
A Competitive Memetic Algorithm
for Carbon-Efficient Scheduling

of Distributed Flow-Shop

Jin Deng, Ling Wang(&), Chuge Wu, Jingjing Wang,
and Xiaolong Zheng

Department of Automation, Tsinghua University, Beijing 100084, China
{dengj13,wucg15,wang-jj15,

zhengxl11}@mails.tsinghua.edu.cn,

wangling@tsinghua.edu.cn

Abstract. Considering the energy conservation and emissions reduction,
carbon-efficient scheduling becomes more and more important to the manu-
facturing industry. This paper addresses the multi-objective distributed permu-
tation flow-shop scheduling problem (DPFSP) with makespan and total carbon
emissions criteria (MODPFSP-Makespan-Carbon). Some properties to the
problem are provided, and a competitive memetic algorithm (CMA) is proposed.
In the CMA, some search operators compete with each other, and a local search
procedure is embedded to enhance the exploitation. Meanwhile, the factory
assignment adjustment is used for each job, and the speed adjustment is used to
further improve the non-dominated solutions. To investigate the effect of
parameter setting, full-factorial experiments are carried out. Moreover, numer-
ical comparisons are given to demonstrate the effectiveness of the CMA.

Keywords: Carbon-efficient scheduling � Distributed shop scheduling �
Multi-objective optimization

1 Introduction

Nowadays, global warming becomes a serious public problem. Carbon dioxide (CO2)
produced during the combustion process of fossil fuel is believed to be a critical reason
that causes the global warming. As fossil fuel is the main source of energy, massive
amounts of CO2 are released to the atmosphere. Realizing the danger of climate, many
policies and treaties are made to restrict the emissions of greenhouse gas. About half of
the world’s total energy consumption is contributed by industry sector [1]. Therefore, it
is imperative for manufacturing industry to implement the energy-efficient scheduling
in order to reduce carbon footprints.

Under the situation, much research has been carried out about energy-saving and
low-carbon. In [2], several dispatching rules were proposed relying on the estimation of
inter-arrival time between jobs to control the turn on/turn off time of machines, and a
multi-objective mathematical programming model was developed to minimize the
energy consumption and total completion time. In [3], the turn on/off framework was
applied to the single machine scheduling, and a greedy randomized multi-objective

© Springer International Publishing Switzerland 2016
D.-S. Huang et al. (Eds.): ICIC 2016, Part I, LNCS 9771, pp. 476–488, 2016.
DOI: 10.1007/978-3-319-42291-6_48

adaptive search algorithm was proposed to optimize total energy consumption and total
tardiness. The framework was extended to the flexible flow shop scheduling [4], and
genetic algorithm (GA) and simulated annealing (SA) were hybridized to minimize the
makespan and the total energy consumption. Another energy saving technique is speed
scaling [5]. In such a case, machines can be run at varying speeds, and the lower speed
results in lower energy consumption and longer processing time. Some researchers
assumed that the speed range of machine is continuous adjustable. For example, the
performance of several algorithms was studied in terms of the management of energy
and temperature [6]. Others considered that there are a number of discrete speeds are
available for machines. Two mixed integer programming (MIP) models were presented
and their performances were investigated for the permutation flow shop scheduling
problem (PFSP) with makespan and peak power consumption [7]. To reduce the
carbon emissions and makespan for the PFSP, an NEH-Insertion procedure was
developed based on the problem properties, and a multi-objective NEH and an iterative
greedy (IG) algorithm were proposed [8]. To solve the multi-mode resource
constrained project scheduling with makespan and carbon emissions criteria, a
Pareto-based estimation of distribution algorithm (EDA) was proposed [9].

With market dispersing throughout the world, manufacturing is changing from the
traditional pattern in one single factory into the co-production among multi-factories
[10]. Distributed manufacturing enables companies to improve production efficiency
and profit [11]. There exist two sub-problems: allocating jobs to suitable factories and
scheduling jobs on machines in each factory. Since the coupled two sub-problems
cannot be solved sequentially if high performance is required, distributed scheduling is
more difficult to solve [12]. Currently, the distributed PFSP (DPFSP) has been a hot
topic. In [12], six MIP models and two factory assignment rules as well as several
heuristics and variable neighborhood descent methods were developed. Besides, tabu
search [13], EDA [14], hybrid immune algorithm [15], IG [16], and scatter search [17]
have been developed to solve the DPFSP. Moreover, the DPFSP with reentrant con-
straint [18] have also been studied. Most of the above research only considered the
time-based objectives. In this paper, the multi-objective DPFSP with carbon emissions
and makespan criteria is studied. Inspired from the good performance of memetic
algorithms in solving the complex optimization problems [19], we extend the com-
petitive memetic algorithm (CMA) for the DPFSP [20] to a multi-objective version.
Especially, several specific search operators are designed according to the problem
characteristics. Due to the complexity brought by the optimization of the carbon
emission, the sharing phase is replaced by the adjustment phase in the CMA to
effectively reduce the carbon emission. In addition, some properties will be analyzed,
and the effectiveness will be demonstrated by numerical comparisons.

2 Problem Description

The following notions will be used to describe the MODPFSP-Makespan-Carbon.

f: total number of factories; n: total number of jobs;
m: number of machines in each factor; s: number of speeds alternative to machines;

A Competitive Memetic Algorithm for Carbon-Efficient Scheduling 477

S: discrete set of s different processing speeds, S = {v1, v2, …, vs};
nk: number of jobs in the factory k; Oi,j: operation of job i on machine j;
pi,j: standard processing time of Oi,j; Vi,j: processing speed of Oi,j;
Ci,j: the completion time of Oi,j; C(k): the completion time of factory k;
PPj,v: energy consumption per unit time when machine j is run at speed v;
SPj: energy consumption per unit time when machine j is run at standby mode;
πk: the processing sequence in the factory k; Π: a schedule, Π = (π1, π2, …, πf; V).

The problem is described as follows. There are f identical factories, each of which is
a permutation flow shop with m machines. Each of n jobs can be assigned to any one of
the f factories for processing. Each operation Oi,j has a standard processing time pi,j.
Each machine can be run at s different speeds S, and it cannot change the speed during
processing an operation. When operation Oi,j is processing at speed Vi,j, the actual
processing time becomes pi,j/Vi,j. Machines will not be shut down before all jobs are
completed. If there is no job processed on machine j, it will be run at a standby mode.
The makespan Cmax is calculated as follows.

Cpkð1Þ;1 ¼ ppkð1Þ;1=Vpkð1Þ;1 ð1Þ

CpkðiÞ;1 ¼ Cpkði�1Þ;1 þ ppkðiÞ;1=VpkðiÞ;1 ð2Þ

Cpkð1Þ;j ¼ Cpkð1Þ;j�1 þ ppkð1Þ;j=Vpkð1Þ;j ð3Þ

CpkðiÞ;j ¼ maxfCpkði�1Þ;j;CpkðiÞ;j�1gþ ppkðiÞ;j=VpkðiÞ;j ð4Þ

CðkÞ ¼ Cpk nkð Þ;m ð5Þ

Cmax ¼ maxfCð1Þ;Cð2Þ; . . .;Cðf Þg ð6Þ

Let xkjv(t) and ykj(t) be the following binary variables:

xkjvðtÞ ¼
1; if machine j in factory k is run at speed v at time t

0; otherwise

(
ð7Þ

ykjðtÞ ¼
1; if machine j in factory k is run at standby mode at time t

0; otherwise

(
ð8Þ

The total carbon emissions (TCE) can be calculated as follows:

TCE ¼ e � TEC

¼ e �
X f

k¼1

Z CðkÞ

0

Xs

v¼1

Xm

j¼1
PPjv � xkjvðtÞþ

Xm

j¼1
SPj � ykjðtÞ

� �
dt

ð9Þ

where TEC is the total energy consumption and ε refers to the emissions per unit of
consumed energy.

478 J. Deng et al.

A Gantt chart of problem with 2 factories is shown in Fig. 1. Since C(1) > C(2),
Cmax = C(1). Take the situation at time t1 to explain how TCE is calculated. In the
factory F1, machine M1 is in the standby mode, while M2 and M3 are in processing
mode. Assuming that M2 and M3 are run at speed v and u, the energy consumption of
factory F1 at time t1 is P(t1) = SP1 + PP2v + PP3u. Similarly, the energy consumption
of each factory at different time points can be calculated as Fig. 2. The area between the
curve and time axis is energy consumption of the corresponding factory. Then, TCE
can be obtained by accumulating the energy consumption of each factory.

For the MODPFSP-Makespan-Carbon, it assumes that when Vi,j is increased from
v to u, the energy consumption increases while processing time decreases.

pi;j=u\pi;j=v ð10Þ

PPj;u � pi;j=u[PPj;v � pi;j=v ð11Þ

Based on the assumption, two properties for the PFSP were given in [8]. Here, one
more property is given and extended to those of the MODPFSP-Makespan-Carbon.

Property 1 [8]. If two schedules π1 and π2 satisfy (1) 8i 2 f1; 2; . . .; ng;
j 2 f1; 2; . . .;mg, Vi,j(π1) = Vi,j(π2), (2) Cmax(π1) < Cmax(π2), then, TCE(π1) < TCE
(π2). That is p1 � p2.

Property 2 [8]. If two schedules π1 and π2 satisfy (1) Cmax(π1) = Cmax(π2),
(2) 8i 2 f1; 2; . . .; ng; j 2 f1; 2; . . .;mg, Vi,j(π1) ≤ Vi,j(π2), (3) 9i 2 f1; 2; . . .; ng,
j 2 f1; 2; . . .;mg, Vi,j(π1) < Vi,j(π2), then, TCE(π1) < TCE(π2). That is p1 � p2.

Property 3. If two schedules π1 and π2 satisfy (1) 8i 2 f1; 2; . . .; ng; j 2 f1; 2; . . .;mg,
Vi,j(π1) = Vi,j(π2), (2) TCE(π1) < TCE(π2), then, Cmax(π1) < Cmax(π2). That is p1 � p2.

Proof. The TCE of π1 and π2 can be calculated in the following ways:

M1

M2

M3

M1

M2

M3

C(1)t1

t1 C(2)

F1

F2

Time

Machine

Time

Machine

Fig. 1. Gantt chart of the DPFSP

C(1)
Time

P(F1)

Time

P(F2)

C(2)

Fig. 2. Energy consumption

A Competitive Memetic Algorithm for Carbon-Efficient Scheduling 479

TCEðp1Þ ¼ e � ð
Xm

j¼1
SPj � tidlej ðp1Þþ

Xn

i¼1

Xm

j¼1
PPj;Vi;j � pi;j=Vi;jÞ ð12Þ

TCEðp2Þ ¼ e � ð
Xm

j¼1
SPj � tidlej ðp2Þþ

Xn

i¼1

Xm

j¼1
PPj;Vi;j � pi;j=Vi;jÞ ð13Þ

where tidlej represents the total idle time of machine Mj.

Since TCE(π1) < TCE(π2), it has
Pm

j¼1 t
idle
j ðp1Þ\

Pm
j¼1 t

idle
j ðp2Þ. Thus, 9j0 ¼

1; 2; . . .; m, tidlej0 ðp1Þ\tidlej0 ðp2Þ. So, tidlej0 ðp1Þþ
Pn

i¼1 pi;j0=Vi;j\tidlej0 ðp2Þþ
Pn

i¼1

pi;j0=Vi;j. According to the definition of Cmax in a PFSP, it has
Cmaxðp1Þ ¼ tidlej ðp1Þþ

Pn
i¼1 pi;j=Vi;j, 8j ¼ 1; 2; . . .;m. Therefore, Cmaxðp1Þ\

Cmaxðp2Þ.
Property 4. For a schedule Π, keep the speeds of all operations unchanged and change
the job processing sequence in the factory with maximum completion time (denoted as
Fm). If the completion time of Fm is decreased, then the carbon emissions of Fm are also
decreased. That is, if Cmax(Π) is decreased, then TCE(Π) is decreased.

Property 5. For a schedule Π, keep the speeds of all operations unchanged and change
the job processing sequence in Fm. If the carbon emissions of Fm are decreased, then
the completion time of Fm is also decreased. That is, if TCE(Π) is decreased, then
Cmax(Π) is decreased.

Property 6. For a schedule Π, if it keeps the completion time of each factory
unchanged and slows down the speeds of some operations, the TCE(Π) will be
decreased while Cmax(Π) will remain the same.

3 CMA for MODPFSP-Makespan-Carbon

3.1 Encoding Scheme

In the CMA, an individual Xl is represented by a job-factory matrix J-F and a velocity
matrix A. J-F is a 2-by-n matrix, where the first row is job permutation sequence and
the second row is factory assignment sequence. A is a n-by-m matrix, where element
Ai;j 2 f1; 2; . . .; sg represents the processing speed of Oi,j. An instance with f = 2,
n = 5, m = 4, s = 3 is shown in Fig. 3. J-F implies that jobs J1 and J2 are assigned to
F1 with the processing sequence π1 = {1, 2}, and jobs J3, J5, J4 are assigned to F2 with
the sequence π2 = {3, 5, 4}. In matrix A, for example, A2,3 = 3 means that the oper-
ation O2,3 is processed at speed v3.

Fig. 3. An example for encoding scheme

480 J. Deng et al.

3.2 Solution Updating Mechanism, Initialization and Archive

In the CMA, once a new individual Xl’ is generated, it will be compared with its
original one Xl, and the acceptance rule is based on the dominance relationship between
the two individuals: (1) If Xl ' � Xl, Xl ¼ X 0

l ; (2) If Xl � X 0
l , remain Xl unchanged; (3) If

Xl and Xl’ are non-dominated, then randomly choose one as new Xl.
In the initialization phase, all population size (PS) individuals are generated ran-

domly to achieve enough diversity. Besides, a Pareto archive (PA) is used to record the
explored non-dominated solutions and a temporal archive (TA) is used to store the
newly found non-dominated solutions in each generation.

3.3 Competition

Adjusting the job processing sequence or the processing speed will impact the
objective value, so three operators are designed, including SU, SD and CS.

SU: the operator is to increase the speed of an operation for optimizing makespan.
Since the Cmax of the DPFSP will be decreased only by improving the schedule in Fm,
SU is designed to randomly choose an operation Oi,j from the factory Fm; if Ai,j = a<s,
then increase Ai,j to b (a < b≤s).

SD: the operator is to decrease the speed of an operation for optimizing TCE. Since
the reduction of carbon emissions of any factory contributes to the reduction of TCE,
factory Fk is randomly selected in SD. Then, randomly choose an operator Oi,j from Fk;
if Ai,j = a>1, then decrease Ai,j to b (1 ≤ b<a).

CS: based on the Properties 4 and 5, the operator is to change job processing
sequence in a factory to decrease Cmax and TCE simultaneously. CS is designed to
randomly select a job J* from Fm, then insert J* into a new position in Fm.

In each generation, the objective of each individual is normalized as follows:

gp Xlð Þ ¼ ðfp Xlð Þ � fmin
p Þ=ðfmax

p � fmin
p Þ ð14Þ

where gp(Xl) denotes the normalized value of the p-th objective, fp(Xl) denotes the value
of the p-th objective, fmax

p and fmin
p denote the maximum and minimum value of the p-th

objective in the current population.
It can be seen from Fig. 4 that the normalized objective space is divided into three

areas by α1, α2 and α3. Obviously, individuals belonging to Ω1 has better performance
on the TCE while is relatively weaker on the Cmax. Individuals in Ω2 are just the
opposite. Individuals in Ω3 have better balance between the two objectives. Since
individuals in Ω1, Ω2 and Ω3 have different features, we make a distinction among them
by choosing different operators for individuals in different areas. To be specific,
individuals in Ω1 execute operator SU to make an emphasis on optimizing Cmax, and
those in Ω2 execute operator SD to focus on the reduction of TCE, and those in Ω3

carry out operator CS to optimizing both of the two objectives.
The size of the corresponding area is decided by the angles α1, α2 and α3, namely,

the use ranges of SU, SD and CS is controlled by the three angles. In the beginning of
the CMA, we set α1 = α2 = α3 = π/6. Later, the performance of the operators may be

A Competitive Memetic Algorithm for Carbon-Efficient Scheduling 481

different at different evolution phase. Besides, to adaptively adjust the use ranges of
SU, SD and CS, a competition is performed among α1, α2 and α3 based on the
performance of operators in each generation.

To evaluate the three operators, the score of operator K denoted will be calculated
after every execution. Because SU and SD are designed to optimize single objective,
the score of SU or SD is calculated as follows:

SrðKÞ ¼ max 0; f � ðXlÞ � f � ðX 0
lÞ

� �
=f � ðXlÞ ð15Þ

where f*(Xl) = f1(Xl) when K = SU, and f*(Xl) = f2(Xl) when K = SD.
CS is to optimize both Cmax and TCE, so its score is calculated as follows:

SrðCSÞ ¼ max 0; f1 Xlð Þ � f1ðX 0
lÞ

� �
=f1ðXlÞþmax 0; f2 Xlð Þ � f2ðX 0

lÞ
� �

=f2ðXlÞ ð16Þ

Let INq be the number of individuals in the area Ωq. The average score of operator
K is calculated as AVSðKÞ ¼ PIN�

r¼1 SrðKÞ=IN�, where IN* = IN1 when K = SU,
IN* = IN2 when K = SD, and IN* = IN3 when K = CS.

Then, the values of α1, α2 and α3 are redefined as follows:

aq ¼ ðp=2� 3bÞ � AVSðKÞ=
X

K
AVSðKÞþ b ð17Þ

where β is a small angle that guarantees αq ≠ 0. Here, it sets β = π/60.

3.4 Local Intensification

It is widely recognized that local search is helpful to intensify the exploitation ability of
memetic algorithms [19]. Based on the SD and CS, two more local search operators
SD_2 and CS_2 are presented.

SD_2: randomly select an operation Oi,j from the factory with maximum energy
consumption (denoted as Fc), if Ai,j = a>1, then decrease Ai,j to b (1 ≤ b<a).

CS_2: randomly select a job from Fc, and insert it into a new position in Fc.

Cmax

TEC

1

1

0

α2

α1

α3
1

3

2

Fig. 4. Normalized objective space Fig. 5. Pseudocode of local search procedure

482 J. Deng et al.

In the local intensification phase, a non-dominated solution in the current popu-
lation is selected to perform local search for LS times. The local search procedure
which includes SU, CS, SD_2 and CS_2 is illustrated in Fig. 5. When Fm = Fc, only
CS is performed to avoid the repeated modification of the processing speeds.

3.5 Adjustment

There are two steps in the adjustment phase. The first step is factory assignment
adjustment, and the second step is speed adjustment.

In the factory adjustment, four adjusting schemes are designed. (1) Randomly select
a job from factory Fm, and insert it into all possible positions of another factory.
(2) Randomly select a job from factory Fm, and exchange its position with all jobs in
another factory. (3) Randomly select a job from factory Fc, and insert it into all possible
positions of another factory. (4) Randomly select a job from factory Fc, and exchange
its position with all jobs in another factory.

Each individual chooses one of the above schemes to search better factory
assignments. Let P* be the set of non-dominated solutions that newly generated when
Xl execute the factory assignment adjustment. Then, randomly select a non-dominated
solution X* from Xl [P�, and set Xl = X*.

In the speed adjustment, according to the Property 5, a solution can be improved by
adjusting the processing speeds without deteriorating the completion time of each
factory. Therefore, the speed adjustment is performed on each solution in the TA. After
the adjustment, solutions in the TA are used to update the PA. Since the completion
time of a factory will not be longer if the critical path [21] remains the same, the speed
adjustment is implemented on the operations that are not on the critical paths (called
non-critical operations). An example of speed adjustment is shown in Fig. 6. Firstly,
the critical path of each factory is found, as the arrowed line. Secondly, for each
factory, the non-critical operations are selected to execute the speed adjustment from
the final job back to the first. For example, the operations in Fig. 6(a) are to be adjusted
in the order {O3,2 → O3,1 → O2,1 → O1,3}.

ΔT3,2

ΔT3,1

Time

Machine

M3

M2

M1

(a) (b)

(c) (d)

(e) (f)

Job J1 Job J2 Job J3

Δt3,2

Time

Machine

M3

M2

M1

Time

Machine

M3

M2

M1

Time

Machine

M3

M2

M1

Time

Machine

M3

M2

M1

Time

Machine

M3

M2

M1

Fig. 6. Illustration of speed adjustment

A Competitive Memetic Algorithm for Carbon-Efficient Scheduling 483

The procedure of speed adjustment for one factory is described as Fig. 7. And the
flowchart of the CMA is illustrated in Fig. 8.

4 Computational Results

The CMA is coded in C language, and all the tests are run on the same PC with an Intel
(R) core(TM) i5-3470 CPU @ 3.2 GHz/ 8 GB RAM under Microsoft Windows 7. The
stopping criterion is set as 0.5 × n seconds CPU time.

Since there is no benchmark for the MODOFSP-Makespan-Carbon, we generate
test instances based on the test data as [8]. To be specific, f = {2, 3, 4, 5}, n = {20, 40,
60, 80, 100}, m = {4, 8, 16}, v = {1, 1.3, 1.55, 1.75, 2.10}, pi,j is uniformly distributed

Fig. 8. Flowchart of the CMA

Fig. 7. The procedure of speed adjustment

484 J. Deng et al.

within 5 * 50, PPj,v = 4×v2, SPj = 1. Clearly, there are 15 combinations of
n × m. For each combination, 10 instances are randomly generated, and each instance
is extended to f = {2, 3, 4, 5}. Thus, it has 15 × 10 × 4=600 instances in total for
evaluation.

The CMA contains two parameters: PS and LS. To investigate the influences of PS
and LS on the performance of the CMA, we set PS with four levels {10, 20, 30, 40} and
LS with four levels {0, 100, 200, 300}, and then 42 full-factorial experiments are
employed. To carry out the experiments, 60 instances are generated randomly, where
each corresponds to a combination of f × n×m. For each instance, 16 combinations of
PS × LS are tested. For each combination of PS × LS, the CMA is run 10 times
independently and the obtained non-dominated solutions Ec_i (c_i = 1, 2, …, 16) are
stored. The final non-dominated solutions FE are obtained by integrating E1, E2, …,
E16. Then, the contribution of a certain combination (CON) is calculated as
CONðc iÞ ¼ E0

c i

�� ��= FEj j, where E0
c i ¼ fXl 2 Ec i 9Xl0 2 FE; Xl ¼ Xl0j g.

After all the instances are tested, the average CON of each combination is calcu-
lated as the response variable (RV) value. The results are listed in Tables 1 and 2, and
the interval plots of PS and LS are shown in Fig. 9.

Table 1. RVs of full-factorial experiments.

Table 2. Result of analysis of variance.

Fig. 9. Interval plot

A Competitive Memetic Algorithm for Carbon-Efficient Scheduling 485

From the Table 2, it can be seen that the influences of PS and LS are both sig-
nificant with 95 % confidence interval. From Fig. 9, we know that the value of PS
should neither be too small nor too large. A large PS may lead to an insufficient
evolution, while a small PS is harmful to the diversity of the population. Similarly, a
large LS is benefit to the exploitation, but a too large LS costs much of computation
time on the local minima. According to the results of experiments, an appropriate
combination of parameters is suggested as PS = 20 and LS = 200.

Since there is no published paper for solving the MODPFSP-Makespan-Carbon, the
CMA is compared with the NSGA-II [22] and random algorithm (RA). In the
NSGA-II, the population size is equal to PS in the CMA, and the crossover rate and
mutation rate are set as 0.9 and 1/n as suggested in [22]. The stopping criteria of
NSGA-II and RA are also set as 0.5 × n seconds CPU time. There are several per-
formance metrics for multi-objective problems [23]. In this paper, we focus on the
quality of the obtained non-dominated solutions. Thus, the coverage metric (CM) is
used for evaluation. The CM is defined as follows:

C E1;E2ð Þ ¼ fX2 2 E2 9X1 2 E1;X2 � X1 orX2 ¼ X1j gj j= E2j j ð21Þ

where C(E1, E2) denotes the percentage of the solutions in E2 that are dominated by or
the same as the solutions in E1.

For each instance, the CMA, NSGA-II and RA are run 10 times independently
within 0.5 × n seconds CPU time. The CM is applied to pairwise comparison between
the CMA and NSGA-II as well as the CMA and RA. For the same combination of
f × n×m, the average CM of 10 instances is calculated. The comparison results are
listed in Tables 3, 4, 5 and 6 grouped by different number of f. From Tables 3, 4, 5 and
6, it can be seen that the proposed CMA is superior to NSGA-II and RA at all sets of
instances. Besides, hypothesis testing is carried out on C(CMA,NSGA-II) and C
(NSGA-II,CMA) as well as C(CMA,RA) and C(RA,CMA), and all the resulted p-
values are equal to 0. So, it is demonstrated that the difference between C(CMA,
NSGA-II) and C(NSGA-II,CMA) as well as the difference between C(CMA,RA) and C

Table 3. Comparisons of algorithms (f = 2). Table 4. Comparisons of algorithms (f = 3).

486 J. Deng et al.

(RA,CMA) are significant with 95 % confidence interval. Thus, it is concluded that the
CMA is more effective than the NSGA-II and RA in terms of the quality of the
obtained solutions.

5 Conclusions

This is the first work to consider the carbon-efficient scheduling for the distributed
permutation flow shop scheduling problem with makespan and total carbon emissions
criteria. Some properties were analyzed, a competitive memetic algorithm was pro-
posed, the effect of parameter setting was investigated, and the effectiveness of the
designed CMA was demonstrated. Future work could focus on the design of the new
search operators and new mechanisms to perform competition. It is also interesting to
studying the carbon-efficient scheduling for other distributed scheduling problems.

Acknowledgement. This research is supported by the National Key Basic Research and
Development Program of China (No. 2013CB329503) and the National Science Fund for
Distinguished Young Scholars of China (No. 61525304).

References

1. Fang, K., Uhan, N., Zhao, F., Sutherland, J.W.: A new approach to scheduling in
manufacturing for power consumption and carbon footprint reduction. J. Manuf. Syst. 30,
234–240 (2011)

2. Mouzon, G., Yildirim, M.B., Twomey, J.: Operational methods for minimization of energy
consumption of manufacturing equipment. Int. J. Prod. Res. 45, 4247–4271 (2007)

3. Mouzon, G., Yildirim, M.B.: A framework to minimise total energy consumption and total
tardiness on a single machine. Int. J. Sustain. Eng. 1, 105–116 (2008)

4. Dai, M., Tang, D., Giret, A., Salido, M.A., Li, W.D.: Energy-efficient scheduling for a
flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics
Comput.-Integr. Manuf. 29, 418–429 (2013)

Table 5. Comparisons of algorithms (f = 4). Table 6. Comparisons of algorithms (f = 5).

A Competitive Memetic Algorithm for Carbon-Efficient Scheduling 487

5. Yao F., Demers A., Shenker S.: A scheduling model for reduced CPU energy. In: 36th
Annual Symposium on Foundations of Computer Science, pp. 374–382 (1995)

6. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature.
J. ACM 54, 3 (2007)

7. Fang, K., Uhan, N.A., Zhao, F., Sutherland, J.W.: Flow shop scheduling with peak power
consumption constraints. Ann. Oper. Res. 206, 115–145 (2013)

8. Ding, J.Y., Song, S., Wu, C.: Carbon-efficient scheduling of flow shops by multi-objective
optimization. Eur. J. Oper. Res. 248, 758–771 (2016)

9. Zheng, H., Wang, L.: Reduction of carbon emissions and project makespan by a
Pareto-based estimation of distribution algorithm. Int. J. Prod. Econ. 164, 421–432 (2015)

10. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, Berlin (2012)
11. Wang, B.: Integrated Product, Process and Enterprise Design. Chapman & Hall, London

(1997)
12. Naderi, B., Ruiz, R.: The distributed permutation flowshop scheduling problem. Comput.

Oper. Res. 37, 754–768 (2010)
13. Gao, J., Chen, R., Deng, W.: An efficient tabu search algorithm for the distributed

permutation flowshop scheduling problem. Int. J. Prod. Res. 51, 641–651 (2013)
14. Wang, S., Wang, L., Liu, M., Xu, Y.: An effective estimation of distribution algorithm for

solving the distributed permutation flow-shop scheduling problem. Int. J. Prod. Econ. 145,
387–396 (2013)

15. Xu, Y., Wang, L., Wang, S., Liu, M.: An effective hybrid immune algorithm for solving the
distributed permutation flow-shop scheduling problem. Eng. Optim. 46, 1269–1283 (2014)

16. Fernandez-Viagas, V., Framinan, J.: A bounded-search iterated greedy algorithm for the
distributed permutation flowshop scheduling problem. Int. J. Prod. Res. 53, 1111–1123
(2015)

17. Naderi, B., Ruiz, R.: A scatter search algorithm for the distributed permutation flowshop
scheduling problem. Eur. J. Oper. Res. 239, 323–334 (2014)

18. Rifai, A.P., Nguyen, H.T., Dawal, S.Z.M.: Multi-objective adaptive large neighborhood
search for distributed reentrant permutation flow shop scheduling. Appl. Soft Comput. 40,
42–57 (2016)

19. Ong, Y.S., Lim, M., Chen, X.: Research frontier-memetic computation-past, present and
future. IEEE Comput. Intell. Mag. 5, 24–31 (2010)

20. Deng J., Wang L., Wang S.: A competitive memetic algorithm for the distributed flow shop
scheduling problem. In: 2014 IEEE International Conference on Automation Science and
Engineering, pp. 107–112. IEEE Press, New York (2014)

21. Nowicki, E., Smutnicki, C.: A fast tabu search algorithm for the permutation flow-shop
problem. Eur. J. Oper. Res. 91, 160–175 (1996)

22. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. on Evol. Comput. 6, 182–197 (2002)

23. Li, B., Wang, L., Liu, B.: An effective PSO-based hybrid algorithm for multiobjective
permutation flow shop scheduling. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 38,
818–831 (2008)

488 J. Deng et al.

	A Competitive Memetic Algorithm for Carbon-Efficient Scheduling of Distributed Flow-Shop
	Abstract
	1 Introduction
	2 Problem Description
	3 CMA for MODPFSP-Makespan-Carbon
	3.1 Encoding Scheme
	3.2 Solution Updating Mechanism, Initialization and Archive
	3.3 Competition
	3.4 Local Intensification
	3.5 Adjustment

	4 Computational Results
	5 Conclusions
	Acknowledgement
	References

