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Abstract. Interactive effects of Single Nucleotide Polymorphisms (SNPs),
namely, SNP-SNP interactions, have been receiving increasing attention in
understanding the mechanism underlying susceptibility to complex diseases.
Though many works have been done for their detection, the algorithmic
development is still ongoing due to their computational complexities. In this
study, we apply selectively informed particle swarm optimization (SIPSO) to
determine SNP-SNP interactions with mutual information as its fitness function.
The highlights of SIPSO are the introductions of scale-free networks as its
population structure, and different learning strategies as its interaction modes,
considering the heterogeneity of particles. Experiments are performed on both
simulation and real data sets, which show that SIPSO is promising in inferring
SNP-SNP interactions, and might be an alternative to existing methods. The
software package is available online at http://www.bdmb-web.cn/index.php?m=
content&c=index&a=show&catid=37&id=99.
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1 Introduction

SNP-SNP interactions have been receiving increasing attention in understanding the
mechanism underlying susceptibility to complex diseases, such as heart disease, Alz-
heimer’s disease, cancer, type 2 diabetes and many others [1]. Detection of SNP-SNP
interactions is therefore becomes an urgent, front-burner problem in the field of
Bioinformatics. Though lots of algorithms have been proposed for inferring SNP-SNP
interactions, the algorithmic development is still ongoing due to their computational
and mathematical complexities, including the fitness function that decides how well an
SNP combination contributes to the phenotype, the limitation of prior knowledge in
interpreting complex genetic architecture of a disease, the intensive computational
burden imposed by the enormous search space resulted from the problems of “high
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dimensional and small sample size” and “combinatorial explosion”, which obviously
hinder further applications of current algorithms in genome-wide association studies.

Recently, several particle swarm optimization (PSO) based methods have been
proposed for determining SNP-SNP interactions [2–13]. Yang et al. [2] used a binary
PSO to evaluate the risk of breast cancer, with odds ratio as its fitness function, which
is known as OR-BPSO for short. Based on the OR-BPSO, Chang et al. [3] presented a
odds ratio discrete binary PSO (OR-DBPSO) for inferring SNP-SNP interactions with
the quantitative phenotype. Chuang et al. [4] also combined PSO and odds ratio to
explore combinations of SNP-SNP interactions in breast cancer. They then developed a
chaotic PSO (CPSO) for breast cancer association studies and indeed identified a SNP
combination [5]. In order to enhance the reliability of the PSO in determining
SNP-SNP interactions associated with breast cancer, they improved the PSO (IPSO)
and proved that the IPSO is highly reliable than the OR-BPSO [6]. Recently, they
presented a gauss chaotic map PSO (Gauss-PSO) and used it to detect the best asso-
ciation with breast cancer [7]. They confirmed that the Gauss-PSO was capable of
identifying higher difference values between cases and controls than both the PSO and
the CPSO. By analyzing the performance of the PSO and the CPSO, Yang et al. [8]
presented a double-bottom chaotic map PSO (DBM-PSO) to overcome their respective
limitations. Later, the DBM-PSO is used to infer SNP-SNP interactions based on chi-
square test [9]. Hwang et al. [10] developed a complementary-logic PSO (CLPSO) to
increase the efficiency of determining significant SNP-SNP interactions in case-control
study. Wu et al. [11] proposed a PSO based algorithm and found SNP interactions of
rennin-angiotensin system genes against hypertension. Nevertheless, above mentioned
methods mainly focus on identifying a best genotype-genotype of a SNP-SNP inter-
action among possible genotype combinations of SNP combinations, but not several
SNP-SNP interactions among possible SNP combinations, which may lose important
clues for the exploration of causative factors of complex diseases. In addition, limited
sample size of SNP data obviously affects computational accuracies of these methods.
More recently, Ma et al. [12] proposed PSOMiner for the detection of SNP-SNP
interactions, which is a generalized PSO algorithm based on the fitness function of
mutual information. Shang et al. [13] presented an improved method IOBLPSO for
detecting SNP-SNP interactions by using opposition-based learning PSO. IOBLPSO
has ensured the ability of global searching and prevented premature convergence.
However, above methods treated all particles equally and adopt a single learning
strategy, overlooking the heterogeneity of particles. Gao et al. [14] employed scale-free
networks to represent the population structure of swarms and proposed a selectively
informed PSO (SIPSO), where particles select different learning strategies based on
their degrees: a densely connected hub particle gets full information from all of its
neighbors (fully-informed) while a non-hub particle with low degree can only follow a
single yet best performed neighbor (single-informed). Experiment results show that
SIPSO is able to significantly improve the optimization performance.

In this paper, we combine SIPSO and mutual information to determine SNP-SNP
interactions. The highlights of SIPSO are the introductions of scale-free networks as its
population structure, two different learning strategies as its interaction modes, and
mutual information as its fitness function. Experiments are performed on several real
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and simulation data sets. Results demonstrate that SIPSO is promising in inferring
SNP-SNP interactions, and might be an alternative to existing methods.

2 Methods

2.1 Scale-Free Network

A scale-free network is a network whose degree distribution follows a power law, at
least asymptotically. So far, many networks have been reported to be scale-free, for
instance, world wide web, internet, neural networks, and so on. Liu et al. studied the
influence of scale-free population structure on the performance of PSO, showing that
the scale-free PSO outperforms the traditional PSO, due to only a few particles being
densely connected hubs and most particles being low degree non-hubs, resulting in
high heterogeneity of degrees of particles [14, 15].

In SIPSO, particles are considered as nodes of a scale-free network. This network is
generated by Barabasi-Albert model [16], which incorporates two ingredients including
growth and preferential attachment. Specifically, at first m0 fully connected particles are
constructed as a complete network; at each time step a new particle is added to the
network, which is connected to m (m\m0) nodes with a specified probability. This
probability pi of the new particle being connected to an existing particle i depends upon
degree of i, i.e., ki, which can be written as

pi ¼ kiP
j
kj
; ð1Þ

where j runs over all the existing particles. Here m0 is set to 4 and m is set to 2.

2.2 Mutual Information

The SIPSO introduces mutual information to decide which SNP combinations are
SNP-SNP interactions, and to measure how much the effects of captured SNP-SNP
interactions to the phenotype are, since mutual information has widely been used as a
promising measure for measuring dependence of two variables without a complex
modeling. The formula of mutual information can be written as

MI S; Yð Þ ¼ H Sð ÞþH Yð Þ � H S; Yð Þ; ð2Þ

where H Sð Þ is the entropy of S, H Yð Þ is the entropy of Y , and H S;Yð Þ is the joint
entropy of both S and Y , S is a position of a particle indicating a SNP combination, Y is
the phenotype.

The entropy and the joint entropy are defined as,

114 W. Zhang et al.



H Sð Þ ¼ �
X3
j1¼1

� � �
X3
jK¼1

p sj1 ; � � � ; sjK
� � � log p sj1 ; � � � ; sjK

� �� �
; ð3Þ

H Yð Þ ¼ �
X1
j¼0

p yj
� � � log p yj

� �� �
; ð4Þ

H S; Yð Þ ¼ �
X3
j1¼1

� � �
X3
jK¼1

X1
j¼0

p sj1 ; � � � ; sjK ; yj
� � � log p sj1 ; � � � ; sjK ; yj

� �� �
; ð5Þ

where K is the considered order of SNP-SNP interactions, i.e., the number of SNPs in a
SNP combination. s is the genotype of a SNP coded as 1; 2; 3f g, corresponding to
homozygous common genotype, heterozygous genotype, and homozygous minor
genotype. y is the label of a sample coded as 0; 1f g, corresponding to control and case.
p �ð Þ is the probability distribution function.

Obviously, higher mutual information value indicates stronger association between
the phenotype and the SNP combination.

2.3 Selectively Informed Particle Swarm Optimization (SIPSO)

The SIPSO, first proposed by Gao et al. [14] that takes into account both the scale-free
population structure and selectively informed learning strategies, is a typical swarm
intelligence algorithm that derives the inspiration from the self-organization and
adaptation in flocking phenomena. Experimental comparisons showed that SIPSO
outperforms several peer algorithms in terms of solution quality, convergence speed,
and success rate. We combine SIPSO and mutual information to determine SNP-SNP
interactions in this paper.

For SIPSO, let Xt
i ¼ xti1; � � � ; xtiK

� �
and Vt

i ¼ vti1; � � � ; vtiK
� �

be the position and the
velocity of particle i at iteration t, where t 2 1; T½ �, i 2 1; I½ �, T is the number of
iterations, I is the number of particles, xtiK is the selected Kth SNP index of particle i at
iteration t, and xtiK 2 1;M½ �, M is the number of SNPs in the data set. vtiK is the velocity
of xtiK . At each iteration, each particle update its position and velocity according to the
following equations:

~Vtþ 1
i ¼ g � Vt

i þ 1
N ið Þj j

P
j2N ið Þ

U 0; c1 þ c2ð Þ � Pt
j � Xt

i

� �� � !
N ið Þj j[ k

g � Vt
i þU 0; c1ð Þ � Pt

i � Xt
i

� �þU 0; c2ð Þ � Gt
i � Xt

i

� �� �
N ið Þj j � k

8><
>: ; ð6Þ

Vtþ 1
i ¼ ~Vtþ 1

i
~Vtþ 1
i 2 1�M;M � 1½ �

U 1�M;M � 1ð Þ ~Vtþ 1
i 62 1�M;M � 1½ �

�
; ð7Þ

~Xtþ 1
i ¼ Xt

i þVt
i ; ð8Þ
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Xtþ 1
i ¼ int ~Xtþ 1

i

� �
~Xtþ 1
i 2 1;M½ �

int U 1;Mð Þð Þ ~Xtþ 1
i 62 1;M½ �

�
; ð9Þ

g ¼ 2

2� c1 þ c2ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 þ c2ð Þ2�4 � c1 þ c2ð Þ

q









: ð10Þ

Here, Pt
i is the best historical position of particle i until iteration t, Gt

i is the best
historical position of neighbors of particle i at iteration t. c1 and c2 are the acceleration
coefficients controlling how far a particle moves at an iteration. g is the learning rate.
U a; bð Þ is a random number drawn at each iteration from the uniform distribution a; b½ �.
N ið Þ is the neighbors of particle i and N ið Þj j is the degree of particle i (e.g. the number
of neighbors). int �ð Þ is an integral function. k is the threshold to determine a particle
fully-informed or single-informed.

For constructing a positive feedback mechanism, Pt
i and Gt

i should be updated at
every iteration. Specifically, whether Ptþ 1

i is updated to Xt
i or Pt

i depends on their
mutual information values, which can be defined as,

Ptþ 1
i ¼ Pt

i MI Pt
i; Y

� � ¼ max MI Pt
i; Y

� �
;MI Xt

i ; Y
� �� �

Xt
i MI Xt

i ; Y
� � ¼ max MI Pt

i; Y
� �

;MI Xt
i ; Y

� �� ��
: ð11Þ

Similarly, by evaluating mutual information values of N ið Þ and Gt
i, G

tþ 1
i is updated

to one of them with the higher value, which can be written as,

Gtþ 1
i ¼ Gt

i MI Gt
i; Y

� � ¼ max MI Gt
i; Y

� �
;MI N ið Þ; Yð Þ� �

N ið Þ MI N ið Þ; Yð Þ ¼ max MI Gt
i; Y

� �
;MI N ið Þ; Yð Þ� ��

: ð12Þ

While completing the iteration process, PT
i with descending mutual information

values are recorded as the detected SNP-SNP interactions of SIPSO.

3 Results and Discussion

3.1 Simulation and Real Data Sets

We exemplify 4 benchmark models of SNP-SNP interactions for the experiments
[17–21], detailed parameters of which are recorded in Table 1. Specifically, Model 1 is
a model that display both marginal effects and interactive effect, the penetrance of
which increases only when both SNPs have at least one minor allele [17, 18]; Model 2
is a model showing both marginal effects and interactive effect, the additional minor
allele at each locus of which does not further increase the penetrance [17]. Model 3 is
also a model displaying both marginal effects and interactive effect, which assumes that
the minor allele in one SNP has the marginal effect, however, the marginal effect is
inversed while minor alleles in both SNPs are present [17]; Model 4 is a model that
shows only interactive effects, which is directly cited from the reference [20].
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Model 4 is exemplified here since it provides a high degree of complexity to challenge
ability of a method in detecting SNP-SNP interactions. For each model, 50 data sets are
simulated by epiSIM [22], each containing 4000 samples with the ratio of cases and
controls being 1. For each data set, random SNPs are set with their MAFs chosen from
0:05; 0:5½ � uniformly.

A real data set of age-related macular degeneration (AMD) is used for testing the
practical ability of SIPSO. AMD, refers to pathological changes in the central area of
the retina, is the most important cause of irreversible visual loss in elderly populations,
and is considered as a complex disease having multiple SNP-SNP interactions [18].
The AMD data set contains 103611 SNPs genotyped with 96 cases and 50 controls,
which has been widely used as a benchmark data set in the field of testing methods of
detecting SNP-SNP interactions [12, 13, 17, 18, 21, 23–25].

3.2 Experiments on Simulation Data Sets

Three PSO based methods for inferring SNP-SNP interactions are used for this com-
parison study with the SIPSO. They are DBM-PSO, PSOMiner and IOBLPSO. For a
fair comparison, parameter settings of these methods are the same. Specifically, the
number of particles I and the number of iterations T are respective set to 200 and 20;
acceleration factors c1 and c2 are chosen their appropriate settings 2.05 based on pre-
vious extensive analysis [26]; the inertia weights for compared methods are set to 0.65;
the threshold to determine a particle fully-informed or single-informed k is set to 4.

Detection power is used to evaluate the performance of SIPSO by applying SIPSO
on four groups of simulation data sets, each of which consists of a SNP-SNP interaction
model. Power of these compared methods on simulation data sets is reported in Fig. 1.

Table 1. Details of 4 models of SNP-SNP interactions. Prevalence is the proportion of samples
that occur a disease. Penetrance is the probability of the occurrence of a disease given a particular
genotype. MAF(a) is the minor allele frequency of a. AA, Aa, and aa are homozygous common
genotype, heterozygous genotype, and homozygous minor genotype.

Model MAF(a) MAF(b) Prevalence Penetrance function

Genotypes (SNP A) Genotypes (SNP B)
BB Bb bb

Model 1 0.300 0.200 0.100 AA 0.087 0.087 0.087
Aa 0.087 0.146 0.190
aa 0.087 0.190 0.247

Model 2 0.400 0.400 0.050 AA 0.042 0.042 0.042
Aa 0.042 0.061 0.061
aa 0.042 0.061 0.061

Model 3 0.400 0.200 0.010 AA 0.009 0.009 0.009
Aa 0.013 0.006 0.006
aa 0.013 0.006 0.006

Model 4 0.400 0.400 0.171 AA 0.068 0.299 0.017
Aa 0.289 0.044 0.285
aa 0.048 0.262 0.174
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It is seen that performance of the SIPSO is comparable, and sometimes outperforms to
those of compared methods. Specifically, power of the SIPSO is much higher than that
of DBM-PSO and PSOMiner; nevertheless, its power is behind that of IOBLPSO in
three models except the Model 3, since the IOBLPSO introduces the strategy of
opposition-leaning, which implies that introducing opposition-learning to SIPSO might
also improve the performance of SIPSO, which is a direction; the DBM-PSO has the
worst performance on all models because it only focus on identifying genotype com-
binations among SNP combinations; the PSOMiner is indeed a general PSO that used
in determining SNP-SNP interactions, and hence has poor power.

3.3 Application to Real Data Set

The SIPSO is applied on AMD data set four times with parameter settings I;Tð Þ being
10000; 500ð Þ, 10000; 1000ð Þ, 20000; 500ð Þ and 20000; 1000ð Þ. The top 10 captured
SNP-SNP interactions that might be associated with the AMD are reported in Table 2
with descending mutual information values.

It is interesting that all reported SNP-SNP interactions contain either rs380390 or
rs1329428. This is because that these two SNPs have strongest main effects among all
tested SNPs, and have already proofed to be significantly associated with AMD [18].
Both of them are in the CFH gene, and there are biologically plausible mechanisms for
the involvement of CFH in AMD. CFH is a regulator that actives the alternative
pathway of the complement cascade, the mutations in which can lead to an imbalance
in normal homeostasis of the complement system [24]. This phenomenon is thought to
account for substantial tissue damage in AMD [23, 25, 27].

Other SNPs listed in the second column of the table might be identified due to their
partners, i.e., rs380390 and rs1329428, since strong main effects of them leads to their
combinations with other SNPs almost displaying strong interactive effect. This also

Fig. 1. Power of compared methods on simulation data sets.
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indicates that SIPSO is sensitive to those SNPs displaying strong main effects. Further
studies with the use of large scale case-control samples are needed to confirm whether
these SNPs have true associations with AMD. We hope that several clues could be
provided from this paper for the exploration of causative factors of AMD.

4 Conclusions

SNP-SNP interactions, also known as epistatic interactions or epistasis, is nonlinear
interactive effects of SNPs, which is now believed to be one of the causative patterns of
complex diseases, and is recognized fundamentally important for understanding the
mechanism of disease causing genetic variation. Though many works have been done
for inferring SNP-SNP interactions, the algorithmic development is still ongoing due to
their mathematical and computational challenges. For instance, the limited fitness
functions, the complex genetic architecture, and the intensive computational burden.
By considering the advantages of the PSO including simplicity, effectiveness and low
computational cost, we introduce the SIPSO with the mutual information to determine
SNP-SNP interactions in this manuscript. The SIPSO improves the traditional PSO by
modifying the population structure as a scale-free network and altering the interaction
modes to different learning strategies. That is to say, learning strategy of each particle
depends on its degree: a densely connected hub particle gets full information from all of
its neighbors while a non-hub particle with low degree can only follow a single yet best
performed neighbor. Experiments are performed on both simulation and real data sets,
which show that SIPSO is promising in inferring SNP-SNP interactions, and might be
an alternative to existing methods. The Matlab version of SIPSO software package
is available online at http://www.bdmb-web.cn/index.php?m=content&c=index&a=
show&catid=37&id=99.

Table 2. Top 10 captured SNP-SNP interactions associated with AMD. CFH: complement
factor H. MPP7: palmitoylated membrane protein 7. PEBP4: phosphatidylethanolamine binding
protein 4. R3HDM1: R3H domain (binds single-stranded nucleic acids). N/A: no gene is
available. Chr: Chromosome.

SNP 1 SNP 2 Mutual information
valueIndex Name Gene Chr Index Name Gene Chr

43748 rs380390 CFH 1 80178 rs1363688 N/A 5 0.2966
54108 rs1329428 CFH 1 30550 rs10489076 N/A 4 0.2650
43748 rs380390 CFH 1 51222 rs10508731 MPP7 10 0.2647
43748 rs380390 CFH 1 8764 rs1345488 N/A 18 0.2640
54108 rs1329428 CFH 1 51987 rs2466215 PEBP4 8 0.2636
43748 rs380390 CFH 1 49642 rs10521121 N/A 17 0.2608
43748 rs380390 CFH 1 54213 rs2829015 N/A 21 0.2593
54108 rs1329428 CFH 1 57441 rs1917173 N/A 10 0.2470
43748 rs380390 CFH 1 34447 rs961360 R3HDM1 2 0.2468
54108 rs1329428 CFH 1 64573 rs717246 N/A 1 0.2435
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There are several merits and demerits for SIPLO introducing to identify SNP-SNP
interactions. The first advantage is that the SIPSO taking into account the individual’s
heterogeneity, could balance the exploration and the exploitation in the optimization
process. The second advantage is that mutual information is an effective and efficient
fitness function in measuring SNP-SNP interactions. Nevertheless, it still has lots of
limitations. Firstly, it is only a beneficial exploration of SIPSO applying to determine
SNP-SNP interactions, its performance is simply comparable to compared methods,
and sometime inferior to compared methods, which indicates that the SIPSO needs
more improvement while applying to the field of Bioinformatics. Secondly, SIPSO is
sensitive to those SNPs displaying strong main effects. These limitations will inspire us
to continue working in the future.
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