
Chapter 4
Internet of Things Simulation Using OMNeTCC
and Hardware in the Loop

Philipp Wehner and Diana Göhringer

4.1 Introduction

While the internet was primarily used by human beings a couple of years ago,
a trend shows up, where “intelligent things” use the network infrastructure to
communicate with each other and to exchange data. The aim is to replace the
personal computer, as known in its common form, by something that supports
humans by their daily activities and procedures, without getting perceived directly
[1]. Problematic in this context are the different demands of individual network
nodes regarding the network infrastructure. Efficient communication is affected
by different protocols that are used [2]. To face this challenge, standardization
can help to create preferably huge subnetworks that use a consistent procedure to
communicate. But this method is only meaningful as long as it does not produce
high costs for individual network participants and complexity of the standard
is in a balanced relation to the obtainable benefit. This is not at least related
to the energy that is consumed for the standard-compliant communication. The
connection of basic sensors, e.g., window or door contact switches in the smart
home, would be reduced to absurdity, when a high-cost communication medium,
as, for example, Ethernet is used. High acquisition and operating cost would be the
result. Hence, utilizing a common interface for communication is meaningful only
when requirements of the individual network participants are compatible with the
targeted standard. At this, it should get clear that value has to be attached to the
interconnection of subnetworks via gateways. To enable the communication across
the subnetworks, gateways must be deployed where standardization is not a means
to an end. As the complexity of this consideration, especially for huge networks, is
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not negligible, new technologies have to be developed that allow the exploration of
this issue. Particularly to avoid problematic cases which are difficult to investigate
in a real world environment, simulation techniques need to be developed that allow
a safe but accurate observation.

Subject of this paper is the introduction of a concept that starts by developing
a basic gateway. Over the course of time, it can be transferred to a simulator for
the Internet of Things (IoT). To achieve this, the network simulator OMNeTCC is
introduced that can be utilized for the research on the communication infrastructure.
But the target of the paper is not only the simulation of Ethernet networks; it rather
introduces a technique to simulate different communication standards in the IoT.
It further should be made clear that the presented concept is not limited to an
enclosed simulation. If real hardware components, e.g., sensors and actuators are
available, they can be integrated in the simulation environment. This Hardware in
the Loop (HiL) can essentially increase quality and significance of the results, as the
output is not based on probably inaccurate models of the periphery. Furthermore,
HiL enables the analysis of components that are not available at an early stage
of the development cycle. By using the proposed simulation environment, virtual
devices can exist among their physical counterparts. A framework that allows
the easy extensibility of IoT networks is of high importance and HiL can enable
a rapid prototyping. But there are drawbacks. Especially in large networks, the
synchronization between nodes is an important aspect. The presented work enables
further analysis on synchronization techniques between the physical devices and
the HiL environment. Metrics regarding power consumption [3] and performance
[4] can also be considered and analyzed, allowing easy measurements in the entire
environment.

The paper is structured in the following manner: Sect. 4.2 introduces the network
simulator OMNeTCC. Section 4.3 gives an overview of related work. In example
of the EU project “RADIO,” introduced in Sect. 4.4, the requirements of mobile
robot platforms to the communication infrastructure are presented and it is shown,
how to deal with these challenges. The concept of the IoT simulation can be found
in Sect. 4.5. It starts with an introduction to the idea, including the consideration of
HiL and is transferred to a case study, presented in Sect. 4.6. The paper concludes
with Sect. 4.7.

4.2 OMNeTCC

OMNeTCC allows the discrete event simulation of computer networks and other
distributed systems [5]. With the target to model large networks, the CCC based
project tries to fill the gap between research-oriented simulation software and
expensive commercial alternatives, such as OPNET, which is now part of Riverbed
Technology [6]. OMNeTCC allows the hierarchical organization of simulation
models. The number of layers is hereby not limited. This modular structure supports
clarity and facilitates the work with the simulation system. Processes within the
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virtual network can be visualized via a graphical user interface. This includes the
illustration of network graphics, data flow charts, and the possibility of observing
objects and variables during simulation. In OMNeTCC, the structure of the model
is defined using network description (NED) files. Here, parameters are defined for
the individual modules and also their connection to other modules and submodules
is specified. To efficiently manage large networks, definitions can be split into
separate NED files. It is also possible to define parameters for the respective
topologies. In this point, OMNeTCC is distinguished from other graphical editors,
as it is not limited to fixed topologies. The topology is rather modifiable even during
runtime. The user optionally can edit the NED files either via a graphical user
interface or based on text files. OMNeTCC includes a library that can be used for
the CCC based programming of the modules. It has to be differentiated between
two possible implementations: On the one hand, co-routine based programming
generates a thread for each module where the program code is executed. The
respective thread gets the control from the simulation kernel, when a message
arrives. In this case, a thread usually never returns; an infinite loop within the
module continuously handles incoming and outgoing messages. On the other side,
event-processing calls the module-function with the message as a parameter. Here,
the function immediately returns after processing. Event-processing is feasible
especially for extensive simulations, as not every module needs to have its own
CPU stack and memory requirements are reduced. In the context of this paper,
OMNeTCC is used, as it has the following benefits compared to the related work:

• OMNeTCC is extensible. CCC program code can be used to describe func-
tionality of the respective modules. Furthermore it is possible to integrate
OMNeTCC in larger applications by replacing its user interfaces.

• OMNeTCC already contains protocol models like TCP/IP, ATM, and Ethernet.
• The graphical user interface Tkenv supports modelling of complex networks.
• OMNeTCC was developed for the simulation of extensive networks.
• As OMNeTCC is open source, functionality of every part of the simulation can

be comprehended.

4.3 Related Work

The bidirectional communication within home automation networks results in high
costs, since each node needs to send and receive data. The benefit of this approach is
the higher reliability of the network, as each node can acknowledge packets. In [7],
the authors present a technique that is based on less-expensive, unidirectional nodes.
A sequence of packets is sent with a constant inter-packet time, guaranteeing that at
least one transmitted packet reaches its destination node. The approach is evaluated
using an OMNeTCC based simulation. It satisfactorily shows that OMNeTCC can
be used for home automation related networks.
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Not at least when considering healthcare under the IoT paradigm, the importance
of suitable simulation capabilities becomes clear. The authors of [8] present SimIoT,
a toolkit that can be used to enable experiments on the interactions within an
IoT scenario. As monitoring health is an important aspect in the RADIO project,
presented in Sect. 4.4, SimIoT is relevant in context of the OMNeTCC based
approach presented in this paper.

In context of wireless sensor networks, several approaches exist to simulate these
complex environments. OBIWAN [9] is one of those simulators, focusing on cross-
layer dependencies and the challenges of large networks that are not sufficiently
handled by many of the available simulation tools. The authors present a case study
with several thousand nodes, demonstrating the usage of their simulator in large
networks. OBIWAN is based on OMNeTCC.

There are ambitions to create standards for the interconnection of smart home
devices. When a single device is used to manage the communication within the
smart home, the whole network is vulnerable. The “Thread Group,” as an example,
tries to overcome this issue by creating a networking protocol that encourages the
development of the IoT [10]. Amongst others, the proposed standard is simple to
use, power efficient, and has no single point of failure.

In this context, the Mediola gateway must be mentioned [11]. Its great advantage
is the combination of different smart home products to flexibly automate the
living environment. The consumer can control the different technologies using a
smartphone app. However, the Mediola gateway exactly represents the single point
of failure that was mentioned above.

This paper by contrast presents a framework that also provides gateway function-
ality, but in a decentralized manner. The simulation allows the translation between
different communication technologies, but is not dependent on a single device.

A strategic research roadmap for the IoT is presented in [12]. The authors
mention the challenges of numerous heterogeneous components and emphasize the
need for innovative design frameworks, inspired by HiL. However, HiL is often used
in the context of automotive applications [13–15], but has only minor importance in
the IoT simulation.

To the best of the authors’ knowledge, there is no flexible simulation environment
for the IoT that combines decentralized gateway functionality with HiL, enabling
the design and analyses of large networks.

4.4 Robots in Assisted Living Environments

As demography changes and the population of elderly grow, new paradigms have to
be invented to face the challenges of the increasing life expectation. Dealing with
chronic diseases results in the need for long term care and innovative technologies to
overcome this issue. The classical institutional care hits the brick wall under these
challenges as several problems occur, not at least resulting in high costs. Modern
information and communication technology (ICT) offers new solution approaches.
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The project “RADIO,” funded by the European Union’s Horizon 2020 research and
innovation program, shows up a way to support elderly in their homely environment
[16]. RADIO, as short for “Robots in Assisted Living Environments: Unobtrusive,
efficient, reliable, and modular solutions for independent ageing” is based on
the four main dimensions user acceptance, integrated and power-aware data
collection—transmission—processing, user interfaces, and architecture. It is the
triggering event of the approach presented in this paper and targets the integration
of smart home technology and robotic in ways that the user perceives the technical
equipment as a natural component, as part of the daily life. Hence, a robot gradually
becomes as ordinary as, for example, a radio. To succeed in this challenge, novel
approaches to unobtrusiveness and acceptance need to be developed and transferred
to a system that satisfies the need for integrated smart home technology together
with assistant robot platforms. Instead of utilizing discrete sensing equipment,
RADIO rather uses a robot as a mobile sensor for health monitoring. This robot,
however, presents special challenges to the ICT as it is mobile.

In the context of this paper, the information technology needs to be capable of
handling difficulties regarding the wireless connection. Concepts must be developed
that deal with disturbances and disconnection, where data gets delivered delayed
and possibly from a completely different spatial location. For this purpose, it is
necessary, that suitable data buffers are available and that their integration in the
network can be analyzed. Hence, a framework for the simulation of IoT networks,
as conceptual introduced in this paper, is beneficial insofar, as complex processes
can be broken down. Concepts for problem solving can be developed and transferred
to the final application.

4.5 Concept

OMNeTCC enables the simulation of large networks and allows the integration of
HiL by design. The main challenge of connecting physical devices is its integration
to the scheduling mechanism of the simulation environment. OMNeTCC therefore
provides a real time scheduler that can be extended by the user. The socket
example that comes with the installation of OMNeTCC demonstrates how external
applications can get access to the simulation environment: An extension of the real
time scheduler opens a TCP/IP socket listening on port 4242. The user can connect
to this server with a web browser. The respective HTTP request is visualized in the
GUI and shows how data is transferred via the internet to the web server and then
sent back to the client. This example sufficiently demonstrates how the interaction
between HiL, in form of the client requesting a website, and the scheduler is
performed. It also shows that this integration uses a single entry point, in form of the
extended scheduler, to connect the two environments, the physical and the virtual
world. According to this, the question comes up on how multiple hardware devices
can be added to the simulation at different entry points. In case of IoT devices,
that could mean that different sensors and actuators need to connect to different
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nodes in OMNeTCC. The socket example does not provide information to face
this challenge, as it only shows how a single external device, the web client, can be
integrated to the simulation environment. To understand this issue it must become
clear that OMNeTCC gets informed about the modified scheduler by an entry in
the initialization file of the respective simulation. As this entry is a general item,
the drawback is that this information affects the entire simulation and hence it is
not possible to provide a second scheduler for a second HiL device this way. This
naturally makes sense as only one scheduler can handle the simulation process. It
is therefore required to develop a mechanism that allows the integration of multiple
external devices, on different network nodes, using only one extended version of the
scheduler. The approach presented in this paper is based on callback functions that
are consecutively invoked by the scheduler. Hence, each node, connecting physical
devices to the simulation environment, must provide a method that informs the
scheduler about relevant events that need to be included in the simulation flow. The
following subsections show how this mechanism is realized in detail.

4.5.1 Modified Scheduler

The modified scheduler, GatewayRTScheduler, presented in this paper,
is derived from the OMNeTCC cScheduler class. It provides a method
setInterface() that enables the user to add an interface to external hardware.
The virtual function getNextEvent() of cScheduler is replaced by an
implementation that consecutively calls these interface functions to check if an
event occurs. The function setInterface() therefore adds all HiL interfaces to
a vector, containing a reference to the calling module, a cMessage object used to
identify the respective event and the actual callback function.

4.5.2 HiL Interfaces

The interfaces to the external hardware devices are provided in the form
of a shared library. In OMNeTCC, a shared library is created by invoking
opp_makemake with a --make-so flag. It mainly consists of the two func-
tions: virtual void handleMessage(cMessage *msg) and static
cMessage *interfaceFunction(cModule *module, cMessage

*notificationMsg, simtime_t t, cSimulation *sim), whereas
msg is a pointer to the message that must be processed, module is a pointer to the
module that contains the callback function, t is the current simulation time, and
sim is a pointer to the simulation manager object. interfaceFunction() is
the callback function that is assigned to setInterface() of the gateway real
time scheduler class. Its task is to check whether an event of the respective HiL
device needs to get considered by the simulation. The task of handleMessage()
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can be described as follows: The function is called every time a message is present
at the respective module. This message can be (a) an external message coming from
a distant module, (b) the so-called self message that is sent and received within the
same module, or (c) the message that was handed over to the scheduler to inform
the appropriate module about HiL events. Hence, handleMessage() consists of
the following distinction of cases:

if (msg->isSelfMessage()) f
// handle self message

g else if (msg DD hilEvent) f
// handle HiL event

g else f
// handle message from distant module

g

4.5.3 Messages

To face the challenge of different communication standards within a large network,
messages of network attendees are translated to an intermediate representation (IR)
that is independent from the actual protocol it represents. As this IR should not
add an additional payload to the communication mechanism, it must be as lean
as possible. In the context of this paper, the IR consists of concatenated integer
representations of all relevant input data. Figure 4.1 visualizes this behavior.

The fictitious message coming from the smart home switch consists of a number,
identifying the device and its current state (on D 1/off D 0). This message could be
transferred to the IR using, for example, the following XML description:

IRSwitch

.xml

Wall Plug

.xml

0x1
123

1

{"id": 123, "value“: 1} <state>1</state>

Fig. 4.1 Message translation example
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<ir>
<item posD’0’>

<fixed>0x1</fixed>
</item>
<item posD’1’>

<variable>
<uint8>id</uint8>

</variable>
</item>
<item posD’2’>

<bool>
<variable>state</variable>

</bool>
</item>

</ir>

In this case, the intermediate representation of the incoming message would
consist of the values 0�1, 123, and 1, representing a unique identifier for the
category of smart home switches (0�1), the id of the switch that takes action (123),
and the current state (1 D on). The idea is that this IR is only based on variables
that can be stored in one or more registers. Therefore, no complex datatypes, for
example, “string,” are allowed. The respective size that has to be reserved in the
IR can be specified by the XML description that is responsible for the incoming
message.

In example of Fig. 4.1, the switch should be connected to a wall plug. Consider-
ing that this actuator has a communication technique different from the switch, an
additional translation mechanism must be included to transfer the messages from
the IR to the actual target language. This can exemplarily be done by providing the
following XML translation file:

<ir>
<item nameD’state’>2</item>

</ir>

It says that the IR contains the value for the “state” variable at position 2. Using
this information, the destination node can translate the information of the IR to the
format that must be transferred to the wall plug interface.

The presented format of the IR was selected as OMNeTCC supports this
structure in its message files. For the case study, presented in the next section, the
following object is used:

message GatewayMsg
f

int source;
int destination;
int payload[];

g
The integer variables source and destination contain the ids of the sender

and receiver node respectively. Payload is an array that consists of the values of
the IR.
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OMNeTCC provides functions for its dynamic allocation. Adding a new entry
is done as follows:

int oldSize D msg->getPayloadArraySize();
msg->setPayloadArraySize(oldSizeC1);
msg->setPayload(oldSize, newEntry);

4.6 Case Study

The case study shows how HiL can be added to OMNeTCC using the modified
scheduler. There are different techniques on how real hardware can interface with
the simulation environment. Using vendor-specific USB dongles, e.g., for Z-Wave
communication is one option to enable the data transfer between the respective
node and the actual IoT simulator. For the first version of the framework presented
in this paper, simple TCP/IP sockets are used as they provide a high degree of
flexibility. Therefore, two Raspberry Pis, acting as interfaces, are used to manage the
communication on the sender and receiver side. Each Raspberry Pi has a connection
to the OMNeTCC simulation environment via Ethernet. The case study implements
the concept visualized in Fig. 4.2. Therefore, an EnOcean energy harvester [17] is
connected to the first Raspberry Pi using the so-called EnOcean Pi add-on module
[18]. It enables the Raspberry Pi to read incoming EnOcean messages via Universal
Asynchronous Receiver Transmitter (UART). The Raspberry Pi connects to the
socket, opened by the EnOcean interface that was added to OMNeTCC. On the
receiver side, a Z-Wave module, RaZberry [19], connects the second Raspberry Pi
and a Z-Wave wall plug [20]. When the EnOcean switch gets pushed, a message
is transferred via Ethernet to the OMNeTCC simulation where it is wrapped into
the message object presented in the previous section. The respective switch-state is
added to the payload array and then sent to the receiver node, where the message is
transferred to the wall plug using the second Raspberry Pi.

Fibaro Wall Plug

Z-Wave

Raspberry Pi

Raspberry Pi

EnOcean

EnOcean Switch

Ethernet

Ethernet

zWave

enOcean

Gateway

Fig. 4.2 OMNeTCC simulation acting as gateway between HiL devices
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The case study currently does not include the implementation of the XML trans-
lation mechanism. In future releases of the presented approach, the data exchange
between the sensors and actuators and the actual IoT simulation framework will be
improved and further analyses results will be presented.

4.7 Conclusion

This work in progress paper provides the basis for an IoT simulation environ-
ment including HiL. The network simulator OMNeTCC is used to model the
infrastructure between virtual and physical nodes. By extending its scheduler,
extendibility with further HiL devices is enabled. Although it is too early to present
further simulation results, the authors believe that the presented approach can
help to encourage the research on IoT platforms to face the upcoming challenges,
including the simulation and analysis of distributed and ubiquitous computing. As
OMNeTCC was designed to model large networks, it is suitable for the simulation
of future smart environments. The key to success is hereby the consideration of
physical hardware in the virtual environment, as a simulator is not a universal
solution and might fail in cases where real world data is required to gain feasible
results.

The presented approach moreover features the functionality of a gateway,
where the translation between different communication standards is not limited
to a specific device. By using the intermediate representation, a decentralized
mechanism is developed that transfers relevant data to the respective node where
it is translated to the final communication standard.

In future, effort will be invested to rework the data flow from multiple sources
to multiple destinations in complex networks. In example of a smart home envi-
ronment, it will be demonstrated how the simulation of not available sensors and
actuators can be handled by the presented framework. Also security aspects will be
taken into account. Currently, no specific OMNeTCC library, like iNet, is used to
model the network. In future versions of the presented approach this will become an
essential part of the IoT simulator.
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