGGATGGGCTTCGAGCCTGGATTAAGAAGAAAGGATTAGATTGGGTAAAGGAAGAAGCCCCAG
ATATACTGTGCCTTCAAGAGACCAAATGTTCAGAGAACAAACTACCAGCTGAACTTCAGGAGCTGCCTGGACTCTCTCATCAATACTGGTCAGCTCCT
TCGGACAAGGAAGGGTACAGTGGCGTGGGCCTGCTTTCCCGCCAGTGCCCACTCAAAGTTTCTTACGGCATAGGC GAT GAGGAGCATGATCAGGA
AGGCCGGGTGATTGTGGCTGAATTTGACTCGTTTGTGCTGGTAACAGCATATGTACCTAATGCAGGCCGAGGTCTGGTACGACTGGAGTACCGGCAG
CGCTGGGATGAAGCCTTTCGCAAGTTCCTGAAGGGCCTGGCTTCCCGAAAGCCCCTTGTGCTGTGTGGAGACCTCAATGTGGCACATGAAGAAATT
GACCTTCGCAACCCCAAGGGGAACAAAAAGAATGCTGGCTTCACGCCACAAGAGCGCCAAGGCTTCGGGGAATTACTGCAGGCTGTGCCACTGGC
TGACAGCTTTAGGCACCTCTACCCCAACACACCCTATGCCTACACCTTTTGGACTTATATGATGAATGCTCGATCCAAGAATGTTGGTTGGCGCCTTGAT
TACTTTTTGTTGTCCCACTCTCTGTTACCTGCATTGTGTGACAGCAAGATCCGTTCCAAGGCCCTCGGCAGTGATCACTGTCCTATCACCCTATACCTAG
CACTGTGACACCACCCCTAAATCACTTTGAGCCTGGGAAATAAGCCCCCTCAACTACCATTCCTTCTTTAAACACTCTTCAGAGAAATCTGCATTCTATT
TCTCATGTATAAAACTAGGAATCCTCCAACCAGGCTCCTGTGATAGAGTTCTTTTAAGCCCAAGATTTTTTATTTGAGGGTTTTTTGTTTTTTAAAAAAA
AATTGAACAAAGACTACTAATGACTTTGTTTGAATTATCCACATGAAAATAAAGAGCCATAGTTTCA

>ENST00000398030_D148E [organism = homo sapiens] APEX nuclease
MPKRGKKGAVAEDGDELRTEPEAKKSKTAAKKNDKEAAGEGPALYEDPPDQKTSPSGKPATLKICSWNVDGLRAWIKKKGLDWVKEEAPDILCLQETKCS
ENKLPAELQELPGLSHQYWSAPSDKEGYSGVGLLSRQCPLKVSYGIGEEEHDQEGRVIVAEFDSFVLVTAYVPNAGRGLVRLEYRQRWDEAFRKFLKGLAS
RKPLVLCGDLNVAHEEIDLRNPKGNKKNAGFTPQERQGFGELLQAVPLADSFRHLYPNTPYAYTFWTYMMNARSKNVGWRLDYFLLSHSLLPALCDSKIR
SKALGSDHCPITLYLAL

  Fig. 3.6    Example of fasta format showing nucleotide 
base sequence of APEX nuclease 1 gene ( upper part ) and 
the corresponding protein sequence ( lower part ) of tran-
script ENST00000398030_D148E. The header line con-
tains the gene, transcript or protein ID and description of 
the transcript is followed by a line containing the base 
sequence of the transcript. This gene contains a SNP of 
G → T at position 712 leading  SAAV   by replacing aspartic 
acid to glutamic acid at position 148 in the translated pro-

tein sequence. MS/MS spectra of peptide holding the 
SAAV and highlighted in bold in both sequences is shown 
in Fig.  3.11b . Non protein coding part is highlighted in 
 green , the replaced D → E amino acid and GAG → GAT 
codon is highlighted in  red , while the stop codon is 
shown in  blue  (highlights are only used to visualize differ-
ent aspect of the sequence and is no part of the fasta for-
mat defi nition). In transcript T (thymine) is replaced by U 
(uracil)       
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mass  spectrometry  . Fragmenting and separating 
by LC is much more effi cient for smaller peptides 
even though the enzymatic cleavage of proteins 
leads to much higher sample complexity. 

 The fi rst problem related to shotgun LC-MS/
MS proteomics is that the original sample protein 
composition with respect of protein species and 
quantities should be reconstructed from the pri-
mary amino acid sequences and quantities of the 
identifi ed peptides. This operation is called pro-
tein inference (Farrah et al.  2011 ; Nesvizhskii 
 2007 ; Nesvizhskii and Aebersold  2005 ) and can-
not be performed accurately because information 
on the intact protein species composition of the 
sample is lost during the enzymatic cleavage 
step. During protein identifi cation, proteins that 
cannot be distinguished from each other based on 
the set of identifi ed peptides are grouped in pro-
tein groups. Therefore, the quantity of a given 
protein in one group is always the same. Protein 
inference raises the question of how to determine 
the amount of single proteins included in the 
same group. Some methods only use the quantity 
of peptides that uniquely map to a protein group. 

Others split the quantities of shared peptides 
between protein groups according to the ratio of 
unique peptides, this fractional quantity of shared 
peptides is then used together with the complete 
quantities of unique peptides to calculate protein 
quantity. MaxQuant (Tyanova et al.  2015 ; Cox 
and Mann  2008 ) assigns the shared peptides (so 
called razor peptides) to a protein group with the 
largest number of identifi ed peptides and uses the 
quantity of razor peptides in the assigned protein 
group to calculate the quantity of proteins present 
in that particular protein group. The many exist-
ing protein isoforms detected by  RNA-Seq  , 
which are included in the protein sequence Fasta 
fi le used for DBS, result in many identifi ed pro-
teins in protein groups as the outcome of a prote-
ogenomics experiments. This outcome is better 
summarized as aggregate quantitative informa-
tion of all protein products per gene, especially 
when only spectral counts are available, which 
only give semi-quantitative information. Further 
quantitative details should be explored at the pep-
tide level, preferably using single-stage quantifi -
cation, especially when single amino acid 

  Fig. 3.7    Flow chart of  bioinformatics   workfl ow to pre-process sequencing data to make them ready for statistical 
analysis and provide the amino acid sequence of predicted translated proteins       
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variants (SAAV)    or short indels affect only one or 
two peptides of a target protein. 

 Peptide and protein quantifi cation in compre-
hensive bottom-up LC-MS/MS experiments can 
be performed using stable isotope labelling and 
label-free approaches. Stable isotope labeling 
uses either metabolically incorporated stable iso-
topes such as the stable isotope labeling by amino 
acids in cell culture (SILAC) approach to incor-
porate  13 C and  15 N -labelled amino acids that can-
not be synthesized  de novo  by cells in culture 
such as lysine and arginine, or the incorporation 
of  15 N into newly synthetized amino acids and 
thus into the complete newly synthetized pro-
teome. Chemical labels may introduce moieties 
with different stable isotope constitutions that 
result in different  MS   signals either in single 
stage ( e.g. , ICAT) or after fragmentation ( e.g. , 
iTRAQ and TMT) for peptides originating from 
different samples. Stable isotope labeling tech-
niques have the advantage of multiplexing,  i.e. , 
reducing the number of analyses and instrument 
time by analyzing mixed samples, where sample 
specifi c information is obtained from ions with 
the same chemical but different isotopic 
 constitution. This goes at the expense of the 
dynamic measurable concentration range accord-
ing to the multiplexing factor. In label-free quan-
tifi cation the user has the choice between spectral 
count- based analyses based on counting the num-
ber of peptide-spectrum matches (PSMs) for each 
protein, which provide semi-quantitative peptide 
and protein quantifi cation. The other option is to 
use the more accurate single-stage-MS-based 
quantifi cation approach, which calculates the 
peak height, peak area or peak volume of isotopo-
logue peaks in the single-stage  MS   map. For more 
information, the reader is advised to read special-
ized reviews on label-free (Christin et al.  2011 ; 
Horvatovich and Bischoff  2010 ; Horvatovich 
et al.  2006 ) and stable isotope-based quantifi ca-
tion approaches (Bantscheff et al.  2007 ,  2012 ). 

3.3.1     Raw Data 

 Mass  spectrometry   raw data is collected in scans, 
which is in nature one dimensional data with two 

parameters: m/z and ion intensity. However, the 
information content of scans depends on the 
applied mass  spectrometry   method. Nowadays, 
the untargeted comprehensive bottom-up data 
dependent acquisition (DDA) LC-MS/MS 
approach is the most commonly used approach. 
In DDA, a non-fragmented scan is fi rst acquired 
that holds quantitative information on all com-
pounds detected by the instrument at the time of 
the mass spectra acquisition. A single-stage scan 
is followed by 3 to 20 fragment ions scans 
obtained with a small precursor ion isolation 
window which is typically 1–2 Da wide and 
is centered to the most intense single-stage ions. 
The cycle containing single-stage scan and the 
3–20 fragment ion scans with different precursor 
isolation windows is then repeated for the whole 
experiment, adopting dynamically to the actual 
peptide composition eluting from the LC col-
umn during the analysis, and results in fragmen-
tation of the most abundant ions entering the 
mass spectrometer. The selected ions are then 
excluded with twice the peak width at half maxi-
mum to enable other lower abundant not yet frag-
mented peaks to be selected. Despite the m/z 
exclusion, DDA is biased towards high abundant 
peptides. The obtained fragment spectra (or MS/
MS spectra) are then used for peptide  identifi ca-
tion  , which means that MS/MS spectra are 
assigned to peptide primary amino acid 
sequences. Recently, data independent acquisi-
tion (DIA) (Sajic et al.  2015 ) is gaining popular-
ity in which the precursor isolation window is 
larger, typically of 20–25 Da. The non- fragmented 
scan is followed by successive fragmented scans 
that have a precursor isolation window targeting 
different consecutive precursor m/z ranges. One 
full instrument duty cycle covers a large range of 
m/z ratios (typically between 300 and 2000 Da in 
proteomics applications) leading to 2–3 s of duty 
cycle. In theory, DIA data contains all the infor-
mation that is possible to collect with an instru-
ment that includes one stage fragmentation. DIA 
data is more complex and is more challenging to 
analyze and interpret than DDA fragment spectra 
obtained with small isolation windows that have 
low probability to have interferences i.e. frag-
ment ions from multiple co-fragmented peptides. 
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The  bioinformatics   community is currently 
developing new solutions to analyze such data, 
such as OpenSWATH (Rost et al.  2014 ) or 
DIANA (Teleman et al.  2015 ). This chapter does 
not discuss the differences and properties of the 
different types of mass spectrometers and the 
reader is invited to visit reviews on this topics 
(Bensimon et al.  2012 ; Gstaiger and Aebersold 
 2009 ; Domon and Aebersold  2006 ). 

 The raw mass  spectrometry   data is generally 
saved by vendor data acquisition software in ven-
dor specifi c binary formats, which are different 
from each other. To harmonize data storage, the 
 HUPO   protein standardization initiative (PSI) 
has established an xml based format for raw mass 
 spectrometry data  , such as mzXML (Pedrioli 
et al.  2004 ), mzData (Orchard et al.  2004 ) and 
mzML (Turewicz and Deutsch  2011 ), but older 
ASCII format such as Mascot Generic Format or 
mgf (Kirchner et al.  2010 ) are still used e.g. as 
input format for various data processing tools. 
Standardization of processed data for different 
purposes, such as to store peptide  identifi cation   
and protein inference results in mzIdentML 
 format, to store quantifi cation data in mzTab 
(Griss et al.  2014 ) and mzQuant (Walzer et al. 
 2013 ) formats and to exchange quality control 
metrics in qcML (Walzer et al.  2014 ) format have 
been developed by the proteomics community. 
The proteoWizard (Chambers et al.  2012 ; 
Kessner et al.  2008 ) toolset contains libraries and 
tools to convert raw vendor specifi c mass  spec-
trometry   data to  HUPO   PSI standard formats and 
enable the user to perform basic mass  spectrom-
etry   signal processing operations. Raw mass 
spectrometry data can be visualized by multiple 
tools such as BatMass ( Nesvizhskii and 
Avtonomov ), TOPPView (Sturm and Kohlbacher 
 2009 ) from OpenMS (Bertsch et al.  2011 ) or 
PView (Khan et al.  2009 ).  

3.3.2      Peptide  Identifi cation   
and Protein Inference 

 Primary peptide sequences are determined from 
fragment (MS/MS) spectra. The most widely 
used fragmentation approach is collision induced 

dissociation (CID), when ions of intact peptides 
are accelerated in a vacuum and collided with 
neutral gase. The collision is transferring energy 
to the peptides leading to cleavage of bonds in the 
peptide backbones Another type of fragmentation 
is electron transfer dissociation (ETD), which 
uses a negatively charged poly-aromatic com-
pound such as fl uoranthene, anthracene or azo-
benzene to transfer an electron to the positively 
charged peptide. The transferred electron con-
veys energy to the peptide backbone, which leads 
to fragmentation. There are three bonds that can 
lead to fragmentation on the peptide backbone 
leading to six types of fragments: a, b, c contain-
ing N-terminal and x, y and z containing the 
C-terminal of the peptide (Fig.  3.8a ). However, 
not all fragments have the same probability to be 
observed in an MS/MS spectrum, for example, 
CID mainly leads to the formation of y ions, also 
resulting in lower abundance b ions and a ions 
can sometimes be observed. ETD fragmentation 
mainly leads to the formation of c and z ions. The 
ionization and fragmentation effi ciency of intact 
peptides can be infl uenced by chemical modifi ca-
tions, for example by using chemical labels that 
contain basic residues or residues that can pro-
vide a mobile proton (Bischoff et al.  2015 ). In the 
fragmentation process, the lower energy bonds 
will be cleaved, which often results in an incom-
plete fragment ion series (Fig.  3.8b ). This pre-
vents the  de novo  interpretation of the mass 
spectra, which prevent identifi cation of the MS/
MS spectra if the user does not have any pre-
sumptions on the peptides sequence. Additional 
fragment mass spectra may contain considerable 
noise, which further complicates the identifi ca-
tion process. For this reason, the best approach to 
interpret such data is to use a list of protein 
sequences that are supposed to be present in the 
analyzed samples. Such protein sequence can be 
predicted from the genome of the host organism, 
which contains the most prevalent protein 
sequences or the so-called canonical sequences. 
UniProt (Consortium  2015 ) and Ensembl 
(Herrero et al.  2016 ) provide high quality canoni-
cal sequences that are used for peptide and pro-
tein identifi cation during normal proteomics data 
analysis. One must note that the canonical 
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  Fig. 3.8    ( a ) schematic representation of fragment ion 
series (a, b, c for N-terminal and x, y, z for C terminal) 
generated during peptide backbone fragmentation. y, b 
and a ions are generated mainly during CID ( purple ) frag-
mentation, while c, z and with lower abundance y ions are 
generated during ETD ( blue ) fragmentation. ( b ) CID MS/
MS spectra of KIQVLQQQADDAEER peptide showing 
complete y and almost complete b ion series, which spec-
tra is suitable for  de novo  interpretation. ( c ) MS/MS of 
EANFDINQLYDCNWVVVNCSTPGNFFHVLR pep-
tides, which shows incomplete y and b ion series and gaps 

in y ion series are highlighted with  red arrow  indicating 
the missing sequence part. These gaps prevent  de novo  
interpretation since the exact amino acid sequence infor-
mation is missing. In MS/MS spectra non-identifi ed sig-
nals are highlighted in  grey . These signals may correspond 
to noise, non-interpreted fragment ions or fragment ions 
from co-eluting peptides that fell into the precursor ion 
selection window. Visualisation made with PeptideShaker 
(Vaudel et al.  2015 ) and the fi gure is adapted with permis-
sion from  Bischoff   et al .  ( 2015 ) (Copyright (2015) 
Elsevier)       
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sequence contains the sequence of most prevalent 
protein form, which is the most similar ortho-
logue sequence to other species and the length of 
the protein form that allow the clearest descrip-
tion of the protein sequence variability (see 
Introduction Sect.  3.1 ). This protein sequence 
does not allow identifi cation of all protein 
sequence variants, especially those that are spe-
cifi c to individuals and may bear importance in 
disease mechanisms.

   In an LC-MS/MS dataset not all MS/MS spec-
tra are identifi ed during DBS, due to the follow-
ing reasons:

    1.    The fragment spectra is too noisy   
   2.    The fragmentation effi ciency is too low to per-

form accurate identifi cation   
   3.    The absence of the peptide sequence in the 

protein sequence database   
   4.    The presence of PTMs not searched during 

DBS     

 Sharing raw LC-MS/MS data and reusing it 
by several  bioinformatics   portals  e.g. , to  catalogue 
identifi ed peptides and provide high quality spec-
tral libraries such as PeptideAtlas (Deutsch et al. 
 2008 ; Farrah et al.  2011 ) is promoted by 
ProteomeXchange (Ternent et al.  2014 ; Cote 
et al.  2012 ), which is an initiative of the European 
 Bioinformatics   Institute to store raw proteomics 
mass  spectrometry   data. 

 Due to gaps in fragment ion series and noise in 
fragment spectra, the most successful strategy is 
DBS. In this process the sequence of proteins 
supposed to be present in the sample are digested 
 in silico  with the protease used for the protein 
cleavage in the experiment and peptides that have 
the same theoretical mass (with certain mass tol-
erance) than the precursor ion are selected. The 
mass of high abundant ion series of the selected 
peptides are  in silico  calculated and the obtained 
mass list is compared with the mass list of the 
MS/MS spectra using score specifi c to the DBS 
algorithm. The peptide with the highest score if it 
pass the threshold with given false discovery rate 
(FDR) is then considered to be the identity of the 
MS/MS spectra (Fig.  3.9 ). Scores are generally 

dependent from multiple parameters, such as the 
size of the search space,  i.e. , how well does the 
protein sequence database match the measured 
proteome (Shanmugam and Nesvizhskii  2015 ), 
the considered PTMs of peptides, the mass reso-
lution of the precursor and fragment ions, and the 
fragmentation effi ciency and quality (noise con-
tent) of the MS/MS spectra. Additionally, not all 
MS/MS spectra will have a corresponding match 
in the search space; such spectra will be matched 
and scored erroneously. For this reason, the goal 
is to fi nd scores that can separate correct identifi -
cations from the incorrect ones with well 
described statistics such as false discovery rate 
(FDR).

   The score distribution of correct and incorrect 
identifi cations should be determined to calculate 
FDR, and there are two main widely used 
approaches:

    1.    Expectation-Maximization (EM) (Keller et al. 
 2002 ) approach based on empirical Bayesian 
statistics   

   2.    Target-decoy approach (TD) (Elias and Gygi 
 2010 )     

 EM tries to identify the score distribution of 
the correct and incorrect hits by calculating two 
distinct distributions based on the mixture model. 
While the TD approach tries to determine the dis-
tribution of the incorrect identifi cations based on 
decoy peptide sequences generally obtained by  in 
silico  digestion of reversed protein sequences 
used for the DBS. These approaches allow the 
user to obtain a list of identifi ed PSMs, which can 
be used to derive a list of identifi ed unique pep-
tides, which can then be used to perform protein 
inference. 

 Since peptides are measured and identifi ed in 
shotgun LC-MS/MS experiments, the original 
protein constitution of the samples should be 
reconstructed based on the identifi ed set of pep-
tides (Fig.  3.10 ). This is not a trivial task, since 
identifi ed peptides sequence may map uniquely 
to a protein sequence or be shared between mul-
tiple ones. The other difference between sequenc-
ing and proteomics data is the scale of the number 
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of entries. The number of identifi ed peptide 
sequences is much lower (typically 10,000–
30,000 unique sequences) than the number of 
uniquely mapping reads (typically 20 millions 
reads). The overlap between the peptide 
sequences is low, which generally occurs between 
peptides having missed cleavages (locations in 
the protein where the enzyme should cut in the-
ory, but did not cut to produce a peptide).

   Identifi ed proteins are grouped together when 
they cannot be distinguished from each other 
based on the set of observed peptide sequences in 

the dataset. The sequence coverage of the identi-
fi ed protein is an important parameter. The 
sequence coverage depends on the abundance of 
the protein and the peptide composition. The 
most abundant proteins have higher sequence 
coverage than lower abundant proteins. The aver-
age protein sequence coverage is low, with a 
medium of 10–20 % in a typical proteomics data-
set. This means that peptides that could distin-
guish various protein isoforms, due to for instance 
splice junction differences,  SAAV   or small 
indels, are incomplete even when deep sequenc-

  Fig. 3.9    Schematic representation of  bioinformatics   
algorithms performing peptide spectrum matches ( PSM ). 
Acquired raw MS/MS spectra are either submitted to (1). 
DBS that match list of fragments ions predicted from 
sequence that supposed to be present in the sample, (2). 
submitted to spectral library search, which match the raw 
MS/MS to a library of annotated MS/MS spectra, (3). sub-
mitted to sequence tag search (or mass-tag) algorithm or 

(4).  de novo  sequencing. The output of the search is a 
ranked list of peptides, where the peptide sequence with 
best score is considered as best match and peptide 
sequence of the analyzed MS/MS spectra. The scores of 
the best matches are submitted to FDR calculation either 
using empirical expectation-maximization algorithm or 
target-decoy approach (Figure adapted with permission 
from (Nesvizhskii  2010 ). Copyright (2010) Elsevier)       
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ing is performed (Ruggles et al.  2015 ; Tay et al. 
 2015 ; Sheynkman et al.  2013 ). The low sequence 
coverage is caused by multiple factors:

    1.    Proteins and peptide signals cannot be ampli-
fi ed (as is the case with DNA and RNA 
signals)   

   2.    Not all MS/MS fragment spectra are 
identifi ed   

   3.    The applied protease ( e.g. , trypsin) does not 
provide unique or enough protein sequence 
specifi c peptides for the complete sequence of 
the analyzed proteins    

  Sequence coverage can be improved by deep 
sequencing that use multilevel fractionation,  e.g. , 
by applying multidimensional chromatographic 
separation (Horvatovich et al.  2010 ), by using 
different peptide fragmentation approaches in the 
mass spectrometer and chemical labels that 
enhance fragmentation effi ciency (Bischoff et al. 
 2015 ) and by using multiple proteases for enzy-

matic cleavage (Low et al.  2013 ; Trevisiol et al. 
 2015 ). 

 The false identifi cation of peptides may lead 
to the incorrect identifi cation of a protein and the 
fact that multiple correctly identifi ed peptides 
map to a single protein, while incorrectly identi-
fi ed peptides map randomly to single proteins in 
the database leads to an enrichment of false pro-
tein identifi cations compared to PSM or peptide 
identifi cation errors. For this reason, the FDR 
rate should be calculated not only for the PSM 
and peptide but also at the protein level (Vaudel 
et al.  2015 ). 

 Beside DBS, other approaches can be used to 
perform PSM. The short sequence tag approach 
tries to identify consecutive amino acid sequence 
in the MS/MS spectra and uses the precursor ion 
mass and the masses of the fragments from the N, 
and the C terminus of peptides for the identifi ca-
tion. MS/MS spectra that include low noise con-
tent and shows complete fragment ion series 
could be used for hypothesis-free  de novo  
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protein identifications

Protein level
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MS/MS spectra
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database 
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  Fig. 3.10    Schematic representation of shotgun LC-MS/
MS analysis of a proteomics samples and followed  bioin-
formatics   data interpretation. Original protein constitution 
of a samples is disrupted by enzymatic cleavage resulting 
in a highly complex peptide mixture analyzed by LC-MS/
MS. The obtained MS/MS of peptides are then identifi ed 
with DBS or by other tools and the set if highly confi -

dently identifi ed peptides are used to construct back the 
original protein constitution of the sample by performing 
protein inference.  Black squares  in  peptide identifi cations   
represent wrong PSM, which lead to include incorrectly 
identifi ed peptides and proteins (Figure adapted with per-
mission from Nesvizhskii et al .  ( 2003 ) Copyright (2003) 
American Chemistry Society)       
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sequencing, without the use of any assumptions 
on protein sequence that should be present in the 
analyzed sample. A more and more popular 
approach is the use of spectral similarities 
between the MS/MS spectra of interest and high 
quality identifi ed MS/MS spectra (so called con-
sensus spectra) often averaged from multiple 
MS/MS spectra of different experiments. This 
approach is called spectral library search (Lam 
 2011 ) and has the advantage that it does not only 
use the mass list of the fragment ions, but that it 
also includes their intensity, which is a parameter 
that is diffi cult to predict  in silico  and which is 
not or only partially included in DBS. More and 
more high quality peptide spectral libraries are 
available that can be used to perform spectral 
library searches. High quality annotated spectral 
libraries are available such as NIST, the 
PeptideAtlas (Deutsch et al.  2008 ) and the Global 
Proteome Machine Database (GPMDB) (Craig 
et al.  2006 ). Figure  3.9  provides a summary of 
the most important PSM identifi cation 
strategies. 

 In proteogenomics, the FDR rate of MS/MS 
identifi cations of novel peptide differs from pep-
tides derived from canonical sequences of public 
databases, such as UniProt (Consortium  2015 ). 
For this reason the best PSM scoring strategy is 
cascade identifi cation, which includes consecu-
tive steps of identifi cation as follow:

    1.    Filter out all low quality MS/MS spectra   
   2.    DBS identifi cation using UniProt database 

(SwissProt and TrEMBL) or Ensembl   
   3.    Identifi cation of the remaining non-identifi ed 

MS/MS spectra with novel peptide or protein 
sequences (Nesvizhskii  2014 )    

  Similar cascade identifi cation strategies have 
been implemented for different types of rare pep-
tides, such as non- and semi-tryptic peptides, ter-
minal peptides and PTM searches as described in 
Kertesz- Farkas    et al.  (Kertesz-Farkas et al.  2015 ). 

 Many software tools exist to perform PSM, 
protein inference using a given set of FDR at 
PSM, peptide and protein levels, these include 
the Trans Proteomic Pipeline (Deutsch et al. 
 2010 ; Deutsch et al.  2015 ) (TPP, open source), 

the TOPPAS workfl ow, which is based on 
OpenMS for label-free quantifi cation and identi-
fi cation (Weisser et al.  2013 ), MaxQuant (Cox 
and Mann  2008 ) (open source), SearchGUI 
(Vaudel et al.  2011 ) / PeptideShaker (Vaudel 
et al.  2015 ) (open source) and PEAKS (commer-
cial) (Zhang et al.  2012 ). Many individual tools 
exist for DBS (Eng et al.  2013 ; Kim and Pevzner 
 2014 ; Bjornson et al.  2008 ; Geer et al.  2004 ),  de 
novo  sequencing (Muth et al.  2014 ; Jeong et al. 
 2013 ; Frank and Pevzner  2005 ) and FDR calcula-
tions at PSM, at peptide and protein levels (Kall 
et al.  2007 ). For further details on these tools, the 
reader is invited to read specialized reviews on 
the  topi c (Hoopmann and Moritz  2013 ; Eng et al. 
 2011 ; Hughes et al.  2010 ; Kapp and Schutz 
 2007 ).   

3.4     Applications, Conclusion 
and Future Perspectives 

 Acquiring  genomics   (mainly polyadenylated 
mRNA) and  shotgun proteomics   data from the 
same sample and evaluate it in a proteogenomics 
data integration pipeline allows to gain informa-
tion at both molecular levels but also to identify 
novel protein forms that would not be identifi ed 
using public databases with DBS. As an example, 
we present the data of the proteogenomics analy-
sis of the human lung fi broblast cell line MRC5. 
Using the standard identifi cation of UniProt we 
identifi ed 11,936 peptides and when we used the 
RNA sequence information of the same cells we 
could identify an additional 282 peptides, which 
represent the sample specifi c peptide sequence. 
Figure  3.11a  shows a number of peptide 
sequences that has been identifi ed with canonical 
sequences of UniProt, peptides that match to 
 SAAVs   due to non-synonymous SNPs, peptides 
matching to new isoforms and peptides that 
match to non-annotated new gene models. Figure 
 3.11b  shows an example of a high quality MS/
MS spectrum presented with complete y and b 
ion annotation of peptides (VSYGIG(D → E)
EEHDQEGR) holding  SAAV   that replaces an 
aspartic acid (D) to glutamic acid (E) at positon 
148. This peptide is mapping uniquely to APEX 
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nuclease, which is a multifunctional DNA repair 
enzyme. This peptide cannot be identifi ed in the 
human UniProt protein sequence, but can be 
found in the APEX nuclease sequence of many 
other species, which indicates that this  mutation   
may alter the activity of this protein in the MRC5 
human cell line.

   The moderate spearman correlation of 0.4 
between the amount of transcript coding proteins 
and proteins shows that there is an additional 
level of regulation which includes post- 
transcriptional and post-translational effects 
(Schwanhausser et al.  2013 ,  2011 ). Therefore, 
the information at the two molecular levels dif-
fers and should be considered to be complemen-
tary. Both levels may deliver large amount of 
information, which is diffi cult to interpret, such 
as number of differentially expressed proteins. In 
this case, focusing on the intersection of genes 
and transcripts / proteins that show the same 
trend at both molecular levels may provide a use-
ful focus to interpret the outcome of a proteoge-
nomics study. 

 An example of considering joint changes at 
the transcriptomics and  proteomics   levels is 
shown in Fig.  3.12 . This fi gure shows a pseudo 

Volcano plot indicating a fold change and  t -test 
signifi cance at transcript and protein levels. The 
result was obtained in a proteogenomics study 
performed to identify molecular changes in liver 
of hypertensive SHR rats when compared to a 
control BN-L x  rat strain. The study by  Low   et al. 
( 2013 ) shows genome and polyadenylated tran-
scriptome sequencing for eight rats (about 100 
million of reads/sample) and deep  proteomics   
analysis for two rats using a two dimensional 
LC-MS/MS experiment. To obtain the highest 
possible sequence coverage and the largest mea-
sured dynamic concentration range, fi ve prote-
ases (trypsin, chymotrypsin, LysC, GluC and 
AspN) and strong cation exchange (SCX) as fi rst 
liquid chromatography and reversed phase C18 
(RPC18) with low pH as second dimension were 
used. This setup led to 36 fractions / samples and 
180 RPC18 analysis using high resolution 
Orbitrap instrument and nearly 2 weeks of analy-
sis time. From the acquired 12 million MS/MS 
spectra, two million were identifi ed using 
Mascot / PEAKS DBS searches and resulted in 
175,000 non-redundant peptide sequences 
matching to 26,463 rat proteins. In this experi-
ment, 1195 predicted new genes, 83 splicing 
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  Fig. 3.11    Identifi cation of peptides that match uniquely 
to sample specifi c protein forms in human MRC5 fi bro-
blast cell line. ( a ) Venn diagram representing the number 
of peptides that has been identifi ed using protein sequence 
database containing sequence from UniProt, non- 
synonymous isoforms, new isoforms and new gene mod-
els. ( b ) example of CID MS/MS spectra of 

VSYGIG(D → E)EEHDQEGR with annotation of y and b 
ion series of peptides that hold  SAAV   replacing aspartic 
acid (D) to Glutamic acid (E) at position 148. Base 
sequence of the corresponding gene and the amino acid 
sequence of the corresponding protein is shown in Fig. 
 3.6 , highlighting the gene structure, the presented peptide 
sequence and the position of  SAAV         

 

R. Barbieri et al.



41

  Fig. 3.12    Outcome of 
 proteogenomics   study in 
hypertensive SHR and 
control BN-L x  rats. ( a ) 
pseudo Volcano plot 
showing fold changes in 
transcript on the 
horizontal axis and fold 
changes of proteins in 
the vertical axis.  Blue 
dots  (n = 59) represent 
signifi cant changes at 
transcriptome level only 
and  red dots  (n = 54) 
represent signifi cant 
changes at transcript and 
protein levels. The most 
signifi cantly down-
regulated Cyp17a1 gene 
is highlighted with red 
circle. ( b ) transcript and 
protein expression level 
at location of gene 
Cyp17a1 showing the 
position of incorrectly 
annotated start site (TSS 
 black arrow ) and the 
real start site (TSS  grey 
arrow ). ( c ) expression 
quantitative trait loci 
(eQTL) showing the 
transcript expression 
regulation by the SNP at 
the real start site 
(Adapted with 
permission from  Low   
et al. ( 2013 ) Copyright 
(2013) Elsevier)       
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events, 126 proteins with non-synonymous vari-
ants and 20 isoforms with non-synonymous RNA 
editing were identifi ed.

   Differential gene expression analysis at both 
molecular layers revealed that genes related to 
cytochrome P450 (CYP450) are mainly differen-
tially expressed in the same direction. Particularly, 
the gene Cyp17a1 was the strongest down- 
regulated in hypertensive SHR rats. Having both 
 genomics   and transcriptomics data in hand, it 
was demonstrated that the transcription start site 
was incorrectly annotated in the reference rat 
genome and that the correct start site was 2 kb 
further upstream from the current annotation on 
the 5’ exon. The correct start site in SHR rats 
included a SNP, which prevented transcription 
and translation of the protein coded by the 
Cyp17a1 gene (Fig.  3.11b ). In this case the prote-
ogenomics analysis helped to identify a gene 
related to the hypertensive rat phenotype, but also 
to correct the  genome annotation  , revealing the 
cause of the down-regulation of the transcript and 
the protein product by a SNP at the starting site of 
the Cyp17a1 gene. 

 Proteogenomics still requires important efforts 
to collect data at  genomic   and/or transcriptomic 
and  proteomics   levels and the correct analysis of 
the obtained data, which requires expertise from 
both omics fi elds as well as from  bioinformatics  . 
Despite the signifi cant improvement of high- 
throughput  proteomics    peptide identifi cation   
technology in recent years, proteomics still does 
not provide clean data for  de novo  sequencing 
and is unable to deliver the same coverage of pep-
tide sequence information when compared to 
 genomics   sequencing technology. Additional 
improvement will be possible by combining ribo-
somal sequencing data, the so-called translatome, 
with transcriptomics, since it helps to fi lter out 
transcripts that have a low potential for transla-
tion and may include potentially translated 
lncRNA – despite the fact that this technology 
delivers only 30 nucleotide base length sequences 
(Gawron et al.  2014 ; Chang et al.  2014 ). 
Proteogenomics analysis can be completed with 
the PUromycin-associated Nascent CHain 
Proteomics (PUNCH-P) technology that aims to 
identify newly synthetized proteins by capturing 

ribosome-nascent chain complexes from cells 
followed by incorporation of biotinylated puro-
mycin (Aviner et al.  2013 ). 

 Further impetus for proteogenomics is evident 
in the Chromosome-Centric Human Proteome 
Project (C-HPP) (Horvatovich et al.  2015 ), which 
aims to catalogue all human protein products and 
make them searchable on the basis of  genomics   
location. Proteogenomics data acquisition and 
data integration plays a central role in C-HPP, 
which promotes the development of new tech-
nologies and  bioinformatics   workfl ows with 
strong quality control, and aims to provide a 
powerful technology platform for clinical appli-
cation and personalized medicin       e.     
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      Identifi cation of Small Novel 
Coding Sequences, 
a Proteogenomics Endeavor                     

     Volodimir     Olexiouk      and     Gerben     Menschaert    

    Abstract  

  The identifi cation of small proteins and peptides has consistently proven 
to be challenging. However, technological advances as well as multi- 
omics endeavors facilitate the identifi cation of novel small coding 
sequences, leading to new insights. Specifi cally, the application of next 
generation sequencing technologies (NGS), providing accurate and sam-
ple specifi c transcriptome / translatome information, into the proteomics 
fi eld led to more comprehensive results and new discoveries. This book 
chapter focuses on the inclusion of RNA-Seq and RIBO-Seq also known 
as ribosome profi ling, an RNA-Seq based technique sequencing the +/− 
30 bp long fragments captured by translating ribosomes. We emphasize 
the identifi cation of micropeptides and neo-antigens, two distinct classes 
of small translation products, triggering our current understanding of biol-
ogy. RNA-Seq is capable of capturing sample specifi c genomic variations, 
enabling focused neo-antigen identifi cation. RIBO-Seq can identify trans-
lation events in small open reading frames which are considered to be 
non-coding, leading to the discovery of micropeptides. The identifi cation 
of small translation products requires the integration of multi-omics data, 
stressing the importance of proteogenomics in this novel research area.  
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4.1        Introduction 

  Unraveling         protein  biosynthesis   is undoubtedly 
a multi- omics integration   endeavor. From the 
DNA template ( genomics  ) a region is transcribed 
(transcriptomics) and subsequently translated 
(translatomics) into protein products ( pro-
teomics  ). The aforementioned omics fi elds defi -
nitely intertwine, but are likewise considered 
self-suffi cient, demonstrated by their vast com-
plexity. Integration of matching multi-omics 
datasets, although challenging, can lead to more 
sound results and even new insights. Advances 
in  bioinformatics   have facilitated this multi-
 omics integration   and expert tools became avail-
able to tackle specifi c parts of proteogenomics 
analyses ( e.g. , PROTEOFORMER (Crappé et al. 
 2014a ), PEPTIDESHAKER (Vaudel et al. 
 2015b ), also see (Menschaert and Fenyö  2015 ) 
for a review of  bioinformatics   tools available in 
the proteogenomics fi eld). An intriguing multi-
omics empowered fi eld tries to identify novel 
protein coding sequences. Direct assessment of 
proteins through mass  spectrometry   based  pro-
teomics   analysis, combined with  genomics  , tran-
scriptomics and translatomics information 
provides the necessary means to unravel the 
information fl ow from DNA to proteins (Wang 
and Zhang  2014 ). Particularly, the identifi cation 
of  micropeptides  , translation products of small 
open reading  frames  , and neo- antigens, peptides 
resulting from proteins variants conceivably rec-
ognized by the immune system, are discussed in 
this book chapter. First, we will briefl y describe 
the MS-based  proteomics   technology, highlight-
ing the necessity for multi-  omics integration   in 
the research fi elds mentioned above. 

 As mentioned, the preferred methodology for 
protein /  peptide identifi cation   is mass  spectrom-
etry   (MS)   , a technique with high sensitivity and 
specifi city (Cheng et al.  2014 ; Ryu  2014 ), capa-

ble of detecting up to 10,000 proteins from a 
single sample (Nagaraj et al.  2011 ). The global 
workfl ow in  MS   consists of enzymatic digestion 
of proteins extracted from the sample into pep-
tides that are subsequently fragmented and ana-
lyzed by a mass spectrometer, providing peptide 
fragmentation spectra by registering the mass-to- 
charge ratio of ionized peptide fragments. 
Peptides are identifi ed through database search 
engines ( e.g. , X!tandem (Craig and Beavis  2004 ), 
Myrimatch (Tabb et al.  2007 ), MS-GF+ (Kim 
and Pevzner  2014 ; Granholm et al.  2014 ), Comet 
(Eng et al.  2015 ), MS Amanda (Dorfer et al. 
 2014 )). A peptide-spectrum match (PSM) score 
is calculated by comparing experimental spectra 
against theoretical spectra, generated after  in 
silico  digestion of all proteins provided in a 
sequence database. Statistical validation methods 
in  MS  -based  proteomics   compute the false dis-
covery rate (FDR) by means of a target-decoy 
approach assuming the reference database to 
contain the “true” pool of sequences represented 
in the sample (Hernandez et al.  2014 ). 
Consequently, deviation from this assumption 
impairs validation, implying that the main para-
digm here is not to use the most exhaustive refer-
ence database, but to adversely focus on the most 
suitable reference database representing the true 
nature of the biological sample (Gupta et al. 
 2011 ; Nesvizhskii  2010 ; Wang et al.  2009a ; 
Keller et al.  2002 ). Obviously, small proteins 
( micropeptides  ) produce less cleaved peptides 
and are often not present in reference  protein 
databases  , implicating their  MS   identifi cation. 
Also, distinguishing resembling peptides can be 
complicated, as is frequently the case for neo- 
antigen identifi cation. 

 Search engines and algorithms will defi nitely 
infl uence the  peptide identifi cation   rate, but the 
reference database construction is pivotal, as 
inclusion is a prerequisite for identifi cation. 
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Uniprot-KB (EMBL et al.  2013 ; Apweiler et al. 
 2014 ) is mostly used as the reference database in 
the  MS  -based  proteomics   identifi cation process. 
This database is incomplete as it (partly) lacks 
information on novel proteoforms (isoforms), 
single nucleotide variation (SNV), indels (inser-
tions and deletions), and gene fusion products. A 
more suitable reference database for novel pro-
tein identifi cation is constructed containing all 
ORFs from the translation of the genome in its 
six reading frames. This strategy makes that all 
possible protein forms except for peptides span-
ning the exon junctions are included. That is why 
these are widely used for prokaryotes by virtue of 
a small genome and lack of splicing (Baudet 
et al.  2010 ). Since 98 % of the human genome is 
predicted to be non-coding (Lander et al.  2001 ), 
this approach would massively increase the 
search space resulting in an unattractive approach 
in terms of both computation time and error rate, 
while also omitting  mutations  , small open read-
ing  frames   and non-AUG start sites. 

 Considering the 6 frame translation approach, 
only one sixth are true candidates, impairing the 
statistical validation model used (Hernandez 
et al.  2014 ; Blakeley et al.  2012 ). Furthermore, 
splice isoforms, single nucleotide variation and 
indels remain undetectable in a 6-frame trans-
lated reference database. A smaller reference 
database can be constructed from cDNA libraries 
or expressed sequence tags (EST), ensuring that 
the corresponding sequences are transcribed as 
they are derived from RNA (Hernandez et al. 
 2014 ). Furthermore, as the reference database 
has been constructed from RNA, alternative 
splice proteoforms may be included. 
Implementing such strategy in human has suc-
ceeded to compress the database to 3 % compared 
to a 6-frame reference database, with minimal 
sacrifi ces to the peptide sequence content 
(Edwards  2007 ). Another study using the 
Ensembl (Cunningham et al.  2014 ) database, 
including all isoforms, observed a 7 % increase in 
 peptide identifi cation   compared to the non- 
redundant Swiss-Prot database (Fei et al.  2011 ). 
Tools as GENQUEST reduce the search space by 
fi ltering peptides on their mass and isoelectric 
point (Sevinsky et al.  2008 ). Although the afore-

mentioned database choices have proven to be 
useful, the generated reference database contains 
sequences on a species wide level, where sample 
specifi c  genomic   (SNVs, indels) and RNA splice 
variations remain unregistered.  Next generation 
sequencing (NGS)   techniques enable the user to 
capture the transcriptome and/or translatome rel-
atively accurate, fast and cost-effi cient, thus 
enabling sample-specifi c reference database con-
struction (Bahassi and Stambrook  2014 ). This 
review discusses how the integration of NGS 
techniques with  MS  -based  proteomics   enables 
the identifi cation of novel, small proteins, 
strongly focusing on  ribosome profi ling   and 
 RNA-Seq  . To illustrate the relevance of these 
techniques in current novel research fi elds, RNA- 
Seq mediated neo-antigen discovery and  RIBO- 
Seq   empowered  micropeptide    identifi cation   are 
discussed.  

4.2       RNA-Seq   

 The majority of  MS  -based  proteomic   studies 
consist of comparing the obtained spectra against 
 protein databases   of known / predicted proteins, 
resulting in a high number of unidentifi ed spec-
tra. These unidentifi ed spectra may map to novel 
peptides absent from the used  protein database  , 
represent splice variants, alternative open reading 
frames ( e.g. , stop codon read-through, alternative 
start sites) or genetic variations (Ning and 
Nesvizhskii  2010 ). RNA-Seq provides a compre-
hensive profi le of the transcriptome and enables 
the construction a database refl ecting the native 
transcript composition, including those novel 
sequences (Woo et al.  2014 ; Marguerat and 
Bähler  2010 ; Wang et al.  2009b ). A study per-
formed by  Wang   et al. ( 2012 ) describes a work-
fl ow to derive a  protein database   from RNA-Seq 
data and records a substantial increase in  peptide 
identifi cations   in comparison to searches against 
an Ensembl database. Furthermore, RNA-Seq 
data allowed the detection of peptides containing 
SNPs associated with cancer. A workfl ow 
designed by  Sheynkman   et al. ( 2013 ), establish-
ing a database focusing on splice junctions 
derived from RNA-Seq, identifi ed unannotated 
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transcript junctions from Jurkat cells. Compared 
to cDNA and EST libraries, RNA-Seq provides a 
more advanced and comprehensive methodology 
to identify novel splice junctions (Sheynkman 
et al.  2013 ). Moreover, RNA-Seq enables  pro-
teomics   studies on non-model organisms with 
limited  genome annotation   (Lopez-Casado et al. 
 2012 ; Song et al.  2012 ; Armengaud  2013 ). Many 
RNA-Seq datasets are publically available ( e.g. , 
in the Sequence Read Archive (Leinonen et al. 
 2011b ) or European Nucleotide Archive 
(Leinonen et al.  2011a )) and can be utilized in 
proteogenomics applications. It is advised to 
pool multiple RNA-Seq experiments cumula-
tively (Woo et al.  2014 ) to construct a search 
space when non-matching  proteomics   and tran-
scriptomics datasets are used. 

4.2.1     Neo-antigens 

 The immune system recognizes an extensive 
range of antigens, which are distinguished as 
either ‘self’ or ‘non-self’ molecules. All human 
cells present peptide antigens on major histocom-
patibility complex (MHC) molecules, which 
interact with T-cell receptors (TCR), present on 
the plasma membrane of T-cells. When a peptide 
presented on the MHC is not recognized as ‘self’, 
this elicits a T-cell response, causing apoptosis or 
inactivation of the corresponding target cell. The 
presentation of ‘non-self’ peptide antigens may 
be induced by various reasons, ranging from viral 
infection to disturbed homeostasis (Singhal et al. 
 2013 ; Attaf et al.  2015 ). As tumor cells evolve 
from ordinary cells, they develop distinct charac-
teristics recognizable by the immune system. 
Hence, the immune system is clearly of great 
importance in cancer development. The immune 
system can promote tumor growth by impairing 
tumor cell immunogenicity or act as a tumor sup-
pressor by destroying or restraining tumor expan-
sion (Koebel et al.  2007 ; Shankaran et al.  2001 ; 
Dunn et al.  2002 ). Immunotherapy, where T-cell 
activity is stimulated through the inhibition of the 
T-cell deactivation pathway (checkpoint block-
ade (Gubin et al.  2014 )), has been shown to be an 
effective treatment in a variety of human malig-

nancies (Wolchok and Chan  2014 ; Sharma and 
Allison  2015 ). For instance,  Rosenberg   (Hinrichs 
and Rosenberg  2014 ) demonstrated how infusion 
of tumor-infi ltrating lymphocytes can be an 
effective treatment option in metastatic mela-
noma and  antibody   treatment sensitizing T-cell 
activation improved overall survival of metastatic 
melanoma patients (Hodi et al.  2010 ). The ability 
of T-cells to elicit a T-cell response based on the 
interaction with MHC molecules on tumor cells 
indicates the existence of tumor specifi c epitopes 
on antigens. These antigens can be derived from 
native proteins for which T-cell tolerance is 
incomplete ( e.g.,  tissue / time restricted proteins 
being expressed) or they can be formed from pro-
teins absent from the human genome ( e.g.,  
mutated proteins), called neo-antigens. Neo- 
epitopes are a product of tumor-specifi c DNA 
alterations and thus result in novel protein 
sequences (Schumacher and Schreiber  2015 ). 

 Studies in mouse models indicate that vacci-
nation with neo-antigens increased tumor control 
in immunotherapy (Gubin et al.  2014 ; Yadav 
et al.  2014 ). However neo-antigen identifi cation 
is tedious and limitations in  MS   sensitivity result 
in a substantial fraction of false negatives. Also, 
the identifi cation of  genomic   variations in pro-
teins does not guarantee MHC presentation. 
Combining transcriptomics sequencing tech-
niques (RNA-Seq) to identify mutated proteins 
absent in native cells with  proteomics   identifi ca-
tion of MHC presented antigens provides a fea-
sible workfl ow useable in clinical studies. The 
global design of this workfl ow consists of the 
identifi cation of tumor-specifi c  genomic   varia-
tion trough RNA-Seq, followed by an optional  in 
silico  fi ltering by algorithms to predict MHC 
antigen presentation and the construction of a 
database consisting of possible neo-antigen (Lu 
et al.  2014 ; Linnemann et al.  2014 ; Robbins et al. 
 2013 ). Next  MS  -based  proteomics   matches the 
experimentally identifi ed MHC bound antigens 
against the RNA-Seq derived database, selecting 
high confi dence neo-antigen. Functional essays 
can be performed to experimentally identify neo- 
antigens as demonstrated in mouse models, suc-
cessfully treating cancer (Rizvi et al.  2015 ; Yadav 
et al.  2014 ; Bassani-Sternberg et al.  2015 ). 
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Figure  4.1  provides a summary of the neo- antigen 
identifi cation workfl ow .

4.3           RIBO-Seq   

 In the late 1960s, the ability of ribosomes to 
protect mRNA from endonuclease digestion 
was demonstrated (Steitz  1969 ). Despite this 
early discovery, it was not until the advent of 
 NGS   and the accompanying  bioinformatics   
toolsets, that genome-wide translatome profi l-
ing became attainable. At the end of the twenti-
eth century a technique named polysome 
profi ling emerged (Johannes et al.  1999 ), yield-
ing large scale analysis of translation. In sum-
mary, polysome profi ling captures mRNA 
immobilized on translating ribosomes, separates 
these polyribosomes ( e.g.,  ultracentrifugation 
on a sucrose gradient) and subsequently 
sequences the obtained RNA fragments (Faye 
et al.  2014 ). This technique, identifying mRNA 
with ribosomal occupancy, saw various use-
cases throughout the years and is still frequently 
applied (Piccirillo et al.  2014 ). However, it was 

with the advent of RIBO-Seq, enabling massive 
parallel sequencing of the +/− 30 nt mRNA 
fragments protected by ribosomes (RPFs), that 
in-depth assessment of the translatome was 
empowered (Ingolia et al.  2009 ,  2012 ,  2014 ). 
The main advantage of RIBO-Seq over poly-
some profi ling is the ability to retrieve posi-
tional information obtained from these RPFs 
with sub-codon resolution, enabling accurate 
prediction of the ribosome A-site positions. The 
RIBO-Seq technique diverged into two comple-
mentary implementations, capturing either 
elongating ribosomes or initiating ribosomes. 
RIBO-Seq of elongating ribosomes is feasible 
through the addition of antibiotics inhibiting 
ribosome translocation ( e.g.,  cycloheximide 
(Ingolia et al.  2009 ) and emetine (Ingolia et al. 
 2012 )), peptidyl transferase ( e.g. , chloramphen-
icol) or by thermal freezing (Oh et al.  2011 ). 
Initiating ribosomes, allowing the deduction of 
translation initiation sites (TIS), is achieved 
through the addition of initiation blocking anti-
biotics ( e.g.,  harringtonine (Ingolia et al.  2012 ) 
or lactimidomycin (Lee et al.  2012 )). Figure  4.2  
sketches an overview of RIBO-Seq protocol.

  Fig. 4.1    A simplifi ed neo-antigen identifi cation workfl ow. 
Tumor cells are sequenced to identify  genomic   variations 
specifi c to these tumor cells, next a database is generated 
consisting of neo-antigen candidates. Optionally,  in silico  

algorithms can be used to predict MHC antigen presenta-
tion, resulting in a more confi dent dataset. Next, MS-based 
proteomics identifi es MHC bound antigens followed by 
functional analysis confi rming candidate neo-antigens       
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4.3.1       RIBO-Seq Unravels 
the Translatome 

 Although many variations are attributable to 
changes in gene transcripts, RIBO-Seq likewise 
reveals pervasive translational regulation (Michel 
and Baranov  2013 ). For example,  Ignolia   et al .  
( 2009b ) examined the ability of  ribosome profi l-
ing   to monitor changes in protein synthesis in 
response to starvation in yeast, observing transla-
tion changes in approximately one-third of the 
genes. Two other studies examining the transla-
tome in response to heatshock (Shalgi et al.  2013 ) 
and proteotoxic stress (Liu et al.  2013 ) revealed 
interesting properties of the infl uence of chaper-
ones on elongating ribosomes in response these 
stresses. In a study performed by  Brar   et al .  
( 2012 ), exploring changes in expression during 
meiosis in yeast by performing RIBO-Seq over 
stage-specifi c time points, numerous dynamic 

events (including translation products of small 
open reading  frames  ) were captured, unidentifi ed 
by other techniques. A study performed by Stern- 
 Ginossar   et al .  ( 2012 ) analyzed gene expression 
changes of human foreskin fi broblasts during 
cytomegalovirus infection. Measurements across 
different time-stamps revealed prominent viral 
gene translational regulation, where translation 
varied at least fi vefold in 82 % of ORFs. 

 Furthermore, RIBO-Seq can identify novel 
translated regions, until now undetectable with 
other techniques. For instance several 5’-UTR 
ORFs, associated to a regulatory function (Ingolia 
et al.  2009 ,  2011 ; Brar et al.  2012 ), have been 
identifi ed by  ribosome profi ling  . The ORFs in 5’ 
untranslated regions are diffi cult to identify due 
to their specifi c characteristics: short length, lim-
ited coverage, non-AUG initiation, sometimes 
overlapping with canonical ORFs.  Michel   et al .  
( 2012 ) demonstrated that given suffi cient 

  Fig. 4.2    A general overview of the  RIBO-Seq   protocol. 
First, cell lysates are prepared in conditions accurately 
refl ecting in vivo translation. Secondly, addition of nucleases 
will digest RNA (nuclease footprinting), however the 
+/−30 nt mRNA fragments encapsulated by ribosomes are 
protected from digestion (ribosome footprints). Next, ribo-
some-footprints are separated from cell lysates followed by 

purifi cation of ribosome protected RNA. Ligation of single-
stranded adaptors enables reverse transcription. Subsequently, 
fi rst strand reverse transcription products are circularized and 
transcript products hybridized to rRNA probes are depleted. 
Finally, PCR amplifi es the remaining sequences that are sub-
sequently sequenced. An in depth description of the protocol 
is provided by  Ignolia   et al. ( 2012b )       
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 ribosome coverage, alternative reading frames 
are discernible by analyzing the triplet codon 
periodicity characteristic to translation and 
observable with the  ribosome profi ling   tech-
nique. They reported on 5’-UTR ORFs with 
higher RPF intensity than the main canonical 
downstream ORF. In many cases these upstream 
ORFs (uORFs) partly overlapped with the canon-
ical ORF. Furthermore Michel et al. identifi ed 
frame transitions in translation, confi rming well-
known cases of frame shifts in humans. In a study 
performed by  Gerashchenko   et al .  ( 2012 ) in 
yeast, four novel frame shift events were identi-
fi ed that correlated to oxidative stress. Also, the 
start site determination with the  ribosome profi l-
ing   technique enables the identifi cation of ORFs 
with non-AUG start sites, resulting in numerous 
identifi ed near-cognate initiation sites. Wan and 
 Qian      ( 2014 ) developed a database containing 
alterative translation initiation sites and their 
associated ORF identifi ed by RIBO-Seq. 
Ribosomal activity was also observed in non-
coding regions, revealing putative novel protein 
coding regions (Ingolia et al.  2012 ; Lee et al. 
 2012 ).  

4.3.2     RIBO-Seq, a Bridge 
Between    RNA-Seq   
and  Proteomics   

 Protein inference from transcript abundance 
assumes constant RNA stability as well as stable 
translation rates. This assumption is erroneous as 
RNA stability can be highly variable and transla-
tion rates are volatile across transcripts. RIBO- 
Seq bridges the gap between RNA-Seq and 
proteomics by providing translational informa-
tion, enabling improved inference from the tran-
scriptome to the proteome and  vice versa . 
RIBO-Seq is capable of detecting coding tran-
scripts, but no direct evidence is provided whether 
these translated sequences ultimately yield stable 
protein products. Ribosomal occupancy could 
yield regulatory functions, but couls also point to 
unstable protein products or noise (Ingolia et al. 
 2014 ; Guttman and Rinn  2012 ). Several  in silico  
tools and metrics were devised to predict the cod-

ing potential of ORFs (based on ribosome pro-
tected fragment length (Ingolia et al.  2014 ), 
triplet periodicity (Bazzini et al.  2014 ) and con-
servation (Lin et al.  2011 )). However,  MS  -based 
validation remains a crucial confi rmation tech-
nique in most cases. In turn, MS-based pro-
teomics requires a database consisting of sample 
specifi c protein sequences. RIBO-Seq assisted 
database generation has several advantages over 
RNA-Seq generated databases. Novel proteo-
forms can be identifi ed thus optimizing the search 
space (Calviello et al.  2015 ; Menschaert et al. 
 2013 ; Van Damme et al.  2014 ; Koch et al.  2014 ). 
This approach has been used by  Fritsch   et al .  
( 2012 ) to identify 546 N-terminal protein exten-
sion in human,  Menschaert   et al .  ( 2013 ) observed 
a 2.5 % increase in the overall protein identifi ca-
tion rate using this approach. In a recent study 
performed by  Fields   et al .  ( 2015 ), 1990 protein 
isoforms, 696 truncations, 341 extension and 
1379 upstream ORFs were identifi ed by RIBO- 
Seq. Automated pipelines facilitating RIBO-Seq 
integration in  MS  -based experiments, such as 
PROTEOFORMER (Crappé et al.  2014a ), are 
readily available and easy to implement. 
Moreover  Xie   et al .  ( 2015 ) developed an online 
database to query, analyze, visualize and down-
load RIBO-Seq data set  s.   

4.4       Micropeptides   

 Micropeptides are defi ned as functional transla-
tion products originating from  small open read-
ing frames (sORFs)  . No consensus was reached 
regarding the sORF size and some studies con-
sider an upper threshold of 200–250 codons 
(Hayden and Bosco  2008 ; Yang et al.  2011 ). 
However, the most widespread  sORF   size limit is 
100 codons, a rule that we endorse here. A pio-
neering genome-wide study in 2003 on yeast 
suggested the functional importance of sORFs 
(Kessler et al.  2003 ), describing functionally 
conserved sORFs discovered by means of cross- 
species BLAST analysis. Only a few years later, 
 Savard   et al .  ( 2006 ) identifi ed mille-pattes in the 
red fl our beetle by means of EST screening, a 
polycistronic peptide encoding four  sORFs   
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 regulating HOX-genes.  Kondo   et al .  ( 2007 ) and 
Galindo et al .  ( 2007 ) examined mille-pattes ana-
logs in  Drosophila melanogaster  resulting in the 
discovery of the tarsal-less (tal) and polished rice 
(pri) genes, respectively. This polycistronic 
mRNA, previously categorized as being non- 
coding, apparently was miss-annotated based on 
the ORFs size (Tupy et al.  2005 ). At the moment 
of writing, the  tal  and  pri  translation products are 
among the best characterized examples of micro-
peptides, regulating embryonic development 
throughout numerous insect species (Chanut- 
Delalande et al.  2014 ). The discovery of these  tal  
and  pri  genes, together with the advent of  ribo-
some profi ling  , boosted the research into sORF- 
encoded micropeptides. Several different 
research groups reported on the discovery of 
putatively coding  sORFs   using various tech-
niques, pointing to novel functional micropep-
tides (Saghatelian and Couso  2015 ; Chu et al. 
 2015 ; Bazzini et al.  2014 ; Magny et al.  2013 ; 
Slavoff et al.  2013 ; Tonkin and Rosenthal  2015 ; 
Crappé et al.  2013 ; Pauli et al.  2014 ). Toddler, for 
example, is an embryonic signal that promotes 
cell movement (Pauli et al.  2014 ), Myoregulin 
regulates Ca 2+  handling in muscle cells (Magny 
et al.  2013 ) and Sarcolipin regulates muscle- 
based thermogenesis in mammals (Tonkin and 
Rosenthal  2015 ). This is a relatively new research 
fi eld (Crappé et al.  2014b ; Andrews and 
Rothnagel  2014 ; Albuquerque et al.  2015 ), where 
the results of many  in silico  based studies and 
proteogenomics endeavors need further experi-
mental validation. 

4.4.1     In Silico Micropeptide 
Identifi cation 

 Automated  gene annotation   systems correctly 
identify the majority of verifi ed protein coding 
ORFs based on recognizable  genomic   sequence 
characteristics ( e.g.,  canonical initiation codons, 
splice sites, promoter sequences) (Sleator  2010 ). 
Most  gene annotation   algorithms set a lower 
threshold of 100 base triplets to exclude false 
positive annotations (Carninci et al.  2005 ; Frith 
et al.  2006a ,  b ; Dinger et al.  2008 ). Recently, 

studies suggest that applying this lower threshold 
precludes the identifi cation of numerous small 
proteins (Pauli et al.  2014 ; Bazzini et al.  2014 ; 
Ma et al.  2014 ; Frith et al.  2006a ,  b ; Chng et al. 
 2013 ; Galindo et al.  2007 ; Crappé et al.  2013 ). 
Some computational approaches have been 
developed, such as uPEPperoni (Skarshewski 
et al.  2014 ) and  sORF  fi nder (Hanada et al.  2009 ), 
providing  in silico  assessment of putatively cod-
ing  sORFs  , based on phylogenetic conservation. 
While the identifi cation of sORFs is relatively 
straightforward, it does require a start and stop 
codon separated by at most 98 codons, the dis-
crimination of coding vs. non-coding sORFs of 
this excessive pool of sORFs has proved to be 
more diffi cult. Due to their small size, many 
sORFs lacking any coding potential occur by 
chance. Cross-species conservation can be used 
as a proxy to function, but solely relying on phy-
logenetic conservation could prevent the identifi -
cation of biologically relevant species-specifi c 
 sORFs   (Clamp et al.  2007 ). PhyloCSF (Lin et al. 
 2011 ) models phylogenetic relations between 
species by analyzing conservation at the amino 
acid level, rather than the nucleotide level and is 
most regularly used for small open reading  frame   
assessment. It outperforms other methodologies 
(Reading Frame Conservation metrics, the regu-
lar CSF method or a  d   n   /d   s   test) and is capable of 
identifying micropeptide coding  sORFs   as short 
as 13 amino acids (Guttman and Rinn  2012 ). 
Using mainly conservation as a criterion, 
 Mackowiak   et al .  ( 2015 ) identifi ed numerous 
conserved  sORFs   in different species (831 in  H. 
sapiens , 350 in  M. musculus , 211 in  D. rerio , 
194 in  D. melanogaster , and 416 in  C. elegans ), 
some of which have been described and charac-
terized previously.  

4.4.2      RIBO-Seq   Enables 
the Identifi cation 
of Translated      sORFs 

 RNA-based transcriptomics is ignorant to ORF 
delineation; therefore most studies rely on con-
servation and pattern recognition for sORF iden-
tifi cation. A recent study in yeast identifi ed 
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several micropeptides, one of which was also 
functionally characterized in infl uencing osmotic 
stress. The technique was based on using a 
6-frame translation database derived from  RNA- 
Seq   data as a search space for subsequent  MS   
fragmentation spectra matching (Yagoub et al. 
 2015 ). However, RNA-Seq does not indicate 
translation of the sORFs as opposed to RIBO- 
Seq. On top of pinpointing translated mRNA 
regions, RIBO-Seq can also reveal TIS, enabling 
the detection of non-AUG sORFs.  In silico  detec-
tion of non-AUG sORFs is laborious and diffi -
cult, since the search space becomes extensively 
larger, but from previous RIBO-Seq studies it has 
become clear that non-canonical start codons are 
more common than previously expected (Ingolia 
et al.  2011 ). Also,  Slavoff   et al .  ( 2013 ) identifi ed 
translation products from sORFs having non- 
AUG start sites using an  MS  -based proteoge-
nomics approach. Recently,  Fields   et al .  ( 2015 ) 
used a regression method on  ribosome profi ling   
data to identify sORFs that demonstrate an RPF 
length pattern and resemble that of annotated 
protein-coding ORFs. They discovered numerous 
sORFs, of which a subset shows very weak 
sequence conservation. 

 sORFs can be located in coding sequences 
(CDS), in 5’-untranslated regions (5’-UTR), in 
3’-untranslated regions (3’-UTR), in intergenic 
regions (in-between genes) or in non-coding 
RNA regions. A fi rst proof of 5’-UTR sORFs 
being translated was observed by  Crowe   et al .  
( 2006 ). They revealed that 20 % of human 
5’-UTR ORFs have TIS in an optimal Kozak 
sequence context, competent of ribosomal recog-
nition. Follow-up studies revealed approximately 
6750 conserved upstream TIS in mice (Lee et al. 
 2012 ) and approximately 3000 novel 5-UTR 
sORFs in human (Fritsch et al.  2012 ). A few 
5’-UTR sORFs were identifi ed encoding micro-
peptides ( e.g. , MKKS in human (Akimoto et al. 
 2013 ), CPA1 in yeast (Werner et al.  1987 )) with 
regulatory functions.  Jorgenson   (Jorgensen and 
Dorantes-Acosta  2012 ) claimed that 5’-UTR 
sORFs can regulate the downstream translation 
of the canonical ORF (also called the peptoswitch 
mechanism) as exemplifi ed by CPA1. The dis-
covery of dually coding transcripts (transcripts 

where more than one overlapping ORF can be 
translated), enabled the discovery of CDS- 
overlapping sORFs ( e.g.,  CASP1 (Ronsin et al. 
 1999 ) and altPrP (Vanderperre et al.  2011 ) in 
human). Most 3’-UTR sORFs are considered 
non-coding and are confi rmed by the RIBO-Seq 
profi les that closely resemble those of non- coding 
ORFs. Still, a limited set of 3’-UTR sORFs was 
identifi ed by  MS  -based techniques ( e.g.,  Bazzini 
et al .  ( 2014 ) identifi ed ten 3’-UTR sORFs using 
 MS   in combination with RIBO-Seq in a prote-
ogenomics approach). Both sORFs in intergenic 
as well as in non-coding regions have been 
observed with RIBO-Seq (Lee et al.  2012 ). In 
particular, ribosomal activity on long non-coding 
RNA (lncRNA) fuelled a debate in the scientifi c 
community (Pauli et al.  2015 ) on whether or not 
lncRNAs are truly non-coding (Ruiz-Orera et al. 
 2014 ; Smith et al.  2014 ). Figure  4.3  provides an 
overview of sORFs identifi ed in different (anno-
tated)  genomic   region  s.

4.4.3        Multi- omics Integration   Is Still 
Indispensable 

 Ribosome occupancy does not necessarily mean 
translation into functional protein products; fur-
thermore,  RIBO-Seq   is susceptible to noise. 
Besides conservation, several tools and metrics 
were developed to distinguish coding from non- 
coding  sORFs  . For example  Ignolia   et al .  ( 2014 ) 
observed that the ribosome protected fragment 
(RPF) length distribution differs signifi cantly 
between truly coding and non-coding ORFs and 
developed the FLOSS-score to distinguish 
between both categories (Fig.  4.4 ).  Bazzini   et al .  
( 2014 ) developed the ORFscore, which calcu-
lates the preference of RPFs to accumulate in the 
fi rst frame of coding sequences (Fig.  4.5 ), mak-
ing full use of the triplet periodicity in the  RIBO- 
Seq   signal. The Ribosome Release Score (RRS) 
examines the release of translating ribosomes 
after hitting a stop codon (Guttman and Rinn 
 2012 ) (Fig.  4.4 ). More complex statistical meth-
ods are based on learning algorithms such as 
Coding Potential calculator (Kong et al.  2007 ), 
CRITICA (Badger and Olsen  1999 ), CSTMiner 
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  Fig. 4.3     sORFs   classifi cation. sORFs can be classifi ed according to their  genomic   location, here an overview is pro-
vided of the different sORF classifi cations       

  Fig. 4.4    Overview of coding potential assessment meth-
ods based on  RIBO-seq  . The FLOSS score compares the 
RPF-length distribution of  sORFs   with the RPF-length dis-
tribution of canonical protein-coding transcripts; strong 
disagreement between the two RPF-length distributions 

indicates non-coding behavior. The ORFscore calculates 
the preference of RPFs of coding ORFs to accumulate in 
the fi rst frame of the coding sequence and the RRS pro-
vides a score based on the tendency of ribosome to dissoci-
ate from RNA after hitting a stop coding in coding ORFs       
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(Castrignanò et al.  2004 ) and the recently 
described ORF-RATER (Fields et al.  2015 ) and 
RiboTaper (Calviello et al.  2015 ). ORF-RATER, 
a regression based translating ORF identifi er 
based on RIBO-Seq data, discovered numerous 
novel ORFs, including  sORFs   with  MS  -evidence 
(Fields et al.  2015 ). Likewise, RiboTaper exploits 
a statistical approach to identify translated ORFs 
based on the nucleotide periodicity of  RIBO-Seq   
data and correctly identifi ed annotated protein 
coding  sORFs  , such as the aforementioned 
Toddler sORF (Calviello et al.  2015 ). However, 
in the novel fi eld of micropeptide discovery,  MS  - 

based identifi cation still remains indispensable. 
A proteogenomics approach generating a data-
base of putatively coding sORFs derived from 
RIBO-Seq (or  RNA-Seq  ) information, followed 
by MS-based  proteomics   identifi cation creates an 
ideal setting for  sORF   discovery. Numerous 
sORFs have been identifi ed using this approach 
(Ma et al.  2014 ; Bazzini et al.  2014 ; Mackowiak 
et al.  2015 ). A public database for  sORFs   (  http://
www.sorfs.org    ) exists, gathering multi-omics 
( RIBO-Seq   and  MS  ) evidence and  in silico  met-
rics. The resource currently harbors 266,342 
 sORFs   across three model species (human, 

  Fig. 4.5    A simplifi ed  micropeptide   identifi cation work-
fl ow .  First, translating  sORFs   are identifi ed using  RIBO- 
seq  . Next, candidate protein coding sORFs are predicting 
using methods described in the “Multi- omics integration   

is still indispensable” section and a database of translated 
sORFs is generated for proteomics identifi cation. Results 
from both pathways can be combined in order to select 
 micropeptides   for functional analysis       
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mouse, fruit fl y) (Olexiouk et al.  2015 ), but will 
expand in the near future, with more data on 
other organism and cell types and including the 
latest “coding potential” metrics. Figure  4.4  pro-
vides an overview of the micropeptide identifi ca-
tion workfl ow    .

4.5          Conclusion and Future 
Perspectives 

 A multi-omics identifi cation workfl ow for trans-
lation products is certainly advantageous, and is 
indispensable for novel (small) proteoform 
identifi cations. Such a proteogenomics approach 
is in many cases sample specifi c, enabling the 
analysis of sample specifi c variations. In  cancer 
research  , where variations obtained in a single 
cell may result in tumorous behavior and where 
these variations are frequently distinct between 
different tumor types, capturing such sample 
specifi c variations is crucial. Identifi cation of 
neo-antigens in essence holds the identifi cation 
of sample specifi c variation, obtainable by tran-
scriptome sequencing technologies. However 
 MS  -based  proteomics   identifi cation remains 
essential in order to perceive whether these tran-
script changes yield non-synonymous peptide 
variations. While still in its infancy, neo-antigen 
research increases the overall understanding of 
the immune system and moreover holds impor-
tant therapeutic value. 

 The  RIBO-Seq   enabled genome-wide assess-
ment of translation (translatomics) bridges two 
omics fi elds: transcriptomics and  proteomics  . 
Genome wide analysis of this  ribosome profi ling   
information already resulted in the identifi cation 
of numerous  sORFs   with coding potential, ques-
tioning the non-coding character of sORFs. 
Follow-up analyses observed sORFs that resem-
ble canonical coding ORFs and some are in the 
mean fully characterized as being coding. Over 
the last years, various tools and metrics were 
devised to assess the coding potential of  sORFs   
(both conservation and sequence based). Also, 
workfl ows aiding the integration of  RIBO-Seq   
information and  MS  -based  proteomics   are 
becoming available,  e.g. , PROTEOFORMER 

(Crappé et al.  2014a ). The scientifi c community 
is becoming aware of  sORFs   as potentially pro-
tein coding units. As a result, public sORF data-
bases, such as   http://www.sorfs.org    , will be 
highly useful in the experimental design of future 
experiments (Olexiouk et al.  2015 ). Moreover, 
already conducted experiments (with an empha-
sis on  MS  -based  proteomics   studies) must be 
reprocessed to account for  micropeptides  . The 
scientifi c community is becoming aware of the 
large amount of publically available proteomics 
data accumulated over the past years that is cur-
rently being left untouched, while our scientifi c 
knowledge and technology evolved tremendously 
(Vaudel et al.  2015a ,  b ; Verheggen et al.  2015 ). 
The  sORFs  .org database already holds a pilot 
study where 1172 publically available  MS   datas-
ets from PRIDE were reprocessed, providing 
MS-evidence for more than 5000 micropeptides. 
Cumulative evidence that  sORFs   are able to 
encode functional  micropeptides   has been gath-
ered, but their exact biological relevance often 
remains to be determined. Undoubtedly, future 
research on overexpression or knock-down will 
reveal more about the functional roles of specifi c 
sORF-encoded micropeptides.  
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    Abstract  

  Proteogenomic studies ally the omic fi elds related to gene expression into 
a combined approach to improve the characterization of biological 
 samples. Part of this consists in mining proteomics datasets for non-
canonical sequences of amino acids. These include intergenic peptides, 
products of mutations, or of RNA editing events hypothesized from 
genomic, epigenomic, or transcriptomic data. This approach poses new 
challenges for standard peptide identifi cation workfl ows. In this chapter, 
we present the principles behind the use of peptide identifi cation algo-
rithms and highlight the major pitfalls of their application to proteoge-
nomic studies.  
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5.1              Using Proteomics 
 Bioinformatics   Tools 
and Resources 
in  Proteogenomic      Studies 

  Proteomics            aims at characterizing the entire set 
of proteins present in a sample at a given time 
point. The most encountered approach is to digest 
proteins into peptides prior to analysis by liquid 
chromatography (LC) coupled to tandem  mass 
spectrometry (MS)      (Aebersold and Mann  2003 ). 
Specialized bioinformatic tools are in turn used 
to infer peptide sequences and eventually post- 
translational modifi cations (PTMs), and from 
there infer a list of proteins present in the sample 
with their respective abundances (Altelaar et al. 
 2013 ). 

 Three main approaches are available for the 
identifi cation of peptides from  tandem mass 
spectra  , as reviewed in (Vaudel et al.  2012b ): (i) 
spectral library searching, (ii)  de novo  sequenc-
ing, and (iii) sequence databases searching. In the 
fi rst, experimental spectra are compared to a 
library of already identifi ed spectra, and the qual-
ity of the matches is evaluated to infer the pres-
ence of known peptides. In the second, a sequence 
or partial sequence is inferred from the spectrum 
by comparing the distance between peaks to pos-
sible amino acids and PTM masses. In the third, 
theoretical spectra are derived from a database of 
expected protein sequences, and the match 
between experimental and theoretical spectra is 
in turn evaluated to infer the presence of 
peptides. 

 Importantly, in most cases, a reference protein 
sequence database is used to map the peptide 
sequences back to the protein level, a task called 
protein inference (Nesvizhskii and Aebersold 
 2005 ). Given that spectral library searching can 
only fi nd peptides which have been previously 
measured, it is generally not used for discovery 
studies but mainly for targeted protein quantifi ca-
tion (Domon and Aebersold  2006 ), and despite 
constant progresses in instrumentation, the infor-
mation contained in spectra is generally insuffi -
cient for  de novo  sequencing to compete with 
sequence database searching. As a result, 
sequence database searching tools, so-called 

search engines, are by far the most encountered 
approach for  peptide identifi cation  .  

5.2     Database Search Engines 

 Proteomic search engines take as input (i) peak 
lists from mass  spectrometry   experiments, (ii) 
expected protein sequences, and (iii) user defi ned 
search parameters. The processing of raw mass 
 spectrometry   data prior to identifi cation typically 
includes signal processing to denoise spectra, 
reduce the baseline, and perform peak picking, 
 i.e. , transform linear spectra of bell-shaped peaks, 
called profi le spectra, into discrete peak lists, 
called centroided spectra (Lange et al.  2006 ; 
Vaudel et al.  2010 ). However, with the advent of 
high resolution mass spectrometers including 
built-in signal processing units, this task has been 
dramatically simplifi ed, and the raw data can 
often simply be used without additional 
processing. 

 The conversion of raw mass  spectrometry   fi les 
to open formats can be easily conducted by 
msconvert as part of the ProteoWizard package 
(Kessner et al.  2008 ), and if needed, signal pro-
cessing methods such as peak picking can be 
applied by ProteoWizard (French et al.  2015 ) or 
within the OpenMS package (Kohlbacher et al. 
 2007 ). 

 Various public resources with canonical pro-
tein sequences are available, some specialized in 
terms of organisms, diseases or sub proteomes, 
while others, generalist, attempt at providing 
comprehensive collections of all known 
sequences. The main generalist  protein databases   
are the UniProt knowledgebase (Apweiler et al. 
 2004 ), the closely connected Ensembl database 
(Hubbard et al.  2002 ; Yates et al.  2016 ), the 
National Center for Biotechnology Information 
(NCBI)  Protein database   (Coordinators  2016 ) 
(accessible  via  the Entrez Global Query system 
providing sequences from multiple sources 
including the Reference Sequence (RefSeq) 
Database (Pruitt et al.  2005 )), and the DNA Data 
Bank of Japan (DDBJ) (Tateno et al.  2002 ). 

 Through the search parameters, the user 
designs the search space of the algorithm,  i.e. , 
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peptide and fragment ions that are expected 
from the given theoretical protein sequences, 
and sets the degrees of freedom with which the 
algorithm matches experimental mass spectra 
to these theoretical ions. The parameters typi-
cally include: (i) information on how proteins 
are expected to be cleaved with a maximum 
limit on the number of missed cleavages, (ii) 
the expected fragmentation behaviour of pep-
tides and resulting ions, (iii) mass tolerances, 
and (iv) expected PTMs. Depending on their 
prevalence, PTMs can be systematically 
accounted for, so- called  fi xed  or  static  modifi -
cations, or the algorithm can iterate the possible 
modifi cation statuses of a peptide, so-called 
 variable  or  dynamic  modifi cations. A detailed 
description on how to tune the role of search 
engines can be found in the CompOmics 
Tutorials (Vaudel et al.  2014b ) (compomics.
com/bioinformatics-for-proteomics). 

 Taking these settings into account, the algo-
rithm will compare the expected fragmentation 
pattern of each possible peptide to each experi-
mental spectrum, and, for every spectrum, return 
a list of so-called peptide spectrum matches 
(PSMs) along with a score of each match. The 
larger the search space, the more complex this 
task becomes, and, as detailed below, managing 
the search space is one of the main challenges 
when using search engines in proteogenomic 
studies. 

 Numerous algorithms were developed over 
the past decades, most of them listed at the 
‘OMIC tools’ web site (Henry et al.  2014 ) (omic-
tools.com/database-search-category). Some of 
them have been included into generic proteomic 
software suites like the Trans Proteomics Pipeline 
(TPP) (Deutsch et al.  2010 ), OpenMS 
(Kohlbacher et al.  2007 ), and MaxQuant (Cox 
and Mann  2008 ). Alternatively, a simple way to 
operate search engines is to use them  via  
SearchGUI (Vaudel et al.  2011a ), a user-friendly 
graphical and command line interface making it 
possible to harness multiple search engines – at 
time of writing, X!Tandem (Craig and Beavis 
 2004 ), MyriMatch (Tabb et al.  2007 ),  MS   
Amanda (Dorfer et al.  2014 ), MS-GF+ (Kim and 
Pevzner  2014 ), OMSSA (Craig et al.  2004 ), 

Comet (Eng et al.  2013 ), Tide (Diament and 
Noble  2011 ), and Andromeda (Cox et al.  2011 ) – 
see Fig.  5.1 .

5.3        Results Integration 

 Upon completion of the search, result fi les are 
produced by each search engine, containing lists 
of PSMs. These are then parsed and assembled 
into proteins using post processing software 
tools. Some of the critical tasks of such tools are 
to select a representative hit per spectrum, infer 
proteins from peptides (Nesvizhskii and 
Aebersold  2005 ), and estimate error rates. As 
discussed in detail previously (Nesvizhskii  2010 ; 
Ma et al.  2012 ), two methods exist for the evalu-
ation of error rates, the modelling of score distri-
butions (Keller et al.  2002 ) or the so-called 
target-decoy strategy (Elias and Gygi  2010 ). In 
the latter, artifi cial decoy sequences are added to 
the sequence database or searched in parallel. 
The distribution of the decoy scores is then used 
to model the distribution of the scores of false 
positive hits to derive error rates. These can be 
estimated locally, providing a probability for an 
identifi ed compound to be a false result, a poste-
rior error probability (PEP), or for the entire data-
set, providing a global false discovery rate (FDR). 
In addition to the statistical evaluation of error 
rates, it is possible to do manual or semi-manual 
inspection of the results (Helsens et al.  2008 ). 

 When operating outside the software frame-
works mentioned above, a simple way to aggre-
gate the results of multiple search engines is to 
process them with PeptideShaker (Vaudel et al. 
 2015 ), a user friendly tool designed to work 
seamlessly in combination with 
SearchGUI. Additionally to peptide to protein 
mapping and protein inference, error rates and 
matches quality control, PeptideShaker performs, 
quality fi ltering, and PTM localization, all  via  an 
intuitive and interactive graphical user interface, 
see Fig.  5.2 .

   Upon completion of the processing, the inter-
pretation of proteomics results strongly relies on 
their biological and functional contextualization 
(Vaudel et al.  2014a ). The data can, for example, 
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be mapped to public resources providing addi-
tional information (Vizcaino et al.  2009 ). It is 
possible to map proteomic results to genetic 
information and thus gain knowledge at the 
genetic level or perform gene ontology (GO) 
analyses, as done automatically in PeptideShaker 
when working with UniProt sequences. Peptide 
sequences and their modifi cations can also be 
mapped to the Protein Data Bank (PDB) 
(Sussman et al.  1998 ), hence gaining structural 
information on the post-translational level. 
Mapping to functional resources like Reactome 
(Croft et al.  2011 ) further enables functional 
analyses. Proteomics data can be combined with 
the results from other omics technologies such as 
 genomics  , transcriptomics, epigenomics, gly-

comics, metabolomics and lipidomics. Finally, 
prior to publication, it is required to share all data 
including the raw fi les (Martens et al.  2005b ; 
Barsnes and Martens  2013 ). For this purpose, 
proteomics data repositories were set up and are 
coordinated through the ProteomeXchange envi-
ronment (Vizcaino et al.  2014 ; Martens et al. 
 2005a ; Craig et al.  2004 ; Desiere et al.  2006 ).  

5.4     Limitations in Database 
Searching 

 While providing an unprecedented throughput 
with respect to protein identifi cation, database 
searching also has several limitations, the most 

  Fig. 5.1    The main frame of SearchGUI allows the har-
nessing of multiple search engines. In the  top panel , the 
user can select mass  spectrometry   fi les, search settings, 
and an output folder. In the following panels, it is possible 
to operate msconvert for the conversion and processing of 

spectra, the different search engines for their identifi ca-
tion, and PeptideShaker for the results integration. Note 
that the cogwheel next to every algorithm can be used to 
fi ne tune the settings       
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important being that the scope of the search is 
limited to the content of the database used. To 
increase the sample coverage by the database, it 
is possible to extend it to all expected proteins, or 
to perform so-called error tolerant searches, 
including isoforms, all types of PTMs, and unan-
ticipated cleavage. 

 However, such a dramatic increase of the 
search space leads to very long search time and 
an increased prevalence of false positives. The 
false positives can be random matches in the 
search space or partial matches where the error 
can be due to a minor detail of the peptide 
sequence, like the artefactual identifi cation of a 
PTM or amino acid per mutations  . The prevalence 
of both classes of false positives increases with 
the database size, but while the share of random 
matches is accurately tracked by the target-decoy 
strategy (Vaudel et al.  2012a ), it is much more 

challenging to evaluate the rate of non-random 
false positive matches (Colaert et al.  2011 ). 

 Searching very large databases also reduces 
the distinguishability of the best scoring 
sequences, and their protein mapping unicity. 
The post processing of such results will thus be 
more complex and error prone. As a result, pro-
teomic studies generally restrain the search space 
by including only the species under consider-
ation, limiting the inclusion of isoforms, of pos-
sible cleavage sites, and of variable PTMs. 
Processing the entire six-frame translation of a 
complex genome is consequently generally 
avoided. 

 At the other end of the scale, it can be tempt-
ing to tailor the search space to a list of proteins 
of interest in order to avoid random matches and 
reduce processing time. This however results in 
forcing the algorithm to match specifi c sequences, 

  Fig. 5.2    Upon processing, the results can be mined in the 
graphical interface of PeptideShaker, as illustrated here 
with the  Overview  tab, providing a global view on the 
identifi ed compounds. At the  top , the protein groups are 
listed in a table providing details on every group including 
chromosome mapping when working with UniProt 
sequences. Clicking on the chromosome number provides 
more detailed information at the genetic level. To the  left , 
the peptides and PSMs for the selected protein group and 

peptide are listed. The annotated spectrum corresponding 
to the selected PSM is displayed to the right along with 
quality control plots. At the  bottom , a linear representa-
tion of the sequence of the leading protein of the selected 
protein group is displayed with annotated identifi ed pep-
tides and PTMs. The different tabs to the right of the soft-
ware allow mining the dataset for specifi c features like 
PTMs  via  the  Modifi cations  tab, or structures  via  the  3D 
Structures  tab       
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and in the absence of competition between the 
targeted proteins and other possible candidates, 
the spectra of peptides excluded from the data-
base and resembling target sequences will end up 
creating non-random false matches, possibly 
with high scores. 

 Again, these matches are not well monitored 
by error rates estimation methods as demon-
strated in (Colaert et al.  2011 ), and the fi nal 
results will consequently be biased toward the set 
of targeted sequences. This bias is notably the 
reason for the systematic inclusion of sequences 
of contaminant proteins. An illustrative example 
of the problem that has received worldwide atten-
tion is a study on the bee colony collapse disorder 
(Bromenshenk et al.  2010 ), where bee samples 
were searched with a database of potential patho-
gens, resulting in pathogen identifi cation from 
spectra more likely to be originating from bee 
proteins rather than the reporter viruses and fungi 
(Knudsen and Chalkley  2011 ). 

 The quality of a database search thus strongly 
relies on the subtle balance between covering all 
proteins present in the sample, and not leaving 
too much room for false positives. Consequently, 
low abundant species such as variant of canonical 
proteins can be missed by the identifi cation pro-
cedure, or may fail to pass the validation thresh-
old. One of the most popular methods to alleviate 
this problem consists in searching with relaxed 
search settings before fi ltering. Hence, false posi-
tive hits will be diverted outside the scope of the 
study and subsequently fi ltered out using target 
and decoy hits distributions as a guide to identify 
areas of the search space with high prevalence of 
true positives (Beausoleil et al.  2006 ; Vaudel 
et al.  2011b ). This method will yield more pep-
tides if the reduction of the false discovery rate 
compensates for the loss of hits due to competi-
tion in the enlarged search space, and high toler-
ance search strategies were used to identify novel 
protein variants (Chick et al.  2015 ). 

 Another way to circumvent the problem of 
large search spaces is to use multiple pass 
searches, also named iterative searches, where a 
smaller database of confi dently identifi ed pro-
teins is built from the result of a fi rst search, and 
searched again with more tolerance towards 

sequence variations and post-translational modi-
fi cations, a strategy embedded in the X!Tandem 
search engine (Craig and Beavis  2004 ). To avoid 
the demanding preliminary search, targeted data-
bases can also be constructed from public reposi-
tories (Shanmugam and Nesvizhskii  2015 ). 
Alternatively, the result of the fi rst search can be 
used to discard spectra of canonical proteins, and 
the unidentifi ed spectra are then searched for 
variants (Noble  2015 ). Databases of increasing 
complexity can then be searched sequentially. 
However, the propensity of these methods to 
introduce non-random false hits, and problems 
with the applicability of standard error rate esti-
mation techniques make the use of these search 
strategies subject to debate (Everett et al.  2010 ; 
Bern and Kil  2011 ).  

5.5     Application 
to Proteogenomics 

 In the trade-off between sample coverage and 
search space size, proteogenomics provides the 
opportunity to include additional relevant 
sequences from the study of the protein expres-
sion process. In turn, the identifi ed sequences 
allow refi ning the annotation at the  genomic   and 
transcriptomic level (Jaffe et al.  2004 ). 
Proteogenomics thus interconnects all fi elds 
involved in the study of protein expression, 
 genomics  , epigenomics, transcriptomics, and 
proteomics. 

 Through the availability of next-generation 
sequencing (NGS) techniques and of high 
throughput mass  spectrometry  , it has become 
affordable to perform multiple omic analyses on 
the same set of samples. As a result, genome 
sequencing, RNA sequencing, or  ribosome pro-
fi ling   can be used to hypothesize the presence of 
sample specifi c variants like specifi c proteo-
forms, and protein identifi cation methods can be 
reciprocally used to confi rm their presence. 

 Multiple applications benefi t from such multi- 
omics approaches, as, for example, the study of 
organisms with little or no genetic annotation, or 
the investigation of samples containing multiple 
or no defi ned species (Muth et al.  2013a ). For 
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model organisms like human, a promising appli-
cation is the use of proteogenomic approaches to 
investigate the expression of disease specifi c 
variants (Alfaro et al.  2014 ; Zhang et al.  2014 ), as 
observed in chemoresistant cancer cell lineages 
(Pemovska et al.  2013 ), and from there infer pos-
sible effects on the phenotype. 

 Driven by the need to harness large and het-
erogeneous datasets from different fi elds, the 
need for novel bioinformatic solutions able to 
conduct multi omics approaches increased. 
Multiple tools and resources were thus recently 
established to integrate such information, as 
reviewed in detail by  Menschaert   and  Fenyö   
( 2015 ). These include the generation of databases 
of non-canonical sequences and variants readily 
usable on proteomics datasets (Sheynkman et al. 
 2014 ; Crappe et al.  2015 ; Risk et al.  2013 ), as 
reviewed in details by  Nesvizhskii   ( 2014 ). As a 
result, standard workfl ows are being made avail-
able able to handle the entire proteogenomic 
characterization of samples (Boekel et al.  2015 ). 

 Due to the high complexity of such tasks, it 
should be stressed that their use still requires a 
certain level of bioinformatic expertise. Notably, 
the amount and complexity of data makes it pro-
hibitive to run these workfl ows on standard desk-
top computers, and it is preferable to distribute 
tasks (Afgan et al.  2012 ; Trudgian and Mirzaei 
 2012 ; Muth et al.  2013b ; Verheggen et al.  2014 ). 
Proteogenomics workfl ows can notably be run 
within Galaxy (Giardine et al.  2005 ), taking 
advantage of this powerful environment (Boekel 
et al.  2015 ; Fan et al.  2015 ; Jagtap et al.  2014 ; 
Sheynkman et al.  2014 ). 

 Proteogenomic approaches also suffer from 
the fact that non-canonical gene products are low 
abundant. Since no amplifi cation method is avail-
able for amino acid sequences to date, and since 
low abundant species have a lower probability to 
trigger mass  spectrometry   scan events, the dis-
covery potential of new products can be limited 
by the sensitivity of the proteomic workfl ow. To 
increase the chances of fi nding novel gene prod-
ucts, it is thus necessary to inspect very large 
amounts of data (Whiteaker et al.  2014 ). 

 This can be done by reprocessing publicly 
available datasets as reviewed in (Vaudel et al. 

 2016 ). LNCipedia (Volders et al.  2015 ) and 
 sORFs  .org (Olexiouk et al.  2016 ) are examples 
of such strategies, where the abovementioned 
tools combined with automated search parameter 
inference (Hulstaert et al.  2013 ) were applied to 
mine public ProteomeXchange datasets in prote-
ogenomic contexts using distributed computing 
(Verheggen et al.  2015 ). It is however important 
to note that the mentioned bioinformatic chal-
lenges such as local and global error rates estima-
tion are amplifi ed when using these kinds of big 
data strategies.  

5.6     Conclusion 

 In conclusion, the shortcomings of database 
search engines and the reliable estimation of 
error rates are limiting factors of proteogenomics 
studies. Reducing the dependence on the data-
base,  e.g. , via better integration of  de novo  
sequencing and spectral library searching could 
be of great help. Spectral libraries can, for exam-
ple, effectively be used to reduce the number of 
spectra searched by ruling out commonly 
observed peptides. In big data strategies, where a 
large number of experiments are searched for low 
abundant compounds, it is possible to cluster 
spectra prior to processing, and mine these clus-
ters of frequently encountered non identifi ed 
spectra for novel gene products (Griss et al. 
 2013 ). 

 The early years of proteogenomics paved the 
way for thrilling discoveries, and the dissemina-
tion of these approaches will substantially 
increase the precision of biomedical sample char-
acterization. Currently, proteogenomics studies 
however require specialized scientifi c expertise, 
notably in bioinformatics, impairing the wide 
application of the approach. The efforts being 
invested towards the development of standard-
ized, user friendly and interactive workfl ows with 
associated training material will certainly help 
towards overcoming this limitation       .     
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      Mutant Proteogenomics                     

     Ákos     Végvári    

    Abstract  

  Identifi cation of mutant proteins in biological samples is one of the emerg-
ing areas of proteogenomics. Despite the fact that only a limited number of 
studies have been published up to now, it has the potential to recognize 
novel disease biomarkers that have unique structure and desirably high 
specifi city. Such properties would identify mutant proteoforms related to 
diseases as optimal drug targets useful for future therapeutic strategies. 
While mass spectrometry has demonstrated its outstanding analytical 
power in proteomics, the most frequently applied bottom-up strategy is not 
suitable for the detection of mutant proteins if only databases with consen-
sus sequences are searched. It is likely that many unassigned tandem mass 
spectra of tryptic peptides originate from single amino acid variants 
(SAAVs). To address this problem, a couple of protein databases have been 
constructed that include canonical and SAAV sequences, allowing for the 
observation of mutant proteoforms in mass spectral data for the fi rst time. 
Since the resulting large search space may compromise the probability of 
identifi cations, a novel concept was proposed that included identifi cation as 
well as verifi cation strategies. Together with transcriptome based 
approaches, targeted proteomics appears to be a suitable method for the 
verifi cation of initial identifi cations in databases and can also provide quan-
titative insights to expression profi les, which often refl ect disease progres-
sion. Important applications in the fi eld of mutant proteoform identifi cation 
have already highlighted novel biomarkers in large-scale investigations.  
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6.1       Introduction 

 The technological    development      in the fi eld of 
 mass spectrometry (MS)      based  proteomics  , in 
particular  bottom-up proteomics  , offers a power-
ful approach to verify newly identifi ed open read-
ing frames (ORFs) and genes (Pandey and 
Pevzner  2014 ), which is in line with the Human 
Genome Organization (HUGO) project. The 
Human Protein Organization (HUPO)    has analo-
gously planned to outline similar goals, including 
the completion of the human protein catalogue 
(Paik et al.  2012 ; Omenn et al.  2015 ). To facilitate 
the identifi cation of proteins, databases have been 
created and maintained, adding and improving 
protein sequences continuously in these reposito-
ries. The most frequently used  protein databases   
( e.g. , UniProt/SwissProt and neXtProt) were 
designed to include the most common forms of 
human proteins, hence the defi nition of consensus 
or canonical protein sequences were established. 
Due to the interplay between  genomic   and  pro-
teomics   research, these  protein databases   were 
extended with known splicing isoforms (alterna-
tive splicing variants or ASVs), increasing the 
number of entries by a factor of 2 to 3 (for 
instance, the neXtProt 2015-09-01 release has 
20,066 consensus and 21,932 ASVs). Additionally, 
great attention has been given to post-translational 
modifi cations (PTMs), such as phosphorylation, 
ubiquitination, glycosylation, etc. Information on 
PTMs provides a huge amount of novel informa-
tion about proteoforms with various functions that 
could be useful in description of disease progres-
sion (Nørregaard Jensen  2004 ). Interestingly, 
however, little attention has been shown towards 
mutant proteins, although they represent a level of 
variability of molecular forms between ASVs and 
PTMs. In particular, single amino acid variants 
(SAAVs)       are of interest, since:

    1.    Genetic information/data is often available   
   2.    They may be the ultimate markers as their 

unique sequence may alter the function   
   3.    They may complicate the quantifi cation of 

given proteins    

  The importance of fi nding  non-synonymous 
single nucleotide polymorphisms (nsSNPs)   does 
not only lie in the discovery of variations in the 
amino acid sequences that have functional conse-
quences but also to provide information regard-
ing the genetic, and possibly phenotypic, 
variability within the population of samples 
(Salisbury et al.  2003 ). Secondary validation by 
sequencing of corresponding  genomic   DNA has 
confi rmed the presence of the predicted single 
nucleotide polymorphisms (SNPs) in 8 out of 10 
SNP-peptides. In their study,  Bunger    et al.  high-
lighted the usefulness of interpreting unassigned 
spectra as polymorphisms (Bunger et al.  2007 ). 
Although, DNA genotyping scans have perhaps 
the greatest utility in defi ning the haplotype 
structure on a genome-wide scale, proteins are a 
major functional component of most disease pro-
gressions. Therefore, information gained from 
being able to reliably monitor SNP products in 
 proteomic   data allows more functional inference 
to be assigned to expressed alleles. In this regard, 
the utility of detecting expressed SNPs in pro-
teomics assays will integrate protein profi ling 
with genome information. Such analysis will 
reveal differential allelic expressions that can be 
correlated to phenotypic variation between indi-
viduals. Recent interest in differential allelic 
expression has been driven by the discovery that 
45–56 % of heterozygous alleles in humans are 
differentially expressed by a factor of two or 
more.  
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6.2     Theoretical Considerations 

 By defi nition, a gene  mutation   is a permanent 
alteration of the DNA region recognized as a 
gene. A gene mutation can consist of a number of 
variations that can be characterized as a single 
nucleotide variation, a longer sequence changes, 
all the way up to a large change in a segment of a 
chromosome that involves multiple genes. On the 
other hand, from a biological point of view, gene 
 mutations   can be divided into two types: heredi-
tary (germline) and acquired (somatic), depend-
ing on whether germ or somatic cells are the 
holders of the mutated DNA. In addition to the 
most common form of genes (wild type), almost 
all genes have typical variations due to the high 
frequency of  mutations  . If a genetic alteration 
occurs in more than 1 % of the entire population, 
such a variation is called a polymorphism. SNPs 
are frequent in the human genome: as many as 
3.1 million SNPs have been found by the 
International HapMap Consortium (Frazer et al. 
 2007 ). 

 The consequences of a SNP in a gene on the 
production of the protein can be synonymous, 
nonsense, and non-synonymous, resulting in 
unaltered ( i.e. , fully functional), truncated and 
mutant protein sequences, respectively (Fig.  6.1 ). 
Non-synonymous SNPs certainly contribute to 
the complexity of the proteome but can also pro-
vide signifi cant insight into genetic variability 
when comparing individuals in a population.

   While many of the polymorphisms are harm-
less and responsible for common variations in 
humans, some of them can contribute to the risk 
of disease progression. It is known that somatic 
 mutations   can drive cancer development and their 
accumulation in the mitochondrial DNA is asso-
ciated with an increased risk of some age-related 
disorders, such as cardiovascular and neurode-
generative diseases (Taylor and Turnbull  2005 ). 
Variations can contribute to an increased likeli-
hood to develop certain diseases on the basis of 
the genetic makeup of an individual, which is 
often regarded as genetic predisposition or sus-
ceptibility. For instance, we can mention single 
amino acid  variants   of the  BRCA1  and  BRCA2  
genes that can indicate a signifi cantly increased 
risk of developing breast and ovarian cancer. 
 BRCA1  and  BRCA2  are human genes that pro-
duce tumor suppressor proteins, which help to 
repair damaged DNA. Upon  mutation   their pro-
tein products are not made, or do not function 
correctly, which results in impaired DNA repair, 
which can in turn lead to an increased probability 
to develop additional genetic alterations in the 
cells and eventually cause cancer. The under-
standing of the underlying biological mecha-
nisms at the molecular level has resulted in an 
improved clinical diagnosis, monitoring these 
 mutations   in risk groups of patients. The level of 
elevated breast cancer risk may vary as mutations 
on other genes, like  BARD1  and  BRIP1 , are 
typically also associated with the disease. 

DNA

SN

• Sense
(synonymous)

• Nonsense

• Missense(non-
synonymous)

mRNA

• Sense
(synonymous)

• STOPcode

• Missense(non-
synonymous)

Protein

•“Normal”(fully
functional)

•Truncated

•Mutant
DISEASE

P

  Fig. 6.1    Schematic presentation of single nucleotide 
polymorphisms in the coding regions of DNA. The non- 
synonymous SNPs play the most important role in bio-

logical mechanisms as their protein products with altered 
structure and function can contribute to disease 
progression       
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 Furthermore, protein aggregation has been 
recognized in neurological disease development, 
such as Jacob-Krautzfeld disease (associated 
with prions), Alzheimer’s disease and other amy-
loid diseases ( e.g. , familial amyloidotic polyneu-
ropathy). A single amino acid alteration may 
signifi cantly infl uence protein association and 
dissociation. For instance, in the case of the 
familial amyloidotic polyneuropathy (FAP), 
transthyrein monomer units can aggregate into 
fi brils that can lead to death upon deposition in 
the heart and lung. The  SAAVs   of transthyrein, 
 p.V30M  and  p.L55P , facilitate the dissociation of 
aggregates, while the  p.T119M  proteoform inhib-
its tetramer dissociation (Hammarström et al. 
 2003 ). The main reason for this inhibition is that 
position 119 is located at the dimer interface. 
However, low-molecular-weight compounds 
could be developed to effi ciently inhibit trans-
thyrein aggregation by binding to the tetrameric 
form. 

 In general, the specifi c structure of mutant 
proteoforms allows for the development of effi -
cient drugs. The Pharmaceuticals and Medical 
Devices Agency in Japan was the fi rst in the 
world who approved personalized medicine ther-
apy in the case of non-small cell lung cancer, rec-
ommending the application of tyrosine kinase 
inhibitors such as gefi tinib and erlotinib. The epi-
dermal growth factor receptor (EGFR) is overex-
pressed in the cells of certain types of human 
carcinomas ( e.g. , in lung and breast cancers), 
which leads to an inappropriate activation of the 
anti-apoptotic Ras signaling cascade, eventually 
causing uncontrolled cell proliferation. It was 
found that a mutation in the EGFR tyrosine 
kinase domain is responsible for activating the 
anti-apoptotic pathways in non-small cell lung 
cancers (Sordella et al.  2004 ). These somatic 
 mutations   are occur more commonly in  lung ade-
nocarcinomas   of individuals of Asian descent, 
women, and non-smokers, rendering erlotinib/
gefi tinib treatments exceptionally effi cient. 

 It must be noted that the identifi cation of a cer-
tain gene as a disease marker is diffi cult and it is 
even less probable that this one gene is responsi-
ble for disease development alone, indicating that 
an overall alteration in the genetic profi le is 

expected to be more indicative. Characteristically, 
variations in individual genes may slightly 
increase the risk of disease development but the 
combination of  mutations   on multiple genes can 
result in a signifi cant level of risk (Genetic risk 
assessment and BRCA  mutation   testing for breast 
and ovarian cancer susceptibility: recommenda-
tion statement  2005 ). Today, it is generally 
accepted that the variations in many genes, with 
their small individual effects, may underlie the 
susceptibility to many common diseases when 
combined, this includes diseases like diabetes, 
obesity, cardiovascular disease and cancer. 

 Additionally to the understanding of the mul-
tifunctional nature of many diseases, and to the 
tremendously successful genetic investigations 
on a large number of samples in populations, it is 
important to emphasize the fact that genes do not 
have biological function, only their products, the 
expressed proteins. Therefore, it is necessary to 
study not only DNA variations but also their cor-
responding mRNA and their coded proteins, 
which together can indicate expression activities. 
Furthermore, the interplay between these princi-
ple “omics” areas seems to be inevitable to fully 
reveal the biology of diseases, unfortunately, the 
current status of these fi elds does not always 
facilitate their integration.  

6.3     Methodologies for Detection 
of Mutant Proteins 

6.3.1     Mass  Spectrometry   Based 
   Proteomics   of Mutant 
Proteoforms 

 Mass spectrometry based proteomic platforms 
have the capacity to identify a great number of 
proteins simultaneously in a single analysis. 
However, protein identifi cations by the most 
commonly applied  bottom-up proteomics   
approach largely rely on protein sequence data-
bases. Due to the fact that such databases are 
comprised of consensus sequences,  i.e. , the most 
frequently observed proteoforms, mass spectra of 
 SAAVs   and many other modifi cations of the ana-
lyzed peptides will be unassigned. In principle, 
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known ASVs can be identifi ed searching data-
bases, like neXtProt and UniProt, if isoform spe-
cifi c tryptic peptides could be generated prior to 
 MS   analysis. Alternative digestion strategies, 
using a combination of proteases for the genera-
tion of specifi c peptide sequences may improve 
ASV identifi cations. However, the identifi cations 
of  SAAVs   in high quality MS/MS data sets can 
be easily achieved developing searchable data-
bases that include altered amino acid sequences 
(Nesvizhskii et al.  2006 ).  Genomic   information 
of  nsSNPs   can be translated and incorporated 
into protein sequence databases that can confi rm 
 genomic   based data in existing  tandem mass 
spectra  , and eventually observe novel proteo-
forms in biological samples. 

6.3.1.1     Databases for Identifi cation 
of   SAAVs   

 The fi rst reported database designed for  mutant 
protein identifi cation   was based on the 
International Protein Sequence (IPI) database 
that was widely used, holding some 70,000 
human protein entries (Schandorff et al.  2007 ). 
The inclusion of  SAAVs   and single amino acid 
confl icts reported in the SwissProt databases 
posed the problem of increased sequence redun-
dancy that could eventually compromise the con-
fi dence of identifi cations. Therefore, sequential 
variations of proteins were attached to the con-
sensus protein sequences with an addition of let-
ter “J” (as a “spacer” to recognize the extra 
information in entries) between each peptide 
with the  mutation   site fl anked with a tryptic pep-
tide at both ends. The resulting MSIPI database 
was completed with a decoy database and pub-
lished together with each new IPI release by EBI 
until its fi nal version (v3.67) that held 87,062 
human protein entries. 

 Alternatively, another  protein database   
(K-SNPdb) was created with 125,622 tryptic 
peptides, which included sequences of the altered 
amino acids (Bunger et al.  2007 ). The construc-
tion was based on fi ltering the NCBI dbSNP for 
 nsSNPs   (Sherry et al.  2001 ) that exceeded ten 
million SNPs throughout the entire human 
genome. The number of  nsSNPs   out of all coding 
region SNPs was about 65,000. In addition to the 

fi ltering, manual allocation with the protein 
accession numbers, the location of  nsSNPs   and 
the amino acid changes were derived from the 
NCBI  protein database  , creating a fasta fi le with 
paired reference and alternative alleles. In order 
to improve the false discovery rate, a decoy data-
base (FalseSNPdb) with the same number of pep-
tides and identical masses to the peptides of 
K-SNPdb was composed from IPI entries. This 
strategy granted the identifi cation of 629 SAAVs, 
of which 36 were not present in the  protein data-
bases   of NCBI and IPI. 

 In an attempt to collect comprehensive 
sequential data about human mutant proteins, in 
particular about those involved in cancer, onco-
genesis and tumor progression, a novel database 
(CanProVar) was created (Li et al.  2010 ). 
Information on protein variations from public 
resources, including the Human Proteome 
Initiative (HPI) (O’Donovan et al.  2001 ), the 
Catalogue of Somatic  Mutations   in Cancer 
(COSMIC) (Bamford et al.  2004 ), the Online 
Mendelian Inheritance in Man (OMIM) (Hamosh 
et al.  2005 ), the Cancer Genome Atlas (TCGA)    
(Comprehensive  genomic   characterization 
defi nes human glioblastoma genes and core path-
ways  2008 ) and two large-scale cancer genome 
sequencing studies (Greenman et al.  2007 ; 
Sjoblom et al.  2006 ), were integrated with a spe-
cial recognition of cancer related variations 
(crVAR). The fi nal version of CanProVar holds 
41,541 non-cancer specifi c and 11,445 cancer 
related variations (  http://bioinfo.vanderbuilt.edu/
canprovar/    ). Most importantly, this collection of 
human mutant proteins is searchable on-line, 
offering extremely useful data linked to cancer 
samples, additional data sources, publications 
along with functional information on gene 
 ontology annotations and interaction partners 
(Fig.  6.2 ).

   As an outcome of the CanProVar project, an 
effective identifi cation workfl ow with multiple 
search engine options and a tool designed for the 
correction of the false discovery rate (FDR), was 
proposed and demonstrated using CRC cell line 
data (Li et al.  2011 ). Notably, this downloadable 
MS-CanProVar database was completed with 
the Ensemble  protein database   (v53), 148 
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 contaminant sequences and their reversed 
sequences as decoys (total searchable entry num-
ber is 290,440). Missense variations, non-sense 
variations and single amino acid deletions and 
insertions were all included in the database. To 
address the increasing redundancy posed by the 
inclusion of mutant sequences, they were short-
ened to a tryptic peptide with the  mutation   site 
fl anked by two peptides. As a result, the addition 
of these new peptides increased the databased 
size by only 3.4 %. 

 The MS-CanProVar database formed the basis 
of a recent approach that combined it with the 
unique variant sequences in UniProt human poly-
morphisms (release 2011-12-14), resulting in a 
total of 87,745 SAAVs (Song et al.  2014 ). The 
Swiss-CanSAAVs database contains a total of 

161,747 downloadable entries (  http://bioanaly-
sis.dicp.ac.cn/proteomics/Publications/SSAV/
SAAV-Database.htm    ) with minimized redun-
dancy using only tryptic mutant peptide 
sequences fl anked by two additional peptides. A 
customized database, the Human Protein Mutant 
Database (HPMD), was also created by extract-
ing and combining sequential information of 
known disease  mutations   from OMIM, the 
Protein Mutant Database (PMD) (Kawabata et al. 
 1999 ), the Systematic Platform for Identifying 
Mutated Proteins (SysPIMP) (Xi et al.  2009 ) and 
UniProt (Magrane and Consortium  2011 ) (see 
Fig.  6.3 ) (Mathivanan et al.  2012 ). To improve 
the FDR, sequence redundancy was decreased by 
limiting the peptide sequences to 101 amino 
acids with the  mutation   site in the center position 

  Fig. 6.2    The system architecture of CanProVar  protein database   that provides a large number of  SAAV   sequences 
(Reproduced with permission from Li et al.  2010 ) Copyright (2010) John Wiley and Sons       
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(51st residue). This strategy has a drawback as it 
excludes the possible identifi cation of mutant 
proteins by a miss-cleaved tryptic peptide.

   Through the increasing access to  RNA-Seq   
data, another path has opened to generate 
extended protein sequence databases, which is 
the translation of transcriptomic information to 
amino acids. The combination of  shotgun pro-
teomics   with  next generation sequencing (NGS)   
technologies has shown to be an effective 
approach to gain multilevel information and 
knowledge about cellular systems (Chen et al. 
 2012 ). To facilitate translations of RNA-Seq 
sequences to protein levels, an elegant  bioinfor-
matics   tool was introduced recently allowing for 
the generation of customized  protein databases   
(Wang and Zhang  2013 ). The R package of cus-
tomProDB can easily create improved  protein 

databases   from  RNA-Seq   data with identifi ed 
single nucleotide variations, short insertions and 
deletions as well as novel junctions between 
exons. The customProDB was an integrated and 
important part of the newly developed proteoge-
nomic dashboard (dasHPPboard) intended to 
facilitate the protein mapping efforts of HP  P  
(Tabas-Madrid et al.  2015 ).   

6.3.2     Concept for  Identifi cation 
of Mutant  Proteins   

 The strategy to identify novel mutant proteo-
forms in biological samples was designed using 
high quality shotgun  proteomic    tandem mass 
spectra   for database search by existing search 
engine algorithms (Lichti et al.  2015 ). The key 

  Fig. 6.3    Construction of Human Protein Mutant Database 
(HPMD) for  MS   based protein  mutation   search. Schematic 
of the construction of HPMD is shown. Known protein 
disease  mutations   downloaded from OMIM, PMD, 
SysPIMP and UniProt were combined along with the mis-
sense and  nsSNPs   from dbSNP. The  mutations   were sub-
stituted in protein sequences to form peptides (maximum 

101 amino acids) with mutations. The mutations were 
fi xed to the center (51st residue) unless and until the  muta-
tion   is localized close to the start or end of the protein 
sequence. The database composed 171,919 mutations 
(31,479 – known disease mutations and 140,440 – dbSNP) 
(Reproduced with permission from Mathivanan et al. 
 2012 ) Copyright (2012) Elsevier       
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element of the approach was the unique set of 
database entries that describes all  SAAV   
sequences, translated from known  genomic   stud-
ies (Ensembl). Using a custom made software 
tool, new protein sequences were generated to 
include a point  mutation   in each new entry that 
thus differed in a single amino acid from the con-
sensus protein. The mutant  protein database   
(MuPdb) included 2.3 million  SAAVs  , excluding 
titin (Q8WZ42). The sequence redundancy was 
greatly reduced keeping the tryptic peptides with 
the  mutation   site surrounded by two missed 
cleavages at both termini. The resulting  in silico  
derived proteoforms were denoted following the 
neXtProt nomenclature, including the access 
codes but also adding information about the 
nature and the position of the  mutation   (such as 
NX_P07288-SNP-L-132-I). 

 The MuPdb was rendered as a combination of 
consensus (40,548 entries of UniProtKB) and 
mutant proteoform sequences of chromosome 19 
(132,264 entries), together with 115 common 
contaminant sequences (cRAP) in standardized .
fasta  format, in order to be used with various 
search engines, including Proteome Discoverer, 
Mascot and PEAKS. To address the challenge 
that the large search space represents, a custom 
decoy database was created using 
PEAKS. Additionally, manual validation of  tan-
dem mass spectra   was performed following blast 
searches for uniqueness. An initial identifi cation 
and validation on glioblastoma stem cells (GSC) 
revealed many  SAAVs  . Interestingly, a thor-
oughly investigated  mutation   ( p.T186R ) of 
branched-chain aminotransferase 2 (BCAT2) 
was confi rmed (Lichti et al.  2015 ). This and other 
newly observed SAAVs in GSC samples were 
further validated at the transcript level and by 
SRM-assays designed for suitable  SAAV   
peptides. 

 This concept was generalized for the identifi -
cation of  SAAVs   in any biological sample as pre-
sented in Fig.  6.4 . Following searches of high 
quality MS/MS data in the custom made mutant 
database, the initial fi ndings need to be verifi ed. 
Currently, this step consists of both targeted  pro-
teomics   and transcriptomic methods, a combina-
tion of which is suffi ciently powerful to provide 

novel  biomarkers   and drug targets in future 
applications.

   The SRM-MS analysis for verifi cation of 
mutant proteoforms, targeting the most potential 
tryptic peptides specifi c to  mutation   sites and their 
corresponding wild type sequences, can also be 
performed. Synthetic heavy isotope labeled pep-
tides with corresponding sequences can be spiked 
into the clinical samples for unambiguous identifi -
cation of mutant proteoforms. In addition, to pro-
vide qualitative confi rmation and quantifi cation, 
the ratios between wild type and mutant forms can 
be determined in heterozygous expression. 

 Furthermore, RNA sequence analysis can be 
performed with biological samples and the tran-
script data can be used to verify newly identifi ed 
mutant proteins. This approach can provide con-
siderable reference information and verify  SAAVs  . 
The quantitative readout of  RNA-Seq   results can 
also be correlated with observed levels of expressed 
mutant proteins for confi rmatio n.  

6.3.3     Targeted  Proteomics   of  SAAVs   

 One of the most popular mass  spectrometry   tech-
nologies, selected reaction monitoring (SRM), 
can be successfully applied to identify and quan-
tify specifi c peptides within the digested samples 
of complex mixtures (Feng and Picotti  2016 ). In 
addition, the SRM methodology is inherently 
easy to multiplex, allowing for the development 
of multiple protein assays that offer high sensitiv-
ity and throughput. When applying the stable iso-
tope technology, uniformly  13 C- 15 N-labeled 
proteins can be quantifi ed in blood plasma at lev-
els of 100 ng/mL. However, in many cases, addi-
tional enrichment steps are required for the 
identifi cation of proteins present at lower con-
centrations in human samples like plasma or 
serum. Targeted enrichment, with or without 
 antibodies  , has been introduced to improve the 
detection sensitivity. 

 Recently, several approaches combining 
immunoaffi nity with SRM using stable isotope 
peptides, such as SISCAPA-SRM (Anderson 
et al.  2004 ), immuno-SRM (Whiteaker et al. 
 2007 ; Whiteaker et al.  2011 ), and mass  spectro-
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metric   immunoassay (MSIA) (Lopez et al.  2010 ), 
have signifi cantly improved the limit of detection 
of low abundant protein  biomarkers   present in 
plasma. Using the MSIA method, the lowest 
detection level (LOQ) of plasma proteins is 16–31 
pg/ml (Lopez et al.  2010 ). Immunoprecipitation 
(IP) is a logical strategy to enrich mutant proteo-
forms in combination with targeted  proteomics   
techniques, such as SRM, because  antibodies   can 
be generated against most proteins of interest and 
SRM-MS does not require absolute specifi city for 
the antigens or for the  mutations   of interest. 
Additionally, IP can remove the most abundant 
proteins, including cytoskeletal proteins, immu-
noglobulins, and serum albumin from biological 
samples (Anderson et al.  2004 ). 

 Since  antibodies   are not always available and 
can be expensive to develop, antibody-free 
enrichment of target proteins was recently dem-
onstrated for the quantitation of low abundant 
plasma proteins at concentrations in the 50–100 
pg/mL range (Shi et al.  2012 ).  

6.3.4     Quantifi cations of  SAAVs   

 The SRM technology offers precise and effi cient 
quantifi cations of known proteins, targeting their 
characterized proteotypic peptides in biological 
samples. Utilizing the high specifi city of 
SRM-MS, multiplexing can be easily achieved, 

providing a relatively high throughput methodol-
ogy. However, the requirement of isotope labeled 
peptide standards for relative or absolute quanti-
fi cation may constrain this approach, considering 
the diffi culties to synthesize certain peptide 
sequences, the related costs may also be a 
limitation. 

 Nevertheless, quantitative analysis of mutant 
proteoforms in studies of disease progression can 
certainly provide important insights into the ratio 
of allele-specifi c gene expressions, which has 
been shown to be closely associated with varia-
tions in individuals (Yan et al.  2002 ; Montgomery 
et al.  2010 ). It has been also demonstrated that a 
 SAAV   of a single allele could in fact be expressed 
in either a homozygous or heterozygous manner 
(Végvári et al.  2013 ). The frequency of the 
mutant prostate specifi c antigen (PSA_ p.L132I ) 
form agreed well with population based  genomic   
data, although more systematic and large-scale 
studies are required to understand how universal 
this fi nding is (Fig.  6.5 ). There are indications 
that disease progression may be monitored by the 
level of mutant proteoforms in heterozygous 
expressions, which can improve our understand-
ing of, for instance, cancer biology.

   An encouraging investigation was designed to 
utilize SRM based targeted  proteomics   for detec-
tion and quantifi cation of selected  SAAVs   in 290 
clinical plasma samples collected from Asian 
patients with both obesity and diabetes (Su et al. 

Mutant Protein database
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Mutant
Protein ID
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Transcriptome
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  Fig. 6.4    The general concept of 
identifi cation of  SAAVs   by  tandem 
mass spectra   searching a specialized 
 protein database   containing more than 
two million SAAV sequences       
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 2011 ). Following initial identifi cations of SAAVs 
in patient groups, including healthy controls, key 
proteotypic tryptic peptides were monitored and 
their corresponding complement component pro-
teins (C7, factor H and C5) were determined by 
absolute quantifi cation. The results indicated that 
the homozygous expressions of wild type C7_ p.
T587  and factor H_ p.V62  were over represented 
in the selected Asian patient groups, while the 
C7_ p.T587P  was signifi cantly higher in control 
samples. Additionally, no homozygous expres-
sion was found in any individuals, which agreed 
well with previous studies (Gimelbrant et al. 
 2007 ). Similarly, heterozygous expression profi les 
of these  SAAVs   were determined with suffi cient 
accuracy. This study has proven the novel concept 
of SRM-based quantitative analysis, which indicated 
that the levels of heterozygous and homozygous 
 SAAVs   in patient populations have signifi cant 
associations with certain disease traits. 

 A cost effective quantifi cation approach was 
developed for the large-scale study of  SAAVs   
in clinical samples (Song et al.  2014 ). The stable 
isotope dimethyl-labeling methodology 
(Kovanich et al.  2012 ) could be adopted to quan-
tify a total of 282 unique SAAV peptides in 

 combined CID and HCD  tandem mass spectra   
(Fig.  6.6 ). Because leucine (Leu) and isoleucine 
(Ile) are isobaric,  SAAVs   with altered Leu or Ile 
were excluded in the fi nal results. The initial 
identifi cation of SAAVs was performed using 
searches of mass spectra against a custom made 
 protein database  , holding 87,745 amino acid 
variant sequences and 73,910 UniProt canonical 
protein entries (Swiss-CanSAAVs)   . Notably, the 
mutant sequences were shortened to a tryptic 
peptide with two missed cleavage at both ends in 
order to reduce sequential redundancy and thus 
improve the false discovery rate (FDR). 
Furthermore, the Swiss- CanSAAVs   database was 
concatenated with the reversed sequences allow-
ing for FDR analysis.

6.4         Applications and Their 
Biological Findings 

 Up to today, little attention has been paid to the 
functional link between mutant proteins and dis-
eases (Wang et al.  2011 ).  Cancer research   has 
recently found that solid tumors typically pro-
duce 20–100 mutant genes with non-synonymous 

  Fig. 6.5    Detection of three possible combinations of 
allele expressions in examples of SRM-MS analyses in 
clinical samples. Endogenous signals of LSEPAELTDAVK 
and LSEPAEITDAVK are shown in  red , and their corre-

sponding heavy-isotope labeled internal standard signals 
are in  blue  (Reproduced with permission from Végvári 
et al.  2013 )       
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alterations, as DNA-based sequencing studies 
have revealed (Wood et al.  2007 ). Recent studies 
on certain cancer forms have shown that mutant 
proteins can be associated with disease and even 
be the cause of disease (Bozic et al.  2010 ; Haber 
and Settleman  2007 ). Based on the occurrence 
and biological function of these mutant proteins, 
two classes were suggested:

    1.    “Drivers” that can initiate and are responsible 
for tumor genesis   

   2.    “Passengers” are not directly associated with 
malignant differentiation (Haber and 
Settleman  2007 ; Bozic et al.  2010 ).    

  Importantly, the altered genetic codes of  nsS-
NPs   were found to be tightly associated with 
physiological and pathological traits of individu-
als (Sun et al.  2008 ). Additionally, the ratio of 
allele-specifi c gene expressions in heterozygous 
state is also associated with various traits of indi-
viduals (Montgomery et al.  2010 ) and the quanti-
tative relationship of the wild type/mutant 
proteins can also indicate disease traits (Yan et al. 
 2002 ; Montgomery et al.  2010 ). Consequently, 
both qualitative and quantitative data about the 
structures and the functional proteins of individu-
als with  SAAVs   are required for comprehensive 
analysis. 

  Fig. 6.6    Workfl ow for the large-scale quantitative analysis of  SAAVs   between hepatocellular carcinoma and normal 
human liver tissues (Reproduced with permission from Song et al.  2014 . Copyright (2014) American Chemical Society)       
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 Identifi cation and quantifi cation of mutant 
proteoforms were performed searching  tandem 
mass spectra   against a custom database that con-
sisted of 87,745 amino acid variant sequences 
and all canonical protein entries of UniProtKB 
(Song et al.  2014 ). The approach was applied on 
profi ling mutant proteomes in hepatocellular car-
cinoma (HCC) and healthy human tissue samples 
identifying 282 unique  SAAV   sites. Importantly, 
a signifi cant increase of carbamoyl phosphate 
synthase (CPS1)  p.T1406N  and HIV-1 TAT- 
interactive protein 2 (HTATIP2)  p.S197R   muta-
tions   were quantifi ed in HCC samples, which 
could be associated with cancer progression 
(Song et al.  2014 ). Similarly signifi cant alteration 
of mutant proteomes was detected in serum sam-
ples from patients with pancreatic cancer and 
quantifi ed using a isobaric labeling method (Nie 
et al.  2014 ). As a result, a novel  biomarker   panel 
was suggested, including α-1-antichymotrypsin 
(AACT), thrombospondin-1 (THBS1) and a 
mutant form of serotransferrin (TF_ p.V448I ), 
that could differentiate pancreatic cancer from 
healthy controls and chronic pancreatitis.  

6.5     Future Perspective 

 Many  genomic   studies have produced a large 
amount of high quality data originating from 
population wide investigations. While the asso-
ciation of genes with certain diseases, identifying 
germline and somatic  mutations  , is very useful, 
the actual expression profi les of their wild type 
and mutant products is at least as important, 
given that proteins are the functional players in 
biology. Because the altered biology of cells, 
characteristic of disordered progresses, is driven 
by proteins, functional data should be generated 
by taking snapshots of expression profi les in 
healthy and patient samples. MS-based  pro-
teomics   provides a unique tool to assess the 
expression profi les of mutant proteins in body 
fl uids and tissue samples, which can be identifi ed 
as lead candidates of optimal disease  biomarkers  . 
The qualitative and quantitative analyses of these 
proteoforms could thus result in novel diagnostic 
and prognostic values. 

 The fact that  SAAVs   can be identifi ed in tan-
dem mass data by unique peptide sequences, 
which are absent from typical  protein databases  , 
makes their observation diffi cult to confi rm. 
Theoretically, certain SAAV and also ASV spe-
cifi c peptides may be identical with tryptic 
sequences of other consensus proteins. 
Additionally, mutant proteins can have altered 
biological activities, making these proteoforms 
functionally new molecules. It may be suggested 
that the defi nition of proteins might be improved 
with a more functional view. Of course, as the 
identifi cation is strictly based on structural infor-
mation, such a new protein defi nition would not 
be directly supportive if databases are confi ned to 
consensus sequences only. However, a more pro-
gressive view and protein defi nition should facili-
tate the development of identifi cation strategies 
to identify mutant proteins in large-scale clinical 
studie  s.     
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    Abstract  

  The integration of genomics and proteomics has led to the emergence of 
proteogenomics, a fi eld of research successfully applied to the character-
ization of cancer samples. The diagnosis, prognosis and response to ther-
apy of cancer patients will largely benefi t from the identifi cation of 
mutations present in their genome. The current state of the art of high 
throughput experiments for genome-wide detection of somatic mutations 
in cancer samples has allowed the development of projects such as the 
TCGA, in which hundreds of cancer genomes have been sequenced. This 
huge amount of data can be used to generate protein sequence databases in 
which each entry corresponds to a mutated peptide associated with certain 
cancer types. In this chapter, we describe a bioinformatics workfl ow for 
creating these databases and detecting mutated peptides in cancer samples 
from proteomic shotgun experiments. The performance of the proposed 
method has been evaluated using publicly available datasets from four 
cancer cell lines.  
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7.1       Introduction 

 Cancer is one of the leading causes of death 
worldwide, accounting for 15 % of the total num-
ber of annual deaths. Furthermore, in the next 
two decades, cancer mortality rates are expected 
to double. There are more than 200 cancer types 
and each can be classifi ed into several subtypes 
with different molecular and clinical characteris-
tics (Tomczak et al.  2015 ). This complexity 
explains the heterogeneous response to therapy 
and expected survival rate of patients (McDermott 
et al.  2011 ). DNA sequence mutations drive the 
neoplastic transformation and cause, among 
other effects, the uncontrolled cell growth in 
these patients (Hanahan and Weinberg  2000 ). 
Therefore, the identifi cation of the complete cata-
logue of DNA aberrations becomes a priority 
since it will be the basis for improving not only 
cancer prevention and its early detection but also 
its treatment. 

 The sequencing of the human genome (Lander 
et al.  2001 ; Venter et al.  2001 ) was the fi rst step 
towards understanding of the complexity of 
human biology. Over recent years, the develop-
ment of high-throughput technologies for the 
characterization of normal and cancer samples 
has produced an overarching perspective of the 
human genome and the human proteome (Chin 
et al.  2011a ). For example, gene expression profi l-
ing using DNA microarrays (Cordero et al.  2007 ) 
has enabled the measurement of the expression 
level of thousands of genes in a single experiment, 
resulting in genomic signatures that can be used 
to classify cancers (Sotiriou and Pusztai  2009 ; 
Desmedt et al.  2009 ). However, the development 
and deployment of next generation sequencing 
(NGS) technology have accelerated the discovery 
of genomic mutations, such as substitutions, 
insertions, deletions or amplifi cations (Meyerson 
et al.  2010 ; Trapnell et al.  2013 ). Whole-genome 
and whole-exome sequencing have proved to be 
the most valuable methods to identify relevant 
mutations for the diagnosis and treatment of 
human disease, including cancer (Pabinger et al. 
 2014 ). The identifi cation of germline mutations 
(Kurian et al.  2014 ) and the identifi cation of 
somatic mutations in cancer (Tamborero et al. 

 2013 ) are the most common applications for these 
experiments. The progress in the analysis of can-
cer genomes has allowed the development of 
large-scale characterization projects, including 
the Cancer Genome Project (CGP,   http://www.
sanger.ac.uk/genetics/CGP    ), the International 
Cancer Genome Consortium (ICGC,   https://dcc.
icgc.org    ) and The Cancer Genome Atlas (TCGA, 
  http://cancergenome.nih.gov    ). Although the data-
sets generated in these projects are publically 
available, access to certain specifi c information is 
controlled for the protection of patient privacy 
(Chin et al.  2011b ). Since it started in 2006, the 
TCGA project has characterized more than 10,000 
tumor samples from 34 different cancer types, 
using high-throughput sequencing. The bioinfor-
matics data analyses of this huge amount of data 
have resulted in the identifi cation of more than ten 
million mutations. 

 Proteogenomics is an emerging fi eld that inte-
grates proteomics, genomics and transcriptomics 
with the aim of better understanding cellular 
functions (Faulkner et al.  2015 ; Nagaraj et al. 
 2011 ). Peptides identifi ed in MS-based experi-
ments are aligned against genomic sequence 
datasets to verify existing gene model annota-
tions or identify novel genes (Ansong et al.  2008 ). 
This method has also been applied to the study of 
the proteome of non-model species, where the 
availability of a reference protein database is lim-
ited (Evans et al.  2012 ). However, the major 
advances in proteogenomics have been made in 
cancer research, and more specifi cally in the 
detection of tumor-specifi c changes in the pro-
teome. Changes such as single amino acid poly-
morphisms (SAPs) may result in disease 
initiation, progression or variation in response to 
treatment (Alfaro et al.  2014 ; Zhang et al.  2014 ). 
The critical stage in the analysis of cancer sam-
ples is the generation of the customized peptide 
databases required to perform the MS searches. 
Different approaches based on the processing of 
genomic data, commonly using DNA-Seq or 
RNA-Seq experiments, have been described 
(Woo et al.  2014 ; Nesvizhskii  2014 ; Wang and 
Zhang  2013 ). In this context, the large number of 
experiments available in projects such as the 
TCGA is a particularly powerful resource to con-
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solidate this methodology in the clinical oncol-
ogy setting. The Human Proteome Project (HPP) 
initiative (Legrain et al.  2011 ) has played a pio-
neering role in the integration of transcriptomics 
and proteomics data (Paik and Hancock  2012 ; 
Segura et al.  2014 ) and the development of new 
proteogenomics methods and bioinformatics 
tools is currently an area of active work in the 
consortium (Krasnov et al.  2015 ; Nagaraj et al. 
 2015 ; Tabas-Madrid et al  2015 ).  

7.2     Bioinformatics Resources 
for SAP Detection in Cancer 

 In this section, we propose a bioinformatics 
workfl ow to generate proteomic databases for 
the purpose of identifying SAPs in cancer sam-
ples based on the information on somatic muta-
tions obtained from the TCGA project 
(Fig.  7.1 ).

  Fig. 7.1    Overall scheme of the  SAP 
detection   pipeline using the  TCGA   
exome data. Tasks of the analysis ( blue ), 
fi le formats ( green ), databases ( red ) and 
 bioinformatic   tools ( orange ) used are 
shown       
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7.2.1       The Cancer Genome Atlas 

 The Cancer Genome Atlas (TCGA) is a collab-
orative project between the National Cancer 
Institute (NCI) and the National Human Genome 
Research Institute (NHGRI). The main objective 
of the project is to describe the key genomic 
changes in different types of cancers in order to 
understand the molecular basis of the disease 
(Tomczak et al.  2015 ). To achieve this goal, high- 
throughput technologies have been applied, 
including microarrays and next generation 
sequencing (NGS). Since its launch in 2006, the 
TCGA has analyzed matched tumor and normal 
tissues from 11,000 patients to study 34 cancer 
types and subtypes. The availability of these can-
cer genomic datasets is expected to improve the 
diagnosis, treatment and prevention of cancer. 
The structure of TCGA includes several centers 
responsible for sample collection and processing, 
high-throughput sequencing and bioinformatics 
analysis of the obtained datasets. 

 As shown in Table  7.1 , we included 10,183 
exomes from 31 cancer types for the generation 
of the SAP database. We removed three cancer 
type samples: MESO (there are no exome data 
available), LAML (the results are based on the 
hg18 genome) and STAD (the results are not pro-
vided using the standard MAF fi le). The somatic 
mutation data (MAF fi les) were downloaded 
from the data portal of the TCGA project and 
were processed using in-house R scripts. 
3,009,480 unique variants were identifi ed in the 
dataset without any fi ltering process. LIHC was 
the cancer type with the highest number of 
detected variants (956,761 mutations) and UVM 
was the cancer type with the fewest number of 
detected variants (3,918 mutations). The mean 
number of variants per cancer type was 97,080 
mutations and the mean number of variants 
per analyzed exome was 296.

   The SNV calls collected from the TCGA were 
processed and incorporated into a database of 
cancer mutations. In order to ensure annotation 
consistency across all exome results, the detected 
variants were re-annotated using VeP (McLaren 
et al.  2010 ) to predict the effect of the mutations. 
This software converts SNVs to the correspond-

ing amino acid coordinates and retrieves the SIFT 
(Kumar et al.  2009 ) and PolyPhen-2 (Adzhubei 
et al.  2010 ) scores for each SNV. We used this 
information to fi lter the synonymous SNVs using 
the R/Bioconductor statistical environment. We 
only retained those SNVs classifi ed as 
“missense”. 

 After the fi ltering process, we obtained 
1,161,751 unique genomic variants distributed 
across the cancer types as shown in Fig.  7.2a . 
SKCM, LUAD and UCEC were the cancer types 
with the highest number of identifi ed mutations, 
while CHOL, PCPG and UVM were the cancer 
types with the fewest. The relationship between 
the number of genes and the number of mutations 
detected in each gene is represented in Fig.  7.2b . 
It is of note that more than 12,000 genes had at 
least 50 variants. We also analyzed the number of 
common variants between different tumor types 
in order to establish a classifi cation of cancers in 
terms of their mutations. The clustering of the 
matrix of the number of mutations shared 
between each pair of cancer types (Fig.  7.2c ) 
clearly shows three groups of tumors and one 
cancer type (OV) as an outlier. A more detailed 
analysis of the number of mutated genes per can-
cer type (Fig.  7.2d ) allowed us to identify tumor- 
specifi c mutation genes (256 genes) and 
ubiquitous mutant genes, defi ned as those genes 
that are mutated in all the cancer types studied 
(37 genes).

   Finally, we completed the description of the 
catalogue of somatic mutations considered for 
our proteogenomic analysis by determining the 
percentage of samples in which each gene is 
altered (Fig.  7.3a ). Interestingly, we found that 
most of the genes are mutated in a very low frac-
tion of the dataset. Only 43 genes were mutated 
in more than 5 % of the TCGA cancer samples 
(Fig.  7.3b ). This list included genes such as: TTN 
(titin), TP53 (tumor protein p53), PIK3CA 
(phosphoinositide- 3-kinase, catalytic, alpha 
polypeptide), BRAF (v-raf murine sarcoma viral 
oncogene homolog B1) and KRAS (v-Ki-ras2 
Kirsten rat sarcoma viral oncogene homolog); all 
of which have been described as frequently 
mutated genes in previous analyses of the TCGA 
dataset (Ciriello et al.  2013 ; Kandoth et al.  2013 ). 

A. Garin-Muga et al.



97

   Table 7.1    Cancer types studied in the TCGA project. For 
each tumor we include: its acronym, the number of indi-
viduals from whom samples were collected, the number 

of exomes sequenced and the number of mutations 
detected in the bioinformatics analysis provided by the 
data portal of the TCGA   

 Cancer type  Acronym  #cases/#exomes  #mutations 

 Acute Myeloid Leukemia  LAML  200/150  – 

 Adrenocortical carcinoma  ACC  80/80  18,052 

 Bladder Urothelial 
Carcinoma 

 BLCA  412/412  158,417 

 Brain Lower Grade Glioma  LGG  516/516  59,419 

 Breast invasive carcinoma  BRCA  1,098/1,081  94,008 

 Cervical squamous cell 
carcinoma and endocervical 
adenocarcinoma 

 CESC  308/305  82,680 

 Cholangiocarcinoma  CHOL  36/36  7,679 

 Colon adenocarcinoma  COAD  461/458  117,118 

 Esophageal carcinoma  ESCA  185/184  81,248 

 FFPE Pilot Phase II  FPPP  38/38  40,110 

 Glioblastoma multiforme  GBM  528/512  60,392 

 Head and Neck squamous 
cell carcinoma 

 HNSC  528/510  137,454 

 Kidney Chromophobe  KICH  66/66  8,391 

 Kidney renal clear cell 
carcinoma 

 KIRC  536/520  42,196 

 Kidney renal papillary cell 
carcinoma 

 KIRP  291/288  30,320 

 Liver hepatocellular 
carcinoma 

 LIHC  377/375  956,761 

 Lung adenocarcinoma  LUAD  521/517  219,852 

 Lung squamous cell 
carcinoma 

 LUSC  504/497  65,065 

 Lymphoid Neoplasm 
Diffuse Large B-cell 
Lymphoma 

 DLBC  48/48  16,462 

 Mesothelioma  MESO  87/0  0 

 Ovarian serous 
cystadenocarcinoma 

 OV  586/536  12,681 

 Pancreatic adenocarcinoma  PAAD  185/184  56,871 

 Pheochromocytoma and 
Paraganglioma 

 PCPG  179/179  6,818 

 Prostate adenocarcinoma  PRAD  498/498  24,399 

 Rectum adenocarcinoma  READ  171/168  32,815 

 Sarcoma  SARC  261/255  77,698 

 Skin Cutaneous Melanoma  SKCM  470/470  298,752 

 Stomach adenocarcinoma  STAD  443/441  - 

 Testicular Germ Cell 
Tumors 

 TGCT  150/150  25,077 

 Thymoma  THYM  124/123  37,640 

 Thyroid carcinoma  THCA  507/496  20,684 

 Uterine Carcinosarcoma  UCS  57/57  13,048 

 Uterine Corpus Endometrial 
Carcinoma 

 UCEC  548/544  203,455 

 Uveal Melanoma  UVM  80/80  3,918 
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The functional analysis of this gene set using 
Ingenuity software (  www.ingenuity.com    ) 
allowed us to identify enriched functional catego-
ries such as Cancer, Cell Cycle, Cell Death and 
Survival, DNA Repair or Cellular Response to 
Therapeutics, which confi rmed the implication of 
these genes in cancer-related pathways.

7.2.2        SAP Database Generation 

 The mutated peptides of the SAP database were 
generated from the non-synonymous variants of 
the TCGA samples using the following strategy 
(Yang and Lazar  2014 ). First, sequences of 80 

amino acids around the mutated amino acid were 
extracted from the FASTA fi le of protein 
sequences (Ensembl version 75). We verifi ed the 
original amino acid and the position of the muta-
tion, fi ltering out those cases where a discrepancy 
was detected. Only the mutated peptides whose 
sequences did not exist in the reference proteome 
were stored in the database. A similar workfl ow 
was successfully used in the implementation of 
the dasHPPboard (Tabas-Madrid et al.  2015 ), a 
bioinformatics tool that provides access to 
resources for proteogenomics analyses based on 
ENCODE (ENCODE Project Consortium et al. 
 2011 ) and Illumina Human Body Map (HBM) 
datasets. 

  Fig. 7.2    Analysis of the characteristics of the non- 
synonymous variants detected in the TCGA dataset anno-
tated using VeP. ( a ) Number of variants for each cancer 
type. ( b ) Number of genes as a function of the number of 

variants detected in each gene. ( c ) Clustering and heatmap 
of the matrix of common variants between cancer types. 
( d ) Number of mutated genes as a function of the number 
of cancer types in which a gene is mutated       
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 We identifi ed a total of 1,525,055 unique 
SAPs located in 92,412 proteins (corresponding 
to 19,925 genes). The mean number of SAPs per 
gene was 77, with SKCM being the cancer type 
with the maximum number of SAPs (222,665 
mutated peptides) and UVM the cancer type with 
minimum number of SAPs (2,738 mutated pep-
tides). The mutation redundancy from the 

 database was removed before the creation of the 
FASTA fi le needed to perform the protein 
searches. Numerical identifi ers were used to 
name the non-redundant peptides of this data-
base, offering the possibility of customizing the 
content of the FASTA fi le generated. After 
searching, the results were easily annotated with 
in house programmed R scripts.  

  Fig. 7.3    ( a ) Distribution 
of genes as a function of 
the percentage of the 
TCGA samples in which 
they are mutated. ( b ) Most 
frequently mutated genes 
found include well-known 
oncogenes and tumor 
suppressors       

 

7 Proteogenomic Analysis of Single Amino Acid Polymorphisms in Cancer Research



100

7.2.3     Annotation of Genetic 
Variants 

 Once we completed the database of mutations, a 
bibliographic and clinical annotation of the 
genetic variants was incorporated into the analy-
sis workfl ow. This information can be used to 
complement the output of VeP and prioritize the 
detected variants. Two databases of reliable 
genetic data were selected and processed to facil-
itate the interpretation of the results: COSMIC 
(Forbes et al.  2015 ) and ClinVar (Landrum et al. 
 2014 ). COSMIC (Catalog Of Somatic Mutations 
In Cancer,   http://cancer.sanger.ac.uk    ) is the most 
complete resource of somatic mutations in human 
cancer. The release included in the analysis pipe-
line (v74; September 2015) described 3,480,051 
coding mutations in over one million tumor sam-
ples and across most human genes. ClinVar 
(  http://www.ncbi.nlm.nih.gov/clinvar    ) is a data-
base of reports of relationships among genetic 
variants and phenotypes closely connected with 
dbSNP (Smigielski et al.  2000 ) and dbVar 
(Lappalainen et al.  2013 ). The incorporated 
release (November 2015) contained 134,321 
variations in 26,406 genes. 

 We were able to annotate 57.59 % of the non- 
synonymous variants of the TCGA, 57.47 % 
using COSMIC and 0.39 % using ClinVar (Fig. 
 7.4a ). Focusing on the ClinVar annotations, we 
found that 25.36 % of the variants previously 
described in this database were pathogenic or 
likely pathogenic, while 28.76 % were benign or 
likely benign (Fig.  7.4b ).

7.3         Proteogenomics Methods 
for the Identifi cation of SAPs 
Using Shotgun Experiments 

 The analysis of high throughput proteomic exper-
iments to detect mutated peptides in cancer sam-
ples was performed on the basis of the FASTA 
databases created from the TCGA datasets. This 
section is devoted to the proteogenomics study of 
four cancer cell lines using public shotgun exper-
iments. We used different combinations of search 
engines and SAP databases to verify that the pro-
teogenomics approach described in this chapter 
is feasible and is able to provide consistent 
results. 

7.3.1     Public Shotgun Experiments 

 We analyzed four human cell line experiments 
available in the PRIDE database (Vizcaíno et al. 
 2013 ). These experiments were submitted by 
the Spanish HPP consortium to the 
ProteomeXchange repository (  http://www.pro-
teomexchange.org/    ) with accession numbers 
PXD000039, PXD000442, PXD000443 and 
PXD000449. We selected 2 replicates for each 
cell line: Jurkat (human T cell lymphoblast-like 
cell line), CCD18 (human colon fi broblast cell 
line), MCF7 (human breast adenocarcinoma 
cell line) and Huh7 (human hepatocellular car-
cinoma cell line). Mascot generic fi les (mgf) 
were downloaded from the database for further 
analyses.  

  Fig. 7.4    ( a ) Annotation of the mutated peptides incorporated to the SAP database. ( b ) Classifi cation of the mutated 
peptides annotated using ClinVar       
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7.3.2     Shotgun Data Analysis 

 For each sample, two different proteomic analy-
ses were performed: one using the protein refer-
ence database (ProteinDB), which in our case is 
the Ensembl protein database, and the other using 
the previously generated database of mutated 
peptides (SAPDB) as shown in Fig.  7.5 . In the 
fi rst search, we identifi ed the proteins present in 
the samples by applying a FDR criterion at the 
PSM and protein level. After removal of the 
assigned spectra from the mgf fi les, we per-
formed a new search to detect mutated peptides 
using a SAP database. In this stage, the statistical 
analyses of the results were carried out at PSM 
level only.

7.3.2.1       Protein Identifi cation 
 We searched all the mgf fi les downloaded from 
PRIDE against the ProteinDB database (Ensembl 
version 75) using the target-decoy strategy with 
an in-house Mascot Server v. 2.3 (Matrix Science, 
London, U.K.) and Comet (Eng et al.  2013 ) 
search engines. A decoy database was created 
using the peptide pseudo-reversed method and 
separate searches were performed for target and 
decoy databases. Search parameters were set as 
follows: carbamidomethyl cysteine as a fi xed 
modifi cation and oxidized methionine as variable 

modifi cation. Precursor and fragment mass toler-
ance were set to 10 ppm and 0.05 Da respectively, 
and 2 missed cleavages were allowed. False 
Discovery Rates at the PSM and protein levels 
using Mayu (Reiter et al.  2009 ) were calculated. 
Protein identifi cations were obtained applying 
the criteria of PSM FDR < 1 % and protein 
FDR < 1 % following the C-HPP guidelines. 

 Protein inference for Mascot results was per-
formed using the PAnalyzer algorithm (Prieto 
et al.  2012 ), and non-conclusive protein groups 
were discarded. In the case of Comet, we consid-
ered the protein accessions provided by the 
search engine (Comet only provides one of the 
entries in the FASTA fi le in which the peptide 
was detected). In Table  7.2 , we summarize all the 
results obtained in the analysis of the proteome of 
the cell lines under study. The percentage of 
assigned spectra was very low in all the cell lines 
(below 15 % of the acquired spectra). The num-
ber of proteins and genes detected with Comet 
was signifi cantly lower than the number detected 
with Mascot, probably due to the different pro-
tein inference algorithm used in both cases. 
Although the results may not be suffi ciently com-
parable, most of the proteins identifi ed in our 
study were detected using both search engines.

   In order to simplify the evaluation and the 
comparison of the results we transformed the 

  Fig. 7.5     Bioinformatics   workfl ow for  SAP detection   
using proteomic shotgun experiments. Tasks of the analy-
sis ( blue ), fi le formats ( green ), databases ( red ) and  bioin-

formatic   tools ( orange ) used are shown. The  red border  
marks the outputs of the workfl ow       
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protein accession codes from Ensembl (ENSP) 
into gene accessions (ENSG). The analysis with 
Mascot detected 8,063 different genes, 21.92 % 
common to the 4 cell lines and 33.51 % specifi c 
to only one (Fig.  7.6a ). On the other hand, the 
analysis with Comet detected 6,632 genes, 

17.55 % common genes and 39.32 % specifi c 
genes (Fig.  7.6b ). As expected, the comparison 
between the sets of genes detected in each sample 
with Mascot and Comet showed that the number 
of shared identifi ers is greater for those samples 
with the same biological source (Fig.  7.6c ). 

  Fig. 7.6    Summary of the ProteinDB search results of the 
shotgun experiments in the MCF7, CCD18, Jurkat and 
Huh7 cell lines at protein level. ( a ) Genes identifi ed in the 
queries performed with Mascot search engine against the 
database ProteinDB. ( b ) Genes identifi ed in the queries 

performed with Comet search engine against the database 
ProteinDB. ( c ) Graphical representation of the genes 
identifi ed by both search engines and across different cell 
lines. ( d ) Shared and non-shared genes between the set of 
proteins obtained in Mascot and Comet analyses       
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Taking into account all the protein identifi ca-
tions, the percentage of genes detected with both 
search engines was as high as 69.51 % even 
though the protein groups were calculated using 
different methods (Fig.  7.6d ).

7.3.2.2        SAP Detection 
 The detection of mutated peptides started with 
the removal of the spectra assigned to proteins 
from the original mgf fi les. The new datasets 
were analyzed using the complete SAP database 
(TCGA) which contained 1,525,055 unique 
SAPs and cancer-specifi c databases. Thus, four 
additional databases were created: a LICH data-
base with 67,694 unique SAPs for the analysis of 

Huh7, a COAD database with 89,771 unique 
SAPs for the analysis of CCD18 and a BRCA 
database with 72,249 unique SAPs for the analy-
sis of MCF7. In the case of the Jurkat cell line 
only the complete TCGA database was used due 
to the lack of a specifi c cancer dataset. 

 Filtered mgf fi les were searched using Mascot 
and Comet with the same query parameters used 
for the identifi cation of proteins. However, we 
applied only PSM FDR < 1 % as a statistical 
threshold for detecting mutated peptides. The 
results obtained in each of the analysis performed 
are summarized in Table  7.3 .

   Despite the large number of spectra retained 
upon fi ltering, the results achieved in terms of 

   Table 7.3    Number of mutated peptides, proteins and genes identifi ed using SAPDB (TCGA or tumor-specifi c data-
base) with Mascot and Comet search engines (PSM FDR < 1 %)   

 Search 
engine 

 SAP 
Database  Sample 

 Assigned 
spectra  PSMs  SAPs 

 Mutated 
proteins 

 Mutated 
genes 

 Comet  BRCA  MCF7_1  83  84  66  185  65 

 MCF7_2  136  137  122  352  115 

 COAD  CCD18_1  44  52  14  63  14 

 CCD18_2  467  475  223  571  179 

 LIHC  HUH7_1  1  1  1  4  1 

 HUH7_2  446  446  260  704  235 

 TCGA  CCD18_1  909  941  241  578  200 

 CCD18_2  2,649  2,781  1,051  1,474  481 

 HUH7_1  37  38  18  44  18 

 HUH7_2  553  567  318  770  242 

 JURKAT_1  407  426  234  552  193 

 JURKAT_2  121  123  82  216  78 

 MCF7_1  426  435  183  454  151 

 MCF7_2  5  5  5  14  5 

 Mascot  BRCA  MCF7_1  81  115  97  218  68 

 MCF7_2  18  22  8  24  5 

 COAD  CCD18_1  35  65  19  64  10 

 CCD18_2  52  82  33  78  21 

 LIHC  HUH7_1  4  5  5  9  4 

 HUH7_2  6  6  5  9  5 

 TCGA  CCD18_1  596  907  316  581  179 

 CCD18_2  893  1,238  466  841  256 

 HUH7_1  90  134  50  107  35 

 HUH7_2  117  153  105  225  70 

 JURKAT_1  656  1,111  690  1,150  332 

 JURKAT_2  398  554  364  795  239 

 MCF7_1  565  1,972  1,627  1,093  343 

 MCF7_2  16  27  22  63  12 
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PSM and identifi ed features (mutated peptides, 
proteins and genes) were very scarce. These 
results were consistent with the expected low 
abundance of mutated peptides in the samples 
and the random nature of MS experiments. For 
each selection of search engine (Mascot or 
Comet) and SAP database (TCGA or tumor- 
specifi c), we compared the fi ndings (mutated 
peptides or genes) for each cell line (Fig.  7.7 ). In 
nearly all cases, the number of detected features 
was higher when the search was performed with 
Comet. Moreover, it is important to highlight the 
higher number of identifi cations obtained using 
the complete SAPs catalogue than when using 
cancer-specifi c databases. What is even more 
remarkable is the decreased number of mutated 
genes in relation to the corresponding number of 
SAPs, although this is likely due to the number of 
genetic variants per gene.

   A question that also deserved our attention is 
the degree of similarity between the search results 
obtained using the complete TCGA database and 
the tumor-specifi c databases (Fig.  7.8 ). As 
expected, for a given cell line most of the mutated 
peptides were identifi ed using both databases. 
However, some of the SAPs are shared with 
another cell line but they were not detected using 
both databases. This may be due to the effect that 
the size of the database has on the FDR calcula-
tion and the presence of the same genetic variants 
in different cancer types.

   Similarly, we compared the results between 
search engines taking all the identifi cations as a 
whole (Fig.  7.9a–d ). The percentage of common 
SAPs using the TCGA database was 11.7 %, 
while the percentage of common SAPs using 
tumor-specifi c databases was 3.48 %. If the com-
parison was carried out using the mutated genes 
detected, the overlap increased both when the 
TCGA database was used (32.59 %) and also 
when the tumor-specifi c databases were used 
(6.25 %). However, the number of matches in 
tumor-specifi c queries was lower than the num-
ber of matches in the complete TCGA database. 
This result suggests that the quality of the peptide 
identifi cations obtained with the complete TCGA 
database was better. In order to confi rm this 

hypothesis, we represented the distributions of 
the search engine scores (ion score for Mascot 
and XCorr for Comet). As shown in Fig.  7.9e  and 
 7.9f , the distributions of scores for the searches 
performed with the TCGA database are slightly 
higher than the distributions of scores for tumor- 
specifi c queries.

   In summary, we identifi ed 4,826 mutated pep-
tides in the four cell lines using duplicated shot-
gun experiments, 2,916 with Mascot and 2,419 
with Comet. This can be translated into the detec-
tion of 1,580 mutated genes, 877 genes detected 
with Mascot and 1,161 genes detected with 
Comet. We were able to annotate 2,422 identifi ed 
genetic variants using COSMIC (58.04 % of all 
detections), while only 30 detected genetic vari-
ants (0.69 %) were previously described in 
ClinVar.  

7.3.2.3     Functional Analysis of Mutated 
Genes 

 The list of mutated genes obtained after the 
detection of SAPs was further analyzed in order 
to verify their implication in cancer. Enrichment 
analysis of disease categories for the 1,580 
mutated genes detected was performed using 
Ingenuity. Of this gene set, 1,252 were associ-
ated with the cancer category with a 
p-value < 1e-30. Furthermore, among the 
enriched diseases with at least 300 annotated 
genes we found “breast or colorectal cancer” 
(663 genes), “colorectal cancer” (555 genes), 
“liver tumor” (523 genes), “hepatocellular carci-
noma” (502 genes), and “hematological neopla-
sia” (353 genes) or very closely related categories 
(Fig.  7.10a ). This is an important result, which 
shows that the identifi ed variants are indeed 
related to the cancer types studied through the 
public shotgun experiments of cell lines (BRCA, 
COAD, LALM and LIHC).

   We selected the mutated genes detected in at 
least 7 of the different analyses performed to gen-
erate the heatmap and clustering represented in 
Fig.  7.10b . As expected, the number of genes was 
higher when the complete TCGA database was 
used and the groupings were related to the cell 
line analyzed.  
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  Fig. 7.7    Venn diagrams representing the results of the 
identifi cation of SAPs and mutated genes using shotgun 
 proteomic   data of MCF7, Jurkat, CCD18 and Huh7 cell 
lines. ( a ) Number of SAPs using the Mascot search engine 
with TCGA database. ( b ) Number of SAPs using the 
Comet search engine with TCGA database. ( c ) Number of 
mutated genes using the Mascot search engine with 
TCGA database. ( d ) Number of mutated genes using the 

Comet search engine with TCGA database. ( e ) Number of 
SAPs using the Mascot search engine with tumor-specifi c 
databases. ( f ) Number of SAPs using the Comet search 
engine with tumor-specifi c databases. ( g ) Number of 
mutated genes using the Mascot search engine with 
tumor-specifi c databases. ( h ) Number of mutated genes 
using the Comet search engine with tumor-specifi c 
databases       
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7.3.2.4     Curated Analysis of Mutated 
Peptides 

 Finally, we completed the analysis of the mutated 
peptides detected with a manual curation of the 
best PSM candidates. We selected 35 PSMs 

obtained using Mascot (the best 5 PSMs for each 
result shown in Fig.  7.9e ). The corresponding 
spectra were evaluated in a blind manner by two 
independent MS experts who graded their quality 
as high, medium or low according to three char-

  Fig. 7.8    Heatmap representing the similarity among the 
landscape of  mutations   obtained using a complete TCGA 
database or tumor-specifi c databases. ( a ) Number of SAPs 
shared among cell lines using the Mascot search engine. 
( b ) Number of mutated genes shared among cell lines 

using the Mascot search engine. ( c ) Number of SAPs 
shared among cell lines using the Comet search engine. 
( d ) Number of mutated genes shared among cell lines 
using the Comet search engine       
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acteristics: the quality of y-ion or b-ion series, 
peak intensities and the presence of no assigned 
peaks (Jumeau et al.  2015 ). 

 The result of this validation process is sum-
marized In Table  7.4 . 65.71 % of the spectra were 
evaluated as “medium” or “high” by the mass 
spectrometry experts, while the 34.29 % of the 
spectra were considered of “low” quality. This 
suggests that a considerable percentage of the 
detected matches could be considered for further 
validation steps using other approaches, for 
example a SRM/MRM assay.

   As an example, we chose two of the mutated 
peptides detected from Table  7.4  (gene APEX1 in 
COAD cancer type and SERPINB11 gene in LIHC 
cancer type) to inspect and assign the fragment 
ions using the spectrum raw signal (Fig.  7.11 ). In 
both cases, the y-ion or b-ion series allowed us to 
establish the sequence of the peptide obtained with 

the search engine. It is important to emphasize that 
both sequences contained the mutated amino acid, 
which validated the presence of the SAPs in 
CCD18 and Huh7 cell lines respectively.

7.4          Summary 

 In this chapter, a bioinformatics analysis work-
fl ow for the detection of mutated peptides in can-
cer samples using different computational 
resources and databases is described. The work-
fl ow was divided into two parts. First, the data-
base of SAPs was generated using the information 
relative to the variants of interest. After the 
FASTA fi les required for peptide identifi cations 
were generated, the rest of the analysis was aimed 
at the statistical analysis and the annotation of the 
results of the proteomic searches. 

  Fig. 7.9    Comparison of the  SAP detection   analysis as a 
function of the search engine. ( a ) SAPs identifi ed using 
the complete TCGA database. ( b ) SAPs identifi ed using 
tumor-specifi c databases. ( c ) Mutated genes detected 
using the complete TCGA database. ( d ) Mutated genes 
detected using tumor-specifi c databases. ( e ) Distributions 
of ion scores for the PSMs obtained in Mascot searches 

in both TCGA and tumor-specifi c databases for CCD18, 
Huh7 and MCF7 cell lines (the  red line  marks the 
threshold of ion score = 32). ( f ) Distributions of XCorr 
for the PSMs obtained in Comet searches in both TCGA 
and tumor-specifi c databases for CCD18, Huh7 and 
MCF7 cell lines (the  red line  marks the threshold of 
XCorr = 2)       
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 The database was created from the data 
obtained from the TCGA project. More than 
10,000 exomes from 31 cancer types were ana-
lyzed in this project to obtain a catalogue of more 
than three million somatic variants. The VeP soft-
ware was used to infer the effect of the variants in 
order to retain only missense mutations in the 
SAP database. In addition to that, the variants 
were also annotated with bibliographic informa-
tion and clinical signifi cance using two reliable 
resources of somatic mutations in cancer, the 
COSMIC and ClinVar databases. The fi nal result 
of the data processing was a set of mutations that 
can be used to generate FASTA fi les on-demand. 

The selection of mutations could be based on 
tumor type, clinical signifi cance, or other criteria 
of interest. 

 We studied the mutation landscape of 4 cancer 
cell lines (Huh7, MCF7, CCD18 and Jurkat) to 
verify the performance of the proposed approach. 
Publicly available proteomic shotgun experi-
ments were downloaded from PRIDE database 
and analyzed using a reference proteome 
(Ensembl version 75) and two SAP databases: all 
TCGA mutated peptides and tumor-specifi c 
mutated peptides. Furthermore, we compared the 
effi ciency of the detection using two commonly 
used search engines, Mascot and Comet. In a fi rst 

  Fig. 7.10    ( a ) Enrichment of disease categories using 
Ingenuity for the list of 1580 mutated genes detected in 
the  proteogenomics   analysis of SAPs. ( b ) Clustering of 
the mutated genes detected in at least 7 of the analyses 

performed. Each column corresponds to a combination of 
a specifi c cell line, search engine and database.  Blue 
squares  indicate the detection of the mutated gene in the 
result of the analysis       
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search for each sample we identifi ed the proteins 
present in the cell lines, using a target-decoy 
strategy and a FDR threshold of 1 % at the PSM 
and protein levels. Protein inference was per-
formed applying the PAnalyzer algorithm in 
Mascot analyses and the output of the search 

engine in the Comet analyses. Although the 
results were not entirely comparable, consider-
able overlap was found. 

 Finally, after removal of the previously 
assigned spectra a second search was performed 
against the SAP database (complete TCGA data-

    Table 7.4    List of the 35 PSMs selected for manual curation   

 Gene ID  Gene name  Chr  Position  R/A  Cancer type 
 Spectrum 
quality 

 ENSG00000156508  EEF1A1  6  74,228,666  P/A  HNSC  Low 

 ENSG00000184260  HIST2H2AC  1  149,858,837  Q/E  LUAD  Low 

 ENSG00000147140  NONO  X  70,514,267  I/T  LIHC  Medium 

 ENSG00000178209  PLEC  8  145,007,187  A/V  COAD, 
CESC 

 Low 

 ENSG00000180543  TSPYL5  8  98,289,714  T/S  COAD  Medium 

 ENSG00000168090  COPS6  7  99,688,715  R/C  ACC  Medium 

 ENSG00000144381  HSPD1  2  198,363,449  Q/K  LUAD  High 

 ENSG00000197157  SND1  7  127,724,820  A/S  LUAD, 
GBM 

 High 

 ENSG00000122566  HNRNPA2B1  7  26,237,265  W/G  LIHC  Low 

 ENSG00000101558  VAPA  18  9,950,451  M/I  SARC  Medium 

 ENSG00000144381  HSPD1  2  198363449  Q/K  LUAD  Low 

 ENSG00000077312  SNRPA  19  41265363  D/Y  UCEC  High 

 ENSG00000171858  RPS21  20  60,962,906  K/R  CHOL  Low 

 ENSG00000144381  HSPD1  2  198,363,449  Q/K  LUAD  Low 

 ENSG00000077312  SNRPA  19  41,265,363  D/Y  UCEC  High 

 ENSG00000142168  SOD1  21  33,040,872  V/A  UCEC  Medium 

 ENSG00000104833  TUBB4A  19  6,502,196  G/S  COAD  High 

 ENSG00000104833  TUBB4A  19  6,501,408  G/V  LUAD  High 

 ENSG00000171314  PGAM1  10  99,190,370  P/L  UCS  High 

 ENSG00000184640  SEPT9  17  75,488,782  V/G  KIRP  Medium 

 ENSG00000169045  HNRNPH1  5  179,043,881  G/D  BRCA  Medium 

 ENSG00000105679  GAPDHS  19  36,034,281  D/Y  BRCA  High 

 ENSG00000169045  HNRNPH1  5  179,043,881  G/D  BRCA  Low 

 ENSG00000141837  CACNA1A  19  13,356,070  R/C  BRCA  Medium 

 ENSG00000122566  HNRNPA2B1  7  26,236,568  E/Q  BRCA  Medium 

 ENSG00000100823  APEX1  14  20,925,154  D/E  COAD  Medium 

 ENSG00000088682  COQ9  16  57,486,729  G/S  COAD  Low 

 ENSG00000181873  IBA57  1  228,362,682  G/S  COAD  Medium 

 ENSG00000100823  APEX1  14  20,925,154  D/E  COAD  High 

 ENSG00000178209  PLEC  8  145,001,031  H/R  COAD  Medium 

 ENSG00000116560  SFPQ  1  35,656,352  K/T  LIHC  Low 

 ENSG00000116560  SFPQ  1  35,656,352  K/T  LIHC  Low 

 ENSG00000206072  SERPINB11  18  61,387,312  A/T  LIHC  High 

 ENSG00000184260  HIST2H2AC  1  149,858,769  R/P  LIHC  Low 

 ENSG00000162396  PARS2  1  55,223,846  G/D  LIHC  Medium 
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set or cancer-specifi c mutations). The set of 
mutated genes detected with these analyses were 
functionally annotated and their implication in 
cancer, and specifi cally in the cancer types under 
study, was verifi ed. Another validation step was 
performed using two independent experts to eval-
uate the best PSMs detected. This study confi rmed 
the validity of the proteogenomics approach to 
detect mutated peptides in cancer samples.     
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  Fig. 7.11    ( a ) Raw spectrum and assigned b-ions and 
y-ions for the mutated peptide VLVNTIYFK detected in 
LIHC tumor type in the gene SERPINB11. ( b ) Raw spec-

trum and assigned b-ions and y-ions for the mutated pep-
tide VSYGIGEEEHDQEGR detected in COAD tumor 
type in the gene APEX1       
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      Developments for Personalized 
Medicine of Lung Cancer Subtypes: 
Mass Spectrometry-Based Clinical 
Proteogenomic Analysis 
of Oncogenic Mutations                     

     Toshihide     Nishimura      and     Haruhiko     Nakamura    

    Abstract  

  Molecular therapies targeting lung cancers with mutated epidermal growth 
factor receptor (EGFR) by EGFR-tyrosin kinase inhibitors (EGFR-TKIs), 
gefi tinib and erlotinib, changed the treatment system of lung cancer. It was 
revealed that drug effi cacy differs by race ( e.g. , Caucasians vs. Asians) due 
to oncogenic driver mutations specifi c to each race, exemplifi ed by gefi -
tinib / erlotinib. The molecular target drugs for lung cancer with anaplastic 
lymphoma kinase (ALK) gene translocation (the fusion gene, EML4- 
ALK) was approved, and those targeting lung cancers addicted ROS1, 
RET, and HER2 have been under development. Both identifi cation and 
quantifi cation of gatekeeper mutations need to be performed using lung 
cancer tissue specimens obtained from patients to improve the treatment 
for lung cancer patients: (1) identifi cation and quantitation data of targeted 
mutated proteins, including investigation of mutation heterogeneity within 
a tissue; (2) exploratory mass spectrometry (MS)-based clinical proteoge-
nomic analysis of mutated proteins; and also importantly (3) analysis of 
dynamic protein–protein interaction (PPI) networks of proteins signifi -
cantly related to a subgroup of patients with lung cancer not only with 
good effi cacy but also with acquired resistance. MS-based proteogenom-
ics is a promising approach to directly capture mutated and fusion proteins 
expressed in a clinical sample. Technological developments are further 
expected, which will provide a powerful solution for the stratifi cation of 
patients and drug discovery (Precision Medicine).  
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8.1       Introduction 

  Lung             cancer            is the most prevalent type of cancer 
in the world and it is a leading cause of death 
(Jemal et al.  2011 ; the data base of Japanese 
Ministry of Health and Labor and Welfare  2013 ). 
In Japan, annual deaths from lung cancer are 
increasing and currently approach 70,000 (The 
data base of Japanese Ministry of Health and 
Labor and Welfare  2013 ), while in the United 
States with a recent decreasing trend in mortality, 
more than 160,000 succumb annually (The data 
base of National Cancer Institute at the National 
Institute of Health  2013 ). Tobacco smoking is the 
main risk factor for lung cancer; however, 
approximately 25 % of lung cancers worldwide 
occur in never-smokers (Ferlay et al.  2010 ; Siegel 
et al.  2011 ). Moreover, the risk of lung cancer 
differs by race / ethnicity. In the United States, 
approximately 10 % of patients with lung cancer 
are never-smokers (Scagliotti et al  2009 ), while 
in Asia, >30 % of patients with lung cancer are 
never-smokers and more than 50 % of lung can-
cers occur in women who are never-smokers 
(Toh et al.  2004 ). 

  Weinstein   ( 2001 ) proposed that cancer cells 
acquire abnormalities in multiple oncogenes and 
tumor suppressor genes but that the inactivation 
of a single critical oncogene can induce cancer 
cells to differentiate into cells with a normal phe-
notype or to undergo apoptosis (Oncogene 
Addiction). Only a few driver oncogenic genes 
would result in their dysfunctions and lead to 
anti-tumor effects whereas numerous abnormal 
oncogenes are expressed in a tumor. The success-
ful application of this phenomenon is the molec-
ular therapy targeting lung cancers with mutated 
epidermal growth factor receptor (EGFR) by 
EGFR-tyrosine kinase inhibitors (EGFR-TKIs), 
gefi tinib and erlotinib, which thereafter changed 

the treatment system of lung cancer. Several clin-
ical trials, such as the NEJ002 (Miyauchi et al. 
 2015 ) and WJTOG3405 (Mitsudomi et al.  2010 ) 
studies, reported the superiority of gefi tinib over 
carboplatin (CBDCA) and paclitaxel (PTX; 
Taxol) (CBDCA/PTX) on progression-free sur-
vival (PFS) as the fi rst-line treatment for advanced 
non-small cell lung cancer (NSCLC) harboring 
an epidermal growth factor receptor (EGFR) 
mutation. In addition, in 2012 the  molecular tar-
get drug  , crizotinib, was approved for lung can-
cers with an anaplastic lymphoma kinase (ALK) 
gene translocation (the  fusion gene  , EML4-ALK) 
(Camidge and Doebele  2012 ), and further, those 
targeting lung cancers addicted ROS1 (Shaw 
et al.  2012 ), RET (Sasaki et al.  2012 ), and HER2 
(Mar and Vredenburgh  2015 ) have also been 
under development. It seems that such personal-
ized treatments are changing lung cancer to a 
chronic disease, which might even be able to be 
cured.  

8.2     Lung Cancer Subtypes 
and Mutations 

8.2.1     Lung Cancer Subtypes 

 Large-cell lung cancer (LCC) is one of the sub-
types in which cancerous large cells grow with-
out any distinctive tissue construct. Small-cell 
lung cancer (SCLC) is the subtype of an aggres-
sive neuroendocrine tumor consisting of small 
bare nuclei cells.  Travis   et al .  ( 1991 ) proposed a 
new subtype of large-cell lung carcinoma, named 
large cell neuroendocrine carcinoma (LCNEC) in 
1991, and the World Health Organization fi nally 
adopted it for the revised pathological classifi ca-
tion of lung cancer in the 1999 and 2004 WHO 
classifi cations. (Travis et al.  1999 ,  2004 ) LCNEC 
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exhibits morphology similar to LCC, but neuro-
endocrine differentiation like SCLC that could be 
judged by the expression of at least one of three 
representative neuroendocrine proteins; CD56, 
synaptophysin (Syn) or chromogranin A (CGA). 
The developmental history of the tissue origin is 
currently unknown for these three types of lung 
cancers. LCNEC has a poor prognosis, similarly 
to small-cell lung carcinoma (SCLC), and the 
survival rate is just 18 % in IA-stage, only by 
resection (Dresler et al.  1997 ; Battafarano et al. 
 2005 ). Currently, similarly to non-small-cell lung 
carcinoma (NSCLC), resection is the fi rst choice, 
followed by adjuvant therapy, as for 
SCLC. Surgical resection of LCNEC in many 
series has been described with 5-year actuarial 
survival that is far worse than that reported for 
other histological variants of non-small-cell lung 
cancer (NSCLC). There have been considerable 
debates on whether these tumors should be clas-
sifi ed and treated as NSCLC or SCLC. The large- 
scale epidemiologic study has compared the 
presenting and prognostic characteristics of 
patients with LCNEC with those of patients with 
SCLC or other large cell carcinomas (OLCs) 
with respect to overall survival (OS) and lung 
cancer-specifi c survival (LCSS) rates for patients 
undergoing defi nitive resection without radio-
therapy (S-NoRT), and they have concluded that 
LCNEC should continue to be classifi ed and 
treated as a large cell carcinoma because the clin-
ical, histopathologic, and biologic features of 
LCNEC are more similar to OLC than to SCLC 
(Varlotto et al.  2011 ; Travis  2010 ).  

8.2.2       Lung Adenocarcinoma   
Classifi cation 

 In an increasing trend worldwide, advances in 
chest high-resolution computed tomography 
(HRCT) scanning technology have enabled the 
localization of small adenocarcinoma nodules 
(Nakamura and Saji  2014 ) at an earlier and 
potentially more curable stage of development 
than previously possible (Koike et al.  2009 ). 
There are 90 million current and ex-smokers in 
the United States who are at increased risk of 

lung cancer. The published data from the National 
Lung Screening Trial (NLST) suggest that yearly 
screening with low dose thoracic CT scans in 
heavy smokers can reduce lung cancer mortality 
by 20 % and all-cause mortality by 7 % (The 
National Lung Screening Trial Research Team 
 2011 ). 

 In 2011, the new pathologic classifi cation of 
lung adenocarcinoma was proposed by the 
International Association for the Study of Lung 
Cancer (IASLC), the American Thoracic Society 
(ATS) and the European Respiratory Society 
(ERS) (Travis et al.  2011 ). In the new classifi ca-
tion, the concept of adenocarcinoma in situ (AIS) 
and minimally invasive adenocarcinoma (MIA) 
were newly introduced and the term bronchio-
loalveolar carcinoma (BAC) was abolished. 
Additionally, invasive adenocarcinomas were 
categorized into 6 subtypes, lepidic (LEP), acinar 
(CAN), papillary (PAP), micropapillary (MP), 
solid (SLD), and variants, according to the pre-
dominant histologic pattern. Both AIS and MIA 
were defi ned as tumors  ≤  3 cm in size. AIS is a 
preinvasive lesion showing pure lepidic growth 
without invasion. MIA is also lepidic predomi-
nant tumor but with  ≤  5 mm invasion. LEP is an 
invasive adenocarcinoma showing former non-
mucinous BAC pattern with   >  5 mm invasion. 
These 3 lepidic type adenocarcinomas are specu-
lated to show stepwise progression from AIS, 
MIA, to LEP. After complete resection of AIS or 
MIA, usually 100 % of recurrencefree 5year sur-
vival can be obtained (Travis et al.  2011 ), while 
some recurrent cases are found after resection of 
LEP (Yoshizawa et al.  2011 ,  2013 ; Gu et al. 
 2013 ). Since postoperative prognoses between 
the AIS plus MIA group and LEP are different, 
differential protein expressions associated with 
invasiveness of cancer cells in each subtype 
should play important roles to determine local 
recurrences and survivals. 

 Recently the driver mutations, including the 
EGFR, KRAS, HER2, BRAF, ALK, RET, and 
PIK3CA, were investigated across the IASLC/
ATS/ERS morphologic classifi cations in lung 
adenocarcinoma incorporated with the clinico-
pathological characteristics to evaluate their 
mutual correlation, in which lung adenocarcino-
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mas obtained from 1015 Chinese patients were 
analyzed (Hu et al.  2014 ). There, the driver muta-
tions, EGFR (exons 18–22), HER2 (exons 
18–21), KRAS (exons 2–3), BRAF (exons 
11–15), and PIK3CA (exons 9–20) were ampli-
fi ed by using the polymerase chain reaction 
(PCR) with cDNA used for Sanger sequencing. 
The ALK and RET rearrangements were screened 
by using PCR and quantitative real-time PCR 
with cDNA and confi rmed with fl uorescence in- 
situ hybridization in formalin-fi xed paraffi n- 
embedded (FFPE) tissue specimens. Figure  8.1  
demonstrated that all driver mutations across the 
IASLC/ATS/ERS classifi cations were mutually 
exclusive except in 18 patients coexisting EGFR 
and PIK3CA mutations, 4 with both the KRAS 
and PIK3CA mutations, and 1 with both the RET 
and PIK3CA mutations. The EGFR mutation was 
64.7 % in overall frequency, much higher than in 
the Caucasian population, and the KRAS muta-
tion was 7.1 %, much lower than in Caucasian 
patients.

   Never-smoker East Asian females have a ten-
dency to develop adenocarcinoma, and these 
never-smokers exhibit higher treatment response 
rates to epidermal growth factor receptor tyrosine 
kinase inhibitors (EGFR-TKIs), such as gefi tinib 
(Iressa™) and erlotinib (Tarceva™), than those 
with a history of tobacco smoking (Ha et al. 
 2015 ). EGFR-TKIs block EGFR phosphoryla-
tion and subsequent signal transduction pathways 
involved in proliferation, metastasis, angiogene-
sis and apoptosis inhibition, and gefi tinib is the 
fi rst molecular targeting  drug   signifi cantly bene-
fi cial for Asian lung cancer patients. Figure  8.2  
shows the frequency of driver gene mutations in 
lung adenocarcinomas from East Asian never- 
smoker females, among which EGFR mutations 
were the most frequently found mutation in lung 
adenocarcinomas of female never-smokers. 
Mutations in the TK domain of the EGFR were 
identifi ed in those patients with refractory non- 
small cell lung cancer who achieved dramatic 
tumor responses to gefi tinib. Although it is not 

  Fig. 8.1    Driver  mutation   spectrum, according to the 
novel IASLC/ATS/ERS classifi cation (Hu et al.  2014 ). 
Note: *Indicates samples harboring the PIK3CA  mutation   
without overlap with other driver  mutations  . Abbreviations: 
 IASLC  International Association for the Study of Lung 
Cancer,  ATS  American Thoracic Society,  ERS  European 

Respiratory Society,  AAH  atypical adenomatous hyper-
plasia,  AIS  adenocarcinoma in situ,  MIA  minimally inva-
sive adenocarcinoma,  LEP  lepidic predominant,  ACN  
acinar predominant,  PAP  papillary predominant,  MP  
micropapillary predominant,  SLD  solid predominant,  IMA  
invasive mucinous adenocarcinoma       
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well understood yet why NSCLCs develop in 
never-smokers, it has now been established that 
never-smoker-related NSCLCs comprise dis-
eases distinct biologically to smoking-related 
NSCLCs: The former are characterized by the 
considerably high frequency in EGFR mutations, 
the latter show more frequent KRAS mutations 
and dominant unknowns (Oxnard et al.  2014 ; 
Sun et al.  2007 ). The major prevalence of driver 
oncogenes in lung adenocarcinomas from never- 
smokers certainly leads diseases putative 
oncogene- driven malignancies in these diseases, 
in which the treatment by kinase inhibitors highly 
benefi ts patien ts.

8.3         Clinical Proteogenomics 

 Millions of clinical samples are obtained every 
day for use in diagnostic tests that support clini-
cal decision making. Clinical samples (tissues, 
biopsies, blood,  etc .) can also be archived into 
repositories for use in future studies investigating 

the etiology of diseases using omics approaches. 
Therefore, infrastructure buildup of standardized 
biobanking is increasingly needed within the 
clinical omics community because the samples 
themselves have intrinsic values in the determi-
nation of outcomes of clinical trials (Végvári 
et al.  2011a ,  b ; Marko-Varga  2011 ; Marko-Varga 
et al.  2011 ; Malm et al.  2012 ; LaBaer  2012 ). The 
samples can be retrieved from pathology labora-
tories with the approval from ethical committees 
of medical institutes and hospitals. Many types of 
disease specimens exist, such as frozen and FFPE 
tissues; biopsies; and body fl uids including 
blood, serum, plasma, and urine; interstitial fl uid; 
cyst material; ascites fl uid; and pancreatic juice. 

8.3.1     Laser Microdisection 
and Protein Solubilization 

 In hospitals and medical institutes, tumor tissues 
obtained by surgical resection are typically fi xed 
in 4 % paraformaldehyde and routinely processed 

  Fig. 8.2    Frequency of driver gene  mutations   in  lung adenocarcinomas   from East Asian never-smoker females (Ha et al. 
 2015 )       
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for paraffi n sectioning. Cancerous lesions can be 
identifi ed on serial tissue sections stained with 
hematoxylin and eosin (HE). Figure  8.3  shows 
(A) focal ground-glass opacity on chest HRCT, 
which lesions are identifi ed as AIS, MIA, or LEP 
and (B) a representative HE-stained image of 
LEP. Laser microdissection (LMD) makes it pos-
sible to collect target cells from a variety of FFPE 
cancer tissues. For shotgun  proteomic      analysis, 
10-μm sections prepared from the same tissue 
block are attached onto DIRECTOR™ slides 
(OncoPlexDx, Rockville, MD, USA), de- 
paraffi nized twice with xylene for 5 min, rehy-
drated with graded ethanol solutions and distilled 
water, and stained by hematoxylin (Prieto et al. 
 2005 ; Hood et al.  2005 ; Kawamura et al.  2010 ; 
Nomura et al.  2011 ). Slides are air dried and sub-
jected to LMD with a Leica LMD7000 (Leica 
Micro-systems GmbH, Ernst-Leitz-Strasse, 
Wetzlar, Germany). Typically, ca. 30,000 cells 
(ca. 8 mm 2 ) per tissue sample are transferred 
directly to a 1.5-mL low-binding plastic tube. 
Figure  8.4  exemplifi es the hematoxylin-stained 
LEP tissue before and after LMD (C-1 and C-2, 
respectively).

    Proteins/peptides from dissected cells can be 
extracted by following several protocols (Prieto 
et al.  2005 ; Wisniewski et al.  2011 ). For example, 
according to the protocol of a Liquid Tissue™ 
 MS   Protein Prep kit (Expression Pathology) 
(Prieto et al.  2005 ), the cellular material, sus-

pended in the liquid tissue buffer, is incubated at 
95°C for 90 min, cooled on ice (3 min), and sub-
sequently enzymatically digested, followed by 
reduction and alkylation. The liquid tissue digests 
can be stored at −20°C until  proteomic   analysis.  

8.3.2     Protein Identifi cation 
and Quantifi cation 

 Recent advances in  MS   could make  proteomic  s 
amenable to in-depth exploratory and targeted 
quantitative analysis of proteins expressed in a 
complex clinical specimen (Marko-Varga et al. 
 2011 ; Nakamura et al.  2012 ).  MS   is greatly 
advantageous due to its extremely high capabil-
ity of capturing/identifying/sequencing of pro-
teins/peptides expressed in a complex clinical 
specimen, with high sensitivity and high preci-
sion, unlike others (Nishimura and Tojo  2014 ). 
An exploratory  proteomic   analysis typically 
comprises extraction and/or direct tryptic diges-
tion of all expressed proteins in a complex bio-
logical sample, and then the peptide mixture 
obtained is subjected to liquid chromatography 
(LC)/electrospray ionization-tandem 
 MS     “ShotGun” analytical platform so as to 
sequence these by searching against protein 
sequence databases. Protein identifi cation in 
shotgun  proteomic      approaches (bottom- up) can 
be now performed by four peptide sequencing 

  Fig. 8.3    ( a ) Focal ground-glass opacity on chest HRCT, which lesions are identifi ed as AIS, MIA, or LEP. ( b ) A rep-
resentative hematoxylin and eosin-stained image of LEP       
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strategies using MS/MS spectra: (A) database 
search, (B) spectral library matching, (C) hybrid 
approaches using sequence-tag determination 
followed by database search, and (D) de novo 
sequencing as illustrated in Fig.  8.5 . Several 
hundred to several thousand (more than 10,000 in 
some cases) different protein species can typi-
cally be identifi ed in such exploratory clinical 

 proteomic   studies (Michalski et al.  2011 ; 
Panchaud et al.  2011 ; Geiger et al.  2010 ; Gillet 
et al.  2012 ; Bern et al.  2010 ; Physikron Mass 
Spectrometry Systems  2013 ; Gorshkov et al. 
 2015 ), in which label-free semi-quantitative 
comparison with statistical evaluation is mainly 
performed to elucidate proteins specifi cally rel-
evant to a disease subtype.

  Fig. 8.4    The hematoxylin-stained LEP tissue before and 
after laser microdissection (C-1 and C-2, respectively). 
The DIRECTOR® slide is similar to a standard glass 
(uncharged) microscope slide but has an energy transfer 
coating on one side of the slide. Tissue sections are 
mounted on top of the energy transfer coating, and when 

the slide is turned over, the tissue faces down under the 
microdissection system. Analysis of targeting cells or tis-
sue areas of interest is performed on the computer display. 
The laser energy is converted to kinetic energy upon strik-
ing the coating, vaporizing it, and instantly propelling 
selected tissue features into the collection tube       

  Fig. 8.5    An illustration of exploratory  mass spectrometry 
(MS)     -based proteomic analysis. All expressed proteins in 
a complex biological sample are extracted and/or are sub-
jected to direct tryptic digestion, and the peptide mixture 

obtained is subjected to liquid chromatography/electro-
spray ionization-tandem mass  spectrometry   “ShotGun” 
analytical platform so as to sequence these by queries 
against protein sequence databases       
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8.4         Development 
of Proteogenomic 
Technologies to Identify/
Quantify Mutated Proteins 

8.4.1     Exploratory In-depth Analysis 

 Proteins are functionally dynamic since these bio-
logical molecules exhibit various forms of 
sequences, including not only post-translational 
modifi cations/truncations/variants but also muta-
tions/rearrangements. For identifi cation of such 
dynamic proteins from clinical samples, the devel-
opment of proteome  bioinformatics   is of increas-
ing importance. There are currently various 
gene–protein databases, which, however, remain 
to be consolidated. The total number of protein-
coding genes is considered to be ~20,000, from 
which the canonical proteins are estimated to be 
ca. 68,000 in UniProt and ca. 38,400 in neXtProt. 
These databases have been most commonly used 
for protein identifi cation in conventional  pro-
teomic   studies. However, there are other databases 
not publicly available such as the MuPdb mutation 
database (ca. 1,200,000 species), the fusion-gene 
database (ca. 10,000 species), and the “Short” pro-
tein (the number of amino acids <100) database 
(ca. 6500 species), which have not been fully 

annotated yet. MuPdb contains all possible non-
synonymous single nucleotide polymorphism 
(nsSNP)       sequences known from  genomic   studies 
(Ensembl database). 

 MS-based  proteomics   generates high-quality 
sequential protein data on the human proteome. 
However, the lack of a comprehensive database 
including a complete collection of  nsSNP   products 
and  fusion genes   prevents identifi cation of mutant 
and fusion proteoforms even if high- quality mass 
spectra are available. A recent study to determine 
the distribution of known  oncogenic driver muta-
tions   in female never-smoker Asian patients with 
lung AC revealed that ca. 79 % of patients harbored 
driver gene mutations as previously described (Ha 
et al.  2015 ). Whereas multiplex gene analysis does 
not seem to be realistic, MS-based multiplex assays 
can be performed by querying proteome MS/MS 
datasets obtained from clinical samples against the 
variety of databases, which will highly likely iden-
tify new functional proteins relevant to therapeutic 
targets that have remained unknown until now 
(Fig.  8.6 ). Table  8.1  exemplifi es a list of 35 pro-
teins, identifi ed with single amino acid polymor-
phisms, obtained from the  proteomic   dataset of 
patients with LEP lung cancer (single run, one 
sample) by querying against the mutated  protein 
database  , MuPdb.

  Fig. 8.6     Proteogenomic   analysis of clinical proteome datasets by searching against various protein/gene databases: 
canonical UniProt and neXtProt protein db, MuPdb  mutation   db, fusion-gene db, and “short” protein (aa < 100) db       
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8.4.2         Quantitative Identifi cation 
of Oncogenic Fusion Gene 
Products 

 Gene fusion events represent the most common 
type of  genomic   rearrangement resulting from 
inversions, interstitial deletion, or translocations. 
The fi rst  fusion gene  , BRC-ABL1was discovered 
by Peter  Nowell   & David  Hungerford   ( 1960 ) and 
has been a diagnostic marker for chronic myelog-
enous leukemia as well as the drug target of ima-
tinib (Gleevec™). The discovery of 
TMPRSS2-ERG fusions in prostate cancer 
(Tomlins et al.  2008 ) and EML4-ALK fusion in 
NSCLC tumors (Soda et al.  2007 ) suggested a 
relatively frequent occurrence of gene fusion 
events in solid tumors, which generate novel 
oncogenic fusion proteins. These  fusion gene   
products are mainly restricted to tumor cells, 
which would be useful diagnostic and therapeutic 
targets. 

 The fusion protein FusPdb database, built 
from the integrated chimeric gene database, 
ChiTaRS ( 2013 ), currently contains ca. 9300 
candidates. Figure  8.7  illustrates the workfl ow of 
identifying and quantifying  fusion gene   products, 
in which the NPM-ALK fusion protein (680 aa) 

produced by the gene translocation t(2;5)
(p23;q35) is showed as an example. Recent 
advances in mass spectrometric make it possible 
to identify numerous fusion junction peptides/
fusion proteins by LC–MS/MS in high-resolution 
and high sensitivity modes, in which resulting 
datasets are queried against the FusPdb/canonical 
 protein databases   and/or directly against the 
ChiTaRS database using appropriate searching 
software, such as COMET (Eng et al.  2015 ). 
Prior to MS-based analysis of  fusion gene   prod-
ucts of interest, it is key to develop methodolo-
gies for affi nity-based enrichment from a 
complex clinical sample, followed by effi cient 
digestion. Junction peptides can be designed 
using the FuseProt database, which are all possi-
ble peptides containing the junction position of a 
fusion protein. For MS-based quantifi cation of 
targeted fusion-proteins of interest, unique junc-
tion peptides involving junction points are 
designed by selecting appropriate enzymatic pro-
teases, in which their enzymatic miss-cleavages 
are also taken into account. MS-based targeted 
assays would typically be performed using the 
acquisition modes of the single-ion monitoring 
(SIM) and selected-reaction monitoring (SRM), 
where absolute quantifi cation can be achieved 

  Fig. 8.7    A workfl ow of identifying and quantifying  fusion gene   products, in which the NPM-ALK fusion protein (680 
aa) produced by the gene translocation t(2;5)(p23;q35) is shown as an example       
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with spiked authentic stable isotope-labeled junc-
tion peptide (AQUA junction peptide) of a known 
amount. There are the major three variants of 
EML4-ALK  fusion gene   products. Figure  8.8  
shows (A) the 11 SRM-transition peaks obtained 
for the authentic EML4-ALK variant-1 junction 
peptide, k.YIMSNSGDYEIYL-YRRK.h, being 
produced via Lys-C digestion and (B) the SIM 
quantitation of the authentic EML4-ALK 
Variant-3 junction peptide, k.NSQ-VYRRK.h (a 
Lys-C digestion product) of ca. 10–1000 fmol 
spiked into a plasma matrix (ca. 100 ng/μl). Both 
were measured on a Q-Exactive high-resolution 
mass spectrometer. The MS-based targeted quan-
tifi cation assay of multiple  fusion gene   products 
including their variants is in principle accurate 

and fl exible, by which multiple targeted  fusion 
gene   products can be quantitatively monitored 
simultaneously with tissue/biopsy of a patient. 
For example, simultaneous MS-based quantita-
tion of both EML4-ALK and KIF5B-RET—a 
multiplex assay—can be designed as follows: (1) 
targeted fusion proteins (including variants) can 
be enriched using appropriate  antibodies  , (2) 
respective enriched samples are digested by spe-
cifi c proteases, and (3) the respective peptide- 
mixture samples are combined into one sample, 
which is subjected to targeted MS-based quantifi -
cation. A MS-based multiplex fusion protein 
assay has a high potential to facilitate establish-
ment of the defi nitive diagnosis, benefi ting the 
patient by enabling administration of optimal 

  Fig. 8.8    ( a ) The 11 SRM-transition peaks obtained for 
the authentic EML4-ALK variant-1 junction peptide, 
k.YIMSNSGDYEIYL-YRRK.h, being produced via 
Lys-C digestion. ( b ) SIM quantitation for the authentic 

EML4-ALK variant-3 junction peptide, k.NSQ-VYRRK.h 
(a Lys-C digestion product) of ca. 10–1000 fmol spiked 
into a plasma matrix (ca. 100 ng/μl)         
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treatment, and comes with a low assay cost, 
although further development of the technology 
is necessary.

8.5          Cellular Pathways Affected 
by Somatic Mutations 

 The identifi cation of recurrent mutations in 
EGFR and fusions involving ALK and other 
receptor tyrosine kinases has greatly transformed 
the standard of treatment of patients with lung 
AC. Current guidelines recommended the molec-
ular genotyping of AC to routinely include the 
EGFR and ALK status, alterations which are 
found to exist in ca. 25 % of patients with AC 
who benefi t more from approved targeted inhibi-
tor therapies than from conventional chemother-
apy. Such somatic alterations, mutations, and 
fusions in lung cancers frequently affect cellular 
pathway activities involved in lung cancer sub-
types. Figure  8.9  summarizes cellular pathways, 
the activities of which are affected by somatic 
alterations in lung cancer subtypes, namely AC, 

squamous cell carcinoma, and SCLC (Shtivelman 
et al.  2014 ).

   The most important information is how pro-
teins expressed signifi cantly in a disease subtype 
interplay with other key proteins and pathways to 
evaluate  biomarker   candidates and therapeutic 
targets. Several open PPI databases are available; 
current versions include Reactome (Reactome 
Pathway database  2016 ) and BioGRID (The 
Biological General Repository for Interaction 
Datasets  2016 ), and PPI  network   analysis can be 
performed by designated network construction 
algorithms, using, for example, the Search Tool 
for the Retrieval of Interacting Genes/Proteins 
(STRING) database (STRING 10  2016 ) and the 
Cytoscape (Cytoscape3  2014 ), a software envi-
ronment for integrated models of biomolecular 
interaction networks. PPI  networks   elucidated so 
far consist of nodes and edges, where nodes are 
proteins experimentally identifi ed, and edges are 
the predicted functional associations based on pri-
mary databases comprising KEGG and GO 
( 2016 ), the primary literature, and so on. Thus, it 
has become possible to elucidate protein networks 

Fig. 8.8 (continued)
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relevant to a disease subtype using its  proteomic 
datasets. The concept of  biomarkers   has been 
changing from conventional  biomarkers  —single 
proteins—to specifi c protein networks or dynami-
cally varying networks (Wu et al.  2014 ), since 
diseases can be regarded also as dynamic network 
disorders. PPI  networks   dynamically activated or 
deactivated in a disease subtype of interest would 
be directly associated with its responsible molec-
ular mechanisms, which would lead to discovery 
of therapeutic and drugable targets. 

 Figure  8.10  shows the STRING PPI  networks   
developed from the LEP proteome datasets 
obtained from a clinical  proteomic   analytical 
study of cancerous cells laser microdissected 
from lung cancer FFPE-tissue specimens (Kato 
et al.  2015 ). The ErbB signaling pathway is 
associated with several cancer pathways. The 
ErbB family represents epidermal growth factor 
receptors, which play an important role in tumor 
growth. Overexpression of EGFR occurs in 
around 60 % NSCLCs, with patients with AC 
having the highest frequency (Shtivelman et al. 
 2014 ). Hypoxia-inducible factors (HIFs) regu-
late the transcription of genes that mediate the 
response to hypoxia (reduced O 2  availability) 
(Semenza  2010 ). Diverse products of HIF-1 
action such as induction of the Met protein, 

hepatocyte growth factor, followed by Met 
receptor activation, may result in the poor prog-
nosis associated with hypoxic tumors, which are 
indeed more aggressive than their well-oxygen-
ated counterparts. Molecules participating in the 
ErbB and HIF-1 signaling pathways are denoted 
by orange and red circles in Fig.  8.10 , respec-
tively (Kato et al.  2015 ). Figure  8.11  illustrates 
the results of the STRING gene set enrichments 
for LEP, MIA, and AIS obtained for the 24 
cancer- related KEGG pathways, which were 
elucidated with their signifi cance rank p < 0.05 
after correction by false discovery rate (FDR) 
(Kato et al.  2015 ). It was revealed how func-
tional participation of expressed proteins alters 
dramatically throughout disease stages, refl ect-
ing the mechanisms of disease progression. 
Thus, MS-based exploratory  proteomic  s utiliz-
ing clinical specimens is a promising analytical 
platform, which makes it possible to reveal 
molecular networks relevant to a disease sub-
group, drug responders or nonresponders, good 
or poor prognosis,  drug resistance  , and so on.

    It should be emphasized that both somatic 
mutations and cellular pathways in disease sub-
types are mutually strongly connected, and so 
both are needed to be unveiled to understand 
molecular mechanisms of a disease subtype.  
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  Fig. 8.9    ( a ) Cellular pathways affected by somatic altera-
tions and ( b ) genes involved in each type of lung cancer 
are listed in order of the frequency of alterations found. 

 AC  adenocarcinoma,  SCLC  small-cell lung carcinoma, 
 SQCC  squamous cell carcinoma (Shtivelman et al.  2014 )       
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  Fig. 8.10    The STRING protein–protein interaction net-
works developed from the LEP proteome datasets 
obtained from a clinical proteomic analytical study of the 

cancerous cells laser-microdissected from lung cancer 
formalin-fi xed paraffi n-embedded-tissue specimens       
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8.6       Drug Resistance   
and Gatekeeper Mutations 

8.6.1     Third-Generation EGFR 
Tyrosine Kinase Inhibitor ( TKI  ) 
Drugs 

 First-generation EGFR-TKIs include Iressa™ 
(gefi tinib) and Tarceva™ (erlotinib), which tar-
get activated EGFR mutations, including the 
L858R point mutation in Exon 21 and small 
deletions around E746-A750 in Exon 19, in the 
tyrosine kinase domain. Such mutations are fre-
quently seen in  lung adenocarcinomas   (ACs) in 
East Asian populations. These two drugs show 
remarkable therapeutic effects in 40–50 % of 
patients with lung cancer with AC in China, 
Korea, and Japan (Mitsudomi et al.  2010 ). 
However, drug resistance has been reported to 
be associated with the administration of fi rst- 

generation EGFR-TKIs, where an acquisition 
of the new T790M EGFR mutation in patients 
with EGFR mutation-positive lung cancer is 
considered the most frequent cause of resis-
tance. Later, the second-generation EGFR-TKI 
Gilotrif™ (afatinib) (Hirsh  2015 ; Bennouna 
and Moreno Vera  2015 ) was introduced; how-
ever, it appears that this TKI is no longer able to 
be bound due to the three-dimensional struc-
tural change of EGFR caused by the T790M 
mutation. Recently, the third-generation EGFR-
TKIs, AZD9291 (Jänne et al.  2015 ) and 
CO-1686 (rociletinib) (Sequist et al.  2015 ), 
demonstrated a high antitumor effect on non-
small-cell lung cancer (NSCLC), which had 
become resistant to fi rst-generation EGFR- 
TKIs; these TKIs have been found to selec-
tively and irreversibly inhibit both EGFR with 
TKI- activated mutations and T790M and are 
currently in the development phase.  

  Fig. 8.11    Results of the STRING gene set enrichments 
for LEP, MIA, and AIS obtained for the 24 cancer-related 
KEGG pathways (signifi cance rank  p  < 0.05 after correc-
tion by false discovery rate), which revealed how func-

tional participations of expressed proteins alter 
dramatically throughout disease stages, refl ecting mecha-
nisms of disease progression (Kato et al.  2015 )       
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8.6.2     EGFR-TKI Drug Resistance 
and Dynamic Variation 
of Mutations 

 Recently, it was reported that AZD9291 showed 
high antitumor activity in EGFR-T790M-positive 
patients with advanced NSCLC whose disease 
progressed with previous EGFR-TKI treatment 
and that rociletinib, which exhibited activity in 
both T790M (+) and (−) patients in a preclinical 
model, benefi ts EGFR-mutation-positive patients 
with EGFR-T790M. 

 The third-generation EGFR- TKI   AZD9291 
demonstrated a notable result in that the median 
PFS was 13.1 months in a phase 2 trial limited to 
T790M-positive cases (AURA trial, 
NCT01802632: AURA  2015 ). No difference was 
observed in the response rate between patients 
with Del19/T790M and L858R/T790M, which 
suggested that AZD9291 is specifi c to T790M 
(AURA  2015 ). The current diagnosis using gene 
analysis only judges whether the T790M muta-
tion is present or not, and it is highly possible that 
a clone of T790M exists from the beginning. 
Regarding tumor heterogeneity, three different 
scenarios of tumors carrying two EGFR muta-
tions have been contemplated, in which activat-
ing and resistant mutations exist: (1) in cis on the 
same allele, (2) in trans on different alleles, or (3) 
in different clones (Fig.  8.12 ) (Leone  2013 ).

   Therefore, it is critical to develop a precise 
methodology for T790M quantifi cation, by which 
a correlation between the extent of T790M 
expression and drug effi cacy can be investigated, 
thereby making it possible to defi ne a cutoff 
value for T790M abundance. Figure  8.13  shows 
EGFR mutations in NSCLC, the crystal structure 
of the kinase domain of EGFR in complex with 
gefi tinib (based on Protein Data Bank accession 
code 2ITY), and the location of the EGFR muta-
tions (RCSB  2015 ).

   The effi cacy of AZD9291 would also be lim-
ited because resistance will be acquired to this 
drug. C797 codon mutations in the EGFR 
 tyrosine kinase-binding sites have been reported 
as a resistance mechanism for AZD9291 in 
T790M. A recent study suggested that there are 
both T790M (+) and (−) clones at baseline and 

that AZD9291 intervenes with the resistance of 
T790M (−) cells, although AZD9291 effectively 
suppresses the growth of T790M (+) cells, which 
might be bypassed due to the activation of the 
HER2 and/or MET pathway. Furthermore, 
EGFR-TKI drug resistance has been associated 
with a new C797S mutation found near T790M 
(Thress et al.,  2015 ) There are two plausible pat-
terns involved in AZD9291 resistance: (1) both 
T790M (+) and C797S (+) or (2) T790M (−) with 
bypassing occurring in a different signaling path-
way such as HER2 or MET. Both resistance pat-
terns might coexist within one type of tissue and 
within both primary and metastatic tumors. It has 
been reported that gefi tinib might be effective for 
C797S (+) cases (Ercan et al.  2015 ) .   

8.7     Perspective 

 Both identifi cation and quantifi cation of EGFR 
gatekeeper mutations, including mutation hetero-
geneity within a tissue, need to be performed 
using lung cancer tissue specimens obtained 
from patients to improve the treatment for 
patients with EGFR mutation-positive NSCLC, 
including:

    1.    Identifi cation and quantitation data of targeted 
EGFR mutated proteins   

   2.    Exploratory mass spectrometry (MS)-based 
clinical proteogenomic analysis of mutated 
proteins, including investigation of mutation 
heterogeneity within a tissue   

   3.    Analysis of dynamic protein–protein interac-
tion (PPI)  networks   of proteins signifi cantly 
related to a subgroup of patients with lung 
cancer with acquired resistance    

The most interesting investigation involves the 
pairwise MS-based proteogenomic analysis of 
EGFR mutation-positive (frozen and/or FFPE) 
tissues of lung cancer obtained prior to EGFR- 
TKI treatment and after acquisition of the  drug 
resistance  , which will unveil detailed and direct 
molecular information on EGFR-TKI resistance. 

 In Japan, high-quality clinical specimens with 
detailed clinical and pathological information 
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  Fig. 8.12    Three different scenarios of tumors carrying 
two EGFR  mutations   have been suggested, including acti-
vating and resistant  mutations  : (1)  in cis  on the same 
allele, (2)  in trans  on different alleles, and (3) in different 
clones.  Black circles , cells with EGFR-activating  muta-

tion  ;  red circles , cells with activating or resistant  muta-
tion  ;  black lines , different alleles;  black arrowhead , 
activating  mutation  ;  red arrowhead , resistant mutation. 
 TKI  tyrosine kinase inhibitor (Leone  2013 )       

  Fig. 8.13    EGFR  mutations   in nonsmall-cell lung cancer, 
the crystal structure of the kinase domain of EGFR in 
complex with gefi tinib (based on Protein Data Bank 

accession code 2ITY), and the location of the EGFR 
 mutations   (RCSB Protein Data Bank; Thress et al.  2015 )       

 

 

8 Developments for Personalized Medicine of Lung Cancer Subtypes: Mass…



134

have been archived for several years within med-
ical institutes and hospitals and include even 
early-stage cancers. In this decade, it was 
revealed that drug effi cacy differs by race ( e.g. , 
Caucasians vs. Asians) due to  oncogenic driver 
mutations   / fusions specifi c to each race, exem-
plifi ed by gefi tinib and erlotinib. In contrast to 
time-consuming  genomic   analysis, MS-based 
proteogenomic approaches enable direct analysis 
of mutated and fusion proteins expressed in a 
clinical sample, which will provide a powerful 
solution for the stratifi cation of patients and drug 
discovery ( Precision Medicine  ). When a distinct 
clinical study design using valuable clinical sam-
ples, so as to say national assets, is established 
and performed by teaming up scrupulously with 
clinicians, an innovative treatment and drug dis-
covery pipeline can be delivered from Japan, 
opening a gateway to Asia and its population of 
3.9 billion      .     
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      Proteogenomics for the Study of 
Gastrointestinal Stromal Tumors                     

     Tadashi     Kondo    

    Abstract  

  Gastrointestinal stromal tumors (GISTs) are the most common mesenchy-
mal tumors of the gastrointestinal tract. Gain-of-function mutations in  KIT  
or platelet-derived growth factor receptor alpha ( PDGFRA ) drive most 
GISTs, and 85 % of GISTs also contain oncogenic mutations in one of two 
receptor tyrosine kinases. The advent of tyrosine kinase inhibitors has had 
a signifi cant impact on the clinical practices for GISTs. However, tumors 
in more than 80 % of GIST patients acquire resistance against treatments 
with tyrosine kinase inhibitors; thus, driver mechanisms of secondary 
resistance as well as biomarkers for early detection of recurrence have 
been explored for better clinical outcomes. Proteomics is a versatile and 
straightforward approach to fi nding the molecular basis of malignancies as 
well as the innovative seeds for clinical applications. Comprehensive 
genome, epigenome, and transcriptome data have already been obtained 
and examined together in GISTs, and proteome data has a unique addi-
tional value in multi-omics studies. Various types of samples were exam-
ined using proteomics modalities in GIST, suggest the promising utility of 
proteomic approaches.  

  Keywords  

  Gastrointestinal stromal tumor   •   GIST   •   Biomarker   •   Molecular targeting 
drug  

9.1       Introduction 

  Gastrointestinal   stromal tumors (GISTs             ) are the 
most common mesenchymal tumors of the gas-
trointestinal tract. The incidence of GIST is 6.8 
per million, and 3300–6000 new GIST cases are 
reported per year in the United States (Corless 
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and Heinrich  2008 ; Tran et al.  2005 ). GISTs can 
occur anywhere along the gastrointestinal tract, 
but they predominantly arise in the stomach (60–
70 %) and small intestine (20–30 %) (Miettinen 
and Lasota  2001 ). The original site of the tumor 
correlates with the clinical features; approxi-
mately 20–25 % of gastric GISTs and 40–50 % of 
small intestinal GISTs are clinically aggressive 
(Joensuu  2006 ,  2008 ; Miettinen and Lasota  2006 ; 
Emory et al.  1999 ). The most common presenta-
tions of these tumors include bleeding from the 
gastrointestinal tract, acute abdomen pain due to 
tumor rupture, appendicitis-like pain, and 
obstruction as well as fatigue, dysphagia, and 
satiety. GIST cells originate from the interstitial 
cells of Cajal, which are pacemaker cells that 
regulate peristalsis in the digestive tract (Hirota 
et al.  1998 ; Kindblom et al.  1998 ). Gain-of- 
function  mutations   in  KIT  or platelet-derived 
growth factor receptor alpha ( PDGFRA ) drive 
most GISTs, and 85 % of GISTs also contain 
oncogenic mutations in one of two receptor tyro-
sine kinases (Corless and Heinrich  2008 ; 
Miettinen and Lasota  2006 ).  Mutations   in these 
tyrosine kinases play key roles in GIST patho-
genesis and proliferation. Therefore, molecular 
targeted therapy with KIT/PDGFRA tyrosine 
kinase inhibitors such as imatinib mesylate 
(Gleevec, Novartis Pharmaceuticals) has a bene-
fi cial effect in a signifi cant portion of GIST 
patients (Corless et al.  2011 ; Dematteo et al. 
 2002 ; Verweij et al.  2004 ). Because GISTs are 
highly resistant to conventional chemotherapy 
(Rubin et al.  2007 ; Patel et al.  1998 ,  2001 ; Trent 
et al.  2003 ), the advent of tyrosine kinase inhibi-
tors has had a signifi cant impact on the clinical 
practices for these tumors. However, tumors in 
more than 80 % of GIST patients acquire resis-
tance against treatments with tyrosine kinase 
inhibitors; thus, driver mechanisms of secondary 
resistance as well as  biomarkers   for early detec-
tion of recurrence have been explored for better 
clinical outcomes. The prognosis of GIST after 
surgery is generally favorable (Joensuu et al. 
 2012 ), and prognostic modalities will contribute 
to the optimized indication for adjuvant treat-
ments using tyrosine kinase inhibitors in GISTs. 
Calculating the risk of progression for a newly 

diagnosed primary GIST currently relies on 
mitotic index, tumor size, and tumor location 
(Corless and Heinrich  2008 ). Looking forward, 
novel prognostic  biomarkers   have potential to 
improve risk stratifi cation therapy.  

9.2     Proteomic Approach to GIST 

 Proteomics is a versatile and straightforward 
approach to fi nding the molecular basis of malig-
nancies, because the proteome is a functional 
translation of the genome that regulates the 
behavior of cells. Proteomics provides consider-
able information about the overall features of 
proteins that cannot be obtained otherwise, such 
as protein expression levels, protein–protein 
interactions, post-translational modifi cations, 
and protein localization. Although information 
about these protein features should be encoded in 
the genome, they are not predictable from 
genome data yet, and we have to examine the 
proteome itself to obtain the overall features of 
expressed proteins. Proteomics modalities have 
been employed in  cancer research  , and intriguing 
proteins have been identifi ed as  biomarker   candi-
dates as well as possible therapeutic targets in 
sarcomas (Kondo et al.  2012 ). In GIST studies 
looking toward identifi cation of novel innovative 
seeds for clinical applications, various types of 
samples were examined using proteomics modal-
ities. Materials for proteomic studies have 
included surgically resected tissues, GIST cell 
lines, and conditioned medium of cultured GIST 
cells.  

9.3     Proteomics for Surgically 
Resected Tissues 

  Biomarkers   to predict post-operative recurrence 
have the potential to improve the guidelines for 
adjuvant therapy using tyrosine kinase inhibitors. 
Aiming to develop biomarkers for post-surgical 
recurrence, Suehara et al. examined protein 
expression in primary tumor tissues of GIST 
(Suehara et al.  2008 ). Proteins in primary tumor 
tissues were compared between patients with 
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 different recurrence statuses after operation: the 
patients who had recurrence within 1 year after 
surgery, and the patients with no recurrence more 
than 2 years after surgery (Suehara et al.  2008 ). 
To create protein expression  profi les  , two- 
dimensional difference in gel electrophoresis 
(2D-DIGE) was employed. In 2D-DIGE, protein 
samples are labeled with fl uorescent dyes, mixed, 
and separated on the same 2D-PAGE gel (Unlu 
et al.  1997 ; Shaw et al.  2003 ; Kondo and 
Hirohashi  2007 ). After electrophoresis, images 
are obtained by laser scanning, and multiple 
images for individual samples are compared. By 
comparative studies using 2D-DIGE, 1513 pro-
tein spots were observed and 25 unique proteins 
were identifi ed that exhibited signifi cant differ-
ences in expression level between the patient 
groups. Among these differentially expressed 
proteins, one protein, pfetin (potassium channel 
tetramerization domain containing 12, KCTD12), 
was chosen for further examination. Pfetin was 
originally discovered as a protein with unique 
expression in the fetal cochlea (Resendes et al. 
 2004 ). However, in this GIST proteomic study, 
pfetin was detected in multiple protein spots, the 
signal intensity of which was higher in the GIST 
patients who had no evidence of metastasis more 
than 2 years after surgery (Suehara et al.  2008 ). 
The association of pfetin expression with favor-
able prognosis was confi rmed in 210 GIST cases 
by immunohistochemistry (Suehara et al.  2008 ). 
The prognostic value of pfetin was independently 
signifi cant among clinical and pathological 
parameters, and pfetin exhibited prognostic value 
even in samples grouped by risk classifi cation. 
Moreover, the prognostic utility of pfetin was 
further validated in additional GIST cases by 
immunohistochemistry (Kondo et al.  2013 ; 
Hasegawa et al.  2013 ; Orita et al.  2014 ; Kikuta 
et al.  2010 ; Kubota et al.  2011 ,  2012 ). These 
observations suggested that pfetin may be a use-
ful marker for predicting the likelihood of recur-
rence in GIST patients and for identifying which 
patients should be recommended to avoid adju-
vant treatment. 

  Biomarkers   for recurrence after surgery were 
also discovered by 2D-DIGE with a large format 
gel electrophoresis in another study (Kondo and 

Hirohashi  2007 ). Kikuta et al. examined primary 
tumor tissues of GIST patients who had different 
prognoses after surgical operation (Kikuta et al. 
 2012 ). They observed 3260 protein spots, and 
identifi ed 25 unique proteins exhibiting differen-
tial expression between the patient groups. 
Among them, they focused on the expression of 
ATP-dependent RNA helicase DDX39 (DDX39). 
DDX39 belongs to the DEAD (DExD/H) box 
RNA helicases which unwind double-stranded 
RNA (Linder et al.  1989 ), and was found to be 
overexpressed in lung cancer (Sugiura et al. 
 2007 ). The expression of DDX39 was upregu-
lated in GIST patients who had metastasis within 
1 year after surgical operation, compared with 
patients with no metastasis more than 2 years 
after surgery (Kikuta et al.  2012 ). GIST patients 
with higher level of DDX39 expression had lower 
probability of disease-free survival; the prognos-
tic value of DDX39 was confi rmed in 72 inde-
pendent GIST cases by immunohistochemistry 
(Kubota et al.  2012 ). These results suggested the 
possible use of DDX39 as a novel  biomarker   for 
risk stratifi cation therapy. 

 In GISTs, clinical outcomes are signifi cantly 
different depending on the primary tumor site; 
GISTs of the small intestine exhibit more aggres-
sive behavior than those of the stomach, despite 
similar size and mitotic activity (Joensuu  2006 , 
 2008 ; Miettinen and Lasota  2006 ; Emory et al. 
 1999 ). Therefore, the location of the primary site 
is one of the factors considered in risk stratifi ca-
tion schemes. Suehara et al. examined the differ-
ential protein expression between GIST 
originating in the stomach and GIST originating 
in the small intestine (Suehara et al.  2009 ). Using 
2D-DIGE, they observed 1411 protein spots, and 
identifi ed 72 unique proteins with differential 
expression according to original tumor site. They 
examined global expression of mRNA, compar-
ing proteomic and transcriptomic data. However, 
as 2D-DIGE generated multiple protein spots 
from single genes, the results of association stud-
ies between the proteome and transcriptome did 
not yield conclusive results, and pairs of proteins 
and mRNAs with obvious concordance were not 
identifi ed. Ichikawa et al. also compared primary 
GIST tumor tissues from the stomach to those 
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from the small intestine by both proteomic and 
transcriptomic approaches (Ichikawa et al.  2014 ). 
The proteins extracted from primary tumor tis-
sues were fi rst separated by SDS-PAGE accord-
ing to their molecular weight. After gel 
electrophoresis, separated proteins were recov-
ered as tryptic digests and subjected to mass 
 spectrometry  . A total of 2555 unique proteins 
were observed, and the mRNA data correspond-
ing to those proteins were extracted from the 
Gene Expression Omnibus. Protein and mRNA 
were compared between the stomach GISTs and 
small intestine GISTs, and 18 unique proteins 
were identifi ed as being commonly differentially 
expressed. Among the 18 proteins identifi ed, pro-
myelocytic leukemia protein (PML) was chosen 
for further examination. PML was originally 
identifi ed as a fusion partner of retinoic acid 
receptor-alpha in acute promyelocytic leukemia 
(Melnick and Licht  1999 ), functioning as a tumor 
suppressor (Salomoni et al.  2008 ). Loss of PML 
was reported in various malignancies including 
breast cancer, gastric cancer, and small cell lung 
cancer (Gurrieri et al.  2004 ). After proteomic 
study, the prognostic value of PML was con-
fi rmed in 254 GIST cases by immunohistochem-
istry (Ichikawa et al.  2014 ). The prognostic value 
of PML was signifi cant in stomach GIST, and 
PML exhibited prognostic value even in the sam-
ples grouped by risk classifi cation (Ichikawa 
et al.  2014 ). These results demonstrate the possi-
ble use of PML as a novel  biomarker   for risk 
stratifi cation therapy. Further validation studies 
using additional GIST cases will be required for 
developing clinical applications of PML in GIST, 
and the functional relevance of unique PML 
expression should also be explored. 

 The evaluation of response to imatinib treat-
ment is critical to establish a therapeutic strategy 
for GIST. However, size-based response criteria 
such as the World Health Organization criteria or 
the Response Evaluation Criteria in Solid Tumors 
may underestimate the response (Scaife et al. 
 2003 ). Moreover, the histological/pathological 
response of GIST to imatinib therapy is variable, 
heterogeneous, and does not correlate well with 
clinical response. To explore the molecular 
effects of imatinib on responding GISTs, Luca 

et al. examined the proteomic features of GIST 
tissues resected after imatinib treatment. They 
separated proteins by SDS-PAGE and an Agilent 
3100 OFFGEL fractionator (Agilent 
Technologies, Santa Clara, CA) according to 
molecular weight and isoelectric point, respec-
tively. The separated proteins were digested to 
tryptic peptides and subjected to mass  spectrom-
etry  . An elevated amount of stem cell growth fac-
tor (SCGF), a hematopoietic growth factor with a 
role in the development of erythroid and myeloid 
progenitors, was detected in the imatinib-treated 
GIST cells. SCGF localized in the stromal com-
ponent area of GIST tissues, likely due to the 
imatinib-induced infl ammation response. These 
results suggest an important functional role for 
SCGF in the response area, and the possible util-
ity of SCGF as a  biomarker   to predict the effects 
of imatinib treatment. Further validation and 
functional studies will be required for developing 
clinical applications of SCGF in GISTs. 

 GISTs are typically diagnosed in adults over 
the age of 40, with a peak incidence between 60 
and 70 years of age (DeMatteo et al.  2000 ). 
Pediatric GISTs are extremely rare, accounting 
for 1–2 % of all GIST cases, and annual incidence 
of GIST cases is 0.02 per million in children 
under the age of 14 (Stiller  2007 ). Pediatric 
GISTs have unique characteristics; they occur 
preferentially in females as multiple nodules, 
having either an epithelioid or a mixed spindle 
and epithelioid morphology (Miettinen et al. 
 2005 ; Prakash et al.  2005 ). In pediatric GISTs, 
risk of metastasis is low, the tumors often lack 
 mutations   in  KIT  and  PDGFRA , and the effi cacy 
of kinase inhibitors in pediatric GISTs has not 
been well defi ned. To explore the molecular 
background of pediatric GISTs, Agaram et al. 
compared global mRNA expression of primary 
tumor tissues in adult and pediatric GIST 
(Agaram et al.  2008 ). They reported 14 genes 
were differently expressed between pediatric and 
adult GIST patients, and identifi ed a gene expres-
sion signature of pediatric GIST. In addition to 
transcriptomic studies, they also examined phos-
phorylation status of receptor tyrosine kinases 
using an  antibody    array   (Human phosphor-RTK 
array kit, R&D Systems, Inc., Minneapolis, MN) 
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(Agaram et al.  2008 ). They demonstrated that 
adult GISTs exhibited phosphorylation of 
PDGFRB, EGFR, and FGFR2a without KIT acti-
vation, but pediatric GISTs had phosphorylated 
KIT and a weakly phosphorylated EGFR. These 
observations may explain the unique clinical fea-
tures of pediatric GIST. Other possible effects of 
the identifi ed proteins on the specifi c clinical fea-
tures of pediatric GIST are worth further 
investigating. 

  Mutations   in the KIT gene may account for 
unique molecular characteristics of GISTs and 
the effects of these mutations on the proteome are 
of interest. Choi et al. compared primary tumor 
tissues of GIST patients with or without KIT 
mutations at exon 11 (Choi et al.  2003 ). Using 
2D-PAGE, more than 1000 protein spots were 
observed, and increased expression of High 
Mobility Group Box 1 (HMG1) was observed in 
the GISTs with KIT  mutations   compared with 
the GISTs without KIT mutations. HMG1 was 
originally identifi ed as a chromosomal DNA- 
binding protein (Bustin  1999 ). Because HMG1 
supports transcription of genes interacting with 
transcription factors, its overexpression may 
infl uence transcriptional activity in GIST cells 
with KIT  mutation  . The overexpression of HMG1 
was reported in various types of malignancies 
(Tang et al.  2010 ; Kang et al.  2013 ). HMG1 was 
considered as a target for cancer therapy (Lotze 
and DeMarco  2003 ), and as a  biomarker   candi-
date for poor prognosis (Shi et al.  2015 ; Ladoire 
et al.  2015 ) and response to treatment (Shrivastava 
et al.  2015 ). These observations suggest the pres-
ence of shared mechanisms underlying common 
features of the different types of malignancies, 
and the possible application of HMG1 for novel 
therapeutic strategies in GISTs. The mechanisms 
by which KIT  mutations   upregulate HMG1 
expression are worth investigating in further 
studies. 

 GISTs are characterized by gain-of-function 
 mutations   in  KIT  or  PDGFRA , and 85 % of 
GISTs contain oncogenic mutations in one of 
these two receptor tyrosine kinases (Corless and 
Heinrich  2008 ; Miettinen and Lasota  2006 ). 
Mutations of these two genes are mutually exclu-
sive, and these mutations are regarded as alterna-

tive oncogenic mechanisms in GISTs. Small 
subsets of GISTs have no  mutation   in either of 
these two genes; those GISTs have mutations in 
other genes. GISTs with different gene mutations 
likely have different proteomic signatures, which 
should include distinct  biomarkers   and target 
candidates. To explore the proteomic features of 
GISTs with different gene  mutations  , Kang et al. 
examined the protein expression  profi les   of pri-
mary tumor tissues with different mutation types 
(Kang et al.  2006 ). Moreover, they also examined 
the proteins with known expression patterns 
associated with risk classifi cation. To create pro-
tein expression profi les, they employed 
2D-PAGE. The comparative study between GIST 
with  KIT   mutations  , GIST with  PDGFRA  muta-
tions, and GIST lacking either mutation resulted 
in the identifi cation of proteins whose expression 
levels were unique to each group of GIST with 
different mutation types. The overexpression of 
septin and HSP27 were unique to GIST with KIT 
mutations, expression of keratin 10 was unique to 
GIST with  PDGFRA   mutations  , and expression 
of annexin V was unique to GIST lacking either 
mutation. The proteins with higher expression in 
GIST with high risk for recurrence included 
annexin V, HMGB1, C13orf2, glutamate dehy-
drogenase 1, and fi brinogen beta chain. C13orf2 
is an alias of pfetin (KCTD12). In the study by 
 Suehara   et al., higher expression of pfetin was 
associated with favorable prognosis (Fowler et al. 
 2013 ), but these results are discordant to the 
study by  Kang   et al. ( 2006 ). The cause-and-effect 
relationship between kinase  mutations   and differ-
ential protein expression has not yet been exam-
ined, and the molecular mechanisms underlying 
differential regulation of the identifi ed proteins 
are worth investigating in future studies. 

 As previously mentioned, GISTs are mesen-
chymal tumors with unique genetic characteris-
tics such as frequent  mutations   in  KIT  and 
 PDGFRA . Identifi cation of proteins unique to 
GIST cells will yield further insight into the 
effects of specifi c  mutations   on cell behavior. 
 Suehara   et al. created the protein expression  pro-
fi les   of primary tumor tissues of various types of 
sarcomas including GIST (Suehara et al.  2006 ). 
Using 2D-DIGE, they observed more than 1200 
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protein spots across 80 sarcoma tissue samples, 
and identifi ed proteins unique to the histological 
subtypes. They reported 10 proteins by which the 
cross-validation error rate for GIST with the 
other sarcomas was minimal. The specifi city and 
diagnostic utility of the identifi ed proteins are 
worth examining in the additional samples. 

 Although GISTs have similar morphology to 
leiomyosarcomas, these two sarcomas are clini-
cally distinct (Clary et al.  2001 ; Fletcher et al. 
 2002 ). In advanced GIST patients, chemothera-
peutic agents result in response rate of only 
0–10 % (Rubin et al.  2007 ; Patel et al.  1998 , 
 2001 ; Trent et al.  2003 ), and the response rate of 
imatinib treatments was greater than 50 % 
(Corless et al.  2011 ; Dematteo et al.  2002 ; 
Verweij et al.  2004 ). In contrast, in advanced 
leiomyosarcoma patients, the response rate of 
combination therapy with chemotherapeutic 
agents gemcitabine and docetaxel was 53 % 
(Hensley et al.  2002 ), and imatinib treatment was 
not benefi cial (Silvestris et al.  2005 ). Thus, dif-
ferential diagnosis is critical for the treatment of 
GISTs and leiomyosarcomas. Although tran-
scriptomic studies reported unique gene expres-
sion patterns in GISTs compared with 
leiomyosarcomas (Yang et al.  2010 ), there was 
no investigation of this issue using a proteomic 
approach. Yang et al. fi rst examined global pro-
tein expression between GISTs and leiomyosar-
comas using a reverse-phase protein lysate array. 
Unique expression of E-cadherin was identifi ed 
in leiomyosarcoma (Yang et al.  2010 ). Moreover, 
the transcription factor Slug was reported as a 
possible regulatory gene by transcriptomic exper-
iments and in vitro function studies. In malignant 
tumors of epithelial origin, the suppression of 
E-cadherin is associated with the epithelial to 
mesenchymal transition (EMT), which accounts 
for increased invasion and metastasis during 
tumor progression. In the reverse process of 
EMT, mesenchymal to epithelial reverting transi-
tion (MErT), E-cadherin plays an important role, 
and certain kinds of soft-tissue sarcomas with 
epithelioid features expressed E-cadherin (Sato 
et al.  1999 ). Yang’s report suggested the utility of 
E-cadherin as a differential diagnosis  biomarker   
between GISTs and leiomyosarcoma and the util-

ity of Slug as a potential therapeutic target in 
leiomyosarcoma. It is worth pursuing these pro-
teins further for developing clinical applications 
of E-cadherin and Slug.  

9.4     Proteomics for Cultured Cells 

 Imatinib treatment yields considerable benefi ts 
for GIST patients; adjuvant imatinib improves 
both recurrence-free and overall survival 
(Dematteo et al.  2009 ; Demetri et al.  2002 ). 
However, secondary resistance occurs in more 
than 80 % of patients after treatment with ima-
tinib. Although secondary  mutations   in  KIT  or 
 PDGFRA  that interfere with drug binding were 
observed (Chen et al.  2004 ; Wardelmann et al. 
 2005 ; Antonescu et al.  2005 ; Heinrich et al. 
 2006 ), they are highly heterogeneous, even 
within different areas of the same tumor, and the 
clinical benefi ts of second-and third-line drugs 
( e.g. , sunitinib, regorafenib) are quite limited 
(Demetri et al.  2013 ). To explore the molecular 
backgrounds of resistance against imatinib treat-
ment, Takahashi et al. examined global expres-
sion of tyrosine-phosphorylated proteins in 
GIST-T1 cells (Takahashi et al.  2013 ). GIST-T1 
cells have a 57-nucleotide in-frame deletion in 
KIT exon 11, and are used for in vitro studies of 
GIST (Taguchi et al.  2002 ). Protein was extracted 
from the GIST-T1 cells, and tyrosine- 
phosphorylated peptides were purifi ed using a 
specifi c  antibody  . Using the isobaric tags for rela-
tive and absolute quantitation (iTRAQ) method, 
171 tyrosine phosphorylation sites spanning 134 
proteins were observed, and 26 tyrosine- 
phosphorylated proteins whose expression levels 
were altered by imatinib treatment were identi-
fi ed. Among these, they focused on tyrosine- 
protein kinase FYN (FYN) and focal adhesion 
kinase 1 (FAK) for further investigation. FYN 
plays an important role in the signaling pathway 
of integrin and PI3K (Timokhina et al.  1998 ; 
Linnekin et al.  1997 ), and FAK transduces sig-
nals from integrin and growth factor receptors to 
downstream pathways (Serrels et al.  2012 ; Cox 
et al.  2006 ). They demonstrated that activation of 
these two kinases contributes to resistance to 
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imatinib treatment, and that inhibition of these 
kinases resensitizes GIST cells to imatinib treat-
ment (Takahashi et al.  2013 ). The constitutive 
phosphorylation of FAK was observed in the 
imatinib-resistant GIST-T1 cells, and a FAK- 
specifi c TAG372 inhibitor decreased the viability 
of these GIST cells with and without imatinib 
treatment. These observations suggest the novel 
utility of signal transduction pathways including 
FYN and FAK as potential targets for GIST 
therapy. 

 To explore the cellular changes associated 
with imatinib treatment and secondary resistance, 
Nagata et al. examined the phosphorylation of 
proteins in GIST882 cells (GIST882), GIST882 
cells under treatment with imatinib 
(GIST882-IM), and GIST882 cells with second-
ary imatinib resistance (GIST882-R) (Nagata 
et al.  2015 ). Proteins extracted from these 
GIST882 cells were digested with trypsin, and 
phosphorylated peptides were purifi ed by titania- 
based affi nity chromatography or immunopre-
cipitation by anti-phosphotyrosine  antibody  . The 
purifi ed phosphopetides were subjected to mass 
 spectrometric   analysis. They observed 1036 pep-
tides containing phosphorylated Ser, Thr, and/or 
Tyr residues enriched by the titania-based 
method, and 210 phosphotyrosine-containing 
peptides by the immunoprecipitation method. 
These studies found that resistance to imatinib 
might result from activation of alternative recep-
tor type kinases, including EGFR, and their 
downstream signaling pathways. Expression of 
KIT and EGFR was upregulated in GIST882-R 
cells compared with GIST882 and GIST882-IM, 
and treatment with the EGFR inhibitor gefi tinib 
had anti-proliferative effects on 
GIST882-R. Although the overexpression of 
EGFR was observed in the most GIST cases 
examined by immunohistochemistry (Lopes and 
Bacchi  2007 ), the correlation between the expres-
sion level of EGFR and the survival benefi ts was 
not confi rmed in GIST (Jiang et al.  2012 ). Thus, 
the clinical signifi cance of this in vitro study 
should be further explored using clinical 
samples.  

9.5     Proteomics for Conditioned 
Medium of Cultured Cells 

 To investigate the secreted, shed, or leaked pro-
teins from GIST cells, Berglund et al. investi-
gated proteins in the conditioned medium of 
GIST882. GIST882 is the fi rst established 
immortalized GIST cell line, harboring a KIT 
 mutation   and imatinib sensitivity. GIST882 pos-
sesses a homozygous missense  mutation   in exon 
13 of the c-kit gene, and are commonly used for 
in vitro studies of GIST (Tuveson et al.  2001 ). 
Cell lines are useful resources for identifying 
 biomarkers   in body fl uid, because proteins with 
low expression levels can be concentrated and 
examined by proteomic modalities. Moreover, 
the proteins derived exclusively from tumor cells 
can be recovered and subjected to proteomic 
studies. Berglund et al. observed the release of 
764 proteins from GIST882. They found that 
release of nuclease-sensitive element-binding 
protein 1 (Y-box binding protein 1) was induced 
by treatment with imatinib. As Y-box binding 
protein 1 is involved in the acquisition of global 
 drug resistance   through increased MDR1 expres-
sion (Basaki et al.  2007 ), these observations may 
yield clues to understanding the molecular mech-
anisms underlying acquired resistance in GIST 
patients.  

9.6     Perspectives of Proteomic 
Approach to GIST 

 Various proteomics modalities have already been 
applied to the study of GIST, and many intriguing 
proteins were reported in the aforementioned 
studies. Although the biological and clinical sig-
nifi cance of the identifi ed proteins should be fur-
ther functionally verifi ed and validated in 
independent GIST cases, these results suggest the 
promising utility of proteomic approaches to the 
study of GIST. Proteomic modalities applied to 
GIST study included 2D-DIGE, 2D-PAGE, mass 
 spectrometry   with or without iTRAQ method, 
 antibody    arrays  , and reverse-phase protein arrays. 
As the observable proteomic features largely 
depend on the proteomics methods employed, we 
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can expect novel fi ndings using proteomics 
modalities that have not yet been utilized. The 
future integration of proteome data with the other 
multi-omics data is also expected. Comprehensive 
genome, epigenome, and transcriptome data have 
been already obtained and examined together in 
GISTs (Haller et al.  2015 ; Okamoto et al.  2012 ; 
Yamaguchi et al.  2008 ; Brenca et al.  2015 ; 
Saponara et al.  2015 ; Hara et al.  2015 ; Arne et al. 
 2011 ), and proteome data has unique value in 
multi-omics studies. 

 In GIST proteomics, many important research 
topics have not yet been investigated. Those 
include the development of plasma  biomarkers   
for disease monitoring, the elucidation of resis-
tance mechanisms for tyrosine kinase inhibitors 
other than imatinib, and the comprehensive 
understanding of a variety of  mutations   in tyro-
sine kinase genes. To conduct the research toward 
clinical applications effi ciently and effectively, 
collaboration between clinical, academic, and 
industry groups is necessary from early stages of 
research. This is a general concern in clinical- 
problem oriented research. 

 The number of tissue samples examined in 
proteomics studies has generally been low. The 
frozen tissue samples required for conventional 
proteomics are not routinely stored in hospitals. 
In addition, because of the low prevalence of 
GIST patients, especially when the GIST cases 
are stratifi ed, it takes a long time to collect sam-
ples in a prospective way. One possible solution 
for these issues may be the use of a biobanking 
system. Biobanking could eventually contribute 
to research of rare cancers such as GIST. Moreover, 
since hundreds of GIST cases were successfully 
examined for validation studies using immuno-
histochemistry (Kondo et al.  2013 ; Hasegawa 
et al.  2013 ; Orita et al.  2014 ; Kikuta et al.  2010 ; 
Kubota et al.  2011 ,  2012 ), the use of formalin- 
fi xed, paraffi n-embedded (FFPE) samples for 
proteomics should be seriously considered for 
GIST research (Fowler et al.  2013 ). Global 
expression data obtained from a small number of 
samples does not generate conclusive results, and 
integration of meta-data should be considered. 
Therefore, standardizing proteomic methods and 
data is important, especially for the study of rare 

cancers such as GIST (Deutsch et al.  2015 ). As 
for proteomic study of tumor tissues, the use of 
laser microdissection should be considered, 
because of the inter- and intra-tumor heterogene-
ity of resistance  mutations   and gene amplifi ca-
tion in GIST tissues (Liegl et al.  2008 ). 

 Mechanisms of acquired resistance were 
explored using cultured cells, and several intrigu-
ing proteins and signal transduction pathways 
were identifi ed (Takahashi et al.  2013 ; Nagata 
et al.  2015 ). The use of biopsied samples in the 
recurrent tumor tissues is worth considering for 
validation of the results obtained by in vitro stud-
ies. Cultured cells are useful resources to exam-
ine the effects of cancer drugs on tumor cells and 
to investigate the molecular basis of resistance. 
However, only two GIST cell lines were exam-
ined in the proteomic studies for GIST (Takahashi 
et al.  2013 ; Nagata et al.  2015 ). These GIST cell 
lines are not deposited in public cell banks, and 
should be more accessible for the researchers. 
Moreover, the establishment of additional GIST 
cell lines is necessary to accurately represent the 
complexity of GIST disease backgrounds. As the 
interaction and distribution of tumor cells and 
stromal cells in the tumor microenvironment 
affect a range of cellular functions (Yamada and 
Cukierman  2007 ; Wang et al.  2002 ; Vaira et al. 
 2010 ; Ridky et al.  2010 ), the use of three- 
dimensional organotypic culturing systems 
should be considered in GIST studie    s.     
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    Abstract  

  The vast repertoire of immunoglobulins produced by the immune system 
is a consequence of the huge amount of antigens to which we are exposed 
every day. The diversity of these immunoglobulins is due to different 
mechanisms (including VDJ recombination, somatic hypermutation, and 
antigen selection). Understanding how the immune system is capable of 
generating this diversity and which are the molecular bases of the compo-
sition of immunoglobulins are key challenges in the immunological fi eld. 
During the last decades, several techniques have emerged as promising 
strategies to achieve these goals, but it is their combination which appears 
to be the fruitful solution for increasing the knowledge about human cel-
lular and serum antibody repertoires. 

 In this chapter, we address the diverse strategies focused on the analy-
sis of immunoglobulin repertoires as well as the characterization of the 
genomic and peptide sequences. Moreover, the advantages of combining 
various –omics approaches are discussed through review different pub-
lished studies, showing the benefi ts in clinical areas.  
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10.1       Introduction 

 Since      the landmark  discovery               of the antibody 
(also referred to as immunoglobulins, Ig) in 
blood serum – more than 100 years ago -, it has 
been well-characterized that a complex spectrum 
of distinct antibodies is contained in the blood. 
This wide spectrum is generated by B-cell clones 
through a somatic recombination process 
(Christiansen et al.  2007 ). 

 Recently, several studies have identifi ed and 
determined the relative abundance of the mono-
clonal antibodies (mAbs) included in the serum 
pool that is elicited in response to vaccination or 
natural infection. To understand the humoral 
responses, it is important to obtain knowledge 
about the composition of the antigen-specifi c 
serum antibody repertoires, the properties ( e.g. , 
affi nity, recognized epitopes) of the respective Ig, 
the relationship between circulating Ig, and the 
presence of clonally expanded peripheral B-cells. 

 In the last years, the era of modern  genomics   
and  proteomics   is providing extraordinary new 
tools for examining antibody repertoires.  Next 
Generation Sequencing (NGS)   allows the charac-
terization of millions of B-cell receptor (BCR) 
sequences in a single experiment. Additionally, 
NGS approaches permit the study of the human 
antibody repertoire, not only to aid in the discov-
ery of elite antibodies potentially useful as thera-
peutics, but also to comprehensively catalog the 
antibody sequences that are elicited during the 
adaptive immune response. Moreover, improve-
ments made on  NGS   strategy have allowed the 
obtaining of the endogenous variable heavy and 
light (VH and VL) pairs within NGS datasets. 
Thus, thanks to the sequencing of this paired 
VH:VL, the BCR repertoire analysis has been 
successfully improved (Fig.  10.1 ). Finally, the 
combination of NGS approaches and high- 
resolution protein  mass spectrometry (MS)      has 
increased the characterization of serum antibod-
ies (Lavinder et al.  2015 ).

   Although deep sequencing technologies for 
DNA and RNA have been developed in the last 
years, this  genomic   and transcriptomic informa-
tion does not exactly refl ect the actual cellular 
state, as everything that is transcribed may not be 

translated (the translated portion of the genome is 
clearly reduced compared to the transcribed por-
tion) (Haider and Pal  2013 ). Thus, proteogenom-
ics appears as the combinatorial approach that 
employs  proteomic   information to supplement 
and increase the transcriptomic meaning (Woo 
et al.  2014 ).  

10.2     Proteogenomics 

 Proteogenomics is an emerging fi eld in which 
 proteomics   and  genomics   are integrated. The 
major goal of this recent discipline is to identify 
novel peptides, combining both strategies men-
tioned above. Thus,  genomic   and transcriptomic 
information is employed to generate customized 
protein sequence databases that are used as refer-
ence databases for  MS   data. In return,  proteomics   
can offer protein-level evidence of gene expres-
sion (Castellana and Bafna  2010 ). 

 Thanks to the development of new sequencing 
approaches ( e.g. ,  RNA-Seq  ,  NGS  ) and the 
improvements made in the  proteomics   fi eld, pro-
teogenomics has experienced a signifi cant 
increase in attention. 

 To understand the basis of proteogenomics, it 
is necessary to fi rstly describe the involved disci-
plines in the fi eld ( i.e. ,  genomics  /transcriptomics 
and  proteomics  ).  Proteomics   is the large-scale 
comprehensive study of proteins and looks for 
the characterization of their structures and func-
tions, among other features. The termed was 
coined in 1994 by Marc  Wilkins   as a linguistic 
equivalent to the concept of  genomics  . There are 
different  proteomic   strategies to obtain proteomic 
data but generally ‘ shotgun proteomics  ’ is the 
selected approach in which liquid chromatogra-
phy (LC) and tandem mass  spectrometry   (MS/
MS) are combined. To identify peptides with 
these approaches, it is necessary to use a refer-
ence database of theoretical protein sequences 
and it is in this point where a new strategy is 
required as many peptides are not present in any 
of the reference databases. Several alternatives 
have recently emerged, including sequence tag- 
based database searching or  de novo  sequencing 
(Nesvizhskii  2014 ). However, these approaches 
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are ineffi cient for large-scale studies since their 
running times are long and some reagents are too 
expensive (Fullwood et al.  2009 ; Hert et al. 
 2008 ). By these means, proteogenomics seems to 
be a good alternative to identify novel peptides. 
 Nesvizhskii   has suggested some guidelines for 
proteogenomic studies (Nesvizhskii  2014 ):

    (i)    Make available the customized protein sequence 
databases used to identify novel peptides   

   (ii)    Query the peptides against all major refer-
ence databases and map to common sample 
contaminants   

   (iii)    Describe the FDR estimation procedure   
   (iv)    Mark peptides mapping to multiple genome 

locations    

  For  peptide identifi cation   by proteogenomics 
approaches, it is crucial that the acquired MS/MS 
spectra are matched against a customized protein 
sequence database. There are diverse manners to 
develop such databases that we detail below.

 –     Six-frame translation.  The sequence of 
nucleotides (DNA or RNA) can be split into 
consecutive and non-overlapping triplets and 
read in six different reading frames depending 

on the reading direction (5′ → 3′ or 3′ → 5′) and 
the starting reading point in the triplet (1st, 
2nd, or 3rd nucleotide). When the  genomic   
sequences of interest are translated in all 6 
frames, the corresponding peptide / protein 
sequences for each frame are generated 
(Winnenburg et al.  2008 ). There are several 
computational strategies available to automat-
ically generate these translations ( e.g. ,  getorf  
from the EMBOSS (European Molecular 
Biology Open Software Suite), Bioline, 
ExPASy). This approach offers a huge diver-
sity of possible peptides and the extremely 
large size of the resulting database constitutes 
a limitation. Moreover, most of the generated 
sequences do not really exist, requiring the 
establishment of rules ( e.g. , homology to 
known coding sequences, minimum length) 
for the selection of the most likely frames 
(Nesvizhskii  2014 ).  

 –    Ab initio   methods.  These approaches allow 
the prediction of genes – having no similarity 
to those previously described – with a high 
sensitivity and specifi city. There is a wide 
range of informatics tools for  ab initio  gene 
prediction, such as EasyGene, GeneMark, 
MetaGene, Glimmer, Augustus, or GeneID 

  Fig. 10.1    Sequencing of  immunoglobulins   (Ig) and B-cell receptor (BCR). Schematic representation of the main 
approaches used to obtain the  antibody    repertoires   (both protein and cellular) from serum antibodies and B-cells       
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(Mathé et al.  2002 ). All these tools systemati-
cally look for  signals  and / or  content  reveal-
ing the presence of protein-coding sequences 
in the DNA.  Signals  are specifi c sequences 
that indicate the close presence of a gene ( e.g. , 
Pribnow box), whereas  content  is referred to 
the statistics properties belonging to the 
 coding sequence ( e.g. , statistics for stop 
codons) (Zhu et al.  2010 ).  

 –    Expressed sequence tag (EST) data.  Short 
sequences (~300 nucleotides) resulting from a 
cDNA sequence are termed as expressed 
sequence tag (EST) and they represent por-
tions of expressed genes. In public reposito-
ries, there is available a large number of ESTs 
generated by sequencing the 5′- or 3′- end of 
randomly isolated cDNA clones. There were 
74,186,692 ESTs public entries registered in 
the EST database in the US National Center 
for Biotechnology Information (NCBI, 
January 11, 2016) (  http://www.ncbi.nlm.nih.
gov/genbank/dbest/dbest_summary/    ) (Teh 
et al.  2011 ). ESTs generate peptide sequence 
candidates in a more direct manner when 
compared to  ab initio  gene prediction 
approach, but a problem arises when using the 
six-frame translation of this data due to the 
resulting increase in the size of the generated 
database (Nesvizhskii  2014 ).  

 –    Annotated RNA transcripts.  Instead of gen-
erating protein sequences using the six-frame 
translation from DNA, there is an alternative 
using the three-frame translation of annotated 
RNA transcripts.  

 –     RNA-Seq     data.  RNA-Seq can be considered 
as an improved version of ESTs in which the 
time and cost are signifi cantly reduced when 
compared to Sanger sequencing. Moreover, its 
dynamic range is large thanks to the fact that 
sequencing reads mapping to unique regions 
are unlimited. However, the main inconve-
nience in this technique is the annotation of 
low abundance genes as they are represented 
by few reads (Roberts et al.  2011 ). This  gene 
annotation   approach has allowed the charac-
terization of many transcriptomes, from spe-
cifi c organisms, such as  Deinococcus deserti  
(de Groot et al.  2014 ), to organs involved in 

diseases ( e.g. , the transcriptome of the brain 
endothelium from individuals with cerebro-
vascular dysfunction in ischemic stroke 
(Zhang et al.  2015 )).    

 Once the protein sequence database has been 
customized, it is necessary to generate the  pro-
teomics   data. The user can then identify the pep-
tides by combining the two sources of 
information. One known strategy to increase the 
number of identifi ed peptides is based on the 
application of multiple searching tools with the 
same dataset, together with rescoring of  peptide 
identifi cations  . Moreover, it is essential to esti-
mate the identifi cation confi dence to avoid wrong 
identifi cations at the spectrum, peptide, and pro-
tein levels. With this aim, decoy sequences are 
included in the search database at each analysis 
level. With this information, a false discovery 
rate (FDR) can be calculated for the estimation of 
global error rates. Typically, it is assumed that 
FDR at peptide-spectrum matches (PSM), pep-
tide, and protein levels should be ~1 % meaning 
that 99 % of the identifi cations do not match with 
decoy sequences from the search database and 
are considered as correct identifi cations. When 
dealing with novel peptides, it is necessary to 
take into consideration than they may present 
stronger evidence than known peptides to be 
assumed as novel peptides. Additionally, FDR 
estimation should be done separately for novel 
and known peptides (Reiter et al.  2009 ; Elias and 
Gygi  2010 ; Nesvizhskii  2014 ). 

 The integration of –omics strategies should 
provide new information about the behavior of 
the cell and the relation between the transcribed 
genes and their translated counterparts. Despite 
the promising results, there are still numerous 
challenges that should be addressed to increase 
the quality of the biological information. Several 
studies have recently dealt with this issue, 
showing encouraging outcomes as a result of the 
joining different ‘omics’ approaches. Below we 
discuss some of these studies. 

 The integration of  proteomics   and transcrip-
tomics datasets was employed to analyze a 
lymphoma B-cell line (Ramos) by Díez and 
colleagues (Díez et al  2015 ).  Proteomics   data 
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obtained using a nanoUPLC-LTQ-Orbitrap Velos 
was combined with the transcriptomic profi ling 
of the Ramos cells revealing a 94 % overlap in the 
proteins identifi ed by both ‘omics’ approaches. A 
further analysis showed 30 % coverage of all pro-
tein-coding genes present in the human genome. 
Original datasets were processed to classify the 
identifi ed proteins in different groups depending 
on coverage and confi dence levels. In this way, 
the generated datasets were as follows:

    (i)     intersection , proteins systematically identifi ed 
in three replicated experiments with 2 or more 
proteotypic peptides at protein FDR < 0.01   

   (ii)     union , proteins identifi ed in any experiment 
with 2 or more proteotypic peptides at pro-
tein FDR < 0.01   

   (iii)     maximum , proteins identifi ed in any experi-
ment with 1 or more proteotypic peptides at 
protein FDR < 0.01    

This classifi cation allows the selection of pro-
teins in function of the stringency level and 
shows the complementarity between approaches 
to get a full map of the studied lymphoma B-cells. 

  McRedmond   and colleagues (McRedmond 
et al.  2004 ) performed the integration of  pro-
teomics   and  genomics   for the characterization of 
platelets. Specifi cally, they identifi ed 82 secreted 
proteins and compared them to the transcriptome 
data obtaining 69 % correlation between both 
‘omics’ data. Moreover, they predicted the pres-
ence of novel proteins in the platelets. 

 Another example is the study performed by 
 Günther   et al. in which they show that the combi-
nation of ‘omics’ strategies could be employed 
for dimension reduction and detection of candi-
date  biomarkers   in acute kidney transplant rejec-
tion (Günther et al.  2014 ).  

10.3     Analysis Tools 
for Sequencing 
  Immunoglobulin   Genes 

 The immunoglobulins (Ig), also known as anti-
bodies, are Y-shaped proteins, mainly produced 
by plasma cells (Fig.  10.2 ). Their function is to 

identify and neutralize antigens from pathogens. 
Igs are constituted by four chains: two identical 
light chains (L) and two identical heavy chains 
(H). In mammals, light chains can be classifi ed 
into two types: lambda and kappa. These chains 
are connected by disulfi de bonds at different 
points of the structure. Additionally, two parts 
can be distinguished in antibodies: the variable 
region (V) and the constant region (C). The vari-
able region includes the epitope binding site 
where the antigen is recognized. Finally, the 
structure of the Ig can be divided into the Fab 
region, for the antigen specifi city, and the Fc 
region, for determining the class effect of the 
antibody (Schroeder and Cavacini  2013 ).

   The huge amount of different Ig proteins pro-
duced to counter the vast repertoire of antigens is 
generated thanks to a multi-layer mechanism 
developed by the immune system. The molecular 
sequence diversity of B and T cell receptors 
(BCR and TCR, respectively) determines their 
capacity to bind to a great diversity of antigens. 
This diversity is generated by three different but 
complementary mechanisms: VDJ recombina-
tion, somatic hypermutation, and antigen selec-
tion (Ralph and Matsen  2015 ). 

 The VDJ recombination process, discovered 
by Susumu  Tonegawa   (Hozumi and Tonegawa 
 1976 ), comprises the random selection of V, D, 
and J genes which will be further joined in a pro-
cess that deletes some nucleotides from their 
sequences. The fi nal sequence generated defi nes 
the specifi city against the antigen (these 
sequences are known as complementary deter-
mining regions, CDR) (Ralph and Matsen  2015 ). 

 On the other hand, somatic hypermutation is a 
process in which single base substitutions are 
generated, with occasional deletions and inser-
tions, in the variable region of the Ig, generated 
by the B-cells. The rate of somatic hypermutation 
in humans is 10 −5 –10 −3   mutations   per base pair 
per generation. This process generates higher 
specifi c antibodies (Li et al.  2004 ; Kostareli et al. 
 2012 ). 

 Additionally, the antigen selection theory – 
developed by Burnet in the early 1940s – states 
that those B lymphocytes generating a specifi c 
antibody which is able to block a specifi c antigen 
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are activated to generate clones for antibody pro-
duction (Jordan and Baxter  2008 ). 

 With all these processes, the total diversity of 
generated Ig molecules is virtually unlimited. 
Then, their study should be focused on the 
detailed analysis of their sequences. With this 
purpose, the IgBLAST analysis tool was devel-
oped at NCBI. Its algorithm is based on the 
BLAST search algorithm including BCR-specifi c 
aspects:

    (i)    Reporting of the gene matches from the 
germline V, D, and J domains to the query 
sequence   

   (ii)    Annotation of the Ig domain   
   (iii)    Showing the V(D)J junction details   
   (iv)    Information about the rearrangement (in- 

frame and out-of-frame)    

Special requirements are needed for identifying 
Ig sequences, since they are quite long (290 bases 
for V genes). In this way, IgBLAST has the 
capacity to process multiple queries (<1000 
sequences per batch) (Ye et al.  2009 ). 

 Additionally, there is an online annotation tool 
called IMGT, which is considered as the global 
reference in immunogenetics and immunoinfor-
matics. Its content comprises information about 
Ig, TCR, and major histocompatibility complex 
(MHC), among others (Lefranc et al.  2015 ). 
Other examples of germline databases include 
VBASE2, IHMMune-align, and JoinSolv er (Ye 
et al.  2009 ).  

10.4      De Novo  Protein Sequencing 
of Monoclonal Antibodies 

 Determining peptide amino acid sequences is 
possible through tandem  MS     . This method is 
known as “ de novo  peptide sequencing” and it 
has its beginnings in the Edman degradation 
procedure. Contrary to database searching,  de 
novo  sequencing allows the recognition of novel 
peptides as it assigns fragment ions from a mass 
spectrum (Hughes et al.  2010 ). 

 However, the application of  de novo  sequenc-
ing for identifying the sequences of antibodies is 

  Fig. 10.2    A representative structure of an immunoglobulin. 
Four chains can be distinguished: two identical light chains 
and two identical heavy chains. Disulfi de bonds connect 

both chains (−S–S–).  C   H   constant region of the heavy chain, 
 V   H   variable region of the heavy chain,  C   L   constant region of 
the light chain,  V   L   variable region of the light chain       
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still a challenge. In these cases, MS/MS is not 
applicable and it makes it necessary to look for 
new approaches. Classical Edman degradation 
could be an option, but it is a low-throughput and 
time-consuming strategy. Nevertheless, Bandeira 
and colleagues have developed a new approach 
termed as Comparative Shotgun Protein 
Sequencing (CSPS) to identify unknown proteins 
using known proteins as templates in less than 72 
h. The functioning of CSPS is based on a three- 
step sequence: alignment, assembly, and consen-
sus approach. At the alignment step, spectral 
alignments from overlapping peptides are identi-
fi ed. The combination of spectral alignments into 
spectral contigs occurs at the assembly step, and 
these spectral contigs result in protein contigs at 
the consensus step (Bandeira et al.  2008 ). 

 As described in the Syd Labs web page (  http://
w w w. s y d l a b s . c o m / d e - n o vo - a n t i b o d y - 
sequencing-service-p58.htm    ), the general proce-
dure for  de novo  antibody sequencing includes:

    (i)    Preliminary tryptic digestion followed by 
LC-MS/MS   

   (ii)    Scale-up digestion with other enzymes 
(Asp-N, Glu-C) followed by fragmentation 
optimization   

   (iii)    Separation of antibody heavy chain and 
light chain if required   

   (iv)    Data analysis.    

  A large number of studies have applied  de 
novo  sequencing to determine antibody 
sequences. For instance, Pham and collaborators 
described the sequence of a full-length monoclo-
nal antibody raised against OX40 ligand, includ-
ing heavy and light chain sequences. In this 
study, they combined Edman degradation and 
mass  spectrometric   analysis (Pham et al.  2006 ). 

 In turn,  Resemann   and colleagues character-
ized the primary structure of a 13.6 kDa single 
heavy chain camelid antibody (V H H) using top- 
down mass spectrometric analysis demonstrating 
that ~14 kDa proteins can be sequenced entirely 
by  MS   (Resemann et al.  2010 ). 

 Finally, the combination of high-resolution 
 MS  ,  de novo  sequencing, and reverse engineer-
ing and chimerization approaches have allowed 

the purifi cation and sequencing of antibodies 
derived for ascites, specifi cally, the heavy and 
light chain sequences of the LT-3 F12 antibody 
(Castellana et al.  2011 ).  

10.5     Native Mass  Spectrometry   

 Native mass spectrometry is an emerging tech-
nology for the investigation of the native-like 
quaternary structures. Although this approach 
does not offer molecular or atomic structure 
information, it is characterized by its numerous 
advantages, including high sensitivity, speed 
selectivity, unlimited and dynamic mass range, 
and accuracy. Moreover, it allows the isolation of 
a specifi c sample within a heterogeneous protein 
complex and the requirement of small amounts 
of sample (minimum of 10 picomoles) (van Duijn 
 2010 ). In summary, this tool can be considered as 
an intermediate platform between interactomics 
and structural biology, although other technolo-
gies are needed to cover the gaps ( e.g. , nuclear 
magnetic resonance (NMR) spectroscopy, X-ray 
crystallography, and electron microscopy). 
Native  MS   is also useful for refi ning structural 
models (Heck  2008 ; van Duijn  2010 ). 

 For native  MS  , electrospray ionization (ESI) 
is one of the most used options to prepare the 
sample for the further MS analysis. To preserve 
the quaternary protein structure, an aqueous 
ammonium acetate solution has been introduced, 
since it is compatible with the MS process. 
Regarding the mass analyzer, it is necessary that 
it has a high accuracy for ion identifi cation (Heck 
 2008 ; van Duijn  2010 ). 

 Native MS has allowed the study of protea-
somes, RNA polymerase II and III, and protein 
complexes, among others. Concerning protea-
somes, several researchers have employed native 
MS to characterize them in different species ( e.g. , 
 Methanosarcina thermophile ,  Thermoplasma 
acidophilum ,  Rhodococcus erythropolis ) provid-
ing information about their stoichiometries and 
masses (Heck  2008 ). Similar characterizations 
were done for RNA polymerases by Lorenzen 
and colleagues (Lorenzen et al.  2007 ) for poly-
merases from yeast. 
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 Other studies have been focused on the analy-
sis of monoclonal antibodies, including the eval-
uation of antibody-antigen binding, structural 
features, dynamics, and interaction strengths. 
Rosati and colleagues have characterized mono-
clonal antibodies and one of the fi rst challenges 
that they found was related to the presence of 
N-linked glycosylation sites in each heavy chain 
as they are highly dependent of the type of cells. 
By applying native MS in orbitrap analyzers, 
they were able to perform the studies in a fast and 
sensitive  manner   (Rosati et al.  2012 ).  

10.6     Clinical Applications 
of Proteogenomics 
Approaches 

 Bearing in mind all these advances in 
ProteoGenomics, the next step will focus on 
their applications in the clinical area, for both 
diagnostics and prognostics. For instance, 
improving the knowledge about the structural 
peculiarities of Igs may serve as a prediction fac-
tor of the possible development of pathologies, 
as was shown by Lomakin and colleagues 
(Lomakin et al.  2014 ) for multiple sclerosis dis-
ease. In this study, they looked for the “molecu-
lar signature” of viruses in the Ig repertoire, 
fi nding specifi c variable heavy and light chains 
from Ig against the myelin basic protein (MBP). 
Moreover, they revealed the cross-reactivity of 
this protein with the latent membrane protein 1 
(LMP1) of Epstein-Barr virus which suggests 
that the responsible part of the antibody specifi city 
is the light chain of the Ig. 

 Regarding  cancer research  , proteogenomics 
appears as a promising approach to better under-
stand how cancer progression occurs. Thus 
far, the characterizations of molecular changes 
in cancer have been made by deep genome 
sequencing (led by the International Cancer 
Genome Consortium and The Cancer Genome 
Atlas, TCGA)   . However, the need of integrating 
genotypes and phenotypes, together with the 
development of  proteomics  , has accelerated the 
establishment of an international consortium 
(Clinical Proteomics Tumor Analysis Consortium, 

CPTAC) aimed at understanding the molecular 
basis of cancer (Faulkner et al.  2015 ). For 
instance, the proteogenomic characterization of 
human colon and rectal cancers has recently been 
described, which identifi ed potential candidate 
 biomarkers   and therapeutic targets. These fi nd-
ings were made possible thanks to the association 
of global changes at mRNA and protein levels 
(Zhang et al.  2014 ). In turn, Fanayan et al .  
integrated  proteomics   (shotgun approach) and 
transcriptomics ( RNA-Seq  ) approaches to evalu-
ate human colon cancer cell lines (LIM1215, 
LIM1899, and LIM2405) within the chromosome- 
centric human proteome project (C-HPP). Their 
results included potential markers for colorectal 
cancer, including mortalin, nucleophosmin, 
ezrin, and exportin, among others (Fanayan 
et al.  2013 ).  

10.7     Conclusions 

 In order to characterize the wide number of Igs 
produced by the immune system, it is required 
that new approaches are developed to achieve 
this goal. Traditionally, genome-scale techniques 
have been applied to increase the knowledge 
about Igs ( e.g. , sequence of the antigen binding 
site, domains for epitope recognition). In this 
sense, numerous strategies have been success-
fully implemented in the  genomics   fi eld. Special 
mention should be given to  next generation 
sequencing (NGS)   that allows characterizing 
millions of B-cell receptor sequences in a single 
experiment. Nevertheless, recent advances in the 
 proteomics   fi eld have highlighted the need of 
new perspectives when analyzing antibody reper-
toires. Thus, combining strategies – not only 
classical  genomics   and transcriptomics tech-
niques but also new ‘omics’ disciplines, such as 
proteomics and metabolomics – could actually 
signify an advance in the clinical area where 
immunoglobulins and their effects are crucial for 
the development of      disease.     
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      Antibody-Based Proteomics                     

     Christer     Wingren    

    Abstract  

  Antibody-based proteomic approaches play an important role in high- 
throughput, multiplexed protein expression profi ling in health and disease. 
These antibody-based technologies will provide (miniaturized) set-ups 
capable of the simultaneously profi ling of numerous proteins in a specifi c, 
sensitive, and rapid manner, targeting high- as well as low-abundant pro-
teins, even in crude proteomes such as serum. The generated protein 
expression patterns, or proteomic snapshots, can then be transformed into 
proteomic maps, or detailed molecular fi ngerprints, revealing the compo-
sition of the target (sample) proteome at a molecular level. By using bio-
informatics, candidate biomarker signatures can be deciphered and 
evaluated for clinical applicability. The approaches will provide unique 
opportunities for e.g. disease diagnostics, biomarker discovery, patient 
stratifi cation, predicting disease recurrence, and evidence-based therapy 
selection. In this review, we describe the current status of the antibody- 
based proteomic approaches, focusing on antibody arrays. Furthermore, 
the current benefi ts and limitations of the approaches, as well as a set of 
selected key applications outlining the applicative potential will be 
discussed.  

  Keywords  

  Affi nity proteomics   •   Antibody   •   Antibody arrays   •   Antibody-based pro-
teomics   •   Biomarker   •   Disease proteomics   •   Protein expression profi ling  

11.1       Introduction 

 Mass  spectrometry   (MS       )             based approaches have 
so far constituted the main workhorse for  protein 
expression profi ling   efforts (Ebhardt et al.  2015 ; 
Parker and Borchers  2014 ; Solier and Langen 

        C.   Wingren      (*) 
  Department of Immunotechnology ,  Lund University, 
Medicon Village ,   SE-223 81   Lund ,  Sweden   
 e-mail: christer.wingren@immun.lth.se  

  11

mailto:christer.wingren@immun.lth.se


164

 2014 ). MS displays many advantages for this 
purpose, such as direct (absolute) identifi cation, 
quantitative read-out possibilities, and suitability 
for hypothesis-free  biomarker   discovery. 
However, MS-based approaches are also associ-
ated with signifi cant technical limitations, includ-
ing sensitivity, resolution, accuracy, and 
reproducibility, especially when targeting com-
plex samples, such as serum, where protein 
expression covers a huge dynamic range. The 
need for new proteomic technologies has been 
one of the main driving forces in the development 
of  affi nity proteomics  , mainly represented by 
antibody-based approaches (Saerens et al.  2008 ; 
Uhlen and Ponten  2005 ; Voshol et al.  2009 ; 
Solier and Langen  2014 ; Borrebaeck and 
Wingren  2009a ,  2014 ). Antibody-based pro-
teomic approaches, such as antibody microar-
rays, have rapidly evolved from early 
proof-of-concept stages to high-performing pro-
teome profi ling assays, and today constitutes key 
established approaches within high-throughput 
(disease) proteomics (Borrebaeck and Wingren 
 2009a ,  2014 ). 

 Antibody-based proteomics can thus be 
defi ned as the systematic generation and use of 
protein-specifi c antibodies to explore the pro-
teome or parts thereof. The antibodies can be 
used for analysis of the specifi c protein targets in 

a wide range of assay platforms, as outlined in 
Table  11.1 . Aiming for tissue protein profi ling, 
candidate platforms could include immunohisto-
chemistry (IHC), antibody-enriched selected 
reaction monitoring (SRM), global proteome sur-
vey (GPS), Triple-X, and reversed antibody 
microarrays, or reverse-phase protein microar-
rays (RPPA). When considering for biofl uid  pro-
tein expression profi ling  , candidate platforms 
could include ELISA, antibody-enriched-SRM, 
GPS, Triple-X, reverse antibody microarrays or 
RPPA, and antibody nano- and microarrays. The 
choice of platform will depend on the research 
question at hand (e.g. discovery study vs. valida-
tion study) and technical requirements ( e.g. , sen-
sitivity, throughput, and degree of multiplexity).

11.2        Choice of Antibody 

 So far, antibodies are by far the most well- 
characterized and commonly used probe format 
within  affi nity proteomics  , i.e. antibody-based 
proteomic approaches (Borrebaeck and Wingren 
 2011 ; Saerens et al.  2008 ; Solier and Langen 
 2014 ; Uhlen and Ponten  2005 ; Voshol et al. 
 2009 ). The antibodies will play a central role, 
acting as specifi c capture probes and the antibody 
format used will be essential, setting the stage for 
the technology (assay) platform. In more detail, 
the antibody format will directly or indirectly 
infl uence the:

    (i)    Performance of the probes in the selected 
technology platform   

   (ii)    Range of specifi cities that can be generated 
and included   

   (iii)    Supply/renewability of probes.    

Hence, these three central aspects must be con-
sidered when selecting the antibody format/
design. Here, we will briefl y discuss the use of 
different antibody formats, including polyclonal 
antibodies (pAbs) vs. monoclonal antibodies 
(mAbs) vs. recombinant antibodies (recAbs). 
The use of antibodies vs. affi nity reagents based 
on other scaffolds, such as affi bodies (Renberg 
et al.  2005 ,  2007 ) and aptamers (Lao et al.  2009 ; 

   Table 11.1    Antibody-based proteomic approaches   

 Protein targets  Antibody-based proteomic approaches 

 Tissue protein 
profi ling (e.g., 
tumor extracts) 

 Immunohistochemistry (IHC) 

 Antibody-enriched selected reaction 
monitoring (SRM) 

 Global proteome survey (GPS) 

 Triple-X 

 Reverse antibody microarrays, or 
reverse-phase protein microarrays 
(RPPA) 

 Biofl uid 
protein 
profi ling (e.g., 
serum) 

 ELISA 

 Antibody-enriched selected reaction 
monitoring (SRM) 

 Global proteome survey (GPS) 

 Triple-X 

 Reversed antibody microarrays, or 
RPPA 

 Antibody nano- and microarray 
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Walter et al.  2008 ; Cho et al.  2006 ; Collett et al. 
 2005 ), is outside the scope of this article, and has 
been reviewed elsewhere (Borrebaeck and 
Wingren  2007 ,  2009a ; Wingren and Borrebaeck 
 2006 ; Wingren and Borrebaeck  2004 ). 

 pAbs display the advantage of multiple- 
epitope binding for the target protein, which 
makes them more suitable for cross-platform 
assays, potentially binding to both native and 
denatured forms of the antigen. However, the 
production of pAbs relies on immunization, and 
this probe format often shows a distinct lack of 
reproducibility upon re-immobilization with the 
same antigen, which makes this reagent less 
attractive as a renewable probe resource. While 
large-scale productions of pAbs have been suc-
cessfully managed (Berglund et al.  2008 ; Uhlen 
and Hober  2009 ), this still poses a major logisti-
cal bottleneck. The pAB format has been suc-
cessfully used in various antibody-based 
proteomic approaches, such as ELISA, IHC, 
Triple-X, and RPPA. 

 mAb preparations display a single-epitope 
specifi city, making them highly attractive for 
specifi c applications. In fact, mAbs are currently 
the most commonly used immunoreagent in 
diagnostic applications (Borrebaeck  2000 ). 
However, the single-epitope specifi city makes 
this reagent less useful across platforms, where 
the protein antigen might be partly denatured in 
different ways. The reagent is fully renewable, 
making it an attractive reagent, but the initial pro-
duction of mAbs represents a key logistical bot-
tleneck for large-scale efforts. mAbs have been 
successfully applied in,  e.g. , IHC, antibody- 
enriched SRM, RPPA, and ELISA. 

 recAbs are often handled and selected using 
phage display technologies (Borrebaeck and 
Wingren  2011 ; Soderlind et al.  2000 ). Due to 
technical (size) limitations, the most commonly 
used antibody format is single-chain fragment 
variable (scFv) antibody,  i.e. , the smallest frag-
ment of an antibody still retaining its unique 
epitope- binding properties. These mono-specifi c 
reagents display many benefi cial features, such 
as representing a renewable antibody source, the 
antibody library can be designed (engineered) on 
a molecular level to display desired features, such 

as on-chip stability in array-based applications 
(Borrebaeck and Wingren  2009a ,  2011 ), they are 
produced without the use of animals, and they 
represents an attractive source towards generat-
ing antibodies against the entire proteome. 
Access to high-performing libraries and having 
the phage display technology established in the 
laboratory represents practical limitations. 
recAbs have been successfully used for,  e.g. , 
antibody-enriched SRM, GPS, RPPA, ELISA, 
and in particular antibody nano- and microarrays 
(Borrebaeck and Wingren  2009a ,  2011 ).  

11.3     Antibody-Based 
Proteomics – Basic 
Technological Concepts 
and Considerations 

 Here, we describe the various antibody-based 
proteomic approaches used in brief, general 
terms, and we highlight their advantages and lim-
itations (Table  11.2 ).

   Immunohistochemistry (IHC) is a classical 
method to discover tissue  biomarkers   and trans-
late them into routine clinical practice. This 
approach relies on antibodies to measure levels 
of the target proteins from formalin-fi xed, paraf-
fi n embedded (FFPE) tissue slices. To increase 
the throughput, the set-up has been expanded 
from one tissue slice per slide to several tissue 
slices per slide, thus representing tissue microar-
rays (TMAs) (Table  11.2 ). For example, the 
TMA technology enabled up to 1000 FFPE tissue 
samples to be assembled in an array format 
(Braunschweig et al.  2004 ; Hewitt  2004 ). Hence, 
TMAs enables researchers to use a single slide to 
perform studies on large cohorts of tissues using 
only small amounts of reagents. IHC commonly 
relies on labelled antibodies for detection, often 
demanding visual inspection of each slice. Hence, 
standardization and automation have been central 
points for further technical developments in 
recent years. Key advantages are assay sensitivity 
and the fact that spatial resolution at cellular level 
can be accomplished, i.e. providing information 
about where the target protein is located. The lat-
ter can provide a deeper insight into normal 
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 cellular functions and pathogenic mechanisms. 
The semi-denatured state of the sample proteins 
will place high demands on the antibody reagent 
in terms of specifi city, to minimize both false- 
positive and false-negative results. 

 Combining the specifi c capture of the target 
by the antibody with the power of  MS  ,  i.e. , 
antibody- enriched SRM, paves the way for spe-
cifi c and sensitive detection and absolute quanti-
fi cation of proteins (Whiteaker et al.  2007 ,  2010 ) 
(Table  11.2 ). The antibodies are fi rst used to cap-
ture and enrich the target proteins. The captured 
proteins are then eluted, digested and analyzed 
on tandem- MS  . The  MS   set-up is pre-set to only 
look for selected target peptides. The sample 
could also be digested prior to the specifi c cap-
ture. Polyclonal as well as monoclonal antibodies 
have been used for capture. The set-up is limited 
by the fact that the targets are pre-defi ned and 
that one antibody per target is required. Hence, 
the platform is not designed for large-scale dis-
covery efforts. But on the other hand, the set-up 
displays high specifi city, adequate sensitivity, 
and can be multiplexed. The cost for the  MS   
instrumentation is high. The set-up works for 
both tissue and biofl uid  protein expression 
profi ling  . 

 Recently, two similar novel concepts were 
presented, demonstrating one solution to how the 
combination of antibody capture and  MS   detec-
tion can be converted into a discovery set-up. The 
two concepts, were called Triple-X Proteomics 
(Poetz et al.  2009 ; Volk et al.  2012 ; Hoeppe et al. 
 2011 ) (TXP) and the Global Proteome Survey 
(Olsson et al.  2011 ,  2012a ,  b ; Wingren et al. 
 2009 ) (GPS) and they are based on the same fun-
damental principle, and will provide unique 
opportunities to perform global proteomics in a 
species independent manner, using a very limited 
set of antibodies. Briefl y, antibodies are gener-
ated against short peptide motifs, only four to six 
amino acid residues long, each motif being 
shared by 2–100 different proteins. These context 
independent motif specifi c antibodies could then 
be used to target motif containing peptides in a 
species independent manner. From a practical 
point of view, the proteome is digested, e.g. tryp-

     Table 11.2    Advantages and challenges of antibody- 
based technologies for tissue and/or biofl uid  protein 
expression profi ling     

 Technology  Advantages  Challenges 

 IHC  Sensitivity  Specifi city 

 Spatial resolution 
at cellular level 

 Absolute 
quantifi cation 

 Works with 
FFPE tissue 

 Automated 
systems 

 Multiplexing 

 Antibody- 
enriched 
SRM 

 Multiplexing  One antibody per 
target required 

 Sensitivity  High instrument 
costs 

 Specifi city  Pre-defi ned 
targets (not 
designed for 
discovery) 

 Quantitative  Complex sample 
preparation 

 Throughput 

 GPS and 
Triple-X 

 Multiplexing  High instrument 
costs 

 Sensitivity  Complex sample 
preparation 

 Specifi city  Throughput 

 Quantitative 

 Discovery mode 

 One antibody per 
many targets 

 ELISA  Sensitivity  Multiplexing 

 Well-established 
in clinical 
laboratories 

 High sample 
consumption 

 Specifi city 
(sandwich 
approach) 

 Reverse 
 antibody 
arrays   or 
RPPA 

 Multiplexing  Sensitivity 

 Low reagent 
consumption 

 Specifi city 

 Broad sample 
compatibility 

 Semi-quantitative 

 Low 
consumption of 
reagents 

 Few high- 
performing 
platforms at hand 

 Sensitivity 

 Multiplexing 

 High throughput 
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sinated, and the peptide-specifi c antibodies are 
then used to specifi cally capture and enrich 
motif-containing peptides. Next, the motif- 
containing peptides are detected and identifi ed 
(sequenced) using tandem mass  spectrometry  , 
thereby enabling us to back-track the original 
proteins in a quantitative manner. By using only 
200 motif-specifi c antibodies, each targeting a 
motif shared among 50 unique proteins, this 
would enable us to potentially target about half 
the non-redundant proteome. The GPS set-up is 
based on recAbs, while the Triple-X set-up relies 
on pAbs and/or Mabs. The platforms can be 
designed to provide absolute quantifi cation, and 
are compatible with both tissue and biofl uid  pro-
tein expression profi ling  . The throughput, set by 
the  MS   step, represents a key limitation. 

 ELISA is currently the gold standards in clini-
cal settings for measurements of proteins. The 
set-up is based on immobilizing the capture anti-
body, which specifi cally binds the target protein. 
A secondary antibody (sandwich set-up) is often 
used for detection of bound proteins. The set-up 
can deliver relative as well as absolute levels of 
the profi led proteins. pAbs and mAbs are the 
main antibody formats used. Highly specifi c and 
sensitive assays can be designed, and any sample 
format can be targeted as long as the protein (epi-
tope) is accessible. The approach is limited by 
multiplexing and relatively high sample 
consumption. 

 The reverse antibody array, or RPPA, is a 
novel, miniaturized set-up providing several ben-
efi ts (Nishizuka and Mills  2016 ; Voshol et al. 
 2009 ). In these set-ups, the sample is arrayed and 
the antibodies are added one by one to detect the 
target protein in each individual spot. Key advan-
tages are multiplexing and low sample consump-
tion. The platform enables large-scale screening 
of virtually any biological fl uid, such as serum, 
urine, and saliva. In addition, tissue samples can 
also be profi led, provided that the proteins can be 
solubilized and arrayed. Dispensing low (pL 
range) volumes of complex samples will, how-
ever, limit the sensitivity of the assay. In more 
detail, the number of molecules of each individ-
ual protein adsorbed per spot will be a limiting 

factor in particular for low-abundant proteins. 
Hence, this assay set-up is more suitable for pro-
fi ling medium- to high-abundant proteins. 

 The concept of  antibody arrays   is based on 
printing small volumes (pL scale) of numerous (a 
few to several hundreds) antibodies with the 
desired specifi cities on-by-one in an ordered pat-
tern, an array (<1 cm 2 ), onto a solid support 
(Borrebaeck and Wingren  2009a ,  2014 ). The 
arrayed antibodies will act as specifi c catcher 
molecules for the target proteins. These miniatur-
ized arrays are incubated with μL-scale of crude, 
non-fractionated sample. Next, specifi cally 
bound analytes are detected and semi-quantifi ed, 
mainly using fl uorescence as a mode of detection 
(Wingren and Borrebaeck  2008 ). The complete 
assay is run within less than 4 h, where after the 
microarray images are transformed into protein 
expression  profi les  , or protein maps, revealing 
the detailed composition of the sample. 
Depending on the application at hand, different 
 bioinformatic   strategies can be applied 
(Borrebaeck and Wingren  2007 ,  2009b ) to fur-
ther explore the wealth of data generated,  e.g. , 
pin-pointing differentially expressed protein ana-
lytes between,  e.g. , disease patients and healthy 
controls (Bauer et al.  2006 ; Carlsson et al.  2011 ). 
The advantages of the technology are low con-
sumption of reagents, multiplexing, sensitivity, 
and high throughput. The number of high- 
performing antibody  array   platforms is still low, 
most likely refl ecting the complexity of develop-
ing such set-ups, which requires a truly multidis-
ciplinary approach. 

 The antibody  array   is a relatively new pro-
teomic technology that has been subject to 
intense development in recent years, going from 
proof-of-concept to established proteomic assays. 
The technology has been found to display a great 
potential for multiplexed  protein expression pro-
fi ling   and  biomarker   discovery. The antibody 
 array   platforms are compatible with both tissue 
and biofl uid  protein expression profi ling  . Based 
on this,  antibody arrays   were selected as a show-
case technology for antibody-based proteomic 
approaches and will be described in more detail 
below.  
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11.4     Antibody 
Nano- and Microarrays 

 The basic approach of generating miniaturized 
 antibody arrays  , ranging in size from mm 2  (nano-
arrays, nm sized spot features) to cm 2  (microar-
rays, μm sized spot features) (Wingren and 
Borrebaeck  2007 ) is based on direct printing 
(Borrebaeck and Wingren  2007 ; Wingren and 
Borrebaeck  2007 ), self-addressing (Svedhem 
et al.  2003 ; Wacker and Niemeyer  2004 ; Wacker 
et al.  2004 ), or self-assembly (He et al.  2008a , 
 2008b ; He and Taussig  2001 ; Ramachandran 
et al.  2004 ,  2006 ,  2008 ) of small amounts (femto-
mole range) of individual antibodies onto a solid 
support (Fig.  11.1 ). While planar arrays on solid 
microscope slides, such as plastic, glass, and sili-
con chips, constitute the dominating format, pro-
viding up to 16 sub-arrays per slide, multiplexed 
arrays have also been produced on the bottom of 
fl at ELISA plate wells as well as on beads in 
solution, so called bead-arrays (Borrebaeck and 
Wingren  2009a ; Schwenk et al.  2008 ; Wingren 
and Borrebaeck  2009 ; Wong et al.  2009 ). The 
array assay is run like a traditional ELISA, but 
consuming only μL scale volumes of the reagents 
and samples. It is noteworthy that complex, 
unfractionated proteomes, such as serum, plasma, 

urine, and tissue extracts, can, in contrast to many 
competing proteomic technologies, be directly 
used, meaning that the key issue of pre- 
fractionation of the sample is bypassed (Wingren 
and Borrebaeck  2009 ). Any sample format can 
be targeted, as long as the proteins are exposed/
available (e.g. cell surface membrane proteins) 
and/or can be solubilized, including serum, 
plasma, urine, cerebrospinal fl uid, intact cells, 
cell lysates, cell supernatants, and tissue extracts, 
etc. (Belov et al.  2001 ,  2003 ; Campbell et al. 
 2006 ; Dexlin et al.  2008 ; Dexlin-Mellby et al. 
 2010 ; Ingvarsson et al.  2007 ; Kristensson et al. 
 2012 ; Wingren et al.  2007 ; Alhamdani et al. 
 2010 ; Hoheisel et al.  2013 ). The samples are in 
most cases labeled with a fl uorescent dye, either 
directly or indirectly, and interfaced with a 
fl uorescent- based sensing (Kusnezow et al.  2007 ; 
Wingren and Borrebaeck  2008 ; Wingren et al. 
 2007 ). Label-free detection technologies have 
also been investigated, but additional technologi-
cal developments will be required before they 
can be established and adapted, for review see 
(Borrebaeck and Wingren  2007 ,  2009a ; Wingren 
and Borrebaeck  2006 ). These multiplexed assays 
display a dynamic four orders of magnitude or 
more, and assay sensitivities in the pM to fM 
range. This enables low-abundant (pg/ml) 

  Fig. 11.1    Schematic illustration of the  antibody   microarray set-up       
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 analytes to be directly profi led in crude pro-
teomes. The assay time is similar to that of a con-
ventional ELISA (about 4 h). By detecting and 
quantifying the signal intensity in each spot, the 
array images are transformed into protein expres-
sion  profi les  , deciphering the detailed composi-
tion of the sample. Finally,  bioinformatics   is 
applied to identify differences and similarities in 
protein expression  profi les   between the sample 
cohorts at hand,  e.g. , cancer versus healthy con-
trols, potentially generating candidate  biomarker   
signatures. Typical applications of antibody-
based microarrays include, but are not limited to, 
glycan profi ling, delineation of signaling path-
ways, identifi cation and detection of bacterial 
disease (proteins), cell surface membrane protein 
profi ling of intact cells, as well as detection of 
disease associated  biomarkers   for diagnosis, 
prognosis, classifi cation, evidence-based therapy 
selection, and predicting the risk for relapse 
(Alhamdani et al.  2010 ; Carlsson et al.  2010 , 
 2011 ; Haab  2005 ; Sanchez-Carbayo et al.  2006 ; 
Wingren et al.  2012 ; Gao et al.  2005 ; Belov et al. 
 2001 ,  2003 ).

   The process of designing, developing and 
applying antibody microarrays requires a cross- 
disciplinary approach to be adopted (Borrebaeck 
and Wingren  2009a ). Consequently, fi ve key 
basic principle areas needs to be addressed in a 
parallel manner, including:

    (i)    Antibody design   
   (ii)    Array design   
   (iii)    Sample handling   
   (iv)    Assay design   
   (v)    Data handling ( bioinformatics  )    

Once these principles have been addressed and 
optimized, the technology is ready to be applied 
for the research problem at hand.  

11.5     How   Antibody Arrays   Are 
Used Today in Research 

 Antibody microarrays are used to perform rela-
tive (or absolute)  protein expression profi ling   of 
almost any kind of sample format, such as serum, 

often with the aim to decipher differentially 
expressed protein analytes and/or to delineate 
protein signatures for classifi cation, for review 
see (Borrebaeck and Wingren  2007 ,  2009a ,  b ; 
Haab  2005 ,  2006 ; Hartmann et al.  2009 ; 
Kingsmore  2006 ; Schwenk et al.  2008 ; Wingren 
and Borrebaeck  2009 ). The throughput per work-
station per day varies, but can be in the range of 
hundred samples, each individual array assay in 
turn targeting anything from a few to several hun-
dred protein analytes. However, the availability 
of high-performing antibody arrays, displaying 
the desired range of specifi cities, is in general a 
limiting factor. While a few groups have devel-
oped their own in-house antibody array set-ups 
(Haab and Zhou  2004 ; Hoheisel et al.  2013 ; 
Sanchez-Carbayo et al.  2006 ; Schroder et al. 
 2011 ; Schwenk et al.  2008 ; Wingren et al.  2007 ), 
other rely on commercially available alternatives, 
for review see (Borrebaeck and Wingren  2007 , 
 2009a ; Wingren and Borrebaeck  2009 ). 

 To date, a large number of antibody array- 
based applications have been presented, ranging 
from small proof-of-concept studies to large 
semi-global  protein expression profi ling   studies 
(Table  11.3 ). As reviewing all antibody-array 
based applications to date is beyond the scope of 
this chapter, we have compiled a selected set of 
both early and more recent applications, giving a 
broad and representative view of what the tech-
nology can be used for. The compilation shows 
that the antibody array technology has been used 
in the following areas (Table  11.3 )

    1.    Autoimmunity (Bauer et al.  2006 ,  2009 ; 
Carlsson et al.  2011 ; Szodoray et al.  2004 ; 
Lin et al.  2013 ; Kristensson et al.  2012 )   

   2.    Allergy (Lundberg et al.  2008 )   
   3.    Bladder proteomics (Fujita et al.  2006 )   
   4.    Cell proteomics (Campbell et al.  2006 ; De 

Ceuninck et al.  2004 ; Dexlin et al.  2008 ; Ko 
et al.  2005 ; Kopf et al.  2005 ; Tuomisto et al. 
 2005 ; Turtinen et al.  2004 )   

   5.    Drug abuse (Buechler et al.  1992 )   
   6.    Glycomics (Chen and Haab  2009 ; Chen 

et al.  2007 ; Yue et al.  2011 )   
   7.    Heart proteomics (Bereczki et al.  2007 ; 

Mitchell et al.  2005 ; Wu et al.  2004 )   
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   8.    Hereditary disease (Srivastava et al.  2006 ; 
Jozwik et al.  2012 )   

   9.    Infl ammatory conditions/infections (Madan 
et al.  2007 ; Kader et al.  2005 ; Cai et al.  2006 ; 
Sharma et al.  2006 ; Ingvarsson et al.  2007 ; 
Sandstrom et al.  2012 )   

   10.    Liver proteomics (Yee et al.  2007 )   
   11.    Lung proteomics (Izzotti et al.  2004 )   
   12.    Medical microbiology (Cai et al.  2005 ; Zhou 

et al.  2005 ,  2012 ; Gehring et al.  2008 ; 
Delehanty and Ligler  2002 ; Grow et al. 
 2003 ; Huang et al.  2003 ; Ligler et al.  2003 ; 
Rowe et al.  1999 ; Rowe-Taitt et al.  2000 ; 
Rubina et al.  2005 ; Taitt et al.  2002 ; Ellmark 
et al.  2006b ; Anjum et al.  2006 ; Rucker et al. 
 2005 )   

   13.    Neurology/psychiatry (Kaukola et al.  2004 ; 
Sokolov and Cadet  2006 ; Krishnan et al. 
 2005 )   

   14.    Obstretics/gynaecology (Dexlin-Mellby 
et al.  2010 ; Wang et al.  2007 ; Centlow et al. 
 2011 )   

   15.    Oncoproteomics (Liu et al.  2011 ; Ahn et al. 
 2006 ; Sanchez-Carbayo et al.  2006 ; Carlsson 
et al.  2008 ,  2010 ,  2011 ; Celis et al.  2005 ; 
Hudelist et al.  2005 ; Lin et al.  2004 ; 
Orchekowski et al.  2005 ; Smith et al.  2006 ; 
Vazquez- Martin et al.  2007 ; Sreekumar et al. 
 2001 ; Ellmark et al.  2006a ,  b ; Huang et al. 
 2001 ; Tannapfel et al.  2003 ; Belov et al. 
 2005 ,  2006 ; Zhou et al.  2004 ; Gao et al. 
 2005 ; Bartling et al.  2005 ; Ghobrial et al. 
 2005 ; Duffy et al.  2007 ; Mor et al.  2005 ; 
Ingvarsson et al.  2008 ; Schroder et al.  2010 ; 
Wingren et al.  2012 ; Miller et al.  2003 ; 
Shafer et al.  2007 ; Knezevic et al.  2001 ; Box 
et al.  2013 ; Sukhdeo et al.  2013 ; Yue et al. 
 2011 ; Patel et al.  2011 ; Sun et al.  2008 ; 
Hodgkinson et al.  2012 ; Shi et al.  2011 ; 
Ramirez and Lampe  2010 ; Yue et al.  2009 )   

   16.    Periodontology (Bodet et al.  2007 )   
   17.    Phosphoproteomics (Gembitsky et al.  2004 ; 

Flores-Delgado et al.  2007 )   
   18.    Protein expression (Han et al.  2006 ; Ivanov 

et al.  2004 )   
   19.    Protein signaling (Gaudet et al.  2005 )    

A majority of the applications have been per-
formed within  disease proteomics  , and in partic-
ular oncoproteomics, but this does not refl ect any 
limitation per se. In fact, as long as the target pro-
teins can be addressed and the range of specifi ci-
ties of the arrayed antibodies is adequate for the 
application at hand, antibody arrays could be 
used for more or less any  protein expression pro-
fi ling   application.

   Using  disease proteomics   as a representative 
example, the project teams are frequently orga-
nized in a translational manner, involving scien-
tists and clinicians with orthogonal competences, 
such as array technology, nanotechnology, pro-
tein engineering, immunochemistry, surface 
chemistry, sensing technology,  bioinformatics  , as 
well as disease biology, pathogenesis, and ther-
apy (Borrebaeck and Wingren  2009a ,  b ; Wingren 
and Borrebaeck  2009 ). The work is organized 
around a well-defi ned clinical problem, or set of 
problems, representing an unmet clinical need, 
and the project is frequently planned in a cross- 
disciplinary manner, going from bed-to-bench 
and back again. As for any proteomic study, it is 
essential that sequential studies are planned, 
going from discovery, pre-validation to valida-
tion studies, each step involving a new, indepen-
dent patient data set to be targeted. In addition, 
the fi ndings reported in each step of the project 
should also, if possible, be cross-validated using 
orthogonal methods ( e.g. , ELISA and mass 
 spectrometry  ).  

11.6     Antibody Arrays – Selected 
Applications 

 As discussed above, we have compiled a selected 
set of both early and more recent antibody-array 
based applications, giving a representative view 
of what the technology can be used for 
(Table  11.3 ). The applications range from deci-
phering  biomarker   signatures for improved (and 
early) disease diagnosis, prognosis, predicting 
the risk for relapse, and evidence-based therapy 
selection, to detection and serotyping of bacteria. 
As a review of all of antibody array applications 
in detail is beyond the scope of this chapter, we 
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have chosen to focus on selected applications 
within  disease proteomics  , more specifi cally 
within the fi eld of autoimmunity and cancer. To 
this end, we will display a few examples only as 
show cases to highlight the workfl ow and poten-
tial of the array methodology. 

 In the case of systemic lupus erythematosus 
(SLE), a chronic autoimmune connective tissue 
disease (Rovin and Zhang  2009 ; D’Cruz et al. 
 2007 ; Rahman and Isenberg  2008 ), the clinical 
need for serological/urinary  biomarker   signa-
tures for improved diagnosis, prognosis, and 
classifi cation is signifi cant. In a discovery study 
by  Carlsson   et al . , the authors showed that the 
fi rst candidate serum  biomarker   signatures for 
diagnosis, prognosis, as well as sub-group phe-
notyping were successfully deciphered using 

     Table 11.3    Overview of selected antibody array-based 
applications   

 Area of application 
 Disease or biological 
process 

 Autoimmunity  Primary Sjögren´s 
syndrome 

 Systemic lupus 
erythematosus 

 Systemic sclerosis 

 Allergy  Cytokine profi ling 

 Bladder proteomics  Smooth muscle 
hypertrophy 

 Cell proteomics  Amphotericin B 
exposure 

 Blood phenotyping 

 Cell differentiation 

 Chondrocytes 

 Model systems 

 Drug abuse  Screening 

 Glycomics  Pancreatic cancer 

 Heart proteomics  Myocardial 
infarction 

 Hereditary disease  Cystic fi brosis 

 Infl ammation/infection  Artherosclerosis 

 Infl ammatory bowel 
disease 

 Obesity 

 Rhinovirus infection 

 Complement 
defi ciency 

 Pancreatitis 

 Liver proteomics  APAP-induced liver 
disease 

 Lung proteomics  Chromium(VI)-
treatment 

 Medical microbiology  Bacterial infection 

 Detection of bacteria 
and/or toxins 

 Helicobacter pylori 
infection 

 Serotyping of 
bacteria 

 Neurology/psychiatry  Cerebral palsy 

 Drug abuse 

 Transverse myelitis 

 Obstetrics/gynaecology  Pre-eclampsia 

 Oncoproteomics  Angiogenesis 

 Bladder cancer 

 Breast cancer 

 Colon cancer 

Table 11.3 (continued)

 Colorectal cancer 

 Gastric adenoma 
carcinoma 

 Glioblastoma 

 Hepatocellular 
carcinoma 

 Leukemia 

 Liver cancer 

 Lung cancer 

 Mantle-cell 
lymphoma 

 Model system 

 Ovarian cancer 

 Pancreatic cancer 

 Prostate cancer 

 Squamous cell 
carcinoma 

 Periodontology  Model system 

 Phosphoproteomics  Model system 

 Lung cancer 

 Protein expression  Post-translational 
modifi cations 

 Biosynthetic 
pathways 

 Protein signaling  Proapoptotic/-
survival stimuli 
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recombinant antibody microarrays (Carlsson 
et al.  2011 ). Major efforts are currently under 
way to pre-validate and validate these promising 
fi ndings, both enhancing our fundamental under-
standing of SLE and potentially paving the way 
for novel and improved clinical management of 
SLE patients (Wingren et al, unpublished 
observations). 

 In order to delineate a  biomarker   signature for 
bladder cancer, Sanchez- Carbayo   et al .  adopted a 
dual approach, combining the extraordinary 
power of both DNA microarrays and antibody 
microarrays (Sanchez-Carbayo et al.  2006 ). A set 
of candidate markers were fi rst identifi ed by gene 
profi ling, after which an antibody microarray tar-
geting a selected set of the candidate proteins was 
designed and applied. The data showed that the 
candidate  biomarker   signature discriminated 
between bladder cancer patients and healthy con-
trols with a 94 % correct classifi cation rate. The 
data also indicated a potential of stratifying the 
tumors (patients) into low versus high risk based 
on the overall survival of the bladder cancer 
patients. 

 Several array efforts have been devoted 
towards defi ning  biomarkers   for pancreatic can-
cer (Ingvarsson et al.  2008 ; Orchekowski et al. 
 2005 ; Schroder et al.  2010 ; Shi et al.  2011 ; 
Wingren et al.  2012 ; Yue et al.  2009 ,  2011 ; 
Gerdtsson et al.  2015 ). With an overall 5-year 
survival rate of less than 2–3 % pancreatic cancer 
is one of the most lethal types of malignancies 
(Chu et al.  2010 ; Jemal et al.  2009 ), which is why 
 biomarkers   for improved and early diagnosis 
would have a signifi cant impact. Early work by 
 Orchekowski   et al .  revealed a set of candidate 
serum  biomarkers  , but they proved to indicate on 
a general disease state rather than specifi cally 
pin-pointing pancreatic cancer. Interestingly, Yue 
and co-workers investigated the prevalence and 
nature of glycan alterations on specifi c proteins 
in pancreatic cancer patients using antibody- 
lectin sandwich arrays (Yue et al.  2009 ). Their 
work indicated a small set of signifi cantly altered 
proteins that provided valuable insight into the 
prevalence and protein carriers of glycan altera-

tions in pancreatic cancer. This outlines the 
potential of using glycan measurements on spe-
cifi c proteins for highly effective  biomarkers  . In 
three other studies, using recombinant antibody 
microarrays, candidate biomarkers for (early) 
diagnosis of pancreatic cancer have been deci-
phered (Ingvarsson et al.  2008 ; Wingren et al. 
 2012 ; Gerdtsson et al.  2015 ). Once validated, 
such biomarker signatures could pave the way for 
early and improved diagnosis based on a mini-
mally invasive blood sample, which could result 
in a signifi cantly improved outcome for pancre-
atic cancer patients.  Shi   and co-workers explored 
the possibility of defi ning potential markers for 
metastatic progression in pancreatic cancer using 
antibody microarrays, by comparing a metastatic 
pancreatic cancer line with its parental line (Shi 
et al.  2011 ). Interestingly, four dysregulated pro-
teins were identifi ed and validated, which might 
prove valuable for understanding pancreatic can-
cer metastasis and aid in the search for potential 
markers of metastatic progression .  

11.7     Future Perspective 

 Antibody-based proteomic approaches will play 
a key role for high-throughput, multiplexed  pro-
tein expression profi ling   in health and disease for 
years to come. This will enable simultaneous 
profi ling of numerous high- and low-abundant 
proteins in crude sample formats in a highly 
selective, specifi c and sensitive manner, while 
consuming minimal amounts of reagents and 
sample. Generating high-resolution protein maps 
will be essential in the quest for deciphering  bio-
markers  . In the end, this will pave the way for the 
next generation of disease diagnostics, patient 
stratifi cation ( e.g. , phenotyping, disease status, 
and sub-grouping), and predicting disease recur-
rence, as well as evidence-based therapy 
selectio    n.     
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