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Abstract. Feature selection is to remove redundant and irrelevant features from
original ones of exemplars, so that a sparse and representative feature subset can
be detected for building a more efficient and accurate classifier. This paper
presents a novel definition for the discernibility and independence scores of a
feature, and then constructs a two dimensional (2D) space with the feature’s
independence as y-axis and discernibility as x-axis to rank features’ importance.
This new method is named FSDI (Feature Selection based on Discernibility and
Independence of a feature). The discernibility score of a feature is to measure the
distinguishability of the feature to detect instances from different classes. The
independence score is to measure the redundancy of a feature. All features are
plotted in the 2D space according to their discernibility and independence
coordinates. The area of the rectangular corresponding to a feature’s discerni-
bility and independence in the 2D space is used as a criterion to rank the
importance of the features. Top-k features with much higher importance than the
rest ones are selected to form the sparse and representative feature subset for
building an efficient and accurate classifier. Experimental results on 5 classical
gene expression datasets demonstrate that our proposed FSDI algorithm can
select the gene subset efficiently and has the best performance in classification.
Our method provides a good solution to the bottleneck issues related to the high
time complexity of the existing gene subset selection algorithms.

Keywords: Discernibility � Independence � Feature selection � Gene subset
selection

1 Introduction

The fast growing of high-dimensional data sets with lots of redundant and irrelevant
features brings great challenges to machine learning and data mining algorithms. Feature
selection methods can choose those features which are highly correlated to labels and
lowly redundant between them, without sacrificing the classification performance of the
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learning algorithm. Very often, classification models built on the selected feature subset
are more accurate and easier to understand, and have a better generalization capacity,
higher efficiency, reduced curse of dimensionality, and more intuitive visualization
analysis [4].

A feature selection algorithm usually has two parts: feature subset search and
feature subset evaluation [14]. According to the dependencies between a feature
selection process and the learning algorithm, feature selection approaches can be
divided into two categories: the Filters and the Wrappers [1, 11]. The filters are
independent to learning algorithms, and their feature selection processes are done via
an evaluation criterion which defines the feature importance without considering the
learning algorithms [1]. As a consequence filters identify all the relevant features, and
these features are all considered as important features to constitute the feature subset.
Filters are always fast and with good generalization capability, such as Relief [10],
correlation based feature selector (CFS) [6] and maximal relevance-minimal redun-
dancy (mRMR) [15] which are the classical filter feature selection methods. Wrappers
rely on the learning algorithms [11] and use the predictive accuracy of the learning
algorithms on the validation datasets to test the power of the related feature subset. In
general, wrappers select a sparse and representative feature subset for building a more
accurate classifier. However, the computational load of wrappers is heavier than that of
filters because the classification models need to be trained repeatedly in wrappers. In
addition wrappers may lead to over-fitting effects on small datasets. SVM-RFE (SVM
recursive feature elimination) [5] and SVM-SFS (SVM sequential forward search) [21]
are typical wrappers and they have got good performance on gene expression
microarray data analysis. The hybrid methods combine the filters and wrappers together
to achieve a better performance. The hybrid approach has become a widely studied area
for feature selection [4, 8, 21].

Gene expression data sets having tens of thousands of features but with small
numbers of samples contain a high level of redundant and irrelevant gene variables for
disease diagnosis purposes [3, 12, 16]. Feature selection is the primary task to analyze
this type of data [4]. Time complexity bottleneck is the main issue of the available gene
selection algorithms, especially for the wrappers. The cluster analysis can be applied to
feature selection by choosing typical features from each cluster to construct the selected
gene subset, which can partially solve the time bottleneck problem in gene selection
algorithms [17, 20, 21]. However, how to detect the correct clusters is still an open
question.

To select a sparse and representative feature subset and to avoid the bottleneck
problems in the gene selection process, we propose a new feature selection algorithm
named FSDI short for feature selection based on the discernibility and independence of
a feature. FSDI defines a score for the feature discernibility and feature independence.
It then uses feature independence as the y-axis and feature discernibility as x-axis to
construct a two dimensional space. All features are scattered in the two dimensional
space with their discernibility and independence scores as coordinates. The features at
the top-right corner of the two dimensional space are those ones whose discernibility
and independence are relatively large. We adopt the area of the rectangular corre-
sponding to each feature’s discernibility and independence to measure the importance
of the feature. The rectangular area corresponding to the top-right corner features is
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always much larger than the remaining ones, so the area for each feature can be used as
a weight of the feature. Those features with larger weights are detected by FSDI to
construct the sparse and representative feature subset. The classifier built on the feature
subset will be more accurate. FSDI takes into account the ability of a feature to identify
instances from different classes in its discernibility and the redundancy of a feature in
its independence simultaneously, so that it can guarantee the selected genes are the
representative ones with high relevancy to the classes and the smallest redundancy as
much as possible.

On the high-dimensional gene expression data sets, we first cluster all of the genes
to select those typical genes from each cluster to form the preselected gene subset.
FSDI is carried out on the preselected gene subsets to get the optimal gene subsets.
Experimental results on 5 classical gene expression datasets demonstrate that our FSDI
method can detect gene subsets with a high efficiency, and the classifiers built on the
selected gene subsets have got a better classification performance for the diagnosis
purposes than those classical gene selection algorithms that are available now.

This paper is organized as follows: Sect. 2 describes the proposed FSDI method.
Section 3 presents the performance results of our FSDI method on 5 high-dimensional
gene expression datasets. Section 4 draws our conclusions.

2 The FSDI Algorithm

The most contribution of our FSDI is that it defines the discernibility and independence
scores for each feature and constructs the two dimensional space in the feature’s
discernibility and independence, so that all features are scattered in the two dimensional
space and the features lying at the top-right corner of the two dimensional space will be
automatically detected to construct the selected feature subset to build a classifier with
higher accuracy.

2.1 Preliminary Feature Selection

K-means algorithm [13] is a fast and classical clustering algorithm. It can be used to
cluster big data [9, 21]. In this paper, K-means algorithm is used to cluster all genes of
data into clusters of k0 ¼ 30. Then we use Wilcoxon Signed-rank test to measure the
weight of genes and calculate the average weight of each cluster. The genes above the
average weight of its cluster are preserved to constitute the preselected gene subset.

According to the principles of clustering, features in same clusters are highly similar
to each other and those in different clusters are dissimilar as much as possible. Therefore,
we can say that features in same clusters are highly redundant and in different clusters
are relatively independent with little redundancy. Therefore the preliminary selection
can reduce feature redundancy and retain feature discriminative ability, which will speed
up the feature selection process and reduce the requirement of storage space and the
curse of dimensionality.
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Wilcoxon Signed-rank test is a nonparametric statistical method in statistic
hypothesis. It can avoid the influence from parameters, so we adopt it in our research
work. It is calculated in Eq. (1).

S fið Þ ¼
XN0

k¼1

XN1

j¼1

v Xj;fi � Xk;fi

� �� 0
� � ð1Þ

where v �ð Þ is the discriminant function, and v �ð Þ ¼ 1 if Xj;fi � Xk;fi

� �� 0, otherwise
v �ð Þ ¼ 0. Xj;fi is the expression value of gene fi in sample j. The number of samples in
two classes of a dataset are respectively denoted by N0 and N1. It can be seen from
Eq. (1) that the feature fi has got good ability to detect samples from two classes when
its Wilcoxon rank sum statistic value is close to 0 or N0 � N1 without considering that it
has got the same value in all samples. The weight wi of fi is calculated by Eq. (2). The
higher the value of wi is the stronger the ability of feature fi to discriminate samples
from different classes, and the greater contribution of it to the classification task.

wi ¼ max N0 � N1 � S fið Þ; S fið Þ½ � ð2Þ

2.2 The Main Idea of FSDI Algorithm

Here the discernibility and independence scores of a feature are introduced, then the
area of the rectangular is calculated corresponding to a feature’s coordinates. FSDI
algorithm selects features with much higher values of their rectangular area than the
rest ones to constitute the selected feature subset.

Feature Discernibility and Independence and Importance. Suppose D ¼ X1;X2;f
� � � ;Xmg 2 Rm�n to be a train subset with m samples and n features for each. Feature
discernibility and independence of feature fi are defined as follows.

• Feature discernibility: we adopt Wilcoxon Signed-rank test to assess the dis-
cernibility disi of feature fi and define it as the distinguishable ability of fi to detect
samples from different classes in Eq. (3). We can learn from Eq. (3) that the higher
the distinguishable ability of feature fi, is the higher value of its disi, that means the
more importance is the feature fi to classification.

disi ¼ wi ð3Þ

• Feature independence: independence of feature fi, shown in Eq. (4), is defined as
the distance of correlation between features. If a feature has the maximum dis-
cernibility value, its independence is defined by Eq. (5).

indi ¼ min
j:disj�disi

exp �r fi; fj
� �� �� � ð4Þ

indi ¼ maxj exp �r fi; fj
� �� �� � ð5Þ
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where r is the absolute value of Pearson correlation coefficient between features and it
is calculated in Eq. (6).

r ¼ ðX� �XÞTðY� �YÞ�� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� �Xk k2 Y� �Yk k2

q ð6Þ

where X;Y indicate two feature vectors, and X, Y are respectively the mean value of
feature vector X and Y.

It can be seen from (4) that the independence indi of feature fi means the relevance
of feature fi with feature fj whose discernibility is just higher than fi. If feature fi has got
global maximum discernibility, its independence is the maximum distance of relevance
with other features. The formulae (4)–(6) reveal that the feature with stronger corre-
lation with others will obtain the weaker independence, which means the stronger the
independence of a feature is, the very lower correlation of the feature with others is.
This is coincidence with the real world situation.

It can be seen from (3)–(5) that the stronger distinguishability of feature fi, is the
bigger its discernibility disi; and the smaller the redundancy with other features, is the
bigger its independence indi. Therefore we can construct a two dimensional co-ordinate
system with features’ independence as y-axis and discernibility as the x-axis, and adopt
the area of the rectangle with the points (0,0) and (indi, disi) as opposite vertices to denote
the importance of feature fi. Features with large value of rectangle area possess infor-
mative information for classification whilst with little redundancy. Such kind of features
are the ones we are seeking for to constitute the feature subset, which coincide with the
original meaning of feature selection. The importance of feature fi is defined in (7).

Feature Importance: the importance of feature fi denoted as Scorei is defined as the
area of the rectangle surrounded by its discernibility and independence and the axes,
which is calculated in Eq. (7).

Scorei ¼ disi � indi ð7Þ

It can be seen from formula (7) that the bigger the discernibility and independence
of a feature are, the larger is the value of the importance Score of the feature, and at the
same time the greater will the feature contribute to the classification. Calculating the
importance of each feature and choosing the top features with much higher importance
than the rest features to construct the feature subset, guarantee that the selected feature
subset will have a better performance in classification and with very lower redundancy
between features.

The FSDI Algorithm. The ideal feature subset is the one with features strong cor-
related to class labels whilst less redundant between features [15]. In this paper, we
propose feature discernibility to measure the distinguishability of a feature between
classes and feature independence to value the redundancy of a feature, and construct
the two dimensional space in the feature’s discernibility and independence. All features
are scattered in the two dimensional space. It can be seen from the definitions of a
feature’s discernibility and independence in formulae (3)–(5) that the stronger the
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distinguishability of a feature possesses, then the larger of its discernibility is; whilst
the smaller the feature redundancy is, then the stronger of its independence is. The
features with larger discernibility and independence are always scattered at the
top-right corner of the two dimensional space with higher importance. FSDI will
automatically detect those features with higher importance than the rest ones to con-
struct the feature subset on which to build the classifier with more accurate. As a
consequence that FSDI to some extend solved the problem of how many number of
features should be selected in the feature selection algorithms.

Here are the detail steps of our FSDI algorithm.
Input: train subset data D with m samples and n features 
for each sample, vector Y for class labels, parameter k
be the number of features in the selected feature subset.
Output: the selected feature subset S.
Initialize S = ∅ , F be the feature set with all features;
for i = 1 to n do
calculate idis and iind respectively by(3) and (4) or (5);

calculate the importance iScore of feature if by (7);

end for;
features are sorted in descending order in their Score ;
add top k features with much larger Score than the rest 
ones to S .

2.3 An Illustrating Example

Here we will test our FSDI in a random synthetic case. The synthetic dataset contains
20 samples from 2 classes, and with 50 features for each sample. We partition the
synthetic dataset into train and test subset in bootstrap [7], and run our FSDI on the
train subset, then build the SVM classifier on the selected feature subset. We calculate
the classification accuracy in formula (8) to balance the overfitting and generalization,
where M is the classifier built on the selected gene subset. We use the SVM library [2]
to conduct experiments with parameter C for the linear kernel be 20. Here we do not
conduct preliminary selection to features for the number of them is only 50. Figure 1(a)
displays the 50 features in the two dimensional space in their discernibility and
independence with their number in original dataset. Figure 1(b) shows the importance
of 50 features in descending order where the y-axis is the feature importance and x-axis
is the number of features.

Acc ¼ 0:632� AccðMÞtest þ 0:368� AccðMÞtrain ð8Þ

It can be seen from Fig. 1(a) that the discernibility and independence of the 49th
feature are very small whist the features of 48th, 39th and 26th have got the much
higher discernibility and independence than the rest features. The results displayed in
Fig. 1(b) disclose that the 48th, 39th and 26th features have got the highest, the second
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and the third rank of Scores whilst the 49th feature the smallest one. These results
shown in Fig. 1(a) and (b) agree with each other.

We build the SVM classifier on the feature subset of features 48, 39 and 26. The
mean accuracy of the SVM classifier is 100 %. We further analyze the performance of
feature subset with top 1 and 2 features, then we respectively get the mean accuracy of
74.72 % and 89.81 %. From the analysis to the case study we can say that the defi-
nition of feature importance in this paper is reasonable and it can be used to detect those
informative features for classification.

3 Experiments and Analysis

Experiments are conducted on 5 intensively studied gene expression datasets: the
Colon, CNS, Leukemia, Carcinoma, and Breast Cancer datasets1. Table 1 describes
detailed information of these datasets, where Ng and Ns denote the number of features
and instances respectively. We first do the preliminary gene selection to the original
genes, then run FSDI to detect the optimal gene subset from the preselected gene
subset, after that we construct the classifier on the optimal gene subset.

We adopted KNN as a classification tool with K equal to 5, and compared the
experimental results of our FSDI with that of the classical methods such as Weight [21],
mRMR [15], ARCO [18], SVM-RFE [5] and Relief [10] when the same number of
genes are selected (Table 2). Figures 2, 3, 4, 5 and 6 displayed the genes in the two
dimensional space, and tagged the genes detected by our FSDI on the 5 gene expression
datasets.

From the experimental results of our FSDI on these gene expression datasets shown
in Figs. 2, 3, 4, 5 and 6, we can say that the features with high discernibility and
independence are scattered at the top-right corner of the two dimensional space with
features’ discernibility and independence as coordinates. These features have got much
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Fig. 1. The descriptions of feature importance, (a) features are scattered in their disi; indið Þ in
two dimensional space, (b) feature are scattered in their importance in descending order.

1 http://levis.tongji.edu.cn/gzli/data/mirror-kentridge.html.
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higher importance than the rest features which are scattered at the bottom-left corner of
the two dimensional space. Our FSDI can automatically detect those features which
possess much higher importance than the rest ones to construct the selected gene
subsets on which to build the classifier with more accurate.

From the figures in Table 2, we can see that our FSDI dominates the other gene
selection algorithms in Colon, CNS and Carcinoma datasets, and its performance on
Leukemia is similar to ARCO followed by Weight, mRMR, Relief and SVM-RFE, and
its performance on Breast Cancer is similar to mRMR, followed by ARCO, Weight,

Table 1. The description of datasets

Gene datasets Source Ng Ns

Colon Alon et al. 2000 62(40 + 22)
CNS Notterman et al. 7129 90(60 + 30)
Leukemia Golub et al. 7129 72(47 + 25)
Carcinoma Notterman et al. 7458 36(18 + 18)
Breast Cancer Van’t Veer L.J. et al. 24481 97(51 + 46)
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Fig. 2. The results of FSDI on Colon dataset

Fig. 3. The results of FSDI on CNS dataset
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Relief and SVM-RFE. These results shown in Table 2 disclose that our FSDI is the
best one among the compared gene selection algorithms, and also reveal that the
popular gene selection algorithm SVM-RFE is the worst one among the compared gene
selection algorithms. Followed our FSDI are the gene selection algorithms mRMR and

Fig. 4. The results of FSDI on Leukemia dataset

Fig. 5. The results of FSDI on Carcinoma dataset

Fig. 6. The results of FSDI on Breast Cancer dataset
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ARCO. Relief and Weight algorithms have got the similar performance when used to
do gene selection for gene expression data analysis. In addition the size of the selected
gene subset shown in Table 2 reveals that selected genes are sparse compared to the
original ones.

From the above analysis we can state that our FSDI can find the informative genes
to construct the optimal gene subset on which to build the KNN classifier with more
accurate than the compared gene selection algorithms, and we can say that our FSDI
can detect the gene subset with features relevant to classes and sparse and represen-
tative. Therefore we can conclude that our FSDI implement the destination of filters and
wrapper simultaneously.

Table 2. The classification accuracy comparison of FSDI with other gene selection algorithms

Dataset FSDI Weight mRMR SVM-RFE Relief ARCO Genes numbers

Colon 0.8963 0.5735 0.7743 0.6455 0.8010 0.8094 2
0.8696 0.7982 0.8345 0.6606 0.8361 0.8445 5
0.9131 0.7262 0.8361 0.8094 0.8094 0.8712 8

CNS 0.8575 0.7315 0.7042 0.7149 0.7423 0.8183 2
0.9085 0.7120 0.7791 0.8230 0.7660 0.8183 3
0.9145 0.8173 0.7957 0.8860 0.7838 0.8919 4
0.9145 0.8173 0.8468 0.8753 0.8183 0.8860 6
0.9323 0.8270 0.8016 0.8408 0.8242 0.9038 10
0.9656 0.8451 0.8242 0.8242 0.8468 0.9264 12

Leukemia 0.9346 0.7649 0.8230 0.7374 0.8505 0.9346 1
0.9256 0.7576 0.9442 0.8513 0.9063 0.9160 4
0.9256 0.7762 0.9071 0.8230 0.8877 0.9346 6
0.9256 0.8416 0.9071 0.7947 0.9160 0.9160 7
0.9256 0.9249 0.9256 0.8044 0.8885 0.9346 8
0.9814 0.9814 0.9071 0.8416 0.9071 0.9160 11

Carcinoma 0.9864 0.7127 0.8459 0.7369 0.9591 0.7893 1
1 0.9847 1 0.9161 0.9864 0.9025 4
1 1 1 0.9298 1 0.8596 6
1 1 1 0.9298 1 0.9298 9
1 0.8947 1 0.9298 1 0.8596 10

Brest Cancer 0.6922 0.6365 0.6132 0.6188 0.6245 0.7770 2
0.7402 0.5902 0.8108 0.6161 0.6951 0.7854 3
0.7995 0.6848 0.8305 0.6866 0.6640 0.7855 4
0.7967 0.7775 0.7967 0.7234 0.6697 0.7544 6
0.7601 0.7182 0.7910 0.6980 0.6697 0.7544 7
0.8532 0.7200 0.8024 0.6923 0.6837 0.7996 10
0.8237 0.7683 0.7742 0.7290 0.6753 0.8194 15

Coordinating Discernibility and Independence Scores of Variables in a 2D Space 125



4 Conclusions

We have proposed a new feature selection algorithm named FSDI for informative gene
selection, and defined the discernibility and independence scores of a feature to value
the distinguishability and redundancy of a feature. The main contribution of this work
is the construction of a two dimensional space coordinating a feature’s discernibility
and independence scores at the x-axis and y-axis. All the relevant features can be found
and the sparse and representative feature subset can be formed by collecting those
features which are always scattered at the top-right corner of the two dimensional
space. Experimental results on 5 widely studied benchmark gene expression datasets
demonstrate that our FSDI method has achieved better performance than the typical
gene selection algorithms in terms of classification accuracy and efficiency. FSDI
combines the merits of both the filter and wrapper feature selection approaches. Our
method provides a good solution to the bottleneck issues related to the high time
complexity of the existing gene subset selection algorithms.
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