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Abstract. Bayesian Learning Automata (BLA) are demonstrated to be as
efficient as the state-of-the-art automaton in two action environments, and it has
parameter-free property. However, BLA need the explicit computation of a beta
inequality, which is time-consuming, to judge its convergence.
In this paper, the running time of BLA is concerned and two approaches are

proposed to accelerate the computation of the beta inequality. One takes
advantage of recurrence relation of the beta inequality, the other uses a normal
distributions to approximate the beta distributions. Numeric simulation are
performed to verify the effectiveness and efficiency of those two approaches.
The results shows these two approaches reduce the running time substantially.
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1 Introduction

Learning Automata (LA) are simple self-adaptive decision units that were firstly
investigated to mimic the learning behavior of natural organism [1]. The pioneer work
can be traced back to 1960s by the Soviet scholar Tsetlin [2, 3]. Since then, LA has
been extensively explored and it is still under investigation as well in methodological
aspects [4–9] as in concrete applications [10–17]. One intriguing property that popu-
larize the learning automata based approaches in engineering is that LA can learn the
stochastic characteristics of the external environment it interacts with, and maximizing
the long term reward it obtains through interacting with the environment.

On the development of learning automata, accuracy and convergence rate becomes
two major measurement to evaluate the goodness of an algorithm. The former is
defined as the probability of a correct convergence and the latter is defined as the
average iterations for a learning automaton to get converged.

Most of the reported schemes in the field of LA has two or more tunable parameters,
making themselves capable of adapting to different environments. The performance of
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an automaton is highly dependent on the selection of those parameters. Generally,
according to the ε-optimality property of LA, the probability of converging to the
optimal action can be arbitrarily close to one. More specifically, as long as the learning
resolution is large enough, we can obtain the correct result with an arbitrary accuracy.

Parameter tuning can be a complicated and time consuming procedure, and learning
in two action stationary environments is the most fundamental scenario. In order to
explore new mechanism to reduce the difficulty in parameter tuning, we took the first
step by proposing a parameter-free Bayesian learning automata in two action envi-
ronment [18]. The proposed BLA achieves the same accuracy and convergence rate as
the sate-of-art automaton, besides, it holds the parameter-free property.

The parameter-free property is defined as a property that the performance of a
automaton are independent of the selection of parameters, or a set of selected
parameters can be universally applied to all environments. This implies the procedure
can be omitted without scarifying accuracy and convergence rate. However, BLA also
suffers from a heavy computational burden due to the explicit computation of a beta
inequality.

In this paper, we propose two approaches to reduce the computational burden. One
takes advantage of recurrence relation of the beta inequality, the other uses a normal
distributions to approximate the beta distributions. Then we will verify the two
approaches via simulations and analyze the simulation results.

The rest of this paper organized as follows. Section 2 introduces the BLA briefly,
points out its drawback and advocates two possible ways to overcome it. Extensive
simulations are given in Sects. 3 and 4 concludes the paper.

2 Parameter-Free Two Action Learning Automaton

First, we shall introduce the algorithm we proposed in [18] briefly.

Fig. 1. Feedback connection of automaton and environment.
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ai ¼ argmini ai þ bið Þ when P1 6¼ P2
randomly chosen when P1 ¼ P2

�
ð1Þ

We may notice the exact value of probability P1 ¼ Prðe1 [ e2Þ is evaluated in step
3 and utilized in step 6 to judge if the convergence criteria is satisfied. The computation
of probability P1 ¼ Prðe1 [ e2Þ is implemented by the following equations.

If we regard P1 ¼ Pr e1 [ e2ð Þ as a function of a1; b1; a2; b2 and denote it as
g a1; b1; a2; b2ð Þ, we have:

g a1; b1; a2; b2ð Þ

¼
Xa1�1

i¼0

B a2 þ i; b1 þ b2ð Þ
b1 þ ið ÞB 1þ i; b1ð ÞB a2; b2ð Þ ð2Þ

¼
Xb2�1

i¼0

B b1 þ i; a1 þ a2ð Þ
a2 þ ið ÞB 1þ i; a2ð ÞB a1; b1ð Þ ð3Þ

¼ 1�
Xa2�1

i¼0

B a1 þ i; b1 þ b2ð Þ
b2 þ ið ÞB 1þ i; b2ð ÞB a1; b1ð Þ ð4Þ

¼ 1�
Xb1�1

i¼0

B b2 þ i; a1 þ a2ð Þ
a1 þ ið ÞB 1þ i; a1ð ÞB a2; b2ð Þ ð5Þ

The above four equivalent equations indicate that the g a1; b1; a2; b2ð Þ can be
evaluated with O min a1; a2; b1; b2ð Þð Þ by any programming language where the
log-beta function is well defined. However, it’s still can be improved through the
following two approaches.

2.1 Recurrence Relationship

The recurrence relations that given in [19] are:
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g a1 þ 1; b1; a2; b2ð Þ ¼ g a1; b1; a2; b2ð Þþ h a1; b1; a2; b2ð Þ
a1

ð6Þ

g a1; b1 þ 1; a2; b2ð Þ ¼ g a1; b1; a2; b2ð Þ � h a1; b1; a2; b2ð Þ
b1

ð7Þ

g a1; b1; a2 þ 1; b2ð Þ ¼ g a1; b1; a2; b2ð Þ � h a1; b1; a2; b2ð Þ
a2

ð8Þ

g a1; b1; a2; b2 þ 1ð Þ ¼ g a1; b1; a2; b2ð Þþ h a1; b1; a2; b2ð Þ
b2

ð9Þ

where h a1; b1; a2; b2ð Þ ¼ Bða1 þ a2;b1 þb2Þ
Bða1;b1ÞBða2;b2Þ .

Since one of the four equation can be used to update g a1; b1; a2; b2ð Þ after each
iteration, and a1; b1; a2; b2 are all initialized as one according to the algorithm. So we
can simply compute any g a1; b1; a2; b2ð Þ iteratively starting from g 1; 1; 1; 1ð Þ ¼ 0:5.
A demo of learning process is illustrated in Fig. 2. In Fig. 2, the red-colored number
means it changes at the corresponding time instance. Since the terms with green
background are known at previous time instance, so only the term with yellow back-
ground should be evaluate to get a new value that may be used in the next time
instance. By such way, it is obvious that g a1; b1; a2; b2ð Þ could be computed with O 1ð Þ
by any programming language where the log-beta function is well defined. That is
doubtlessly a big improvement and can be expected to reduce the computational burden
significantly.

2.2 Normal Approximation

Normal distribution, also known as Gaussian distribution, is a very common contin-
uous probability distribution in probability theory. As advocated in [20], beta distri-
bution may sometimes be approximated by a normal distribution and this
approximation becomes exact asymptotically as the beta distribution parameters
increase.

The technique used here is called moment matching, which maps a general prob-
ability distribution G1 to another general probability distribution G2. The two proba-
bility distributions share the same moment (mean, variance, etc.).

So the key idea is Pr XB [ YBð Þ � Pr XN [ YNð Þ, where XB and YB are independent
beta random variables XN and YN their corresponding normal approximations.

We denote the shared mean of XB and XN as lX , then

lX ¼ aX
aX þ bX

ð10Þ

And we denote the shared variance of XB and XN as r2X , then
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r2X ¼ aXbX
aX þ bXð Þ2ðaX þ bX þ 1Þ ð11Þ

Then

Pr XN [ YNð Þ ¼ Uð lX � lY

r2X þ r2Yð Þ1=2
Þ ð12Þ

Fig. 2. Demonstration of a learning process that utilizing recurrence relationship (Color figure
online)
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Fig. 3. The probability density function (pdf) of Beta distribution with a ¼ 4; b ¼ 5 and the
pdf its corresponding normal approximation. (Color figure online)

Fig. 4. The difference between the cumulative probability functions of beta distribution with
a ¼ 4; b ¼ 5 and its normal approximation
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Where U denote the cumulative distribution function of the standard normal dis-

tribution. As U xð Þ ¼ 1
2 1þ erf ð xffiffi

2
p Þ

h i
, so the target formula could be computed by using

the relative error function.
It was reported by Cook [20] that if the distribution parameters of XB and YB take on

integer values between 1 and 10 inclusive, the maximum absolute error is 0.05069 and
the average absolute error over the parameter values is 0.006676. Figure 3 illustrates
the probability density functions of a beta distribution and its normal approximation
and Fig. 4 shows the differences between the cumulative probability function of the
two distributions. It’s worth mentioning that the difference will approaches zero
asymptotically as the beta distribution parameters increase. That’s the foundation of an
accurate convergence.

3 Experiments

In this section, simulations are performed to verify the effectiveness of the two
approaches. To make a comparison, the environments are the same as environments
used in [18], which are:

E1:{0.90, 0.60}.
E2:{0.80, 0.50}.
E3:{0.80, 0.60}.
E4:{0.20, 0.50}.

The iterations and accuracy (number of correctly converged/number of experi-
ments) of each algorithm are summarized in Table 1, where 250000 independent
simulations are performed to get averaged iterations and accuracy.

The simulation codes are programmed by C++ with Boost library, which provides
the beta random number generator, relative error function, beta function and log-beta
function. Then the codes are performed on our workstation, which has Dual-CPU
2.6 GHz Intel Xeon E5-2670 with 4 Gbytes of RAM and a 500 Gbytes hard disk.

The running time, accuracy and averaged iterations of the three different approa-
ches in the four environments are summarized in Tables 1, 2 and 3, respectively.

From the tables, we can see Normal Approximation approach needs the least
interactions with the environments, but at a cost of a small decline in accuracy. One
distinct advantage is that it’s about 401 to 4144 times faster than original approach with
respect to running time.

Table 1. The running time of 250000 independent simulations in E1 to E4

Environment Original
approach

Recurrence relation
approach

Normal approximation
approach

E1 151.508 s 0.945 s 0.377 s
E2 342.406 s 1.123 s 0.399 s
E3 3004.4 s 2.19 s 0.725 s
E4 493.156 s 1.113 s 0.395 s
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Recurrence Relation approach keeps the same accuracy and required interactions
with original approach, but still be about 160 to 1371 times faster than original
approach.

4 Conclusion

In this paper, two approaches for reducing the computation time is proposed and
experimentally verified. The simulation results shows both the two approaches are
faster than the original approach, one with a slight loss in accuracy but another without
any loss. These two approaches are expected to enhance the applicability of BLA in
engineering.

However, the problem still remains open, problems such as how can the scheme be
extended to be applicable in multi-action environments are supposed to be our future
work.
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