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Abstract. Genomic selection (GS) is a novel breeding strategy that selects
individuals with high breeding value using computer programs. Although GS
has long been practiced in the field of animal breeding, its application is still
challenging in crops with high breeding efficiency, due to the limited training
population size, the nature of genotype-environment interactions, and the
complex interaction patterns between molecular markers. In this study, we
developed a bioinformatics pipeline to perform machine learning (ML)-based
classification for GS. We built a random forest-based ML classifier to produce
an improved prediction performance, compared with four widely used GS
prediction models on the maize GS dataset under study. We found that a
reasonable ratio between positive and negative samples of training dataset is
required in the ML-based GS classification system. Moreover, we recom‐
mended more careful selection of informative SNPs to build a ML-based GS
model with high prediction performance.

Keywords: Genomic selection · Marker-assisted breeding · Relative efficiency ·
Machine learning · Random forest

1 Introduction

Genomic selection (GS) is a promising marker-assisted breeding paradigm that aims to
improve breeding efficiency through computationally predicting the breeding value of
individuals in a breeding population using information from genome-wide molecular
markers (e.g., single nucleotide polymorphisms [SNPs]) [1]. During GS, a prediction
model is firstly built with a training population for modeling relationships between high-
throughput molecular markers and phenotype of individuals, and then employed to
predict the breeding value of individuals in a testing (breeding) population, which are
only genotyped but not phenotyped [2]. Individuals with higher prediction scores are
finally selected for the breeding experiment. Although GS has been demonstrated to be
effective in the breeding of dairy cattle [3], pig [4] and chicken [5], its application in
crop breeding is still challenging, in term of high prediction performance, because of
the deficiency of robust prediction models for the limited training population size [6],
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the nature of genotype-environment interactions [7], and the complex linkage disequi‐
librium and interaction patterns between molecular markers [8].

Numerical efforts have been made to develop GS prediction models with regression
algorithms for predicting breeding values equal or close to real phenotypic values. Some
of representative regression-based GS models are BayesA [1], BayesB [1], BayesC and
ridge regression best linear unbiased prediction (rrBLUP) [10, 11]. However, in real
breeding situation, it is not necessary to correctly predict phenotypic values of all indi‐
viduals in a candidate population, because only individuals with high breeding value are
selected for further breeding [12]. Therefore, GS has recently been regarded as a clas‐
sification problem with two classes: individuals with higher phenotypic values and indi‐
viduals with lower phenotypic values [13]. Some researchers even defined three classes:
individuals with upper, middle and lower phenotypic values [14]. For this purpose, the
classification-based GS started to be investigated with machine learning (ML) technol‐
ogies, including random forest (RF) [13], support vector machine (SVM) [13] and prob‐
abilistic neural network (ANN) [14]. ML is a branch of artificial intelligence that
employs various mathematical algorithms to allow computers “learn” from the experi‐
ence and to perform prediction on new large datasets [15]. Instead of building a regres‐
sion curve that fits all the training data, ML-based classification approaches estimate the
probability of each individual that belongs to different classes. The superiority of ML-
based classification over traditional regression-based approaches has been reported on
several crop GS datasets [13]. Nevertheless, the application of ML in GS is still required
to be explored, because very little is known about the direction toward the performance
improvement of ML-based classification approaches.

Several factors may limit the performance of ML-based classification systems. One
is the ratio between positive and negative samples (RPNS) in training dataset, which
has been demonstrated in the ML-based prediction of mature miRNAs [16, 17], protein-
protein interactions [18] and stress-related genes [19, 20]. For classification-based GS,
the prediction model is required to be trained with positive and negative samples gener‐
ated from the separation of training population according to phenotypes of individuals.
However, the effect of RPNS on the prediction performance of ML-based GS classifi‐
cation approaches was rarely explored in the literature [14].

Another factor that influences the prediction accuracy is the number of informative
features used to build ML-based prediction systems. In GS, thousands of molecular
markers are usually used as the input features of ML-based prediction systems. Due to
the limited training population size in many crop GS experiments, it is difficult to model
the complex relationships between genome-wide molecular markers and phenotypic
values [21]. Known that not all molecular markers are contributed to the trait phenotype
[22], selecting a subset of molecular markers that is informative and small enough to
deduce prediction models has become an important step toward effective GS [23].
Although hands of feature selection algorithms have been developed for the ML-based
classification problems in the research area of bioinformatics and computational biology
[24], it is still not clear whether these feature selection algorithms work well in the
selection of informative molecular markers for improving the performance of ML-based
classification systems in GS programs.
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In this study, we developed a bioinformatics pipeline to perform ML-based classi‐
fication for GS. We employed the random forest (RF) algorithm to build a ML-based
classifier named rfGS, and explored the performance of rfGS affected by different factors
on a maize GS dataset. We found that an optimized ratio between training positive and
negative samples is required for ML-based GS models. Moreover, we confirmed that
the selection of molecular markers is an important way of performance improvement,
while the rrBLUP (ridge regression best linear unbiased prediction)-based SNP selecting
yields better results than mean decrease accuracy (MDA) and mean decrease Gini
(MDG), which are widely used in RF-based classification problems.

2 Methods and Materials

2.1 GS Data Set

The GS data set used in this study comprises individuals from 242 maize lines with each
individual phenotyped for the grain yield under drought stress. These individuals were
genotyped using 46374 single-nucleotide polymorphism (SNP) markers (Illumina
MaizeSNP50 array). This data set can be publicly downloaded at the CIMMYT (Inter‐
national Maize and Wheat Improvement Center) website (http://repository.cimmyt.org/
xmlui/handle/10883/2976).

2.2 GS Prediction Models

We built GS prediction models with four widely used regression algorithms (ridge
regression best linear unbiased prediction [rrBLUP], BayesA, BayesB and BayesC) and
one representative ML algorithm random forest (RF). For regression algorithms, the
relationships between SNPs and phenotypic values can be generally expressed as

, where y is the vector of phenotypic values,  is a common inter‐
cept, X is a full-rank design matrix for the fixed effects in β, which indicates the factor
(e.g., population structure) influences phenotypes,  is the allelic state at the
locus k,  is marker effect at the locus k, and  where e is the vector
of random residual effects and  is the residual variance [9]. In Z, the allelic state of
individuals can be encoded as a matrix of 0, 1 or 2 to a diploid genotype value of AA,
AB, or BB, respectively [2].

For rrBLUP,  is calculated as following formula:

, where  is the ratio between the residual and marker

variances. The rrBLUP algorithm was implemented using the “mixed.solve” function
in R package rrBLUP (https://cran.r-project.org/web/packages/rrBLUP/index.html).

For the Bayesian regression analysis, the conditional distribution of A can be esti‐
mated using the user-given marker information and phenotypic values. The prior distri‐
bution can be estimated using different algorithms in the Bayesian framework. We
selected BayesA (scaled-t prior), BayesB (two component mixture prior with a point of
mass at zero and a scaled-t slab), BayesC (two component mixture prior with a point of
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mass at zero and a Gaussian slab), respectively. BayesA, BayesB and BayesC were
implemented using the “BGLR” function in R package BGLR (https://cran.r-
project.org/web/packages/BGLR/index.html).

Random forest, developed by Breiman [25], is a combination of random decision
trees. Each tree in the forest is built using randomly selected samples and SNPs. RF
outputs the probability of each sample to be the best class based on votes from all trees.
RF is a powerful ML algorithm that has been widely applied in many classification
problems [26, 27]. The RF algorithm was implemented using the R package random‐
forest (https://cran.r-project.org/web/packages/randomForest/index.html). The number
of constructed decision trees (ntree) was set to be 500, other parameters were used default
values.

2.3 SNP Selection

RF-Based SNP Selection. RF provides two built-in measurements for estimating the
importance of each feature: MDA and MDG [28]. For a given feature, the MDA quan‐
tifies the mean decrease of the predictor when the value of this feature is randomly
permuted in the out-of-bag samples, while the MDG calculates the quality of a split for
every node of a tree by means of the Gini index. The higher MDA or MDG value indi‐
cates the more importance of the feature in the prediction. Both MDA and MDG were
calculated by the R package randomforest.

rrBLUP-Based SNP Selection. The rrBLUP model estimates the marker effect for
reflecting the importance of each SNP in the prediction of the correlation between geno‐
type and phenotypic values. We selected informative SNPs according to the absolute
values of marker effects.

2.4 Performance Evaluation

As previously described [13], the relative efficiency (RE) measurement was used to
evaluate the prediction performance of each GS prediction model. Of note, other meas‐
urements, such as sensitivity, specificity and area under receiver operating characteristic
(ROC), may be also interesting in the GS program. The RE was defined as below:

where μ represents the mean phenotypic value of the whole GS dataset,  denotes the
mean of real phenotypic values of the top α individuals with extreme phenotypic values,

 is the mean of the real values of extreme individuals (ranked by the predicted values)
that have the top α. RE ranges from −1 to 1. A higher RE value indicates a high degree
that extreme individuals can be predicted by the classifier. The possible α value ranged
from 10 % to 50 % was considered in this study.

Leave-one-out cross-validation (LOOCV) test was used to evaluate the prediction
performance and robustness (Fig. 1). In the LOOCV, each individual was picked out in
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turn as an independent test sample, and all the remaining individuals were used as
training samples for building the GS prediction model with rrBLUP, BayesA, BayesB,
BayesC or RF algorithm (Fig. 1A–C). This process was repeated until each individual
was used as test data one time (Fig. 1A–C). Because sampling strategy was used in the
three Bayesian-related regression models and RF-based ML classification model, the
LOOCV test was repeated 10 times for calculating the average performance of all tested
GS algorithms at each possible percentile value (α).

Fig. 1. Overview of LOO cross-validation test for performance evaluation of GS prediction
models built with rrBLUP, BayesA, BayesB, BayesC and RF algorithms.

3 Results and Discussion

3.1 Performance Comparison Between rfGS and Four Representative GS
Algorithms

The prediction performance of five algorithms (rrBLUP, BayesA, BayesB, BayesC and
rfGS) was evaluated using the LOO cross validation test, which iteratively selected one
individual as the testing sample and the other individuals as the training samples. The
relative efficiency (RE) measurement was used to estimate the prediction accuracy of
these algorithms for correctly selecting the best individuals at a given percentile value
(α). As shown in Fig. 2, the RE of BayesA gradually decreases from 0.33 to 0.23, when
α increases from 10 % to 50 %. Similar results are observed for BayesB and BayesC.
Differently, the RE of rrBLUP remarkably decreases from 0.40 to 0.34 when α increases
from 10 % to 15 %, but notably increases at higher percentile values (α = 18 %, 22 %,
27 %, 39 % and 47 %). rfGS shows a different pattern of RE compared to the other four
algorithms, and reaches the highest RE value (0.53) when α is 14 %. These results indi‐
cate that the performance of all five algorithms is influenced by the percentile value.
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Fig. 2. The relative efficiency (RE) of five GS algorithms at different percentile values (α). (Color
figure online)

Compared with BayesA, BayesB and BayesC, rrBLUP yields higher RE values at
all tested percentile values. However, we found that the RE can be further improved by
using rfGS for almost all tested percentile values. Our result suggests that compared
with the widely used regression-based GS algorithms (BayesA, BayesB, BayesC and
rrBLUP), RF-based ML classification system rfGS would be an alternative option for
the GS program.

3.2 Performance of rfGS is Affected by the Ratio Between Training Positive and
Negative Samples

We explored how the performance of rfGS changed with different ratios between posi‐
tive and negative samples in the training dataset, by selecting the proportion of individ‐
uals in the best–worst classes to 20–80, 30–70, 40–60, 50–50 or 60–40.

In Fig. 3, it is shown that the RE of the setting 20–80 gradually decreases from 0.57
to 0.22, when α increases from 10 % to 50 %. Differently, the RE patterns under settings
30–70, 40–60, 50–50, have similar trend that the RE scores first increase when α
increases from 10 % to 15 %, and then decrease when α increases from 15 % to 50 %.
The RE under the setting 60–40, frequently fluctuates compared to other settings, and
has a peak when α is 21 %. The different trends of these RE values under five proportion
settings could be explained by the different ability of ML-based classifiers that identify
the best individuals under the corresponding ratio. The setting 30–70 showed the best
performance among the five different partitions evaluated. Overall, our findings show
that the impacts of the ratio between training positive and negative samples on the
performance of ML-based GS classifiers should not be neglected, and a reasonable
proportion of best–worst classes in the training sets is important for GS program.
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Fig. 3. The relative efficiency of rfGS is affected by the ratio between positive and negative
samples in training dataset. (Color figure online)

3.3 Prediction Performance of rfGS Can Be Improved with SNP Selection
Process

SNP selection is a process in which a subset of informative SNPs is selected for building
GS prediction models. In ML-based classification, MDA and MDG are two powerful
feature selection algorithms that are widely used in selected informative features from
high-dimensional genomic data. In each round of LOOCV, we estimated the importance
of each SNP using the MDA and MDG, respectively, and selected the top N (N = 50,
100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 10000, 15000, 20000,
25000, 30000, 35000, 40000) to build GS prediction models (Fig. 4). We also performed
the SNP selection based on the marker effects estimated by the rrBLUP algorithm
(Fig. 4). Compared with using all 46374 SNPs, the proportion of predicted accuracy
(RE) by selecting top 3000, 4500, 5000, 10000, 30000, 35000 SNPs using MDA
increases from −4.48 % to 14.1 % (mean 5.59 % ± 3.47 %) when α increases from 28 %
to 35 %. Meanwhile, the proportion is elevated from 0.46 % to 12.61 % (mean
6.29 % ± 2.68 %) by selecting top 4000, 5000, 15000, 20000, 35000 SNPs using MDG
with α increasing from 24 % to 35 %. When top 100, 500, 3500, 15000 SNPs were
selected, the proportion of prediction accuracy increases from −9.8 % to 34.79 % (mean
9.35 % ± 8.47 %) with a range of α from 20 % to 40 %. rfGS reaches the best performance
when selecting the top 10000, 35000, 100 SNPs estimated with MDA, MDG, and
rrBLUP algorithms, respectively. Compared to MDA and MDG, rrBLUP-based SNP
selection requires the least SNPs to obtain the same prediction ability. It should be noted
that, for the GS programs interested in the α ranged from 14 % to 16 % and from 40 %
to 50 %, the predicted accuracy consistently decreases in all three SNP selection algo‐
rithms, suggesting that more powerful SNP algorithms are urgent to be developed.
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Fig. 4. The performance of mlDNA affected by different SNP selection algorithms. (Color figure
online)

Overall, our result shows that the algorithms of selection important SNPs is effective
for improving efficiency of GS, and rrBULP-based SNP selection is a promising
approach.

4 Conclusions

In this study, we designed a bioinformatics pipeline to perform ML-based classification
in GS, exemplified with the application of RF algorithm on a maize GS dataset. RF-
based ML classification system rfGS outperforms the widely used regression-based GS
algorithms (BayesA, BayesB, BayesC and rrBLUP) on the maize GS dataset under
study. Some cautions are raised about the application of ML-based classification to GS.
A reasonable proportion of training positive and negative samples is required to increase
the prediction accuracy of ML-based GS model. Additionally, SNP selection is also
viable to improve efficiency of GS, and rrBULP-based SNP selection is a promising
algorithm. In the future, we will apply the graphics processing unit (GPU)-based accel‐
eration technologies to perform the ML-based GS experiments with more complex ML
algorithms (e.g., SVM, deep convolutional neural network) and more GS datasets.
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