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Abstract. Spiking neural networks are shown to be suitable tools for the
processing of spatio-temporal information. However, due to their intricately
discontinuous and implicit nonlinear mechanisms, the formulation of efficient
supervised learning algorithms for spiking neural networks is difficult, which
has become an important problem in the research area. This paper presents a
new supervised, multi-spike learning algorithm for spiking neurons, which can
implement the complex spatio-temporal pattern learning of spike trains. The
proposed algorithm firstly defines nonlinear inner products operators to math-
ematically describe and manipulate spike trains, and then derive the learning
rule from the common Widrow-Hoff rule with the nonlinear inner products of
spike trains. The algorithm is successfully applied to learn sequences of spikes.
The experimental results show that the proposed algorithm is effective for
solving complex spatio-temporal pattern learning problems.
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1 Introduction

Recent advances in neurosciences have revealed that neural information in the brain is
encoded through precisely timed spike trains, not only through the neural firing rate [1].
Spiking Neural Networks (SNNs) are often referred to as the new generation of neural
networks. They have more powerful computing capacity to simulate a variety of
neuronal signals and approximate any continuous function, and have been shown to be
suitable tools for the processing of spatio-temporal information [2]. Supervised
learning in SNNs involves a mechanism of providing the desired outputs with the
corresponding inputs. The network then processes the inputs and compares its resulting
outputs against the desired outputs. Errors are calculated to control the synaptic weight
adjustment. This process occurs over and over until the synaptic weights converge to
certain values. When the sample conditions are changed, synaptic weights can be
modified to adapt to the new environment after supervised learning. The purpose of
supervised learning with temporal encoding for spiking neurons is to make the neurons
emit arbitrary spike trains in response to given synaptic inputs.
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At present, researchers have conducted many studies on the supervised learning in
SNNs [3, 4], and achieved some results, but many problems remain unsolved. Bohte
et al. [5] first proposed a backpropagation training algorithm for feedforward SNNs,
called SpikeProp, similar in concept to the BP algorithm developed for traditional
Artificial Neural Networks (ANNs). The spike response model (SRM) [6] is used in
this algorithm. To overcome the discontinuity of the internal state variable caused by
spike firing, all neurons in the network can fire only one single spike. Shrestha et al. [7]
analyzed the convergence characteristics of SpikeProp algorithm, and proposed an
adaptive learning rate method, the experimental results show that the adaptive learning
rate greatly improved the weight convergence and learning speed. Similarly,
Ghosh-Dastidar and Adeli [8] put forward a BP learning algorithm named Multi-
SpikeProp, with derivations of the learning rule based on the chain rule for a multi-
spiking network model. Multi-SpikeProp was applied to the standard XOR problem
and the Fisher Iris and EEG classification problems, and the experimental results show
that the algorithm has higher classification accuracy than the SpikeProp algorithm.
Recently, Xu et al. [9] have extended the Multi-SpikeProp algorithm to allow neurons
to fire multiple spikes in all layers. That is, the algorithm can implement the complex
spatio-temporal pattern learning of spike trains. The experimental results show that this
algorithm has higher learning accuracy for a large number of output spikes. Consid-
ering the spike-timing-dependent plasticity (STDP) mechanism of spiking neurons,
Ponulak et al. [10, 11] proposed the ReSuMe (Remote Supervised Method) algorithm,
which adjusts the synaptic weights according to STDP and anti-STDP processes and is
suitable for various types of spiking neuron models. However, the algorithm can only
be applied to single layer networks or train readouts for reservoir networks. Sporea and
Grüning [12] extended the ReSuMe algorithm to multilayer feedforward SNNs using
backpropagation of the network error. The weights are updated according to STDP and
anti-STDP rules, and the neurons in every layer can fire multiple spikes. Simulation
experiments show that the algorithm can be successfully applied to various complex
classification problems and permits precise spike train firing. Based on the ReSuMe
algorithm with learning delay, Taherkhani et al. proposed DL-ReSuMe (delay learning
remote supervised method) algorithm [13], and put forward a Multi-DL-ReSuMe
algorithm [14] for multiple neurons. Mohemmed et al. [15, 16] proposed a SPAN
(Spike Pattern Association Neuron) algorithm based on a Hebbian interpretation of the
Widrow-Hoff rule and kernel function convolution. Inspired by the SPAN algorithm,
Yu et al. [17, 18] proposed a PSD (Precise-Spike-Driven) supervised learning rule that
can be used to train neurons to associate an input spatio-temporal spike pattern with a
desired spike train. Unlike the SPAN method that requires spike convolution on all the
spike trains of the input, the desired output and the actual output, the PSD learning rule
only convolves the input spike trains.

For SNNs, input and output information is encoded through precisely timed spike
trains, not only through the neural firing rate. In addition, the internal state variables of
spiking neurons and error function do not satisfy the continuous differentiability. So,
traditional learning algorithms of ANNs, especially the BP algorithm, cannot be used
directly, and the formulation of efficient supervised learning algorithms for SNNs is a
very challenging problem. In this paper, we present a new supervised learning algo-
rithm for spiking neurons with the nonlinear inner products of spike trains. The rest of
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this paper is organized as follows. In Sect. 2 we analyze and define the nonlinear inner
products of spike trains. In Sect. 3 we derive the learning rule based on the nonlinear
inner products of spike trains for spiking neurons. In Sect. 4 the flexibility and power
of spiking neurons trained with our algorithm are showcased by a spike sequence
learning problem. The conclusion is presented in Sect. 5.

2 Inner Products of Spike Trains

The spike train s ¼ fti 2 C : i ¼ 1; . . .;Ng represents the ordered sequence of spike
times fired by the spiking neuron in the interval C ¼ ½0; T �, and can be expressed
formally as:

sðtÞ ¼
XN
i¼1

dðt � tiÞ ð1Þ

where N is the number of spikes, and dð�Þ represents the Dirac delta function, dðxÞ ¼ 1
if x ¼ 0 and 0 otherwise.

In order to facilitate the analysis and calculation, we can choose a specific
smoothing function h, using the convolution to convert the discrete spike train to a
unique continuous function:

fsðtÞ ¼ s � h ¼
XN
i¼1

hðt � tiÞ ð2Þ

Due to the limited time interval of the corresponding spike train and boundedness
of the function fsðtÞ, we can get:

Z

C
f 2s ðtÞdt\1 ð3Þ

In other words, the function fsðtÞ is an element of L2ðCÞ space.
For any two given spike trains si; sj 2 sðCÞ, we can define the inner products of the

corresponding functions fsiðtÞ and fsjðtÞ on the L2ðCÞ space as follows [19]:

Fðsi; sjÞ ¼ fsiðtÞ; fsjðtÞ
� �

L2ðCÞ¼
Z

C
fsiðtÞfsjðtÞdt ð4Þ

The effect of the spike train to the postsynaptic neuron expressed in Eq. 2 is linear.
So, considering the biologically plausible nonlinear effect of spiking neuron, we can
rewrite the continuous function corresponding to the spike train s as follow:

f ys ðtÞ ¼ g
XN
i¼1

hðt � tiÞ
 !

ð5Þ
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where gð�Þ is the nonlinear function. So the inner products of the spike trains si; sj 2
SðCÞ can be extended to the nonlinear form as follow [20]:

Fyðsi; sjÞ ¼ f ysi ðtÞ; f ysj ðtÞ
D E

L2ðCÞ

¼ RC f ysi ðtÞf ysj ðtÞdt
¼ RC g fsiðtÞð Þg fsjðtÞ

� �
dt

ð6Þ

For the nonlinear function gð�Þ, it can be expressed as:

gðxÞ ¼ r 1� exp � x
2r2

� �h i
ð7Þ

or

gðxÞ ¼ r tanh
x
r

� �
ð8Þ

3 Learning Algorithm

The input and output signals of spike neurons are expressed in the form of spike trains;
that is, the spike trains encode neural information or external stimuli. The computation
performed by single spiking neurons can be defined as a mapping from the input spike
trains to the appropriate output spike trains. For a given spiking neuron, we assume that
the input spike trains are si 2 sðCÞ; i ¼ 1; . . .;N, and the output spike train is
so 2 sðCÞ. In order to analyze the relationship between the input and output spike
trains, we use the linear Poisson neuron model [21]. This neuron model outputs a spike
train, which is a realization of a Poisson process with the underlying intensity function
estimation. The spiking activity of the postsynaptic neuron is defined by the estimated
intensity functions of the presynaptic neurons. The contributions of all input spike
trains are summed up linearly:

fsoðtÞ ¼
XN
i¼1

woifsiðtÞ ð9Þ

where the weights woi represent the strength of the connection between the presynaptic
neuron i and the postsynaptic neuron o.

We derive the proposed learning algorithm from the common Widrow-Hoff rule,
also known as the Delta rule. For a synapse i, it is defined as:

Dwi ¼ gxiðyd � yaÞ ð10Þ

where g is the learning rate, xi is the input transferred through synapse i, and yd and ya
refer to the desired and the actual neural output, respectively. By substituting xi, yd and
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ya with the continuous functions corresponding to the spike trains f ysi ðtÞ, f ysd ðtÞ and

f yso ðtÞ, a new learning rule for a spiking neuron is obtained:

DwiðtÞ ¼ gf ysi ðtÞ f ysd ðtÞ � f yso ðtÞ
� �

ð11Þ

The equation formulates a real-time learning rule and so the synaptic weights
change over time. By integrating Eq. 11, we derive the batch version of the learning
rule which is under scrutiny in this paper:

Dwi ¼ g
R
C f

y
si ðtÞ f ysd ðtÞ � f yso ðtÞ

� �
dt

¼ g Fyðsi; sdÞ � Fyðsi; soÞ
� � ð12Þ

where Fyð� ; �Þ is the nonlinear inner products of the spike trains expressed in Eq. 6. In
order to facilitate the description, we called the algorithm Nonlinear1 when the non-
linear function gð�Þ is Eq. 7, and called the algorithm Nonlinear2 when the nonlinear
function gð�Þ is Eq. 8.

4 Simulations

In this section, several experiments are presented to demonstrate the learning capa-
bilities of our learning algorithm. At first, the algorithm is applied to the learning
sequences of spikes, by demonstrating its ability to associate a spatio-temporal spike
pattern with a desired spike train. Then, we analyze the factors that may influence the
learning performance, such as the number of synaptic inputs and the firing rate of spike
trains.

To quantitatively evaluate the learning performance, we use the correlation-based
measure C [22] to express the distance between the desired and actual output spike
trains. The metric is calculated after each learning epoch according to

C ¼ sd � so
sdj j soj j ð13Þ

where sd and so are vectors representing convolution of the desired and actual output
spike trains with a Gaussian low-pass filter, sd � so is the inner product, and sdj j, soj j are
the Euclidean norms of sd and so, respectively. The measure C ¼ 1 for the identical
spike trains and decreases towards 0 for loosely correlated trains.

In the first experiment, we demonstrate the learning ability of the proposed algo-
rithm to reproduce the desired spatio-temporal spike pattern. Unless stated otherwise,
the basic parameter settings are: the number of input neurons is 500 and one output
neuron. Initially, the synaptic weights are generated as the uniform distribution in the
interval ð0; 0:2Þ. Every input spike train and desired output spike train are generated
randomly by a homogeneous Poisson process with rate r ¼ 20 Hz and r ¼ 50 Hz
respectively within the time interval of ½0; T�, and we set T ¼ 100 ms here. The results
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are averaged over 50 trials, and on each testing trial the learning algorithm is applied
for a maximum of 500 learning epochs or until the measure C ¼ 1. The neurons are
described by the short term memory SRM [9] so that only the last firing spike con-
tributes to the refractoriness. The parameter values of the SRM neurons used in the
experiments are: the time constant of postsynaptic potential s ¼ 2 ms, the time constant

Fig. 1. The learning process of our algorithm. (a) The complete learning process of Nonlinear1.
D, initial actual output spike train; r, desired output spike train; �, actual output spike trains at
some learning epochs. (b) The complete learning process of Nonlinear2. (c) The evolution of the
learning accuracy of Nonlinear1 and Nonlinear2 with measure C.
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of refractory period sR ¼ 50 ms, the neuron threshold h ¼ 1, and the length of the
absolute refractory period tR ¼ 1 ms. The learning rate g of our algorithm is 0.0005.

Figure 1 shows the learning process of our algorithm. Figure 1(a) and (b) show the
complete learning process of Nonlinear1 and Nonlinear2 respectively, which include
the desired output spike train, the initial output spike train and the actual output spike
trains at some learning epochs during the learning process. The evolution of the
learning accuracy of Nonlinear1 and Nonlinear2 with measure C in the time interval
T is represented in Fig. 1(c). For both Nonlinear1 and Nonlinear2, the measure C in-
creases rapidly at the beginning of the learning, and reached to 1 after 38 and 36
learning epochs, respectively.

Figure 2 shows the learning results with different number of synaptic inputs. The
number of synaptic inputs increases from 100 to 1000 with an interval of 100, while the

Fig. 2. The learning results with different number of synaptic inputs for our algorithm and
ReSuMe algorithm after 500 learning epochs. (a) The learning accuracy with measure C. (b) The
learning epochs when the measure C reaches the maximum value.
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other settings remain the same. In this experiment, we compare our method with the
ReSuMe algorithm [10]. The parameters in the ReSuMe algorithm are the same as
those described by Ponulak et al. [10]. The learning rate g of ReSuMe algorithm is
0.005. Figure 2(a) shows the learning accuracy after 500 learning epochs and Fig. 2(b)
shows the learning epochs when the measure C reaches the maximum value. Through
Fig. 2(a) we can see that both Nonlinear1, Nonlinear2 and ReSuMe can learn with high
accuracy. The learning accuracy of our algorithm and ReSuMe increase when the
number of synaptic inputs increases gradually. Our algorithm has higher learning
accuracy than ReSuMe except the numbers of synaptic inputs are 300, 500 and 600.
For example, the measure C ¼ 0:9792 for Nonlinear1, C ¼ 0:9719 for Nonlinear2 and
C ¼ 0:9552 for ReSuMe when the number of synaptic inputs is 400. When the number
of synaptic inputs is 1000, the measure C ¼ 0:9916 for Nonlinear1, C ¼ 0:9854 for

Fig. 3. The learning results with different firing rate of spike trains for our algorithm and
ReSuMe algorithm after 500 learning epochs. (a) The learning accuracy with measure C. (b) The
learning epochs when the measure C reaches the maximum value.
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Nonlinear2 and C ¼ 0:9871 for ReSuMe. From Fig. 2(b) we can see that both Non-
linear1 and Nonlinear2 have less learning epochs than ReSuMe. For example, the
learning epochs of Nonlinear1 and Nonlinear2 are 213.66 and 328.98 respectively,
which are less than 357.70 of ReSuMe when the number of synaptic inputs is 500.
When the number of synaptic inputs is 1000, the learning epochs of Nonlinear1 and
Nonlinear2 are 256.72 and 331.18 respectively, which are less than 422.02 of ReSuMe.

Figure 3 shows the learning results with different firing rate of spike trains. The
firing rate of input and desired output spike trains increases from 20 Hz to 200 Hz with
an interval of 20 Hz and the firing rate of input spike trains equals to that of desired
output spike trains, while the other settings remain the same. Figure 3(a) shows the
learning accuracy after 500 learning epochs and Fig. 3(b) shows the learning epochs
when the measure C reaches the maximum value. Through Fig. 3(a) we can see that
our algorithm can learn with higher accuracy than ReSuMe algorithm. The learning
accuracy of our algorithm and ReSuMe algorithm decrease when the firing rate of input
and desired output spike trains increases gradually. For example, the measure
C = 0.9530 for Nonlinear1, C = 0.9440 for Nonlinear2 and C ¼ 0:8870 for ReSuMe
when the firing rate of input and desired output spike trains is 100 Hz. When the firing
rate of input and desired output spike trains is 200 Hz, the measure C = 0.9093 for
Nonlinear1, C = 0.8581 for Nonlinear2 and C ¼ 0:8289 for ReSuMe.

5 Conclusions

In this paper, we introduced a new supervised learning algorithm based on nonlinear
inner products of spike trains for spiking neurons. Our learning algorithm uses the
nonlinear inner products of spike trains to deduce the learning rule. The inner products
of spike trains have been used on similarity measures theory for spike trains, but less
used for supervised learning algorithms of SNNs at present. The synaptic weight
modification rules only depend on the input, actual output and desired output spike
trains and do not depend on the specific dynamic of the neuron model. The algorithm is
tested on learning sequences of spikes and compared with ReSuMe algorithm. The
experimental results indicate that our method is an effective supervised multi-spike
learning algorithm for spiking neurons. It can learn spike trains with high accuracy.
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