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Abstract. The bat algorithm is easily trapped into local optima, the population
diversity is poor, and the optimizing precision is bad. In order to overcome these
disadvantages, this paper presents a median bat algorithm (MBA) to avoid local
optima and carry out a global search over entire search space. The proposed
algorithm adopts the median position of the bats. And the median and worst bats
are combined to the basic bat algorithm to achieve a better balance between the
global search ability and local search ability. The simulation results of 10
standard benchmark functions show that the proposed algorithm is effective and
feasible in both low-dimensional and high-dimensional case. Compared to the
basic bat algorithm, particle swarm optimization and CLSPSO, the proposed
algorithm can get high precision and can almost reach the theoretical value.
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1 Introduction

The nature-inspired optimization algorithms derived from the simulation of biological
group behaviors in natural world. With a simple and parallel implement, strong
robustness, good optimization results and so on, the nature-inspired optimization
algorithms have become the focus of study. In recent years, some novel swarm
intelligence algorithms have been proposed, such as Artificial Bee Colony Optimiza-
tion (ABC) [1, 2], Shuffled Frog Leaping Algorithm (SFLA) [3], Artificial Fish Swarm
Algorithm (AFSA) [4], Cuckoo Search (CS) [5], Monkey Algorithm (MA) [6], Firefly
Algorithm (FA) [7], Glowworm Swarm Optimization algorithm (GSO) [8], Flower
Pollination Algorithm (FPA) [9], Wind Driven Optimization (WDO) [10], Charged
System Search (CSS) [11] and so on.

First proposed by Yang [12] in 2010, Bat Algorithm (BA) was originated from the
simulation of echolocation behavior in bats. Bats use a type of sonar called echolo-
cation to detect prey, and avoid obstacles in the dark. When searching their prey, the
bats emit ultrasonic pulses. During flight to the prey, loudness will decrease while the
pulse emission will gradually increase, which can make the bat locate the prey more
accurately. Applications of BA algorithm span the areas of constrained optimization
tasks [13], global engineering optimization [14], multi-objective optimization [15],
structural optimization [16], and discrete size optimization of steel frames [17].
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In this paper, we propose a novel median-oriented bat algorithm (MBA) for the
function optimization problem. The proposed algorithm adopts the median and worst
bat individuals [18] to avoid premature convergence. As a result, the global search
ability of MBA is improved and the proposed algorithm can avoid trapping in the local
optimum. Simulation results demonstrate the effectiveness and robustness of the pro-
posed algorithm. MBA can get a more accurate solution for the optimization problems.
In MBA, the mutation operation in DE is added to the bat algorithm to accelerate the
global convergence speed.

The remainder of this paper is organized as follows. Section 2 introduces the basic
bat algorithm. In Sect. 3, median-oriented bat algorithm is introduced. The experi-
mental results and comparison results are given in Sect. 4. Finally, some relevant
conclusions are presented in Sect. 5.

2 The Basic Bat Algorithm

2.1 The Update of Velocity and Position

Initialize the bat population randomly. Supposed the dimension of search space is n, the
position of the bat i at time t is xti and the velocity is vti. Therefore, the position xtþ 1

i and
velocity vtþ 1

i at time tþ 1 are updated by the following formula:

f ti ¼ fmin þðfmax � fminÞb ð1Þ

vtþ 1
i ¼ vti þðxti � GbestÞf ti ð2Þ

xtþ 1
i ¼xti þ vtþ 1

i ð3Þ

Where, fi represents the pulse frequency emitted by bat i at the current moment. fmax

and fmin represent the maximum and minimum values of pulse frequency respectively.
b is a random number in ½0; 1� and Gbest represents the current global optimal solution.

Select a bat from the bat population randomly, and update the corresponding
position of the bat according to Eq. (1). This random walk can be understood as a
process of local search, which produces a new solution by the chosen solution.

xnewðiÞ ¼ xold þ eAt ð4Þ

Where, xold represents a random solution selected from the current optimal solu-
tions, At is the loudness, and e is a random vector, and its arrays are random values in
½�1; 1�.

2.2 Loudness and Pulse Emission

Usually, at the beginning of the search, loudness is strong and pulse emission is small.
When a bat has found its prey, the loudness decreases while pulse emission gradually
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increases. Loudness AðiÞ and pulse emission rðiÞ are updated according to Eq. (2) and
Eq. (3):

rtþ 1ðiÞ ¼ r0ðiÞ � ½1� expð�ctÞ� ð5Þ

Atþ 1ðiÞ ¼ aAtðiÞ ð6Þ

Where, both 0\a\1 and c[ 0 are constants. AðiÞ¼0 means that a bat has just
found its prey and temporarily stop emitting any sound. It is not hard to find that when
t ! 1, we can get AtðiÞ ! 0 and rtðiÞ ¼ r0ðiÞ.

2.3 The Implementation Steps of Bat Algorithm

Step 1: Initialize the basic parameters: attenuation coefficient of loudness a, increasing
coefficient of pulse emission c, the maximum loudness A0 and maximum pulse
emission r0 and the maximum number of iterations Maxgen;

Step 2: Define pulse frequency fi 2 ½fmin; fmax�;
Step 3: Initialize the bat population x and v;
Step 4: Enter the main loop. If rand\ri, update the velocity and current position of

the bat according to Eqs. (2) and (3). Otherwise, make a random disturbance for
position of the bat, and go to Step 5;

Step 5: If rand\Ai and f ðxiÞ\f ðx�Þ, accept the new solutions, and fly to the new
position;

Step 6: If f ðxiÞ\fmin, replace the best bat, and adjust the loudness and pulse
emission according to Eqs. (5) and (6);

Step 7: Evaluate the bat population, and find out the best bat and its position;
Step 8: If termination condition is met (i.e., reach maximum number of iterations or

satisfy the search accuracy), go to step 9; Otherwise, go to step 4, and execute the next
search.

Step 9: Output the best fitness values and global optimal solution.
Where, rand is a uniform distribution in ½0; 1�.

3 Median-Oriented Bat Algorithm

In this section, a novel median-oriented bat algorithm (MBA) is presented to enhance
the performance of the basic bat algorithm [19–22]. In BA, each bat moves toward
good solutions based on the best solution. MBA is a global search algorithm.

stepnow ¼ ðiterMax� iterÞ3 � ðstepini � stepfinalÞ=ðiterMaxÞ3 þ stepfinal ð7Þ

vtþ 1
i ¼ vti þ f ti � ðxti � GbestÞ þ stepnow � rand � ðxti � Gmedian� GworstÞ ð8Þ
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xtþ 1
i ¼xti þ vtþ 1

i ð9Þ

Due to the proposed algorithm considering the best bat individual, the median bat
individual and the worst bat individual, this is equivalent to adopt a compromise
solution. The coordination of the bat population of individuals is conducive to cover a
wider range of bat population and increase the diversity of bat population.
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4 Simulation Experiments and Discussion

4.1 Simulation Platform

All the algorithms are implemented in Matlab R2012 (a). The test environment is set up
on a computer with AMD Athlon (tm) II X4 640 Processor, 3.00 GHz, 4 GB RAM,
running on Windows 7.

4.2 Benchmark Functions

In order to verify the effectiveness of the proposed algorithm, we select 10 standard
benchmark functions [23] in Table 1 to detect the searching capability of the proposed

Table 1. Benchmark functions

No D Name Benchmark function Scope

F1 30/100 Sphere
f ðxÞ ¼ Pn

i¼1
x2i

[−100, 100]

F2 30/100 Step
f ðxÞ ¼ Pn�1

i¼1
ð xiþ 0:5b cÞ2 [−100, 100]

F3 30/100 Quartic
f ðxÞ ¼ Pn

i¼1
x4i þ random½0; 1Þ [−1.28,

1.28]

F4 30/100 Rastrigin
f ðxÞ ¼ Pn

i¼1
½x2i � 10 cosð2pxiÞþ 10� [−5.12,

5.12]

F5 30/100 Rosenbrock
f ðxÞ ¼ Pn�1

i¼1
½ðxi � 1Þ2 þ 100ðx2i � xiþ 1Þ2�

[−2.048,
2.048]

F6 30/100 Ackley
f ðxÞ ¼ �20 expð�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

x2i

s

� expð1n
Pn

i¼1
cos 2pxiÞÞ þ 20þ e

[−32.768,
32.768]

F7 30/100 Griewank
f ðxÞ ¼ 1

4000

Pn

i¼1
ðx2i Þ �

Qn

i¼1
cosð xiffi

i
p Þþ 1

[−600, 600]

F8 30/100 Weierstrass
f ðxÞ ¼

Xn

i¼1

ð
Xkmax

k¼0

½ak cosð2pbkðxi þ 0:5ÞÞ�Þ

�n
Xkmax

k¼0

½ak cosð2pbk � 0:5Þ�

a ¼ 0:5; b ¼ 3; kmax ¼ 20

[−0.5, 0.5]

F9 30/100 Cosine
mixture

f ðxÞ ¼ Pn

i¼1
x2i � 0:1

Pn

i¼1
cosð5pxiÞ [−1, 1]

F10 30/100 Alpine
f ðxÞ ¼ Pn

i¼1
xi sinðxiÞþ 0:1xij j [−10, 10]
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algorithm. The proposed algorithm in this paper (i.e., MBA) is compared with PSO,
CLSPSO and BA.

4.3 Parameter Setting

In PSO, we use linear decreasing inertia weight is xmax ¼ 0:9, xmin ¼ 0:4, and
learning factor is C1 ¼ C2 ¼ 1:4962. In CLSPSO, inertia weight and learning factor
are the same as in PSO. The times of chaotic search is MaxC ¼ 10. In BA, the
parameters are generally set as follows: pulse frequency range is fi 2 ½�1; 1�, the
maximum loudness is A0 ¼ 0:9, minimum pulse emission is r0 ¼ 0:5, attenuation
coefficient of loudness is a ¼ 0:95, increasing coefficient of pulse emission is c ¼ 0:05.
In MBA, the basic parameters are the same as in BA, and stepLen ini ¼
5step Len final ¼ 0.

4.4 Experimental Results

In order to evaluate the performance of MBA, sixteen benchmark functions are adopted
in this paper. In this section, the population size popsize ¼ 50 and maximum number of
iterations iterMax ¼ 2000, and MBA is compared to DE and BA. The test results are
get from 50 independent run times.

4.4.1 Experimental Results of Low-Dimension Case
The comparison results of all the algorithms on all the functions are recorded in
Table 2. The best, mean, worst and std represent the optimal value, mean value, worst
value and standard deviation, respectively. We can see that the performance of MBA
exhibits significantly better than that of other algorithms. For the functions F1, F2, F4,
F7, F8, F9, F10, the MBA algorithm can obtain the theoretical optimal values in all runs.
For the function F3, compared with the mean value, the quality of MBA algorithm is
far better than PSO, CLSPSO, BA with at least higher 5, 5, and 3 orders of magnitude,
respectively. For function F5, the best value and the mean value of MBA are both better
than those of other algorithms. For function F6, compared with the mean value, the
quality of MBA algorithm is far better than PSO, CLSPSO, BA with at least higher 16,
15, and 17 orders of magnitude, respectively. By Comparison with standard deviation,
MBA is also better than PSO, CLSPSO, BA, we can see that the MBA algorithm has
strong robustness. And for functions F1, F2, F4, F6, F7, F8, F9, F10, the standard
deviations are 0. That is, the MBA algorithm obtains the same global optimal value in
all runs. For the basic BA algorithm, the best values are inferior to those of MBA, even
to the worse values of MBA on all functions. The results of CLSPSO are a little better
than those of PSO, but obvious worse than those of MBA. Figure 1 shows the mean
fitness of four algorithms on the function F1 to F10, when the mean value is not 0, MBA
has a longer and downward column. When the mean value is 0, we cannot find the bar
for MBA algorithm.
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Table 2. Experimental results for function from F1 to F10 (D = 30)

Fun Algorithm Best Worst Mean Std

F1 PSO 0.0115 0.2843 0.0979 0.0702
CLSPSO 2.5669e−12 8.2722e−04 5.7519e−05 1.3171e−04
BA 8.4173e−04 0.00133 0.0011 1.1398e−04
MBA 0 0 0 0

F2 PSO 24 226 96.48 41.1172
CLSPSO 0 5 0.1 0.7071
BA 34605 61144 48338 6398.5881
MBA 0 0 0 0

F3 PSO 0.0099 2.7316 0.2126 0.5970
CLSPSO 0.0012 2.7361 0.1303 0.5374
BA 0.0021 0.0108 0.0050 0.0019
MBA 8.0885e−07 5.6234e−05 1.3090e−05 1.1655e−05

F4 PSO 33.3947 1.4977e+02 79.0019 28.1500
CLSPSO 4.2064e−12 1.61300e+02 27.5633 41.6538
BA 1.3447e+02 2.5789e+02 1.9631e+02 30.3170
MBA 0 0 0 0

F5 PSO 28.1084 8.8179e+02 56.3213 1.2249e+02
CLSPSO 3.2750e−06 1.2833e+02 6.5676 20.1953
BA 21.4382 83.3127 27.2583 8.3434
MBA 1.0689e−05 3.9982 0.2400 0.9589

F6 PSO 2.0649 6.2396 3.8940 0.8686
CLSPSO 1.9754e-06 0.2757 0.0481 0.0562
BA 18.3337 19.4259 19.0089 0.2248
MBA 8.8818e−16 8.8818e−16 8.8818e−16 0

F7 PSO 0.5668 2.0102 1.2231 0.2560
CLSPSO 5.9094e−07 1.0303 0.2590 0.2940
BA 1.8765e+02 4.1058e+02 3.2020e+02 45.7655
MBA 0 0 0 0

F8 PSO 10.7982 26.1507 18.2713 3.8755
CLSPSO 0.0023 25.9101 3.2922 5.9277
BA 22.5364 41.3711 31.5940 3.4232
MBA 0 0 0 0

F9 PSO −2.6592 −0.3120 −1.7452 0.5675
CLSPSO −2.999999 −0.1170 −2.7675 0.7129
BA 0.1125 3.7779 1.6354 0.7540
MBA −3 −3 −3 0

F10 PSO 0.4080 8.0998 3.9332 1.9486
CLSPSO 3.8542e−06 7.8113 0.5980 1.6200
BA 1.9301 16.4262 6.4830 3.1697
MBA 0 0 0 0
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4.4.2 Experimental Results of High-Dimension Case
In order validate the performance of the proposed algorithm further, we implement the
experiment on 100 dimensions for the all algorithms and keep the parameters
unchanged.

The comparison results for high-dimension case are shown in Table 3. Seen from
the results, the optimization performance of MBA is the best. For the functions F1, F2,
F4, F7, F8, F9, F10, the MBA algorithm still obtains the theoretical optimal values in all
runs without a doubt. Only the precision of the best value descends for solving the F5
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Fig. 1. Mean fitness of four algorithms for F1 to F10ðD ¼ 30Þ. (Color figure online)

Table 3. Experimental results for function from F1 to F10 (D = 100)

Fun Algorithm Best Worst Mean Std

F1 PSO 0.8546 45.5550 10.4782 11.0198
CLSPSO 1.9934e−16 30.1745 0.6042 4.2672
BA 8.1807e−04 0.0013 0.0011 1.2315e−04
MBA 0 0 0 0

F2 PSO 99 3369 1257.86 7.5513e+02
CLSPSO 0 0 0 0
BA 25644 62332 47257 6.6565e+03
MBA 0 0 0 0

F3 PSO 0.1522 1.4610e+02 23.3675 38.9468
CLSPSO 0.0017 1.4303e+02 10.1692 31.2951
BA 0.0012 0.00992 0.0046 0.0016
MBA 3.6753e−06 4.3172e−04 9.7659e−05 9.3351e−05

F4 PSO 4.2493e + 02 7.4633e + 02 5.9333e + 02 73.6489
CLSPSO 1.5224e-04 6.9392e+02 2.7107e+02 2.7534e+02
BA 1.3754e+02 2.6587e+02 2.0306e+02 25.5434

(Continued)
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function. The standard deviations of MBA are better than those of other algorithms on
all functions. It demonstrates that MBA has strong robustness and good global search
ability, and MBA does not reduce the accuracy of the solutions as the dimension
increases. However, the precision of solutions of other three algorithms, including the
best value, the mean value, the worse value, the median value and the standard
deviation, will decrease with the increase of the dimension. Figures 2 and 3 show the
results of the ANOVA tests for all algorithms on F1 and F2. PSO and BA have long tail
on the functions F1, F2, and more singular points. That is, the methods are not robust
and are not acceptable for the function optimization. The precision of BA is inferior to
those of PSO and CLSPSO, but better stability and robustness.

Table 3. (Continued)

Fun Algorithm Best Worst Mean Std

MBA 0 0 0 0
F5 PSO 1.1518e+02 2.7031e+03 5.9723e+02 6.1093e+02

CLSPSO 1.0889e−05 2.7735e+03 2.6267e+02 6.9857e+02
BA 11.0558 87.9935 29.0136 14.1507
MBA 2.3174 2.5904 2.5121 0.0664

F6 PSO 2.1735 8.1533 5.6369 1.1818
CLSPSO 2.0846e-06 0.3539 0.0763 0.0912
BA 18.4867 19.4188 19.0488 0.2185
MBA 8.8818e−16 8.8818e−16 8.8818e−16 0

F7 PSO 3.2679 25.5472 9.9551 4.7114
CLSPSO 2.2958e−06 0.9778 0.2083 0.2596
BA 1.8777e+02 3.7630e+02 3.1151e+02 42.2589
MBA 0 0 0 0

F8 PSO 31.5448 95.0606 67.5116 12.1533
CLSPSO 0.0458 88.4343 44.8663 33.5603
BA 23.6779 39.8344 31.3530 3.9133
MBA 0 0 0 0

F9 PSO −7.2753 1.3841 −3.8135 1.6853
CLSPSO −9.999999999 0.8495 −7.4278 3.4429
BA −0.0349 3.7838 1.5973 0.9812
MBA −10 −10 −10 0

F10 PSO 12.8953 53.5153 25.7114 7.7965
CLSPSO 5.3529e−06 48.2857 3.5625 9.8779
BA 1.2815 13.0499 5.8033 2.3913
MBA 0 0 0 0
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5 Conclusions

This paper presented a novel Median-oriented bat algorithm (MBA) for function
optimization problem. The proposed algorithm adopts the median and worst bat
individuals to avoid premature convergence. MBA has an excellent ability of global
search owing to its diversity caused by the probabilistic representation. The simulation
experiments show that the proposed algorithm is a feasible and effective way for
function optimization. The optimization ability of MBA does not show a significant
decline with increasing the dimension. The proposed algorithm is suitable for low -
dimensional and high-dimensional case.
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Fig. 3. ANOVA tests for F2ðD ¼ 100Þ. (Color figure online)
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Fig. 2. ANOVA tests for F1ðD ¼ 100Þ. (Color figure online)
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