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Abstract. In the real word, many multi-objective optimization problems are
subject to dynamic changing conditions, which may occur in objectives,
constraints and parameters. This paper provides a prediction strategy, called
multi-direction prediction strategy (MDP), to enhance the performance of multi-
objective evolutionary optimization algorithms in dealing with dynamic envi-
ronments. Besides, the proposed prediction method makes use of multiple
directions determined by several representative individuals. Our experimental
results indicate that MDP can well tackle dynamic multi-objective problems.
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1 Introduction

Dynamic multi-objective optimization problems (DMOPs) widely exist in our real
world. Practical examples of such situations are design [1], planning [2], scheduling
[3], etc. For handling these DMOPs, the optimizer should be capable of tracking the
optima whose locations change with time.

Evolutionary algorithms (EAs) have been recognized as one of the most powerful
optimizers [8]. The first attempt that utilizes EAs to solve DMOPs was conducted by
Fogel and his colleagues in 1966 [9, 11, 12]. Since dynamic multi-objective evolu-
tionary algorithm (DMOEA) is built on the static MOEA, under dynamic environments,
converging tendency of a conventional static EA imposes severe limitations on per-
formance of EA. In order to efficiently solve DMOPs, it is better for DMOEA to build its
own framework. Moreover, some operators have been added for tackling environmental
changes, such as the diversity maintenance technique and the prediction [10].

In this paper, we focus on the prediction method which aims to formulate a new
population close to or even cover the PS under the new environment based on the
historic information. To achieve this goal, we propose a multiple-direction prediction
method for DMOEA. In this approach, several representative individuals are first
sought based on the distribution information of the PS in the previous environment;
next, several evolutionary directions are estimated by the representative individuals of
the previous two PSs; finally, each individual evolves following the direction deter-
mined by its corresponding representative individual.
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2 Proposed Method

In this section, we address how to deal with the changes of the environment and the
weaknesses of those available prediction approaches utilizing the proposed multiple
direction prediction method (MDP), which aims to generate a population close enough
to the true Pareto front. The basic idea of MDP is to estimate a set of individuals which
have the ability to cover the true PS of the new environment. To achieve this goal, we
first record and store several representative individuals which are able to describe the
shape and diversity of the Pareto set obtained by the evolutionary algorithm at each
time; subsequently, when an environmental change is detected, estimate the evolution
directions in terms of information concerning representative individuals at the nearest
two former time points (i.e., t and t−1). These evolutionary directions are employed to
achieve the new locations of the representative individuals and predict the changes of
the Pareto front; finally, a certain number of evolutionary individuals are generated
around those new locations so as to improve the response of the population concerning
the environmental change.

2.1 Determination of Representative Individuals

Due to the fact that representative individuals are designed to describe properties of the
Pareto set, it is of great necessity for the selection strategy not only to choose those who
are able to have both outperformed convergence and diversity. Therefore, M PF
end-points are selected as representative individuals for a DMOP who has M objec-
tives. The calculation equation is as follows.

pðmÞ ¼ arg min
xj2s

fmðxjÞ
� �

ð1Þ

Following that, the PS center point is calculated as one of the representative
individuals due to its capability in helping the optimization algorithm converge to the
PS under the new environment. In the studies [26–28], researchers utilize PS center
points in the current and previous time, to predict the new locations of individuals. The
definition of the abstracted PS center point is as follows.

Ct
i ¼

1
PStj j

XPStj j

i¼1

xti ð2Þ

where PSt is the PS obtained at t, PStj j is the number of individuals in PSt, and xti is the
i-th solution in PSt.

Herein, Ct is utilized to store these (M + 1) representative individuals, where
Ct
i i ¼ 1; . . .;Mð Þ are the M end-points of the PF, and Ct

i i ¼ Mþ 1ð Þ is the center point
at t.
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2.2 Multiple Direction Estimation

In order to estimate the variation tendency of the Pareto front when an environmental
change is detected, a multiple direction estimation strategy is proposed in this section.
This estimation strategy utilizes the time series model, connects the two nearest his-
torical information of representative individuals, and predicts multiple directions
concerning the representative individuals of the Pareto front. Therefore, the variation
trend of the Pareto front is able to be described completely by those multiple directions.

Suppose that Ct ¼ fct1; ct2 � � � ; ctK 0 g and Ct�1 ¼ fct�1
1 ; ct�1

2 � � � ; ct�1
K 00 g are two rep-

resentative individual sets in accordance with time t and t � 1, respectively. For one
individual cti in Ct, the proposed strategy will first seek for the nearest representative
individual to it in the set Ct�1, denoted as ct�1

j , which is viewed as the parent individual
of cti. In that way, the evolutionary direction of the individual cti can be estimated by the
change from the parent individual ct�1

j and the current individual cti as follows.

Dcti ¼ cti � ct�1
j ð3Þ

2.3 Generation of Individuals

For sake of improving the responding speed to the environmental changes, we plan to
generate a certain number of evolutionary individuals around the predicted Pareto front.
Hopefully, a set of individuals which have the capability to get close to or even cover
the true Pareto front with a uniform distribution is likely to be achieved. When a change
has been detected, we first employ simple linear model to add the evolutionary
directions obtained by means of multiple direction estimation measure in 3.2 to the
representative individuals in the nearest historical time. Therefore, the location and
shape of the Pareto front under the new environment is able to be predicted. Subse-
quently, the new individuals will be generated.

Suppose that an individual xt belongs to the i-th category, which representative
individual is ct. The evolutionary direction of ct has been calculated by means of
Sect. 2.2, denoted as Dct. Therefore, a new individual xtþ 1 is generated as follows.

xtþ 1 ¼ xt þDct ð4Þ

Similarly, several new locations of those representative individuals are generated as
follows.

ctþ 1 ¼ ct þDct ð5Þ

To improve the diversity of the population, a number of individuals are generated
randomly in the search space. Therefore, the new population consists of two parts, i.e.,
a number of predicted individuals and randomly-generated individuals in the decision
space.
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2.4 Framework of the Prediction Method

The framework of the proposed prediction strategy is incorporated into the particle
swarm optimization algorithm. The pseudo code of the dynamic multi-objective par-
ticle swarm optimization algorithm based on the multi-direction prediction strategy is
depicted as follows (Fig. 1).

Fig. 1. The Pseudo Code of MDP+DMOPSO
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3 Results

This section evaluates the performance of the proposed algorithm, MDP-DMOPSO, on
several well-known dynamic multi-objective test problems, compared with the particle
swarm optimization algorithm with initialize strategy, namely, RIS.

3.1 Experiment Preparations

In this paper seven benchmark problems, FDA1, FDA2, FDA3, DMOP1, DMOP2,
DMOP3, are selected. Table 1 shows these functions and their types. The inverted
generational distance (IGD) metric has been widely employed to test the performance
of stationary MOPs, which can measure both diversity and convergence of
non-dominated optimums to true Pareto front.

Let Pt� be a set of uniformly distributed Pareto optimal points in the PFt, and Pt be
an approximation of PFt. The IGD metrics is defined as follows [13].

IGDðPt�;PtÞ ¼
P

v2Pt� d v;Ptð Þ
Pt�j j ð6Þ

where dðv;PtÞ ¼ minu2Pt F vð Þ � FðuÞk k is the distance between v and Pt and Pt�j j is
the cardinality of Pt�. If Pt gets close enough to PFt and can cover all parts of the whole
PFt, the IGD value will be low.

For these test functions, the severity of changes is set to be nT ¼ 10. The frequency
of the changes is set to be sT ¼ 20. The dimensions of the test problems are n ¼ 10.

The population size is set to be N ¼ 150 for test problems. The archive size (the
Pareto set size) is set to be V ¼ 100. It is assigned to be 4500 evaluation times for these
functions, i.e., the environment changes every 30 generations for all the two algorithms.

3.2 Performance Analysis

Table 2 depicts the IGD values of MDP and RIS on the test instances over 20 runs. For
comparing the difference between those two sets of results, t-test is employed,
where + (-) supports (fails to support) the hypothesis that there is variance between the
two sets of results.

Table 2 suggests that MDP performs better than RIS in almost all cases, especially
on those DMOPs whose PS changes. For FDA2, even though 31� t\40, MDP and
RIS can obtain the same mean value of the IGD metric, they have great variance as the
t-test result shows. Besides, on DMOP1, although 31� t\40, the mean value of the
IGD metric of MDP is 0.2008, slightly higher than RIS (0.1252), the t-test result fail to
support these two sets of IGD values have difference with each other.

Furthermore, Fig. 2 shows the Pareto fronts obtained by the two strategies at t = 8,
25, 35, 40, and 50 with lowest IGD values on FDA2. We can see that MDP has good
performance in tracking the changes of the environment, and improving diversity of the
algorithm.
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Table 1. Test instances
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Table 2. The IGD values on 20 runs

1� t\10 11� t\20 21� t\30 31� t\40 41� t� 50

Mean/std. Mean/std. Mean/std. Mean/std. Mean/std.

FDA1 MDP 0.0120/0.0060(+) 0.0074/0.0032(+) 0.0146/0.0033(+) 0.0158/0.0063(-) 0.0126/0.0073(+)

RIS 0.0311/0.0020 0.0252/0.0021 0.0279/0.0056 0.0230/0.0047 0.0218/0.0027

FDA2 MDP 0.0036/2.9575e-05
(-)

0.00369/1.4205e-05
(+)

0.0036/2.0682e-05
(-)

0.0036/1.1720e-05
(+)

0.0036/3.4290e-05
(+)

RIS 0.0047/0.0030 0.0037/7.53e-05 0.0036/3.8e-05 0.0036/3.35e-05 0.0037/6.35e-05

FDA3 MDP 0.0036/6.896e-05
(+)

0.0036/3.0546e-05
(+)

0.0068/0.0048(+) 0.0101/0.0088(+) 0.0036/4.5897e-05
(+)

RIS 0.2707/0.0518 0.2337/0.0305 0.2861/0.0121 0.2874/0.0271 0.2388/0.0237

DMOP1 MDP 0.0041/0.0001(+) 0.0042/0.0001(+) 0.1760/0.1466(+) 0.2008/0.1488(-) 0.0041/0.0002(+)

RIS 0.0755/0.0283 0.0414/0.0255 0.0863/0.1067 0.1252/0.1754 0.0102/0.0008

DMOP2 MDP 0.0037/
5.1830e-05(+)

0.0037/
2.8288e-05(+)

0.0036/
1.5351e-05(+)

0.0037/
2.8446e-05(+)

0.0037/
1.4142e-05(+)

RIS 0.0316/0.0253 0.0167/0.0095 0.0205/0.0105 0.0150/0.0080 0.0166/0.0067

DMOP3 MDP 0.0037/
9.1116e-05(+)

0.0037/
3.4155e-05(+)

0.0037/
3.4269e-05(+)

0.0037/
3.4497e-05(+)

0.0037/
3.2664e-05(+)

RIS 0.2622/
0.2573

0.0617/
0.0284

0.0758/
0.0041

0.0419/
0.0183

0.0466/
0.0132

Fig. 2. The Pareto fronts obtained by the two strategies
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4 Conclusion

In this paper, a new prediction strategy, MDP is proposed, which employs multiple
directions based on representative individuals to provide a guide for the evolution of
the population. By comparing with the strategy which generates population randomly
when an environmental change is detected, MDP shows great capability in tracing the
movement of PF (PS).
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