
Chapter 4

Methods and Models of Optimization

Most engineering problems, including planning, control and design, have more than

one solution. The theory of optimization provides a mathematical basis for

establishing the acceptability conditions that outline the class of acceptable solu-

tions, for the definition of the criterion that provides the measure of goodness of

every individual solution, and the optimization procedure (algorithm) that results in

finding the optimal solution, i.e. the solution maximizing the value of the goodness

criterion. These three components, the class of acceptable solutions, the criterion of
goodness, and the optimization procedure are to be present in any definition of the

optimization problem.

The solution vector of the optimization problem is a set of particular numerical

values of some optimization variables, X¼ [x1, x2, . . ., xn]
T that represent the nature

of the problem. For example, in a resource distribution problem when some

material, monetary, or energy resources have to be distributed between n con-

sumers, vector X represents the amounts of these resources designated to each

consumer.

The class of acceptable solutions is typically defined as a set of conditions,

equations and/or inequalities that the solution vector must satisfy. Thus in the

resource distribution problem these conditions include the requirements that the

amounts of the resource designated to individual consumers cannot be negative, i.e.

xi � 0, i ¼ 1, 2, . . . , n

that the sum of the amounts of this resource designated to consumers shall not

exceed the total amount available (i¼ 1,2,.. is the consumer index), i.e.

Xn
i¼1

xi � PTOT

© Springer International Publishing Switzerland 2016

V.A. Skormin, Introduction to Process Control, Springer Texts
in Business and Economics, DOI 10.1007/978-3-319-42258-9_4

193

that the amounts of the resources provided to some of the consumers are not

negotiable (k is the consumer index), i.e.

xk ¼ PK, k ¼ k1, k2, . . .

or shall have allowable minimal and maximal values, i.e.

PMIN
K � xk � PMAX

K, k ¼ k1, k2, . . .

It is said that the conditions outlining the class of acceptable solutions reflect the

feasibility requirements and the specifics of the problem, and form a special region

in the solution space X.
The optimization criterion is always a scalar function defined in the solution

space

Q Xð Þ ¼ Q x1, x2, . . . , xnð Þ

that represents the degree of the consistence of any solution vector X to the general

goal of the engineering task. For example, the resource distribution problem may

reflect the goal of maximizing the resource utilization, and intuitively its solution

would provide maximum allowable amounts of the resource to the consumers

having the highest coefficients of its utilization, αi, i¼ 1,2,. . .,n. It could be seen

that in this case the criterion could be defined as

Q Xð Þ ¼
Xn
i¼1

αixi

In the situation when the goal of the resource distribution problem is to minimize

the total cost of transporting the resource to the consumers, and intuitively the most

remote consumers are expected to receive the least amounts of the resource within

the allowable limits, the criterion could be visualized as

Q Xð Þ ¼
Xn
i¼1

βixi

where βi, i¼ 1,2,. . ., n are the transportation costs per unit of the resource for

particular consumers. It is common to refer to the function Q(X) as criterion, or
objective function, or a loss function, that highlights various aspects of the nature
of the optimization problem.

Finally, the optimization procedure must result in the rule that would facilitate

the detection of such a point, XOPT, in the region of acceptable solutions in the space

X where criterion Q(X) has its minimum (maximum) value

QOPT ¼ Q XOPT
� �

194 4 Methods and Models of Optimization

One should realize that the search for the maximum of criterion Q1(X) is

equivalent to the search of the minimum of the criterion Q2(X)¼�Q1(X) and

vice versa, therefore we will always refer to the task of optimization as the task

of minimization.
Recall the approach to minimization presented as a part of undergraduate

calculus. It suggests that if a minimum of some scalar function

Q Xð Þ ¼ Q x1, x2, . . . , xnð Þ;

i.e. X*¼ [x1*, x2*, . . ., xn*], could be found as the solution of the system of n
equations,

∂
∂x1

Q x1; x2; . . . ; xnð Þ ¼ f 1 x1; x2; . . . ; xnð Þ ¼ 0

∂
∂x2

Q x1; x2; . . . ; xnð Þ ¼ f 2 x1; x2; . . . ; xnð Þ ¼ 0

::
∂
∂xn

Q x1; x2; . . . ; xnð Þ ¼ f n x1; x2; . . . ; xnð Þ ¼ 0

While this suggestion is consistent with the rigors of a community college, from the

engineering point of view it is quite unrealistic because of the following reasons,

1. Function Q(x1, x2, . . ., xn) is typically so complex that its derivatives

∂
∂xi

Q x1; x2; . . . ; xnð Þ, i ¼ 1, 2, . . . , n

are very difficult and sometimes impossible to define analytically

2. Derivatives ∂
∂xi

Q x1; x2; . . . ; xnð Þ, i ¼ 1, 2, . . . , n are nonlinear functions of x1,

x2, . . ., xn, and the system of equations shown above may have multiple solu-

tions, may have no solution, and in any case, cannot be solved analytically.

3. The entire definition of the function minimization task does not address the

existence of constraints.

4. The function to be minimized may not have any analytical definition, but for any

combination of numerical values of its arguments its value could be defined

numerically, for example by conducting an experiment.

In most real life situations, the optimization task could be performed only

numerically and be compared with the navigation through a very complex terrain

to the highest (in the maximization case) existing peak while avoiding the obstacles

and low peaks. The task is aggravated by the fact that the terrain is

multidimensional and the obstacles could be detected only by direct contact.

Figure 4.1 below drawn by my cartoonist friend Joseph Kogan depicts the task of

optimization based on my comments.

Unsurprisingly, the optimization became an engineering tool only due to the

proliferation of modern computers. We will present several common models,

4 Methods and Models of Optimization 195

methods and applications of optimization that should be included in the toolbox of a

modern engineer. These techniques will include linear programming, numerical

techniques of nonlinear programming (gradient, random and direct search), genetic

optimization, and dynamic programming. We do not expect a modern engineer to

develop optimization techniques, this is the mathematicians’ domain, however a

good engineer shall be able to:

• recognize a situation lending itself to an optimization task

• formulate the optimization problem, i.e. define its variables, criterion and

constraints

• recognize the resultant problem as one of the typical optimization problems

• find and apply a suitable optimization tool (perhaps available in MATLAB)

4.1 Linear Programming

Linear programming is an optimization technique suitable for the situations when

the set of conditions, outlining the region of acceptable solutions, and the goodness

criterion are linear functions defined in the solution space.

In a linear programming problem, the region of acceptable solutions is defined

by the set of equalities and inequalities as follows:

Xn
i¼1

aijxi ¼ bj and
Xn
i¼1

aiKxi � bK

where xi, i¼ 1,2,.., n are optimization variables that constitute the solution space,

j¼ 1,2,. . ., L is the equality index, and k¼ 1,2,. . ., M is the inequality index. Note

that the number of equalities must be less than the dimension of the solution space

otherwise the region of the acceptable solutions will include only one point (when

n¼ L), or could be empty (when L> n). One should understand that inequalities

Fig. 4.1 Myth vs. reality of optimization

196 4 Methods and Models of Optimization

can always be redefined as the standard “greater or equal” type, indeed inequality of

“less or equal” type, i.e.
Xn
i¼1

aiKxi � bK could be easily converted into the “greater

or equal” type by changing signs: �
Xn
i¼1

aiKxi � �bK , consequently only the

“greater or equal” type inequalities will be considered. Note that the class of

acceptable solutions could be empty even when n> L: the inequalities and equal-

ities could be mutually contradictive.

The criterion of a linear optimization problem is defined by a linear function,

Q x1; x2; . . . ; xnð Þ ¼
Xn
i¼1

cixi

that has to be minimized,

Q x1; x2; . . . ; xnð Þ ¼
Xn
i¼1

cixi ! min

or

�Q x1; x2; . . . ; xnð Þ ¼ �
Xn
i¼1

cixi ! min

if the original criterion Q(X) had to be maximized.

Example 4.1 Consider one of the typical problems of linear programming, the task

distribution problem. There are 5 reactors operating at a chemical plant and produc-

ing the same product. Due to capacity, design specifics and the technical status, the

reactors have different efficiency expressed by the extraction coefficients, αj,
j¼ 1,2,3,4,5. The capacities of these reactors, qj, j¼ 1,2,3,4,5, are also different

reactor, j 1 2 3 4 5

coefficient αj 0.81 0.76 0.63 0.71 0.68

capacity qj (units) 150 200 175 120 96

The chemical plant is required to process a certain amount of raw material, say

P¼ 500 units that should be rationally distributed between the reactors in the sense

that the overall extraction coefficient will be maximized. It could be seen that the

solution space of this problem comprises of 5 variables, x1–x5, representing the

amount of raw material loaded in respective reactors. The constraints of this

problem must address the following requirements:

Amount of raw material loaded in the j-th reactor must be non-negative: xj� 0,

j¼ 1,2,. . .,5

The total amount of raw material to be loaded in reactors is defined:
X5
j¼1

xj ¼ P

4.1 Linear Programming 197

The amount of raw material loaded in a particular reactor cannot exceed the

capacity of this reactor: xj� qj, j¼ 1,2,. . .,5

The criterion of this problem could be defined as
X5
j¼1

αjxj ! max or

�
X5
j¼1

αjxj ! min

The mathematical formulation of this problem is

�0:81x1 � 0:76x2 � 0:63x3 � 0:71x4 � 0:68x5 ! min

subject to conditions

x1 � 0, x2 � 0, x3 � 0, x4 � 0, x5 � 0

�x1 � �150, � x2 � �200, � x3 � �175, � x4 � �120, � x5 � �96

x1 þ x2 þ x3 þ x4 þ x5 ¼ 500

One can realize that this problem has an infinite number of alternative solutions

providing that the total amount of raw material P is less than the total capacity of the

reactors, thus creating the opportunity for the optimization. In the case when the

total amount of raw material P is equal to the total capacity of the reactors, only one

solution exists and the optimization is impossible. Finally, in the case when the total

amount of raw material P is greater than the total capacity of the reactors, the

problem does not have any solution.

It could be also realized that the optimal solution procedure for this problem is

quite trivial:

Step 1. The first reactor, having the highest efficiency coefficient, should be

loaded to full capacity (x1
OPT¼ 150, 350 units still is to be distributed),

then

Step 2. The second most efficient reactor must be loaded to full capacity (x2
OPT

¼ 200, 150 units is to be distributed), then

Step 3. The third most efficient reactor must be loaded to full capacity (x4
OPT

¼ 120, 30 units is to be distributed), then

Step 4. The fourth most efficient reactor must be loaded with the remaining

amount of raw material (x5
OPT¼ 30 units, zero units to be distributed),

then x3
OPT¼ 0.

It should be noted that most linear programming problems do not allow for such

a simple solution procedure.

Example 4.2 The transportation problem. A product stored at 3 warehouses must

be distributed between 5 consumers in such a fashion that the total cost of

transporting the product is minimized.

198 4 Methods and Models of Optimization

The solution space of this problem is formed by 3� 5¼ 15 variables, xjk,
j¼ 1,2,3, k¼ 1,2,3,4,5, representing the amount of the product delivered from the

j-th warehouse to the k-th consumer. Introduce the matrix of transportation costs,

cjk, j¼ 1,2,3, k¼ 1,2,3,4,5, representing the cost of transportation of one unit of the

product from the j-th warehouse to the k-th consumer. Introduce quantities Pj,

j¼ 1,2,3, representing the amount of the product at j-th warehouse, and quantities

Wk, k¼ 1,2,3,4,5, representing the amount of the product requested by k-th con-

sumer. Then the mathematical formulation of the problem is

X5
k¼1

X3
j¼1

cjkxjk ! min

subject to the following conditions

a) non-negativity, xjk� 0, j¼ 1,2,3, k¼ 1,2,3,4,5

b) amount of the product available at each warehouse,
X5
k¼1

xjk � Pj, j¼ 1,2,3

c) amount of product delivered to each consumer,
X3
j¼1

xjk ¼ Wk, k¼ 1,2,3,4,5

One can realize that the solution of this problem exists if
X5
k¼1

Wk �
X3
j¼1

Pj,

however it cannot be obtained without a computationally intensive and rigorously

justified algorithm. It also should be noted that typical solutions of linear program-

ming problems comprise non-negative variables and therefore the non-negativity of

the solution is assured not by special constraints but by the solution procedure itself.

Example 4.3 The mixing problem. Preparing the right raw material is one of the

conditions for obtaining a high quality end product in chemical or metallurgical

manufacturing. Assume that the raw material is characterized by percentages of

four ingredients: A1%, A2%, A3%, and A4%. The raw material is prepared by mixing

six components in the amounts (in tons) x1, x2, . . ., x6. Each component contains all

four ingredients, but the concentrations are all different, for example ajk (%) is the

concentration of the ingredient #j (j¼ 1,2,3,4) in the component #k
(k¼ 1,2,3,4,5,6). The cost of each component is given: ck ($/ton),

(k¼ 1,2,3,4,5,6). Also given are the required total amount of the raw material, P
(tons) and the available amounts of the individual components, qk (tons),

(k¼ 1,2,3,4,5,6). It is required to prepare the least expensive mixture.

The problem definition is as follows:

Minimize the cost of the mixture:

X6
k¼1

ckxk ! min

Subject to constraints on

4.1 Linear Programming 199

the total amount of the raw material
X6
k¼1

xk ¼ P

percentages of four ingredients (j¼ 1,2,3,4)
X6
k¼1

ajkxk ¼ Aj � P
available amounts of individual components, (k¼ 1,2,3,4,5,6) xk � qk

Again, the optimal problem solution, if it exists, could be obtained via some

numerically extensive procedure.

Let us consider such a procedure.

4.1.1 Geometrical Interpretation of Linear Programming

Geometrical interpretation of linear programming is crucial for the understanding

of the computational nature of its algorithm. Geometrical interpretation works best

for the two-dimensional solution space and the inequality-type constraints.

Consider a straight line in two-dimensional space defined by the equation

a1x1þ a2x2¼ b like the one below in Fig. 4.2.

It is known that any point on this line, for example [x1
1, x2

1] satisfies this

equation, i.e. a1x1
1þ a2x2

1¼ b. It also known that any point above this line, such

as [x1
2, x2

2], results in a1x1
2þ a1x2

2> b, and any point below this line, [x1
3, x2

3],

results in a1x1
3þ a2x2

3< b. Consequently, any condition a1x1þ a2x2� b (or

�a1x1�a2x2��b) outlining the class of acceptable solutions indicates that the

acceptable solutions must be located on or below the appropriate straight line. At

the same time, any condition a1x1þ a2x2� b (or �a1x1�a2x2��b) indicates that
acceptable solutions must be located on or above the appropriate straight line. One

can visualize a domain of acceptable solutions defined by inequality-type condi-

tions as the part of the plane that simultaneously complies with all inequality-type

conditions (highlighted below in Fig. 4.3):

x1

x2

[x1
3, x2

3]

[x1
2, x2

2]
[x1

1, x2
1]

Fig. 4.2 How linear

constraints work

200 4 Methods and Models of Optimization

Now consider a straight line c1x1þ c2x2¼ 0 and two points, [x1
A, x2

A] and [x1
*,

x2
*], located in the two-dimensional space. Note that the distance between the

straight line and point [x1
A, x2

A] is greater than the distance between this line and

point [x1
*, x2

*]. This results in the following result that could be easily verified by a

numerical example: c1x1
Aþ c2x2

A> c1x1
*þ c2x2

*.

Consider the combination of the domain of acceptable solutions bounded by

contour ABCDEF and the straight line c1x1þ c2x2¼ 0 representing the criterion of

a minimization problem seen below in Fig. 4.4. Note that the domain of acceptable

solutions bounded by contour ABCDEF, generally speaking, forms a convex
polyhedron in the n-dimensional space, and its individual vertices (corner points),

i.e. A, B, C, . . ., are known as basic acceptable solutions of the linear programming

problem.

It could be concluded that the solution of the problem [x1
OPT, x2

OPT] minimizing

the criterion Q(x1,x2)¼ c1x1þ c2x2 is located in the point that belongs to the

domain of acceptable solutions and has the shortest distance from the straight line

x1

x2

x1

x2

A
B

C
D

E
F

Fig. 4.3 Combination of linear constraints and domain of acceptable solutions

[x1
*, x2

*]

X2

[x1
A, x2

A]

X1

Fig. 4.4 Solution point and

criterion value

4.1 Linear Programming 201

c1x1þ c2x2¼ 0. It could be seen that in the above Fig. 4.5 this point is F. Should the

solution maximizing the criterion Q(x1,x2)¼ c1x1þ c2x2 be sought, it will be found
in the point D that belongs to the domain of acceptable solutions and has the largest

distance from the straight line c1x1þ c2x2¼ 0.

Now consider the specifics of the linear programming problem preventing us

from obtaining its optimal solution. The first condition is caused by the situation

where at least two constraints are mutually exclusive, in this case even acceptable

solutions do not exist. In the second case, the domain of acceptable solutions is not

empty but unbounded, thus the solution minimizing the criterion does not exist.

Both cases are shown in Fig. 4.6. Finally, Fig. 4.7 represents the situation where no

unique optimal solution minimizing the criterion exists: the straight line

representing the criterion is parallel to the side AB of the domain of acceptable

solutions.

So far our discussion addressed only the inequality-type constraints. Imagine

that a linear programming problem contains k equality-type constraints, m inequal-

ity-type constraints and has n solution variables where n> k. Assume that the

problem is formulated as follows:

x1

x2

A

B C
D

E
F

Fig. 4.5 Graphical

interpretation of a linear

programming problem

x2

x1

x2

x1
Mutually exclusive constraints Minimum does not exist

Fig. 4.6 Situations when the solution does not exist

202 4 Methods and Models of Optimization

minimize
Xn
i¼1

cixi

subject to constraints
Xn
i¼1

pijxi ¼ qj , j ¼ 1, 2, 3, . . . , k

and
Xn
i¼1

aijxi � bj , j ¼ 1, 2, 3, . . . ,m

Note that condition n> k creates the situation when k variables could be

assigned arbitrary values and removed from the list of solution variables. Since

our goal is the minimization of the criterion
Xn
i¼1

cixi we shall assign zero values

preferably to those variables that have largest values of the corresponding coeffi-

cients ci. This is done by sequential application of a special computational operation

known in linear algebra as pivoting. Indeed, after k pivoting steps the problem will

be reduced to the following definition:

minimize
Xn�k

i¼1

cixi

subject to constraints
Xn�k

i¼1

aijxi � bj , j ¼ 1, 2, 3, . . . ,m

where aij , bj , cj , i ¼ 1, 2, . . . , n� k, j ¼ 1, 2, 3, . . .m are problem parameters

modified by pivoting steps:

In summary, a linear programming procedure intended for solution of a mini-

mization problem with n variables, k equality-type and m inequality-type con-

straints (n> k), could be formulated as follows:

x1

x2

A

B

Fig. 4.7 No unique

minimum exists

4.1 Linear Programming 203

Step 1. Reduction of the dimension of the solution space by the elimination of k
strategically chosen variables and setting their values in the optimal

solution to zero

Step 2. Finding basic acceptable solutions of the problem by solving possible

combinations of n�k out of m equations
Xn�k

i¼1

aijxi ¼ bj , j ¼
1, 2, 3, . . . ,m

Step 3. Finding the optimal solution of the problem as the basic acceptable

solution that �
Note that there are many highly efficient software tools that could be

recommended for the solution of a linear programming problem. (For example

see http://www.onlinecalculatorfree.org/linear-programming-solver.html).

Example 4.4 Solving a simple linear programming problem given below:

MinimizeQ Xð Þ ¼ 3x1 þ 10x2 þ 5x3 þ 2x4

subject to conditions

x1 þ x2 þ x3 þ x4 � 125

x2 � 8x3 þ x4 � 12

� x1 þ 2x2 � 3x3 þ x4 � 24

x1 þ x2 ¼ 36

2x1 � 5x2 þ 8x3 þ 4x4 ¼ 16

The optimal solution (as per tool http://www.onlinecalculatorfree.org/linear-

programming-solver.html):

QOPT ¼ 164; x1 ¼ 28, x2 ¼ 8, x3 ¼ 0, x4 ¼ 0

Example 4.5 A resource distribution problem. A product available from three

suppliers is to be provided to four consumers. The amounts of the product requested

by individual consumers are respectively: 150, 230, 80 and 290 (units). The

amounts of the product available at each supplier are: 300, 270 and 275 units.

The transportation costs of the product from each supplier to each consumer in $ per

unit are listed in the table below:

Consumer #1 Consumer #2 Consumer #3 Consumer #4

Supplier #1 25 16 33 48

Supplier #2 45 15 36 11

Supplier #3 21 31 40 52

204 4 Methods and Models of Optimization

http://www.onlinecalculatorfree.org/linear-programming-solver.html
http://www.onlinecalculatorfree.org/linear-programming-solver.html
http://www.onlinecalculatorfree.org/linear-programming-solver.html

It is required to minimize the overall transportation cost while satisfying the

consumers’ demands and not to exceed suppliers’ capabilities. The following

problem definition is self-explanatory and at the same time is fully consistent

with the data format of the tool offered at

http://www.onlinecalculatorfree.org/linear-programming-solver.html

Maximize p ¼ �25x11 � 16x12 � 33x13 � 48x14 � 45x21 � 15x22 � 36x23 � 11x24
� 21x31 � 31x32 � 40x33 � 52x34

subject to

x11 þ x12 þ x13 þ x14 <¼ 300

x21 þ x22 þ x23 þ x24 <¼ 270

x31 þ x32 þ x33 þ x34 <¼ 275

x11 þ x21 þ x31 þ x41 ¼ 150

x12 þ x22 þ x32 þ x42 ¼ 230

x13 þ x23 þ x33 þ x43 ¼ 80

x14 þ x24 þ x34 þ x44 ¼ 290

The Optimal Solution: p¼�13,550; x11¼ 0, x12¼ 230, x13¼ 70, x14¼ 0,

x21¼ 0, x22¼ 0, x23¼ 0, x24¼ 270, x31¼ 150, x32¼ 0, x33¼ 10, x34¼ 20 and

could be summarized as

Consumer

#1

Consumer

#2

Consumer

#3

Consumer

#4 Supplier total

Supplier #1 0 230 70 0 300

Supplier #2 0 0 0 270 270

Supplier #3 150 0 10 20 170

Consumer

total

150 230 80 290 Total transportation
cost: $13,550

4.2 Nonlinear Programming: Gradient

Gradient of a function of several variables, Q(x1, x2, . . ., xn), is defined as a vector

comprising partial derivatives of this function with respect to individual variables, i.e.

∇Q Xð Þ ¼ ∇Q x1; x2; . . . ; xnð Þ ¼ ∂Q
∂x1

∂Q
∂x2

. . . ∂Q
∂xn

h iT

4.2 Nonlinear Programming: Gradient 205

http://www.onlinecalculatorfree.org/linear-programming-solver.html

The above expression refers to an analytical definition of the gradient, however,

it could be numerically defined at a particular location of the problem space, X*¼
[x1*, x2*, . . ., xn*]T. Let us refer to numerically defined gradient as ∇Q(X*)
where * is the index of the particular point where this gradient is defined. It is

known that a numerically defined gradient is a good navigational tool: it is a vector

always pointing in the direction of the increase of function Q in the space X.
Let us utilize this property of gradient for the minimization of function Q(X).

First, select some initial point X1¼ [x1
1, x2

1,. . ., xn
1]T and numerically evaluate

derivatives of function Q(X) in the vicinity of this point:

∂Q X1
� �
∂x1

� Q x1
1 þ Δ, x21, . . . , xn1ð Þ � Q x1

1, x2
1, . . . , xn

1ð Þ
Δ

∂Q X1
� �
∂x2

� Q x1
1, x2

1 þ Δ , . . . , xn
1ð Þ � Q x1

1, x2
1, . . . , xn

1ð Þ
Δ

:::

∂Q X1
� �
∂xi

� Q x1
1, x2

1, . . . , xi
1 þ Δ, . . . , xn

1ð Þ � Q x1
1, x2

1, . . . , xn
1ð Þ

Δ
:::

∂Q X1
� �
∂xn

� Q x1
1, x2

1, . . . , xn
1 þ Δð Þ � Q x1

1, x2
1, . . . , xn

1ð Þ
Δ

where Δ is a small positive increment chosen on the basis of experience and intuition

(V.S.:Δ¼ 0.0001 is a goodchoice).Note that this approximation of derivatives, known

as a forward difference, is not unique but is good enough for most applications. Now,

when the direction towards the increase of function Q(X) is known, and the direction
towards the minimum is the opposite one, we can make a step from the initial point X1

to the new point X2 that is expected to be closer to the point of minimum: X2¼X1

�a �∇Q(X1). Individual components of point X2 will be defined as follows:

x1
2 ¼ x1

1 � a � ∂Q X1
� �
∂x1

x2
2 ¼ x2

1 � a � ∂Q X1
� �
∂x2

::::::::::::::::::::::::::::::::::

xn
2 ¼ xn

1 � a � ∂Q X1
� �
∂xn

Now the procedure will repeat itself, but derivatives will be calculated in the

vicinity of the new point X2 and a transition to the point X3 will be performed.

This iterative process will lead to the vicinity of the minimum point of function

Q(X) providing that some conditions be met. Parameter a in the expressions above

is a positive adjustable constant responsible for the convergence rate of the mini-

mization procedure. Its initial value is arbitrarily defined and could be changed

(typically decreased) in the process according to the following rule. Assume that the

transition from point Xk to Xkþ1 is taking place: Xkþ1¼Xk�a �∇Q(Xk). The transi-

tion is successful ifQ(Xkþ1)<Q(Xk), however in the situationwhenQ(Xkþ1)�Q(Xk)

206 4 Methods and Models of Optimization

the value of parameter a must be reduced, for example by half, and the transition

must be repeated with the value aNEW¼ 0.5a, i.e. Xkþ1¼Xk�aNEW �∇Q(Xk). If

necessary, a value shall be repeatedly reduced until a successful transition will take

place. The reduced a value shall be kept unchanged for the consequent step.
Termination conditions for the described procedure could be defined in a number

of ways. First, and the simplest, is the definition of the maximum number of

iterations (successful reduction steps of the function to be minimized). It is

also common to stop the procedure if several (5, 10, 20) iterations did not result

in a noticeable change in the optimization variables, i.e. │Xk�6�Xk�5│� ξ and
│Xk�5�Xk�4│� ξ and . . . and │Xkþ1�Xk│� ξ where ξ> 0 is a small arbitrary

number. A block diagram of the procedure is seen in Fig. 4.8.

Compute
gradient∇Q(Xi)
in the vicinity of

point X i

Compute
X*=Xi-a·∇Q(Xi)

Q(X*)<Q(Xi)
?

YES

i=i+1
Xi=X*

NO
a=a/2

INITIALIZATION
i=1

X1, a, Δ, iMAX

i=iMAX

?

YES

NO

Print X i and
Q(Xi)

STOP

Fig. 4.8 Block diagram of

gradient minimization

procedure

4.2 Nonlinear Programming: Gradient 207

The gradient minimization procedure is quite common due to its simplicity. It

does not require analytical expressions for derivatives. Values of function Q may

be defined by analytical expressions or experimentally. The drawbacks of this

approach are also evident. The function must be continuous, otherwise working

with derivatives presents an impossible task. This reality creates difficulties with

constrained minimization. The approach implies that the function to be minimized

has only one minimum point: it works only as a local minimization technique.

4.3 Nonlinear Programming: Search

Search-based optimization presents a valuable alternative to gradient optimization:

it does not utilize derivatives of the function to be optimized thus expanding the

range of its applications to discontinuous functions. But, how common are the

discontinuous functions? It is common to introduce constraints in the optimization

procedure through so-called penalty functions, and penalty functions are the typical

sources of discontinuities. Therefore, search becomes very useful in many practical

problems.

4.3.1 Penalty Functions

Consider the following optimization problem where criterion and constraints are

represented by generally speaking, nonlinear functions Q(.) and fi(.), i¼ 1,2. . .:

MinimizeQ x1, x2, . . . xnð Þ

subject to conditions

f1 x1, x2, . . . xnð Þ � a1

f2 x1, x2, . . . xnð Þ � a2

:::::::::::::::::::::::::::::::::

fK x1, x2, . . . xnð Þ � aK

Introduce penalty functions defined as

Pi x1; x2; . . . ; xnð Þ ¼ Ci � f i x1; x2; . . . ; xnð Þ � ai½ �2, if f i x1; x2; . . . ; xnð Þ � ai
0, if f i x1; x2; . . . ; xnð Þ < ai

�

or Pi x1; x2; . . . ; xnð Þ ¼ Ci � f i x1; x2; . . . ; xnð Þ � aij j, if f i x1; x2; . . . ; xnð Þ � ai
0, if f i x1; x2; . . . ; xnð Þ < ai

�

208 4 Methods and Models of Optimization

or Pi x1; x2; . . . ; xnð Þ ¼ Ci, if f i x1; x2; . . . ; xnð Þ � ai
0, if f i x1; x2; . . . ; xnð Þ < ai

�

where Ci	 1 are arbitrary weights reflecting the importance of particular con-

straints, i¼ 1,2,. . .K. Then the original constrained optimization problem can be

represented by the following unconstrained optimization problem

Minimize L x1; x2; . . . ; xnð Þ ¼ Q x1; x2; . . . ; xnð Þ þ
XK
i¼1

Pi x1; x2; . . . ; xnð Þ
Function L(.) is commonly referred to as the “loss function”. It could be seen that

due to the definition of penalty functions Pi(.) it is a discontinuous function. It also

could be seen that due to large values of weights Ci virtually any minimization

algorithm would first “drive” penalty values to zero, and then, when constraints are

satisfied, minimize the original function Q(.).
Consider the following example illustrating the introduction of penalty

functions.

Example 4.6 unconstrained optimization problem

Minimize Q x1; x2; x3ð Þ ¼ 5 x1 þ 6ð Þ2 þ 2 x1 � x2 � 6x3ð Þ2 � 10x2 x3 � 2ð Þ3
subject to conditions:

x1 þ x2 þ 6x3 ¼ 10

0 � x1 � 25

�10 � x2 þ x3 � 10

x1 � 4x3 � 100

Define penalty functions representing the imposed constraints:

P1 ¼ 1015 � x1 þ x2 þ 6x3 � 10½ �2

P2 ¼ 1010 � x12, if x1 < 0

0, if x1 � 0

(

P3 ¼ 1010 � x1 � 25ð Þ2, if x1 > 25

0, if x1 � 0

(

P4 ¼ 1010 � x2 þ x3 � 10ð Þ2, if x2 þ x3 � 10ð Þ2 > 0

0, otherwise

(

P5 ¼ 1010 � x1 � 4x3 � 100ð Þ2, if x2 � 4x3 > 100

0, otherwise

(

The resultant loss function

L x1; x2; x3ð Þ ¼ 5 x1 þ 6ð Þ2 þ 2 x1 � x2 � 6x3ð Þ2 � 10x2 x3 � 2ð Þ3 þ
X5
i¼1

Pi x1; x2; x3ð Þ

4.3 Nonlinear Programming: Search 209

could be easily defined by a computer code. Understandably, it should be mini-

mized by a procedure that does not utilize derivatives

∂L x1; x2; x3ð Þ
∂x1

,
∂L x1; x2; x3ð Þ

∂x2
,
∂L x1; x2; x3ð Þ

∂x3

It should also be noted that due to nonlinear criterion and constraints, this problem

most likely does not have one minimum, and finding the global minimum presents

an additional challenge. As it is commonly done when some parameters are

arbitrarily chosen (in this case, weight coefficients) the user shall inspect the

obtained solution and if necessary, change the weight values. It is a good practice

to demonstrate that the solution does not depend on the choice of the weights.

4.3.2 Random Search

This approach could be perceived as the most straight forward “trial-and-error”

technique utilizing the full power of a modern computer and perhaps a supercom-

puter. It facilitates finding the global solution of linear and nonlinear, constrained

and unconstrained, continuous and discontinuous optimization problems. Its only

drawback is the gigantic amount of computations that is prohibitive in many

practical situations. The strategy of random search is illustrated by Fig. 4.9.

4.3.3 Simplex Method of Nelder and Mead

Direct search is a much more efficient alternative to random search. One can define

direct search as a thoughtful and insightful trial-and-error approach. It still has to

start from some initial conditions but its steps are based on a reasonable expectation

of success. It works well with continuous and discontinuous, linear and nonlinear,

constrained and unconstrained functions. Its only drawback compared to random

search is the inherent inability to assure that the global minimum be found. This

fault is not that crucial: direct search is typically used in realistic situations where

properly chosen, the initial point guarantees that the global minimum can be found.

Since direct search does not call for a gigantic number of steps, it could be used in

situations when values of the objective functions are defined by computer simula-

tions and even by physical experiments.

Although there is a good number of direct search procedures utilizing different

rationale for making the “next step,” one of the most practical is the Simplex

Method by Nelder-Mead (1965). The algorithm works with nþ 1 vertices of a

simplex (convex polytope) defined in the n-dimensional search space. It calculates

(obtains) numerical values of the function to be minimized at every vertex, com-

pares these values, and implements some rules for replacing the worst vertex (i.e.

210 4 Methods and Models of Optimization

the one with the largest value of the objective function). This process could be best

illustrated in two dimensional space when simplex, with its three vertices, is just a

triangle.

RANDOM NUMBER GENERATOR

COMPUTE
L(X)

L(X) < L(XOPT)
?

XOPT=X

NO

CHOSING THE DISTRIBUTION
LAW and ITS PARAMETERS

and INITIAL SOLUTION XOPT

PRINTING
XOPT, L(XOPT)

STOP

YES

TERMINATION
CONDITIONS

RANDOM VECTOR
X

YES NO

Fig. 4.9 Random search

4.3 Nonlinear Programming: Search 211

First assume that the initial simplex with vertices A, B, C is established. It is

often done by specifying some initial point, say point A, and the step size that

determines the size of the resultant initial simplex, i.e. triangle ABC. Next is the
evaluation of the objective function Q(x1,x2) at each vertex (x1, x2 are coordinates
of points A, B, C) thus resulting in numerical values Q(A), Q(B) and Q(C). Assume

that the comparison reveals that Q(A)>Q(B)>Q(C), and since our task is mini-

mization, the “worst” point is A. Then as seen in Fig. 4.10 above, the algorithm

performs a special operation, reflection, thus establishing a new point D. What

happens next, depends on the value Q(D). If Q(A)>Q(D), the algorithm performs

expansion as shown above, creating a new point E. The expansion could be

repeated providing that still Q(A)>Q(E). In the situation when Q(D)>Q(A), the
contraction is performed. It should be performed repeatedly until condition Q(A)>
Q(E) is achieved. Upon the establishment of the “new” point E, the “old” point A is

discarded. Now the new simplex with vertices B, C, and E is ready for performing

the same computational cycle.

The termination conditions can be defined in terms of the total number of steps

(optimization cycles), or in terms of the distance between vertices of the simplex.

It is good to realize that besides “purely computational” applications, the

Simplex procedure can be implemented in the “(wo)man in the loop” regime for

the real-time optimization of technical systems that could be represented by a

simulator. Figure 4.11 below illustrates an application of the Simplex optimization

to the tuning of a PID (proportional-integral-derivative) controller. The Vissim-

based simulator (see http://www.vissim.com/) features a controlled process with a

PID controller with manually adjustable parameters KP, KI, and KD known as

proportional, integral and derivative gains.

x1

x2

A

B
C

Q(A)>Q(B)>Q(C)

REFLECTION

x1

x2

A

B
C

D

Q(A)>Q(D)

EXPANSION

x1

x2

A

B
C

E

x1

x2

A

B
C

D

Q(D)>Q(A)

CONTRACTION

x1

x2

A

B
C

E

Q(A)>Q(E)

Q(A)>Q(E)

Fig. 4.10 How the simplex procedure works

212 4 Methods and Models of Optimization

http://www.vissim.com/

F
ig
.
4
.1
1

S
im

p
le
x
ap
p
li
ca
ti
o
n
to

tu
n
in
g
P
ID

C
o
n
tr
o
ll
er

4.3 Nonlinear Programming: Search 213

The optimization criterion is the commonly used ITSE (integral-time-squared-

error) defined as

Q KP;KI;KDð Þ ¼
ðT
0

t � e2 � dt

where e is the system error (the discrepancy between the actual and desired system

output values), t is continuous time, and T is the simulation period. It is known from

Controls that minimization of ITSE-type criteria leads to the most desirable tran-

sient process in the system.

4.3.4 Exercise 4.1

Problem 1 Solving a mixing problem. The table below contains characteristics of

several materials that are to be mixed to obtain a raw material for a metallurgical

process. Obtain the mixture recipe that would have the following required chemical

composition and total volume at minimum cost. The mixture characteristics are as

follows:

Fe� 20%, Zn� 10%, SiO2� 42%, Cu� 5%, total weight 500 tons

Fe % Zn % SiO2 % Cu % Cost, $/ton Availability

Material 1 15 38 41 6 120 250 tons

Material 2 40 12 40 1 150 590 tons

Material 3 35 5 27 28 211 1000 tons

Material 4 16 11 21 18 140 520 tons

Material 5 33 1 60 5 75 2500 tons

Material 6 7 23 45 25 214 800 tons

Problem 2 Solving an LSM parameter estimation problem using a gradient pro-

cedure. Generate input and the output variables as follows (k¼ 1, 2,. . ., 500):

x1 kð Þ ¼ 5 þ 3 � Sin 17 � kð Þ þ Sin 177 � kð Þ þ :3 � Sin 1771 � kð Þ
x2 kð Þ ¼ 1 � 2 � Sin 91 � kð Þ þ Sin 191 � kð Þ þ :2 � Sin 999 � kð Þ
x3 kð Þ ¼ 3 þ Sin 27 � kð Þ þ :5 � Sin 477 � kð Þ þ :1 � Sin 6771 � kð Þ
x4 kð Þ ¼ � :1 � x1 kð Þ þ :3 � x2 kð Þ þ 2:5 � Sin 9871 � kð Þ þ :7 � Cos 6711 � kð Þ
y kð Þ ¼ 2 � x1 kð Þ þ 3 � x2 kð Þ � 2 � x3 kð Þ þ 5 � x4 kð Þ þ :3 � Sin 1577 � kð Þ

þ :2 � Cos 7671 � kð Þ

214 4 Methods and Models of Optimization

Obtain “unknown” coefficients of the regression equation

yMOD kð Þ ¼ a1x1 kð Þ þ a2x2 kð Þ þ a3x3 kð Þ þ a4x4 kð Þ

using the least squares method implemented via the gradient procedure listed below

(that could be rewritten in MATLAB). Assume zero initial values of the coeffi-

cients. Compute the coefficient of determination of the obtained regression

equation.

Problem 3 Utilize data of Problem #2 to obtain coefficients of the regression

equation vMOD kð Þ ¼ a1x1 kð Þ þ a2x2 kð Þ þ a3x3 kð Þ þ a4x4 kð Þ applying the gradient

procedure. It is required, however, that all regression coefficients be positive. Show

the obtained coefficients. Compute the coefficient of determination for the resultant

regression equation. Explain the change in the coefficient of determination com-

paring with Problem #2

PROGRAM GRADIENT
DIMENSION X(10),X1(10),DER(10)
WRITE(*,*)’ ENTER NUMBER OF VARIABLES ’
READ(*,*) N
WRITE(*,*)’ ENTER THE gain OF THE PROCEDURE ’
READ(*,*)A
WRITE(*,*)’ ENTER INITIAL NUMBER OF STEPS ’
READ(*,*) NSTEP
H¼.001
DO 1 I¼1,N
WRITE(*,*)’ ENTER INITIAL VALUE FOR X(’,I,’)’

1 READ(*,*)X(I)
10 CONTINUE

K¼1
CALL SYS(N,X,Q)
QI¼Q

100 CONTINUE
DO 4 I¼1,N
X(I)¼X(I)+H
CALL SYS(N,X,Q1)
DER(I)¼(Q1-Q)/H
X(I)¼X(I)-H

4 CONTINUE
50 CONTINUE

DO 5 I¼1,N
5 X1(I)¼X(I)-DER(I)*A

CALL SYS(N,X1,Q1)
IF(Q1.GE.Q) A¼A/2
IF(Q1.GE.Q) GOTO 50
DO 30 I¼1,N

30 X(I)¼X1(I)
Q¼Q1
IF(ABS(Q).LE.1e-5)GOTO 2
K¼K+1
IF(K.GT.NSTEP) GOTO 2

4.3 Nonlinear Programming: Search 215

GOTO 100
2 CONTINUE

WRITE(*,*)’ ITERATIONS RUN: ’,NSTEP
WRITE(*,*)’ INITIAL CRITERION AVLUE: ’,QI
WRITE(*,*)’ CRITERION VALUE REACHED: ’,Q
DO 7 I¼1,N

7 WRITE(*,*)’ OPTIMAL VALUE: X(’,I,’)¼’,X(I)
WRITE(*,*)’ ENTER ADDITIONAL NUMBER OF STEPS ’
IF(ABS(Q).LE.1e-5)CALL EXIT
READ(*,*) NSTEP
IF(NSTEP.EQ.0)CALL EXIT
GOTO 10
END

C
SUBROUTINE SYS(N,X,Q)
DIMENSION X(10)
Q¼0.
DO 1 I¼1,N
Q¼Q+(X(I)-5.*I)**2

1 CONTINUE
Q¼Q**2
RETURN

END

4.4 Genetic Optimization

Genetic optimization algorithms possess the advantages of random and direct

search optimization procedures. Combined with the availability of high perfor-

mance computers they alleviate major obstacles in the way of solving multivari-

able, nonlinear constrained optimization problems. It is believed that these

algorithms emulate some concepts of the natural selection process responsible for

the apparent perfection of the natural world. One can argue about the concepts, but

the terminology of genetic optimization is surely adopted from biological sciences.

Assume that we are in the process of finding the optimum, say the maximum, of

a complex, multivariate, discontinuous, nonlinear cost function Q(X). The con-

straints of the problem have already been addressed by the penalty functions

introduced in the cost function and contributing to its complexity.

Introduce the concepts of an individual, generation, and successful generation.

An individual is an entity that is characterized by its location in the solution space,

XI and the corresponding value of the function Q, i.e. Q(XI). A generation is a very
large number of individuals created during the same cycle of the optimization

procedure. A successful generation is a relatively small group of K individuals

that have some common superior trait, for example, they all have the highest

associated values Q(.) within their generation. The genetic algorithm consists of

repeated cycles of creation of successful generations.

216 4 Methods and Models of Optimization

Creation of the Initial Generation First, the feasibility range [xk
MIN

,xk
MAX] for

each solution variable xk k¼ 1,2,3,. . .,n, is to be established. Each interval [xk
MIN

,xk
MAX] is divided into the same number of subintervals, say L, thus resulting in a

grid within the solution space with numerous nodes. The next task is the evaluation

of function Q at each node of the grid, i.e. the creation of individuals “residing” at

every node. During this process the successful generation is selected consisting of K
individuals that have the highest values of the function Q. It is done by forming a

group of individuals ordered according to their Q values, i.e.

Q XK
� � � Q XK�1

� � � . . .Q X2
� � � Q X1

� �
*ð Þ

Any newly generated individual XI is discarded if Q(XI)�Q(XK). However if

Q(XI)>Q(XL), it is included in the group replacing the individualXLwith the lowest

Qvalue.Therefore the successful generation still includesK individuals that are being

renumbered and reordered to assure (*). This process is repeated each time a new

individual is generated i.e. until the entire initial generation is created and analyzed.

Creation of the Next Successful Generation involves only members of the existing

successful generation. Two techniques are utilized for this purpose, parenting and

mutation. Parenting (crossover) involves two individuals, XA and XB and results in

an “offspring”

XC ¼ x1
C
, x2

C
, . . . xk

C
, . . . xn

C
� �T

defined as follows:

x1
C ¼ λ1x1A þ ð1� λ1Þx1B

x2
C ¼ λ2x2A þ ð1� λ2Þx2B

::::::::::::::
xk

C ¼ λkxkA þ ð1� λkÞxkB
::::::::::::::
xn

C ¼ λnxnA þ ð1� λnÞxnB

where 0< λk< 1 are random numbers generated by a random number generator.

Then, based on the computation of Q(XC) the newly created individual XC is

accepted into the successful generation or discarded. The parenting process is

repeated several number times for every combination of two members of the

original successful generation.

The mutation process implies that every member of the original successful

generation, XI originates a “mutant” XM¼ [x1
M, x2

M, . . .xk
M,. . .xn

M]T defined as

follows:

4.4 Genetic Optimization 217

x1
M ¼ α1x1I

x2
M ¼ α2x2I

:::::::::::::

xk
M ¼ αkxkA

::::::::::::::

xn
M ¼ αnxnA

where αk are normally distributed random numbers generated by a random number

generator. Based on the computation of Q(XM) the newly created individual XM is

accepted into the successful generation or discarded. The mutation process is repeated

several number times for every member of the original successful generation.

Understandably, parenting and mutation upon completion results in a new

successful generation that is to be subjected to a new cycle of the procedure unless

the termination conditions be satisfied. The most common termination condition

refers to the variability within a successful generation, and could be expressed as:

XK�1

i¼1

Xi � Xiþ1
�� �� � δ

where δ> 0 is some judiciously chosen small positive number.

It is good to remember that genetic optimization is capable of finding a global

minimum of virtually any function Q(X). Moreover, it works even when this

function does not exist as an analytical expression: in this situation for any

particular XI the value of Q(XI) could be determined by running a computer

simulation or by an experiment. Figure 4.12 provides a block diagram of the genetic

optimization procedure.

The following MATLAB code implementing a genetic optimization procedure

was written by my former student Dr. Jozef Sofka

%genetic algorithm for minimization of a nonlinear function
%(c) Jozef Sofka 2004
%number of crossovers in one generation
cross¼50;
%number of mutations in one generation
mut¼30;
%extent of mutation
mutarg1¼.5;
%size of population
population¼20;
%number of alleles
al¼5;
%trying to minimize function
%abs(a^2/b+c*sin(d)+b^c+1/(e+a)^2)
clear pop pnew;
%definition of "best guess" population
pop(1:population,1)¼12+1*randn(population,1);
pop(1:population,2)¼1.5+.1*randn(population,1);
pop(1:population,3)¼13+1*randn(population,1);

218 4 Methods and Models of Optimization

pop(1:population,4)¼1.5+.2*randn(population,1);
pop(1:population,5)¼(.5*randn(population,1));

% evaluation of fitness population
for f¼1:population

e(f)¼abs(pop(f,1)^2/pop(f,2)+pop(f,3)*sin(pop(f,4))+pop(f,2)
^pop(f,3)+1/(pop(f,5)+pop(1))^2);
end

[q,k]¼sort(e);
%number of generations
for r¼1:500

parameters(r,1:al)¼pop(k(1),1:al);
fitness(r)¼e(k(1));

%crossover
for f¼1:cross

Forming the
initial grid

Forming the
initial successful

generation

Parenting
(crossover)

Mutation

INITIALIZATION

Forming a
successful
generation

YES

Print Xi and
Q(Xi)

STOP

Termination ?

Evaluation of
Q(.)

Evaluation of
Q(.)

Evaluation of
Q(.)

Fig. 4.12 Block diagram of

a genetic optimization

procedure

4.4 Genetic Optimization 219

p1¼round((rand+rand)/2*(population-1))+1;
p2¼round((rand+rand)/2*(population-1))+1;
p3¼(2*rand-.5);

pnew(f,:)¼pop(k(p1),1:al)+p3*(pop(k(p2),1:al)-pop(k(p1),1:
al));
%evaluation of fitness
fit(f)¼abs(pnew(f,1)^2/pnew(f,2)+pnew(f,3)*sin(pnew(f,4))+pnew

(f,2)^pnew(f,3)+1/(pnew(f,5)+pnew(1))^2);
end

%selection
for f¼1:cross
if (fit(f)<e(k(population-3)))
pop(k(population),:)¼pnew(f,:);
e(k(population))¼fit(f);
[q,k]¼sort(e);
end
end

%mutation
for f¼1:mut
p¼round(rand*(population-1))+1;
o¼round((al-1)*rand)+1;
pnew(f,:)¼pop(p,:);
pnew(f,o)¼pnew(f,o)+mutarg1*randn(1,1);
%evaluation of fitness
fit(f)¼abs(pnew(f,1)^2/pnew(f,2)+pnew(f,3)*sin(pnew(f,4))+pnew

(f,2)^pnew(f,3)+1/(pnew(f,5)+pnew(1))^2);
end

%selection
for f ¼1:mut
if (fit(f)<e(k(population-1)))
pop(k(population),:)¼pnew(f,:);
e(k(population))¼fit(f);
[q,k]¼sort(e); end

end
end
fprintf(’Parameters a¼%f; b¼%f; c¼%f; d¼%f; e¼%f\n’, . . .,
pop(k(1),1), pop(k(1),2), pop(k(1),3), pop(k(1),4), pop(k(1),5))
fprintf(’minimize function abs(a^2/b+c*sin(d)+b^c+1/(e+a)^2)
\n’)
figure
plot(parameters)
figure

semilogy(fitness)

4.4.1 Exercise 4.2

Problem 1 Use Simplex Optimization procedure (to be provided) to tune param-

eters of a PID controller as shown in Fig. 3.3. The simulation setup could be

implemented in Simulink or Vissim. The following transfer function is

recommended for the controlled plant:

220 4 Methods and Models of Optimization

http://dx.doi.org/10.1007/978-3-319-42258-9_3

G sð Þ ¼ sþ 6

s3 þ 6s2 þ 10sþ 10

To show the effectiveness of the tuning procedure provide a sequence (five or so) of

numerical values of the parameters of the controller, values of the criterion, and the

system step responses.

Problem 2 Given input–output data representing a highly nonlinear, static process:

x1 x2 x3 y

1 1 1 17.59141

1 1 2 21.59141

1 2 2 44.94528

2 2 2 81.89056

2 2 3 89.89056

2 3 3 216.8554

3 3 3 317.2831

�3 3 3 �285.2831

�3 �3 3 15.25319

�3 �3 �3 �0.496806

�3 3 �3 �301.0331

�1 3 �3 �100.1777

�1 3 5 �36.42768

�5 2 4 �152.7264

5 2 1 188.7264

Given the configuration of the mathematical model of this process:

yMOD ¼ a1x1e
a2x2 þ a3

a4x3þa5ð Þ

Utilize the Genetic Optimization (GO) program provided above and the input/

output data to estimate unknown parameters of the mathematical model given

above. Experiment with values of the control parameters of the GO procedure.

Compute the coefficient of determination for the obtained regression model and

comment on the model accuracy. Document your work.

4.5 Dynamic Programming

Many physical, managerial, and controlled processes could be considered as a

sequence of relatively independent but interrelated stages. This division, natural

or imaginative, could be performed in the spatial, functional, or temporal domains.

The following diagram in Fig. 4.13 represents a typical multi-stage process

containing four stages. Every stage or sub-process is relatively independent in the

sense that it is characterized by its own (local) input xi, local output yi, local control

4.5 Dynamic Programming 221

effort ui, and the local goodness criterion qi. Both the output and the criterion of

each stage (sub-process) are defined by its local input and the control effort, i.e.

yi ¼ yi xi; uið Þ and qi ¼ yi xi; uið Þ.
At the same time, individual stages (sub-processes) are interrelated. Indeed the

output of every stage, except the last (n-th) stage, serves as the input of the

consequent stage, i.e. for i ¼ 1, 2, 3, . . . , n� 1 yi ¼ xiþ1: This reality results in

the following relationships that links the entire sequence:

yi ¼ yi xi; uið Þ ¼ yi yi�1 xi�1; ui�1ð Þ, ui½ � ¼ yi xi�1; ui�1; uið Þ
¼ yi yi�2 xi�2; ui�2ð Þ, ui�1, ui½ � ¼ yi xi�2; ui�2; ui�1; uið Þ ¼ . . .
¼ yi x1, u1, u2, u3, . . . , uið Þ

and similarly qi ¼ qi x1, u1, u2, u3, . . . , uið Þ, where i¼ 1,2,3,. . ., n is the sequential

number of the stage.

These relationships indicate that the output and criterion value of any stage of

the process, except the first stage, are defined by the input of the first stage, control

effort applied at this stage and control efforts applied at all previous stages. In

addition to the above relationships, the stages of the process are linked by the

“overall goodness criterion” defined as the sum of all “local” criteria,

Q ¼
Xn
k¼1

q xk; uið Þ where n is the total number of the stages. It could be seen that

the overall criterion depends on the input of the first stage and all control efforts, i.e.

Q ¼ Q x1, u1, u2, u3, . . . , unð Þ

Therefore the optimization problem of a multistage process implies the minimi-

zation (maximization) of the overall criterion Q(.) with respect to control efforts

applied at individual stages,uk, k ¼ 1, 2, . . . n, for any given input of the first stage,
x1, and may be subject to some constraints imposed on the outputs of the individual

stages, yk, k ¼ 1, 2, . . . n. One can realize that the process optimization problem

cannot be solved by the independent optimization of the individual stages with

respect to their “local” criteria, qk, k ¼ 1, 2, . . . n. The optimal control strategy

must be “wise”: “local” optimization of any sub-process may result in such an

output that will completely jeopardize the operation of the consequent stages thus

causing poor operation of the entire multistage process. Therefore, optimization of

Fig. 4.13 Multi-stage process with four stages

222 4 Methods and Models of Optimization

any stage of a multi-stage process must take into account the consequences of this

optimization for all consequent stages. Selection of any “local” control effort

cannot be performed without assessing its impact on the overall criterion.

Dynamic programming is an optimization technique intended for the optimiza-

tion of multi-stage processes. It is based on the fundamental principle of optimality

of dynamic programming formulated by Richard Bellman. A problem is said to
satisfy the Principle of Optimality if the sub-solutions of an optimal solution of
the problem are themselves optimal solutions for their sub-problems. Fortunately,
optimization problems of multi-stage processes do satisfy the Principle of Opti-

mality that offers a powerful solution approach in the most realistic situations. The

key to the application of the Principle of Optimality is in the following statement

that is stemming from this principle: any last portion of an optimal sequence of
steps is optimal.

Let us illustrate this principle using the chart below in Fig. 4.14 that presents a

process comprising of 12 sequential stages divided into two sections, AB and BC. It

is assumed that each j-th stage of this process is characterized by its “local”

criterion, qj. Assume that the overall criterion of the process is defined as the sum

of local criteria: Q ¼
X12
j¼1

qj

Let us define the sectional criteria for each of the two sections:

QAB ¼
X5
j¼1

qj and QBC ¼
X12
j¼6

qj. Assume that for every stage of the process some

control effort is chosen, such that the entire combination of these control efforts,

uOPT
j , j ¼ 1, 2, . . . , 12, optimizes (minimizes) the overall process criterion Q. Then

according to the principle of dynamic programming control efforts uOPT
j , j ¼ 6, 7,

. . . , 12 optimize the last section of the sequence, namely BC, thus bringing criterion

QBC ¼
X12
j¼6

qj to its optimal (minimal) value. At the same time, control efforts uOPT
j ,

j ¼ 1, 2, . . . , 5 are not expected to optimize section AB of the process, thus criterion

QAB ¼
X12
j¼6

qj could be minimized by a completely different combination of control

efforts, say uALT
j , j ¼ 1, 2, . . . , 5.

A B C

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 4.14 Twelve stage process

4.5 Dynamic Programming 223

The fundamental principle provides the framework for a highly efficient and

versatile optimization procedure of dynamic programming that works on a step-by-

step basis and defines optimal control efforts for individual stages of the multi-stage

process. It is important that control decisions made at each step of the procedure do

not optimize individual stages of the process, i.e. do not solve the “local” optimi-

zation problems. Instead, they optimize the last portion of the entire process that

starts at the stage in question and end at the last stage of the process.

When doing so, every step of the optimization procedure takes into account not

only the particular stage of the process but also all consequent stages. The proce-

dure is iterative, therefore it shall start from the last section of the multistage

process where there are no consequent stages to be considered. At the same time,

the optimal solution of the control problem uOPTj , cannot be explicitly defined

without knowing the input xj applied to the appropriate section of the process.

Therefore, the dynamic programming procedure is performed in two steps: condi-

tional optimization and unconditional optimization. Conditional optimization starts

from the end of the process addressing the last stage of the process first, then the last

two stages of the process, then the last three stages, and finally the entire process.

Why is it called conditional?—because at the first step, the procedure defines the

optimal conditional control effort (OCCE) for the last stage of the process that is

dependent on the input of the last stage of the process:

uOPT
N ¼ F xNð Þ

that minimizes the sectional criterion

QN xN; uNð Þ ¼ qN xN; uNð Þ

(Note that the sectional criterion is marked by the index of the first stage of the

section). Now the output of the last stage of the process (and the output of the entire

process) is

yN ¼ yN xN , u
OPT
N

� �
This solution must be consistent with the required (allowed) value of the output of

the process, Y*, i.e.

yN ¼ yN xN , u
OPT
N

� � ¼ Y*

At the next step the OCCE for the second stage from the end of the process is

defined as a function of the input applied to this stage:

uOPT
N�1 ¼ F xN�1ð Þ

224 4 Methods and Models of Optimization

that minimizes the sectional criterion for the last two stages of the process:

QN�1 xN�1; uN�1; u
OPT
N

� � ¼ qN�1 xN�1; uN�1ð Þ þ qN xN; u
OPT
N

� �
Note that in this expression xN does not work as an independent factor, it is defined

as the output of the previous stage of the process:

xN ¼ yN�1 xN�1; u
OPT
N�1

� �
and therefore criterionQN�1 actually depends only on two variable factors,xN�1 and

uN�1:

QN�1 xN�1; uN�1ð Þ ¼ qN�1 xN�1; uN�1ð Þ þ qN yN�1 xN�1; uN�1ð Þ, uOPT
N

� �
The solution must ensure that the resultant output

yN�1 ¼ yN�1 xN�1, u
OPT
N�1 , u

OPT
N

� �
is within its allowed limits, i.e.

yN�1
MIN � yN�1 � yN�1

MAX

Now let us define the OCCE for the third stage from the end of the process as a

function of the input applied to this stage:

uOPT
N�2 ¼ F xN�2ð Þ

that minimizes the sectional criterion that “covers” the last three stages:

QN�2 xN�2; uN�2; u
OPT
N�1 ; u

OPT
N

� � ¼ qN�2 xN�2; uN�2ð Þ þ qN�1 xN�1; u
OPT
N�1

� �
þ qN xN; u

OPT
N

� �
Again, in this expression xN�1 and xN are not independent factors, they are defined

as outputs of the previous stages of the process:

xN�1 ¼ yN�2 xN�2; uN�2ð ÞandxN ¼ yN�1 xN�1; u
OPT
N�1

� �
and therefore criterion QN�2 actually depends only on two variable factors, xN�2

and uN�2

QN�2 ¼ qN�2 xN�2; uN�2ð Þ þ qN�1 yN�2 xN�2; u
OPT
N�2

� �
, uOPT

N�1

� �
þ qN yN�1 xN�1; u

OPT
N�1

� �
, uOPT

N

� � ¼ QN�2 xN�1, uN�2, u
OPT
N�1,u

OPT
N

� �

4.5 Dynamic Programming 225

The optimal value of this criterion is:

QN�2 xN�1, u
OPT
N�2, , u

OPT
N�1,u

OPT
N

� �
Again, the appropriate output,

yN�2 ¼ yN�2 xN�2, u
OPT
N�2

� �
must be consistent with the allowed value for the output of the appropriate stage of

the process:

yN�2
MIN � yN�2 � yN�2

MAX

It could be seen that eventually the procedure defines the control effort for the

first stage of the process as a function of the input applied to this stage:

uOPT
1 ¼ F x1ð Þ

that minimizes the sectional criterion

Q1 x1, u1, u
OPT
2 , uOPT

3 , . . . , uOPT
N�1 , u

OPT
N

� �
However, the input of the first stage (the input of the overall process), x1, is

explicitly known, therefore the control effort uOPT1 could be explicitly defined.

This results in the explicitly defined output of the first stage, y1. Since x2 ¼ y1,
the optimal conditional control effort

uOPT
2 ¼ F x2ð Þ

could be explicitly defined thus resulting in an explicit definition of the output of the

second stage and the input of the third stage, and so on. . . It could be seen that the

procedure moves now from the first stage of the process to the last stage, converting

conditional control efforts into explicitly defined unconditional optimal control

efforts.

Let us consider the application of the outlined approach to the following

numerical example representing the so-called optimal routing problem.

Example 4.7 Apply dynamic programming to establish the optimal (“minimum

cost”) route within the following graph in Fig. 4.15

It could be seen that the transportation problem featured by the above graph

consists of five stages and four steps. Step 1 consists of four alternative transitions:

1/1! 2/1, 1/1! 2/2, 1/1! 2/3 and 1/1! 2/4 with the associated costs of 5, 3, 1,

and 2 (units). Step 2 consists of 12 alternative transitions: 2/1! 3/1, 2/1! 3/2, 2/

226 4 Methods and Models of Optimization

1! 3/3 with the associated costs of 8, 4, and 3 (units); 2/2! 3/1, 2/2! 3/2, 2/

2! 3/3 with the associated costs of 4, 6, and 7 (units); 2/3! 3/1, 2/3! 3/2, 2/

3! 3/3 with the associated costs of 5, 6, and 8 (units); and 2/4! 3/1, 2/4! 3/2, 2/

4! 3/3 with the associated costs of 9, 5, and 6 (units). Step 3 also consists of 12

alternative transitions: 3/1! 4/1, 3/1! 4/2, 3/1! 4/3, 3/1! 4/4 with the associ-

ated costs of 6, 3, 4, and 10 (units); 3/2! 4/1, 3/2! 4/2, 3/2! 4/3, 3/2! 4/4 with

the associated costs of 5, 6, 7, and 3 (units); 3/3! 4/1, 3/3! 4/2, 3/3! 4/3, 3/

3! 4/4 with the associated costs of 11, 2, 6, and 8 (units). Finally, the last step, 4,

consists of four alternative transitions: 4/1! 5/1, 4/2! 5/1, 4/3! 5/1 and 4/4! 5/

1 with the associated costs of 13, 16, 10, and 11 (units). It is required to establish

such a sequence of transitions (optimal path) that would lead from the initial to the

final stage (nodes of the above graph) and had the minimal sum of the transition

costs.

Could we have established the optimal path by considering all possible alterna-

tive paths within this graph?—perhaps, but the required computational effort is

expected to be very high. Should the number of stages and alternative transitions at

every step be greater, this approach will become prohibitively formidable.

According to the dynamic programming procedure, let us define conditionally

optimal transitions for the last step of the process, step #4. This task is quite

simple: if the starting node of the stage #4 is 4/1 then the optimal (and the only)

transition to the last stage is 4/1! 5/1 with the cost of 13 units. Should we start

from node 4/2, the optimal (and the only) transition is 4/2! 5/1 with the cost of

16 units, and so on. The results of the conditional optimization of the step #4 are

tabulated below

Fig. 4.15 Process graph

4.5 Dynamic Programming 227

Conditional optimization of step 4

Starting node

of the stage 4

Final node

of the stage 5 Transition costs Optimal transition

Total cost for this

portion of the path

4/1 5/1 13 4/1! 5/1 13

4/2 5/1 16 4/2! 5/1 16

4/3 5/1 10 4/3! 5/1 10

4/4 5/1 11 4/4! 5/1 11

Let us compile the table representing conditional optimization of the last two

steps of the transportation process, namely steps 3 and 4. Assuming that the starting

node of the stage 3 is 3/1 then the first available transition within step 3 is 3/1! 4/1

with the cost of 6 units. At the next step, this transition will be followed by 4/1! 5/1

and the total cost of both transitions, 3/1! 4/1! 5/1, is 19 units. Then, consider the

second available transition within step 3, 3/1! 4/2. It comes with the cost of 3 units

and must be followed by the transition 4/2! 5/1 with the total cost of transition 3/

1! 4/2! 5/1 of 19 units. Upon consideration of transitions 3/1! 4/3! 5/1 and 3/

1! 4/4! 5/1 it could be seen that for 3/1 as the entry point to step 3 the best

transition is 3/1! 4/3! 5/1 with the lowest total cost of 14 units.

Conditional optimization of steps 3 and 4

Starting

point of

steps 3

Alternative

transitions

to states

Transition

costs

Possible

transition

Total cost

for two

stages

Optimal

transition

3/1 4/1 6 3/1! 4/1! 5/1 6 + 13¼ 19

4/2 3 3/1! 4/2! 5/1 3 + 16¼ 19

4/3 4 3/1! 4/3! 5/1 4 + 10¼ 14 3/1! 4/3! 5/1

4/4 10 3/1! 4/4! 5/1 10 + 11¼ 21

3/2 4/1 5 3/2! 4/1! 5/1 5 + 13¼ 18

4/2 6 3/2! 4/2! 5/1 6 + 16¼ 22

4/3 7 3/2! 4/3! 5/1 7 + 10¼ 17

4/4 3 3/2! 4/4! 5/1 3 + 11¼ 14 3/2! 4/4! 5/1

3/3 4/1 11 3/3! 4/1! 5/1 11 + 13¼ 24

4/2 2 3/3! 4/2! 5/1 2 + 16¼ 18

4/3 6 3/3! 4/3! 5/1 6 + 10¼ 16 3/3! 4/3! 5/1

4/4 8 3/3! 4/4! 5/1 8 + 11¼ 19

Now let us compile the table representing conditional optimization of the last

three steps of the transportation process, namely step 2 followed by steps 3 and 4.

Assume that the starting point of stage 2 is 2/1 and the first available transition is

2/1! 3/1 with the cost of 8 units. The optimal transition from 3/1 to the last stage has

been already established: 3/1! 4/3! 5/1 and its cost is 14 units, therefore the cost

of transition 2/1! 3/1! 4/3! 5/1 is 8þ 14¼ 22 units. Assume that the starting

point is 2/1 and the chosen transition is 2/1! 3/2 with the cost of 4 units. The

228 4 Methods and Models of Optimization

already established optimal transition from 3/2 to the last stage is 3/2! 4/4! 5/1

with the cost of 14 units, therefore the cost of transition 2/1! 3/2! 4/4! 5/1 is

4þ 14¼ 18 units. Now assume that the starting point is still 2/1 and the chosen

transition is 2/1! 3/3 with the cost of 3 units. The already established optimal

transition from 3/3 to the last stage is 3/3! 4/3! 5/1 with the cost of 16 units and

the total cost is 3þ 16¼ 19 units. This indicates that the optimal path from point 2/1

to 5/1 is 2/1! 3/2! 4/4! 5/1 with the cost of 18 units. In the similar fashion

optimal paths from points 2/2, 2/3 and 2/4 to point 5/1 are to be established. They

are: 2/2! 3/2! 4/4! 5/1 with the cost of 18 units, 2/3! 3/2! 4/4! 5/1 with

the cost of 19 units, and 2/4! 3/2! 4/4! 5/1 with the cost of 18 units.

Conditional optimization of steps 2, 3 and 4

Starting

point of

step 2

Alternative

transitions to

states

Transition

costs

Possible

transition

Total cost

for two

stages Optimal transition

2/1 3/1 8 2/1! 3/1 8þ 14¼ 22

3/2 4 2/1! 3/2 4þ 14¼ 18 2/1! 3/2! 4/4! 5/1

3/3 3 2/1! 3/3 3þ 16¼ 19

2/2 3/1 4 2/2! 3/1 4þ 14¼ 18 2/2! 3/1! 4/3! 5/1

3/2 6 2/2! 3/2 6þ 14¼ 20

3/3 7 2/2! 3/3 7þ 16¼ 23

2/3 3/1 5 2/3! 3/1 5þ 14¼ 19 2/3! 3/1! 4/3! 5/1

3/2 6 2/3! 3/2 6þ 14¼ 20

3/3 8 2/3! 3/3 8þ 16¼ 24

2/4 3/1 9 2/4! 3/1 9þ 14¼ 23

3/2 5 2/4! 3/2 5þ 14¼ 19 2/4! 3/2! 4/4! 5/1

3/3 6 2/4! 3/3 6þ 16¼ 22

Finally, let us compile the table representing optimization of all four steps of the

transportation process. Note that the optimization results are not conditional any-

more: the transition process is originated at the very particular point, 1/1. Assume

that the first available transition is 1/1! 2/1 with the cost of 5 units. The optimal

transition from 2/1 to the last stage has been already established: 2/1! 3/2! 4/

4! 5/1 and its cost is 18 units, therefore the cost of transition 1/1! 2/1! 3/1! 4/

3! 5/1 is 5þ 18¼ 23 units. Assume that the chosen transition is 1/1! 2/2 with the

cost of 3 units. The already established optimal transition from 2/2 to the last stage

is 2/2! 3/1! 4/3! 5/1 with the cost of 18 units, therefore the cost of transition 1/

1! 2/2! 3/1! 4/3! 5/1 is 3þ 18¼ 21 units. Now assume that the chosen

transition is 1/1! 2/3 with the cost of 1 units. The already established optimal

transition from 2/3 to the last stage is 2/3! 3/1! 4/3! 5/1 with the cost of 19

units and the total cost of transition 1/1! 2/3! 3/1! 4/3! 5/1 is 1þ 19¼ 20

units. Should the chosen transition be 1/1! 2/4 with the cost of 2 units, and since

the already established optimal transition from 2/4 to the last stage is 2/4! 3/

4.5 Dynamic Programming 229

2! 4/4! 5/1 with the cost of 19 units, the total cost of transition 1/1! 2/4! 3/

2! 4/4! 5/1 is 5þ 19¼ 21 units. This clearly indicates that the optimal path from

point 1/1 to 5/1 is 1/1! 2/3! 3/1! 4/3! 5/1. See this analysis summarized in

the table below.

Optimization of steps 1, 2, 3 and 4

Starting point

of step 1

Alternative

transitions

to states

Transition

costs

Possible

transition

Total cost

for two

stages Optimal transition

1/1 2/1 5 1/1! 2/1 5þ 18¼ 23

2/2 3 1/1! 2/2 3þ 18¼ 21

2/3 1 1/1! 2/3 1þ 19¼ 20 1/1! 2/3! 3/1!
4/3! 5/1

2/4 2 1/1! 2/4 2þ 19¼ 21

Consider another quite practical example that ideally lends itself to the applica-

tion of dynamic programming. It is the optimization of a sequence of manufacturing

processes that could be found in chemistry and metallurgy. Each process has its

own mathematical description representing quality/quantity of its end product and

manufacturing costs as functions of the characteristics of the raw material xi and
control efforts ui. Consider the mathematical model of i-th manufacturing process

within a sequence consisting of N processes:

characteristic of the end material yi¼ yi(xi,ui), i¼ 1,2,. . .,N

manufacturing cost qi¼ qi(xi,ui), i¼ 1,2,. . .,N

quality/quantity requirements yi
MIN� yi� yi

MAX, i¼ 1,2,. . .,N

connection to neighboring processes yi¼ xiþ1, i¼ 1,2,. . .,N

For simplicity, let us assume that the above functions are scalar and are

represented on the basis of their mathematical model by numerical values of yi
and ui for discretized xi¼ k �Δxi and ui¼m �Δui, i.e. yi(k,m)¼ yi(k �Δxi,m �Δui)
and qi(k,m)¼ qi(k �Δxi,m �Δui) where k, m¼ 1,2,3,.... Does this representation of

the manufacturing process result in the loss of accuracy? No, providing that the

discretization steps Δxi, Δui are judiciously chosen.

Example 4.8 Apply dynamic programming to optimize the operation of a

sequence of three manufacturing processes represented by the tabulated descrip-

tion below. Note that the inputs of the individual processes are defined in %

assuming that the 100 % value of the respective input corresponds to the maxi-

mum value of the output of the previous process. To simplify the problem further,

the control efforts are defined not by real numbers, but as “control options.” The

overall cost of manufacturing is defined as the sum of costs of individual pro-

cesses. Finally, it could be seen that the specified acceptability limits of the

process outputs are different from their feasibility limits that could be seen in

the tables.

230 4 Methods and Models of Optimization

PROCESS #1
Cost q1(x,u)

U=
1 2 3

U=
1 2 3

33≥ x≥0→
66≥ x≥34→

100≥ x≥67→

X%

Output y1(x,u), 30≥ y1≥10

PROCESS #2
Cost q2(x,u)

U=
1 2 3

U=
1 2 3

33≥ x≥0→
66≥ x≥34→

100≥ x≥67→

X%

Output y2(x,u), 70≥ y2≥20

PROCESS #3
Cost q3(x,u)

U=
1 2 3

U=
1 2 3

33≥ x≥0→
66≥ x≥34→

100≥ x≥67→

X%

Output y3(x,u), 30≥ y3≥15

2.000
9.000

11.000

8.000
24.000

1.000

12.000
9.000

16.000

50.000
13.000
19.000

18.000
19.000
31.000

21.000
27.000
29.000

16.000
29.000
28.000

73.000
130.000

21.000

11.000
13.000
15.000

21.000
90.000
35.000

70.000
61.000
55.000

76.000
64.000
77.000

100.000
92.000
88.000

50.000
13.000
19.000

18.000
19.000
31.000

21.000
27.000
29.000

16.000
19.000
18.000

73.000
130.000

21.000

First, let us address the issue of acceptability limits of the process outputs. Com-

putationally, it could be done by replacing associate cost values by penalties (1015)

in the situations when output values are not acceptable—this will automatically

exclude some cases from consideration, see the modified tables below

PROCESS #1
Cost q1(x,u)

U=
1 2 3

2.000
9.000

11.000

50.000
13.000
19.000

18.000
19.000
31.000

.10E+16

.10E+16
29.000

.10E+16
19.000
29.000

73.000
130.000
.10E+16

U=
1 2 3X%

Output y1(x,u), 30≥ y1≥10

33≥ x≥0→
66≥ x≥34→

100≥ x≥67→

4.5 Dynamic Programming 231

U=
1 2 3

8.000
24.000

1.000

11.000
13.000
15.000

21.000
90.000
35.000

.10E+16
61.000

.10E+16

.10E+16

.10E+16

.10E+16

100.000
.10E+16

88.000

U=
1 2 3

33≥ x≥0→
66≥ x≥34→

100≥ x≥67→

X%

PROCESS #2
Cost q2(x,u)Output y2(x,u), 70≥ y2≥20

PROCESS #3
Cost q3(x,u)

U=
1 2 3

12.000
9.000

16.000

50.000
13.000
19.000

18.000
19.000
31.000

.10E+16

.10E+16
29.000

.10E+16

.10E+16
28.000

73.000
130.000
.10E+16

U=
1 2 3

33≥ x≥0→
66≥ x≥34→

100≥ x≥67→

X%

Output y3(x,u), 30≥ y3≥15

The following analysis of the problem solution is based on the printout of a

specially written computer code. According to the Principle of Optimality, the solution

starts from the conditional optimization of the last, third, process. It will provide an

optimal recipe for the process operation for every possible grade of the process input.

The printout below considers application of various control options when the input of

the process is between 0 and 33 % of its maximum attainable value (grade 1). It could

be seen that the acceptable value of the process output is obtained only when control

option #3 is applied. This defines option #3 as the conditional optimal control

option, and the associated cost of 73 units as the conditionally minimal cost.

PROCESS # 3
INP # 1 CONTR# 1 Q¼.10000Eþ16 Y¼ 12.00
INP # 1 CONTR# 2 Q¼.10000Eþ16 Y¼ 50.00
INP # 1 CONTR# 3 Q¼.73000Eþ02 Y¼ 18.00

OPT: INP # 1, CONTR# 3, QSUM¼.73000Eþ02, Y¼ 18.00

The following printout presents similar results for the situations when the input

grade is 2 and 3.

INP # 2 CONTR# 1 Q¼.10000Eþ16 Y¼ 9.00
INP # 2 CONTR# 2 Q¼.10000Eþ16 Y¼ 13.00
INP # 2 CONTR# 3 Q¼.13000Eþ03 Y¼ 19.00

OPT: INP # 2, CONTR# 3 QSUM¼.13000Eþ03, Y¼ 19.00
INP # 3 CONTR# 1 Q¼.29000Eþ02 Y¼ 16.00
INP # 3 CONTR# 2 Q¼.28000Eþ02 Y¼ 19.00
INP # 3 CONTR# 3 Q¼.10000Eþ16 Y¼ 31.00
OPT: INP # 3, CONTR# 2 QSUM¼.28000Eþ02, Y¼ 19.00

232 4 Methods and Models of Optimization

Now consider conditional optimization of process #2. Note that QSUM repre-

sents the sum of costs associated with the chosen input and control option of process

#2 and the consequent conditionally optimal inputþ control option of process #3.

Consider the application of various control options when the input of process #2 is

of grade 1 (i.e. between 0 and 33 % of its maximum attainable value). The resultant

QSUM value includes the specific cost at the process #2 and the consequent already

known optimal cost at process #3. Since the first two control options are penalized

for resulting in unacceptable values of the output, the optimal result is offered by

the control option #3 and the accumulated cost value is QSUM¼ 73þ 100¼ 173

units. Some additional information seen in the printout addresses the following

issue. Note that the action at step #2 has resulted in y2¼ 21 units, then how does one

determine the consequent action at process #3? It could be seen that the highest y2
value in the output of process #2 is 90 units. Therefore the output value y2¼ 21 falls

within 0–33 % of the y2 range, i.e. y2¼ 21 constitutes grade #1 of the input product

for process #3. Based on the conditional optimization of process #3, for the input

grade #1 control option #1 with the associate cost of 73 units is optimal (see

Y¼ 21.00¼> 1þ (.73000Eþ 02) QSUM¼ .17300Eþ 03)

PROCESS # 2
INP # 1 CONTR# 1 Q¼.10000Eþ16 Y¼ 8.00 ¼>1þ(.73000Eþ02)
QSUM¼.10000Eþ16
INP # 1 CONTR# 2 Q¼.10000Eþ16 Y¼ 11.00 ¼>1þ(.73000Eþ02)
QSUM¼.10000Eþ16
INP # 1 CONTR# 3 Q¼.10000Eþ03 Y¼ 21.00 ¼>1þ(.73000Eþ02)
QSUM¼.17300Eþ03

OPT: INP # 1, CONTR# 3, QSUM¼.17300Eþ03, Y¼ 21.00 ¼¼>1

Similar analysis is conducted to perform conditional optimization of process #2

for two other grades of the input.

INP # 2 CONTR# 1 Q¼.61000Eþ02 Y¼ 24.00 ¼>1þ(.73000Eþ02)
QSUM¼.13400Eþ03
INP # 2 CONTR# 2 Q¼.10000Eþ16 Y¼ 13.00 ¼>1þ(.73000Eþ02)
QSUM¼.10000Eþ16
INP # 2 CONTR# 3 Q¼.10000Eþ16 Y¼ 90.00 ¼>3þ(.28000Eþ02)
QSUM¼.10000Eþ16

OPT: INP # 2, CONTR# 1, QSUM¼.13400Eþ03, Y¼ 24.00 ¼¼>1
INP # 3 CONTR# 1 Q¼.10000Eþ16 Y¼ 1.00 ¼>1þ(.73000Eþ02)
QSUM¼.10000Eþ16
INP # 3 CONTR# 2 Q¼.10000Eþ16 Y¼ 15.00 ¼>1þ(.73000Eþ02)
QSUM¼.10000Eþ16
INP # 3 CONTR# 3 Q¼.88000Eþ02 Y¼ 35.00 ¼>2þ(.13000Eþ03)
QSUM¼.21800Eþ03

OPT: INP # 3, CONTR# 3, QSUM¼.21800Eþ03, Y¼ 35.00 ¼¼>2

Consider conditional optimization of process #1, that results in the optimization

of the entire combination of three sequential processes. Consider the application of

various control options when the input of process #1 is of grade 2 (i.e. between 34

and 66 % of its maximum attainable value). The resultant QSUM value includes the

4.5 Dynamic Programming 233

specific cost at the process #1 and the consequent already known optimal costs at

process #2 and #3. The first control option results in the unacceptable value of the

output and is penalized. The application of control option #2 results in y1¼ 13 or #1

grade of the input for process #2, and the cost of 19 units. The already established

optimal decisions for this input grade for process #2 come with the cost of 173 units.

Consequently QSUM¼ 19þ 173¼ 192 units. The application of control option #3

results in y1¼ 19 (or #2 grade of the input for process #2), and the cost of 130 units.

The already established optimal decisions for this input grade for process #2 comes

with the cost of 134 units. Therefore QSUM¼ 130þ 134¼ 264 units. It is clear that

the control option #2 is optimal grade #2 of the input material.

PROCESS # 1
INP # 2 CONTR# 1 Q¼.10000E+16 Y¼ 9.00 ¼>1+(.17300E+03)
QSUM¼.10000E+16
INP # 2 CONTR# 2 Q¼.19000E+02 Y¼ 13.00 ¼>1+(.17300E+03)
QSUM¼.19200E+03
INP # 2 CONTR# 3 Q¼.13000E+03 Y¼ 19.00 ¼>2+(.13400E+03)
QSUM¼.26400E+03

OPT: INP # 2, CONTR# 2, QSUM¼.19200E+03, Y¼ 13.00 ¼¼>1

Consider conditional optimization of process #1 when the input of process #1 is

of grade #1 and grade #3 is featured below.

INP # 1 CONTR# 1 Q¼.10000E+16 Y¼ 2.00 ¼>1+(.17300E+03)
QSUM¼.10000E+16
INP # 1 CONTR# 2 Q¼.10000E+16 Y¼ 50.00 ¼>3+(.21800E+03)
QSUM¼.10000E+16
INP # 1 CONTR# 3 Q¼.73000E+02 Y¼ 18.00 ¼>2+(.13400E+03)

QSUM¼.20700E+03
OPT: INP # 1, CONTR# 3, QSUM¼.20700E+03, Y¼ 18.00 ¼¼>2

INP # 3 CONTR# 1 Q¼.29000E+02 Y¼ 11.00 ¼>1+(.17300E+03)
QSUM¼.20200E+03
INP # 3 CONTR# 2 Q¼.18000E+02 Y¼ 19.00 ¼>2+(.13400E+03)
QSUM¼.15200E+03
INP # 3 CONTR# 3 Q¼.10000E+16 Y¼ 31.00 ¼>2+(.13400E+03)
QSUM¼.10000E+16

OPT: INP # 3, CONTR# 2, QSUM¼.15200E+03, Y¼ 19.00 ¼¼>2

Finally, the following printout summarizes the results of the optimization of the

entire sequence of three processes for every grade of the raw material.

OPTIMAL PROCESS OPERATION
RAW MATERIAL GRADE: 1 2 3

PROCESS # 1
CONTROL OPTION: 3 2 2
OUTPUT ¼ 18.00 13.00 19.00
PROCESS # 2

CONTROL OPTION: 3 1 3
OUTPUT ¼ 21.00 24.00 35.00
PROCESS # 3

CONTROL OPTION: 3 3 2
OUTPUT ¼ 18.00 19.00 19.00
¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
TOTAL COST: 207.00 192.00 152.00

234 4 Methods and Models of Optimization

4.5.1 Exercise 4.3

Problem 1 Apply dynamic programming to optimize the following sequence of

manufacturing processes.

The characteristics of each process are given below:

y1(x,u) q1(x,u) y2(x,u) q2(x,u)

u¼ 1 u¼ 2 u¼ 3 u¼ 1 u¼ 2 u¼ 3 u¼ 1 u¼ 2 u¼ 3 u¼ 1 u¼ 2 u¼ 3

10< x� 40 25 45 55 25 28 25 65 44 74 13 21 33

40< x� 70 37 48 63 27 33 27 66 50 81 15 22 37

70< x� 100 45 58 79 22 24 25 78 62 96 18 28 40

y3(x,u) q3(x,u) y4(x,u) q4(x,u)

u¼ 1 u¼ 2 u¼ 3 u¼ 1 u¼ 2 u¼ 3 u¼ 1 u¼ 2 u¼ 3 u¼ 1 u¼ 2 u¼ 3

10< x� 40 13 45 92 16 18 9 56 85 97 2 4 3

40< x� 70 48 18 68 13 17 8 42 61 81 3 6 4

70< x� 100 81 66 21 10 14 6 21 39 70 4 5 3

It is known that x1¼ 37 (units) and the end product must be such that

70� y4� 85. Obtain the optimal choice of control options for each process that

would minimize the sum of “local” criteria, Q¼ q1þ q2þ q3þ q4, and define the

corresponding values of the characteristics of the intermediate products.

Problem 2 Use dynamic programming to solve the optimal routing problem based

on the graph below featuring the available transitions and the associated costs.

7
4

5

6

2

3

9

1

2
2

6
4

3

3 3

6

4

2

7

4

12

5

3

7

15

10

19

14

16

13

7

8
A1

A2

B2

C2

D2

A3

B3

C34

A4

B4

C4

A5

B5

A6

4.5 Dynamic Programming 235

Solutions

Exercise 4.1: Problem 1

The first constraint reflects the requirement on the total weight of the mixture:

x1 þ x2 þ x3 þ x4 þ x5 þ x6 ¼ 500

The following expressions represent the required concentrations of each chemical

ingredient in the final mixture:

Fe ¼ :15 � x1 þ :40 � x2 þ :35 � x3 þ :16 � x4 þ :33 � x5 þ :07 � x6 � :20 � 500
Zn ¼ :38 � x1 þ :12 � x2 þ :05 � x3 þ :11 � x4 þ :01 � x5 þ :23 � x6 � :10 � 500
SiO2 ¼ :41 � x1 þ :40 � x2 þ :27 � x3 þ :21 � x4 þ :60 � x5 þ :45 � x6 � :42 � 500
Cu ¼ :06 � x1 þ :01 � x2 þ :28 � x3 þ :18 � x4 þ :05 � x5 þ :25 � x6 � :05 � 500

The feasibility constraints reflect the availability of the materials. The amount of

each material used is equal to the percentage of that material multiplied by the total

weight of the end mixture. This must be no greater than the available weight of the

material.

x1 � 250

x2 � 590

x3 � 1000

x4 � 520

x5 � 2500

x6 � 800

It should be noted that all variables of this problem are non-negative, but this

requirement is very common for linear programming problems and is addressed by

the solution algorithm.

The “minimum cost” requirement is addressed as follows:

120 � x1 þ 150 � x2 þ 211 � x3 þ 140 � x4 þ 75 � x5 þ 214 � x6 ! Min

236 4 Methods and Models of Optimization

The problem solution is obtained by the use of the linear programming software

available in MATLAB. The optimal weight of each material in tons is:

x1 x2 x3 x4 x5 x6 Total Cost,$

68.2363 0.0000 0.0000 197.5259 234.2378 0.0000 500.0000 53409.80

and the chemical composition of the mixture is

Fe% Zn% SiO2% Cu%

23.83 10.00 42.00 10.27

Exercise 4.1: Problem 2

For this problem, we were required to use the gradient-based LSM procedure to find

the optimal solution of the a coefficients in the following equation.

ymod kð Þ ¼ a1 � x1 kð Þ þ a2 � x2 kð Þ þ a3 � x3 kð Þ þ a4 � x4 kð Þ

The method for the gradient-based LSM is a simple iterative procedure which

“moves” the point representing unknown coefficients in four-dimensional space

in the direction toward the minimum value of the criterion. In this case, the

criterion, Q, is calculated as the sum of squared values of the discrepancy e(k)¼ y
(k)�ymod(k):

Anew ¼

A 1ð Þ � γ � ΔQ A 1ð Þ,A 2ð Þ,A 3ð Þ,A 4ð Þ½ �
Δ 1ð Þ

A 2ð Þ � γ � ΔQ A 1ð Þ,A 2ð Þ,A 3ð Þ,A 4ð Þ½ �
Δ 2ð Þ

A 3ð Þ � γ � ΔQ A 1ð Þ,A 2ð Þ,A 3ð Þ,A 4ð Þ½ �
Δ 3ð Þ

A 4ð Þ � γ � ΔQ A 1ð Þ,A 2ð Þ,A 3ð Þ,A 4ð Þ½ �
Δ 4ð Þ

2
66666666666664

3
77777777777775

where
ΔQ A 1ð Þ,A 2ð Þ,A 3ð Þ,A 4ð Þ½ �

Δ ið Þ are estimated partial derivatives of the LSM

criterion Q with respect to particular coefficients (i¼ 1,2,3,4) chosen to be

0.0001, and γ> 0, is a scaling factor. Initially, γ is chosen to be 0.02, however, in

the case of an unsuccessful step leading to an increase of criterion Q criterion

Solutions 237

instead of a decrease, the magnitude of gamma is cut in half. This ensures that the

procedure will converge.

The results of this procedure were reached after 250 iterations, starting with zero

initial conditions. This procedure could be less accurate but also faster if the

termination conditions were made less strict. For this termination condition, the

change between the newly generated Q and the previous Q needs to be less than

.0000001 in absolute. The optimal result was:

A ¼

2:0001

2:9918

�2:0001

5:0235

2
66664

3
77775

Since the coefficient of determination for this model is 0.9996, this is an excellent

model of our linear system.

Exercise 4.1: Problem 3

This problem differs from the previous one because of the additional requirement:

all model parameters are to be positive. This condition is achieved by the use of

penalty functions added to the original LSM criterion Q. In this problem the

criterion to be minimized is:

Q1 ¼ Qþ
X4
i¼1

Pi

where Pi ¼ 0 if A ið Þ � 0

1010 � A ið Þ2 if A ið Þ < 0

(
, i¼ 1,2,3,4

The optimal result, with a coefficient of determination of 0.9348, reached after

300 iterations was:

A ¼

1:0790

2:4456

:0009

4:4795

2
66664

3
77775

Comparing the coefficient of determination to the one from Problem 2,

0.9348< 0.9996 Therefore the coefficients found in Problem 2 are a better

representation of the actual system. Since the actual system includes a

238 4 Methods and Models of Optimization

negative coefficient for a3, not allowing negative coefficients in Problem 3

impacted the ability of the optimization to get close to the actual coefficient

values.

Exercise 4.2: Problem 1

For this problem, we were given the following transfer function of the controlled

plant, and were required to use the Simplex code provided to find the optimal

coefficients of a PID controller. The PID controller was configured to use the

system error as its input for the controller.

Product
P

X
Ramp

Step

Derivative

du/dt

Integrator 1

Integrator Step Response

s+6

s3+6s2+10s+10

Transfer Function

++
++_

D

I

k_I

k_D

k_P

Q

0.020421
s

1
s

As could be seen, the optimization criterion, known as “integral-time-error-

squared” was chosen. The Simplex procedure began with zero initial coefficient

values, and progressively changed these values, minimizing the criterion. All 30

iteration of the Simplex procedure are shown below.

Iteration k_P k_I k_D Q

1 0.000 0.000 0.000 50.00000

2 0.094 0.024 0.024 38.18000

3 0.024 0.094 0.024 25.61000

4 0.024 0.024 0.094 41.24000

5 0.094 0.094 0.094 24.15000

6 0.141 0.141 0.141 17.33000

7 0.149 0.149 0.031 16.29000

8 0.212 0.212 0.000 10.76000

(continued)

Solutions 239

Iteration k_P k_I k_D Q

9 0.157 0.275 0.086 7.86200

10 0.189 0.401 0.118 4.21000

11 0.338 0.409 0.149 3.87000

12 0.495 0.566 0.212 2.06500

13 0.456 0.644 0.079 1.62100

14 0.613 0.896 0.047 0.86220

15 0.652 1.029 0.251 0.72740

16 0.872 1.438 0.377 0.48830

17 1.131 1.532 0.306 0.39070

18 1.603 2.098 0.401 0.29570

19 1.563 2.388 0.338 0.34080

20 2.079 3.054 0.697 0.29080

21 2.813 4.133 1.021 0.26310

22 3.114 4.308 0.796 0.25040

23 4.235 5.743 1.006 0.21720

24 4.203 5.594 1.281 0.19470

25 5.523 7.197 1.752 0.15960

26 6.778 9.284 2.119 0.14560

27 9.365 12.877 2.978 0.11670

28 9.936 13.079 2.802 0.10360

29 13.498 17.552 3.693 0.08105

30 14.689 19.341 4.609 0.08550

The following plots illustrate gradual improvement of the closed-loop step

response of the system, iterations 1, 2, 8, 12, 14, 16 are shown below. Technically,

the procedure could be terminated after the 16-th iteration when the design require-

ments were met.

1
2

(continued)

240 4 Methods and Models of Optimization

8
12

14 16

Exercise 4.2: Problem 2

The task is to estimate parameters a1, a2, a3, a4, a5 of the following model

yMOD ¼ a1x1e
a2x2 þ a3

a4x3þa5ð Þ

based on the input–output data presented in the table below. It could be seen that

while the Least Squares Method (LSM) is to be applied, due to the nonlinearity of

the model, traditional LSM equation is unusable and the LSM criterion,

Q a1, a2, a3, a4, a5ð Þ ¼
X
i

y ið Þ � yMOD ið Þ� �2

could be minimized only by a genetic optimization (GO) procedure.

Assume that a “generation” size is 20. To start the procedure, begin with 20

randomly generated sets of 5 coefficients compiled into in a 20� 5 matrix, with

each row representing a particular set of coefficients (an individual). In each

generation these 20 “individuals” will become the source of off-spring and mutants.

Each combination of two individuals within a generation results in 5 off-spring.

Each individual in the generation originates 5 mutants.

Solutions 241

It could be seen that this process results in an immense number of new individ-

uals, however, each newly created individual is subjected to the “fitness test” and

only the 20 most fit individuals are included in the next generation. Each “next

generation” is subjected to the same treatment until some termination conditions are

met.

Below are several successive generation created by GO and accompanying

values of the coefficient of determination of the resultant model.

Initial generation

a1 a2 a3 a4 a5

2.8985 1.1513 1.3472 0.7978 �1.7259

1.6345 0.3528 �3.1390 �0.4051 �1.6175

4.0328 �0.2817 �0.8104 �0.2262 2.0505

0.5651 �0.3717 �1.4612 2.1874 0.2249

0.0178 �2.6064 0.7837 2.0933 0.9262

�0.4143 1.3217 0.6731 �1.0293 0.6581

0.3766 2.1826 2.5247 �1.7790 �0.3017

1.9690 �1.3128 �0.5600 2.6983 �2.0503

1.5223 �1.7655 �1.0972 �6.0455 1.9243

�1.9364 2.2881 �2.5293 1.9482 �1.2985

�0.1199 3.7093 0.4981 0.0415 �0.1648

�2.6940 2.6746 �2.0002 1.0056 �0.6448

�1.6309 3.0015 �1.4742 2.2930 2.2985

�1.6146 3.2141 3.1189 1.3045 �4.4747

3.7037 �0.5679 0.2711 �1.9776 0.4899

1.3725 �0.5816 0.3215 �2.4576 1.0954

0.9418 2.1572 �0.3685 3.4800 �3.1552

�2.9340 �4.9244 �0.0846 0.5385 �1.4570

3.5418 �0.5850 �0.3802 �4.0273 0.3840

0.5160 �4.4928 �0.1777 3.0757 �1.5804

Generation 1

a1 a2 a3 a4 a5 Determination coefficient

2.8985 1.1513 1.3472 0.7978 �1.7259 0.8825

2.2881 1.2683 1.3268 0.3294 �0.2899 0.8756

3.1209 1.2110 1.8546 �1.8284 0.2756 0.8755

2.5022 1.2605 0.6157 �0.9998 1.3549 0.8656

1.8744 1.2679 �0.9757 0.6641 2.0549 0.8601

1.1644 1.4379 �1.7683 �1.0123 �0.8917 0.8532

1.6140 1.2957 �0.5244 �0.5290 1.4760 0.8408

0.7947 1.6388 0.9696 �2.4417 0.6111 0.8397

2.0885 1.1947 0.8106 �0.2046 �0.5338 0.8384

0.8033 1.5508 2.2729 �0.0392 �0.5913 0.8352

(continued)

242 4 Methods and Models of Optimization

a1 a2 a3 a4 a5 Determination coefficient

2.5520 1.1144 0.4245 �0.3246 0.5987 0.8319

1.1761 1.5435 1.4602 �2.2510 �0.0922 0.8282

3.4343 1.0007 �0.5871 0.2609 1.1236 0.8243

1.6577 1.2627 �0.9837 1.3665 �0.4513 0.8215

1.3407 1.4972 �2.5164 0.8116 �2.9722 0.8175

2.9522 1.0467 0.1449 0.5600 1.8093 0.8157

0.6689 1.5793 �0.7417 2.8365 0.1993 0.8074

2.7650 1.0530 1.1006 0.2516 �1.6950 0.7990

1.8029 1.2170 �1.9619 1.3318 �1.5114 0.7959

2.8907 1.2643 0.7140 0.1415 �2.4496 0.7925

Generation 3

a1 a2 a3 a4 a5 Determination coefficient

3.2330 1.1311 0.1180 0.1429 �1.5847 0.9203

3.4089 1.1194 0.1505 0.2626 �1.3844 0.9178

3.0811 1.1600 0.1540 0.3674 �1.2171 0.9152

3.2224 1.1584 0.1650 0.2263 �1.4428 0.9142

3.2893 1.1546 0.1817 0.8279 �0.1388 0.9137

2.5298 1.2368 0.0907 0.5090 �0.1884 0.9114

3.0611 1.1398 0.0935 0.0080 �1.5563 0.9112

2.4017 1.2431 0.2474 0.7796 �0.6685 0.9102

3.3596 1.1058 0.1555 0.1667 �1.3748 0.9095

2.8410 1.1452 0.1536 0.0956 �1.7017 0.9089

2.4652 1.2277 0.0785 0.3539 �0.4969 0.9087

2.2753 1.2568 0.2190 0.5816 �0.8525 0.9073

2.3878 1.2545 0.1447 0.5450 �0.3459 0.9068

2.6861 1.1952 0.2399 0.2100 �1.6736 0.9057

3.1428 1.1634 0.2227 0.1615 �1.6702 0.9056

2.6985 1.1850 0.2020 0.1200 �1.6083 0.9054

2.4388 1.2495 0.0313 0.3191 �0.1237 0.9054

3.2899 1.1293 0.2615 0.2999 �1.4908 0.9051

2.3510 1.2336 0.2180 0.3131 �1.4478 0.9048

2.8936 1.1421 0.1960 0.1882 �1.6563 0.9044

Generation 5

a1 a2 a3 a4 a5 Determination coefficient

3.2187 1.1474 0.1081 0.1070 �1.5610 0.9243

3.2307 1.1444 0.1065 0.0930 �1.5475 0.9242

3.1887 1.1535 0.1066 0.0969 �1.5458 0.9241

3.1930 1.1516 0.1153 0.0942 �1.6730 0.9241

3.1678 1.1503 0.1164 0.1062 �1.5840 0.9239

3.3344 1.1401 0.1163 0.1289 �1.5773 0.9239

3.2312 1.1458 0.1056 0.0839 �1.5436 0.9239

(continued)

Solutions 243

a1 a2 a3 a4 a5 Determination coefficient

3.1755 1.1476 0.1139 0.0927 �1.5828 0.9238

3.1045 1.1533 0.1032 0.0814 �1.5745 0.9238

3.1020 1.1555 0.1101 0.0826 �1.5823 0.9238

3.1053 1.1523 0.1109 0.0850 �1.5895 0.9237

3.2088 1.1392 0.1033 0.0831 �1.5563 0.9237

3.3173 1.1454 0.1160 0.1322 �1.5786 0.9236

3.1123 1.1533 0.1164 0.1001 �1.5813 0.9236

3.2996 1.1295 0.1009 0.0858 �1.5604 0.9236

3.3068 1.1395 0.1328 0.1453 �1.6407 0.9236

3.3615 1.1333 0.1098 0.1346 �1.5013 0.9235

3.2392 1.1462 0.1213 0.1365 �1.5729 0.9235

3.2177 1.1370 0.1105 0.0952 �1.5843 0.9235

3.0982 1.1542 0.1172 0.1026 �1.5828 0.9235

Generation 7

a1 a2 a3 a4 a5 Determination coefficient

3.2964 1.1409 0.1069 0.1003 �1.5657 0.9244

3.2921 1.1406 0.1063 0.0987 �1.5740 0.9244

3.2906 1.1400 0.1057 0.1014 �1.5538 0.9244

3.2617 1.1426 0.1080 0.1004 �1.5746 0.9244

3.2937 1.1406 0.1141 0.1063 �1.6061 0.9244

3.2497 1.1445 0.1063 0.1002 �1.5612 0.9244

3.2837 1.1424 0.1048 0.0966 �1.5579 0.9244

3.2246 1.1478 0.1122 0.1016 �1.6072 0.9244

3.2764 1.1418 0.1104 0.1047 �1.5810 0.9244

3.2292 1.1473 0.1077 0.1007 �1.5728 0.9244

3.2272 1.1467 0.1149 0.1005 �1.6283 0.9244

3.2825 1.1422 0.1085 0.0975 �1.5793 0.9244

3.2831 1.1400 0.1081 0.1029 �1.5699 0.9244

3.2317 1.1464 0.1090 0.1021 �1.5838 0.9244

3.2291 1.1462 0.1074 0.0996 �1.5691 0.9244

3.2202 1.1473 0.1083 0.1002 �1.5767 0.9244

3.2817 1.1425 0.1073 0.1012 �1.5615 0.9244

3.2629 1.1422 0.1116 0.1037 �1.5985 0.9244

3.2778 1.1426 0.1187 0.1053 �1.6354 0.9244

3.2414 1.1462 0.1072 0.1030 �1.5708 0.9244

244 4 Methods and Models of Optimization

Generation 9

a1 a2 a3 a4 a5 Determination coefficient

3.2931 1.1403 0.1067 0.0996 �1.5671 0.9244

3.2946 1.1402 0.1062 0.0997 �1.5652 0.9244

3.2915 1.1403 0.1077 0.1000 �1.5749 0.9244

3.2941 1.1402 0.1060 0.0996 �1.5644 0.9244

3.2921 1.1404 0.1069 0.0999 �1.5686 0.9244

3.2934 1.1404 0.1059 0.0986 �1.5632 0.9244

3.2905 1.1404 0.1056 0.0991 �1.5608 0.9244

3.2936 1.1404 0.1113 0.1011 �1.5986 0.9244

3.2937 1.1404 0.1064 0.0998 �1.5654 0.9244

3.2936 1.1402 0.1061 0.1000 �1.5628 0.9244

3.2917 1.1402 0.1062 0.0996 �1.5629 0.9244

3.2895 1.1405 0.1055 0.0987 �1.5605 0.9244

3.2943 1.1403 0.1063 0.1001 �1.5638 0.9244

3.2900 1.1404 0.1057 0.0986 �1.5612 0.9244

3.2913 1.1403 0.1060 0.0996 �1.5622 0.9244

3.2918 1.1404 0.1064 0.0999 �1.5648 0.9244

3.2902 1.1402 0.1056 0.0985 �1.5612 0.9244

3.2901 1.1406 0.1072 0.0997 �1.5719 0.9244

3.2918 1.1406 0.1057 0.0988 �1.5631 0.9244

3.2933 1.1405 0.1065 0.0999 �1.5674 0.9244

After 9 iterations of the GO procedure stopped, and the resultant value of the

coefficient of determination was 0.9244 for coefficients [3.2931, 1.1403, 0.1067,

0.0996, �1.5671], and the model expression is: yMOD¼ 3:2931x1e
1:1403x2þ

0:10670:0996x3�1:5671

Exercise 4.3: Problem 1

Conditional optimization of Process IV:

If x4 ¼ 10; 40½ �
Choose u4¼ 2

Cost¼ 4

If x4 ¼ 40; 70ð �
Choose u4¼ 3

Cost¼ 4

Solutions 245

If x4 ¼ 70; 100ð �
Choose u4¼ 3

Cost¼ 3

Conditional optimization of Process III and Process IV:

If x3 ¼ 10; 40½ �
If u3¼ 1, cost¼ 16þ cost(x4¼ 13)¼ 16þ 4¼ 20

If u3¼ 2, cost¼ 18þ cost(x4¼ 45)¼ 18þ 4¼ 22

If u3¼ 3, cost¼ 9þ cost(x4¼ 92)¼ 9þ 3¼ 12 (optimal)

Choose u3¼ 3

Cost¼ 12

If x3 ¼ 40; 70ð �
If u3¼ 1, cost¼ 13þ cost(x4¼ 48)¼ 13þ 4¼ 17

If u3¼ 2, cost¼ 17þ cost(x4¼ 18)¼ 17þ 4¼ 21

If u3¼ 3, cost¼ 8þ cost(x4¼ 68)¼ 8þ 4¼ 12 (optimal)

Choose u3¼ 3

Cost¼ 12

If x3 ¼ 70; 100ð �
If u3¼ 1, cost¼ 10þ cost(x4¼ 81)¼ 10þ 3¼ 13

If u3¼ 2, cost¼ 14þ cost(x4¼ 66)¼ 14þ 4¼ 18

If u3¼ 3, cost¼ 6þ cost(x4¼ 21)¼ 6þ 4¼ 10 (optimal)

Choose u3¼ 3

Cost¼ 10

Conditional optimization of Process II, Process III and Process IV:

If x2 ¼ 10; 40½ �
If u2¼ 1, cost¼ 13þ cost(x3¼ 65)¼ 13þ 12¼ 25 (optimal)

If u2¼ 2, cost¼ 21þ cost(x3¼ 44)¼ 21þ 12¼ 33

If u2¼ 3, cost¼ 33þ cost(x3¼ 74)¼ 33þ 10¼ 43

Choose u2¼ 1

Cost¼ 25

If x2 ¼ 40; 70ð �
If u2¼ 1, cost¼ 15þ cost(x3¼ 66)¼ 15þ 12¼ 27 (optimal)

If u2¼ 2, cost¼ 22þ cost(x3¼ 50)¼ 22þ 12¼ 33

If u2¼ 3, cost¼ 37þ cost(x3¼ 81)¼ 37þ 10¼ 47

Choose u2¼ 1

Cost¼ 27

246 4 Methods and Models of Optimization

If x2 ¼ 70; 100ð �
If u2¼ 1, cost¼ 18þ cost(x3¼ 78)¼ 18þ 10¼ 28 (optimal)

If u2¼ 2, cost¼ 28þ cost(x3¼ 62)¼ 28þ 12¼ 40

If u2¼ 3, cost¼ 40þ cost(x3¼ 96)¼ 40þ 10¼ 50

Choose u2¼ 1

Cost¼ 28

Conditional optimization of Process I, Process II, Process III, and Process IV:

If x1 ¼ 10; 40½ �
If u1¼ 1, cost¼ 25þ cost(x2¼ 25)¼ 25þ 25¼ 50 (optimal)

If u1¼ 2, cost¼ 28þ cost(x2¼ 45)¼ 28þ 27¼ 55

If u1¼ 3, cost¼ 25þ cost(x2¼ 55)¼ 25þ 27¼ 52

Choose u1¼ 1

PATH: u1¼ 1 ! u2 ¼ 1 ! u3 ¼ 3 ! u4 ¼ 3

Cost¼ 50

If x1 ¼ 40; 70ð �
If u1¼ 1, cost¼ 27þ cost(x2¼ 37)¼ 27þ 25¼ 52 (optimal)

If u1¼ 2, cost¼ 33þ cost(x2¼ 48)¼ 33þ 27¼ 60

If u1¼ 3, cost¼ 27þ cost(x2¼ 63)¼ 27þ 28¼ 55

Choose u1¼ 1

PATH: u1¼ 1 ! u2 ¼ 1 ! u3 ¼ 3 ! u4 ¼ 3

Cost¼ 52

If x1 ¼ 70; 100ð �
If u1¼ 1, cost¼ 22þ cost(x2¼ 45)¼ 22þ 27¼ 49 (optimal)

If u1¼ 2, cost¼ 24þ cost(x2¼ 58)¼ 24þ 27¼ 51

If u1¼ 3, cost¼ 25þ cost(x2¼ 79)¼ 25þ 28¼ 53

Choose u1¼ 1

PATH: u1¼ 1 ! u2 ¼ 1 ! u3 ¼ 3 ! u4 ¼ 3

Cost¼ 49

Optimal Plan

Since x¼ 37, the optimal path is u1¼ 1 ! u2 ¼ 1 ! u3 ¼ 3 ! u4 ¼ 3 and the

cost¼ 50.

Solutions 247

Exercise 4.3: Problem 2

Conditional optimization of particular stages of the process starting from the last

stage:

Stage 5 ! 6

If at A5!A6�Cost¼ 8 (optimal)

If at B5!A6�Cost¼ 7 (optimal)

Stage 4 ! 5

If at A4!A5 – Cost¼ 15þ 8¼ 23

!B5�Cost¼ 10þ 7¼ 17 (optimal)

If at B4 !A5 – Cost¼ 19þ 8¼ 27

!B5�Cost¼ 14þ 7¼ 21 (optimal)

If at C4!A5 – Cost¼ 16þ 8¼ 24

!B5�Cost¼ 13þ 7¼ 20 (optimal)

Stage 3 ! 4

If at A3!A4 – Cost¼ 6þ 17¼ 23

!B4 – Cost¼ 4þ 21¼ 25

!C4�Cost¼ 2þ 20¼ 22 (optimal)

If at B3!A4�Cost¼ 7þ 17¼ 24 (optimal)

!B4 – Cost¼ 4þ 21¼ 25

!C4 – Cost¼ 12þ 20¼ 32

If at C3!A4�Cost¼ 5þ 17¼ 22 (optimal)

!B4�Cost¼ 3þ 21¼ 24

!C4�Cost¼ 7þ 20¼ 27

Stage 2 ! 3

If at A2!A3 – Cost¼ 2þ 22¼ 24

!B3 – Cost¼ 3þ 24¼ 27

!C3�Cost¼ 1þ 22¼ 23 (optimal)

If at B2!A3 – Cost¼ 9þ 22¼ 31

!B3 – Cost¼ 2þ 24¼ 26

!C3�Cost¼ 2þ 22¼ 24 (optimal)

If at C2!A3 – Cost¼ 6þ 22¼ 28

!B3 – Cost¼ 4þ 24¼ 28

!C3�Cost¼ 3þ 22¼ 25 (optimal)

If at D2!A3�Cost¼ 3þ 22¼ 25 (optimal)

!B3 – Cost¼ 3þ 24¼ 27

!C3 – Cost¼ 4þ 22¼ 26

248 4 Methods and Models of Optimization

Stage 1 ! 2

If at A1!A2 – Cost¼ 7þ 23¼ 30

!B2�Cost¼ 4þ 24¼ 28 (optimal)

!C2 – Cost¼ 5þ 25¼ 30

!D2 – Cost¼ 6þ 25¼ 31

Optimal Path

A1!B2!C3!A4!B5!A6, Cost: 28

Bibliography

http://www.onlinecalculatorfree.org/linear-programming-solver.html

MATLAB: https://www.mathworks.com/products/matlab-home/

Simulink: http://www.mathworks.com/products/simulink/

VISSIM: http://www.vissim.com/

Bibliography 249

http://www.onlinecalculatorfree.org/linear-programming-solver.html
https://www.mathworks.com/products/matlab-home/
http://www.mathworks.com/products/simulink/
http://www.vissim.com/

	Chapter 4: Methods and Models of Optimization
	4.1 Linear Programming
	4.1.1 Geometrical Interpretation of Linear Programming

	4.2 Nonlinear Programming: Gradient
	4.3 Nonlinear Programming: Search
	4.3.1 Penalty Functions
	4.3.2 Random Search
	4.3.3 Simplex Method of Nelder and Mead
	4.3.4 Exercise 4.1

	4.4 Genetic Optimization
	4.4.1 Exercise 4.2

	4.5 Dynamic Programming
	4.5.1 Exercise 4.3

	Solutions
	Exercise 4.1: Problem 1
	Exercise 4.1: Problem 2
	Exercise 4.1: Problem 3
	Exercise 4.2: Problem 1
	Exercise 4.2: Problem 2
	Exercise 4.3: Problem 1
	Optimal Plan

	Exercise 4.3: Problem 2
	Optimal Path

	Bibliography

