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Abstract. In this paper, we proposed an algorithm based on variable neigh-
borhood search (VNS) for the capacitated m-Ring-Star problem. This problem
has several real applications in communications networks, rapid transit system
planning and optical fiber networks. The problem consists in design m rings or
cycles that begins of a central depot and visits a set of customers and transition
or steiner nodes. While the nodes don’t belong to a ring these must be allocated
or assign to a customer or steiner node that belongs to a ring. The number of
customers allocated or visited in each ring must not exceed the maximum
capacity. The goal is to minimize the visiting and allocation cost. For solving the
problem, we propose a VNS approach based on random perturbation for
escaping from the local optimal solutions. Our method reached the optimal
solution in a reasonable amount of time in a set of instances from the literature.
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1 Introduction

The capacitated m-Ring-Star problem (CmRSP) was introduced by Baldacci et al. [1].
This problem is a variant of the classical capacitated vehicle routing problem with one
depot. The CmRSP consists in designing a set of rings (with size m) passing throw a
central depot and visiting a subset of customers and a subset of steiner nodes. Rings
may include transit nodes (Steiner nodes) so that star connections can be established
between a customer and a ring through a transit node. Each ring and its star connections
(ring-star) is limited by a maximum number of customers. A feasible solution is rep-
resented by a set of m rings. Each node is a visited node if is in a ring, if not, is an
allocated node. If in a node is assigned an allocated node, it is call a connecting node.
Figure 1 gives an example of a feasible CmRSP solution, where there are three rings,
and nodes assigned with the dotted line are the allocated nodes. The goal is to minimize
the total cost of visiting and assigning the customers to the routes that comes from the
depot. This problem has many real-world applications like optical fiber networks, rapid
transit system planning and telecommunication systems.
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There are two variations of this problem, the ring star problem and the steiner ring
star problem. In the ring star problem the steiner nodes are not available and the
capacity constrain are not imposed. The problem consist in design a cycle through a
subset of know customers looking for minimize the cycle length and the cost of assign
a non-visited customer to the nearest customer visited. There are several algorithmic
development for solving this problem, see [2–5].

On the other hand, the steiner ring star problem is a variation that has application in
designing of digital data service networks. The problem consist in design a cycle over a
set of steiner nodes and assign each customer to a node visited by a cycle. The
objective is minimize the cycle and allocation costs. A branch and cut algorithm has
been proposed to solve the problem [6].

The first work on this problem proposed two integer programming models inspired
in classical routing formulations and introduced valid inequalities for improve the
quality of the lower bounds, the problem was inspire in the design of a fiber optic
communication network [1]. For solving the linear problem, authors develop a branch
and cut approach and embebbed two heuristics procedure to speed up the convergence
of the branch and cut algorithm.

Naji-Azimi et al. [7] proposed another heuristic based on linear programming and
column generation scheme. The linear programming model selects the best point when
a customer can be insert, and with the column generation scheme a reinsertion problem
is solved. Some other methods are proposed for solving the problem, see [8–11].

The remainder of this paper is organized as follows: Sect. 2 present the description
of the proposed algorithm based on VNS. Section 3 shows some numerical results from
a set of instances of literature. Finally, Sect. 4 concludes this work and provides
possible research directions.

2 Description of the Proposed Algorithm

Our algorithm is based on variable neighborhood search (VNS), for implementing the
algorithm, we use the following premises:

Fig. 1. An example of a feasible CmRSP solution
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(1) For representing the solution we use a vector that indicates the nodes on the ring
and the assignation (2) We don’t allow infeasible solutions in any iteration of the
algorithm (3) In every moment of the algorithm, new solutions that improve the actual
solution are accepted. For escaping to local optimal solutions we use a perturbation for
begin in a new neighborhood (4) The stop criterion is when the algorithm can not find
new best solutions.

The outline of the proposed algorithm is described in Table 1. In the following
subsections, we give the details of each step.

Table 1. Proposed VNS algorithm for the CmRSP

current solution = initialization procedure ()
Best cost = cost (current solution)
Best solution = current solution
Stop criterion = 0
while Stop criterion=0

current solution = perturbation within rings ()
current solution = improve solution () 
current solution = perturbation between rings () 
current solution = improve solution ()  
current solution = addition of transition nodes ()
current solution = resizing operator ()  
current solution = improve solution ()   
New cost = cost (current solution)
New solution = current solution
If New cost < Best cost then

Best cost= New cost
Best solution = New solution
else
current solution = random perturbation()
New cost = cost (current solution)
New solution = current solution

If New cost < Best cost then
Best cost= New cost
Best solution = New solution

Else
Stop criterion=1

end if
end if

end while
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2.1 Initialization Procedure

In this procedure we look for create a feasible solution using only the customers (not
the transition points or steiner nodes) that generate the structure of the ring. To do so,
we select the m customer as close as possible one from each other and then we define m
rings by connecting each (selected) customer to the depot. After, each one of the
remaining customer is added to the best feasible position, this is the closest customer
that belongs to a ring.

2.2 Perturbation Operator Within Rings

Each one of the rings is consider separately and transform each ring as the traveling
salesman problem (TSP). The algorithm consists in applied variable neighborhood
search (VNS) to the nodes that belongs to a ring, in this case a TSP for finding a better
solution. If a better solution is find, the change is accepted. In Fig. 2 an illustrative
example is presented. The node 0 represents the depot, the swap is between the cus-
tomer one and three, if the cost of the new ring is lower than the actual ring then the
swap is accepted. Table 2 shows the pseudocode of the perturbation operator.

2.3 Perturbation Operator Between Rings

Once the process of find better independent solutions for each ring is finished, we
generate a perturbation or exchange between two rings. The exchange is made between
two closest rings, if the new solution improves the oldest one, the new solution is
updated. An illustrative example is presented in Fig. 3. Nodes 1 and 3 belongs to the
first ring while nodes 4 and 5 belongs to the second ring. A pair of nodes is exchanged
between the two rings generating a new solution that contains the nodes 4 and 3 in the
first ring and nodes 1 and 5 are in the second ring. Table 3 shows the pseudocode of the
perturbation operator.

1 030

3 010

Fig. 2. An illustrative example: perturbation of a ring
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2.4 Addition Operator of Transition Nodes

In each step of the iteration is evaluated if is convenient to replace a node of the ring
for a transition node including the assigning of a customer to this transition node.

Table 2. Pseudocode of swap method

Fig. 3. An illustrative example: perturbation between rings

Table 3. Pseudocode of swap method between rings
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Figure 4 presents an illustrative example. Nodes 1 and 3 belongs to the ring and it is
evaluated if a transition node can replace the node 1 and after assign the node 1 to the
transition node. Table 4 shows the pseudocode of the perturbation operator.

2.5 Resizing Operator

The aim of this operator is to find a node in a ring that has the major cost of assignation,
then extract the node of the actual ring, and reinsert in another ring, which present a
less total cost. An illustrative example is presented in Fig. 5. Nodes 1, 3 and 4 belongs
to ring 1 while node 5 belong to ring 2. After analyzing ring 1 the node 3 is the one
with major cost of assigning, then is prove if this node can be assign in any position of
ring 2. After evaluating the total cost this change can be done and the new ring 1
contains nodes 1 and 4 while ring 2 contains nodes 5 and 3. Table 5 shows the
pseudocode of the resizing operator.

Fig. 4. An illustrative example: addition of transition nodes

Table 4. Pseudocode of adition of transition nodes
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2.6 Random Perturbation Operator

In order to avoid a local optimal solution, two random strategies are used for create a
new solution. The first one generates a random number and select a random ring, with
the random number is selected a random node and it is extract and reinsert in another
random ring in a random position. The second one selects a random node of those
which can be re assign in a transition node, then another random node is selected and is
re assign the first node generating new rings. An illustrative example is presented in
Fig. 6. Nodes 1, 4 and 5 belongs to ring 1 while nodes 3 and 2 belong to ring 2. After
generate a random number on ring 1, node 4 is selected and reinserted in ring 2
between nodes 3 and 2 that is obtained by another random number.

3 Computational Experiments and Results

In order to test our algorithm we have used a well-known instances used in [1]. The
results are presented in Table 6. The table is organized as follows; the first column
presents the instance’s name. The second column shows the best-known solution
(BNS) reported in the literature. The Best solution (BSF) found by our algorithm is
presented in column third, as our algorithm use a random perturbations, we run it
twenty independent times and obtain the average solution on these runs (column four).

Fig. 5. An illustrative example: resizing operator

Table 5. Pseudocode of resizing operator
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The standard deviation is presented in column five. The amount of computational time
spend by our algorithm is presented in column six while the gap for the best solution
obtained and the average gap of the twenty runs are on column six and seven
respectively.

As we can see in Table 6, our algorithm is able to find the best solution know in the
literature in all the instances except in the last one proving that our algorithm is
efficient. For the instance that our algorithm cannot find the optimal solution, the gap is
9.75 %. The average GAP obtained in the twenty runs shows that is less than 3 %.
Finally, the computational time of our algorithm is 2.96 s on average proving that it
doesn’t spend high computational times.

Fig. 6. An illustrative example: random perturbation operator

Table 6. Results of proposed method

Instance BNS BSF Average SD Time (seconds) GAP Average GAP

eil26.tsp.3.12.5.A.BDS.cmrsp 242 242 242 0.00 1.11 0.00 % 0.00 %
eil26.tsp.3.25.10.B.BDS.cmrsp 2251 2251 2323.6 22.44 8.10 0.00 % 2.23 %
eil26.tsp.4.12.4.A.BDS.cmrsp 261 261 261 0.00 1.01 0.00 % 0.00 %
eil26.tsp.4.12.4.B.BDS.cmrsp 1827 1827 1827 0.00 0.79 0.00 % 0.00 %
eil26.tsp.4.18.5.A.BDS.cmrsp 339 339 343.4 3.16 1.20 0.00 % 1.30 %
eil26.tsp.4.18.5.B.BDS.cmrsp 2370 2370 2422 22.98 1.10 0.00 % 1.19 %
eil26.tsp.5.12.3.A.BDS.cmrsp 292 292 307.8 12.16 4.12 0.00 % 5.41 %
eil26.tsp.5.25.6.B.BDS.cmrsp 2674 2696 2745 31.44 5.20 0.82 % 2.66 %
eil51.tsp.3.12.5.A.BDS.cmrsp 242 242 242.4 0.69 1.92 0.00 % 0.17 %
eil51.tsp.5.50.12.B.BDS.cmrsp 3404 3736 3801.6 53.43 5.01 9.75 % 11.68 %

Average 14.63 2.96 1.06 % 2.46 %
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4 Conclusions

We have proposed a variable neighborhood search adaptation for solving the capaci-
tated m-Ring-Star Problem. In order to avoid local optimal solutions, we have used
random perturbations for avoid these local solutions and find new solutions close to
another optimal local solutions or the global optimal solution.

We have used instances from the literature for testing our algorithm. The result
shows the effectiveness of our algorithm in finding the optimal solution or closes one in
a reasonable amount of computational time.

Future work should focus in to improve the decision-aid tool to allow speeding up
the method. In addition, to decrease the computational time is possible to combine
other techniques in order to decrease the computation time. Another real world con-
straints and characteristics can be explored as stochastic travel times, other objective
functions, among others.
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