High-Frequency Trading Strategy
Based on Deep Neural Networks

Andrés Arévalol(@), Jaime Niﬁol, German Hernéndezl,
and Javier Sandoval®

! Universidad Nacional de Colombia, Bogotd, Colombia
{ararevalom, jhninop, gjhernandezp}@unal. edu. co
2 Algocodex Research Institute, Universidad Externado, Bogot4, Colombia
javier. sandoval@uexternado. edu. co

Abstract. This paper presents a high-frequency strategy based on Deep Neural
Networks (DNNs). The DNN was trained on current time (hour and minute),
and n-lagged one-minute pseudo-returns, price standard deviations and trend
indicators in order to forecast the next one-minute average price. The DNN
predictions are used to build a high-frequency trading strategy that buys (sells)
when the next predicted average price is above (below) the last closing price.
The data used for training and testing are the AAPL tick-by-tick transactions
from September to November of 2008. The best-found DNN has a 66 % of
directional accuracy. This strategy yields an 81 % successful trades during
testing period.

Keywords: Computational finance - High-frequency trading - Deep neural
networks

1 Introduction

Financial Markets modelling has caught a lot of attention during the recent years due to
the growth of financial markets and the large number of investors around the world in
pursuit of profits. However, modelling and predicting prices of Financial Assets is not
an easy work, due to the complexity and chaotic dynamics of the markets, and the
many non-decidable, non-stationary stochastic variables involved [3, 9]. Many
researchers from different areas have studied historical patterns of financial time series
and they have proposed various models to predict the next value of time series with a
limited precision and accuracy [8].

Since late 1980s, neural networks are a popular theme in data analysis. Artificial
Neural Networks (ANNSs) are inspired by brain structure; they are composed of many
neurons that have connections with each other. Each neuron is a processor unit that
performs a weighted aggregation of multiple input signals, and propagates a new output
signal depending on its internal configuration. ANNs have the ability to extract
essential features and learn complex information patterns in high dimensional spaces.
Those features have proven useful for forecasting financial time series. Although neural
network models have existed for long time and they have been used in many disci-
plines, only since early 1990s they are used in the field of finance [7]; The first known
application for forecasting financial time series was described in [16].

© Springer International Publishing Switzerland 2016
D.-S. Huang et al. (Eds.): ICIC 2016, Part III, LNAI 9773, pp. 424-436, 2016.
DOI: 10.1007/978-3-319-42297-8_40

High-Frequency Trading Strategy Based on Deep Neural Networks 425

A Deep Neural Network (DNN) is an ANN with multiple hidden layers between
the input and the output layer, such that data inputs are transformed from low-level to
high-level features. The input layer is characterized by having many inputs. At each
hidden layer, the data are encoded in features of less dimensions by non-linear trans-
formations; then, the next layers refine the learned patterns in high-level features of less
dimensions, and so on until it is capable of learning complex patterns, which are of
interest in this work. This type of neural networks can learn high-level abstractions
from large quantities raw data through intermediate processing and refinement that
occurs in each hidden layer [2, 14].

Traditionally, neural networks are trained with the back-propagation algorithm,
which consists in initializing the weights matrices of the model with random values.
Then the error between network output and desired output is evaluated. In order to
identify the neurons that contributed to the error, the error is propagated backwards from
the output layer to all neurons in the hidden layers that contributed to it. This process is
repeated layer by layer, until all neurons in the network have received an error signal
describing their relative contribution to the total error. Later, the weights are updated in
order to try to reduce the error. Then the error is calculated again and this process is
repeated until a tolerable error or maximal number of iterations is reached [13].

A serious problem of back-propagation algorithm is that the error is diluted
exponentially as it passes through hidden layers on their way to the network beginning.
In a DNN that has many hidden layers, only the last layers are trained, while the first
ones have barely changed. Although DNNs exist long time ago, they were useless
because the challenge of training networks with many layers had remained unsolved.
This challenge was solved in 2006 by [5], who successfully included paradigms of
Deep Learning in Computer Science.

In recent years Deep Learning (DL) has emerged as a very robust machine learning
technique, improving limitations of ANN. Models based on DL have begun to arouse
the interest of the general public, because they are able to learn useful representations
from raw data and they have shown high performance in complex data, such as text,
images and even video. However, applications of DNNs in computational finance are
limited [15, 18, 19].

The paper is organized as follows: Sect. 2 presents some important definitions of
key concepts in this work. Section 3 describes the dataset used for the experiment.
Section 4 presents the DNN modelling for forecasting the next one-minute average
price of Apple, Inc. within financial crisis of 2008, when a high volatility behaviour
was evidenced. Section 5 describes the proposed trading strategy algorithm. Section 6
presents the strategy performance. Moreover, Sect. 7 presents some conclusions and
recommendations for future research.

2 Definitions

Bellow some important definitions are presented:

Definition 1. Log-return. It is a term commonly used in finance. Let p, be the current
trade or close price and p,_; the previous trade or close price.

426 A. Arévalo et al.

R= 1n(Pp’) = In(p,) — In(pr_y) (1)

t—1

From a log-return R, the original price p; can be reconstructed easily:
pr = pro1e” (2)

Definition 2. Pseudo-log-return. 1t is defined as a logarithmic difference (log of
quotient) of between average prices on consecutive minutes. On the other hand, the
typical log-return is a logarithmic difference of between closing prices on consecutive
minutes.

Definition 3. Trend Indicator. It is a new statistical indicator created for this work. All
trades within each minute are taken, then a linear model (y = ax+ b) is fitted. The
Trend indicator is equal to the parameter a. A small value, close to zero, means that in
the next minute, the price is going to remain stable. A positive value means that the
price is going to rise. A negative value means that the price is going to fall. Change is
proportional to distance value compared to zero; if distance is too high, the price will
rise or fall sharply.

3 Dataset Description

From the TAQ database of the NYSE [6], all trade prices for Apple ordinary stock
(ticker: AAPL) were downloaded from the September 2™ to November 7™ of the year
2008. Figure 1 shows price behaviour in the selected period.

Jh
§ ﬂ\"um'"’“ o
2 LA T PRV g

2008-09-02 09:30:00 2008-09-17 12:33:00 2008-10-02 15:36:00 2008-10-20 12:09:00 2008-11-04 15:12:00

Date

Fig. 1. Apple stock price.

The selected period covers stock crash due to the financial crisis of 2008. During
this crash, the AAPL price suffered a dramatic fall from 172 to 98 dollars. This period
was chosen intentionally to demonstrate the performance of proposed strategy under
high volatility conditions. During a financial crisis, market behaviour is strongly
impacted by external factors to the system, such as news, rumours, anxiety of traders,

High-Frequency Trading Strategy Based on Deep Neural Networks 427

among others. If a DNN can identify and learn patterns under these difficult conditions,
it can yield equal or even better with other time series without financial crisis.

As it is shown on Fig. 2, the distribution of Tick-by-Tick log-returns is some
symmetric with mean —3.802453¢%, zero in practical terms. The dataset is composed
by 14,839,394 observations, has a maximum value on 0.09429531 and a minimum one
on —0.09433554.

Reviewed literature suggests that any stock log-returns follows approximately a
normal distribution with mean zero [4, 10, 17]. For this reason, the best variables that
describe the behaviour of the market within a minute are mean price and standard
deviation of prices.

APPL tick by tick return distribution

Be+06
1

4e+06
1

Oe+00
L
0

T T
15 410 05 00 05 1.0 15 -0.0015 -0.0005 0.0005 0.0015

Retun Retun

Fig. 2. Distribution of Tick-by-Tick log-returns.

First, the data consistency was verified. All dates were in working days (not hol-
idays and not weekends). All times were during normal hours of trading operation
(between 9:30:00 am and 3:59:59 pm EST). All prices and volumes were positive.
Therefore, it was not necessary to delete records.

All data are summarized with a one-minute detailed level. Three time series were
constructed from trading prices: Average Price, Standard Deviation of Prices and
Trend Indicator. Each series has 19110 records (49 trading days x 390 min per day).

4 Deep Neural Network Modelling

4.1 Features Selection

In total four inputs-groups were chosen: Current Time, last n pseudo-log-returns, last n
standard deviations of prices and last n trend indicators, where n is the window size.
The current time group is composed of two inputs: Current hour and current minute.
The others groups are composed of n inputs for each one. In total the number of DNN
inputs [is 3n 4 2. The following paragraphs describe each input group:

428 A. Arévalo et al.

1. Current Time:

The literature reviewed did not include time as an input. However, the hour and
minute as integer values were chosen as two additional inputs, due to financial markets
are affected by regimes that occurs repeatedly in certain minutes or hours during the
trading day. This behaviour may be explained by the fact that both human and
automatized (machines) traders have strategies that are running in synchronized
periods.

Price Variation
0
l
|

-10

Minute of the Day

Fig. 3. The price variations that occurred at the first (blue line), third (red line) and sixth (green
line) day. (Color figure online)

To illustrate this affirmation, Fig. 3 shows the price variations that occurred at the
first, third and sixth day. Approximately, in the minute 170, the stock was traded at the
same opening price of corresponding day. Approximately, in the minute 250, the stock
price fell 3 dollars relative to the opening price in these days. As these patterns, many
more are repeated at certain time of day. In order to identify and to differentiate better
these patterns, the current hour and current minute of day were added as additional
inputs of DNN. These variables have 7 and 60 possible values ranging from O to 6 and
from O to 59 respectively.

2. Last n pseudo-log-returns:

It is common to see works of neural networks used to forecast time series whose
inputs are composed principally by the last untransformed observations. This is fine for
several types of time series, but it is not advisable in financial time series forecasting. In
any dataset and particularly in the one used in this work, if the nominal prices are used,
it will be useless because a neural network will train with special conditions (prices
fluctuates between 120 and 170 dollars) and then it will be tested against different
market conditions (prices fluctuates between 90 and 120 dollars).

In other words, the neural network learns to identify many static patterns that will
be not appearing at all. For example, a pattern like when the price is over 150 dollars,
raises to 150.25 dollars and falls to 149.75 dollars, then it will change to 150.50 dollars,
could be found, but this pattern never will occur because in the closest future the prices
fluctuates between 90 and 120 dollars. However, if prices are transformed into dif-
ferences or logarithmic returns, not only the data variance is stabilized, but also the
time series acquire temporal independence. For example at the beginning of the
selected period, a pattern, like when the price rises 25 cents and it falls 50 cents, then it

High-Frequency Trading Strategy Based on Deep Neural Networks 429

will raise 75 cents, could be found and this pattern is more likely to occur in the future.
Therefore, the last n one-minute pseudo-log-returns are inputs of DNN.

3. Last n standard deviations of prices:
The last n one-minute standard deviations of prices are DNN inputs.
4. Last n trend indicators:

The last n one-minute trend indicators are DNN inputs.

4.2 Output Selection of the Deep Neural Network

The DNN forecasts the next one-minute pseudo-log-return. As it is shown on Fig. 4,
the average price (black line) is the variable that best describes market behaviour. The
highest or lowest prices (blue lines) usually are found within a confidence range of
average price, therefore the next highest and lowest prices can be estimated from a
predicted average price. The closing price (red line) can be any value close to the
average price; it sometimes coincides with the highest or lowest price. Unlike the
average price, the highest, lowest and closing ones are exposed largely to noise or
external market dynamics, for example, some traders listen a false rumour about bad
news that will cause a sudden fall in the price, in order to reduce losses. As a result,
they decide to sell at a lower price than the one traded before. This operation could be
done at a certain second and it could affect numerically the highest, lowest or closing
prices on the minute.

0
™
[
@ -
S v
a o4
7o)
= T T T T T T
0 10 20 30 40 50 60
Minute of the Day

Fig. 4. First 60 one-minute Apple Stock Prices at September 2nd, 2008. Blue: High and Low.
Red: Close. Black: Average. (Color figure online)

Since the objective of this work is to learn the dynamics of the market to take
advantage of it eventually, the average price forecasts could be more profitable than the
closing price forecast. With a good average price forecast, it is known that the stock is
going to trade to that predicted value at any moment within the next minute. A real
automated trading strategy should wait until the right time (for example, stock price
reaches to price forecast) to open or to close their positions.

430 A. Arévalo et al.

4.3 Deep Neural Network Architecture

The architecture was selected arbitrarily. It has one input layer, five hidden layers and
one output layer. The number of neurons in each layer depends on the number of
inputs I. Each layer has I, I, |41/5], |31/5], |21/5], |I/5] and 1 neurons respectively.
All neurons use a fanh activation function except the output neuron that uses a linear
activation function.

4.4 Deep Neural Network Training

The final dataset is made up of 19109 — n records. Each record contains 3n+3
numerical values (3n + 2 inputs and 1 output). It should be noted that to construct each
record, only information from the past is required. Therefore, there is not look-ahead
bias and this DNN could be used for a real trading strategy.

As shown on Fig. 1, the dataset has two regimes: one bearish regime (first 50 %
samples) and a no-trending one (last 50 % samples). The final dataset was divided into
two parts: In-sample data (first 85 % samples in bearish regime and first 85 % samples
in no-trending regime) and out-sample data (last 15 % samples in bearish regime and
last 15 % samples in no-trending regime). The Fig. 5 shows the splitting.

In-Sample (85%) Out-Sample (15%)

Y)i Y)
42.5% 7.5% 42.5% 7.5%

Fig. 5. Data splitting.

For this work, H,O, an open-source software for big-data analysis [12], was used. It
implements algorithms at scale, such as deep learning [1], as well as featuring auto-
matic versions of advanced optimization for DNN training. Additionally, it implements
an adaptive learning rate algorithm, called ADADELTA [1], which is described in [20].
It was chosen in order to improve the learning process, due:

e [t is a per-dimension adaptive learning rate method for gradient descent.
e [t is not necessary to search parameters for gradient descent manually.
e [t is robust to large gradients and noise.

4.5 Deep Neural Network Assessment

In order to assess the DNN performance, two statistics were chosen. Let E as the
expected series and F' as the series forecast:

High-Frequency Trading Strategy Based on Deep Neural Networks 431

e Mean Squared Error: MSE = 157" (E, — F,)’

¢ Directional Accuracy: Percent of predicted directions that matches with the ideal
differences time series. This measure is unaffected by outliers or variables scales.
DA =10%" (E,-F, > 0).

5 Proposed Strategy

The DNN predictions are used by the following high-frequency trading strategy: For
each trading minute, it always buys (sells) a stock when the next predicted average
price is above (below) the last closing price. When the price yields the predicted
average price, it sells (buys) the stock in order to ensure the profit. If the price never
yields the expected price, it sells (buys) the stock with the closing price of the minute,
in order to close the position and potentially stop losing positions. Figure 6 shows the
strategy flowchart. Below the algorithm is formally presented in pseudo-code:

<or each trading minute <

[At the beginning of the minute, to forecast the next one-minute average price]

Current closing price < predicted price /\ Current closing price > predicted price
To buy the stock at
the current price

To sell the stock at

Current closing the current price

price ==
predicted price

Current price
>= predicted price
OR current minute
ended

Yes

To sell the stock

To do nothing until

Current price
<= predicted price
OR current minute
ended

Yes

To buy the stock

at the current price

> next minute

(

at the current price

Fig. 6. Strategy flowchart.

432

A. Arévalo et al.

for each trading minute

{At the beginning of the minute, to forecast the next
one-minute average price}

I « Current features vector.

predicted.pseudo.return < DNN.forecast (I)

predicted.average.price « last.average.price
epredicted.pseudo.return

{To open a position}
if predicted.average.price>previous.closing.price
then
{To buy a stock at the current price}
current.operation < BUY
else if predicted.average.price<previous.closing.price
then
{To sell a stock at the current price}
current.operation « SELL
else
continue {To do nothing until next minute}
end if

{To close the position}
while the current minute has not ended
current.price <« Current stock price
if current.operation==BUY and
current.price>predicted.average.price
then
{To sell the stock at the current price and to earn
the difference}
current.operation < null
continue {To do nothing until next minute}
end if
if current.operation==SELL$ and
current.price<predicted.average.price
then
{To buy the stock at the current price and to earn
the difference}
current.operation <« null
continue {To do nothing until next minute}
end if
end while

High-Frequency Trading Strategy Based on Deep Neural Networks 433

{To stop the losses}
if The operation was not closed
then
if current.operation==BUY
then
{To sell the stock at the current price}
else if current.operation==SELL
then
{To buy the stock at the current price}
end if
current.operation <« null
end if
end for

6 Experiment

The DNN was trained only with the in-sample data during 50 epochs. The chosen
ADADELTA parameters were p = 0.9999 and €= 10~'°. On the other hand, the DNN
was tested only with the out-sample date. Table 1 illustrates DNN performance using
different windows sizes and the same network architecture. Ten different networks were
trained for each parameter. The best results are obtained with small window sizes such
as three, four and five.

Table 1. DNN performance.

Window Maximum Minimum Mean g
DNN Architecture
Size MSE DA (%) MSE DA (%) MSE DA (%) MSE DA (%)
2 88:6:4:3:1 1 0.07832 65.71328 | 0.06768 61.63236| 0.07042 64.47506 | 0.00294 1.30354
3 1111:8:6:4:2 1 0.07678 66.15492 | 0.06823 63.67759 | 0.07125 65.17794| 0.00233 0.71620
4 14 14:11:8:5:2 1 0.09158 65.71328 | 0.07197 63.30659 | 0.07576 65.07847 | 0.00579 0.70564
5 1717:13:10:6:3 1 | 0.10132 66.05024 | 0.07569 64.30565 | 0.08561 64.83949 | 0.00729 0.52326
6 2020:16:12:7:31 | 0.10512 65.74816 | 0.07574 62.99267 | 0.08514 64.91105| 0.00874 0.83872
7 2323:18:13:9:41 | 0.10383 65.63154 | 0.08251 63.22400 | 0.08929 64.43475| 0.00634 0.73761
8 26 26:20:15:10:5 1 | 0.09873 65.60865 | 0.07813 63.41123 | 0.08754 64.40879 | 0.00648 0.68195
9 2929:23:17:11:5 1 | 0.09020 65.49197 | 0.07628 63.78227 | 0.08437 64.59874 | 0.00475 0.45499

10 3232:25:19:12:6 1 | 0.10250 65.50401 | 0.07400 63.09731| 0.08476 64.55877 | 0.00829 0.76088
11 3535:28:21:13:6 1 | 0.10565 65.24773 | 0.07702 62.90997 | 0.08537 64.25680 | 0.00892 0.83953
12 38 38:30:22:15:7 1 | 0.09440 65.32961 | 0.07746 63.69026 | 0.08698 64.46110| 0.00562 0.62078
13 4141:32:24:16:8 1 | 0.09442 64.61967 | 0.07437 61.89811 | 0.08491 63.79972 | 0.00618 0.96908
14 44 44:35:26:17:8 1 | 0.09833 65.32961 | 0.07849 62.39972 | 0.08781 64.25531 | 0.00635 0.94794
15 47 47:37:28:18:9 1 | 0.09871 64.86392 | 0.08201 61.86322 | 0.08916 63.64270 | 0.00531 1.13385

434 A. Arévalo et al.

Overall, the networks achieved between 63 % and 66 % directional accuracy.
Depending on training results, DNN performance may be better, but all networks
converge with very similar and homogeneous results. The DNN is able to predict these
sudden rises or falls in price. This information may be useful for any trading strategy.

Figures 7, 8 and 9 show the strategy performance during a trading simulation over
the testing data. The simulation did not consider transaction costs and it was performed
with the best-found DNN (66.15492 % of DA). Buying and selling only one stock, the
strategy accumulated 72.3036 dollars at the end of the period. It made 2333 successful
trades and 520 unsuccessful ones, approximately 81.77 % successful trades.

> o
¢ g
g8
g 8
o

I T T T 1

-1.0 -05 0.0 05 1.0

Profit(S)

Fig. 7. Profit histogram of the trading strategy

Profit($)
0 2
1 1 1

T T T T
0 5000 10000 15000

Minute

Fig. 8. Profit of the trading strategy

T T T T
0 5000 10000 15000

Accumulated Profit($)
0 20 40 60

Minute

Fig. 9. Cumulated profit of the trading strategy

During the training data period (from 0 % to 42.5 % and from 50 % to 92.5 % in
the time series), the strategy did not perform trades, and then it did not yields profits
and losses on those minutes. For this reason, Figs. 8 and 9 have a horizontal line during
these periods.

High-Frequency Trading Strategy Based on Deep Neural Networks 435

7 Conclusions

Although the strategy turns out to be interesting and yields a good performance, it must
be refined in order to implement in a real environment, for example, it could analyse
whether it closes its position in the next minute or it keeps it open in order to decrease
transaction costs.

Traders collectively repeat the behaviour of the traders that preceded them [11].
Those patterns can be learned by a DNN. The proposed strategy replicates the concept
of predicting prices for short periods. Furthermore, adding time as a DNN input allows
it to differentiate atypical events and repetitive patterns in market dynamics. Moreover,
small data windows sizes are able to explain future prices in a simpler way.

Overall, the DNNs can learn the market dynamic with a reasonable precision and
accuracy. Within the deep learning arena, the DNN is the simplest model, as a result, a
possible research opportunity could be to evaluate the performance of the strategy
using other DL model such as Deep Recurrent Neural Networks, Deep Belief Net-
works, Convolutional Deep Belief Networks, Deep Coding Networks, among others.

References

1. Arora, A., et al.: Deep Learning with H20 (2015)

2. Bengio, Y.: Learning deep architectures for Al. Found. Trends® Mach. Learn. 2(1), 1-127
(2009)

3. De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3),
443-473 (2006)

4. Hardle, W., et al.: Applied Quantitative Finance: Theory and Computational Tools. Springer,
Heidelberg (2013)

5. Hinton, G.E., et al.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7),
1527-1554 (2006)

6. Intercontinental Exchange Inc.: TAQ NYSE Trades (2016). http://www.nyxdata.com/data-
products/nyse-trades-eod

7. Kaastra, 1., Boyd, M.: Designing a neural network for forecasting financial and economic
time series. Neurocomputing 10(3), 215-236 (1996)

8. Li, X., et al.: Enhancing quantitative intra-day stock return prediction by integrating both
market news and stock prices information. Neurocomputing 142, 228-238 (2014)

9. Marszalek, A., Burczynski, T.: Modeling and forecasting financial time series with ordered
fuzzy candlesticks. Inf. Sci. (Ny) 273, 144-155 (2014)

10. Mills, T., Markellos, R.: The econometric modelling of financial time series (2008)

11. Murphy, J.J.: Technical Analysis of the Financial Markets: A Comprehensive Guide to
Trading Methods and Applications. Penguin, New York (1999)

12. Nusca, A., et al.: Arno Candel, physicist and hacker, Oxdata. Meet Fortune’s 2014 Big Data
All-Stars (2014)

13. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the
RPROP algorithm. In: IEEE International Conference on Neural Networks, pp. 586-591.
IEEE (1993)

14. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Netw. 61, 85-117
(2014)

http://www.nyxdata.com/data-products/nyse-trades-eod
http://www.nyxdata.com/data-products/nyse-trades-eod

436 A. Arévalo et al.

15. Takeuchi, L., Lee, Y.: Applying Deep Learning to Enhance Momentum Trading Strategies
in Stocks. ¢s229.stanford.edu

16. Trippi, R.R., Turban, E.: Neural Networks in Finance and Investing: Using Artificial
Intelligence to Improve Real World Performance. Probus Publishing Company, Chicago
(1992)

17. Tsay, R.S.: Analysis of Financial Time Series. Wiley, New York (2005)

18. Yeh, S., et al.: Corporate Default Prediction via Deep Learning (2014)

19. Pham, D.-N., Park, S.-B. (eds.): PRICAI 2014. LNCS, vol. 8862. Springer, Heidelberg
(2014)

20. Zeiler, M.D.: ADADELTA: An Adaptive Learning Rate Method, 6 (2012)

http://cs229.stanford.edu

	High-Frequency Trading Strategy Based on Deep Neural Networks
	Abstract
	1 Introduction
	2 Definitions
	3 Dataset Description
	4 Deep Neural Network Modelling
	4.1 Features Selection
	4.2 Output Selection of the Deep Neural Network
	4.3 Deep Neural Network Architecture
	4.4 Deep Neural Network Training
	4.5 Deep Neural Network Assessment

	5 Proposed Strategy
	6 Experiment
	7 Conclusions
	References

