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Abstract. Cancer genome projects can provide different types of data on the
genetic level, which is significant for cancer research and biological processes in
computational methods. Thus, computational methods used to identify cancer
subtypes should fully focus on integrating these multidimensional data (e.g.,
DNA methylation data, mRNA expression data, etc.). Sparse reduced-rank
regression (Srrr) method, a state-of-the-art multiple response linear regression
method, can easily deal with high dimensional statistical data. In this paper, we
introduced Srrr method combining iCluster (Srrr-cluster) to discovery cancer
subtypes. Firstly, we used Srrr to estimate the coefficient matrix and then cancer
subtypes were clustered by iCluster. Finally, we used our Srrr-cluster method to
analyze glioblastoma and breast cancer data. The results show that our
Srrr-cluster method is effective for cancer subtype identification.
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1 Introduction

The genomes of cancer often contain a large number of somatical aberrations infor-
mation, e.g., DNA copy number aberrations are closely relation to tumor gene by gene
amplification or tumor suppressor loss because of genomic instability and deregulation
[1, 2]. Other cases, epigenetic aberrations also result in oncogene such as genomic
methylation [3]. DNA sequence change will directly affect the mRNA expression levels
even other non-coding microRNA, and then change the outcome of the transcriptome,
eventually produce individual heterogeneity and lead to distortion of cancer cells. The
same cancer may have diverse somatic mutation and transcriptional level, so that the
formation of different kinds of subtypes has diverse heterogeneity of biological pro-
gresses and phenotypes [4]. For example, glioblastoma (GBM) can be defined as the
Classical, Mesenchymal, and Proneual subtypes by aberrations and gene expression of
EGFR, NF1 and PDGFRA/IDH1 [5].
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Recently, many cancer genome projects are established and amassed a large
number of various types of data. For example, The Cancer Genome Atlas (TCGA)
(http://cancergenome.nih.gov/) contains genome, transcriptome and expression infor-
mation for over 20 cancers from thousands of patients, which produced several types of
data, such as methylation data, mRNA expression data, DNA copy number data and so
on. Currently, some integrative methods have been proposed which combine different
biological data for cancer subtype classification. For example, iCluster is a integrating
probability model of multiple data based on Gaussian latent variable model. Which first
structures an optimizing penalized log-likelihood function to estimate using
Expectation-Maximization algorithm with lasso-type sparse [6, 7], then using K-means
to get subtypes. However, bulky datasets also bring about many challenges for sub-
types classification. Firstly, the key of data-integration clustering method tend to
construct a variance - covariance structure within data types, namely coefficient matrix
solving, which is equivalent to a feature selection process. The coefficient matrix is a
projection matrix that projects the original data onto an eigengene-eigenarray subspace.
Secondly, high-dimensional datasets have a common feature that the number of
samples small yet the number of genes is large, so the dimension reduction of coef-
ficient matrix is essential. iCluster used PCA method to estimate the coefficient matrix
that defined the first k–1 eigenvectors by a pivoted QR decomposition [8, 9]. However,
in the Gaussian latent variable models, PCA has many deficiencies: (i) significant
features can’t completely be extracted when facing high dimensional statistical data.
(ii) eigenvalue of the first principal component is much larger than the eigenvalues of
the other main components.

Briefly, we can see that the estimator of coefficient matrix is very important.
Considering Gaussian latent variable model, sparse reduced-rank regression (Srrr) is a
useful parsimony model when facing a large number of data for multiple response
regression [10–14]. Generally, Srrr with the purpose of solving an indicator matrix can
be divided into three steps in different algorithm: (i) Working out reduced-rank matrix
that can reduce the noise of the model and improve the robustness. (ii) Constructing
sparse group lasso, group bridge or group MCP term, which can solve the problem that
the sample volume is pretty smaller than the gene volume [10, 11]. (iii) Establishing
minimum optimization function to solve the coefficient matrix. Until now, Srrr method
has been applied in several research area. E.g., Lin et al. (2013) used it to detect genetic
networks associated with brain functional networks in schizophrenia [12]. Chen et al.
(2012) proposed a weighted rank-constrained group lasso approach with two heuristic
numerical algorithms and studied its large sample asymptotics [13].

In this paper, we used subspace assisted regression with row sparsity (SARRS)
algorithm that proposed by Ma et al. (2014) [14], combining with iCluster (Srrr-cluster)
to discovery cancer subtypes. Srrr-cluster can be regarded as a data-integration clus-
tering method which first estimating the coefficient matrix of the latent variable model
using the Srrr method, and then solving the estimator of the desigen matrix through
optimizing a penalized complete-data log-likelihood with sparse term using the
Expectation-Maximization (EM) algorithm.
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2 Srrr-cluster Methods

2.1 Data Types Integration and a Gaussian Latent Variable Model
Representation

Mo et al. summarized the different data types to adapt to different mathematical
probability models [15]. For example, mutation status is defined binary variable that is
suit for logistic regression model; copy number loss, gain, and normal status are
defined multicategory variable that are suit for multilogit regression; NDA copy
number data, DNA methylation data, mRNA expression data and so on are defined
continuous variable that are suit for Gaussian latent model. In this paper, different types
of continuous data are regressed using Srrr model to discovery cancer subtypes. We can
fuse the same samples with different types of continuous data into a multiple genomic
data. Therefore, we employ an integrating genomic data that harbor different levels of
expression and transcriptome information to search subtypes.

Firstly, we establish a Gaussian latent variable model:

X ¼ ZW þ e ð1Þ

here X ¼ X1; . . .XPf g is the original integration data of dimension n� m, where X1 can
denote DNA methylation data of dimension n� m1, X2 can denote DNA copy number
data of dimension n� m2, Xp can denote mRNA expression of dimension n� mp and
so forth. Z is the design matrix of dimension n� l, W is the coefficient matrix of
dimension l� m, e is the error term and make the additional assumption that
Z�Nð0; IÞ and e�Nð0;wÞ. p is the number of genomic data types, n is the number of
samples, m is the number of the genes, l is the number of predictors. Ding et al.
(2004) noted that the K-means solution of Z can directly be selected using the first k–1
eigenvectores that span a low-dimensional latent space where the original data are
projected onto each of the first K–1principal directions such that the total variance is
maximized by PCA. So, Z is the design matrix of dimension n� ðk� 1Þ that is finally
clusters latent tumor subtypes and the initial value of Z is the first k–1 eigenvectores by
PCA, where k is the number of clusters [9].

2.2 An Adaptive Srrr Method and Srrr-cluster

Following Eq. (1), we can afford to estimate the solution of the coefficient matrix W
using an adaptive Srrr method. The goal is to reduce the rank r ofW under the Gaussian
latent variable model. Firstly, two error parameters, i.e., a noise level r expressed as
r ¼ medianðrðXÞÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

minðn;mÞp
, where rðXÞ is the collection of all nonzero singular

values of X, and a noise rank level g, expressed as g ¼ ffiffiffiffiffiffi
2m

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðminðn; kÞp

, are
estimated to work out the reduced-rank r and an orthonormal matrix Vð0Þ that is
non-orthogonal to the right singular subspace of W . The estimator of r is computed by:
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r ¼ maxfj : rjðZðZ 0ZÞ�Z 0XÞ� rgg ð2Þ

Where ZZ 0ð Þ� is Moore-Penrose pseudo-inverse. So, the Srrr method use the first
r-th right vector of ZðZ 0ZÞ�Z 0X to estimate the orthonormal matrix Vð0Þ:

Vð0Þ ¼ ðV ð0Þ
1 ; . . .;V ð0Þ

r Þ ð3Þ

Depending on characters of the orthonormal matrix Vð0Þ, such as W ¼ WVð0ÞV 0
ð0Þ,

the reduced-rank matrix B can be expressed as:

B ¼ WVð0Þ ð4Þ

with dimension ðk � 1Þ � r which columns being the estimator of rank. What more,
VV 0 is a projection matrix that approximatively maps onto the right singular subspace
of W .

For the sake of simplicity, Ma et al. take sparse group lasso in this model, where
each row of the B is regarded as a group and all groups are of the same size r [14]. Each
row takes sparse process by the ‘2 matrix norm as follows:

qðB; kÞ ¼ k
Xk�1

j¼1

Bj�
�� ��

2 ð5Þ

where k is the penalty level.
Following these, Srrr method constructs a right bias-variance tradeoff function with

reduced-rank term representing the variance part and sparse lasso term representing the
bias part using SARRS algorithm:

W ¼ argmin
Z2<ðk�1Þ�n

XVð0ÞV
0
ð0Þ � ZWVð0ÞV

0
ð0Þ

��� ���2
F

�
2þ qðWVð0ÞV

0
ð0Þ; kÞ

� �
ð6Þ

we can further reduce the computation cost by first solving:

Bð1Þ ¼ argmin
B2<ðk�1Þ�r

XVð0Þ � ZB
�� ��2

F

.
=2þ qðB; kÞ

n o
ð7Þ

However, Bð1Þ is not accurate but close to WVð0Þ because the columns of Vð0Þ is just
approximate to the right singular subspace of W .

It is worth noting that the right singular subspace ofW is exactly the same as that of
ZW . Next step, we can estimate the left singular subspace Uð1Þ 2 R

n�r of ZBð1Þ. Due to
(4), Uð1Þ is exactly the left singular subspace of ZWVð0Þ, which in turn equals the left
subspace of ZW . Through the same line of logic, Uð1ÞU0

ð1Þ is a projection matrix that

accurately maps onto the left singular subspace of WZ. Then, we can easily compute
the right singular vectors Vð1Þ 2 R

m�r of Uð1ÞU0
ð1ÞX, which in turn equals the right
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subspace of ZW . Successfully, a pretty accurate right singular vectors of W is esti-
mated. Finally, using Vð1Þ instead of Vð0Þ to solve the equation:

Bð2Þ ¼ argmin
B2<ðk�1Þ�r

f XVð1Þ � ZB
�� ��2

F=2þ qðB; kÞg ð8Þ

Hopefully, we compute the estimated indictor matrix by W ¼ Bð2ÞV 0
ð1Þ.

Given two or more types of data from the same cohort of patients, our Srrr-cluster
method first fuse these data into an integrative matrix, and then use the optimized PCA
to compute a design matrix for the integrative data. The next step is to use the adaptive
Srrr method to calculate the coefficient matrix under the Gaussian latent variable
model, which can project sample � gene space of the original data into eigenarray �
eigengene subspace. Finally, we use iCluster method to discovery cancer subtypes.

2.3 Evaluation Metric

We use three commonly used metrics to evaluate Srrr-cluster performance by identi-
fying subtypes in these cancers. (i) Silhouette score, a measure of cluster homogeneity,
which is defined as sðiÞ ¼ ðbðiÞ � aðiÞÞ=ðmaxðaðiÞ; bðiÞÞÞ, where aðiÞ is average dis-
similarity between i and all the other points of the same subtypes, bðiÞ is average
dissimilarity between i and all the other points of the different subtypes, i is an arbitrary
sample. If sihouette value is close to 1, it means that the data are appropriate [16]. (ii) P
value in Cox log-rank test, which is used to assess the significance of the different in
survival profiles between subtypes [17]. (iii) The proportion of deviance (POD), which
is a score of evaluating cluster degree of separation by a diagonal block structure. We
set a matrix A ¼ ZTZ;A 2 <n�n. Then the elements of A is defined as aij

� ffiffiffiffiffiffiffiffiffi
aiiajj

p
for i =

1,…, n and j = 1,…,n, and set negative values to zero, which can order cancers
belonging to the same clusters into a adjacent structure. If the diagonal block matrices
were prefect, all elements of the diagonal blocks would be non-negative and all ele-
ments of the off-diagonal blocks would be zero. So, compared A with the prefect
diagonal block structure, we define a deviance measure d, which is the sum of quan-
tities that the diagonal blocks’ elements of A appear zero and the off-diagonal blocks’
elements of A appear non-negative values. POD is defined as d

�
n2 so that POD is

between 0 and 1. Small values of POD indicate strong cluster separability, and large
values indicate of POD indicate poor cluster separability[6].

3 Results

3.1 Subtypes Discovery in Breast Cancer

Using DNA copy number and mRNA expression on the same cDNA microarrys that
contain 6691 genes form Pollack et al. [1] from 37 primary breast cancers and four
breast cancer cell lines, we compared the Srrr-cluster results with iCluster. As well
known, the expression profiles of the four cell line samples (BT474, T47D, MCF7 and
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SKBR3) should be similar so that they can be considered as a subtype from the rest of
the tumor samples. Additional, HER2/ERBB2 is an important prognostic factor for
breast cancer near17q12, the clinical features and biological behavior of a special

Fig. 1. Diagonal blocks structures obtained using iCluster (k = 4) and Srrr-cluster (k = 4, k = 3
and k = 5) methods.

Fig. 2. Heatmaps of copy number (DNA) and gene expression (mRNA) with samples arranged
by the integrated cluster assignment under the Srrr-Cluster model. (Color figure online)
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performance, treatment modalities HER2-positive (overexpression or amplification) of
breast cancer also have a great difference with other types of breast cancer.

Figures 1 and 2 shows the diagonal blocks structures under the sparse solution
k ¼ ð0:2; 0:2Þ, r corresponding to Cluster (k = 4) and Srrr-cluster (k = 4, k = 3 and
k = 5) respectively. POD values of the clustering solutions are 0.1519533, 0.1254317,
0.2478124 and 0.1259145 respectively. Considering the values of POD, the four
clusters obtained by Srrr-cluster method should be the best one. Figure shows the
heatmaps of the profiles of DNA copy number data and mRNA expression data when
samples were splitted four clusters using Srrr-cluster method. Carefully analysing the
four clusters combined heatmaps, we can see that cluster 1 is composed of the four cell
lines and cluster 2 is amplification in the DNA and overexpression in the mRNA
associated with the HER2/ERBB2.

3.2 Subtypes Discovery in GBM

The GBM dataset contains miRNA (534 genes) and mRNA expression (1740 genes)
data from 73 patients with GBM [18]. We used three evaluation metrics to evaluate the
result of the Srrr-cluster and iCluster Scluster: (i) The sihouette scores. (ii) The P values.
(iii) The POD values. The results of these three metrics are listed in Table 1. According
to these metrics, we can see that, using Srrr-cluster method, the within-clusters have
stronger coherence and the between-clusters have well separability.

4 Discussion

Srrr-cluster method can find more suitable coefficient matrix which can project the
original data onto an eigengene-eigenarray subspace when analyzing dataset with small
sample size and large variables. In this paper, we proposed to use Srrr-cluster method
for cancer subtypes discovery. Compared with iCluster method, our method can
identify more stable clusters. However, because Srrr-cluster is established on the basis
of iCluster, it has a major limitation that it needs a priori gene selection. In future, we
will explore how to solve this problem.
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Table 1. Three evaluation metrics to evaluate iCluster and Scluster (3 clustering solution)

Evaluation values iCluster Srrr-cluster

Sihouette scores 0.42 0.48
P values 0.31 0.04
POD values 0.20 0.17
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