
Adaptive Bi-objective Genetic Programming
for Data-Driven System Modeling

Vitoantonio Bevilacqua1(&), Nicola Nuzzolese1, Ernesto Mininno2,
and Giovanni Iacca2

1 Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari,
via Orabona 4, 70125 Bari, Italy

vitoantonio.bevilacqua@poliba.it
2 Cyber Dyne S.r.l., Via Scipione Crisanzio 119, 70123 Bari, Italy

Abstract. We propose in this paper a modification of one of the modern
state-of-the-art genetic programming algorithms used for data-driven modeling,
namely the Bi-objective Genetic Programming (BioGP). The original method is
based on a concurrent minimization of both the training error and complexity of
multiple candidate models encoded as Genetic Programming trees. Also, BioGP
is empowered by a predator-prey co-evolutionary model where virtual predators
are used to suppress solutions (preys) characterized by a poor trade-off error vs
complexity. In this work, we incorporate in the original BioGP an adaptive
mechanism that automatically tunes the mutation rate, based on a characteri-
zation of the current population (in terms of entropy) and on the information that
can be extracted from it. We show through numerical experiments on two
different datasets from the energy domain that the proposed method, named
BioAGP (where “A” stands for “Adaptive”), performs better than the original
BioGP, allowing the search to maintain a good diversity level in the population,
without affecting the convergence rate.

Keywords: Multi-objective evolutionary algorithms � Adaptive genetic
programming � Machine learning � Home automation � Energy efficiency

1 Introduction

Computational intelligence techniques, such as Evolutionary Computation (EC) and
Machine Learning (ML), have proven to be powerful yet general-purpose tools in a
broad range of optimization applications [6, 7, 26]. One of the most important fields of
application of such tools is energy management, with successful examples in complex
problems such as energy management in buildings, renewable energy systems, heating,
ventilation and air conditioning control methodologies, and forecasting energy con-
sumption [9, 28]. Of special interest in this domain is the forecasting e.g. of the air
temperature in a room [31] as a function of both weather parameters (mainly solar
radiation and air temperature) and actuator states or manipulated variables (heating,
ventilating, cooling), with the subsequent use of these mid/long-range prediction
models for a more efficient temperature control, both in terms of regulation and energy
consumption.

© Springer International Publishing Switzerland 2016
D.-S. Huang et al. (Eds.): ICIC 2016, Part III, LNAI 9773, pp. 248–259, 2016.
DOI: 10.1007/978-3-319-42297-8_24



An example of application of these predictive models is efficient building design,
where the computation of the heating load and the cooling load is required to determine
the specifications of the heating and cooling equipment needed to maintain comfortable
indoor air conditions. However, first-principles modeling of indoor air temperature can
be a complicated task: it involves a non-linear dynamical system whose inputs are the
weather parameters and actuators manipulated variables, and the output is the predicted
room temperature. An additional complexity is due to that fact that for each room in a
building and for each variable of interest a separate model may be needed, to
approximate the complex relationship between the system inputs (in this case the
weather parameters and actuators manipulated variables) and the indoor air tempera-
ture. To overcome these issues, data-driven modeling techniques, such as Genetic
Programming (GP) or Neural Networks (NN), are viable alternatives1.

In this paper, we propose an adaptive Genetic Programming algorithm built upon a
state-of-the-art method from the literature, namely the Bi-objective Genetic Program-
ming (BioGP) [11]. Motivated by the empirical observation that the performance of
BioGP highly depends on the chose parameter setting -particularly the mutation rate-
we introduce in the original algorithm an adaptive mutation scheme that automatically
tunes the mutation rate, based on a characterization of the current population (in terms
of entropy) and on the information that can be extracted from it. We then show through
numerical experiments on two different real world datasets that the proposed method,
named BioAGP (where “A” stands for “Adaptive”), performs better than the original
BioGP, allowing the search to maintain a good diversity level in the population,
without affecting the convergence rate.

The remainder of this paper is structured as follows. The next section briefly
presents the related works on Genetic Programming and details the working principles
of BioGP. Section 3 describes the adaptive mutation mechanism proposed, and the
motivations behind that. Then, in Sect. 4 we present the numerical results obtained by
BioAGP on two different datasets from the energy domain, in comparison with the
original BioGP and with alternative data-driven modeling techniques. Finally, in
Sect. 5 we give the conclusions of this work.

2 Related Work

In this section, we first recapitulate the main principles of Genetic Programming
(Sect. 2.1) then we describe in detail the original algorithm that is at the base of the
proposed BioAGP (Sect. 2.2).

2.1 Genetic Programming

Genetic Programming is an evolutionary algorithm originally designed to find com-
puter programs that perform a user-defined task [17]. Similar to other genetic

1 We should observe, however, that the main drawback of data-driven modeling methods is that they
depend entirely on experimental data. Therefore, such methods can only be applied after the actual
building is built and measurements are available.

Adaptive Bi-objective Genetic Programming 249



techniques used as optimization tools [5, 21], GP conducts a parallel search on a
population of candidate solutions in the search space. In GP, however, a solution
represents a set of mathematical functions, which can be considered as an approximate
model of the system at hand. A GP solution is typically encoded as a binary tree,
whose nodes can be arbitrary mathematical functions, and leaves can be variables, or
constants (as opposed to binary or real-valued genetic algorithms where solutions are
encoded as arrays of bits or real values). The elements of the trees are, in general,
predetermined, as they are extracted from two user-defined sets initialized before the
beginning of the evolutionary process: a function set, containing user-defined mathe-
matical functions, and a terminal set, containing variables and constants. Notably, one
of the main advantages of GP e.g. in comparison to Neural Networks is the possibility
of adding custom functions, which makes the algorithm extremely flexible [10].

GP starts off by creating an initial population of trees randomly initialized with
elements from the function and terminal sets. Then, the population is evolved over a
sequence of generations through mechanisms that mimic genetic recombination (cross-
over), mutation and selection. When used as a data-driven modeling method, typically a
candidate GP tree is fed with a dataset containing n samples {(i1, o1), (i2, o2),…,(in, on)}
(where each sample consists, in general, ofm input variables and p output variables2, i.e. ik
Є Rm and ok Є Rp k Є [1; n]), then the root mean square error (RMSE) of each tree is
computed as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

k¼1
ðok � ôkÞ2

r
ð1Þ

where ôk is the estimated output calculated by that tree when fed with the k-th sample.
The fitness of the tree is then its RMSE, and conventional GP algorithms simply try to
find the minimum-RMSE tree [1].

2.2 Bi-objective Genetic Programming

We focus now on the Bi-objective Genetic Programming BioGP) [11], the algorithm at
the base of the present work. BioGP differs from conventional GP in that it does not
minimize only the RMSE, rather it performs a bi-objective optimization. In particular,
the algorithm tries to find a trade-off between the training error ξ (i.e., the RMSE
calculated on the training set) and the model complexity ζ (described below) -both to be
minimized- by employing the predator-prey scheme proposed in [25]. The algorithm
then returns a set of Pareto-optimal solutions characterized by different trade-offs
between model complexity and error, considering that more complex models tend to
show lower errors (with the risk over-fitting) while simpler models are characterized by
higher errors (under-fitting).

2 In the rest of the paper, we will consider problems with p = 1 output variable. Nonetheless multiple
output variables can be approximated by multiple GP trees, one per variable. An extension of the
analysis for p > 1 is also possible and will be considered in future studies.

250 V. Bevilacqua et al.



In BioGP, each solution is represented as a weighed sum of sub-trees (each
encoding a mathematical expression in Polish notation). More specifically, a linear sum
is introduced as parent node, from which r roots emerge (one per sub-tree), where the
number of roots r is a parameter of the algorithm. Consequently, the estimated output
of a candidate solution fed with a sample ik can be expressed as follows:

ôk ¼ f ikð Þ ¼
Xr

j¼1
xjfj ikð Þþ h ð2Þ

where fj (ik) is the function corresponding to each j-th sub-tree calculated on the sample
ik, ωj is its associated weight, j = 1, 2, …, r, and ϴ is a bias value. For each candidate
solution, the weights and the bias value are calculated by the linear least square
technique, such that the RMSE across all samples is minimized. Then, the solution’s
error ξ is simply determined by its RMSE. As for the complexity ζ, this is calculated as
the weighted sum of the maximum depth of among all the sub-trees in the solution (δ),
and the total number of function nodes (ν), since both terms contribute to the param-
eterization in the model. The objective function denoting the complexity ζ is then
defined as:

f ¼ kdþð1� kÞm ð3Þ

where λ is a scalar, set equal to 0.5 as suggested in [30]. The parameter λ can be set to a
different value to effectively control the growth of trees, in case the complexity goes
beyond an acceptable limit. Furthermore, an additional parameter of the algorithm, d,
allows to set the maximum depth of the sub-trees.

In a nutshell, the BioGP algorithm consists of two optimization steps. The first
phase is a single-objective minimization of the error ξ, which continues until a prefixed
error level is reached, or, alternatively, until a predefined number of generations is
completed. Once this first step ends, the bi-objective optimization predator-prey genetic
algorithm [25] starts. This mimics the interaction between a population of preys (each
one corresponding to a candidate solution) and a population of predators, both moving
on a two-dimensional lattice. The demography of preys is controlled by predators,
which kill the least fit prey in their neighborhood.

It should be noted that the bi-objective is particularly computationally expensive,
since it tends to generate solutions over a wide range of model complexity and error. In
this sense, the introduction of the single-objective error reduction phase significantly
reduces the computing cost of the algorithm, by guiding the solutions towards an
acceptable limit of error that the user would be able to specify and find acceptable,
without losing the choice and flexibility of the Pareto solutions.

One final note about BioGP regards its genetic operators. During the
single-objective phase, BioGP applies a tournament selection (in the original paper [11]
of size 5). For the bi-objective part, selection is performed by means of non-dominated
sorting and ranking [8]. As for crossover, BioGP uses a combination of standard and
height-fair crossover [23]: in the former, two sub-trees are randomly interchanged
between the participating parents, while in the latter case the exchange takes place at a
selected depth. Also, BioGP use different types of mutations, namely standard, small
and mono parental exchange: in case of a standard mutation, a sub-tree is deleted and

Adaptive Bi-objective Genetic Programming 251



then randomly regrown; small mutation implies replacing a terminal set by another
(e.g. a numerical value in the terminal set is slightly altered, or a function is replaced
with another having the same arity - e.g. “×” by “/”); finally, mono parental exchange
involves swapping two sub-trees belonging to the same tree. In BioGP, the probability
of activating one of the crossover or mutation operators is fixed.

3 Adaptive Mutation Mechanism

Just like for any other evolutionary algorithm, a crucial aspect in GP algorithms (in-
cluding BioGP) is the balance between exploration and exploitation [29], i.e.,
respectively, the ability to visit entirely new regions of the search space, and to refine
the search within the neighborhood of previously visited points. In general this is
obtained by a careful tuning of the activation probability of the genetic operators, i.e.
mutation and crossover. In the following, we refer to the mutation and crossover
probability as pm and pc, respectively. In general, both pm and pc depend on the specific
problem at hand, and in turn the overall effectiveness of a GP algorithm significantly
depends on their setting. This might impair the use of GP especially for practitioners
and users who may be not fully aware of the importance of this tuning of else are not
sufficiently knowledgeable about the influence of such parameters.

To overcome the need for application-specific parameter tuning, a current trend in
evolutionary algorithms is the use of adaptive mechanisms that are able to automati-
cally tune the activation probability of the genetic operators [15, 22], such that the
algorithm can flexibly adjust its behavior to a broad range of problems. The present
work falls in this research area, as we focus specifically on the auto-adaptation of the
mutation probability in BioGP.

As we saw in the previous section, BioGP uses three mutation operators (standard,
small and mono parental exchange): in the following, we will refer to their activation
probabilities respectively as pstand, psmall, pmono. In the original BioGP algorithm, ps-
tand = psmall = pmono = 1/3 × 0.1. Our intuition is that while these predetermined val-
ues might be efficient in some cases, the same could be sub-optimal in others.
Therefore, we aim here at endowing BioGP with adaptive capabilities, such that the
mutation rates can automatically change during evolution, rather than being fixed as in
the original algorithm. Allowing for dynamic changes of the mutation rates, we could
obtain a better balance between exploration and exploitation as the algorithm would
adapt automatically its behavior to different fitness landscapes and search conditions: in
fact, higher mutation rates might be needed when the algorithm is stuck into a local
optimum and the search should move to new regions of the solution space in the
attempt to find the global optimum; vice versa, lower mutation rates are needed to
improve exploitation when the algorithm is converging towards the optimum. With
these considerations in mind, we introduce an adaptive mutation scheme as follows.

At each generation, the intrinsic information content of the population is calculated
taking into account the worst (fmax) and best (fmin) individual training error ξ among all
the trees in the current population, as well as the average error in the population (fmean).
Therefore, the normalized deviation between the worst individual and the population
mean is calculated as:

252 V. Bevilacqua et al.



diversity ¼ fmax � fmean
fmax � fmin

ð4Þ

which is defined for fmax ≠ fmin. If this value is low, the population is homogeneous
(i.e. the worst individual is close to the population mean, indicating that all individuals
have similar error values), otherwise the population contains individuals with a higher
diversity in terms of errors. In the presence of over-fitting, all GP trees tend to show a
very small training error: however, keeping some higher-error solution in the popu-
lation (thus allowing for a higher level of diversity) might prevent an excessive con-
vergence towards similar over-fitting GP trees characterized by small errors. In addition
to the diversity index, at each generation the Shannon entropy of the population is
measured as:

�
X

k
pk logðpkÞ ð5Þ

where the sum is calculated over all the groups in the population having the same value
of training error ξ, and pk is the fraction of the population having the k-th error value.
Higher entropy values correspond to a more heterogeneous population, and vice versa.
Once the above metrics in Eq. (4) and (5) are calculated, their values are compared
with the values from the previous generation. If both the new values are lower than the
previous ones (which happens when the entropy of the population is decreasing and the
worst individual is getting closer to the population mean), the mutation rates are
re-sampled as follows:

pstand ¼ 0:1þ 0:33� 0:1ð Þ � randðÞ
psmall ¼ 0:1þ 0:33� 0:1ð Þ � randðÞ
pmono ¼ 0:1þ 0:33� 0:1ð Þ � randðÞ

8><
>:

ð6Þ

otherwise they are kept at their current values (starting from the original values used in
BioGP). Here rand() indicates a uniform random number sampled in [0, 1]. The
rationale behind this adaptive scheme is that an increase of the mutation rates when the
diversity in the population is decreasing might be beneficial to counterbalance pre-
mature convergence. Otherwise, the current mutation rates are maintained when the
population has already a sufficient level of diversity.

4 Numerical Results

To assess the performance of the proposed BioAGP (and determine the performance
benefit due to the adaptive scheme), we performed numerical experiments on two
different datasets from the energy domain, and compared the performance of BioAGP
with that of the original BioGP and with alternative machine learning methods. In the
following, first we describe our experimental setup (i.e. the datasets), and then we
analyze the numerical results obtained on the two datasets.

Adaptive Bi-objective Genetic Programming 253



4.1 Datasets

The datasets considered in our study are both taken from the UCI repository [18]:

– The Energy Efficiency dataset. It is composed of 768 samples and 8 features,
namely: compactness, surface area, wall area, roof area, overall height, orientation,
glazing area, glazing area distribution. The goal is to predict one real valued
response: heating load or cooling load.

– The SML2010 dataset. It contains 4137 samples and 18 features, namely: date,
time, weather forecast temperature, indoor temperature (dinning-room); relative to
dinning room and room: carbon dioxide, relative humidity, lighting; sun dusk,
wind, sun light in west/east/south facade, sun irradiance, outdoor temperature,
outdoor relative humidity. The goal is to predict the indoor temperature.

In the experiments, we split each dataset into three sets (with sizes 60 %, 20 %,
20 %) respectively for training, validation and test.

4.2 Experiments

Several tests were performed on the two real datasets with the main objective to obtain
mathematical models with minimum test error and complexity.

– BioAGP: the algorithm proposed here, with parameter setting as suggested in [11],
apart for the mutation rates that are replaced by adaptive mutation.

– BioGP: the original algorithm presented in [11], with the parameter setting sug-
gested in that paper.

– NEAT: NeuroEvolution of Augmenting Topologies (NEAT) method pro-posed in
[27], with population size set to 500. All other parameters were set as in the original
paper.

– Neural Network (NN): a NN trained by Resilient Propagation [24]. The NN
configuration was chosen applying the methodology described in [2] by means of
the optimization software Kimeme [16], resulting in a network with three hidden
layers, respectively with 91 (Elliot symmetric activation function), 84 (with ramp
activation function) and 68 nodes (with Gaussian activation function). The single
output node used a hyperbolic tangent activation function.

– Multiple Regression (MR): the ordinary least squares method that estimates the
parameters of a multiple linear regression model.

All the algorithms above were implemented in Java code, with multi-thread paral-
lelization at the level of each model evaluation. The proposed BioAGP was implemented
by porting the original Matlab code available from [11] and adding the new adaptive
mutation scheme. In both BioGP and BioAGP, we used as a function set {+ , −, /, × , ^,
√x, ln(x)} where “^” indicates the power function xy. Since the computational cost of the
GP algorithms is considerable higher than the other techniques (due to the parsing of a
very large number of trees generated during the evolutionary process), we decided to run
the two GP algorithms for a small number of generations (20) and a large number of
predators and preys (respectively 100 and 500), to test their convergence under hard

254 V. Bevilacqua et al.



computational constraints and have a fair comparison with the other methods. As for the
NEAT and NN, we used the open-source Java library Encog [12], coupled with Kimeme
[16] as explained in [2]. Finally, the Multiple Regression algorithm was taken from the
Apache Commons Java math library3. Each algorithm execution was repeated five times
on both datasets, to calculate statistics on training, validation and test error.

First, we analyze the performance of BioAGP for different values of maximum
depth and number of roots, see Tables 1, 2, 3. In the tables, we show the mean and std.
dev. (over five repetitions) of training, validation and test error4. Also, we show in
boldface the best tree configurations, i.e. the trees whose test errors are lower than those
of the other configurations. We consider values smaller than ε = 10−16 equal to zero.
We can see that the optimal configuration of tree depth and number of roots depend on
the specific dataset and system to model: indicating with (d,r) a configuration (max
depth, number of roots), we observe that the configurations (11,7) and (8,5) allow to
obtain the minimum test error on the Energy Efficiency dataset, respectively for heating

Table 1. Energy Efficiency dataset, heating load response

GP tree configuration
(depth, roots)

Training error
(Mean ± Std. Dev.)

Validation error
(Mean ± Std. Dev.)

Test error
(Mean ± Std.
Dev.)

(6, 4) 0.0719 ± 0.0945 2.7733 ± 0.0648 2.9912 ± 0.1357
(8, 5) 0.0701 ± 0.1746 2.6555 ± 0.2184 3.0557 ± 0.1567
(9, 6) 0.0747 ± 0.1456 2.8550 ± 0.3360 3.1421 ± 0.2664
(10, 6) 0.0682 ± 0.1136 2.6166 ± 0.1221 2.8645 ± 0.1495
(11, 7) 0.0647 – 0.1169 2.4665 – 0.1470 2.7391 – 0.2373
(12, 7) 0.0692 ± 0.2721 2.6330 ± 0.2546 2.9217 ± 0.2147

Table 2. Energy Efficiency dataset, cooling load response

GP tree configuration
(depth, roots)

Training error
(Mean ± Std. Dev.)

Validation error
(Mean ± Std. Dev.)

Test error
(Mean ± Std.
Dev.)

(6, 4) 0.0841 ± 0.0225 2.9994 ± 0.1808 3.0786 ± 0.1217
(8, 5) 0.0839 – 0.0146 3.0379 – 0.1378 2.7965 – 0.0449
(9, 6) 0.0795 ± 0.0536 2.8104 ± 0.1496 2.8773 ± 0.1315
(10, 6) 0.0808 ± 0.0136 2.8795 ± 0.1349 2.9788 ± 0.0999
(11, 7) 0.0802 ± 0.0565 2.8554 ± 0.0889 2.8998 ± 0.0857
(12, 7) 0.0788 ± 0.0357 2.7607 ± 0.1439 2.9463 ± 0.0748

3 http://commons.apache.org.
4 We should remark that among all the Pareto-optimal solutions returned by BioAGP, we report here
the ones characterized by the lowest training error, following the approach suggested in [11].
However other choices e.g. based on information criteria can also be made.

Adaptive Bi-objective Genetic Programming 255

http://commons.apache.org


load and cooling load response; on the SML2010 dataset, the configuration (12,7)
performs best. Despite the different optimal configurations, we can also observe
qualitatively that the variance of the performance across all the tested configurations is
quite small.

As a second part of the analysis, we compare the performance of BioAGP with that
of the other four methods, see Tables 4, 5, 6. In the tables, the values corresponding to
BioAGP were taken from the best configurations shown in the previous tables. The
comparative analysis shows that BioAGP performs consistently better than the original
BioGP on all the tested datasets and variables of interest. However, when compared
against other methods (NN, NEAT and MR), both GP methods produce higher vali-
dation and test error, especially on the Energy Efficient dataset. On the other hand, the
GP methods are able to fit the data reasonably well even in a short number of gen-
erations, producing training errors which are almost on par with the other methods, if
not better (compare the training error of BioAGP with that of the other methods in
Table 4). Furthermore, the GP algorithms have the advantage of providing an actual
mathematical model (instead of a black-box system such as NN and NEAT) that could
be used for further analysis. Another interesting aspect is that both GP algorithms seem
to perform better for larger datasets (see the validation and test error on the SML2010
dataset in Table 6, which are is much smaller than the errors on the Energy Efficiency
dataset shown in Tables 4, 5), producing errors that are almost on par with the other
techniques, if not better in some cases (compare e.g. the test error of BioAGP against
that of NN in Table 6). This might indicate that both BioGP and BioAGP are able to
leverage larger amounts of training data to build mathematical models with higher

Table 3. SML2010 dataset, temperature response

GP tree configuration
(depth, roots)

Training error
(Mean ± Std. Dev.)

Validation error
(Mean ± Std. Dev.)

Test error
(Mean ± Std.
Dev.)

(6, 4) 0.0170 ± 0.0435 0.3609 ± 0.3438 0.2866 ± 0.1217
(8, 5) 0.0164 ± 0.0564 0.3519 ± 0.3519 0.2817 ± 0.0034
(9, 6) 0.0163 ± 0.0239 0.3518 ± 0.3355 0.2793 ± 0.0041
(10, 6) 0.0165 ± 0.0594 0.3543 ± 0.3378 0.2839 ± 0.0026
(11, 7) 0.0165 ± 0.0882 0.3512 ± 0.3347 0.2842 ± 0.0125
(12, 7) 0.0164 – 0.0357 0.3433 – 0.3271 0.2773 – 0.0030

Table 4. Performance on Energy Efficiency dataset (heating load response)

Algorithm Training error
(Mean ± Std. Dev.)

Validation error
(Mean ± Std. Dev.)

Test error
(Mean ± Std. Dev.)

BioAGP 0.0647 ± 0.1169 2.4665 ± 0.1470 2.7391 ± 0.2373
BioGP 0.0739 ± 0.0575 2.8612 ± 0.0644 3.1364 ± 0.0835
NEAT 0.0762 ± 0.0000 0.0747 ± 0.0053 0.0844 ± 0.0073
NN 0.0763 ± 0.0000 0.1667 ± 0.0000 0.1568 ± 0.0000
MR 0.0770 ± 0.0000 0.0801 ± 0.0000 0.0948 ± 0.0000

256 V. Bevilacqua et al.



generalization capabilities, and explain why on the Energy Efficiency dataset (which
has only 768 samples, while the SML2010 dataset has 4137) the performance is lower.

5 Conclusion

In this paper we proposed an adaptive Genetic Programming method, BioAGP. The
method is based on the state-of-the-art Bi-objective Genetic Programming algorithm
(BioGP), and improves upon it by introducing an adaptive mutation mechanism that
adjusts the mutation rates according to the current population diversity level. The
proposed algorithm is specifically designed for data-driven modeling, as one of its main
advantages is the ability to construct models with different levels of complexity and
modeling error.

We tested BioAGP on two datasets related to indoor temperature prediction and
energy efficiency in domestic environments. In a first part of the experiments, we
showed that the algorithm is fairly robust for various configurations of maximum tree
depth and number of roots; nevertheless, it was possible to identify an optimal con-
figuration for each dataset and variable of interest. In the second part of the experi-
mentation, we compared the performance of the best configurations of BioAGP against
that one of alternative machine learning algorithms (the original BioGP, NN, NEAT
and multiple linear regression). The numerical experiments showed that BioAGP
consistently performs better than the original BioGP algorithm. The comparison against
the other algorithms highlighted that the performance of BioAGP improves when a
larger dataset is available, with comparable errors with respect to the other methods.

Table 5. Performance on Energy Efficiency dataset (cooling load response)

Algorithm Training error
(Mean ± Std. Dev.)

Validation error
(Mean ± Std. Dev.)

Test error
(Mean ± Std. Dev.)

BioAGP 0.0839 ± 0.0146 3.0379 ± 0.1378 2.7965 ± 0.0449
BioGP 0.0867 ± 0.3467 3.1349 ± 0.0320 3.1076 ± 0.0399
NEAT 0.0796 ± 0.0000 0.0821 ± 0.0011 0.0877 ± 0.0183
NN 0.0697 ± 0.0000 0.2208 ± 0.0000 0.2248 ± 0.0000
MR 0.0886 ± 0.0000 0.0931 ± 0.0000 0.0964 ± 0.0000

Table 6. Performance on SML2010 dataset

Algorithm Training error
(Mean ± Std. Dev.)

Validation error
(Mean ± Std. Dev.)

Test error
(Mean ± Std. Dev.)

BioAGP 0.0164 ± 0.0357 0.3433 ± 0.3271 0.2773 ± 0.003
BioGP 0.0172 ± 0.0009 0.3613 ± 0.0164 0.2939 ± 0.0128
NEAT 0.0993 ± 0.0932 0.1038 ± 0.0023 0.1042 ± 0.0069
NN 0.0694 ± 0.0000 0.2952 ± 0.0000 0.3267 ± 0.0000
MR 0.0148 ± 0.0000 0.0181 ± 0.0000 0.1448 ± 0.0000

Adaptive Bi-objective Genetic Programming 257



Future works will focus on the adaptation of the additional parameters of the
algorithm (crossover probabilities, maximum depth and number of roots). Furthermore,
we will test the method on modeling problems from other domains, such as bioin-
formatics [19, 20], sensor systems [3, 13], or robotics [4, 14].

References

1. Behbahani, S., De Silva, C.W.: Mechatronic design evolution using bond graphs and hybrid
genetic algorithm with genetic programming. IEEE/ASME Trans. Mechatron. 18(1),
190–199 (2013)

2. Bevilacqua, V., Cassano, F., Mininno, E., Iacca, G.: Optimizing feed-forward neural
network topology by multi-objective evolutionary algorithms: a comparative study on
biomedical datasets. In: Rossi, F., Mavelli, F., Stano, P., Caivano, D. (eds.) WIVACE 2015.
CCIS, vol. 587, pp. 53–64. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32695-5_5

3. Caraffini, F., Neri, F., Iacca, G., Mol, A.: Parallel memetic structures. Inf. Sci. 227, 60–82
(2013)

4. Caraffini, F., Neri, F., Passow, B.N., Iacca, G.: Re-sampled inheritance search: high
performance despite the simplicity. Soft. Comput. 17(12), 2235–2256 (2013)

5. Coello, C.A.C.: Multi-objective evolutionary algorithms in real-world applications: some
recent results and current challenges. In: Advances in Evolutionary and Deterministic
Methods for Design, Optimization and Control in Engineering and Sciences, pp. 3–18.
Springer (2015)

6. Dasgupta, D., Michalewicz, Z.: Evolutionary Algorithms in Engineering Applications.
Springer Science & Business Media (2013)

7. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley,
Chichester (2001)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

9. Ferreira, P., Ruano, A., Silva, S., Conceio, E.: Neural networks based predictive control for
thermal comfort and energy savings in public buildings. Energy Build. 55, 238–251 (2012)

10. Garg, A., Tai, K.: Comparison of regression analysis, artificial neural network and genetic
programming in handling the multicollinearity problem. In: International Conference on
Modelling, Identification & Control (ICMIC), pp. 353–358. IEEE (2012)

11. Giri, B.K., Hakanen, J., Miettinen, K., Chakraborti, N.: Genetic programming through
bi-objective genetic algorithms with a study of a simulated moving bed process involving
multiple objectives. Appl. Soft Comput. 13(5), 2613–2623 (2013)

12. Heaton, J.: Programming Neural Networks with Encog 2 in Java (2010)
13. Iacca, G.: Distributed optimization in wireless sensor networks: an island-model framework.

Soft. Comput. 17(12), 2257–2277 (2013)
14. Iacca, G., Caraffini, F., Neri, F.: Memory-saving memetic computing for path-following

mobile robots. Appl. Soft Comput. 13(4), 2003–2016 (2013)
15. Iacca, G., Caraffini, F., Neri, F.: Multi-strategy coevolving aging particle optimization. Int.

J. Neural Syst. 24(01), 1450008 (2014)
16. Iacca, G., Mininno, E.: Introducing Kimeme, a novel platform for multi-disciplinary

multi-objective optimization. In: Rossi, F., Mavelli, F., Stano, P., Caivano, D. (eds.)
WIVACE 2015. CCIS, vol. 587, pp. 40–52. Springer, Heidelberg (2016). doi:10.1007/978-
3-319-32695-5_4

258 V. Bevilacqua et al.

http://dx.doi.org/10.1007/978-3-319-32695-5_5
http://dx.doi.org/10.1007/978-3-319-32695-5_4
http://dx.doi.org/10.1007/978-3-319-32695-5_4


17. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge (1992)

18. Lichman, M.: UCI Machine Learning Repository (2013). http://archive.ics.uci.edu/ml
19. Menolascina, F., Tommasi, S., Paradiso, A., Cortellino, M., Bevilacqua, V., Mastronardi,

G.: Novel data mining techniques in aCGH based breast cancer subtypes profiling: the
biological perspective. In: IEEE Symposium on Computational Intelligence and
Bioinformatics and Computational Biology (CIBCB), pp. 9–16, April 2007

20. Menolascina, F., Bellomo, D., Maiwald, T., Bevilacqua, V., Ciminelli, C., Paradiso, A.,
Tommasi, S.: Developing optimal input design strategies in cancer systems biology with
applications to microfluidic device engineering. BMC Bioinform. 10(12), 1 (2009)

21. Onwubolu, G.C., Babu, B.: New optimization techniques in engineering, 141 (2013).
Springer

22. Parmee, I.C.: Evolutionary and Adaptive Computing in Engineering Design. Springer
Science & Business Media, London (2012)

23. Rennard, J.P.: Handbook of research on nature-inspired computing for economics and
management. IGI Global (2006)

24. Riedmiller, M., Braun, H.: RPROP-a fast adaptive learning algorithm. In: Proceedings of
ISCIS VII, Universitat (1992)

25. Costa e Silva, M.A., Coelho, L.d.S., Lebensztajn, L.: Multiobjective biogeography-based
optimization based on predator-prey approach. IEEE Trans. Magn. 48(2), 951–954 (2012)

26. Stadler, W.: Multicriteria Optimization in Engineering and in the Sciences, vol. 37. Springer
Science & Business Media, New York (2013)

27. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies.
Evol. Comput. 10(2), 99–127 (2002)

28. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential
buildings using statistical machine learning tools. Energy Build. 49, 560–567 (2012)

29. Crepinsek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: a survey. ACM Comput. Surv. 45(3), 35:1–35:33 (2013)

30. Vrieze, S.I.: Model selection and psychological theory: a discussion of the differences
between the Akaike Information Criterion (AIC) and the Bayesian information criterion
(BIC). Psychol. Methods 17(2), 228 (2012)

31. Zamora-Martnez, F., Romeu, P., Botella-Rocamora, P., Pardo, J.: On-line learning of indoor
temperature forecasting models towards energy efficiency. Energy Build. 83, 162–172
(2014)

Adaptive Bi-objective Genetic Programming 259

http://archive.ics.uci.edu/ml

	Adaptive Bi-objective Genetic Programming for Data-Driven System Modeling
	Abstract
	1 Introduction
	2 Related Work
	2.1 Genetic Programming
	2.2 Bi-objective Genetic Programming

	3 Adaptive Mutation Mechanism
	4 Numerical Results
	4.1 Datasets
	4.2 Experiments

	5 Conclusion
	References


