
Chapter 9
Wireless Sensor Networks for the Internet
of Things: Barriers and Synergies

Mihai T. Lazarescu

9.1 Introduction

Research and technology advances continuously extend and diversify wireless
sensor network (WSN) applicability. As a consequence, WSN designers faced
an increasing range of applications and requirements under rising cost and time
pressures since the Internet of Things (IoT) paradigm was coined more than 15 years
ago [1]. “Typical” requirements for WSN hardware and software are increasingly
difficult to define [2] because they continuously adapt to very diverse application
requirements and operating conditions at a rate which does not seem slowed down
by standardization efforts or proprietary API proposals.

Moreover, although WSN solutions are used for numerous applications, the
implementations generally differ under various aspects which significantly reduce
the economies of scale. Consequently, both hardware and software of WSN solu-
tions are often application-specific prototypes that carry significant non-recurrent
engineering costs and risks (e.g., reliability, optimization, and development time).

Additionally, for various practical reasons WSN deployments are typically
developed at lower abstraction levels, which can have two significant undesirable
effects. First, this can divert an important development effort from application logic
implementation, as shown in Fig. 9.1, which increases development time and cost,
and generally decreases reliability. Second, lower abstraction level development
often requires competencies that are seldom found among application domain
experts, which can lead to higher development cost and more reluctant adoption
of WSN-based solutions.
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Fig. 9.1 Value flow for a WSN application and platform

IoT vision to transform and enrich the way in which we perceive and interact with
the reality often assumes capillary distributed devices for which WSNs continue
to play an important role as one of the key enabling technologies since IoT
paradigm inception. They often need to meet stringent requirements such as long
maintenance-free lifetime, low cost, small size, ease of deployment and configura-
tion, adequate processing of collected data, privacy and safety, and, not the least, fast
and reliable development cycles that evolve on par with the underlying technologies.
These are especially important for environmental monitoring applications, both
closer to human day-to-day live (buildings, cities) and remote (e.g., open nature
and climate monitoring).

As shown in Fig. 9.1, at the top of the WSN value chain are WSN application
customers, whose needs are addressed by system integrators. The latter leverage on
the top of WSN technology chain, where we find WSN platforms which can fully
cover, end-to-end, WSN applications.

WSN platforms and development frameworks play a central role as the primary
interface for accessing the underlying technology, standardization, and research
state of the art. A complete platform includes field device hardware and firmware,
development framework, and an application server (e.g., for data storage, monitor-
ing, and post-processing). Development framework, IP components, and supported
hardware need continuous updates because WSN field evolves fast and these are
an important factor in the final value delivered to end users. Also, development
framework flexibility, reliability, and ease of use are important factors allowing
system integrators and application domain experts to direct most of their effort to
WSN application development, where it is valued most.
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However important, designing and maintaining a complete, flexible, and reliable
WSN development framework with extensive hardware support is costly and
requires a broad range of expertises, from advanced web and UI design to low-level
embedded software and IDE, and code generation techniques to support high level
application specifications. Quality assurance is also very important, since overall
unreliability perception is still a limiting factor to wider WSN adoption.

Most hardware vendors provide various degrees of development support for their
own WSN devices. They are usually focused on typical uses of the devices and
are often hardware-centric instead of application-centric. As such, the toolsets may
require significant extension or adaptation to properly cover a broader range of
applications. Additionally, they also tend to significantly lag the state of the art,
as they are meant to follow the progress of one producer.

Moreover, the up-front integration effort into existing development flows and
the proprietary solutions may lock-in to vendor’s hardware, often leading to
significant hold-up problems that may hamper business potential. All these aspects
finally translate into wasting system integrators’ effort, missing or lagging market
opportunities, and increasing development costs and risks. For new players it may
also add to entry and differentiation barriers, effectively limiting the adoption of
WSN solutions.

To best meet expectations and optimize the value, WSN development frame-
works need to be based on reuse (both code and tools, since no player can efficiently
cover all WSN aspects), to be easy to update or upgrade/replace to keep the pace
with the fast evolution of the underlying technologies, and to abstract and automate
the flow especially for application domain experts. Besides, the flow should favor
design portability between different hardware and software solutions to avoid costly
and inefficient vendor lock-ins and, last but not least considering the fast evolution
pace in the field, to simplify the permeation of promising research to production.

Development frameworks revolve around the concept of a flexible WSN plat-
form, as shown in Fig. 9.1, which is the convergence point of multiple WSN
hardware and software components and technologies. Effective development tools
should start from top-level application-specific requirement descriptions provided
by the developer and automatically find suitable implementations and configurations
that support them, based on existing components. At the same time it should provide
the developer metrics and tools useful to evaluate solution quality.

This process aims to avoid diverting significant developer effort towards imple-
mentation details. This should speed up application development and make the flow
more accessible to application domain experts.

At the same time, the flow should simplify the integration and coexistence
of tools and technologies from different vendors and projects. Most existing
WSN solutions efficiently address specific vertical application domains for various
reasons, and not the least because building and maintaining a complete and flexible
platform often requires a broad range of competencies and can be very costly. This
development flow aims to reduce the effort and cost by:

Being accessible to application domain experts. This helps spreading the use of
WSN-based solutions to more application domains, while often reducing devel-
opment cost and time.
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Focusing design effort mostly on application logic. WSN technology is based on
several engineering disciplines. WSN development tools and flows should
provide a good separation between the underlying technological details and the
application developer.

Optimizing implementations for cost, power, and reliability. This is especially impo-
rtant for the quality of service of the WSN application over its lifetime. Moreover,
they implicitly reduce the recurrent cost for both node production and their field
maintenance.

Integrating existing or new tools and technologies. Tool development can be often
effort-intensive, hence reusing existing tools, either proprietary or public domain
ones, is economical. Besides, the tools may be customized, e.g., for specific
hardware or for specific application domains. Effort and cost issues are amplified
by the fast evolution of WSN technology.

Maintainability of the complete development flow. This is tightly related to tool
integration above. The tools should be easy to integrate in the development
platform, e.g., in terms of semantics, interfaces, and data formats, in order to
simplify the upgrade or replacement of existing tools or the addition of new ones.

Simplifying the comparison of design results. The platform should simplify playing
what if scenarios, in which elements change, e.g., a tool in the development
flow, the target node, or the embedded operating system (OS). Since the rest
of the platform remains the same, it simplifies the observation of the effects of
the change. This should allow a closer reproduction of research results and the
comparison between different research tools or approaches. Also, this should
allow to select the most effective solution for a given WSN application.

Facilitating research permeation in commercial applications. This is tightly
related with the above point. The benefits of new research results can be
compared with the existing flows by playing adequate what if scenarios.
Moreover, research tools are already integrated in the platform simplifying
their porting to existing production flows based on the platform.

Building business models. Last but not least, the purpose of the platform is to
be useful for real WSN applications by providing value through vendor- or
application-specific customizations of the general purpose flow. Thus, on the one
hand, the platform should allow the integration of proprietary tools or protected
intellectual property (IP) blocks, e.g., simulation models or functional code. On
the other hand, the platform should simplify the contribution of code (custom or
general purpose), flows, or other developments made by commercial users.

In Sect. 9.2 we will briefly review some existing WSN development tools and
flows in terms of these objectives. In Sect. 9.3 we will review some options for
WSN hardware for nodes and server-side software. Then, in Sect. 9.4 we will look
into a possible development framework that can fulfill most of the above criteria.
Section 9.6 will conclude the work.
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9.2 WSN Programming Models and Tools

Early WSN implementations were manually coded close to hardware or the
embedded operating system [3]. Typically this brings smaller code size and higher
execution efficiency at the cost of maintenance, portability and design reuse. It
also requires a good understanding of various technologies underlying WSN nodes,
which is difficult to find among software programmers and seldom found among
application domain experts.

Over time, as WSN cost, time to market and operation reliability increase in
importance, higher programming abstractions and design automation techniques
get increasing attention. The literature is now rich of WSN design aids, both as
languages and their compilers as well as support software, such as middleware and
real-time embedded OSs.

In the following we are reviewing some relevant categories of design aids, with
an eye on their performance along the lines listed towards the end of Sect. 9.1.

9.2.1 Low-Level Programming

This is a node-centric programming model that ranges from close to hardware and
up to some level of abstraction usually provided by an embedded OS or by a virtual
machine (VM).

9.2.1.1 Operating System-Level Programming

Among the OSs, we can list TinyOS [4], programmable in nesC [5] which offers a
good modularization with well-defined interfaces and functional encapsulation that
abstracts implementation details. However, low abstraction level and an event-based
programming style without support for blocking operations increase programming
complexity.

To reduce the complexity, TinyGALS [6] provides FIFOs for asynchronous
message passing on top of the synchronous event-driven model and synchronous
method calls. SOS [7] and CoMOS [8] implement priority queues (the former) and
preemptive message handling (the latter).

SNACK [9] allows to compose applications by combining services provided by
reusable library components. T2 [10] simplifies project reuse and porting on new
hardware platforms by combining a horizontal decomposition (to support multiple
devices) and vertical decomposition that allows to build the application using
hardware-independent functional blocks. OSM [11] extends the TinyOS event-
driven model with states and transitions whose actions depend on both events and
program state.
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Several OSs propose different forms of thread abstraction to simplify program-
ming of event-driven systems, although they are difficult to implement with the
limited hardware resources of the target nodes. Fiber [12] provides one blocking
context on top of TinyOS. Mantis OS [13] provides preemptive, time-sliced
multithreading. TinyThreads [14] provides a stack estimation tool to reduce memory
consumption for thread stacks. Protothreads [15] provides a stack-less co-operative
multithreading library for Contiki OS [16], another embedded event-based OS.
Y-Threads [17] implements efficient preemptive multithreading using a shared stack
for the computational parts of the application, while for the control parts are
allocated small separate stacks.

9.2.1.2 Virtual Machine or Middleware

These programming models have several important features. One of them is efficient
dynamic reprogrammability of small embedded systems. Maté [18] and ASVM [19]
are small application-specific VMs built on top of TinyOS. Melete [20] extends
Maté to multiple concurrent applications. VMStar [21] allows dynamic update of its
own code or the application. Impala [22] is an example of middleware with efficient
over-the-air reprogramming and repairing capabilities.

VMs also provide platform-independent execution models for WSN applications.
Token machine language [23] models the network as a distributed token machine in
which the nodes are exchanging tokens which trigger matching handlers. This model
can be used to implement higher-level semantics that distance themselves from the
underlying nesC implementation. t-kernel [24] modifies (“naturalize”) application
code at load time to implement OS protection and virtual memory without hardware
support.

9.2.2 High-Level Programming

High-level programming models typically allow the developers to focus more on
application logic, but often at the expense of node performance. For instance, group-
or network-level programming can facilitate the collaboration between sensors,
which is necessary for a significant part of WSN applications and often challenging
to program. However, the designer has few means to check or improve operation
efficiency of the nodes within the abstracted units.

In the following we will review a few of the most prominent high-level
programming methods and tools.
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9.2.2.1 Model-Based Development

These methodologies attempt to offer the developers an application entry interface
that can be both more productive and also better suited for application domain
experts, while preserving lower-level control over design results, which is necessary
to control and optimize WSN performance.

An interesting approach uses several domain-specific modeling languages
(DSMLs), one for each of the network-, group- and node-level decomposition of a
WSN application [25]. The DSML for data-centric network modeling includes three
node types: sources, aggregation/fuse, and sink. The DSML for group modeling
allows geographical node grouping, definition of network topology (e.g., tree or
mesh), and of the amount of in-network processing (aggregation and fusion).
The DSML for node modeling offers several types of tasks: for sensor sampling,
data aggregation/fusion, networking, and sink. However, application specification
appears to be limited to parametrization of the models. Hence, the approach can be
considered a modular way to customize a parameterized application.

REMORA uses an XML-based modeling abstraction [26] for more advanced
component-based designs than TinyOS static composition. Models include services
(offered and required) and the triggering events, persistent state, and implementation
in a C-like language. The event model extends the TinyOS one with attributes,
differentiation between application and OS events, configuration and point-to-point,
or multicast distribution. The framework has a low overhead over Contiki, but offers
much improved encapsulation than simple multithreading.

A framework supporting hardware–software co-design is shown in [27]. It is
based on tools widely used in industry like Simulink®1 and Stateflow®2 and well-
known open projects like OMNeT++/MiXiM [28], TinyOS [4], and Contiki [16].
Graphical high-level application entry is supported by the abstract concurrent
models provided by Simulink and Stateflow. Application specification can be
simulated at node level and can be automatically translated by the framework in
network simulation models, including hardware in the loop for better accuracy, as
well as implementation models that can run on top of popular embedded OSs.

9.2.2.2 Group-Level Programming

This programming model provides constructs to handle multiple nodes collectively
as a group abstracting its internal operation into a set of external functions. Groups
can be logical or neighborhood-based.

1Mathworks Simulink http://www.mathworks.com/help/simulink/index.html.
2Mathworks Stateflow—Finite State Machine Concepts http://www.mathworks.com/help/toolbox/
stateflow/index.html.

http://www.mathworks.com/help/simulink/index.html
http://www.mathworks.com/help/toolbox/stateflow/index.html
http://www.mathworks.com/help/toolbox/stateflow/index.html
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Neighborhood-Based Groups

Based on physically neighboring nodes, this type of group is well suited for local
collaboration (recurrent in some classes of applications) and the broadcasting nature
of WSN communication, improving in-group communication. Abstract Regions
[29] and Hood [30] provide programming primitives based on node neighborhood
which often fits the application needs to process local data close to its origin. Hood
implements only the one-hop neighbor concept, while Abstract Regions implements
both topological and geographical neighborhood concepts.

Logical Groups

These groups can be defined based on logical properties, including static properties
like node types, or dynamic, such as sensor inputs, which can lead to volatile
membership.

EnviroTrack [31] assigns addresses to environmental events and the sensors
that received the event are dynamically grouped together using a sophisticated
distributed group management protocol.

SPIDEY language [32] represents logical nodes based on the exported static or
dynamic attributes of the physical nodes, and provides communication interfaces
with the logical neighborhood as well as efficient routing.

State-Centric Groups

These are mostly intended for applications that require collaborative signal and
information processing [33]. Around the notion of collaboration group, program-
mers can specify its scope, define its members, its structure, and the member roles
within the group. Pattern-based groups, such as neighborhood- or logical-based, can
also be defined. Its flexible implementation allows it to be used as building block
for higher-level abstractions.

9.2.2.3 Network-Level Programming (Macroprogramming)

WSN macroprogramming treats the whole network as a single abstract machine
which can be programmed without concerns about its low-level inter-node commu-
nication.

Database

Database is an intuitive abstraction derived from the main function of the nodes,
which is to collect sensing data. Early implementations like Cougar [34] and
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TInyDB [35] provide support for declarative SQL-like queries. Both attempt energy
optimizations. Cougar processes selection operations on sensor nodes to reduce data
transfers. TInyDB optimizes the routing tree for query dissemination and result
collection by focusing on where, when, and how often to sample and provide data.

SINA [36] allows to embed sensor querying and tasking language scripts with
the SQL queries to perform more complex collaborative tasks than those allowed by
SQL semantics.

MiLAN [37] and DSWare [38] provide a quality of service (QoS) extension to
queries which can be defined based on the level of certainty of an attribute among
those that can be measured by the node with a given accuracy. MiLAN converts
a query in an energy-optimized execution plan that includes the source nodes and
routing tree. DSWare expresses and evaluates the QoS as a compound event made
of atomic events, whose presence/absence define the confidence level.

Although database-like interfaces are simple and easy to use, they are not well
suited for applications that require continuous sensing or with significant fine-
grained control flows.

Macroprogramming

WSN macroprogramming provides more flexibility than database models.

Specification of Global Behavior

Regiment [39] implements a Haskell-like functional language. By preventing the
developer to manipulate directly program states it allows the compiler to extract
more parallelism.

Kairos [40] is a language-independent programming abstraction that can be
implemented as an extension of existing program languages. As such it defines a
reduced set of constructs (node abstractions, one-hop neighbors, and remote data
access, which includes a weak data consistency model to reduce communication
overhead).

Resource Naming

Spatial programming [41] can reference network resources by physical location and
other properties and access them using smart messages. These contain the code,
data, and execution state needed to complete the computation once they reach the
nodes of interest.

Using SpatialViews [42] the developer can dynamically define a spatial view as
a group of nodes that have properties of interest, such as services and location.

Declarative resource naming [43] allows both imperative and declarative
resource grouping using Boolean expressions. Resource binding can be static
or dynamic and the access to resources can be sequential or parallel.
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Other Metaprogramming Abstractions

Semantic streams [44] supports declarative queries using semantics associated
with sensor data by inference units. Both sensors and inference units are built
automatically from a Prolog-based specification.

Software sensor [45] provides a service-oriented architecture in which each
hardware sensor is abstracted as a software sensor. The latter can be composed in
multiple ways using the SensorJini Java-based middleware in order to define large-
scale collaboration within the network.

9.2.3 Evaluation of Existing WSN Programming Models
and Tools

We will evaluate how the WSN development tools, tool categories, and method-
ologies reviewed in Sect. 9.2 can be used to reduce overall WSN application cost.
We will also evaluate their potential to work in synergy with other tools in a
comprehensive development platform that is suitable to cover the widening diversity
of WSN applications and keep pace with the rapid technological evolution in the
field.

9.2.3.1 Low-Level Programming Evaluation

Low-level programming, be it OS- or VM-based, typically allows a good con-
trol over the node and good design optimization, but it often requires in-depth
engineering and programming knowledge. This is rarely found among application
domain experts and may also divert important design effort from application logic
implementation.

Embedded OSs and VMs have typically a layered structure which encapsulates
well the hardware-dependent parts in order to facilitate their porting to other
hardware nodes, which is important for keeping the pace with technology evolution.
They can be maintained with reasonable effort and can be relatively easy integrated
in higher-level design flows.

Moreover, embedded OSs usually facilitate the development of library elements
that implement specific functions, which can be instantiated in new designs to
facilitate design reuse.

The common base offered by the underlying OS or VM can be used as reference
to compare the effectiveness of novel solutions. New research results can be
included in library elements as well as the OS or VM core design, effectively
simplifying their adoption in commercial designs.

Considering the higher complexity of application programming at low levels,
commercial services can be offered for, e.g., application development or porting,
OS/VM (or library elements) porting to new hardware, and for training and support.
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9.2.3.2 High-Level Programming Evaluation

Abstractions at group- or network-level are meant to hide the inner workings of the
abstracted entity, including its internal communications.

On the one hand, this is positive because it allows the developer to focus on
application logic. On the other hand, the abstractions are often implemented using
dedicated or less common (e.g., Haskell-like) programming languages which may
be difficult to use by application domain experts.

Also, given that significant parts of the application are handled automatically by
the system in order to satisfy higher-level specifications, the developer may not have
the means to understand, evaluate, or improve the efficiency with which these are
implemented by the system.

The tools implementing such abstract flows are typically developed as a close
ecosystem. They are unlikely to share models or IP blocks among them, although
they may use common lower-level abstractions (e.g., Regiment [39] uses TinyOS)
or may be flexible (and simple enough) to allow its implementation as an extension
of other programming languages like Kairos. As such, their development and
maintenance can be rather costly. Moreover, the application projects are difficult
to port between such frameworks, which limits also the permeation of research to
commercial applications.

For these flows, in terms of business we can assume training, support, and design
services.

A distinctive note can be made for model-based design (MBD) frameworks
(see Sect. 9.2.2.1). The developer can focus most of the effort on application
development, for which the tools allow various degrees of liberty. Application entry
interface can be suitable for application domain experts, as demonstrated by the
wide adoption of Stateflow® interface by experts in various industrial domains.
Automated code generation and good integration of the flow with simulation tools
(including hardware-in-the-loop) and target OSs simplify design space exploration
for optimizations and also allow manual optimization of the generated projects.
Integration with existing projects reduces the cost of framework maintenance.
Moreover, they provide an observable development environment where the effects
of changes to framework features (e.g., code generation) or to its components (e.g.,
simulators) can be easily compared for existing and new designs. Research advances
can be evaluated the same way before being included in commercial design flows.
Business models that use these flows can enrich their capabilities using custom IP
blocks.

9.3 WSN Hardware and Server-Side Support

In the following we will comparatively review some options for WSN node
hardware and for server-side software.
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9.3.1 WSN Hardware

Its main components are the microcontroller and RF device, either stand-alone or
combined in a single integrated circuit, RF antenna, energy sources, transducers,
printed circuit board (PCB), and package.

9.3.1.1 Microcontroller

There are many families of low and very low power microcontrollers, each covering
a broad range of capabilities such as storage size for programs (FLASH), data (RAM
and EEPROM), and peripherals. Given the diverse and specialized offering, the
design flow should assist the developer in selecting the optimal microcontroller
for the application, since it can influence significantly node cost and energy
consumption.

Microcontroller component package type and size has both a direct impact on
the component cost and an indirect one on PCB cost through its size and number of
pins. PCB size can further influence the size and cost of the sensor node package.

Additionally, most microcontrollers can operate using an internal clock source.
This has no additional component cost or impact on PCB size or complexity, but its
frequency is not very accurate nor stable in time. However, if the WSN application
(or the communication protocol) does not require accurate timing, the internal
oscillator is worth considering.

Thus, microcontroller selection should mainly consider:

• on-board support for hardware interface with the peripherals (e.g., transducer, RF
device), application firmware, and communication protocol;

• the trade-off between package type and its associated direct and indirect costs at
sensor node level;

• adequate support for selected RF communication protocol. Its effects at system
level should be carefully weighed. For instance, accurate timers and receive capa-
bilities significantly increase sensor node cost, microcontroller requirements, and
energy consumption.

9.3.1.2 RF Device

As for the microcontroller, the cost of the RF device significantly depends on its
capabilities. For example, a transceiver will typically cost more and require more
external components than a transmit-only radio.

Modern RF devices provide application data interfaces at different levels of
abstraction. These can range from digital (or analog) signal levels to advanced
data packet management. Although the latter may increase RF device cost, it also
sensibly reduce microcontroller computation and memory requirements, working
with a cheaper and smaller device, and also reduce energy consumption and cost.
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Most RF devices use an external crystal quartz for timing and channel frequency
and may optionally output a clock for the microcontroller. However, this implies
that the system is active only when the RF device is active, which may increase
energy consumption.

Commonly used multihop WSN communication protocols require that all nodes
have receive capabilities, which increase the cost of the RF device. Moreover,
most of them actively synchronize their clocks at least with the neighboring nodes
to reduce the energy spent for idle channel listening, which requires an accurate
time reference constantly running on-board and more microcontroller resources,
all translating to higher device cost and energy consumption. However, if the
application does not require bidirectional communication, an asynchronous medium
access control in a star topology may sensibly reduce node cost and energy
consumption.

Several producers offer general purpose devices that include a microcontroller
and a radio in a single package. These can save PCB space and costs, but the
integrated microcontrollers may be oversized for some applications, especially
those using a smaller communication protocol stacks. The same may apply for the
integrated radio devices.

9.3.1.3 RF Antenna

Antenna influences node cost, size, deployment, and performance mainly through
its size, cost, and RF characteristics. Most antenna features are correlated with
operation frequency, range requirements, and RF properties of the environment.

For instance, star network topologies may require longer RF range to lower the
number of repeaters and gateways. In this case, lower RF frequencies (315/433 MHz
bands or below) can increase the communication range for a given RF link budget.

WSN application requirements may influence antenna characteristics such as
directionality, gain, size, resilience to neighboring conductive objects (tree trunks,
metal bodies). Antenna options can range from omnidirectional �=2 dipole, or
a �=4 whip (both costly to ruggedize), to helical antennas radiating in normal
mode (NMHA) with a good size-performance trade-off, to PCB trace antennas
(better for higher communication frequencies), and ceramic chip antennas with good
performance but higher cost.

PCB components may also influence antenna performance.

9.3.1.4 Energy Supply

Along with node energy consumption, energy supply is very important for the
overall reliability and exploitation cost of the network.

A first decision concerns the use of energy harvesting or non-regenerative (e.g.,
a primary battery).
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Environmental energy harvesting may suit applications with access to environ-
mental energy sources (e.g., RF, vibration, fluid flow, temperature gradients, and
light). Combined energy harvesting solutions can increase the availability [46],
although supply reliability is hard to estimate in the general case.

In all other cases, primary batteries should be considered such way to support
average energy requirements of the node for the expected lifetime. This cost can be
used as the upper bound for the evaluation of energy harvesting-based solutions.

Either way, low node energy consumption is very important for any type of
energy source.

9.3.1.5 Transducers

Transducers are used to sense the properties of interest in the environment surround-
ing the node. Its performance affects the node in several ways. First, the transducer
should have low energy requirements and/or allow (very) low duty cycle operation.
Its interface with the node should not increase exceedingly microcontroller require-
ments. Last but not least, the transducer should not require periodic maintenance,
which may significantly increase the operation cost of the network.

9.3.1.6 Package

Node package protects node components from direct exposure to environment and
defines the node external size, mechanical properties, and physical aspect. Its cost
may increase due to special production requirements and its dimensions. Thus,
special requests, such as transparent windows for light energy harvesting, should
be carefully considered.

It may also provide the means to mount the node in the field, thus the package
should be designed to simplify node deployment and maintenance to reduce the
overall cost per node.

9.3.1.7 Hardware Nodes

There are many hardware sensor nodes, developed for both research and commercial
purposes.3

Their characteristics are extremely diverse. For example, in terms of average
current consumption they range from a low end of 30 �A of Metronome Systems

3Currently there are over 150 node models listed on Wikipedia https://en.wikipedia.org/wiki/
List_of_wireless_sensor_nodes.

https://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes
https://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes
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NeoMote4 and 100 �A of Indrion Indriya_DP_01A115 [47] up to the high end
100 mA of Nokia Technology Platforms NWSP [48] (wearable) and Massachusetts
Institute of Technology ubER-Badge [49].

Considering the wide diversity of features and support, node hardware selection
can be daunting, especially for application domain experts. Development tools
should provide enough flexibility to map the application on different types of nodes
and provide the developer adequate guidance to select a suitable target node.

9.3.1.8 Server-Side Support

Servers offer several important functions in a WSN application, such as to receive,
store, and provide access to field data. They bridge the low power communication
segments, which have important latency-energy trade-offs, with the fast and ubiqui-
tous access to field data needed by humans or applications. Other functions include
in-field node configuration and query, as well as software updates.

Global sensor networks (GSN) [50] is a middleware that facilitates WSN
deployment, programming, and data processing. It supports integrated sensor data
processing towards a vision of a global “sensor Internet.” By abstracting the under-
lying technology, GSN simplifies, among others, platform additions, combination
of sensor data, sensor mobility support, and runtime dynamic system configuration
adaptation.

Since collaborative aspects can become dominant for IoT applications, they are
well supported by projects like Xively6 (formerly known as Cosm and Pachube)
and WikiSensing.7 These simplify online collaboration over data sets ranging from
energy and environmental data to transport services, to generate real-time graphs
and widgets for web sites, for historical data analysis, and generation of alarms.

9.4 Semi-Automated WSN HW/SW Application Synthesis

We will now discuss a semi-automated hardware–software application synthesis
flow to better understand its benefits in terms of the evaluation criteria presented
at the end of Sect. 9.1.

The flow can automatically select modules from a previously developed library
to perform design composition, both hardware and software, in order to significantly
increase the productivity of the developers through design reuse, and to allow fast
design space exploration for application implementation optimization.

4Metronome Systems NeoMote http://metronomesystems.com/.
5Indrion Indriya_DP_01A11 http://indrion.co.in/Indriya_DP_01A11.php.
6Xively project http://xively.com/.
7WikiSensing project http://wikisensing.org/.

http://metronomesystems.com/
http://indrion.co.in/Indriya_DP_01A11.php
http://xively.com/
http://wikisensing.org/
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Fig. 9.2 Main stages of the automated WSN application design flow at node level: input of
application behavioral description, automated synthesis of possible solutions (using top-level
behavioral description and library components), behavioral simulation, network simulation, node
programming code and configuration generation. Developer-assisted phases are tagged using a
human body

9.4.1 Semi-Automated Development Flow Overview

Figure 9.2 shows a typical WSN application development flow at node level.
The flow receives a high-level node-centric application specification and is well
integrated with external tools, each assisting the developer in specific tasks.

Application-specific behavioral input can range from manual source code input
to automated code generation from MBD abstractions (such as Stateflow® used in
[27] or similar state charts editors [51]) or from UML-based or ad-hoc high-level
modeling flows [52, 53]. Either way, the behavioral input is captured in a specific
view of the top-level component, which also includes the metadata needed by the
subsequent phase of the flow, namely the automated synthesis.

The top-level component and all library components have the same format,
which can include more than one view, e.g., behavioral source code or binary,
simulation models for various abstraction levels or simulation environments. All
views are handled as black boxes by the synthesis engine regardless their format, the
synthesis relying only on component metadata. These can be generated manually or
automatically by MBD flows [27].

The second phase of the flow shown in Fig. 9.2 is fully automated. A hardware–
software system synthesis engine takes the top-level component as input and
processes its metadata (such as requires, provides, and conflicts). These properties
are the starting point for the synthesis process which iteratively attempts to find all
subsets of its library of components that do not have any unsatisfied requirements
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left and, at the same time, satisfy all constraints of the top-level and other
instantiated components. These subsets represent possible solutions for application
requirements and can be further examined or modified by the developer.

For each solution, the synthesis tool can create simulation projects, as shown
in the next steps of the flow in Fig. 9.2. The simulations are set up to run on
external simulators (e.g., OMNeT++ [28]) and can be at various level of abstraction.
Basically this is achieved by extracting and configuring the suitable simulation
views of the components instantiated in solution into simulation projects.

Besides behavioral models, the components and constraints of the solution can
include a bill of materials (e.g., compatible nodes, RF and transducer characteristics,
and microcontroller requirements) or software dependencies on specific compilation
toolchains or underlying OS features.

Finally, the same mechanism is used to generate the projects that can be compiled
using the target tools to create the programs for all WSN nodes. These projects are
typically generated in the format expected by the target tools (most often a make-
based project).

The solutions generated by the synthesis tool can be used as they are, or the
developer can optimize them either by changing the specification and rerunning the
synthesis, or by manually editing the generated projects. Either way, the developer
can use simulations to validate and evaluate the solutions and their improvements.

As mentioned, the benefits of WSN application automated synthesis are com-
pounded by its integration with external tools, such as simulators and target
compilation chains, which can provide inputs or assist the developer in other phases
of the flow. For instance, Fig. 9.2 shows some typical interfaces with middleware
[54, 55], with WSN planning tools [56] or with deployment and maintenance
tools [57].

However, the wide variety of the existing tools and models makes it very difficult
to define an exhaustive set of external interfaces. Moreover, any rigidity of tool
interfaces or operation models is prone to reduce the value of the tool and hamper
its adoption in a context which is characterized by rapid evolution of technology and
models, and which does not seem to be slowed down by standardization efforts or
proprietary API proposals.

In this context, as we will show later on, an optimal approach for tool integration
in the existing and future development flows can be to base its core operation on
a model that is expressive enough to encode both high-level abstractions and low-
level details. Moreover, it is also important to provide well-defined interfaces and
semantics to simplify its maintenance, updates, integration with other tools, and
extensions to other application domains.

9.4.2 Automated Hardware–Software Synthesis Tool Overview

The tool covers the following main functions: application input (provide a suitable
interface and processing), automated hardware–software synthesis, and code, con-
figuration, and hardware specifications generation.
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Application domain experts can benefit most from an interactive user-friendly
interface for the description of the WSN application top-level behavior. State charts
are well established in this regard for their intuitive use, and they can provide suit-
able high-level models to facilitate the description of application domain behavior.
Alternatively, the synthesis tool can accept application descriptions generated by
other tools, such as middleware [58] or metaprogramming [59].

Automated synthesis of hardware–software systems that can support WSN appli-
cation requirements shields the developer from most time-consuming and error-
prone implementation details. At the same time, the synthesis increases the reuse of
library components such as software components (e.g., OS, functional blocks, soft-
ware configurations, and project build setup), hardware components (such as WSN
nodes, transducers, radio types or specific devices, and hardware configurations),
and specifications (e.g., target compilation toolchain, RF requirements).

Incomplete application specifications are also accepted, because the tool can
typically infer default parameters based on values provided by library components
and heuristics. This allows the developer to refine application specifications over
several design iterations using also the results of previous underspecified synthesis
runs. Also, the incomplete systems synthesized from incomplete application spec-
ifications still satisfy every requirement, and experienced developers can use these
incomplete projects as starting points for manual refinements, to save effort.

Code generation can produce simulation or target compilation projects. Network
simulations can be configured using the simulation models of the components
instantiated in solutions, their parameters, and the actual configurations. Realistic
communication channels defined by a planning tool [56] can be used, if available. In
a similar way, the tool uses the implementation code of the components instantiated
in solution to generate and configure the project that compiles the code for WSN
nodes programming.

Besides this highly automated process, the system synthesized tool allows
experienced developers to manually take over the development flow at any stage:
design entry, testing and debug, design synthesis, node application simulation,
network simulation, and target code generation. Basically, this is achieved by:

• making use of textual data formats that can be edited with general purpose or
specialized editors;

• documenting the data formats, their semantics, and processing during each phase
of the flow;

• allowing one to run manually the individual tools, even outside the integrated
flow, e.g., to explore options and operation modes that are not supported by the
integrated flow;

• including well-known tools in the flow with clean and well-documented inter-
faces to simplify their update or replacement for flow specialization.
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9.4.3 Automated Synthesis Tool Input Interface

During application specification phase, the developer (or an external tool) provides
architectural requirements and top-level behavior as a design component, which
becomes the main driver for the subsequent hardware–software system synthesis.

WSN application requirements can be expressed mainly in terms of application-
specific behavior and its interfaces, and metadata properties.

As argued above, abstract concurrent state charts are an intuitive and efficient
high-level means to simplify top-level application behavior. For design entry within
this flow, the state chart tool should also allow to specify the interfaces and metadata
for the behavioral part.

Yakindu State Chart Tools8 is a free source integrated modeling environment
based on Eclipse modeling framework (EMF) [60] for the specification and
development of reactive, event-driven systems based on the concept of state charts.
Its features provide significant support for design entry, especially useful for
application domain experts with limited programming experience, such as:

• state chart editing through an intuitive combination of graphical and textual
notation. While states, transitions, and state hierarchies are graphical elements,
all declarations and actions are specified using a textual notation;

• state chart validation that includes syntax and semantic checks of the full model.
Examples of built-in validation rules are the detection of unreachable states, dead
ends, and references to unknown events. These validation constraints are checked
live during editing;

• state chart simulation models that allow the check of dynamic semantics. Active
states are directly highlighted in the state chart editor and a dedicated simulation
perspective features access to execution controls, inspection, and setting of
variables, as well as raising of events;

• code generation from state charts to Java, C, and C++ languages. The code
generators follow a code-only approach. The code is stand-alone and does not
rely on any additional runtime libraries. The generated code provides well-
defined interfaces and can be easily integrated with other target code.

Yakindu was designed for embedded applications with a meta model based on
finite state machines (FSMs), either Mealy or Moore. System behavior is defined
by the active state, which is determined by FSM inputs and history. Yakindu meta
model is similar to UML state chart meta model except for the following differences
which are of particular importance for the flow:

• state charts are self-contained with interfaces defined by events and variables;
• core execution semantics are cycle-driven instead of event-driven, which allows

to process concurrent events and to define event-driven behavior on top;

8Yakindu SCT project http://www.statecharts.org/.

http://www.statecharts.org/
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Fig. 9.3 State chart-based interface for WSN application specification entry and top-level simula-
tion using a customized Yakindu SCT. The right pane can display simulation data or a tool pane
for state chart editing. The interface of the state chart can be interactively defined on the left pane.
The active state during simulations is highlighted on the state chart in the central pane

• time is an abstract concept for the state charts;
• time control is delegated to environment.

The model interpreter and the code generators adhere to core semantics.
Considering the above, Yakindu can be used and extended in order to provide all

functions needed for design entry for the flow. Figure 9.3 shows the main panes of
Yakindu interface. On the right side is a tool pane with elements that can be used to
edit the state chart in the central pane (such as transition, state, initial state, choice,
and synchronization) or simulation data during chart simulation (as shown in the
figure). In the left pane is shown the interface of the state chart. It allows to define
variables and events that can be used by chart states, and it was extended to accept
the metadata necessary for top-level component for the synthesis tool. The editable
state chart in the middle pane describes top-level WSN application behavior, which
can be interactively simulated or automatically converted into source code along
with the interface and the metadata defined in the left pane, such way to be accepted
by the synthesis engine.

To further assist application domain experts in using the interface, wherever is
required textual input (such as to fill the properties of the state chart components
or the interface), the developer is guided by a context-sensitive editor that lists the
legal entries for keywords, names, operators, etc. Also, developer input is checked
in real-time and errors are highlighted.

All these are captured in the top-level component of the design that is then
used to drive the system synthesis engine. Using library components, the engine
attempts to automatically compose a hardware and software system that supports
the application-specific behavior and provides all its requirements.

For instance, let us consider a WSN application that collects and sends every
5 min the environmental temperature during four intervals of 2 h spread evenly
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Fig. 9.4 Top-level
application specification
component and library
components share the same
structure: a variable set of
views (shown darker on the
bottom) that are handed as
black boxes by the system
synthesis process, and a set of
metadata that express the
requirements and the
capabilities of the component.
The components are encoded
in XML (Eclipse EMF XMI)

during the day. The functional description of this application consists of a periodic
check if the temperature collection is enabled, if it is enabled then checks if 5 min
have passed from previous reading, and if so then it acquires a new reading and
sends it to the communication channel. The whole application behavior can be
encoded in just a few condition checks and data transfers, plus some configuration
requirements to support them (such as timers, a temperature reading channel and
a communication channel). The rest of node application and communications are
not application-specific, hence the developer should not spend effort developing
or interfacing with them. In this flow (see Fig. 9.2), these tasks are automatically
handled by the synthesis engine, which attempts to build a system that satisfies all
specifications by reusing library components, as will be explained later.

The top-level component can include also several types of metadata properties.
For instance, if the 6LoWPAN protocol is a compatibility requirement of the WSN
application, a requirement for 6LoWPAN can be added to top-level component,
regardless if the top-level component functional code interfaces directly with the
field communication protocol. This way, the 6LoWPAN requirement directs the
application synthesis to instantiate the functional components from the library that
provide this communication protocol. However, the synthesis tool will instantiate
only those 6LoWPAN components that satisfy other system requirements that are
collected from both the top-level and other instantiated components.

9.4.4 Structure of Top-Level and Library Components

Library components are central to the operation of the system synthesis engine (see
Fig. 9.4). They are used for:

• definition by the developer of behavior and requirements of node-level WSN
application, modeled as a top-level component;

• definition of library blocks that can be instantiated by the synthesis tool to
compose a hardware–software system that satisfies all design specifications;

• interfaces with OS or middleware services, when needed by application behavior;
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• provide simulation models, at different levels of abstraction;
• provide target code that is used to build the projects to configure and compile the

code for target nodes;
• provide code generators that can be run by the synthesis tool to:

– either check if the component can be configured to satisfy the requirements
derived for the current solution during synthesis, so that it can be instantiated
in the solution;

– or build specialized code stubs, e.g., for API translation and component code
configuration that are based on the actual parameters of the solution in which
they are instantiated;

• provide specifications for the hardware components that are collected in a bill of
materials (BOM);

• provide non-functional requirements, such as for a specific compilation toolchain
or special RF requirements.

Library components are designed to be compatible with the concurrency models
provided by the OS or the middleware abstractions which they require at runtime.
The same stands for the support of inter-component communication infrastructure
that is provided by the OS or the middleware services. However, to achieve a
consistent system composition all communications need to go through component
interfaces in order to be visible to the synthesis engine, so that it can make the proper
decisions. In fact, engine selections are also based on require and provide properties,
in addition to other metadata.

9.4.5 System Synthesis Process

To exemplify the synthesis process, we show in Fig. 9.5 a simplified representation
of just a few of metadata properties both for library components (bottom) and for
top-level specification component (top-left).

At the begin of system synthesis process, the synthesis tool is driven by metadata
specifications of the top-level component of the design, then is also guided by library
components metadata. As system synthesis progresses and library components are
instantiated in the partial solution, instantiated components metadata drive tool
search alongside the still unsatisfied specifications of the top-level component.
During the synthesis process, the top-level component and its metadata are con-
sidered mandatory, while library components can be instantiated and removed from
solution as necessary to satisfy design requirements.

For example, with the top-level specification and library components shown in
Fig. 9.5, the system synthesis engine is able to find several solutions. It starts by
loading the top-level component from design entry and the 13 components from the
library. Then it explores the possible combinations and reports the following system
compositions, each satisfying the specifications and requirements of all instantiated
library components:
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Fig. 9.5 Simplified example of metadata for design specification component and some library
components

1. solution using components 1, 2, 3, 4, 8;
2. solution using components 1, 2, 3, 5, 8, 9;
3. solution using components 1, 2, 3, 5, 8, 10, 13.

9.4.6 Synthesis Use for Legacy Designs

In the following we will briefly present the use of the synthesis tool for a
representative legacy WSN application of practical interest, a self-powered WSN
gateway designed for long-term event-based environmental monitoring. Source
code is rather complex and optimized. It can handle in real-time messages and state
for up to 1000 sensor nodes with an average current consumption of about 1.6 mA.
It can also bidirectionally communicate with the application server over the Internet
using TCP/IP sockets through an on-board GPRS modem, and receive remote
updates. Regardless, gateway hardware requirements are very low, comparable to
those of a typical WSN sensor node.
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To achieve this performance, it was originally programmed fully by handwritten
code in C language, without an embedded OS or external libraries (except from
some low-level standard C libraries).

To convert this legacy project for use with the system synthesis tool, we basically
follow these steps:

1. split the project into functional blocks, each suitable for packing as a library
component for the synthesis tool;

2. create a synthesis project by defining its specification top-level component;
3. run the synthesis for the project specification component to perform automatic

system synthesis;
4. evaluate the solutions found by system synthesis.

It is worth noting that, once created, the library components are reused automatically
by the tool whenever they satisfy the requirements of a synthesis project.

The quality of the synthesis process largely depends on the quality of the library
components at its disposal. Hence, particular attention should be given to component
creation from existing hardware or software IP blocks. One obvious (and easy to
automate) operation is to pack the IP code in an appropriate component model (see
Fig. 9.4). But it is important to properly describe its functional elements, such as
interfaces and configuration capabilities, and even more important are the semantics
associated with component behavior and data exchanges.

Gateway application software is made of 49 modules, each implementing well-
defined functions. These can be generic functions, like task scheduler, oscillator
calibration or message queue (which are used by most applications), or specialized
functions, such as drivers for specific on-board sensors (which are used only by
specific applications).

Besides functional blocks for main gateway behavior, the code includes several
modules for safety and error recovery, and drivers and processing modules for
sensors and auxiliary devices that can be optionally mounted on node, such as:

adc Drivers for the ADC peripherals.
The module captures the ADC interrupt and calls the conversion data processing
function.

anemometer Weather anemometer sensor handling functions.
Driver and controller for the anemometer transducer.

battery Utilities for battery reading processing.
The module provides the battery-specific voltage-to-capacity conversion tables
and the functions to perform the conversion.

cc Field and mesh radio drivers.
The module handles everything related to the field and mesh radio on board the
gateway.

crc CRC utilities.
Processing utilities (CRC calculation).

gw Node status.
Controls the state and configuration of the node.



9 Wireless Sensor Networks for the Internet of Things: Barriers and Synergies 179

hal Hardware high-level interface.
It processes asynchronous events from the network and on-board switches.

humidity Weather humidity sensor handling functions.
Driver and controller for the humidity transducer.

modem GPRS modem driver.
Driver for the GPRS modem.

queue Message queue.
Storage and processing of the messages queued to be delivered to the server.

sched Task scheduler.
Scheduler.

sensor Sensor state and data processing.
Maintains the state of the sensors in range based on the contents of their messages
(or lack thereof).

timer Timer handler.
Provides several timers for use within the node.

usart USART drivers.
Drivers for the node USART ports.

version Firmware version utilities.
It provides the version of node software.

Figure 9.6 shows the metadata of the library component for a very simple
gateway module, version. The module stores the version of gateway code and
provides methods for its access.

At the top level we can see the main categories properties, views, resources, and
interfaces. For this simple component, we have just one property that holds the
name of the module. Behavioral views include two files with the source code of the
module. Resources include one non-functional requirement that tracks component
dependency on a toolchain that supports the C language extensions it uses, and
a symbolic provided resource which can be used, for instance, to specifically
require this component in design specifications or through the requirements of other
components. In terms of interfaces, the component provides a behavioral function
which retrieves and returns the code version. Additionally, for most metadata
properties one can enter a description that can help the developer understand
component semantics when it is displayed in a component or solution editor.

Figure 9.7 shows the synthesis result of a minimal gateway system, which
requires only the core functions. Moreover, the synthesis tool executed the com-
ponent configuration helpers to set up their instances in solution with the actual
parameters found by the solver (e.g., the scheduler is configured to run only the
actual tasks).

Besides the software solution, the synthesis tool collects other requirements of
the instantiated components in a list that includes, e.g., hardware node type, radio
specifications, and target compilation toolchain.

To find a suitable system composition, the solver reached a recursion depth of
888, matched or wired 230 abstract, 472 functional, and two data requirements in
less than 0.8 s on a 1.8 GHz Intel® Core™ i7-2677M CPU.
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Fig. 9.6 Example of a simple library component that includes properties and a code view

9.5 Synergies for WSN Development Tools and Platforms

WSN platform development and update is a complex, interdisciplinary, and evolving
task. As such, it benefits from allowing all interested parties bring their contribution
to its development and extensive use.

WSNs are at the center of a constantly increasing research interest, focused on
various functional and technological issues. Research advances the state of the art
and most promising results can be made available to many WSN industrial actors
through WSN platforms. Reciprocally, the research community would benefit from
a common, open, and free WSN platform available for experimentation.
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Fig. 9.7 Result of system
synthesis that requires only
the main gateway component.
It includes 36 out of 49
modules (emphasized),
correctly leaving out, e.g.,
drivers for optional sensors,
test suites, and interfaces
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Fig. 9.8 Ecosystem based on the open WSN platform (for academic research, hobbyists)
and its bidirectional synergy with industrialized platform(s) for commercial WSN application
development

The same platform can be used also by the wider public, as shown by the
growing interest recorded for DIY applications, e.g., in home automation and city
environmental monitoring. In exchange, the platform would gain from extensive
testing, consolidation, porting to popular hardware, improved development tools,
and extensions for innovative applications.

Figure 9.8 suggests a possible ecosystem that includes non-profit and industrial
interested parties, which can help both WSN research and spreading the use of WSN
technologies to solve real life problems.

The ecosystem revolves around a free and open WSN platform. The platform
can include open development tools, like those discussed in Sects. 9.2 and 9.4, server
software and open node hardware, either as nodes or node components, as discussed
in Sect. 9.3.

Being open, the platform facilitates contributions from several sources, such as
academic research, free software community interested in WSN/IoT projects, as
well as industrial partners. The latter may become interested because of the business
opportunities that can be opened by a platform that helps reducing the effort, cost,
and risk of WSN-based solutions.
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For this purpose, Fig. 9.8 suggests a productized version of the open platform,
which adds the necessary level of reliability, testing, and support for the develop-
ment of commercial applications. While the open WSN platform reaches its purpose
in a continuous state of flux, the industrial product requires stability, ease of use,
proprietary IP blocks support, qualified training, and support services.

However, as we argued, developing and maintaining a comprehensive platform
is effort-intensive and requires a broad range of engineering skills that are hard to
bring together by single entities. But these can be naturally attracted by the open
platform, which can serve as foundation to reduce development and maintenance
effort for the commercial version(s).

Additionally, the two versions of the platform facilitate the exchanges between
academia and industry. Interesting research results can be ported easier to derived
commercial platform(s). Conversely is facilitated the contribution of closed source
IPs or improvements to platform infrastructure, library, or tools from commercial
platforms.

Last but not least, a reference platform simplifies the reproduction of research
results as well as collaborative developments.

9.6 Conclusion

Although WSNs are object of extensive scientific and technological advances and
can effectively achieve distributed data collection for IoT applications, their wide
scale use is still limited by a perceived low reliability, limited autonomy, high cost,
and reduced accessibility to application domain experts.

Commercial solutions are often effective in addressing vertical application
domains, but they may lead to technology lock-ins that limit horizontal compos-
ability, and component or design reuse.

We consider WSN platform an essential enabler for effective application design:
fast development with low effort and cost, reliable designs based on extensive reuse,
flow accessible to application domain experts, and offering maintainable extensive
technology coverage.

After examining how existing WSN development tools and flows satisfy
these objectives, we propose a node-level hardware–software development flow.
It revolves on automated system synthesis starting from a high-level application
specification (both behavior and non-functional requirements) and reuses
extensively library components.

We argue that this system can foster synergies between academic research, IoT
and WSN developer communities, and system integrators developing commercial
WSN application, with the distinct possibility of mutual benefit in an ecosystem that
merges open and closed source IPs. We consider synergy important, since effective
and reliable WSN development requires a wide range of engineering expertise that
are difficult to be covered viably by individual players.
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