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Foreword

This book is intended for graduate students and practitioners: it implies that readers
have a serious background in at least one of the four areas. A professional statis-
tician may discover how a regression model can facilitate control system design
and/or provide basis for process optimization. A control system engineer may
discover how to assess the accuracy of the traditional state-variable models. This
book may help industrial leaders recognize optimization as an additional resource
for improving process operation and motivate them to bring consultants. In the
Internet era promoting the concepts of recognizing the need for, knowing what is
available, and understanding how it works could be the most appealing feature of
this book. The book is fully consistent with the author’s motto, “I practice what I
teach and teach what I practice.”
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Preface

Modern manufacturing facilities can be utilized to their full potential only when
their operation is optimized. For the modern large-scale processes, even modest
steps toward optimum result in very significant monetary gains. The optimization in
Chap. 4 presents typical methods and problems of numerical optimization. These
methods are readily available from various sources, but only to those who are aware
of their existence and do recognize their applicability to particular situations. Once
an optimal regime of operation is found, it has to be implemented and maintained
over some time period. This task is hindered by adverse environmental effects and
undesirable dynamic behavior of the process. Both conditions could be alleviated
by (mostly discrete-time) control systems. Hence, Chap. 3 of this book features
typical control problems and their practical solutions. Mathematical models provide
a quantitative basis for the solution of optimization and control problems. In most
instances process optimization cannot be implemented experimentally. In numer-
ical optimization, mathematical models of the real processes are used as “guinea
pigs” for testing various operational regimes. Control system design is based on
mathematical models of the controlled processes in the form of transfer functions or
matrix—vector descriptions. Therefore, Chap. 2 shows how mathematical models
could be built and statistically validated. It includes cluster models that are not
commonly known but are very useful in some situations. Some statistical and
probabilistic concepts relevant to mathematical modeling are given in Chap. 1;
however, some of these techniques offer useful tools for process analysis. There-
fore, this book is not a book on optimization, control, mathematical modeling, or
statistical analysis—numerous books on these subjects already exist—this book is
intended to show how to apply these powerful disciplines as a set of tools to achieve
a very important goal: improving the operation of modern manufacturing facilities
(in chemistry, metallurgy, power generation, etc.)
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X Preface

This book reflects 40 years of the author’s career as a university educator and
industrial consultant, including professional experiences of his numerous former
students. The author is grateful to Christina Stracquodaine and Matthew Davis for
refining this text and specific numerical examples.

Binghamton, NY, USA Victor A. Skormin
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Introduction

Due to the complexity of manufacturing processes, process operation, control, and
optimization constitute difficult tasks. Complexity of a typical manufacturing
process implies incomplete knowledge of its physical nature, a large number of
interrelated input and output process variables, noise in measurement channels,
significant delays and inertia in the particular input—output channels, measurement
inaccessibility of random factors relevant to process operation, and time depen-
dence (drift) of process characteristics. Consequently, process operation is often
based on the experience and intuition of the human operator and exhibits all
problems labeled as “human errors.” This approach does not allow utilization of
existing manufacturing processes to their full potential. Numerically justified opti-
mization and control methods can be implemented only on the basis of mathe-
matical models and computers. This book will present mathematical modeling
techniques and applications of model-based computer control and optimization
methods intended for a practicing engineer.
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Process Control

It is a quantitative world
We bend the properties of matter
We are invincible and bold
In going after bread and butter

We learn in the eternal school
We have an unforgiving teacher
We use a computer as a tool
Discover feature after feature

We use a statistical technique
In space of numerous dimensions
Reveal relations, strong and weak

For the sake of our intentions

We are on an unbiased way
With all the knowledge, strength, and vigor
And shaping mother nature’s clay
Into magnificence of figure

We master rigors of control
Its theory and application
And never use a crystal ball
For our efforts’ validation

We want to minimize the loss
Of time and money being spent
And utilizing the resource
To fullest possible extent

Xvii



Chapter 1
Statistical Methods and Their Applications

In many ways, manufacturing processes are dominated by random phenomena that
have to be characterized in order to describe the processes quantitatively. Random
phenomena are the manifestation of “forces of nature,” measurement errors, noise
in the information channels, etc. Any attempt to characterize random phenomena on
a case-by-case basis is meaningless: random phenomena manifest themselves
differently under the same conditions. However, when a sufficiently large number
of realizations, also known as a population of occurrences, of these phenomena are
observed, one can detect general tendencies pertaining to the entire population.
These general tendencies are the only way to characterize random phenomena.
Statistics is a science that extracts general tendencies present in a large population
of random events. In addition, statistics offers the means for assessing the depend-
ability, or the limits of applicability, of the detected trends.

Random phenomena include random events, random variables, and random
processes.

1.1 Random Events

A random event is an event that may or may not occur as the result of a trial.
Random event is a concept that reflects the qualitative side of random phenomena.
Typically, random events are labeled as A, B, C,... and are characterized by
probability. Probability of a random event A, P[A], is a positive number that does
not exceed 1, i.e. 0 < P[A] < 1. Event A is impossible if P[A] =0; event A is certain
if P[A]=1.

Frequency of a random event A represents the likelihood of the occurrence of
this event as the result of a trial. Unsurprisingly it is defined as the ratioNWAwhere Nis
the total number of trials, and N* is the number of trials where event A has occurred.

© Springer International Publishing Switzerland 2016 1
V.A. Skormin, Introduction to Process Control, Springer Texts
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2 1 Statistical Methods and Their Applications

Probability is perceived as the limit of frequency as the total number of trials
approaches infinity, P[A] = A%im NW‘
—00

Random events A and B constitute a complete group of mutually exclusive events
if P[A]+ P[B] = 1. This implies that any trial will result in the occurrence of only
one of these two events.

In the situation when two events, A and B, can occur as the result of an
experiment, the conditional frequency of event A subject to event B can be defined.
It represents the likelihood of the occurrence of event A as the result of a trial
providing that event B has already occurred in this trial. This is defined as the ratio

NB , where N? is the total number of trials that resulted in the occurrence of event B,
and N8 is the number of trials that resulted in the occurrence of both events, A and B.
Conditional probability of event A subject to event B is viewed as the limit of
conditional frequency as the total number of trials approaches infinity, i.e.

P[A/B] = Lzm 8. Similarly, conditional probability of event B subject to event
Ais deﬁned as P[B/A] = Lzm +. Note that N — ooinevitably leads toN* — oo,

NB — oo, and N4 — o, however NAB < N4 and N8 < NB.

Event C, defined as a simultaneous occurrence of event A and event B, is called
the product of two events, i.e. C =A-B. It can be seen that the probability of event
C is equal to the conditional probability of event A subject to event B times the
probability of event B, i.e. P[C] = P[A/B]P[B]. Indeed, P[A/B]P[B] = Z\%Lrgzolx,i: Lim

N—oo
8 = Lim (N—N—) = Lim %" = PIAB] = P[C]. Similarly, P[C] = P[B/AJP[A] and
therefore P[A/B]P[B] = P[B/A]P[A].
Events A and B are called independent events if P[A/B] = P[A].
Multiplication of Probabilities If A and B are independent events, P[A/B] = P[A],

then the probability of the simultaneous occurrence of two independent events,
A and B, is equal to the product of the probabilities of each event, P[AB] = P[A]-P[B].

Addition of Probabilities 1f events A and B belong to a complete group of inde-
pendent events, i.e. P[A]+ P[B]+ P[C]+ P[D]+...=1, then the probability of
occurrence of event A or event B as the result of a trial is defined as P[A or B] =
P[A] + P[B], and the occurrence of A or B is called the sum of two events.

Bayes’ Theorem 1If events A;, A, and A; constitute a complete group of mutually
exclusive events, i.e. P[A;] + P[A,] + P[A3] =1, and event B is related to A;, A,,
and Aj; via conditional probabilities P[B/A], P[B/A,], P[B/As], then

P[B] = P[B/Ai] - P[A\] + P[B/A] - P[Aa] + P[B/A3] - P[As].

Furthermore, if the number of trials N is very large then



1.1 Random Events 3

NBA[ NA[ NBAZ NA2
P[B/A\] - P[A\] + P[B/Ay] - P[Ay] + P[B/A3] - P[As] ~ —— T
[B/A1] - PlA1] + PB/Ao] - PlAa] + PIB/As] - PlAs] ~ -~ + 5
NBA3 NA3 NBA1 +NBA2 +NBA3

NN T N

where notations are self-explanatory.

Since A; or A, or As always occurs, NP4 4 NBA:  NBAs — NB P[B/A|]-
P[A\] + P[B/As] - P[As] + P[B/As] - P[As] ~ ¥ ~ P[B]

It is known that

P[B/A;] - P|A\] = P[A;/B] - P[B]and
P[B] = P[B/A\] - P[A\] + P[B/As] - P[A2] + P[B/As] - P[As]

This results in a very useful expression known as the Bayes’ formula:

P[B/A,] - P[A]
P[B/A\] - P[Ai] + P[B/A;] - P[A2] + P[B/A;] - P[As]

P[A;/B] =

Example 1.1 Application to quality prediction of the product at a glass manufactur-
ing plant. The database contains 5500 data entries. This includes 879 cases of poor
quality of the product. These 879 cases were exhibited during the following events:
— 136 cases of short-time electrical failure

— 177 cases of poor quality of the raw material

— 83 cases of minor equipment malfunction

The good quality cases include
— 36 cases of short-time electrical failure
— 81 cases of poor quality of the raw material
— 63 cases of minor equipment malfunction

Define the probability of having poor quality of the product if at 10 am a short-
time electrical failure was reported, and later, at 2 pm poor quality of the raw
material was observed.

Solution Assume that event A; — poor quality, event A; —good quality, note that
P[A;]+ P[A>] =1, event B—occurrence of a short-time electrical failure, and
event C — occurrence of poor quality of the raw material.

Based on the available data, the probabilities of getting poor quality product and
good quality product are, P[A;]=879/5500=0.16 and P[A,]=(5500—879)/

5500 = 0.84, respectively. The conditional probability relating an electric failure

to poor product quality is P[B/A;] =¥ iA‘ 25 = .155. The conditional probability

relating an electric failure to good product quality is P[B/A;] = ]X,T 2 =
2

= .008.

36
5500—879
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Now, one can compute the probability of poor quality product subject to the
short-time electrical failure reported at 10 am:

P[B/A] - P[Ai] 155 x .16

= =771
[B/A1] - P[A] + P[B/A3] - P[A;]  .155 x .16 + .008 x .84

P[A,/B] =7

Example 1.2 Identification of the manufacturer of the catalytic converter.

There are 3 possible manufacturers of these converters. Catalytic converters are
used to assure that the factory exhaust gases comply with the EPA requirements.
They are expected to maintain their catalytic properties during 2000 h of operation
with probabilities 0.83 (manufacturer #1), 0.87 (manufacturer #2), and 0.92 (man-
ufacturer #3). It is known that all catalytic converters installed at the factory were
produced by the same manufacturer. One of the converters failed after 1500 h of
operation and the second failed after 1800 h. The manufacturer of the converters is
unknown. What is the probability that manufacturer #3 produced them?

Solution Introduce events M;, M,, and M; representing appropriate manufac-
turers; it can be shown that since the manufacturer is unknown, then P[M;] =
P[M,] = P[M3] =0.3333, therefore, P[M;] + P[M>] 4+ P[M3] = 1. Introduce event
A to represent the failure of a catalyst during the first 2000 h of its operation, then

P[A/M\] =1—-0.83 =0.17
P[A/My] =1—0.87 =0.13
P[A/M3] =1—0.92 = 0.08

Now re-estimate the probability of M;, M, and M; subject to the failure of the
first converter:

P _ P[A/M,] - P[M,]
(M /A] = P[A/M,]- P
1] - P[M\] + P[A/M,] - P[M] + P[A/M;] - P[M3]
B 17 x 3333 e
T 17 x 3333 + .13 x .3333 + .08 x .3333
13 x 3333
P[M,/A] = = 342
[M2/A] 17 x 3333 + .13 x .3333 + .08 x .3333
.08 x .3333
P[M>/A] = x — 211

17 x 3333+ .13 x .3333 4+ .08 x .3333

Re-estimate the probabilities of M;, M,, and M; subject to the failure of the
second converter:

17 x 447
PIM,/A] = — 555
(M /A] 17 x 447 + 13 x 342+ .08 x 211
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13 x 342 2
17 x 447+ 13 x 342+ 08 x 211
08 x 211

P[M;/A] = — 124
[M/A] 17 x 447 + .13 x 342 + .08 x 211 ’

P[M,/A] =

and this is the answer.

It is good to realize that random events M, M,, and M; constitute a full group of
mutually exclusive events and the sum of their probabilities is equal to 1.0 after
each reevaluation of their probabilities.

Example 1.3 Assessment of a student’s expected success based on the previous
performance.

According to departmental records out of 1200 students who took Automatic
Control, 225 got grade A, 511 — grade B, 406 — grade C, 32 — grade D, and 26 —
grade F. It is also known that among these groups the number of students who
received grade B in Signals and Systems are correspondingly 67, 211, 108, 4, and
3. It is known that Sam J. just got a grade of B in Signals and Systems (event B>).
What are his chances of getting grade A, grade B, and grade C in Controls?

Solution First, evaluate initial probabilities of getting various grades in Control:

225 511 406
P[A] = === = 187, P[B] = —— = 426, P[(] = ——=.
A =200 = 187 PIBI= 1550 6. PICI = 1350 = 338
32 26
PID] = 105 = 027, PIF| =55 = 022

Now evaluate the following conditional probabilities:

P[BSS/A] = 26775 =298, P[B*/B] = ?Ti =413, P[B¥/C] = % = .266,

P[BS/D] :;12: 125, P[B%/F] :23—6: 115

The resultant probabilities are as follows:
P[A/BS] =
P[B%S/A] x P[A]
P[B*/A] x P[A] + P[BSS/B] x P[B] + P[B%/C] x P[C] + P[B5 /D] x P[D] + P[B* /F] x P[F]
B 298 x .187
298 x .187 + 413 x .426 4 .266 x .338 + .125 x .027 + .115 x .022

_ 0557 B
"~ .0557 4 .1759 + .0899 + .0034 4 .0025

17
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P[B/BS] =
P[B5S/B] x P[B]
P[B%SJA] x P[A] + P[B% /B] x P[B] + P[B%/C] x P[C] + P[B* /D] x P[D] + P[BSS /F] x P[F]
413 x 426
T 298 x 187 + 413 x 426 + 266 x 338 + 125 x .027 + .115 x .022
1759
T 0557 + 1759 + 0899 + 0034 + .0025

537

P[c/B%]
_ P[B*/C] x P[C]
~ P[B%/A] x P[A] + P[B%S/B] x P[B] + P[B%/C] x PC] + P[B%/D] x P[D] + P[B% /F]| x P[F]
266 x .338
T 298 % 187 + 413 x 426 + 266 x 338 + .125 x .027 + .115 x .022
.0899
T 0557 + .1759 + .0899 + .0034 + .0025

274

1.2 Random Variables

A random variable can have any numerical value, x(k), at each trial, k=1,2,... is
the trial (realization) index. How can the general properties of a random variable be
extracted? Consider an array: x(k), k=1,2,.. .,N.

Detect minimum and maximum values of the variable within the array, Xy and
Xmax- Divide interval [Xyan, Xmax] into M divisions

Define step Dy = Xpvax—Xmw)/M.

Compute the number of realizations within each interval, i.e. number of reali-
zations n; such that Xyyn+(G—1)-Dx <X(K) < Xyvin+j-Dy, j=1,2,.. .M

Compute frequencies fj=n/N, j=1,2,.. .M

Build a histogram showing frequencies fj vs x(k) values like the one shown
below in Fig. 1.1 (it is said that a histogram relates values of a random variable to
the frequency of occurrence of these values).

Then assume that N — oo, M — o0, and D, — 0. It can be seen that the histogram
turns into a continuous line that represents the distribution law of the random
variable x(k), this is called the probability density P(x).

The probability density function can be used to define the probability of random
variable x(k) which satisfies the condition x; < x(k) < x, as follows:

X2 X2 X1

Plx; < x(k) < xo] = JP(x)dx = JP(x)dx - JP(x)dx
Xi 0 0
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. Frequencies

XMIN

Fig. 1.1 Probability distribution function

One can realize that P[—oo < x(k) < o0] = JP(x)dx - J P(x)dx = JP(x)dx—i—
0 0

T P(x)dx = 1.

It is known that there are several “typical” distribution laws, however, the most
common is called normal distribution, which provides the best description of most
random phenomena that can be observed in real life.

Normal Distribution has the following probability density:

(x —n)?

1
P(x) = - =P
(X) o 2n exp{ 262 } (Xa Hs O-)a

where y and o are parameters of the normal distribution law: y — mean value and
o — standard deviation. It is said that the normal distribution law reflects funda-
mental properties of nature. In terms of manufacturing, the standard deviation of
any variable characterizing the product represents effects of “forces of nature” on a
manufacturing process, and the mean value represents effects of operators’ efforts
and adjustment of equipment.

The following is the definition of the probability of a normally distributed
random variable x(k), satisfying the condition x; < x(k) <x,:

X2 X2 Xy

Plx; < x(k) < x;] = JP(X,,u,a)dx = JP(x“u,a)dx - JP(x,y, 0)dx = &(z3) — D(z1)
X1 0 0
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Note that function @(z)is an odd function, i.e. ®(—z) = —®(z). This function is
tabulated and is readily available. One should realize that this function continuously
increases between zero and infinity, as shown below.

<>7J{_}<m>ﬂ{_}

Example 1.4 Evaluation of the effect of the improved automation

It is required to manufacture 300,000 special bolts. The factory’s cost is $0.43
per unit. The allowable length of a bolt is between .194 and .204 inches. When the
existing equipment is used, the length of manufactured bolts has a standard devi-
ation of .003 inches. The introduction of an advanced control results in the
reduction of this standard deviation to .00133 inches. Modification of the controls
costs $5000. Determine if this modification would pay for itself.

Solution Since the length of bolts varies and only the “good” bolts will be
accepted, the total number of manufactured bolts, N, will be greater than 300,000.
Let us determine this number. It is expected that the equipment will be adjusted to
assure the mean value of the length, y=(X;+X5)/2=(.194+ .204)/2=.199
(inches). Now, when u =.199 and ¢ =.003 one can determine the probability of
the length of a bolt to be within the allowable limits, P[x; < X <X,], assuming the
normal distribution law:

71 = (x; —p)/o = (.194 — .199)/.003 = —1.67 and
2 = (2 — )/ = (204 — .199)/.003 = 1.67

Therefore, Plx; <x<x,]=2x @(1.67). According to the table below in
Fig. 1.2, P[x; <x<x3] =2 x.4525=.905. This result indicates that in order to
manufacture 300,000 “good” bolts, a total of 300,000/.905 = 331,492 units must be
produced.

Now let us repeat this calculation assuming the improved accuracy of the
equipment (or reduced standard deviation, ¢ =.00133):
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Standard Normal Distribution Table

z | 00 [ .01 [ 02 ] .03 ] .04 ] 05[] 06 [ .07 08 .09 ]|

0.0 | .0000 | .0040 | .0080 | .0120 | .0160 | .0199 | .0239 | .0279 | .0319 | .0359
0.1 | .0398 | .0438 | .0478 | .0517 | .0557 | .0596 | .0636 | .0675 | .0714 | .0753
0.2 | .0793 | .0832 | .0871 | .0910 | .0948 | .0987 | .1026 | .1064 | .1103 | .1141
0.3 | .1179 | L1217 | 1255 | .1293 | .1331 | .1368 | .1406 | .1443 | .1480 | .1517
0.4 | .1554 | .1591 | .1628 | .1664 | .1700 | .1736 | .1772 | .1808 | .1844 | .1879
0.5 .1915 | .1950 | .1985 | .2019 | .2054 | .2088 | .2123 | .2157 | .2190 | .2224
0.6 | .2257 | .2291 | .2324 | .2357 | .2389 | .2422 | .2454 | .2486 | .2517 | .2549
0.7 | .2580 | .2611 | .2642 | .2673 | .2704 | .2734 | 2764 | .2794 | .2823 | .2852
0.8 | .2881 | .2910 | .2939 | .2967 | .2995 | .3023 | .3051 | .3078 | .3106 | .3133
0.9 | .3159 | .3186 | .3212 | .3238 | .3264 | .3280 | .3315 | .3340 | .3365 | .3389
1.0 | .3413 | 3438 | .3461 | .3485 | .3508 | .3531 | .3554 | .3577 | .3599 | .3621
1.1 | .3643 | .3665 | .3686 | .3708 | .3729 | .3749 | .3770 | .3790 | .3810 | .3830
1.2 | .3849 | .3869 | .3888 | .3907 | .3925 | .3944 | .3962 | .3980 | .3997 | .4015
1.3 | 4032 | 4049 | 4066 | 4082 | 4099 | 4115 | 4131 | 4147 | 4162 | 4177
1.4 | 4192 | 4207 | 4222 | 4236 | 4251 | 4265 | 4279 | 4292 | 4306 | .4319
1.5 | 4332 | 4345 | 4357 | 4370 | 4382 | 4394 | 44006 | 4418 | 4429 | 4441
1.6 | 4452 | 4463 | 4474 | 4484 | 4495 | 4505 | 4515 | 4525 | 4535 | 4545
1.7 | 4554 | 4564 | 4573 | 4582 | 4591 | 4599 | 4608 | 4616 | .4625 | .4633
1.8 | 4641 | 4649 | 40656 | 4664 | 4671 | 4678 | 4686 | 4693 | .4699 | .4706
1.9 | 4713 | 4719 | 4726 | 4732 | 4738 | 4744 | 4750 | 4756 | 4761 | 4767
2.0 | 4772 | 4778 | 4783 | 4788 | 4793 | .4798 | 4803 | .4808 | 4812 | 4817
2.1 | 4821 | 4826 | 4830 | 4834 | 4838 | 4842 | 4846 | 4850 | 4854 | 4857
2.2 | 4861 | 4804 | 4868 | 4871 | 4875 | .4878 | 4881 | .4884 | 4887 | .4890
2.3 | 4893 | 4806 | 4898 | 4901 | .4904 | 4906 | .4909 | 4911 | 4913 | 4916
2.4 | 4918 | 4920 | 4922 | 4925 | 4927 | .4920 | 4931 | 4932 | 4934 | .4936
2.5 | 4938 | 4940 | 4941 | 4943 | 4945 | 4946 | 4948 | 4949 | 495] | 4952
2.6 | 4953 | 4955 | 4956 | 4957 | 4959 | 4960 | 4961 | 4962 | .4963 | .4964
2.7 | 4965 | 4966 | 4967 | 4968 | .4969 | .4970 | 4971 | 4972 | 4973 | 4974
2.8 | 4974 | 4975 | 4976 | 4977 | 4977 | 4978 | 4979 | 4979 | 4980 | .4981
2.9 | 4981 | 4982 | 4982 | 4983 | 4984 | .4984 | 4985 | 4985 | .4986 | .49806
3.0 | 4987 | 4987 | 4987 | 4988 | 4988 | .4980 | 4989 | 49890 | .4990 | .4990
3.1 | 4990 | 4991 | 4991 | .4991 | 4992 | .4992 | 4992 | .4992 | 4993 | .4993
3.2 | 4993 | 4993 | 4994 | 4994 | 4994 | .4994 | 4994 | 4995 | .4995 | .4995
3.3 | 4995 | 4995 | 4995 | 4996 | .4996 | .4996 | .4996 | .4996 | .4996 | .4997
3.4 | 4997 | 4997 | 4997 | 4997 | 4997 | .4997 | 4997 | 4997 | 4997 | .4998
3.5 | 4998 | 4998 | 4998 | 4998 | 4998 | .4998 | 4998 | .4998 | 4998 | .4998

Gillles Carelais. Typeset with BEIEX on Apeil 20, 2006,

Fig. 1.2 Standard normal distribution table. http://unimasr.net/community/viewtopic.php?
f=1791&t=82994


http://unimasr.net/community/viewtopic.php?f=1791&t=82994
http://unimasr.net/community/viewtopic.php?f=1791&t=82994
http://unimasr.net/community/viewtopic.php?f=1791&t=82994
http://unimasr.net/community/viewtopic.php?f=1791&t=82994
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21 =(.194—.199)/.00133 = —3.76 and z, = 3.76, and ®(3.76) ~ .4998, therefore,
Plx; <x<x,] =.9996. This indicates that the total of 300,000/.9996 = 300,121
units must be produced, thus the effective savings of automation is $.43 x
(331,492—-300,121) = $13,489.53.

The conclusion is obvious: the modification of controls is well justified.

Estimation of Mean and Variance The mean value of a random variable is esti-
N

1 . . .
mated as My = N Z x(k). In some instances it is often said that M, = M,(N) to
k=1
emphasize that My is dependent on the number of realizations of the random
variable that were used for the estimation. It is known that as N — co M, (N) — u,
where yu is the appropriate parameter of the distribution law.

The variance and standard deviation of a random variable are estimated as
1 N
Vi = N_1 [X(k) — Mx]z, and Sy = v/ Vx. Again, it is often said that V,=
T k=l
V,(N) and S, = S,(N) to emphasize that these estimates are dependent on the number
of realizations of the random variable used for the estimation. It is known that as
N — 0o Sy(N) — o, where o is the appropriate parameter of the distribution law.

Recursive Estimation is common in the situations when characteristics of a random
variable are calculated on-line. It is done to incorporate as many realizations, x(k),
as possible in the estimation without the penalty of storing an ever-increasing data
array. The following formulae are applied:

MyIN] = MN — 1] 4 2 [x(N) — MN — 1]
ViIN] = VAN = 1] () — My (N) = Vo N~ 1], and 8,N = VN

The above expressions could be easily derived. Indeed,

1 N 1 N-—1 1 N-—1 N-1
M,|N] :N;x(k) = [N+ 2 x(k) :ﬁx(N)—kmk:l x(k)
1 N-1
:NX(N)"FTM)((N_ 1)
Finally, My[N] = My[N — 1] + % [X(N) — My(N — 1)]

Similar derivations could result in the formula for the estimation of variance.

Confidence Intervals for Mean Values and Variances One should realize that as
with any statistical estimate, estimates of mean value and standard deviation
extracted from N observations of random variable x(k) are different from
corresponding parameters of the distribution law. How is the discrepancy between
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the “true” and the estimated characteristics estimated? It is known that the estima-
tion error is a random variable with its own statistical distribution. It is also known
that estimation according to the above formulae results in unbiased estimates,
i.e. the mean value of the estimation error is zero. The knowledge of the distribution
law results in the following expression for the confidence interval for the mean
value:

P{M(N) —AM(N,a) < u < My(N) +AM(N,a)} = 1 — 2a

Sx(N)
VN

where AM(N, a) = t(N, a)

The notations are,

M,(N) and S (N) are mean value and standard deviation estimated using
N observations,

1 =M,(c0) is the “true” mean value,

AM(N,a) is the width of the confidence interval that depends on the number of
observations N and the significance level a,

t(V, a) is the t-distribution or Student distribution (named after the statistician
who viewed himself as an eternal student). The t-distribution is tabulated and
defined as a function of significance level @ and number of degrees of freedom
equal to N. Figure 1.3 is a table with values of t(V, @) for various N and a.

The above expression claims that the probability that the “true” mean value
belongs to the interval [My(N) £ AM(N, a)] is equal to 1-2a.
The confidence interval for the standard deviation is:

P{Sx(N) —A5(N,a) <6 < Sx(N) +A5(N,a)} =1 — 2a
Sy (N

~—

where AS(N, a) = t(N — 1,q)

)

The notations are,

M;(N) and Sy(N) are mean value and standard deviation estimated using
N observations,

o = S,(00) is the “true” standard deviation,

AS(N, a) is width of the confidence interval that depends on the number of
observations N and the significance level a.

t(N—1, a) is the t-distribution or Student distribution.

Tabulated Students t-Distribution Law The above expression establishes that the
probability that the “true” standard deviation value belongs to the interval
[Sx(N) + AS(N, )] is equal to 1—2a.

The analysis of the formulae for confidence intervals and the knowledge of
properties of t-distribution indicate that the confidence interval widens as standard
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«
v 40 25 .10 .05 025 .01 005 0025 001 0005

325 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62
289 816 1.886 2.920 4.303 6.965 9.925 14.089 23.326 31.598

1

2
3 277 765 1.638 2.353 3.182 4.541 5.841 7.453 10.213 12.924
4 27 41 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8610
5 267 27 1.476 2,015 2,571 3.365 4.032 4.773 5.803 6.869
6 265 718 1.440 1.943 2.447 3.143 3707 4317 5.208 5959
7 263 11 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5408
8 262 706 1.397 1.860 2.306 2.896 3.355 2.833 4.504 5.041
9 .261 03 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781
10 260 700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 260 697 1.363 1.796 2.201 2718 3.106 3.497 4.025 4437
12 259 695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4318
13 259 694 1.350 1771 2.160 2.650 3.012 3.372 3.852 4221
14 258 692 1.345 1.761 2145 2.624 2977 3.326 3.787 4.140
15 258 691 1.341 1.753 213 2.602 2.947 3.286 3.733 4.073
16 258 690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 257 689 1.333 1.740 2.110 2.567 2.898 322 3.646 3.965
18 257 688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 257 688 1.328 1.729 2.093 2.539 2.861 3174 3.579 3.883
20 257 687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 257 686 1.323 1.721 2.080 2518 2.831 3.135 3.527 3819
22 256 686 1.321 1.717 2.074 2.508 2.819 3119 3.505 3.792
23 256 685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 2.767
24 256 B85 1.318 .71 2.064 2.492 2.797 3.09 3467 3745
25 256 684 1.316 1.708 2.060 2.485 2.787 8.078 3.450 3.725
26 256 684 1.315 1.706 2.056 2.479 2779 3.067 3435 3907
27 256 684 1.314 1.703 2.052 2473 2771 3.057 3421 3.690
28 256 683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 2.674
29 256 683 1.311 1.699 2.045 2.462 2,756 3.308 3.396 3659
30 256 683 1.310 1.697 2.042 2457 2.750 3.030 3.385 3.646
40 255 681 1.303 1.648 2.021 2423 2.704 2,971 3.307 3.551
60 254 679 1.296 1.671 2,000 2.390 2.660 2915 3.232 3460
120 254 677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3373
oo 253 674 1.282 1.645 1.960 2.326 2576 2.807 3.090 3291

Source: Adapted with pennission from Biometrika Tables for Statisticians, Vol. 1, 3rd ed., 1966, by E. 8. Pearson and H. O.
Hartley, Cambridge University Press, Cambridge.

Fig. 1.3 t-Distribution table. https://www.safaribooksonline.com/library/view/introduction-to-lin
ear/9780470542811/22_app-a.html

deviation S, increases and/or number of observations N decreases, or the required
degree of certainty P = 1—2a increases. It can be seen that in order to increase the
estimation accuracy without the sacrifice of certainty (or reliability of the estima-
tion) one has only one approach: increasing the number of observations.

Example 1.5 Mean value and standard deviation of a random variable estimated
using 43 measurements are: M,(43) = 13.6 and S,(43) = 3.2; define the confidence
intervals for these values with the confidence of 95 % and the confidence of 99 %,
i.e. define the intervals that would contain the “true” values of these parameters
with probability of .95 and with probability of .99.

These confidence probabilities correspond to significance levels of
a;=(1-.95)/2=.025 and a,=(1—-.99)/2=.005. From the table in Fig. 1.3,
t(43,.025) ~ t(40,.025) = 2.021, t(43,.005) ~ t(40,.005) ~ 2.704.


https://www.safaribooksonline.com/library/view/introduction-to-linear/9780470542811/22_app-a.html
https://www.safaribooksonline.com/library/view/introduction-to-linear/9780470542811/22_app-a.html
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Therefore,
2,021 x 3.2 2.021 x 3.2
P{l3.6 X <136+ 7x} — P{12.61 < 4 < 1459} = .95 and
V43 V43
2.021 x 3.2 2,021 x 3.2
P32 Bt 3 2 X0 ps <5 <39) = 95
{ Vaxa T \/2><43} 2550539
Also,
2704 x 3.2 2704 x 3.2
P{13.6 SR <136 +4X} = P{12.28 < 4 < 1492} = .99 and
V43 V43
2704 x 3.2 2704 x 3.2
P{3.2 _2TM X323, +M} —P{227 <o <413} = .99
V2 % 43 V2 % 43

Example 1.6 How many measurements of the iron ore density (Lb/cm?) should be
performed to achieve the accuracy of the result of at least .01 (Lb/cm®) with the
confidence of 95 %? Note that this analysis is performed by averaging results of
particular measurements and should be viewed as the estimation of the mean value
of a random variable, consequently, the estimation error for 95 % confidence is,

Sx(N)
VN

It could be seen that finding the solution requires the knowledge of S, that could
be obtained by an auxiliary experiment. Assume that standard deviation of the
analysis error was defined by conducting 25 experiments, S;(25) = 0.037. Now the
following computations must be performed:

AMM(N, a) = AM(N,.025) = t(N,.025)

= .01 (abs. units)

Sx(25) 50 037 _ 07622 07622 o oo

VN VN VN 01

It could be seen that the expected solution implies 58 measurements, therefore
t-distribution t(58,.025) =2.0 should be utilized in the above calculation.
Therefore,

t(25,.025)

S.(25 037 074 074
1(60, .025) éﬁ) :2'0W:W:'01 = O—I:JN = N=355

Exercise 1.1

Problem 1 According to the manufacturer, the probability of failure of a machine
tool during its first 1000 h of operation is .083. The available statistics feature
56 cases of the machine tool failure during the first 1000 h of operation. In 16 out of
these 56 cases, prior to the failure excessive vibration of the machine tool was
observed, and in 7 cases overheating took place. Reassess the probability of failure
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of the machine tool during the first 1000 h of its operation knowing that excessive
vibration has been observed once. Reassess this probability for the same machine
tool based on the occurrence of temporary overheating. Note that under normal
operational conditions the probability of overheating is .1 and the probability of
excessive vibration is .05.

Problem 2 Consider Example 1.1 of the class notes. Define the probability of
having poor quality of the product if at 10 am a short-time electrical failure was
reported, at 2 pm poor quality of the raw material was observed, and later at 4 pm a
minor equipment malfunction took place.

Problem 3 During the automatic assembly process, an electronic component must
be placed on the board with the accuracy of .001 inches, otherwise the board will
be rejected by the quality controller. Under the existing technology positioning
accuracy is characterized by the standard deviation of the positioning error,
0 =.0009 inches. The improved controls may result in the reduction of the posi-
tioning error to o =.0003 inches. Evaluate the productivity increase in % due to
improved controls. (Assume normal distribution.)

Problem 4 According to a conducted study, an average student needs 2.5 min to
read one page of the class notes with the standard deviation ¢ = 0.6 min. How much
time is required for 90 % of students to read one page?

Problem 5 The findings given in the previous problem are based on the test
conducted on 17 students. (a) Evaluate the confidence interval for the mean value
and standard deviation featured in the problem. (b) How many students should be
tested to double the accuracy of the estimation of the mean value? (c) How many
students should be tested to double the accuracy of the estimation of the standard
deviation? Perform these calculations twice: for 95 % confidence and 90 % confidence.

1.3 Systems of Random Variables

Consider a group of 3 random variables, x(i), y(i), z(i), i=1,2,...,N, where
i=1,2,...,N is the realization index. How can the general properties of this group
of 3 random variables be extracted?

1. Find their Min and Max values: [XMIN’ XMAX]’ [YMIN’ YMAX]’ [ZMIN’ ZMAX]

2. Divide the above intervals into L subintervals, thus resulting in three steps,
Ax = [Xmin—Xmaxl/L, Ay = [Ymin—Ymax]/L, and Az = [Zyin—Zmax]/L

3. Compute numbers Ny, equal to the number of realizations [x(i), y(i), z(i)] such
that
Xmin + (K=1)Ax <x(1) < Xmin + KAy,
Ymin+(J—=DAy <y(i) < Ymin +JAy,
Zyn + M= Az <z2(1) < Zyn +MAZ
forevery K, J,M=1,2,3,...,L
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4. Compute frequencies Fiyy=Ngmw/N, K, J, M=1,23,.. L of the multi-
dimensional histogram

5. Assume N — 0o, Ny — 00, Ax — 0, Ay — 0, Az — 0, then the histogram turns
into a 3-dimensional probability density function, F(X,y,z,fypty.l-,0.,0y.02,1 xy,
I'xzl'yz), representing the distribution law, where

Hysfty, 4> and oy, 0y, 0, are mean values and standard deviations of the respective
variables representing their individual distribution laws,

Ixy, Yxz, T'yz are parameters known as correlation coefficients representing
interrelation between individual variables.

In the most practical applications we are dealing with the normal
distribution law.

Correlation Coefficients rxy, xz, 'yz could be estimated according to the formula
that defines what is known as a normalized correlation coefficient

1 SN ,
= mz [x(i) — Mx] - [y(i) — My]

i=1

rxy = rxy(N)

where My, My, Sx, Sy are estimates of mean values and standard deviations of
particular variables. Note, that the normalized correlation coefficient does not
exceed 1, by its absolute value, i.e. —1 <ryxy < 1. It represents the extent of the
linear relationship between random variables x and y, not a functional relationship,
but a tendency, i.e. the relationship that may or may not manifest itself at any
particular test but could be observed on a large number of tests.

Note that
Rxy = Rxy(N) = = [x(i) = Mx] - [y(i) — My]
i=1

— this is just a correlation coefficient (not normalized)

Confidence Interval for Correlation Coefficients The following expression defines
the interval that with a particular probability that contains the “true” value of the
correlation coefficient:

Plrxy — A% (a,N) < rxy™VE <ryy +4%(a,N)] =1 - 2a

1— 2
where AR (a,N) = t(a,N — 1)$ and

VN

t(a, N—1) is t-distribution value defined for significance level a and number of
degrees of freedom N—1.
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It is said that the estimate of correlation coefficient is statistically significant if
Irxy| > AR (@, N). Indeed, the correlation coefficient could be only positive or only
negative therefore the confidence interval of a statistically-significant normalized
correlation coefficient cannot include both positive and negative values.

Example 1.7 Estimated correlation coefficient between the MPG value of Nissan
Pathfinder and outdoor temperature was obtained using 20 available records,
r=0.12. Does this indicate that the correlation between these two random variables
exists?

Assume significance level a =.025, then t(.025, 19) =2.093, then

D =2.093-[1 — .0144] /4.47 = 0.46

0.46 > 0.12, therefore, with 95 % confidence the r value is statistically insignificant.

Conditional Distributions Consider a group of 2 random variables, x(i) and y(i),
i=1,2,... N, wherei=1,2,.. N is the realization index. Let us investigate if there
is a trend-type dependence of random variable y(i) on random variable x(i)

1. Find Min and Max values of these variables: [Xyn, Xmax]), [Yvmns Yvax]
2. Divide the above intervals into L subintervals, thus resulting in steps,

Ax = [Xymin — Xmax]/L and Ay = [Ymin — Ymax]/L

3. From the original array x(i), y(i), i=1,2,...,N, select only the realizations
[x(1), ¥(1)] such that

Xuin + (K= 1)Ax <x(i) < Xmiv + KAx,

Assume that the total number of such realizations is N

4. Obtain histogram for random variable y(i) from the above array of N
observations by

4a. Computing number of realizations, Ny such that

YMIN + (M — I)AY < y(l) < YMIN +MAY

for every M =1,2,3,....L

4b. Compute frequencies F MK :NMK/NK, M=123,....L of the multi-
dimensional histogram

(Note that the above histograms in Fig. 1.4 for variable y(i) are built only
for those values y(i) when corresponding x(i) values fall within interval
[Xan + (K—=1)Ax, <Xy +KAx])

5. Assume N — oo, Ng — 00, NMK — 00, Ax — 0, Ay — 0, then the histogram
turns into a 1-dimensional probability density function, P(y,uy,0y), representing the
distribution law of variable y(i) obtained under the assumption that corresponding
values of x(i) satisfy some particular conditions, i.e. P(y,uy,0y) = P(y,uy,0y/X) is a
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P(y,ly,0v/X3)
J X
P(y,ly,0v/X5) X3 M3 > y/x=xs
o > y/X=X,
P(y,ly,0v/X,)
T - yh=x

Fig. 1.4 Probability distributions of y for various x

probability density representing the distribution law of random variable y subject to
variable x. This concept is illustrated by the above Fig. 1.4, note that both the mean
value and variance (the spread of the distribution curve) of variable y change
subject to numerical values of the related variable x.

One could expect that P(y,uy,0y) = P(y,uy,oy/x) is a normal distribution, its
dependence on x manifests itself as the dependence of its parameters, yy and oy,
i.e. uy = py (x) and oy = oy(x). These relationships are known as “conditional mean
value” and “conditional standard deviation.” In reality, standard deviation seldom
depends on other variables, but the conditional mean value has a very important
role.

Example 1.8 Given three arrays of observations of two random variables, x(i) and y(i),
i=1,2,3,... Based on the value of variable x(i) the observations are divided into three
groups, and mean values and standard deviations of the corresponding values of
variable y(i), i.e. My and Sy, are calculated within these groups, see the table below:

Number of Mean Standard
X-range observations value My deviation Sy
Group 1 5.0<x(1)<7.0 375 10.25 1.73
Group 2 7.0 <x(i) <9.0 633 10.67 1.82
Group 3 9.0<x(i) <11.0 592 10.91 1.91

Determine if this information indicates that variable y(i) depends on variable x(i).

Solution It could be concluded that variable y(i) depends on variable x(i) if the
differences between mean values My and/or standard deviation values Sy in
particular groups are statistically significant, i.e. exceed the half-width of the
corresponding confidence intervals.
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Assume the significance level a =.025 then t-distribution is t(co, .025) = 1.96.
The relevant quantities are as follows:

AM(N,a) = t(N, a) $(N) AS(N,a) = t(N,a) $(N)
VN V2N
Group 1 | 0.175 124
Group 2 |0.142 .1
Group 3 |0.154 .109

The analysis of the above result indicates that the differences between mean
values,
Group 1/Group 2

A =10.76 — 10.25 = 42 > 175

and Group 2/Group 3

A3 =1091 —10.67 = .24 > 142

exceed the half-widths of the appropriate confidence intervals and therefore are
statistically significant with the significance level of .025. At the same time,
differences between standard deviations, Group 1/Group 2

612 =173-1.82=.09 <.124

and Group 2/Group 3

03 =191 -1.82=.09 <.10

are less than the half-widths of the confidence intervals and therefore are statisti-
cally insignificant with the significance level of .025. This finding should be
summarized as follows: with probability 95 % the mean value of variable y is
affected by variable x, however there is no evidence that standard deviation of
variable y depends on the value of variable x.

Regression Equation How to quantify the existing trend-type relationship between
variables y and x? Unlike a functional relationship, for any value x = x(i) a partic-
ular value of variable y = y(i) is defined through a function y = ¢(x). A trend does
not imply that for any x(i) a specific y(i) is prescribed. However, a trend manifests
itself by a functional relationship between value x(i) and the mean values uy of the
random variable y(i)corresponding to this x(i), i.e. uy = @(x). This is known as a
regression equation. There is another way to define a regression equation: y = E{y/x}
which is the conditional mean value of y subject to x.E{.../...} is a symbol of
conditional mathematical expectation. A regression equation does allow computation
of the mean value of random variable y for any particular value x(i), but what about
the specific value y(i) that will be observed in conjunction with x(i)? It should
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be clear that y(i) will be different from E{y/x(i)} and the expected difference
depends on the variability of y represented by its variance, ov>, that may or may
not depend on x(i). Unlike correlation, regression is suitable for nonlinear
relationships.

A trend-type relationship may exist between random variable y and a number of
random variables, x;, X, X3,. . ., X,, in the sense that the mean value of y could be
expressed as a function of these variables, yy = ¢(x;, X2, X3,. . ., X,,). In this case we
are dealing with a multiple regression equation.

Regression equations are commonly used as mathematical models of
manufacturing processes; therefore, development of such equations will be
presented in the next chapter.

Correlation Analysis Correlation analysis is the analysis of stochastic (trend-type)
linear relationships between random variables x;, x5, X3, . . ., x,,. It includes:

Computation of the correlation coefficient for every combination of two
variables,

1 N
rj = mk; [xi(k) — Mi] - [xj(k) — M}]

Computation of the correlation matrix,

I T2 ... TIqp
21 I ... Ipp
I'ni T'n2 ... TIpyp

Computation of the multiple correlation coefficient,

ryp T2 I3 Iy
Ty Ipp T3 Ip
Det 4
I3p I3y I33 I3y
Tyt Tyz TIyz Tyy

Ry x50, = Note that 0 <Ry 4 5, <1

ryp Iy I3
Det |1y 120 123
r3; I3 I33

Where 7 and r;—are normalized correlation coefficients between variables x; and
X and between x; and y.
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1.4 Random Processes

A random process could be viewed as a continuous function of time y = y(¢) that at
any particular moment of time, #*, has a random value, i.e. y* = y(#*) is a random
variable characterized by its specific distribution law. Recording a random process
over some period of time would result in a graph as the one shown below in Fig. 1.5.
It is said that the graph features a realization of the random process y(t).

However the same random process repeatedly initiated under the same condi-
tions would result in many different realizations that in combination constitute an
ensemble, see below in Fig. 1.6.

The broken line in Fig. 1.6, representing time #=1t*, is known as the cross-
section of the random process y(¢). It could be seen that in the cross-section multiple
realizations form a combination of numerical values of random variables, i.e. when
the time argument is fixed, y(#*) is a random variable with all previously described
properties and characteristics.

Due to the proliferation of computers, we should expect to deal with discretized
random processes represented by a sequence of random variables attached to the

y(t)

—

N

Y

Fig. 1.5 Random process performance over time

t=t*
X y(®)

N T

Fig. 1.6 Multiple iterations of random process
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time axis, y(At), y(2- At), ..., y(i- At), ..., y(N - At), or just y(1), y(2), ..., y(d), ...,
y(N), where i=1,2,.. .,N is the discrete-time index, At is the time step, and NAt is
the entire period of observation. It should be emphasized that “attached to the time
axis” is the key to distinguishing between a random variable and a random process.
While sequencing of the observations of a random variable is not important, the
“natural” sequencing of numbers representing a random process is crucial for the
analysis of the phenomenon represented by this random process.

A discretized ensemble of the realizations of a random process could be
represented by a square table, where rows represent particular realizations and
columns represent particular cross-sections (discrete-time values):

Discrete-time values
Realization index t=At t=2-At t=3-At t=i-At t=N-At
1 y(1,1) y(1,2) y(1,3) s |y --|y(LN)
2 yah  [ye2)  |yed) oy . yen)
J yG, ¥(,2) ¥(.3) —yGD o |YGN)
M yM,1) | y(M.2) y(M,3) <y - |yM,N)

The approach to analyzing statistical properties of a random process is similar to
the one suggested for a random variable: first a histogram is built provided that
N>1 and M>1 and eventually a distribution law is established. However,
immediate questions arise:

1. Should this distribution law be established for a realization of the process (one of
the rows of the table) or for a cross-section (one of the columns of the table)?

2. Is it necessary to establish an individual distribution law for every cross-section
(column) of the process?

Answers to these questions reflect fundamental properties of the random
process:

1. A random process is called ergodic if a distribution law established for one of its
realizations is identical to the one established for its cross-section. Otherwise the
process is said to be non-ergodic.

2. A random process is called stationary if a distribution law established for a
cross-section is independent of the cross-section. This implies that statistical
characteristics of the process are time-invariant. Otherwise it is said that the
process is non-stationary or has a parameter drift.

3. Any ergodic process is stationary, but not every stationary process is ergodic.

Most realistic random processes are ergodic and the normal distribution law is
suitable for their description. It is also known that most non-stationary random
processes are non-stationary only in terms of the mean value, i.e. u = u(t), but their
standard deviation ¢ is constant.
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A random process may involve one or more variables. A multi-variable distri-
bution law characterizes a multi-variable random process.

Autocorrelation Function Consider two cross-sections of a random process sepa-
rated by time interval 7, i.e. y(t;) and y(t; + 7). It is known that y(t,) and y(t; + 7) are
two random variables that may or may not be correlated. It is clear that when 7 =0,
y(t; + 7) simply repeats y(t;) and y(t; + ) = y(t;) is just a linear functional relation-
ship between these two random variables. Intuitively, due to variability of the
random process the resemblance between y(t; +7) and y(t;) decreases with the
increase of time interval z. Consequently, correlation between these two random
variables is expected to exist, to be positive, to decrease with the increase of z, and
to approach zero as 7— oo. The rate of decrease of this correlation represents
important properties, primarily inertia, of the underlying physical phenomena. An
autocorrelation function is a numerical tool for the analysis of the correlation
between any two cross sections of a random process, y(t) and y(t 4 7). It is defined
as a function of time interval 7, represented by the integer number n, and is
estimated as follows:

1

rr(e) = rv(n) = g 2 D) = My] G+ ) = My,

n=0,1,2,...,n% n*<N

where

y(i) is a discrete-time value of the available realization of the random process,

My and S,” are estimated mean value and variance of the random process y(7),

n=t/At is the time shift representing interval 7 by an integer number of time steps
At,

N> 1 is the total number of data points of the realization of the random process.

One should realize the particular values ry(n), n=0,1,2,... are nothing but
normalized correlation coefficients and, as such, could be statistically significant
or insignificant. Recall that the significance condition of a correlation coefficient

ry(n) estimated using N-n data points is defined as |ry(n)| > A® where A® = ¢
(a,N —n) % is the width of the confidence interval of the estimate and #(N-n,
a) is the t-distribution value defined for significance level o and the number of
degrees of freedom N-n. It could be seen that AR = A%(n) and analysis of the above
formula indicates that this is an increasing function of n.

Figure 1.7 depicts an estimated autocorrelation function of a random process y(#)
and the width of the confidence intervals of its values obtained for N >> 1.

It could be seen that the estimated correlation function is statistically significant
only for n < n“°%R. Time interval t°%R = At- n““RR is known as the correlation
time of the random process y(t) and sometimes is called the memory of this process.
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Fig. 1.7 Random function b
autocorrelation 1 —

ry(n)

A¥(n)

1
n(,()RR

Note that the number of values of the correlation function that are being
calculated is n* ~N/4. However, it is meaningless to go beyond the limit of
significance n“ORR,

Example 1.9 A computer-based monitoring system for an industrial power gener-
ator is being designed. The system will monitor generator variables, submit them
for analysis and record data in a permanent database. Determine the required time
interval for analyzing and recording data if the following autocorrelation function
of one of the variables is available.

n 0 1 2 3 4 5 6 7 8 9 10
rx(n) 1.0 .95 .81 .61 .23 .09 .03 .01 .006 .008 .007

Note that this correlation function was obtained using 1000 data points taken
with the time step At=60 s.

Solution First, let us determine the correlation time n“°%® by establishing the half-

width of the confidence interval for every available value of the correlation function

) 17}”}/(}’[)2
VN—n

using the formula AR =t(a,N —n and assuming a=.025. Note that

according to the t-distribution table, the t-distribution value stays the same, #(co,
0.025) = 1.98, for all points. The results are shown in the table below.

n 0 1 2 3 4 5 6 7 8 9 10
rx(n) | 1.0 |.95 .81 .61 23 .09 .03 .01 .006 .008 .007
AR 0. .001 |.003 |.006 |.010 |.0103 |.0105 |.011 |.0108 |.0109 |.011

It could be easily seen that at n =7, rx(n) ~ AR and at n>7 rx(n) < AR thus
n“°fR =7 and the correlation time for this process is 7 min. Consequently, the
7 min period should be recommended as a rational time period for analyzing and
recording generator data. Indeed, having this time period under 7 min would result
in analyzing and recording data that contains duplicating information. Having this
time period greater than 7 min implies that some valuable information could be lost.

Cross-Correlation Function Cross-correlation function works exactly as the auto-
correlation function, but it describes the correlation between two random processes
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(or two components of a multivariable random process), say x(#) and y(¢). In order to
simplify the entire discussion of cross-correlation functions let us assume that
process x(f) could be viewed as the input (stimuli) of some physical process, and
y(t) as its response.

Cross-correlation function is estimated as follows:

1 N—n ) .
rxy(n) :m;[x(l) = My] - [y(i+n) —Myl,n=0,1,2, ...,n%n <N

where

x(i) and y(i) are discrete-time values of the available realizations of the random
processes,

My, My and Sy, Sy are estimated mean values and standard deviations of the random
processes x(f) and y(?),

7 is the time distance between the cross-section of the process x(#) and the cross-
section of the process y(),

n=7/At is the time interval 7 represented by an integer number of time steps At,
and

N> 1 is the total number of data points of the realization of the random processes
x(t) and y(t).

Since particular values ryy(n), n=0,1,2,. .. are nothing but normalized correla-
tion coefficients they could be statistically significant or insignificant. The signif-
icance condition of an estimate rxy(n) is defined as |ryy(n)| > AR where AR =

t(a, N — n)% is the width of the confidence interval of the estimate and

t(N—n, a) is t-distribution value defined for significance level a and the number
of degrees of freedom N-n.

Note that unlike auto-correlation function, cross-correlation function could be
positive and negative but its absolute value cannot exceed 1.0. Typical configura-
tions of cross-correlation functions and widths of the confidence intervals of their
values, estimated for N > 1, are shown below in Fig. 1.8.

14 AMAX nCORR
O L I » N
AR(n) A
¥ Iyy(n)
0 -

T n
nMAX nCORR -1

Fig. 1.8 Cross-correlation functions and confidence intervals
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In addition to the limits beyond which estimated cross-correlation functions
become statistically insignificant, n°%R, a graph of a cross-correlation function
has the maximum correlation point, n™**, Maximum correlation point indicates
that the stimuli, x(f), has maximum effect on the response, y(f), not immediately but
with some delay of MAX — AL MAX therefore, T™AX facilitates the assessment of
the delay (transport lag) and/or inertia of the physical phenomenon represented by
random processes x(#)and y(¢). Indeed, auto- and cross-correlation functions present
a technique to investigate and represent dynamics of an inertial system, how-

ever, they are not as versatile as transfer functions.

Example 1.10 A special study is conducted to determine the effect of carbon
dioxide on a process taking place in a chemical reactor. During this study, the
flow of carbon dioxide injected in the reactor (f00t3/s) and the percent of sulfur in
the continuous flow of the end product were monitored with the sampling period of
20 s. A cross-correlation function between two resultant variables, the flow of
carbon dioxide (treated as the stimuli) and the percent of sulfur (as the response)
was obtained using 100 measurements, see table below.

n 0 |1 2 3 4 5 6 7 8 9 |10
ey .08 | =015 |—.007 |—.13 [=23 [—52 [=28 [-019 [—o011 .06 [.07

Give your conclusions on the carbon dioxide/percent of sulfur interaction on the
basis of the available cross-correlation function.

Solution Let us investigate the statistical significance of the particular values of
the cross-correlation function by computing their respective half-widths of the

l—r)(y(n)2

—n

confidence intervals AR = t(a,N — n) and assuming a=.025. As in the

previous example, #(120,.025) could be utilized. The results are as follows,

n 0 1 2 3 4 5 6 7 8 9 10
rxy(n) |.08 |-.015 |-.007 |—-.13 |-23 |-.52 |—-.28 |—-.019 |—-.011 |.06 |.07
AR 197 |.199 .200 197 191 |.148 |.188 |.205 .206 207 |.208

Although cross-correlation function shows some positive and negative values,
note that statistically significant values are only at n=4, n=35, and n=6. Since
these significant values are negative, one can conclude that carbon dioxide causes a
reduction of the percent of sulfur in the end product. The second conclusion is that it
takes approximately 100 s for carbon dioxide to have its effect on the percent of
sulfur in the end product. Therefore, if further statistical studies of this effect would
be conducted, the percent of sulfur data records must be appropriately aligned
(shifted) with respect to the flow of carbon dioxide data.

Spectral Density Spectral density is another approach to address the variability of a
random process. It implies that a random process could be represented by a
combination of harmonics, i.e. particular sinusoidal signals defined by their fre-
quencies, magnitudes and phases. Although theoretically the number of such
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harmonics is infinite, a random process is often dominated by relatively few
harmonics. Spectral analysis is routinely performed by engineering software tools.

Exercise 1.2 Generate the following data arrays:

x(i) =3 + 7-sin(0.1-i) + 2-sin(0.7-i) + 0.5-sin(1.77-i) + 0.1-sin(713-i), i = 1. . .,300

y(i) = 13 + 17-sin(i) + 2-sin(.0137-7) + 0.8-8in(6.77-i) + 0.4-sin(7103-i) + 0.05-x(i),
i=1,...300

2(i) = —7 + sin(0.5-7) + 2-sin(3.7-i) + 0.05-sin(1677-) + 0.02:x(i) + 0.1-y(i),
i=1,...300

V(i) = x(i) + 5-in(0.02-i), i = 1,. .., 300

w(i) = z(i) + 11-sin(0.02-i +2.05), i = 1,...,300

Problem 1 Obtain correlation matrix for variables x, y, and z and evaluate statis-
tical significance of every correlation coefficient for the significance level o = .005.

Problem 2 Obtain multiple correlation coefficient Ry,

Problem 3 Investigate the possible effect of numerical values of variable x on the
mean value and standard deviation of variable z by dividing the range of variable
X into two equal subdivisions and analyzing corresponding values of characteristics
of variable z.

Problem 4 Assume that variables v(i) and w(i) are discretized realizations of a
random process. Obtain their cross-correlation function (treat v(i) as the stimuli).

Problem 5 Use a standard software frequency analysis tool to investigate random
process x(i). Since the actual frequency composition of this signal is known to you,
comment on the ability of this software tool to recover all harmonics of the signal.

Solutions

Exercise 1.1: Problem 1

The following probabilities can be extracted from the given information. Note that
fail represents the event of a machine tool failure, good represents the event that
there is no machine tool failure, vibration represents that there was excessive
vibration, and overheat represents the event of overheating.

P(fail) = 0.083
P(good) = 0917

16
P(vibration|fail) = %= 0.286
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P(vibration|good) = 0.05

~—

P(overheat|fail) = — = 0.125

&l ~

P(overheat|good) = 0.1

Given these initial probabilities, the conditional probability that there was a failure
given an observed vibration can be calculated as follows.

P (vibration Vail) - P(fail)
P(vibration|fail) - P(fail) + P (vibration|good) - P(good)
0.286-0.083

Plfaillvibration) = & 5 083 + 0.05 0017 >4

P(fail|vibration) =

Now, this conditional probability of failure is going to be used as the probability for
failure in future calculations. Since the sum of all probabilities in a set must be one,
the probability that the product is good must be 0.66. Now that the first event
occurred and we have these new probabilities of failure, the probability of failure
can be calculated given the next event.

P(overheat|fail) - P(fail)
P(overheat|fail) - P(fail) + P(overheat|good) - P(good)
0.125-0.34

P(failloverheat) = 0125034 01066 0.392

P(fail |0verheat) =

So, after both events occurred, the probability of a failure is 0.392.

Exercise 1.1: Problem 2
The following frequencies (probabilities) can be extracted from the Example data.

136 177 83
P(A|poor) = 39= 0.155 P(B|poor) = 39= 0.201 P(Clpoor) = 9= 0.094

36 81 63
P(Algood)= Aol 0.0078 P(B|good) = Al 0.0175 P(C|good) = ol 0.0136
P(poor) = 0.16 P(good) =0.84

Now, the probability of poor quality given event A at 10 am:
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P(Al|poor) - P(poor)
(Alpoor) - P(poor) + P(A|good) - P(good)
0.155-0.16

P(poor|A) = —0.791
(PoorlA) = 3557016 + 0.0078 -0.84

P(poor|A) = P

The new probabilities are:

P(poor) = 0.791 P(good) = 0.209
Now, the probability of poor quality given the consecutive event B at 2 pm:
P(B |p00r) - P(poor)

P(B|poor) - P(poor) + P(B|good) - P(good)

0.201-0.791
P(poor|B) = —0.978
(poor|B) = 430170791 +0.0175-0.209

P(poor|B) =

The new probabilities are:

P(poor) = 0.978 P(good) = 0.022
Now, the probability of poor quality given the consecutive event C at 4 pm:

P(C|poor) - P(poor)
P(Cl|poor) - P(poor) + P(C|good) - P(good)
0.094-0.978

P(poor|C) = — 0.9986
(poor|C) = §:394-0.978 + 0.0136-0.022

P(poor|C) =

Given the three sequential events, the probability that there was a poor quality of
product became 99.86 %.

Exercise 1.1: Problem 3

The probability of passing the requirements can be calculated for the original
system as the area between two z-scores on a standard normal curve. The upper
and lower bound z-scores are calculated as:

0.001 -0 —0.001 -0

=1.111 2170557 :W: —1.111

+ _
Zpass = 70,0009

The probability inside these bounds is 0.7335, or 73.4 %.
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-3 -2 -1 0 1 2 3
Now, to check the improvement from the controls added, the same process will
be done with the statistical data for the controlled process.

0.001 -0 —0.001 -0
T = —_— = = =
Zp(lSS - 00003 3333 Zpass 00003 3333

The probability inside these bounds is 0.9991, or 99.91 %.

-3 -2 -1 0 1 2 3
Given this information, we can see that the probability of passing the require-
ments jumped from 73.4 % to 99.91 % with the addition of controls. This means
that there was a 25.61 % increase in the success rate of this procedure from the
introduction of controls.

Exercise 1.1: Problem 4

In this problem, we are looking for the amount of time sufficient for 90 % of
students to complete the reading task. For this, we will look at a normal distribution
with a mean of 2.5 and a standard deviation of 0.6 min. The z-value corresponding
to 90 % probability under is 1.282.



30 1 Statistical Methods and Their Applications

-3 -2 -1 0 1 2 3
The reading time value associated with this z is 3.3 min. We can conclude that
within 3.3 min, 90 % of students will be done reading one page.

Exercise 1.1: Problem 5
Part A

For a 90 % confidence interval and 17 students, the t-value for this calculation will
be

mean : t(a,N) = 1(.05,17) = 1.740
stddev : t(a, N — 1) = 1(.05,16) = 1.746

The 90 % confidence interval for mean:

ON 0.6
L = 1.740- —= = 0.253
VN V17

P(u— A < prgyp < p+ A) =90%
P(2.5 — 253 < prppp < 2.5+ .253) =90%

A =1t(a,N)

The 90 % confidence interval for standard deviation:

ON 0.6

= 1.746 - =0.18

V2N V2-17
P(O’—ASGTRUES(T+A):90%

P(06 — .18 < orpye < 0.6 + 18) = 90%

P(042 § OTRUE § 078) = 90%

A=ta,N—1)-

For a 95 % confidence interval and 17 students, the t-value for this calculation
will be
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mean : t(a,N) = 1(.025,17) = 2.11
stddev : t(a,N — 1) = 1(.025,16) = 2.12

The 95 % confidence interval for mean:

ON 0.6
— =2.11'—==10.307
VN V17

P(u— A < prgyp < p+A) =95%
P25 — 307 < ppge < 2.5+ 307) = 95%

A =t(a,N)-

The 95 % confidence interval for standard deviation:

ON 0.6
A=tla,N-1) =2.12- = 218
V2N V2-17

P(O’—ASO‘TRUESU—FA) :95%
P(06 — 218 < orpye < 0.6 + 218) =95%

Part B

Doubling the accuracy with a 90 % confidence interval would require the following N.

A =0.253 — Aygw = 0.1265

If we make our N = 63, we can observe a doubling in our accuracy by a halving of
our interval width.

0.6

Doubling the accuracy of a 95 % confidence interval would require the following N.

If we make our N = 61, we can observe a doubling in our accuracy by a halving of
our interval width.

Anew = 1.9996-£ =0.1536

V61
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Part C

Doubling the accuracy for a 90 % confidence interval would require the following N.
A =0.18 — Aygw = 0.09

If we make our N = 60, we can observe a doubling in our accuracy by a halving of
our interval width.

ANew = 1.746~£ =0.095

V120

Doubling the accuracy of a 95 % confidence interval would require the following N.

A=0218 — ANEW =0.109

If we make our N =61, we can observe a doubling in our accuracy by a halving of
our interval width.

0.6
Aygw =2.12-—==0.11

V122

Exercise 1.2: Problem 1

The correlation matrix was calculated with the following configuration:

e Txy Tz
Ry:= 1o Ty Ty
Py Ty T

In which the correlation coefficient for two variables, x and y, is defined as

pe(n) =]+ [y(n) =]

1
Py = —"
N-o,-0, ‘=

The correlation matrix for x, y, and z is:

0.9967 0.0251 0.0719
R,. = 10.0251 0.9967 0.6053
0.0719 0.6053 0.9967
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Then, the statistical significance was evaluated by comparing the half-width if the
confidence interval for the correlation coefficients to the coefficients themselves.
The correlation coefficients were deemed significant of they were outside the
confidence interval, meaning that the correlation coefficient was greater than the

half-width of the interval. The half-widths of the intervals were calculated as

A,y = t(a = .005,N = 300) -

1-— rxy2

VN

A,y =0.14956 and r,, is 0.02506, so the x-y correlation is not significant.
A, =0.14888 and r,, is 0.071861, so the x-z correlation is not significant.
Ay, =0.094818 and ry. is 0.60531, so the y-z correlation is significant.

Exercise 1.2: Problem 2

The multiple correlation coefficient Ry,xvz is:

0.9967
0.8146
0.0719
0.0251

Det

0.8146
0.9967
0.0822
0.0577

0.0719 0.0251
0.0822 0.0577
0.9967 0.6053

0.6053  0.9967 / _ 07919

Ry,xvz =

Exercise 1.2: Problem 3

First, the array of X was ordered from minimum to maximum value and then split
into two equal parts. The associated Z values were split respectively into two equal-
length sets. The mean value for Z for each set was calculated separately. The
difference of these two mean values was compared to the half-widths of their

confidence intervals.

The half-widths were calculated as:

Az = t(a = .025,N = 50)

071

E

0.9967 0.8146 0.0719
Det| 0.8146 0.9967 0.0822
0.0719 0.0822 0.9967

=2.01 1965 = 0.5586

V50
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o7 2.0875
Az =tla = .025,N = 50)-—==2.01-
VN V50

The difference in mean values of Z; and Z, is 0.3387, and the half-width of the 95 %
confidence intervals for Z sets are 0.5586 and 0.5934. This indicates that there is no
evidence that value of variable X has an effect on mean value of variable Z.

=0.5934

Exercise 1.2: Problem 4

The cross-correlation function is a function calculated with respect to discrete
interval m that varies as m=0,1,2,...,N/4. The value of this function is:

N/4 N—
Feross_vw = (]V— Z Z [ (l + m) ]

The resulting cross-correlation function is plotted below against m.

Cross-correlation of v and w
-0.15 T T T

Cross-correlation

o 10 20 30 40 50 60 70 80
Discrete Interval M

Exercise 1.2: Problem 5

A frequency analysis tool in MATLAB was used to break down the frequency
spectrum of x(7).
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5 Amplitude Spectrum of x(i)

Tt A
6} 4
5} i
3} i
2 a1
1 i
! N W

0 005 01 015 02 025 03 035 04 045 05
Frequency (Hz)

The detected peaks are consistent with the frequencies and magnitudes of the
sinusoidal components of the signal:

— Peak at 0.016 Hz (0.10 radians/s) with amplitude 7,
— Peak at 0.11 Hz (0.70 radians/s) with amplitude 2
— Peak at 0.28 Hz (1.77 radians/s) with amplitude .5
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Chapter 2
Mathematical Description of Manufacturing
Processes

Mathematical description of a manufacturing process resulting in a mathematical
model presents a basis for objective analysis, control, and optimization. Model-
based process analysis includes prediction of the process outcome and its particular
characteristics, “what if” analysis, and the evaluation of the effects of particular
factors on the process. Mathematical models in the form of transfer functions are
invaluable for the analysis and synthesis of control systems maintaining the desired
operation of the process in spite of various disturbance factors. A mathematical
model allows for the formalization of the process optimization problem, and serves
as a “guinea pig” during the optimization search. Implemented in a simulation
environment, a mathematical model presents an ideal testbed for the validation of
the most advanced control and optimization schemes. In order to be usable, a
mathematical model must be updated and valid. This section presents practical
techniques for the development, validation, and updating of mathematical models
utilizing statistical data.

2.1 Regression Analysis and the Least Squares Method

Regression analysis requires a data array and a configuration of the regression
equation.

A data array includes synchronously recorded values of the input and the output
variables of the process in question:

x1(k), x2(k), ..., xm(k), and y(k),

where k=1,2,...,N is the discrete-time index or the realization index.
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Model Configuration A regression model is visualized as

yMOP (k) = E{y/xi(k), x2(K), ..., xm(K)},
where E{./.} is the symbol of conditional mean value. It is good to realize that a

regression model it is not a relationship between the output and the input variables
but just a relationship between the mean value of the output and the inputs!

m
Case 1, linear relationship: yMOP (k) = Z a;ix; (k)
p

.MB

aijx; (k)xj (k),

Case 2, nonlinear relationship: yMP (k) = Z axi(k) +
p 1

iy
Case 3, nonlinear relationship:

m
YMOP(k) =) “aidjfxi(k), i =1,2,...,m],
=1
where ®;[x;(k), i = 1,2, ..., m] are nonlinear functions of x;(k), i =1,2,...,m

Least Squares Method First, we will concentrate on linear models and take advan-
tage of matrix—vector notations:

x1(1)  x(1) ... xp(1) y(1)
Y I P C B N B C)
X1 (N) X2 (N) oo Xm (N) y(N>

Coefficients of the regression equation:
a
a
A =

am

Calculated (model) values of the output variable (actually, conditional mean
values of the actual variable estimated using the regression model) are:

yMoD (1) x1(1)  x(1) ... xp(l) a

YNMOD _ yMOD(Z) _ X1 (2) XQ(Z) - xm(2) ' a _ XN A

yMOD(N) x1(N) x(N) ... xnp(N) an
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Our goal is to minimize the accuracy criterion of the model, representing the
“goodness” of the A values represented by a scalar Q(a) defined as follows,

Q(A) = (YN_YNMOD)T(YN_YNMOD)
Q(A) = |YnT — (XNA)T} [Yn — XnA] = (YnT = ATXNT) (Yn — XnA)
YaTYn— YNTXNA — ATXNTY N + ATXNTXNA — Min
It is known from the theory of statistical estimation that the minimum of the above

expression is reached at Xn XNA = Xn Yy thus the least square solution for
coefficients A is:

A= (Xx"Xn) " Xn"Yx

Case 2 could be reduced to Case 1 by introducing secondary variables

X410 =X1(K)%, Xma2(k) = x2(K)%, -, Xom(K) =xm(K)?, Xoms1(k) = x1(K)x2(K),
Xom42(k) = x1(k)x3(k), ... While numerical values of the original (primary) vari-
ables x;(k), xo(k), .. ., x(k) are given, the secondary variables are to be calculated

prior to forming matrix Xy. Note that vector A will be appropriately extended.
Case 3 could be reduced to Case 1 by introducing secondary variables
z1(k) =Dy[x;(k), i=1,2,....m], zp(k) =D,[x;(k), i=1,2,....m], zz(k) = Ps[x;(k),
i=12,...m], ...
While numerical values of the original (primary) variables x;(k), x»(k), . . ., X,(k) are
given, the secondary variables are to be calculated prior to forming matrix Zy
similarly to Xy. Then vector A will be defined as (Zx'Zx) " 'Zn" Yn

Effect of Measurement Noise It is important to differentiate noise as a natural
component of the input signal and noise caused by measurement/data recording
errors. Being a component of the input signal (v,(k) and v,(k), see Fig. 2.1), noise

Fig. 2.1 Input and output v, (k
measurement with noise Vl(k) 2( ) X(k)
X, (k)
S y(k)
Xz(k) Process
v1(K) v
72(k) ) 4

4

Y tAy

Data recordin:
Xty &
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propagates through the system resulting in the additional variability of the output
signal—this noise is known to be beneficial for parameter estimation. Measurement
noise, 7;(k), y2(k) and A(k), has a detrimental effect on parameter estimation. We
will consider the measurement noise.

Assume that noise in the input channels, accompanying measurements Xy, is
represented by matrix I'y and noise in the output, accompanying measurements Yy,
is represented by column Ay. The following characteristics of noise, quite realistic,
are expected:

— noise is additive,

— noise is unbiased, i.e. has zero mean value,

— noise has a finite variance,

— noise is not correlated with input and output signals, x;(k), i=1,2,3,...,m, and
y(k), and

— there is no correlation between noise in particular input/output channels

Consider the effect of noise in the output on the parameter estimation process.
Assume that in the original equation of the least-squares estimation matrix Yy is
replaced by Yn + A, then

A= (Xn"Xxn) ' XnT(Yx +Ax) = (XnTXn) T (XnTYx + XnTAy)

Modify the above expression as follows,

1 A 1
A = (NXNTXN) <ﬁXNTYN + NXNTAN) . It could be seen that components

1 1 . .
of column — matrix —Xx Ay are —in(k)l(k), where i =1,2, ...,m, i.e. are
N N&
covariance coefficients between input variables
N

1
and noise in the output, therefore as Nin(k)ﬂ(k) —0asN — o0
k=1

Finally, for N> 1 A = (Xy™Xn) " Xn"(Yn +An) & (Xn"Xn) ' (Xn"Yn).
Therefore the following conclusion could be drawn: noise in the output does not
result in biased estimates of parameters A, however, an increased number of
observations, N, should be processed to “average out” the effect of the noise.
Consider the effect of noise in the input channels. Assume that in the original
equation of the least-squares estimation matrix Xy is replaced by Xy + 'y, then

[(XN +I'n)" (Xx + ) 71(XN +Tn) Yy =

1 1 1 1 171 1
—XNTXN + =N Xy + =XNTx + =IN'T —XNTYN 4+ —INTY
[NN N+NN NJFNN N+NN N NN NJFNN N

Then, due to the properties of the measurement noise
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1 1 1
Lim (NFNTXN) = Lim (NXNTFN> = Lim (NFNTYN> =0

N—oo N—oo N—oo

0'12 0 0
. 1 T 0 622 e 0 2 .
However Lim (ﬁFN FN) = # 0, where o;",1=1,2,...,
N—oo
0 0 ... on?

m, is the variance of noise in the ith input channel.

Therefore one has to conclude that measurement noise in the input channels
results in biased estimates of parameters A, regardless of the number of
observations, N.

Example 2.1 The purpose of this example is to illustrate the effect of measurement
noise in the output on parameter estimation. Variables x;(i), X»(i), X3(1) and x4(i),
i=1,2,...,300 were generated as combinations of several sinusoidal signals of
different frequencies and amplitudes

x; (i) = 3%sin (.2%) + L.I*sin (7%i) -+ .1* sin (731 1%)

x2(1) = 5% sin (.01%#i) 4+ 2*sin (17*1) + .2*sin (17311%1) + .2*x; (i)

x3(1) = 7*sin (.01%*1) 4+ .5% sin (3*1) + .05%* sin (711%1) — .2%x, (i)
—+ 3*X2(1)

x4(1) = sin (.03*1) 4 .05%* sin (13*1) 4+ .01* sin (799*1) + .3%x,(i)

and organized into array X509. Variable y(i) is defined as
y(i) = %1 (1) — 2*x2(i) 4+ 3*x3(1) + 4*x4(1) + A(Q), i = 1,..,300
where A(i) =.1%*sin(717%i) is a signal imitating the unbiased output noise, and

organized in array Ysqo.

Although “true” coefficients of the regression equation are known, a; =1,
a,=—2, a3 =3, a; =4, let us attempt to estimate these coefficients using the first
50 rows of arrays X300 and Y3zqp, first 150 rows of arrays X3g0 and Y3q9, and the
entire arrays X3zop and Y3oo:
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r1.006
~2.001
2.992
| 4.020 |
T 1.015 7
~2.001
3.003
| 3.992 |
1.011
~2.000
3.000
4.000

(XSOTXSO)_l (XsoTYso) =

(XlooTXmo)_l (XlooTYloo) =

(XaooTX300) - (XsoOTYaoo) =

It could be seen that the output noise does result in the estimation error, however
this error tends to decrease as the number of observations increases. It is good to
note that the determinant of the covariance matrix of the input variables,
Kxx=142.09 #0.

Example 2.2 Introduce unbiased “measurement noise” in the input channels of the
previous problem,

=

1(i) = 4*sin (77%i)

n(i) = .13%sin (177%i)

5(i) = 3.1%sin (1771%i)

ng(i) = 1.1%sin (7177%i), i = 1,2, ..., 300

=

and organize it in array N3oo. The output noise is removed, i.e.
y(i) = 1I*x1 (1) — 2*x2(i) 4+ 3%x3(1) + 4*x4(i), i =1, ..,300

Compute model parameters using array Xzgo “contaminated with noise”, i.e. X300
= X300 + N300 and array Y3qq free of noise:

.617

I 0.802
(Xaoo Xa00) " (Xsoo' Yaoo) = 1.306

2.239

that is a completely wrong result.

Is it possible to improve this result using the information on measurement
errors? Assume that the variances of the particular components of the measurement
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errors (constituting the input noise) are known: 612:0.080, 622:0.008, 6322
4.807, and (542 =0.605. Then the covariance matrix of noise could be constructed
under the assumption that there is no cross-correlation between noise components:

0.080 O 0 0
0 0.008 0 0
0 0 4807 O
0 0 0 0.605

Kn =

Compute covariance matrices Kxx and Kyx using the available measurement
data X300 and Y30

5161 1.060 —0.615 1.753 7.155
1.060 15.330 22.75 2.381 48.000
KXX = and KYX =
—0.615 22.750 43.04 3.173 81,200
1,753 2.381 3.173 1.888 11370

Now the covariance matrix of the measurement noise, Kyy;, can be utilized in the
estimation task:

L R0 a0 — K h L Ri0TY0 ) = (Kxx — Knn) ™ —o-Xago Y
300 300 300 NN 300 300 300 ) — XX NN 300 300 300

0.706
—1.898
2915
4.205

It could be seen that new estimates are not perfect, but are drastically better than the
previous result. Why didn’t we obtain a perfect result?—Recall that matrix Kyy
was constructed under the assumption that there is no cross-correlation between
noise components. Having the simulated “input noise array” N3, we can obtain the
“true” matrix K™RVEyy that is quite different from Kyn:

0080 le—04 1le—04 0219
_ 1o | le—04 8¢ —03 —2¢—03 3¢ 04
N300 00 B0 T e — 04 —2e — 03 4.807 le — 03

0219 3e—-04 1le—03 0.605

KTRUE

Effect of Cross-Correlation of Input Variables Imagine that two input variables,
say X; and x; are highly correlated, to such extent that x; ~ ¢-x; +d, where ¢ and d
are some constants. This condition will result in two rows of matrix Xy Xx
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to be or almost be linearly dependent, therefore the determinant of this matrix Det
(Xn"Xn) A 0. This situation is known as a “poorly defined” parameter estimation
problem. An “almost singular” matrix Xy Xy presents a serious numerical diffi-
culty in the calculation of coefficients A. In addition, one can see that since x;
duplicates x; it does not make sense to introduce both variables in the mathematical
model.

Principal Component Analysis is a numerical technique that addresses both
issues.
Recall that

-1
1 1 1 _
A=(Xn"Xy) XN'Yx= <NXNTXN> NXNTYN = Kxx 'Kxy

where Kxx and Kyy are the estimated covariance matrices of the appropriate
variables. Assume that matrix Kxx is “almost singular”, i.e. Det (Kxx) < 1.
Introduce a new set of input variables, z,(k), z,(k),. . .,z (k), obtained by a linear

z1(k)
. . . . 75(k)
transformation of the original variables x;(k), x5(k),. . ..xn(k), i.e. W =
Zm (k)
x1 (k) z(k) xi (k)
x5 (k Z>(k Xz (k
2(k) or 2(k) =w! 2 where W is a speciallydefined (m x m)
Xm (k) Zm (k) Xm (k)

matrix filter
Consequently, the regression equation (mathematical model) can be redefined as

YMOP(k) = bizi(k).
]

Define matrix Zy = XNW, then coefficients b;, j=1,2,...,m, represented by vector
B will be defined as

_1
1 1 1 _
B=(Zx"Zn) ZN"Yn = (NZNTZN> NZNTYN =Kzz 'Kzy

where notations are self-explanatory. We want to assure that new variables, z;(k),
Z5(K),. . .,zm(k), are orthogonal, i.e. their covariance matrix Kz is diagonal. This
property of the new variables guarantees that the parameter estimation problem will
be successfully solved.
Consider
Kz = %ZNTZN = % (XaW)T(XNW) = %WTXNTXNW =WwT (%XNTXN>
W = WTKxxW
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Written below is the matrix diagonalization formula (similarity transformation)
known from matrix theory:

M 'KxxM = C,
M 0 ...0
where C = 0 % ... 0 ,
0 0 ... M

A, j=1,2,...m, are eigenvalues of matrix Kxx, and

M is known as the modal matrix of matrix Kxx. It is good to remember that
eigenvalues of matrix Kxx can be obtained by solving the following polynomial
equation,

Det(M — KX)() =0

where I is a unity matrix, and all eigenvalues, %;, j=1,2,...m, of matrix
Kxx = NXNTXN are real and positive.

Recall now that a modal matrix could be defined for any square matrix that has
real eigenvalues, say Kxx. If matrix Kxx has the dimension of m X m, then its
modal matrix is also a m X m matrix. A modal matrix is formed as follows: its first
column is the eigenvector of matrix Kxx corresponding to the first eigenvalue A4, its
second column is the eigenvector of matrix Kxx corresponding to the second
eigenvalue A,, and so on. Finally, an eigenvector of a square matrix, say Kxx
corresponding to its eigenvalue A, is defined by

— forming matrix MI—Kxx where 1 is a unit matrix

— taking the adjoint of this matrix D = Adj(A1—Kxx)

— using any column of matrix D as the eigenvector of matrix Kxx corresponding to
its eigenvalue A;.

Note that the matrix diagonalization is a computationally intensive procedure
that is routinely performed by engineering software tools. Keep in mind that any
constant multiplied by an eigenvector is still the same eigenvector, therefore many
software tools generate apparently different sets of eigenvectors for the same
matrix. The following numerical example features a matrix Xy, matrix Kxx, its
eigenvalues and eigenvectors, its modal matrix M, and the diagonalization of
matrix Kxx
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Example 2.3 Definition and diagonalization of a covariance matrix.

f1 4 4 47
2 8 6 -4
3 -7 3
15 2 201 41 76 -34

Koo |52 T 2| Ay [ 41245 B39 s
7 1 1 1 10 76 139 229 —13
9 1 4 -3 34 -8 —13 173
6 -6 -4 5
1 7 9 -5
2 0 -7 8]

Al 5756

N 12.961

2| | 18.664

Al 48419

[—.163 .156 .922 313
—-251 702 —.355 564
M= It could be seen that
736 —.258 —.038 .625

L .607  .645 147 —.440
—.163  .156 922 313

! 211 41 76 -34

—-.251 702 —-355 564 « 41 245 139 -8
736 —.258 —.038 .625 76 139 229 -—-13
.607 .645 147 —.440 -34 -8 —13 173

—.163  .156 922 313 5.756 0 0 0
—-.251 702 =355 564 | 0 12.961 0 0
736 —.258 —.038 .625 | 0 0 18.664 0
.607 .645 147 —.440 0 0 0 48.419

Now one additional piece of information: it is known from the matrix theory that
if a matrix is defined as Kxx = %XNTXN then the transpose of its modal matrix is

equivalent to the inverse. Let us demonstrate this property using our example:

-1

—.163  .156 922 313 [—.163 —.251 .736 607 ]

—-.251 702 —-355 .564 | .156 702 —.258  .645
736 —.258 —.038 .625 Tl 922 —-355 —.038 .147
.607 .645 147 —.440 | 313 564 625 —.440 |

[—.163  .156 922 313 ]
—-.251 702 =355 .564
736 —.258 —.038  .625
| .607 .645 147 —.440 |
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Now one can see that matrix filter W, utilized to convert “old” input variables,

xi(k), j=12,..

., m, into the new orthogonal variables, zjk), j=1,2,...,m, is

nothing but the modal matrix M of the covariance matrix Kyx.
Now define the array of diagonalized variables Zy = X;oM:

r4.204 4515 —0.061 3307 7
—0346 1.803 —1.813 10.646
4692 —3.928 5431 —2014
1.874 5.087 —0.487 3.062
~1.795 0.638 3.569  4.199
2051 0049 2184 6211 2.941
—0.092 —2260 8.062 6.074
2575 —0.895 —2.515 —9.962
1.995 —0.786 —4.4838 11.457
| —0.624 7.277 3291 —7.267 |
and check their covariance matrix
5756 0 0 0
1
KZZ:EZ‘OTZ‘OZ 8 12'361 18.%64 8
0 0 0 48419

Note a useful fact: the eigenvalues of the covariance matrix Kxx, A, are equal to the
“variance + mean value squared” of the respective component of the diagonalized
vector, Zy.

Application of the Principal Component Analysis (PCA) First, let us modify the
modeling problem: the model to be established is

YMOPE) =D a(i) = > (i)
k=1 k=1

where z,(i), k=1,2,...,m are orthogonalized variables. It could be seen that, in
principle, the parameter estimation task implies the solution of the familiar
equation,

-1 —1

T, \— T 1 1
B=(Zx Zn) ' (Zx YN) = (NZNTZN> <NZNTYN> =Kzz Kyz
where K7 and Ky are appropriate covariance matrices.

When parameters B are known, it is easy to convert them into parameters A of
the original regression equation of interest, indeed YnN“OP =Xy-A=Zy-B=
Xn'M:B, therefore, A=M-B
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The important part of the PCA is the fact that estimation of coefficients B does
not lead to a system of simultaneous linear equations and does not require matrix
inversion, indeed,

M0 071"
. 0 4 ... 0
B=Kzz  Kzy =
0 0o ... A,
— 1 — _K" Y_
— 0 ... 0 Yy
M K,y M
1 K K.,
_ 10 = ... 0 y | _ | —=
KZY o /12 . e o AZ
0 0 .. — 2y ]
L Am 4 L Ap

i.e. every coefficient b, k=1,2,....m, can be calculated using simple scalar
expressions.

Imagine that the computation of coefficients of a regression equation is part of an
on-going control procedure. Instead of utilizing the original matrix equation of the
LSM and risking possible computational instability due to “almost singular” matrix
Kxx, it makes sense to obtain orthogonalized variables, estimate coefficients B,
avoiding matrix inversion, and then convert them into coefficient A.

It is important to realize that variables z;, j=1,2,. . ., m, are mutually orthogonal
and therefore do not duplicate each other. Knowing the individual contributions of
these variables into the model would allow excluding those least contributive thus
simplifying the model. Then how can these individual contributions be evalu-
ated?—Variability of the model is defined by the variance

m 2

1 VS ER I
oMOD2 :NZ [YMOD(I)_YMOD} :NZ Zbkzk Q) _ gMop

i=1 i=1 k=1

<MOD _ . .
where Y and 7y, k=1,2,...,m, are mean values of the respective variables.
Reversing the order of summation in the above expression and assuming that N >> 1
results in

1 n ) _ m
omop” = kazz [zi (i) — Zk]zl =Y bla’
i1 k=1

m
k=1

where 6,” is the variance of the kth orthogonalized variable.
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At this point, the only unknowns are variances akz, k=1,2,...,m. They can be
found by computing the mean values of these variables, zZx, k =1,2,...,m, and then
computing every 61> = Ay —Z;> k=12,...,m

Finally, individual contributions (in percent) of particular variables z into the
regression model can be expressed as

2.2
5 — bi“o;
J 7 m

E bk26k2
k=1

L j=12,....m

Therefore, PCA provides an opportunity for choosing a subset of orthogonalized
variables z; whose combined contribution to the regression model is sufficiently
high, say 90%, and discarding the rest of these variables as non-contributive.

Assume that according to the above analysis, variable zy is the least contributive
component of the vector of orthogonalized variables. Then the column #H of the

array Zy can be discarded resulting in array Z y and parameters B will be defined as
follows:

B = (Zx'Zn) " (Zx Yx)

Note that vector B has one component less than vector B = (ZNTZN) -1 (ZNTYN),
i.e.B isam—1 vector. Remove column #H from the modal matrix M that will result

in matrix M that has m column and m—1 rows. Finally, vector of the model
parameters A will me defined as

A =MB

Example 2.4 Application of the Principal Component Analysis, a simulation case
study

The following are the definitions of variables x(i), k =1,2,3.4, and y(i):

x1(i) = ( 01%#i) + .5%sin (7*1) 4 .1*sin (177%1)
x2(i) = 6*sin (.031*i) 4+ .2* sin (17*1) + .3* sin (7177%i)
x3(i) = 4% sin (.077+) + .2% sin (74%) + .2%sin (7111%i)
x4 (1) = x3(1) 4 .00002%sin (17171 *i)
y(i) = 3% x; (i) — 2%xa(i) + 5% xa (i) — 3% x4 (i) + .07% sin (817371%i),
i=123, ..., 500

This choice of variables reflects our intention to create a case when the first three
input variables are virtually independent, but the fourth input variable, x4, is almost
identical (highly correlated) to x3. In addition, it could be expected that mean values
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of the input variables be close to zero. According to the definition of output variable
y(i), the “true” values of the appropriate regression coefficients are 3, —2, 5, —3.
However, this relationship is quite superficial: since x4(i) = x3(i), the relationship is
effectively y(i) =3* x;(1)—2%* x,(1) + 5% x3(1)—3* x3(1) =3* x1(1)—2% x,(i) +2*
x3(1), however this reality is not apparent to the individual who attempts to establish
the regression model relating y(i) to x;(1), X»(1), X3(1), X4(1).

First, the above variables are to be organized into arrays Xsoo and Y50, then an
attempt to solve the LSM problem as follows could be made:

3.000
—2.000
1.050
0.950

(XSOOTXSOO) ! (XsooTYsoo) =

We do know that this result is erroneous, but there is a good reason to doubt this
result even if one does not know the “true” coefficient values, the covariance matrix
Kxx is “almost singular”

4.890 — 1.197 0.209 0.209
1197 1830 — 0313 — 0313
Det(Kxx) =Det| (000 0313 7.043 7.943 | — &= 07

0.209 —0.313 7.943 7.943

Consequently, this situation presents an ideal target for PCA.
Obtain the modal matrix of Kxx and its eigenvalues:

[—0.090 7e — 03 0.996 — le — 09 A
1 0980 0.178 0.087 7e—10 . 5
M= 0125 0.696 — 0.016 — 0.707 and the eigenvalues are | -
| —0.125 0.696 —0.016 0.707 A
[18.49
1581
= | 4778
i le— 10

It is known that eigenvalues represent the variability of the particular compo-
nents of the vector of orthogonalized variables whose values are defined by the
array Zsoo = Xs00M, indeed

18.49 —le—15 2—15 —1le—15
LZ Ty | —le—15 1581 8e—16 —2e—15
500 00 0T 2e 15 Be—16  4.778 —6e — 17

—le—15 —2e—15 —6e—17 le — 10
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This indicates that the fourth component of array Zsg is irrelevant and the first
three columns of the array Zsg are sufficient for the modeling process. With the

trimmed array Z 500 the estimation results are as follows:

T - —2.481
B = (Zsw Zs00) ' (Zs00 Ys00) = 1.056
2.780
This result could be trusted:
1 . 7. 18.49 —le—15 2e - 15
Kzz =—=Zs500 Zsoo=| —le—15 1581 8e — 16 | and Det(Kzz)~ le + 03

500 2e—15  8e—16 4.778

Finally, convert coefficients B into the required coefficients A. Note that since the
last column of array Zsoo was eliminated, the last column of matrix M must be also
crossed out:

—0.090 7e — 03 0.996 5481 3.000
A —MB — 0.980 0.178  0.087 1.056 _ | —2.000

—0.125 0.696 —0.016 2780 1.000

—0.125 0.696 —0.016 ’ 1.000

Note that since X3~ X4, this result is completely consistent with the way the
original data was generated.

2.2 Validation of Regression Models

While the computational task of the least squares method is very straight forward,
one should realize that

— the obtained regression equation may or may not be statistically valid, i.e. it may
not reflect the existing trend-type relationship, but just “numerical noise”,

— obtained parameter values are only statistical estimates and the “true” values
could be found within some confidence intervals,

— computation of yM°P(k) for any combination of input variables, xj(k),
j=1,2,...,m, results only in a statistical estimate, and the “true” value could
be found within a confidence interval.

Let us address these issues.

Coefficient of Determination Recall that regression-based models do not represent
a functional relationship between variable y(k) and inputs x;(k), j=1,2,...,m but
rather a trend. Indeed, variable y(k) depends on a very large number of random
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factors, and only partially depends on the chosen inputs (regressors). It is very
important to determine to what extent variable y(k) depends on the inputs of the
model and to what extent it depends on the factors not included in the model.

It is known that all factors, included and not included in the model result in
variability of the measured (true) value of variable y(k). This variability is
represented by the natural variance of y(k) defined as

where M, is the estimated mean value of y(k). When parameters of the model aj,
j=1, 2,..., m, are established, variations of the input variables of the regression
equation, Xxj, j=1, 2,..., m, result in the variability of the output variable of the
regression equation, yMOP(K) that is characterized by the model variance,

1
OMop” = N_1 Z (YMOD (k) — My)2
1

z

N
k=

(Note that due to one of the known properties of the LSM mean values of y(k) and

yMOD(k) are the same). Finally, the variance of the model error, e(k) =y(k)—y
MOD(k), that could be easily defined as
2 1 T
OF :ﬁ(YN —XN'A) (YN —XN A),

represents the variability of y(k) caused by all factors not included in the regression
equation.

It is known that 0y2 = 6mop- + 6g°. The coefficient of determination represents
the ratio between the joint effect of the factors included in the regression equation
and the joint effect of all factors (included and not included) on the variable y(k), it
is therefore defined as

Coefficient of determination is always positive and does not exceed 1,i.e. 0 <n < 1.
It can be seen that it presents a “measure of goodness” of a regression equation,
approaching 1 for very accurate models. Traditionally, for a successfully established
regression equation, the coefficient of determination is expected to be at least 0.85.
It is important that coefficient of determination can be used for both linear and
nonlinear equations. In the case of a linear regression equation, the coefficient of
determination is equal to the multiple correlation coefficient squared.
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Statistical Validation of a Regression Equation Coefficient of determination pro-
vides a rather qualitative way of statistical validation: a regression model is
definitely valid if n > 0.85 and is definitely invalid if n <.3, however there is a
more formal way to claim statistical significance or insignificance of a model. It is
also based on comparing variances Gy2, oMmon>, and 65> utilizing the Fisher distri-
bution. However, it is important to recognize that the modeling techniques
presented in this course are intended for the analysis and design of control systems,
not for the “better understanding of complex laws in nature and society.” Regression
equations developed herein will be eventually reformulated as transfer functions.
Consequently, the only mathematical models that are of any use in our application,
are those “definitely valid.” Therefore, we will use only one criterion of the validity of
a model: its coefficient of determination must be at least 0.85. This would eliminate
the use of the Fisher criterion, which allows one to justify the validity of a model that
correctly reflects only 50 % of the variability of an output variable.

For example, let “true” relationship, y(i) = 3x;(1)—2x,(1) + 5x53(1)—3x4(i), be
modeled by a regression equation yMOD(i) =2.989x,(i) obtained using y(i) and
x1(i) observations. According to Fisher criterion this model could easily be statis-
tically valid, because it correctly describes the existing relationship between vari-
ables y(i) and x;(i). However, such a model is absolutely meaningless for the
control process when in order to maintain the desired value of the output all
relevant variables must be taken into account. Indeed, requesting the coefficient
of determination to be at least 0.85 is a good way to qualify a mathematical model
to be used as a transfer function.

Example 2.5 Application of the coefficient of determination for model simplifica-
tion is illustrated by the following table. Assume that the available measurements of
the output and input variables are assembled into eight various configurations of
array Xy. The following table contains regression models obtained by solving the
matrix equation of the LSM:

# Regression equation cy2 or> n Validity
1 yMOP =3 5%, +4.2x, + 5%, 2 4 1.1x,7— 1.3xx, 124 |.86 931 Valid
2 | yMOP =3 5%, +4.2%, + .5x 2 + 1.1x,° 12.4 128 |.897 | Valid
3 | yMOP=3.5x, +4.2%, +.5x, 2= 1.3XX> 124 136 |.89 Valid
4 | yMOP =3 5%, +4.2%, + 1.1x>—1.3x,%, 124 .12 |91 Valid
5 | yMOP=3.5x, +.5x 2 4 11x,>—1.3x,x, 124|439 |.646 |Invalid
6 | yMOP=42x,+ .5x 2+ 1.1x,"—1.3x,x, 124 |558 |55 Invalid
7 | yMOP =3.5x, +4.2x, + .5x,> 12.4 152 | .877 | Valid
8 yMOP =3 5%, +4.2%,—1.3xx, 12.4 1.41 886 | Valid
9 | yMOP=35x, +4.2x, 124  |2.04 |.835 |Invalid

It can be seen that the applied procedure includes estimation of the “natural”
variance of variable y, estimation of the regression coefficients for particular
combinations of column of the array Xy, computation of the standard deviation
of the modeling error, computation of the coefficient of determination, and finally
making a conclusion on the validity of the model. It is seen that cases 7 and
8 represent the simplest valid models.
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Confidence Intervals of the Model Parameters Due to limited number of observa-
tions, each model parameter estimated by the least squares procedure is a random
variable. Assume that a; (j=1,2,...,m) is one of the parameters estimated by the
least squares procedure, and ajTRUE is the “true” value of this parameter that could
be obtained by processing infinite number of observations, or by averaging all
possible values of estimates a;. Then it is known that with probability P=1-2«
| aj—a;"RVE |< t(a, n)SElej/2

where
j=1,2,...,m is the parameter index,
t(a,n) is t-distribution for the significance level «, and number of degrees of

freedom n = N-m,
Qji is the jth diagonal element of the matrix (XNTXN)_I, and
Sg is standard deviation of the modeling error.

Note that for N> 1, XNTXN ~ N-Kxx where Kxx is the covariance matrix of the
input vector. Then the above definition of the width of the confidence interval could
be rewritten as

t(a,N—m)-Sg- /q;
VN

where gj; is the jj — th diagonal element of matrix Kxx !

. TRUE| _
aj — g |_

Confidence Intervals for Model-Based Prediction of the Output Variable Due to
the stochastic nature of the relationship between input variables x;(k), j=1,2,...,m,
and variable y(k), the stochastic nature of estimated model parameters, aj,
j=1,2,...,m, and possible measurement noise, the calculated value of the output
variable, yMOD(k), and its measured value, y(k) are expected to be different. How-
ever, it is known that with probability P = 1—2«

| y(k) = yMOP (k) | < ta m)Se[x(K)'Q x(K)] /2

where
x(k) = [x1(k) x5(k). .. xm(k)]T is the vector of the input variables,
Q=Xn'Xn"

yMOD (k) = Z ajxj(k) = xT(k)A and y(k) are the model and measured values of
=1

the output variable, respectively.
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Again for N> 1 the width of the confidence interval could be redefined as

(@ N —m) - Sg - /x(0)T - Kx! - x(K)
VN

|y(k) = yMOP (k)| =

Example 2.6 The model y=4.969x;—4.012 X, + 2.65x3—2.093x4 4 2.063x5 was
obtained using 300 observations of y(k), x;(k), x»(k), x5(k), x4(k), and x5(k).
Variance of the modeling error Sg” =29.49 = 5.43% Obtain 95% confidence inter-
vals for model parameters.

. . . T I
First, find the covariance matrix X3qq X300 and its inverse:

708.0 253.6 347.9 —130.1 103.0
253.6 3e403 1le4+03 31.32 4325
Kxx = | 3479 1e+03 2¢+03 0.631 463.1

—130.1 31.32 0.631 949.6 79.94
103.0 432.5 463.1 79.94 170.0
Kxx ™!
1.645209¢ — 003 4.118080e — 005 — 1.141253e — 004 3.026922¢ — 004 — 9.330502¢ — 004
4.118080e — 005 6.112089¢ — 004  2.546555¢ — 005  1.294520e — 004 — 1.710311e — 003
= | —1.141253e — 004 2.546555¢ — 005 2.855153e — 003  6.623047¢ — 004 — 8.085377e — 003
3.026922e¢ — 004 1.294520e — 004  6.623047e — 004 1.337917¢ — 003 — 2.946240e — 003
—9.330502e — 004 — 1.710311e — 003 — 8.085377e — 003 — 2.946240e — 003 0.0342119

Finding the t-distribution value, t(.025,300) = t(.025, co) = 1.96, and the follow-
ing “widths” of the confidence intervals:
Ay =1.96 x 5.43 x (1.645¢ — 3)"/? = 0.431
Ay =1.96 x 5.43 x (6.112e — 4)"/> = 0.263
Az = 1.96 x 5.43 x (2.855¢ —3)"/2 = 0.569
Ay =1.96 x 5.43 x (1.338¢ —3)"/2 = 0.389
As = 1.96 x 5.43 x (0.0342)"/? = 1.968

Then, with 95 % probability “true” parameter values will stay within the
following limits:
4538 < a,™RUE <54
—4.275 < a,"™RUE < 3749
2.081 < a3™UE <3219,



56 2 Mathematical Description of Manufacturing Processes

—2.482 < a,™RUE < _1.704,
0.095 < a4y RYE < 4,031

We have the “luxury” of knowing the “true” parameter values, 5, —4, 3, —2, and
1 and can conclude that they are indeed within the confidence intervals.

Example 2.7 Given a set of particular values of the input variables, x;(k) = 1.0,
X5(k) =4.0, x3(k) =10.0, x4(k)=3.5, and x5=12.3. Estimate the value of the
output variable y(k) using the model,

y = 4.969x; — 4.012x, + 2.65x3 — 2.093x4 + 2.063xs
and obtain a 95% confidence interval for the estimate.

YMOP(k) =4.969 x 1.0 — 4.012 x 4.0 +2.65 x 10.0 — 2.093 x 3.5 +2.063
x 12.3
= 33.469

To determine the confidence interval, note that

t(.025,00) = 1.96, Sg =5.43,

(x(k)TQx (k)]*=1.763

“Width” of the confidence interval: A =1.96 x 5.43 x 1.763 = 18.76, therefore,
33.469—18.76 < y(k) < 33.469 + 18.76 and, finally, P{14.709 <y ™VE (k) <
52.229} =95 %

Exercise 2.1

Generate input and the output variables as follows (k =1, 2,.. ., 500):

x1(k) = 543-8in (17 -k) + Sin (177 - k) + .3 - Sin (1771 - k)
Xa(k) =1 — 2-Sin (91 -k) + Sin (191 - k) 4 .2 - Sin (999 - k)
x3(k) =3+ Sin (27 -k) +.5 - Sin (477 - k) 4 .1 - Sin (6771 - k)

x4(K) = —.1-%;(K) +3 - x2(k) +.5 - Sin (9871 - k) + .7 - Cos(6711 - k)
y(k) = 2 -x;(k) +3-x2(k) — 2-x3(k) 4+ 5 - x4(k) + .3 - Sin (1577 - K)
+ .2 Cos(7671 - k)

(k)
(k)
(k)
(k)
(k)

Problem 1 Obtain “unknown” coefficients of the regression equation using the
least squares method using the first 30 rows of arrays Xso9, Y500, first 100 rows, first
200 rows, and finally all 500 rows. Compare coefficients with the “true” coefficients
and discuss your conclusions.

Problem 2 Compute 95 % confidence intervals for the coefficients of the model
based on 500 observations. Check if the “true” coefficients are within the confi-
dence intervals.
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Problem 3 Assume x(k) =[2.5, 3.0, —6.3, 10.1% and compute y(k) using the “true”
relationship between the variables. Compute yM°P(k) using the final model and
compute its 95 % confidence interval. Check if the “true” value, y(k), is within the
confidence intervals.

Problem 4 Given covariance matrices

3.084 0.846 1.158 —0.434 0.343

12.970

0.846 10.90 4.012 0.104 1.442 _19.470

Kxx = | 1.158 4.012 6269 le—03 1.543 | and Kyx = 7.213
—0.434 0.104 1e — 03 3.425 0.266 — 8.649

0.610

0343 1.442 1.543 0.266 0.677

estimated using measurement data. It is known that measurement errors in the
corresponding input channels have the following variances: 6, = 0.75, 6,> = 1.66,
632 =0.96, 642 =.26, 652 =0.11. Compute parameters of the mathematical model
using this information. Compute parameter estimation errors caused by input noise.

Problem 5 Redefine variables x4(k) and y(k) as follows:

x4(k) = x3(K) -+ .000012 - Cos(7671 - k),
y(k) =2-x1(k) +3-x2(k) — 2-x3(k) +5-xa(k)+.3-Sin (1577 - k) + .2
-Cos(7671 -k), k= 1,2, ..., 500

Apply principal component analysis for the evaluation of the regression parameters.

2.3 Recursive Parameter Estimation

Assume that input/output measurement data is given by arrays: Xy and Yy and the
model configuration is defined. Assume that model parameters are calculated via
the Least Squares Method (LSM):

Ax = [Xn"Xn] 7 [Xn"YN]

How can an additional observation, y(N+ 1), x(N+ 1) = [x;(N + 1),. . ., x,y(N + 1)]
be utilized?

But, should this additional measurement be utilized in the first place?—Yes, it
should. First, because real measurement data is contaminated by noise and the
estimation accuracy improves with the increased amount of data. Second, because
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the process described by input/output measurements may exhibit slow changes that
must be reflected by its model by using the most recent measurements. Recursive
Least Squares Method (RLSM) theory provides the necessary mechanism for the
incorporation of additional data in already existing model, thus continuous model
updating utilizing the flow of incoming measurements.

The RLSM is consistent with the principle of recursive estimation mentioned in
Chap. 1. It does not require the accumulation of measurement arrays Xy and Yy and
consequent processing of these arrays. Instead, it allows processing one observation
at a time by using this observation to upgrade already existing estimates, i.e. it
generates a set of coefficients of a regression model, Ay, not by solving the matrix
equation

Ax = (XnTXn) " (Xn"YN)

but by using only the last rows of arrays Xy and Yy, i.e. X(N) = [x;(N),. . ., xmn(N)]
and y(N), to update the previously obtained coefficients An_:

ANy =An_1 + A[ANfl’ X(N), Y(N)]

where A[.] is a specially defined increment, dependent on the initial conditions,
An_1, and the most recent data x(N)=[x;(N),....x,(N)] and y(N). The first
advantage of this approach is very obvious: the approach eliminates the need for
storing large data arrays Xy and Yn. The second advantage is even more important:
the RLSM provides a mechanism for tracking the properties of time-varying
processes by on-going correction of parameter estimates using the most recent
data. The third advantage will become obvious later: RLSM eliminates the need
for highly demanding computational procedure-matrix inversion.
Let us consider the mathematics behind the RLSM.

Recursive Least Squares Method Assume that several input variables, x;,
j=1,2,...,m, and one output variable, y, form the following relationship:

Y =3 o 1)
]

where t is continuous time, and «;, j = 1,2, .., m are unknown coefficients.

In order to estimate these coefficients, one should perform synchronous sam-
pling of the input and output variables that would result in the following data arrays
(it is expected that the sampling time step is constant)


http://dx.doi.org/10.1007/978-3-319-42258-9_1
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xi(1)  x2(1)  x3(1) Xm(1) y(1)
x1(2) x2(2) x3(2) Xm(2) y(2)
XN 0m) k) wk) xml) | YN |y
AN 0N) N .. x(N) y(N)

where k=1,2,. .., N is the discrete-time index, and N > m is the total number of
measurements

It is known that the Least Square Method solution provides not the unknown
coefficients, but rather their estimates

]
a

Ax = — (Xn"Xn) " XnTYx

3
am

where T is the transpose symbol. Note that vector A has a subscript y that should
remind the reader that estimates Ay are obtained using the total of N measurements
of I/O variables.

It is also known that under some conditions estimates Ay have the following

property:

o
o
Lim Ay =
N—oo (Xj
Olm

and therefore, it could be concluded that as number N increases, the “goodness” of
the estimates also increases.

Assume the following situation: the total of N measurement have been accumu-
lated, arrays Xy and Yy have been formed, and estimates Ay have been computed.
What to do when an additional measurement,

X1(N—|— 1)
Xz(N—|— 1)

x(N+1)= and y(N+1)

x(N+ 1)

fm(N 4 1)
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has arrived? Should we upgrade arrays Xy and Yy into

x1(1) x2(1) x3(1) Xm(1)
x1(2) x2(2) x3(2) e Xm(2)
X =1 N SO and
x1(N) x2(N) x3(N) ... Xm(N)
xiN4+1) xo(N+1) x3(N+1) ... xp(N+1)
y(1)
y(2)
YN+1 -
y(N)
y(N+1)

and compute a new vector of estimates Any; = (XNHTXNH)_]XNHTYNH ?
Should we assume that a new set of I/O measurements will be received at time
N+2, N+3, .... and continue this process at every time step? Obviously, the
answer is “no” because of the following reasons:

1. We cannot designate an ever-growing memory for storing ever-growing arrays
Xy and Yy

2. We cannot perform the most time-consuming computation, matrix inversion, in
real time, i.e. at every discrete time valuek=1,2,3, .. ,N,N+1,N+2, ...

3. Statistics offers special recursive computational schemes for addressing the need
for upgrading estimates utilizing continuously arriving “new’” measurement data

Recall the recursive mean formula that demonstrates the power and numerical
efficiency of recursive computations:

Iniy =ZIn+

NT1 (z(N+1) = Zx), whereN =1, 2, 3, .....

It can be seen that the above formula is very attractive: it indicates that regard-
less of the number of measurements actually incorporated in the computation
process, at any moment of discrete time, k, only the “old” estimate Zi—1, the
“new” measurement z(k), and the discrete-time index “k” are to be stored. The
computation results in the replacement of the “old” estimate Z;_; by the “new”
estimate Zj that incorporates not only all previous measurements, z(1), z(2), ...,
z(k—1), but also z(k).

Now we will consider how to utilize this recursive approach for the Least Square
Method computations. This has been accomplished by one of the brightest people in
the world, Professor Kalman. First, recall the matrix inversion Lemma that Kalman
formulated in 1960:
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(A+BCD)'=A"'—A'B(C"' +DA'B)"
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‘DA,

where A, C, and C~' + DA~ 'B are nonsingular square matrices. Now realize that if

a single observation of the input variables is

then array Xy could be defined as

x1(1)  x2(1) x3(1) ... xm(1)
x1(2) x(2) x3(2) ... xa(2)
A=) ok b .. xk) |
AN 0®N) ) . xa(N)

Therefore Xy Xy has the following expression using particular measurement

vectors x(k):

Xl(l) X1(2) X1(3) XI(N) .Xl(l) Xz(l)
o) 0?2 @) ... ai) | |2 Q)
W= 5 5@ 53) . x| [0k xo®
r N N N
S xi®? Y xi(k)xa(k) > x1(K)xm (k)
Nk:l k:lN k;l
=) e®xk) > x(k)? X2 (K)Xm (k)
k;l Nk:] L kle
D xm(®)x1(K) > xm(k)xa(k) > xm(k)®
L k=1 k=1 k=1

xa(l) oo xu(1)

x3(2) oo xw(2)

B e (k)

GN) ... xa(N)
= x(k)x(k)"
k=1
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Then rewrite the LSM equation as follows

N -I'N
Ax = (XnTXn) T XNT YN = <Z x(k)x(k)T> S x(®)y (k)
or
N —1
An =Py>_ x(K)y(k) where Py = (XxTXy) ' = (Z x(k)x(k)T>

k=1 k=1

Note that
N N-1
Pyt = x(k)x(k)T = x(N)x(N)T + ) x(k)x(k)"

x(N)x(N)" + Py ™' =

Also realize that

An =Py Y x(Q)y(k) =Py <x<N>y<N> 3 xy(K) > A
k=1

k=1

N N-1
Since An = PNZ x(k)y(k), it is obvious that An_; = PN,IZx(k)y(k) and
k=1 k=1

therefore,
x(K)y(k) =Pn_;'Ax

Since according to —=Py_; ! = Py~! — x(N)x(N)", the above expression can be
rewritten as

N—-1
3 x(K)y(k) =Py 'Axs = (PN’I - x(N)x(N)T>AN_1

k=1
Then A could be rewritten as

Ay = Py <x<N>y<N> " ixuoy(k))

k=1

— Py (x(N)y(N) Py Ane — x(N)X(N)TAn )
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or
Ax = Pux(N)y(N) 4 PxPy~'Ax_ | — Pax(N)x(N) A or
Ax = Ax_1 + Pxx(N) (y(N) - x(N)TAN,l) or
Ax = A1 + Kn (y(N) - x(N)TAN_1> v
where Ky = Pyx(N)

Expression V constitutes a classical recursive formula. Indeed, it allows us to
compute the “new” set of coefficients Ay on the basis of the “old” set Ay_; and the
“new” measurement data, x(N) and y(N). However, it is too early to rejoice: note
that matrix Ky is defined as

N -1
Ky = Pxx(N) = <Z x(k)x(k)T> x(N)

k=1

i.e. formula V does not eliminate the need for matrix inversion at every step of the
procedure.
Let us utilize the Matrix Inversion Lemma:

(A+BCD)"'=A'—A"'B(C"'+DA'B) 'DA"!

assuming that A = Pno1 ', B=x(N), C=1, and D =x"(N):
-1
Py = (PNfl_l + X(N)X(N)T>
-1

= Pu_; — Pn_ix(N) (I + x(N)TPN,lx(N)> x(N)TPy_,

Use this result to define Ky:

-1
Let us treat (I + x(N)"Py_ix(N )) as a “common denominator” in the above

expression, then

Ky = PN,IX(N){I 4 x(N) Py_ x(N) — x(N)TPN,lx(N)} (I + x(N)TPN,lx(N)) -
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or
Ky = Px_1x(N) (I + x(N)TPN_lx(N)) BN

Note that expression <> does not contain matrix inversion: 7 4+ x(N) Py_;x(N) is a
1 x 1 matrix!
Now, using result < let us rewrite

-1
Py = Py_; — Py_1x(N) (1 + x(N)TPN_lx(N)) x(N) TPy,
= PN—l — KNX(N)TPN_I or PN = (I — KNX(N)T>PN_1

Now the recursive parameter updating procedure (RLSM) can be defined as
follows:

-1
#1 Define Kalman gain: Ky = Pn_1x(N) (I + X(N)TPN,IX(N))
#2 Update parameters: Ay = An_; + Kn (y(N) - X(N)TAN, 1)
#3 Provide matrix P for the next step: Py = (I — KNX(N)T> Pnoi, N=1,23,.. ..

and its block-diagram is given below in Fig. 2.2.

INITIALIZATION: A, P,

l

&

Acquisition of x(N), y(N)

!

Define Kalman Gain
K, = Py x(N)(1+ x(N) Py x(N))

Update parameters

Ay=A+ KN(Y(N)_ X(N)TAY\—I)

l

Compute matrix P for the next step
P, = ([-Kx(N)")P,.,

Fig. 2.2 RLSM procedure flowchart
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It is well established that as the number of iterations approaches to infinity the
parameter estimates Ay converge to the solution of the matrix equation of the LSM
regardless of the initial conditions Ay and Py, i.e.

Hi‘o [AN—I +Kn (y(N) - X(N)TAN—I)} = IIFLI?O [(XNTXN)71 (XNTYN):|

In reality, especially when noise in the output is low, estimate Ay converges to the
solution of the LSM equation very fast for any initial conditions. But how can these
initial conditions be established?

Initial parameter estimates Ao are the “best guess value” that are based on
experience, intuition, preliminary experiments, or relevant equations of physics.
Often, without any adverse consequences, it is assumed that Ao = [0, 0,. . ., 0]". The
situation with the choice of matrix Py is more complex. It is often assumed that
Py =al, where o is a positive constant and I is a unity matrix of the appropriate
dimension. The choice of constant o has a profound effect on the convergence rate
of the RLSM procedure—Ilarger values of parameter o result in greater convergence
rates of the RLSM estimation (see Example 2.8 below). Note that should the input/
output data be contaminated with noise, a much greater “overshoot” could be
expected that potentially could crash the numerical process. Therefore, it is prac-
tical to test the procedure by choosing o =0.01, and if it would be found that a
greater o value could be “afforded”, the procedure should be tested with
oa=0.1, etc.

Estimation and Tracking It is known that for a large N> 1
Ty \— T
Ax = Ax_; + Ky (y(N) - x(N)TAN,l) ~ (Xn Xx) ' (Xx " Y)

This property has a quite important implication: estimates Ay are based on entire
arrays Xy and Yy regardless of how large they are. On one hand, it seems to be an
attractive property—utilization of large number of observations allows for “aver-
aging out” the measurement noise. But there is an equally important consideration:
most realistic processes exhibit parameter drift and their models, especially those
developed for control applications, must reflect not the entire history of the process,
but only its most current properties. The following graph in Fig. 2.3 provides an
illustration of this concept.

First, note that yM°P(N k) represents particular numerical values of the model
output calculated as YMOP(Nk)=x(k)'Ax where An=Xn"Xn) '(Xn"Yn),
k=1,2,3,..., Nis a discrete-time index, and N is the total number of observations
utilized for the estimation of model parameters and consequently for the computa-
tion of the variance of the modeling error GERRz(N). It could be realized the
variance of the error increases as N decreases due to the inability to “average out
noise”, and increases as N increases due to the inability of the model to reflect
current properties of the process that change during the observation period. Fortu-
nately, oprr”(N) has a minimum point, N°F", that clearly represents a rational
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1
oerr’ (N) = ﬁ k:l[Y(k) — yMop (Nak)]z

-

-

- . . .

H This period of observation presents a

= compromise between “averaging out noise”
s and avoiding the effects of parameter drift
b

-

-

-

Number of observation points N

™ Variance of the error X .
increases because the Vgnance of the‘ error increases because of the
ability to “average drift of process’ characteristics
noise out” decreased

>

Fig. 2.3 Variance vs number of observation points due to system parameter drift

compromise between two tendencies. Then a very important problem arises, how to
assure that the model parameters estimated by the RLSM would be primarily based
on the most recent NFT points and “forget” the impact of the preceding observa-
tions x(k), y(k), k=1,2,3,..., N°FT—12

This is achieved by the modification of the RLSM procedure by the introduction
of the “forgetting factor” §, 0 << 1:

#1 Define Kalman gain: Ky = Px_1x(N) (ﬂ + X(N)TPN,lx(N))
#2 Update parameters: Ay = Ax_1 + Ky (y(N) - X(N)TAN_l)
#3 Provide matrix P for the next step: Py = % (I — KNx(N)T)PN,l, N=1,23,....

It can be demonstrated that the above modification of the RLSM results in the
estimates that are dominated by the last M observations, where M is known as the
memory of the RLSM procedure, M = 1. Choosing f such thatM = ;= NOPT is

the way to respond to the above question. It converts the RLSM from being a
conventional estimation tool (=1 and M =

1l/5 =00) to a tracking tool, i.e. the
procedure that is capable of tracking time-varying properties of the process on the
basis of M =N°"T most recent process measurements.

Example 2.8 Investigation of the RLSM properties

The following CC code is utilized for generating the input, x(k), and output, y(k),
data k =1,2,3,.. .n, (note that random noise is introduced in the output variable):



2.3 Recursive Parameter Estimation 67

n=150;

p=(1,2,-3.6,8,-5);

p=diag(p) ;

x=randn(n, 5) +ones(n,5) *p;
y=x*(5,-4,3,2.7,-6)";
fori=l:n&y(i,1)=y(i,1)+.1*randn(1l,1)& end;

Then the RLSM with the forgetting factor is applied to estimate the “unknown”
parameters of the model (note that “b” is the forgetting factor):

p=.01*iden (5) ;

b=1;

a=(0,0,0,0,0)";

fori=1l:n & k=p*x(i,) " *(b+x(i,)*p*x(1,)’)" -1 &a=a+k*(y(i,1)-x(1i,)
*a)&;

aa(i,1l)=a(l,1)’ &p=(iden(5)-k*x(1i,)) *p/b & end;

aj;

(X7*x) "=1* (X*y) ;

plot (aa)

It can be seen that for comparison, the LSM-based estimates are being calcu-
lated, and the first component of the estimated parameters is plotted vs. the iteration
index

4.991 4.994 5
—3.990 —3.993 —4
Aiso = | 3.001 ABM — | 3003 ATRUE — | 3
2.697 2.697 2.7
—6.001 —6.004 —6
5.000
—4.001
For comparison, Ajgo = | 3.002
2.703
—5.997

One can conclude that 150 iterations results in the estimates that are practically
equivalent to the LSM estimates and are very close to the “true” parameter values.

The convergence of the estimate of the coefficient #1 is demonstrated below in
Fig. 2.4.

Now let us investigate the effect of the forgetting factor on “averaging out noise”
(using coefficient #1 of the model), as shown in Figs. 2.5 and 2.6.

Indeed, the increase of the forgetting factor leads to the increase of the memory
thus reducing the effect of noise on the convergence of the estimates (Fig. 2.7).

Let us consider a very practical approach for the selection of the numerical value
of the forgetting factor f. Assume that x(k), y(k),k =1,2,..., N> 1 represent input/
output measurements of a process that exhibits parameter drift. It is also assumed
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Fig. 2.6 Coefficient #1 convergence with forgetting factor 0.8



2.3 Recursive Parameter Estimation 69
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Fig. 2.7 Coefficient #1 convergence with forgetting factor 0.98

that measurements y(k), k=1,2,... are contaminated with noise. It is proposed to
select some value of the forgetting factor, = f;, run the RLSM procedure and
simultaneously use the following recursive procedure for computing the coefficient
of determination:

My (k) =My(k — 1)

ov2(0) = ox(k — 1) + (Y0 ~ My (K] — ox’(k — 1)
)

omop> (k) = omop2(k — 1) + %( {y(k) - x(k)TAk}2 — oMop (k - 1))
k

- UYZ(k) — GMODz (k)

n(k) =

oy*(k) |

where Ay, k=1,2,3,... are estimates of the model parameters generated by the
RLSM with the forgetting factor f = f3;.

Plotting 5(k) as a function of the iteration index k=1,2,3,... (see Example 2.9
below) reveals important insight on the selection of the forgetting factor:

1. In the situation when the forgetting factor is too small, the quality of the model
represented by the coefficient of determination increases very fast, but the
convergence of the RLSM is very much affected by noise because of the
inability to “average noise out”

2. In the situation when the forgetting factor is too large, the quality of the model
represented by the coefficient of determination improves slow and later even
decreases because the RLSM cannot keep up with the parameter drift

3. In the situation when the forgetting factor is just right, the quality of the model,
represented by the coefficient of determination, reaches and stays at its highest
value
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Properties of the RLSM Procedure

1. Under normal circumstances, the RLSM solution converges to the LSM, i.e. for
N>1

AN - ANfl + K(N) [y(N)—AN,lTX(N)} ~ (XNTXN)ilxNTYN

regardless of initial conditions A, and Py,

2. Noise in the input results in the biased parameter estimates

3. Noise in the output does not result in biased estimates. Estimation errors, caused
by the output noise, could be controlled by increasing the memory size of the
procedure, or by increasing the value of the forgetting factor.

4. The tracking ability of the RLSM procedure, i.e. the ability to generate accurate
estimates of the time-varying parameters of the process, can be increased by
reducing the memory size of the procedure, or by reducing the value of the
forgetting factor.

5. Excessive cross correlation between input variables prevents RLSM from con-
verging. This is the most common factor causing an RLSM procedure to fail.

Let us discuss the implications of property # 5. The Principal Component
Analysis addresses numerical problems caused by cross correlation between input
variables. It requires establishing the covariance matrix of the input vector, Kxx,
defining its modal matrix, M, and reformulating the parameter estimation problem
in terms of orthogonalized variables z:

B = (Zx"Zx) ' Zx"Yx

where Zy = XyM. While Zy is the array of N observations, particular observation
z(k) could be obtained from x(k) as follows: z(k) = M'x(k), k =1,2,. .. Moreover,
according to the PCA, some of the components of the vector z could be eliminated,
resulting in the input vector of lower dimension, Z . For example component z;,
could be eliminated because of the appropriate eigenvalue A; of matrix Kxx being
much smaller then other eigenvalues. Consequently the RLSM will be reduced to a
very reliable (because of dealing with orthogonalized input variables) and fast
(because of the reduced size of the problem) procedure:

Kx = Px_12 (N) (ﬂ +2(N)"Pyiz (N)) o
By = Bx_1 + Kn (y(N) " (N)TBN_l)

1
PN = (I ~Kn? (N)T)PN,I, and Ay = MBy, N= 1,23, ...

Example 2.9 Selection of the optimal memory of the RLSM procedure. The
following CC code presents the simulation study that performs this task:
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n=1000;
p=(1,2,-3.6,8,-5);
p=diag(p);
x=randn (n, 5)+ones(n,5) *p;
p=1*iden(5) ;
b=.999;
m=1/(1-b);

=(0,0,0,0,0)"
my=0 & vy=0 & ve=0;
g=10

for i=1:n &;

c(1 54+.2*g*i & c(2,1)=—4+g*.7*1 &;
3-g*.3*1 &c(4,1)=2.74+g*.2*1 &;
—64+g*.13*%1 &;

x(1,) *c+randn(l,1) &
k=p*x(i,) *(b+x(i,)*p*x(i,) ) "-1&a=a+k*(y(i,1)-x(i,)*a) &;
a(i,l)=a(l,1)’ &p=(iden(5)-k*x(1i,))*p/b &;
err=y(i,1l)-x(1i,)*a;
my=my+ (y(i,1)-my)/m& vy=vy+((y(i,1)-my)"2-vy)/m;
ve=ve+ (err"2-ve)/m&nu(i,1l)=(vy-ve) /vy & end;

c(3,
c (5,
y(i

’

1)
1)
1)
1)

plot (nu)

The results of this study, seen below in Fig. 2.8, indicate that the value of
forgetting factor, = .9, presents a compromise between the necessity to “average
noise out” and perform successful tracking of time-variant process parameters.

Convergence of the RLSM with different valies of the forgetting factor
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Fig. 2.8 RLSM convergence with different forgetting factors
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Exercise 2.2

Problem 1 Utilize MATLAB to generate input and output variables as follows
(k=1,2,...,500):
x1(k) =5+3-Sin(17 -k) + Sin (177 - k) + .3 - Sin (1771 - k)
x3(k) =1 — 2-Sin(91 - k) + Sin (191 - k) + .2 - Sin (999 - k)
x3(k) =3+ Sin (27 - k) + .5 - Sin (477 - k) + .1 - Sin (6771 - k)
y(k) =2-x1(k) +3-x2(k) — 0.4 - x3(k) + .5 - x1(k) - x3(k)
+x2(k)* + 0.2 - Cos(7671 - k) — 0.1 - Sin (17717 - k)

Pretend that the “true” model configuration is unknown to you and assume that
the model may include all linear and all second-order terms. Utilize LSM and the
coefficient of determination technique to obtain the simplest but sufficiently accu-
rate model. Document your work.

Problem 2 Implement RLSM with exponential forgetting in MATLAB. Test it by
using x;(k), x»(k), and x3(k) as per Problem 1 and

y(k) = 8x; (k) — 6x5(k) + 5x3(k) 4+ 0.2 - Cos(7671 - k) — 0.1 - Sin (17717 - k),
k=12,...500

0
Assume p=1.,P(0) =.5*Tand A(0) = | O | . Plot the resultant parameter estimates.
0

Check if parameters Ay converge to the solution of the LSM problem. Compute the
coefficient of determination of the “final” model yMOD(k) = XT(k)A500

Problem 3 Redefine y(k) to emulate a process with parameter drift

y(k) = [8 + .08K]x; (k) — [6 — .04k]x2(K) + [5 + .02K]x3(k) + 0.2 - Cos(7671 - k)
—0.1-Sin (17717 - k),

k=1,2,...500
0
Assume B=1., P(0) =.5*T and A(0)= | O | . Plot the resultant parameter estimates
0

and the “true” time-dependent parameters. Compute the coefficient of determina-
tion of the “final” model yMOD(k) =x"(K)Aso0, compare its value with the one
obtained in Problem 2.

Problem 4 Redo Problem 3 with the forgetting factor < 1. Plot the time-
dependent “true” coefficients of the model and their RLSM estimates. Choose the
optimal value of the forgetting factor that allows for the best tracking of the time-
dependent “true” parameters.
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2.4 Non-parametric Models. Cluster Analysis

Developing a Cluster Model Cluster analysis is a group of statistical techniques
facilitating the detection of informative components of what could be a very
extensive database. It is clear that this task cannot be accomplished without
relevance to some decision-making or a classification problem. We will visualize
the database as a combination of realizations of real status variables, X, and a binary
class indicator, Q:

{X(k),0(k)} = {x1(k), x2(k), x3(k), - .., xa k), Q(k) } (2.1)

where k=1,2,3,...,N is the realization index, and Q(k) can have only two
alternative values, “a” or “b”. Then the classification rule is established on the
basis of some function defined in the X space, F[X], such that, generally, F[X] < 0
for the majority of realizations when Q(k) = “"a” and F[X] > O for the majority of

realizations when Q(k) = “b”, or in terms of conditional probabilities,
P{Fk] <O Q[k] = "a"} = P{F[k] <0 |Q[k] = "b"} (2.2)

where P{A/B} denotes the probability of event A subject to the occurrence of
event B.

It is also understood that the classification problem does not have a unique solution,
and there is a wide class of functions F[X] that could satisfy condition (2.2) to a
greater or a lesser extent. A simplification of the classification rule requires reduc-
ing the number of the components of vector X to the necessary minimum by
choosing the smallest group of informative components that, in combination,
allow for achieving reliable classification.

Selection of the informative components implies that contributions of particular
groups of components of vector X to the classification are to be evaluated, and the
most contributive group(s) be chosen for the definition of the classification rule.
One can realize that in order to achieve the required discrimination power of the
selection procedure, the groups must be small, and in order to consider combined
effects of several variables must include at least two variables. Consider all possible
combinations of two variables taken out of n, where 7 is the dimension of vector X.
It could be said that the classification problem, originally defined in the space X,
will now be considered on particular two-dimensional subspaces,
xiMwj, where i,j =1,2, ...,n, and i # j.

Assume that the entire array of points, marked as “a” or “b”, defined in the -
dimensional space X by the database (2.1), is projected on particular
two-dimensional subspaces (planes). Let us visualize possible distributions of
these projections. Figure A below in Fig. 2.9 illustrates a subspace that has no
potential for the development of a classification rule due to the fact that points
marked as “a” and “b” are distributed quite uniformly in this plane. The subspace of
Figure B indicates a certain degree of separation between points “a” and “b” and,
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Fig. 2.9 Cluster analysis examples

therefore, should be viewed as informative. Figures D, E, F also illustrate possible
cases of separation pattern in informative subspaces.

Consider the choice of some combination of the most informative
two-dimensional subspaces x; ;. This task could be performed by computing
some informativity measure for every combination of two variables. The weighted

[Pt}

average distance between points “a” and “b” in the particular subspaces,
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N¢ NP

Py = ZZ% ) =5t ) + [ge(k) ()]

Gfk 1 m=

where o; are o; are standard deviations of variables x; and x; provides such a
measure.

As shown in Figures D, E, F, a correlation ellipse, properly defined in the
particular informative subspace, presents an ideal choice of the separating function.
Figure C indicates that size, shape, position, and orientation of such an ellipse are
defined by five parameters: coordinates of two focal points, [a, 1], [z, f»] and the
constant J, such that for any points of the ellipse, [x;,x;], the following equation
holds,

\/(xi — 0!1) ﬂl + \/ — az ﬂz) = (2.3)

Similarly, equations

\/(x,- — a1)2 + (xj —ﬁl 2 + \/(xi — a2)2 + (x- — ﬂ2)2 <6 (2.3a)
Ve —a) + (=5 (- @) + (- ) - (2.3)

represent any point [x;,x;] within and outside the ellipse.

Consider the problem of the optimal definition of parameters [a1, 1, &2, 52, 8] of
a correlation ellipse for a particular separation pattern in the plane comprising
variables x; and x;. According to condition (2.2), this problem could be interpreted
as the minimization of a loss function that includes a “penalty” for any point “a”
outside the ellipse, R“(k) = R*[x;%(k), x;(k)], and a “penalty” for any point “b”

within the ellipse, R”(k) = R”[x;(k), x;*(k)], i.e.

N4

L(ay,B1,02,$,,8) = Y R(k)+ > _R(k) (24)
k=1 k=1

where N and N” are number of points “a” and “b” in the database. Intuitively, these
penalties are defined as follows:

0, if point [x;*(k), x;(k)] satisfies condition (3a)
Rz\(k) — 1
(i) — P+ [x2(0) -

5, if point [x;*(k), x;* (k)] satisfies condition (3b)
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and
0, if point [x;®(k),x;®(k)] satisfies condition (3b)
R°(k) = !

; if point [x;"(k),x;"(k)] satisfies condition (3a)
[0 = T+ [xP09)

2>

where [p;, 4] and [yib, yjb ] are coordinates of the geometric centers of points “a”
and points “b” distributed in the plain x;Nx;. Such a choice of penalty functions
places highest emphasis on the points in the immediate vicinity of geometric
centers.

It could be seen that the loss function (2.4) is not only nonlinear but also
discontinuous with respect to the unknown parameters of the separation ellipse
[a1, B1, a2, 2, 0]. Therefore our attempt to obtain the numerical values of these
parameters by minimizing this loss function leads to a highly nonlinear multivariable
optimization problem that does not have an analytical solution. Moreover, finding its
global solution numerically would also be a very difficult task. Such an optimization
problem presents an ideal application for a genetic optimization procedure that
combines the advantages of both direct and random search. Application of genetic
algorithms will be considered later in this course. It will result in the definition of an
ellipse that indeed contains the largest possible number of points “a”, N“, and the
smallest possible number of points “b”, N*”. Then the “goodness” of the ellipse-based
separating rule could be characterized by the following two quantities:

N Nah

Pif{aja} =~ N and P;,{a/b} =~ G

(2.5)

representing the probabilities of a point “a” and a point “b” to be found within the
ellipse, see Fig. 2.4.

Should we assume that the obtained classification rule, reflecting some compro-
mise solution, could not be further improved? In our experience an alternative
classification rule could be obtained by establishing an ellipse containing as many
points “b”, N??, and as few points “a”, N**, as possible. This task is accomplished
by the appropriate modification of the penalty functions. The resultant separating
rule is characterized by:

ba Nbb
and Pom{a/b} ~1-— W (26)

N
Poifajal =1 — N
representing the probabilities of a point “a” and a point “b” to be found outside the ellipse,
see Fig. 2.5. The final selection of a separating rule implies the comparison of ratios

Pin Pou

Pin = M and Pour = M (27)
Pi,{a/b} P,.{a/b}

obtained for the “inside the ellipse” and “outside the ellipse” rules, and choosing the

rule that results in the largest p value.
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Finally, the proposed procedure implies

. Definition of all two-dimensional subspaces of the space X

. Computation of the informativity measure for every subspace x;NXx;

. Selection of a number M of the most informative subspaces

. Selecting one of the M informative subspaces

. Establishing the “inside the ellipse” classification rule by the application of a
genetic optimization procedure, and computation of the p;, value for this subspace

6. Establishing the “outside the ellipse” classification rule by the application of a

genetic optimization procedure, and computation of the p,,,, value for this subspace
7. Selection of the classification rule that has the largest p value for this subspace,
and return to Step 4, until the list of informative subspaces will be exhausted.

DN AW N =

Outcome Prediction Based on a Cluster Model Cluster analysis of the database
results in the extraction and formalized representation of knowledge of various
effects of the process outcome that constitutes a mathematical model of a special
type. This model can be used for the prediction of the process outcome. The
following mathematical framework is suggested for the attack detection scheme.

Assume that the preliminary cluster analysis utilizing the informativity criterion
has resulted in the set of M two-dimensional informative subspaces. Then the set of
M respective, either “inside the ellipse” or “outside the ellipse” classification rules,
Ri[X(k)],i=1,2,3,...M, has been developed. One can realize that each rule utilizes
only those two components of vector X that constitute the ith informative subspace.
For simplicity, assume that each classification rule is designed to return a negative
value for the majority of points X(k) marked by an “a”. It is expected that every
vector X, representing the outcome “a”, and every vector X”, representing the
outcome “b”, would satisfy only some classification rules but not all of them.
Consider the following random events:

Ey: RiX(K)] <0 NRy[X(K)] <0 N R3[X(k)] <0 N Ry[X(K)]
<0N ... Ry[X(k)] <0

Ey: Ri[X(K)] >0 N Re[X (k)] <0 N R3[X(k)] <0 N Ry[X (k)]
<0N ... Ry[X(k)] <0

E3: Ri[X(K)] <0 N Ro[X(K)] >0 N R3[X(k)] <0 N Ry[X(k)]
<0 N ... Ry[X(k)] <0
<0N ... Ryl[X(k)] <0

Es: Ri[X(k)] <0 N Ro[X(k)] <0 N R3[X(k)] >0 N Ry[X (k)]
<0N ... Ry[X(k)] <0

Er: RiX(K)] >0 N RX(K)] >0 N Ry[X(K)] >0 N R[X (k)]
>0 N ... Ry[X(k)] >0 (2.8)
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representing specific combinations of classification rules satisfied by every vector
X(k). First, note that L =2". Probabilities of events (2.8), evaluated separately for
vectors X and X” , constitute the following set of conditional probabilities instru-
mental for the outcome assessment procedure:

P{E:/a} and P{E;/b}, i=1,2,....L (2.9)

Now consider the utilization of the cluster model for the outcome assessment.
Assume that the probability of the outcome “a” has some initial value, established
according to the existing statistics, y[0], and therefore the probability of the
outcome “b” is A[0] = 1 — y[0].

Assume that vector X (k) = [x(k),x2(k),x3(k), ...,x,(k)] represents the set of
the most process measurements. Numerical values of components of this vector,
applied to the classification rules R;/X], i =1,2,...,M, results in a particular com-
bination of numerical values

Ri[X(k)], Ro[X(k)], Rs[X(k)], ... Ru[X(k)]

that could be identified as the occurrence of one of the events (2.8), for example, E;
Now the availability of conditional probabilities (2.9) facilitates the application of
Bayesian approach for the re-evaluation of the probability of the outcome “a”
(i.e. the probability of the point X(k) to be marked by an “a”) subject to the
occurrence of the event Ej, P{a/E;}. One can realize that unconditional probabil-

ities, P{a} + P{b} = 1, therefore

P{a/Ej}P{E;} = P{E;/a}P{a} and P{E;} = P{E;/a}P{a} + P{E;/b}P{b},
and the required probability can be expressed as,

P{E;/a}P{a}

P{E;/a}P{a} + P{E;/b}P{b}

_ 7[0] 'P{Ej/a}

P{a/E;} =

Computation (2.10) results in an updated value of the probability of attack, P{a/
E;} that could be compared against some arbitrary defined threshold value. A
message indicating that the expected outcome of the process is “a” could be issued
if the probability of “a” exceeds the threshold. This completes one cycle of the

proposed procedure. At the next cycle, the “prior” probabilities of the outcome “a
and the outcome “b” are defined as,

y[k] = P{a/E;} and A[k] =1 — P{a/E;}

and the new value of the vector,
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X(k4+1) = [e(k4+ 1),k +1),x3(k + 1), ..., x,(k 4+ 1)]

is to be analyzed with the consequent computation of probabilities
y[k 4+ 1] and Ak + 1]. This procedure, intended for continuous real-time applica-
tion, is capable of providing timely and objective information to the operator
providing mathematically justified support of his/her decisions.

Example 2.10 Application of the clustering approach. Consider a data array of
1000 measurements of the input and output variables of a complex industrial
process. Each row of this array consists of the input vector X(k)=[x;(k),
X2(K),. . .x15(k)]" and the corresponding output variable y(k), k=1,2,...1000 is
the measurement index. The first 10 rows of the array could be seen below:

0.242726997 0.512632787 0.818820655 0.91894865 0.769801617 0.0557382442 0.792608202
0.365868866 0.158111617 0.381986767 0.0516359918 0.846051693 0.590528488
0.0123677235 0.864344776 0.6

0.0426672176 0.107910089 0.644807339 0.276805937 0.277515411 0.201748148 0.78121233
0.835532427 0.793120861 0.982161403 0.186749861 0.704956293 0.200024605 0.813628316
0.651033878 0.3

0.9261868 0.42181316 0.413958639 0.403003871 0.286023498 0.197082624 0.367629111
0.742382228 0.21803984 0.595475078 0.149892643 0.245591044 0.64862299 0.406341761
0.385907948 0.3

0.954634905 0.548775196 0.265029967 0.358599812 0.987211764 0.0684124753 0.80856663
0.57912004 0.270609707 0.137545109 0.720605493 0.216057882 0.284717888 0.25370416
0.00561538851 0.6

0.37790516 0.451865882 0.510103941 0.316611052 0.282071263 0.771665752 0.386009216
0.656956315 0.464612007 0.734265924 0.807381988 0.669486225 0.0551473089 0.860757768
0.755808294 0.3

0.870281875 0.827693462 0.0444668382 0.354088038 0.157880038 0.489894211 0.65190345
0.541297495 0.586609721 0.149126768 0.3736476 0.89600569 0.167734399 0.112052664
0.269221336 0.3

0.803052962 0.911425292 0.325179785 0.296805978 0.41806373 0.397285581 0.178858578
0.076258339 0.673950911 0.0937418342 0.518537939 0.0672319382 0.967123985
0.452468336 0.635296941 0.3

0.436127335 0.992104292 0.297061145 0.706475794 0.739071906 0.581460834 0.611842692
0.240244925 0.796370625 0.601304591 0.126385853 0.167113319 0.673507452 0.639618158
0.0626505017 0.6

0.967029989 0.873083532 0.915036321 0.0154176317 0.124073751 0.307632506 0.379356772
0.849460721 0.886274338 0.6125983 0.940086484 0.0336527638 0.602025151 0.236870512
0.0828597248 0.3

0.623347759 0.605348408 0.091186963 0.579296052 0.228726849 0.212254003 0.352962255
0.236755803 0.154763222 0.105398573 0.433777779 0.50333643 0.575454414 0.662479639
0.295345724 0.3

Note that the output variable y(k) has only two distinct values, .3 and .6 that for
all practical purposes could be interpreted as A and B correspondingly.

To discover unknown internal properties of the process leading to the outcome A
or B, we will use cluster analysis implemented in computer program CLUSTER by
the author (1995). This program extracts the prespecified number of the most
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informative subspaces and provides a very convincing visualization of the cluster-
ing phenomenon. The following is the printout of the program CLUSTER featuring
six subspaces formed by input variables

x4&X5 - informativity criterion = 5.243, x4&X¢ - informativity criterion = 5.050
x1&X4 - informativity criterion = 5.045, x,&x4 - informativity criterion = 5.043
x4&X 10 - informativity criterion = 5.041, x4&Xg - informativity criterion = 5.037

[eleloJoloNoJololoJololoJololoJoloNoNoNal

INFORMATIVE SUBSPASE # 1: X( 4) & X( 5) => CRITERION = 5.243
X( 9

.0506>
.1006>
.1505>
.2005>
.2504>
.3004>
.3503>
.4002>
.4502>
.5001>
.5501>
.6000>
.6500>
.6999>
. 7499>
.7998>
.8497>
.8997>
.9496>
.9996>

INFORMATIVE SUBSPASE # 2: X( 4) & X( 9) => CRITERION = 5.050

XC 4

[eJoYoNoJoloJololoJoJololofoloJoJolotoNo]

.0506>
.1006>
.1505>
.2005>
.2504>
.3004>
.3503>
.4002>
.4502>
.5001>
.5501>
.6000>
.6500>
.6999>
.7499>
.7998>
.8497>
.8997>
.9496>
.9996>

0.1953E-02<--=-=m=-m-mmmmm- () P — >0.9993E+00

B BB BBB BB B B BBBX BBB B B B B BABB B BBBB BBBBB
B BB BB B AAB BB A B BB BBA B BBBX B B BBBB B AXB
B B B B BXBBXBXBBB BBBBBBBBB XB BBXBBBBXAB XA BBXX
B BB BBB BBBB B B BBA ABBBB BB A AB XA B
BB B BBB B BBB B BB BB AX A B BBAA XAX B
BBB B BB B BBBBB B B BA BBBB BBBXB B XA B AAXAAXAX
BB BB BB BB BX B BBB X XA A AXBA XX AA A AAAA
B BBB B B B BBBB BB B BBX BXAAB A BAA AB AAB
BB BB B B BB BBB X BBB BA A A AAA AA A
BB BB B X AXAXAB AB A B AA AA AA AAA
A AA
A

BBBBB A BA AAA A A AABAA AA

BBX B BB A BA AXB A AA A AAAAAA
BB AA A AAA A A AAAAAAA

B X B A A A AAA AA AAAAA AA A AAAAAAA

AXA AA A AA AAA AA A A A AA AAA AAAAAAAA A A

AAAAA AA A AAA AA  AA AAAAA A AAA A AAAAAAA A

A A A A AAA AAAAAAAA A AAA AAA AAAA AAAAA AA

AA

0.1325E-02<--===-=-=mmmmmmm P ) L —— >0.9999E+00

BB ABBBB BBBBBB BB BB XBB BB BB BB BBB BB B
A B BXBBB BB B B B BBBBBB B A B XBBABBB XBBA BBB
BBB X B BA BBBBB ABBB BB XABB B BB BBB ABXXABBBABB BBAXB
XB ABB XB A BB BBBABBBB B BBBBB AX BX XB
B BBXB B BA B B B AB BB B BB BB B AX A B A
BBBB BXB BBB BBB X B B BBBBA BB ABBX AB BXAA XB X AB
B XBBB BBB B BXBA XBB B A A B XA B A XA XXA
B B AXBA XXBB BBA A B AB B BB B
B XBBX BAB B B XAAB B B B BAA AXA X
B BAB X ABAAA A X BA X A AAAAB AA
ABB AA B B XXA B AAAA AX ABX ABA A
AB A BAAX AXX B A AX AXAAXAA A AB XA A A
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INFORMATIVE SUBSPASE # 3: X( 1) & X( 4) => CRITERION = 5.045
X( 1 0.681l1E-03<=====mmmmmme———=- X( 4)===mmmmmmmcm———s >0.9996E+00
0.0507>|BB X BBBB A XXB B BABEABE AB AA A XA A AAAA AA
0.1006> BEE EBBBAAB BX BEBA B X AXA AA A AAA AA  AA A
0.1506> B BBXXBB BEB AABB B A AX AAA AA AAA AAA AA A A
0.2006>|BBE BB BEB BBAB A BXA XA AA A AA A A AA AAAA A
0.2505>| BBEBBEBBE BBB B BAXAAB BXBB XA X A AAAA A A AAAAA
0.3005>|BXEB BXBB BB AB BABBEBB A A AAABAA AAA AAA  AAA A AAAA
0.3504>|B AXB BB XBE BB BB X AB BAXBA A AA AA AAAA AAA A A A
0.4004>|B B X BBEBB ABEX AB X BEB A AAX AAA A AA AAAA  AA
0.4504>| B X BAAAX BAA XX BA BBA BA AAA AAA BA A X A AA AAAA
0.5003>| B A BAA B AA AX ABA A A AAA A AA A AA
0.5503>|BB B BEBBB BXXB A A A BA ABXX AAA AA AAA A A A AA
0.6003>|BB B BEBEB B BB BAAA XAAA A AAA AA A A AA AA A
0.6502>|A BB XAX B A B BEBAA B A AAAB AAAAAAA AAAAAAA A AA AA
0.7002> BEBE B A B BB A A BBX AAAB ABE A A AAAAAAAA A AA  AA
0.7501>| BBB B BB ABX BBA AX AX A AA  AABAA A AAAAA AAA AA
0.8001>|BBEB BE BE BEB B BBEB XBE B A A B AABAAA AAAAAAAAA AA
0.8501>|B BEBE BXBXA B BB B A B A BB AA A AAA A AA A AAA
0.9000> B AE B B AAB BAAB B BA ABBA AAAA AAAA A A AA A AA
0.9500>|BBE B X B BA XXBAE AA AB AA A AAAAAA A A A A
0.9999> |BEBXBBXBX B X BX A B AX X AAA AAAAA A A AA AA AAAAA
0.6811E-03<-------=-----c= X( 4)-=-----mmmmmm - >0.9996E+00
INFORMATIVE SUBSPASE # 4: X( 2) & X( 4) => CRITERION = 5.043
X( 2) 0.6811E-03<--------=-------—- X( 4)--=--==----—————- >0.9996E+00
0.0501>|B B B BEBBXABB B B BAAABX XBBBA AA B AAAAA AA AA AA A
0.1001>| B B B AB A BAXBA XAB X BB A AA A A A AAA AAA A AAA
0.1501>|BB B BEB B EBXABAAAEB BA AAXA AAAA A AA AAA A A A
0.2000>| BBBB A X BEXE BBA A A AA XAAA XX A AAAAAA A A AAAA
0.2500>|BBBXBBBXX B BBB AB X BAABA AA BAA ABA AAAAA AA AA A AA
0.3000>|BB BBBB BX BBBBX AB A B AB AAA A AAA AAAA  AA A AAAA
0.3499>|B B BX B B ABB B ABBE ABB A AA A AAA A AAAAA AAA AA A
0.3999>| B XBA BBEXB XX BB B BA XABAAA XAAAAA AA AA AAA AAA  AA
0.4499>| BE EBBE BB B X BXB A BAX XX AA AAA A AA A  AAAAAAAAAA A
0.4998>| BB B BEBB BB XB BA B A AAABAAX AAA AA A A A A
0.5498> X B AB AAAX BB XBA XA A A A A AAAAA
0.5998>|BBE B BAX AAB ABBAB XBB A A A AAAA A AAA  AA AAAAAAA
0.6497> BE BBXB XBBA BB BA B AX AA AA AAAA AAAAAAAA
0.6997>|B B B BX BB A XB B AAA AXXX AA AAA AAAAAA A AA
0.7497>|B B BE B B ABA AB XB B BA X AABA A AA AXAAAAAA A A
0.7996> BX BXEBBB AABBBB B X B BE AAABA AA AA AA AA AAAAAAA A AA
0.8496>|B BEBABBBEXB B BB BBBX A A AAA AAAA AAAAAA AAA A
0.8996>|BB BXBAB B BBAA B B AX A A AABA A AAAA AAAA AA A
0.9495> | XAE EB BEB B EBEAEXEBA ABA A A AA AA AA AA A A A
0.9995> |BBEB BBBE B X ABAB XB B XXXAAA A A AA A A AA A AA AAAA
0.6811E-03<=====mmmeemennn== G B >0.9996E+00
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INFORMATIVE SUBSPASE # 5: X( 4) & X(10) => CRITERION = 5.041

XC

.0506>
.1006>
.1505>
.2005>
.2504>
.3004>
.3503>
.4002>
.4502>
.5001>
.5501>
.6000>
.6500>
.6999>
.7499>
.7998>
.8497>
.8997>
.9496>
.9996>

[eJoloJoloJoloJololoJoloJololofolofotoNe]

0.9187E-03<-================ X(10)==mmmmmmmmmmmmmm >0.9983E+00

B BB BBBBB BB BBBBBXBB B BBBB BBBBB B B BBX B
B B B BBB BBBBBBBB AB XBBBBB BB B BXBBAB XB B
BB B B B B BBBBBBAB B BXBXB BXBAB AXABB BXBBBBBBABAB BA
BBBBB BB A BBBBBBBA A BBABB B BX BX X BB
B B X A BB BB B B A BX BABBAXA BB X B BBB
BBBABBBB BX ABXB XABBX ABXB X B B X B B XBAAXBBBBX
B AABX B B B XAABB XA B A XA X BA A ABB B X BXBA BB
XBXBA ABBBBBX B X BABX B A XX AB B B BBBAAB
A XX BBB A X A BABX BBAA X AXA B AX B BBA B
AA XAB A B AX BB AB A BA AX XB BAAX A A AA
A AA AAAA AXBAAAA AAAX A A BA A B A X BX BAAAA B
AA A A AAB BXAAA A BB AAXB AAAA AAX A BAAA
A A AAAA A AAAAAA XAAAAAAAXA A AA A AA
AA A A AAAAA A AAAA AAAAA AAA BA AABA A AA
AA  AAAA AA  AAAAA A AA AA AAA A AAAB A AAAA
AAA AAAAAAAAAAAAA A AAAA AAA AAAAA AAA AA A AA A

INFORMATIVE SUBSPASE # 6: X( 4) & X( 8) => CRITERION = 5.037

X9

.0506>
.1006>
.1505>
.2005>
.2504>
.3004>
.3503>
.4002>
.4502>
.5001>
.5501>
.6000>
.6500>
.6999>
.7499>
.7998>
.8497>
.8997>
.9496>
.9996>

[efoNoloJoJloloJotoJololoJloloJoloJololoNal

0.1869E-02<-=------=-=—=—--- N L T — >0.9999E+00

BBBB BBB BB BA BB BBBBBB XBB BBB B BBBB BBBBB B
XBBABB XB BBB B B B BAB BB B BABBB X B BBB B BBA
BBX BBBB B B ABBBBAB B BABB B BXXBAXX B BB B X AB BB A B
B B B XAB B B BB X B B BXB B BBBXBA AB B B B
X AXBB BB B BBB B BB B X BXAA BBB
A BBBB B BXBAX AX XB X B AXA B XA BB BX BBBBX BB
BA X BBXBA AA AB XX A B AX A X AX B XBBXBAX
B BBB B AB X A XXB A ABBBB BXABBAB B B B AAXA A BBB
ABB B AAB AABX X AA A B X BAX BBBB A XB B B
B A A AAAABAB AX B AA ABAA B XXAAA A ABB
BA A A AXB AB A XAA AXA A B A A AA A AAABA
B AAAAB ABABA A X X A B X
AA A
A

> X

>

px>
-
eI
>>>>

>
>

A
AA

z Fx»

AAAA
AAAA

<
:
3

> % 3
2
B
E»
:

3¢
L5
§>
i
:
3
3

3
:
2
3
32
:,
z

0.

[

869E-02<-~=~m=mmmmmmmmm PP L — >0.9999E+00

The results of cluster analysis provide important insight into the understanding
of the nature of the process, and most important, enable the process operator to
establish the recommended “operational window” in terms of the process variables.
In addition, as shown below it facilitates the predicting of the process outcome.

Example 2.11 Prediction of the process outcome based on the cluster analysis. The
clustering pattern featured in Example 2.10 indicates that separating rules could be
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defined simply by straight lines rather than ellipses. A straight line,
X1+ ax; 4+ ag=0, is to be defined in each subspace in such a way that the majority
of points A and B be located on different sides of this line, i.e. x; + a1x, + a¢ > 0 for
the majority of coordinates of points A and x| + a;x, + ag < 0 for the majority of
coordinates of points B. The development of such lines for the chosen subspaces
presents a simple manual task.

For simplicity, consider the first three subspaces of the previous example formed
by process variables x4&Xs, X4&Xg and x;&x4. First consider the subspace x,&Xxs.
As shown in the figure below, the separating line x4 + a;x5 + ao =0 can be drawn
by inspection:

X( 4) 0.1953E-02<-=-=========-m-uuu- X( 5)-—=—==-—————————- >0.9993E+00
0.0506> E BE BEE BBE BE B BEBEX BBE B B B B BABE BE BEBE BEBBEB
0.1006>|B BEBEEE B AABEBEB A B BB BBA B BEEX B B BEBE B AXB
0.1505> B B B B BXBEXBXEEE BEBBEBEBEB XB BBEXBBBBEXAB XA BRX
0.2005>|B B B BBE BBBE B B B BA A BBB B BB AR XA
0.2504>|BB B BBB B BBB B BB BB AX A BEAA XAX B
0.3004>|BBB B BB B EBEEE B BE BA BBBE BBBXB _E A B AAXAAXAX
0.3503>|BB BB BB BB BEX B BBB X XA A~AXBA XX AA A AA A A
0.4002>|8 BBB B B B BBBB BB B BBX B AAB—A BAA AB AAEB A AAAA
0.4502>|BB BB B B BB BBB X BEE—BA A A AAA AA A A A A A AA
0. BEB BB B AXAE AB A B AA AA AA AAA A A AA A
0. A A AABAA AA A AA A AAAAA A AA AAA
0. AA A AAAAAA A AAA A A A AAA
0. AAAA A A A A A AA AAAAAAA AA
0. AAAAA AA A AAAAAAA A AAA AAAA AA
0 AA A AAA AA A A A AA AAA AAAAAAAA A A A
0.7998> | AAAAA AA A AAA AA  AA AAAAA A AAA A AAAAAAA A AAAA
0.8497>| A A A A  AAA AAAAAAAA A AAA  AAA AAAA AAAAA AA AA A
0.8997>|A A AAAAAAA A A AAA AA A A A A AA A AAA A AA AA A
0.9496> A A A AAAA AA AA A AAAAAAAMA A A A AAAA AA AAAAA
0.9996>|AA A A AAA AAAAA AA AA A AAAAAAAA AAAA A AA
0.1953E-02<-=======m—memuuun X( 5)===mmmmmmm e >0.9993E+00
Point 1 coordinates: x,=.7, x;=0 Point 2 coordinates: x,=.15, x;=1.0

This results in the computation of coefficients a; and ag based on equations:

X4+ ayxs +ap=0 or
TJ+a-0+ap=0 —ay=-.7
AS5+a1—7=0 —a =.55

Now perform the same task for subspace x4&Xo, see the figure below. The equations
are:

X4 +aixg +ag=0 or
b6+a-04+4ap=0 —ay=-.6
.3+a1—.6:0 —>611:.3



84 2 Mathematical Description of Manufacturing Processes

X( 4 0.1325E-02<~=-=========mmmuu= X( 9)-====mmmmmmm e >0.9999E+00
0.0506> BB ABBBE BEBEBB BB BB XBBE BB BB BB BEB BB B
0.1006>|A B BXBBEB BB B B B BEBEEBB B A B XBBABBB XEBA BEBB
0.1505> |BEBB X B BA BEBEB ABBB BE XABE B BB BBB ABXXABBBAEB BBAXB
0.2005> XB ABB XB A EE BBBAEBBBE B BEBBB AX BX XB
0.2504>|B BBEXB B BA B B B AB BE B BE BB B AX A B A
0.3004>|BBBE BXE BBB BBB X B B BBBBA BB ABBX AB BXAA X
0.3503>|B XBBB BBB B BXBA XBB B A A B XA XXA
0.4002>| B B AXBA XXBB BEA A B AB B XXXB BB B BABB A
0.4502>|B XBBX BAB B B XAA B BAA AXA X AA A AB BAX
0.5001> B BAB X AB BA X A AAAAB AA X A ABAXA
0. B AAAA AX ABX ABA A AXA AA AA A A
0. BAAX AXX B A AX AXAAXAA A AB XA A A AAA AA AA A AA
: AA AAXAA X AA A A  AAAAAAAAAA AA A AA AAA A
0.6999>|X AAAAAA AA B X A AAA A AAAAAA  AA AA AAAA A AAA AA A A
0.7499>| X A AA AAAAA A AA A AAAAA A AA A AA A AA AA AA
0.7998>| AAAA A AA AA AAA  AAA AAA AA AA AA A AA A A AA AAAAAAAA
0.8497>| A AAA A AAAAA AAA A AA A A AAAA AAAA AAAA AA A AAA
0.8997>|AA AA A A A A AAA A AAAA AAA AA A AAA A AAAAA
0.9496> AA AA A A A A AAAAAAA  AA A A AAAAAAA AA AAAA A
0.9996> A AAA A AA AA A A AAAA AA A AAAA AAA A A AA A A
0.1325E-02<~====mmmmcmccnacu= X( 9)-=mmmmmmm e >0.9999E+00
Point 1 coordinates: x,=.6, X,=0 Point 2 coordinates: x,=.3, x,=1.0

Finally, the analysis of the third chosen subspace x;&x4 is as follows:

X( 1) ]0.6811E-03<----============= UG ) L — >0.9996E+00

.7501>| BBB B BB ABX BBA AX AX A AA  AABAA A AAAAA AAA AA

.8001>|BBBB BB B BBB B EBBB XBB B A A B AABAAA AAAAAAAAA AA
.8501>|B BBB BXBXA B AAA
.9000> E AB BB
.9500>|BBB B X B
.9999> |BBBXBBXBX

B A B ABB AA A AAA A AA A

B BAAE B BA  ABBA AAAA AAAA A A AA A AA
BA XXBAB AA AB AA A AAAAAA A A A A
X BX A B AX X AAA AAAAA A A AA AA AAAAA

0.0507>|BB X BBBB A XXB B BABBAB AB A XA A AAAA AA
0.1006> BEE BEBBAAB BX BBBA B X AA A AAA  AA AA A
0.1506> B BBXXBB BBB AAEB B A AX AA AAA  AAA AA A A
0.2006>|BBB BB BEE BEBAB A BXA XA/ AA AAA AA AA AAAA A
0.2505>| BBBBBBBB BBB B BAXAAB BXBB/ XA X A AAAA A A AAAAA
0.3005>|BXBB BXBB BB AB BABBEB A AAABAA AAA AAA  AAA A AAAA
0.3504>|B AXB BB XB BB BB X BAXBA A AA AA AAAA AAA A A A
0.4004>|B B X BBBBB ABX AB X BBB/A AAX AAA A AA AAAA  AA
0.4504>| B X BAAAX BAA XX BA BBA/BA AAA AAA BA A X A AA AAAA
0.5003>| B A BAA B AA AX ABA A A AAA A AA A AA
0.5503>|BB B BEBEBB BXXBE AA A BA ABXX AAA AA AAA A A A AA
0.6003>|BB B BEBB BAAA XAAA A AAA AA A A AA AA A
0.6502>|A BB XAX BE A BE/BEBAA B A AAAE AAAAAAA AAAAAAA A  AA AA
0.7002> EBE B A B BB A/A BBX AAAE AB A A AAAAAAAA A AA  AA
0

0

0

0

0

0

TSR T L A — ) L — >0.9996E+00

Point 1 coordinates: x,=1, x,=.2 Point 2 coordinates: x,=.05, x,=.6
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x1—|—a1X4+a0:0 or
1.04+a;-24ay=0
O5+a-6+ay=0 —a =2.375
1.04+2375-24+ay=0 —a9g=—1475

Now, the existence of the separating conditions, enables us to subject the original
data array X(k) = [x1(k), x2(k),.. .xls(k)]T, y(k), k=1,2,...1000, to probabilistic
analysis by using program ANALYST written by V. Skormin (2015). This analysis
implies

— The calculation of probabilities of occurrence of two possible outcomes of the
process P(A) and P(B),

— The detection of the occurrence of events E|, E,, E5, E,, Es, Es, E;, Eg for
each measurement of process variables by computing the following functions for
eachk=1,2,...,1000

@1(.) = xa(.) + arxs(.) + ao
@2(.) = x4(.) + arxo(.) +ao
o3(.) = x1(.) + a1xa(.) + ao

then E; is defined as ¢; <0 & ¢, <0 & ¢3 <0

E;isdefinedasp; <0 & ¢, <0 & @3>0
Ejisdefinedas g, <0 & ¢, >0 & @3 <0
E isdefinedasp; <0 & ¢, >0 & @3>0
Esisdefinedas g, >0 & ¢, <0 & @3 <0
Egisdefinedas g, >0 & ¢, <0 & @3>0
E;isdefinedasgp; >0 & ¢, >0 & ¢3 <0
Egisdefinedasgp; >0 & ¢, >0 & 93>0

— The calculation of conditional probabilities of events Eq, E,, E3, E4, Es, Eg,
E;, Eg subject to outcome A and outcome B, i.e.

P(E,/A), P(E,/A), P(E5/A), P(E4/A), P(Es/A), P(Ec/A), P(E;/A), P(Es/A),
P(E,/B), P(E,/B), P(E3/B), P(E4/B), P(Es/B), P(E¢/B), P(E;/B), P(Eg/B)

The following is the printout of the program ANALYST:

P[A]=0.625 P[B]=0.375

P[E1/A]=0.014 P[E2/A]=0.000 P[E3/A]=0.018 P[E4/A]=0.018
P[E5/A]=0.056 P[E6/A]=0.038 P[E7/A]=0.035 P[E8/A]=0.821

P[E1/B]=0.711 P[E2/B]=0.091 P[E3/B]=0.045 P[E4/A]=0.078
P[E5/B]=0.043 P[E6/B]=0.016 P[E7/B]=0.000 P[E8/B]=0.016

These results offer a probabilistic basis for the prediction of the process outcome
based on the immediate measurements of the input variables. The importance of
this problem is justified by possible considerable delays in receiving the
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information on process outcome due to the process dynamics and delays in mea-
surement channels (the end product may be transported to a laboratory for testing).
Note that according to available data, initial probabilities of the process outcome
are P(A) =.625 and P(B) =.375, i.e. PA)+P(B)=1.

Assume that the table below contains two consequent measurements of the
process variables:

X1 X2 X3 Xq Xs X6 X7 Xg X9 X10 X11 X12 X13 X14 X15
470 | .827 |.044 |.354 |.158 | .490 |.652 |.541 |.887 |.149 |.373 |.896 |.168 |.112 |.269
703 | 911 | .325 |.296 | 418 |.397 |.179 |.076 |.674 |.094 |.518 |.067 |.967 |.452 |.635

Compute functions representing the separating lines for the first and second
measurements:

o1 () = x4() +arxs(.) +ap = 354+ .158 - 55— .7 =—.259 <0
02() = x4() + arxo(.) +ap = 354+ 887-3—.6=—.02>0
03() =x1() + arxs(.) +ap = 470+ 354-2.375 — 1.475 = —.164 < 0

This result is indicative of event E5. According to Bayes’ formula,

P(E3/A) - P(A) 018 -.625

(E+JA) - P(A) + P(E:/B) - P(B) 018 - 625+ 045- 375 "

PAJES) =5

Consequently, P(B/E;) = 1—.402 = .598
Let us upgrade this result further based on the second measurement:

01() =x4(.) +arxs(.) +ao= 2964 .418-.55—-.7=—-.174 <0
0,() =1 () +axo() +ap = 295+ .674- 3 — 6= —.102<0
03() = x1() + axa() +ap = 703 + .296 - 2.375 — 1.475 = —.069 < 0

This result indicates event E,. According to Bayes’ formula assuming P(A) = .402
and P(B) =.598

P(Ei/A) - P(A) - 014 - .402
(E\/A)-P(A) +P(E;/B)-P(B) .014-.402 +.711-.598

PAJE) =5 = .013

Consequently, P(B/E{) =1—.013 =.987
The analysis indicates that almost certainly the outcome of the process is
expected to be A, i.e. output variable y=.6
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2.5 Non-parametric Models. Singular-Value
Decomposition as a Tool for Cluster Analysis

Singular Value Decomposition (SVD) is a standard numerical tool readily available
to a modern engineer. It could be utilized for various process control applications
providing a dependable feature extraction, cluster analysis and pattern matching

techniques.
It is understood that monitoring of any complex phenomenon (situation, process,
structure, data set, etc.) results in a set of real numbers {x;,xs,...,%;,...,xy} that

could be “folded” in an m X n matrix,

X1 X2 .

X X e X
A= n+1 n+2 2n
XN-1 XN e 0

In many cases the matrix is obtained by the very nature of the data monitoring
system, recall array X from the LSM material.
It is known that SVD allows for the representation of such a matrix in the form

K
T
A= ZGijQj
Jj=1

where

K=m, if m > n, and K = n otherwise,

c;, j=1,2,...,K are non-negative singular values of matrix A,
P;,j=1,2,...K are m-dimensional left singular vectors of matrix A, and
Q),j=12,.. K are n-dimensional right singular vectors of matrix A

Since most SVD procedures list singular vectors in order of their decreasing
contribution to the sum, matrix A could be approximated by a partial sum of first
L <K terms of the above expression and the accuracy of such an approximation
increases as L approaches K. It could be said that if matrix A represents a particular
process, then its left and right singular vectors carry essential features of this
process and could be utilized for the purpose of process identification.

Consider the task of determining the degree of similarity between a process
represented by matrix A and a process represented by matrix B of the same
dimension. Traditionally, this task requires comparing these matrices on the ele-
ment-by-element basis thus for high-dimensional matrices results in a computa-
tionally intensive task. This task, however, could be carried out by measuring
matrix B not against the entire matrix A, but against features extracted from matrix
A, i.e. by computing and analyzing scalars
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w; =P B0, j=12,....K

It is important that one can reduce this task to a very short list of features thus
utilizing only the most important features of matrix A

w;=PBQ;,j=12,....L<K

In most practical situations it is sufficient to have L =2, 3, 4. For the purpose of
visualization, introduce two-dimensional feature space, where coordinates (fea-
tures) are the first two scalars,

wi = PT1BQ, andw, = PT,BQ,

Then the location of point {w,w,} in the feature space would represent the degree
of commonality between matrices A and B, or between the two complex phenomena
(situations, processes, structures, data sets, etc.) that they represent. It is important
to realize that the largest absolute numerical values of quantities w;, i=1,2,... are
expected when A =B.

Figure 2.10 depicts the degree of commonality between process A and processes
B, C, and D represented by points labeled as *®, < and *” in the feature space. It
clearly indicates that the degree of commonality between processes A and B is
different from the one between A and C and A and D.

Figure 2.11 represents the results of matching various processes, B, C, D, E, F,
G, H, L to process A using two pairs of its singular vectors to compute quantities w;
& Ws.

It is obvious that according to the resultant clustering pattern there are three
groups of processes of similar nature: Group 1: A and B, Group 2: C, E, F, and
Group 3: D, G, H, L.

Note that two-dimensional feature space is considered only to facilitate the
visualization. In order to perform computer-based analyses, the dimensionality of
the feature space could be increased, or more than one purposely chosen subspaces

Fig. 2.10 Commonality Wy
plot for A to B, C, and D

&P
&c
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Fig. 2.11 Commonality W,
plot for Ato B,C,D, E, F,
G,H, and L o
‘\%\E
Wy
&b
H é¢
Ma
o8

of the feature space could be utilized. Then the analysis would address specific
properties of the processes and enhance the robustness of the recognition procedure.

Originally, feature extraction and cluster analysis were developed for computer-
based pattern recognition and, historically, are known as machine learning. The
SVD approach is highly instrumental for both supervised and unsupervised leaning.

In the case of supervised learning, assume that m x n-dimensional matrices,
matrix A, matrix B, and matrix C are known to be representatives of three different
classes of processes. The application of SVD procedure to respective matrices will
result in the extraction of the following left and right singular vectors of these
matrices,

PAj9 QAj» PBjs QBj’ PCj» QCj?j: ],2’ ey

where notations are self-explanatory. Now assume that an m X n-dimensional
matrix S representing unknown process could be subjected to the following
computation

& = (PS04, + (Pa"S00) + ..

where P A,»TSQA,», represents the ith component, i = 1,2,. . .of the feature space where
matrix S in question is compared with known matrix A, and ” is the transpose
symbol. In the similar fashion matrix S is compared with known matrix B and
known matrix C

& = \/(PBITSQBI)Z + (PpaTS0p,)" + . ..

&€ = \/(PCITSQCl)z + (Pea"S00) + ..
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Then process (matrix) S can be easily recognized as a process of class A if & > 67
and 54 > &°.
The unsupervised learning could be implemented as follows. Assume that a

complex process has a number of distinctive states, A, B, C, .... Assume that a
sequence of measurement vectors X(1), X(2), ..., X(k), ..., X(N), where X(k) =
[x1(k) xa(k) ... xm(k)]" is taken over a sufficiently long period of time

representing all distinctive states of process. This data could be compiled in a
m X n matrix Xy defined as

() o) . oxw(1) x(1)!
X, = | 1 2@ w2) | _ | x@)"
2(N) %(N) . xm(N) XN

Subject matrix Xy to SVD that results in singular values, left and right singular
vectors, o, P}, Q.i’ j= 1,2, .... Then utilizing the first two right singular vectors

Q; and Q, of matrix X, compute the two coordinates of the feature space for each
k=1,2,...N,

wi (k) = X(k)TiQI, and wy (k) = X(k)Ti 0,
0 o)

These coordinates are highly instrumental for making a distinction between the
process states A, B, C, ... represented by vectors X(k), k=1,2,.. .,N. Indeed, in the
feature space points with coordinates [w;(k), w,(k)], k=1,2,....N tend to form
clusters consistent with process states (classes) A, B, C, ... This reality enables
one to discover the very existence of specific classes A, B, C, . .. and define them in
the factor space utilizing the clustering phenomenon. It should be noted that the
feasibility and dependability of the described procedure is dependent on the char-
acteristics of noise in the information channels forming vectors X(k), k=1,2,.. .,N.

Consequently, one can conclude that the analytical technique, described herein,
could facilitate solution of a wide class of feature extraction, and feature-based
recognition tasks.

lllustration of Unsupervised Learning at Different Signal-to-Noise Ratio A simu-
lation study described below demonstrates a successful application of the SVD to
unsupervised learning. The following numerical procedure generates matrices,
representing four different processes, A, B, C, and D. Each matrix is contaminated
by noise, note that two signal-to-noise ratios were considered: .5 and 1.0. The
results are highly robust with respect to signal-to-noise ratio and are displayed in
Figs. 2.12 and 2.13. The application of the unsupervised learning procedure results
in a clear clustering phenomenon that could be used for the process recognition/
identification.
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Noise-to-signal ratio = 5

Fig. 2.12 SVD for noise to signal ratio 0.5

Noise-to-signal raio = 1

-0

15

Fig. 2.13 SVD for noise to signal ratio 1.0

N=350

m=100

f=.5
a=randn(m, 1)
b=randn (m, 1)
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c=randn(m, 1)
d=randn(m, 1)

for k=1:N

x=randn (1,1)

if x>=0
mat=a-+randn(m, 1) *f
else
mat=b+randn(m, 1) *f
end

h(,k)=mat

end

for k=1:N

x=randn (1,1)

if x>=0
mat=c+randn(m, 1) *f
else
mat=d+4randn(m, 1) *f
end

h(,k+N)=mat

end

hh=h’
(u,s,v)=svd(hh)
svll=u(,1)
svl2=u(,2)
svrl=v(,1)
svr2=v{(,2)

mm=2*N

’

for k=1 :mm
x=hh(k,)
wl(k,1l)=x*svrl
w2 (k,1l)=x*svr2
end

plot (wl,w2,’*)

2 Mathematical Description of Manufacturing Processes

One can enhance the unsupervised learning procedure by utilizing more than two
components of the feature space, perhaps, several subspaces of the feature space. A
special recognition procedure utilizing the classification rules established by
unsupervised learning could be developed.

Exercise 2.3 The purpose of this assignment is to add the conventional cluster
analysis and analysis based on singular value decomposition to students’ profes-
sional toolbox. Both techniques will significantly extend students’ ability to
develop useful mathematical models of complex industrial processes.

Problem 1 Cluster analysis for modeling and outcome prediction of a multivari-
able process with real inputs and discrete-event output.
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Task 1. Run program GENERATOR.EXE that will create a customized array of
1000 measurements of a complex industrial process with 15 input variables and a
discrete event-type output. The value of the output variable could be only .3
(outcome A) or .6 (outcome B). This data will be recorded in file TSMD.DAT

Task 2. Run program CLUSTER.EXE that will process data in the file TSMD.
DAT by

a) assessing the impact of every combination of two process variables on the
process outcome (i.e. their contribution to the classification problem)

b) creating file SUBSPACE.DAT that will contain the prespecified number
(three is recommended) of the most informative subspaces and depict the clustering
phenomena in each subspace

Task 3. At each subspace x;&x, establish the separating line, x; +k-x, +¢=0
such that the majority of points A and majority of points B be located on different
sides of the separating line. This task requires one to evaluate coefficients k and
q for each of the three subspaces.

Task 4. Run program ANALYST.EXE that will

a) request pairs of variable indexes for each of the three most informative
subspaces

b) request values of coefficients k and ¢ for every separating line

c) detect events E;—Eg that may occur at each row of TSMD.DAT defined as
follows:

E;:p<0 & ¢,<0 & 93<0
E;yp, <0 & ¢,<0 & 93>0
E;: <0 & >0 & 3 <0
Eyp<0& 920 & 93>0
Es:p, 20 & 9, <0 & ;<0
Ecp, 20 & ¢,<0 & 93>0
E;:p,>20 & >0 & 3<0
Eg:pp>20 & 9,20 & 93>0
where

@; = xi/ + K - x;/ 4 ¢/ is the equation of the separating line of the j — th subspace,
comprizing two process variables, x/ &x;/

d) display self explanatory results of the probabilistic analysis of the TSMD.DAT
data

Task 5. Given two successive measurements of the input variables of the
process:

[0.633 0.768 0.502 0.814 0.371 0.057 0.618 0.141 0.279 0.363 0.538 0.662 0.844
0.322 0.298]"

[0.2550.018 0.318 0.967 0.884 0.640 0.813 0.488 0.402 0.067 0.235 0.257 0.413
0.393 0.849]"

Utilize Bayes’ approach to define probabilities of the process outcomes based on
these measurements.
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Problem 2 Familiarizing with properties of SVD and its applications for cluster
analysis.

Task 1. Find the singular value decomposition (SVD) facility in the MATLAB
library. Learn how to access first and second, left and right singular vectors, L, R;
and L2, R2

Task 2. Find the random matrix generator (RMG) facility in the MATLAB
library. Learn how to access the resultant matrix.

Task 3. Use RMG to generate a 400 x 600 matrix A. Use SVD to obtain singular
vectors, L, Ra; and La,, Ra, of this matrix.

Task 4. Use MATLAB code to generate ten “noisy versions” of matrix A,
i.e. A(i)=A+.3-A(), where each A(i) is a unique random 400 x 600 matrix
generated by the RMG. For each matrix A(i) compute wa;(i) =L " A()-Ra;
and war(i) =Las" - A(Q) -Raz, i=1,2,...,10 -

Task 5. Use RMG to generate a 400 x 600 matrix B. Use MATLAB code to
generate ten “noisy versions” of matrix B, i.e. B(i) = B+.3 - A(i), where each A(i) is
a unique random 400 x 600 matrix generated by the RMG. For each matrix B
(i) compute wg (i) =La;" - B(i) - Ra; and wgy(i) =Las" - B(i) - Rap, i=1,2,...,10.
(Note: use the same singular vectors Lo;, Ro; and La,, Ra5 as in Task 4)

Task 6. Use RMG to generate a 400 x 600 matrix C. Use MATLAB code to
generate ten “noisy versions” of matrix C, i.e. C(i) = C+.3 - A(i), where each A(i) is
a unique random 400 x 600 matrix generated by the RMG. For each matrix
C(i) compute wci(i)=La;"-C(i)-Rai and wea(i) =Lax"-C(i)-Raz, i=
1,2,...,10. (Note: use the same singular vectors Ln;, Ra; and Las, Ras as
in Task 4)

Task 7. Use MATLAB plotting facility to place points with coordinates [w (i),
wa2(1)], i=1,...10, marked with “®”, and points with coordinates [wg(i), wg,(1)],
i=1,...10, marked with “0O”, and points with coordinates [wci(i), Wca(1)],
i=1,...10, marked with “@®” on the w;w, plane. Print out the resultant figure.
Comment on the capabilities of SVD.

Solutions

Exercise 2.1: Problem 1

For each subset of the X and Y matrices, the coefficients of A were calculated using
the following LSM procedure:

A=X"xx)"xx"xy

The following is the set of coefficient obtained from respective number of data
points and their “true” values:
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30 100 200 500 True

1.9811 1.9996 1.9967 1.9998 2.0000
3.0406 2.9106 3.0463 2.9823 3.0000
—2.0476 —2.0071 —2.0084 —2.0020 —2.0000
4.9867 5.0290 4.9838 5.0058 5.0000

It could be seen that the greater the number of data points, the more accurate the
approximation of A coefficients is.

Exercise 2.1: Problem 2

For each coefficient of the suggested model, a 95% confidence interval was built
based on the error of the model and the respective diagonal elements of the
covariance matrix, i.e. ¢;;

1 -1
=K!=|-xX"xX
ok [

The half-width for each confidence interval was calculated as

A = ta = .025,N = 300) x 62 x | /%

The 95 % confidence interval for the model coefficient a; is 1.9561 to 2.0435 and
the “true” a is 2, so the true parameter lies within the interval.

The 95 % confidence interval for the model coefficient a, is 2.4562 to 3.5084 and
the “true” a, is 3, so the true parameter lies within the interval.

The 95 % confidence interval for the model coefficient as is —2.0745 to —1.9296
and the “true” a3 is —2, so the true parameter lies within the interval.

The 95 % confidence interval for the model coefficient a4 is 4.832 to 5.1797 and
the “true” a4 is 5, so the true parameter lies within the interval.

Exercise 2.1: Problem 3

Given the following set of input values:
X=[253 -63 10]

and matrix Q =K' = [+ x X" x x]™
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The 95 % confidence interval half-width was calculated as

The 95 % confidence interval for output Y is 75.9734 to 77.2616 and the “true” Y is

2 Mathematical Description of Manufacturing Processes

~T ~
5 X
A = t{a = .025,N = 300) x o> x #

76.31, so the true Y lies within the interval.

Exercise 2.1: Problem 4

The required covariance matrices are:

K =
3.0840 0.8460 1.1580 —0.4340 0.3430
0.8460 10.9000 4.0120 0.1040 1.4420
1.1580 4.0120 6.2690 0.0010 1.5430
—0.4340 0.1040 0.0010 3.4250 0.2660
0.3430 1.4420 1.5430 0.2660 0.6770
K,y =
12.9700
—19.7400
7.2130
—8.6490
0.6100
Kioise =
0.7500 0 0 0 0
0 1.6600 0 0 0
0 0 0.9600 0 0
0 0 0 0.2600 0
0 0 0 0 0.1100

The model parameters were estimated by the following procedure:

The calculated model parameters A are:
3.0896
—2.4294
1.5077
—2.0313
1.6105
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The estimation errors were calculated with the following procedure:

-1

-1
Erroreise = (Kxx - Knoise)T X (Kxx - Knaise)} X Ky — (Kz,; X Kxx) X Ky

The parameter estimation errors cause by this known noise are:
0.8977
—0.4328
0.0208
0.0433
0.4748

Exercise 2.1: Problem 5

First, matrix Z was calculated from matrix X and matrix W.
Z=XxW
“Artificial” coefficients B were calculated from Z.
B=Z"x2)"'xZ' xY
Then, the variance of Y was calculated and the variance for each B was calculated.
ooy =4 — @)

0y2 = Zb(i)z X O'Z(i)z

The percent of contribution from each Z was calculated as follows:

bi2X6712
%zi:()iz“()xloo%
Oy

The contribution of z; is 68.241 %
The contribution of z, is 14.5954 %
The contribution of z5 is 17.1277 %
The contribution of z,4 is 0.035818 %

Because of this, we will keep z;, z,, and z3.
The new vector B is:
—3.2903
1.6415
—1.9924
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0

The new W matrix:
—0.7808 —0.5914 —0.2012 0
—0.1474 0.4874 —0.8606 0
—0.4293 0.4542 0.3308 0
—0.4293 0.4542 0.3308 0

Next, we calculated the “real” coefficients A based on “artificial” coefficients
Bnew:

Aimportant = Wnew X Bnew

Our calculated coefficients A are :
1.9992
2.9998
1.4990
1.4990
The coefficient of determination for the new model is 0.99863.

Exercise 2.2: Problem 1

Although the following analysis does not include “all possible combinations of first
and second order regressors, it demonstrates the principle of establishing the model
configuration using the coefficient of determination

Equation 1 with x;, X», X3, X|X3, X,” has coefficients

A; =[1.9989 2.9983 — 0.4002 0.5003 1.0009]
Equation 2 with x;, X,, X3, X;X3 has coefficients
A, =[1.9989 2.9983 — 0.4002 0.5003]
Equation 3 with xy, X,, X3, xzz has coefficients
A3 =[1.9989 2.9983 — 0.4002 1.0009]

Equation 4 with x;, X5, X;X3, X,> has coefficients

Ay = [1.9989 2.9983 0.5003 1.0009]
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Equation 5 with xy, X3, X|X3, xzz has coefficients

As = [1.9989 —0.4002 0.5003 1.0009]
Equation 6 with x,, X3, X|X3, x22 has coefficients

Ag = [2.9983 —0.4002 0.5003 1.0009]
Equation 7 with x;, X,, X;X3 has coefficients

A7 =[1.9989 2.9983 0.5003]

Equation 8 with xy, X,, xzz has coefficients

Ag = [1.9989 2.9983 1.0009]

For Equations 1-8, the respective natural variance (S,), error variance (Se), and
coefficient of determination (Cp) values are:

Eqn Sy S. Cp

1 132.8594 0.0250 0.9998
2 132.8594 28.8738 0.7827
3 132.8594 70.8680 0.4666
4 132.8594 1.5644 0.9882
5 132.8594 31.7197 0.7613
6 132.8594 119.9781 0.0970
7 132.8594 22.0554 0.8340
8 132.8594 53.3903 0.5981

Equation 7, y =2x; + 3x, + 0.5x;X3, seems to be a rational model in terms of
complexity and accuracy

Exercise 2.2: Problem 2

The obtained RLSM and “true” parameters are:

RLSM “True”

7.9989 8.0000
—5.9883 —6.0000
4.9960 5.0000

The coefficient of determination for this model is 0.99994. The plot showing the
convergence of the RLSM procedure is shown below. It could be seen that RLSM
estimation of constant parameters results in the same parameter values that could be
obtained by the LSM.
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Convergence of A coefficients
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Exercise 2.2: Problem 3

It could be seen that with the forgetting factor of 1. the RLSM procedure does not
allow for tracking of drifting “true” parameters. The “final” parameter values are
(see the plot below):

Convergence of A coefficients
50 T T T T T T Ll T

A coefficients
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RLSM “True”

28.0449 48.0000
5.3351 14.0000
9.6195 15.0000

The coefficient of determination for the resultant model is 0.40497, compare
with the value of 0.99994 for problem 2. These results are unusable, but justify the
use of forgetting factor value of less than 1.

Exercise 2.2: Problem 4

RLSM results with the forgetting factor (Beta) Beta=0.1 are shown below:

RLSM True

47.6793 48.0000
13.9316 14.0000
15.4238 15.0000

Convergence of A coefficients when Beta=0.1:
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When Beta = 0.2, the results for A are:
RLSM True
47.6748 48.0000
13.9308 14.0000
15.4287 15.0000
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‘When Beta = 0.3, the results are:

RLSM True

47.6545 48.0000
13.9228 14.0000
15.4561 15.0000
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When Beta = 0.4, the converged coefficients of A are:
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RLSM True
47.6172 48.0000
13.9090 14.0000
15.5045 15.0000
Convergence of A coefficients when Beta=0.4 :
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‘When Beta=0.5:
RLSM True
47.5709 48.0000
13.8944 14.0000
15.5529 15.0000
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When Beta = 0.6, the converged coefficients of A are:

RLSM

True

47.5318

48.0000

13.8832

14.0000

15.5578

15.0000
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When Beta =0.9 and Beta = 1. the tracking results are:

It could be seen that as Beta approaches the value of 1.0 the tracking ability of
the RLSM procedure diminishes.
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Exercise 2.3:

Problem 1

2 Mathematical Description of Manufacturing Processes

Running program GENERATOR.EXE results in an array of 1000 measurements of
a complex process with 15 input variables and a discrete event-type output that is
rated as outcome A or outcome B. This data is recorded in file TSMD.DAT.
Running program CLUSTER.EXE results in the display of the three most informa-
tive subspaces featuring distributions of events A and B in the appropriated sub-

spaces.
INFORMATIVE SUBSPASE # 1: X( 1) & X( 4) => CRITERION = 5.283
SCiY A L 7 A —— >0. 9965€+00
0.0506> |8 B BEE © BEEBE BEB B BEEE BEEBE BEBB B B BB B
0.1006>| BBB BB B B B BE BEBBE BB B B BBBE BBEE BB BB BBE
0.1505>| BEBEBB BEBE BEBE BBE B B BB B B BEBBBBE X A B
0.2005>| BB BB B6 © BEBBEBEEBE BB B BBE B BB BABB A BA A
0.2504> |68 BB BEABEE B GBBBEBE BE B BB BBBE BBB BABB AA X B
0.3003>|6BEEE B BBE BBBBE B BB BBBE BB AB AXA B BE A B
0.3503>|6 BEBE BB BBBBEBE BE BBA BEX AB BE XAA AA A A A AA A
0.4002>| B BEB X BBE B ABBBEBEXAXA B B B A AAAA AA
0.4502> |8 BEXBBBE BXBXB ABAABE AB B BXAA XBAA A
0.5001>|8 BBE B B BB XBAXBBA BAAA A AAAA
0.5500>|BBEBBE BB XB BXBAXBBXAA A XA AA AAA A AAA
X BB B BB BB A XA XB AA AAAA A A
A A AA AAAAAAA  AAAAAAA
A AAA A AAAA A
A A A AA AA
AAAA AAA A A AA AA
AA A AAAAAAA AA AA
AAAA  AA AAA AAA
AAA AA A A AA
AAA A A AAA
--------------------------------- >0. 99656400

Subspace: X; & X, - Separation Line is: X; + 1.8139X, — 1.4506 =0

INFORMATIVE SUBSPASE # 2: X( 1) & X( 5) => CRITERION = 5.204
X( 1) 0.3713E-03<=m=mmmmcmcne e S () R >0.9996E+00
0.0506>|8 BBE B BB BEEBE EEB BEE EEBEE B BE EBEBEEB B B
0.1006> & BB BEEEEBEEEBE BB B B BBBB B BB BBB BE B EBBEB
0.1505> EEE BE B EBEB BBE B B B BBE B EBEE BBEB BB BXBAB
0.2005>|EBE B BEB BEBBE BBEBB B B B B BB BE B BBB BEB BX A ABX
0.2504>|6B BB B BEBBE E BBE B X B BBXBABEXE B BB B BBA BXBBEB
0.3003>|B BBEB BB B B BEEXE BB BB BE B EEEEE B B BXB B AA AB
0.3503> BE B BEBBEE BXB BBEAE BBXBXX BXB A B AXA X A XBBE BX
0.4002> AB BB BBBBX BB BAAA BABE BBBAXEE B ABAAA BAXAAX A B A
0.4502>|8 BB BB BE BXAB BB XB B BAAA A AB A AAAXXA A,,ﬂ-*’“'ﬂd
0.5001>|BBB BB A AB X AX BXBXA A XA X X A AAA A
0.5500> EXBBAA B XAB XBXXBAB X AX XX AA A
0.6000>| A BAXBB BX BABA BA A BA B A BA A
0.6499> BAA AAAA  AAAAMA A A A A
0.6999> A AA A A AAA
0.7498> A A AA AAAA
0.7997> AAA AAAAAA AAA A

0
0.8996>

0.9496>
0.9995>

[=]

.3713e-03<

Subspace: X; & X5 - Separating Line: X; +2.858X5—-2.0003=0
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INFORMATIVE SUBSPASE # 3: X( 1) & X(10) => CRITERION = 5.143
x( 1) 0.5567E-03<~==mmmmmemccceeua X(10) ---mmmmm e e >0.9987E+00
0.0506> | BBBBBB B BB B BE BBE BB B BE B BEB BB BBB B B BBB
0.1006>|8B B BBBB B BB B BB BBB B BEBE B BEBEBE B BBBB B
0.1505>|B BB BE B B ABB BXEE B B BEEBBEE BB BE X B E B
0.2005>| BX B BE BBB XBBE B B E B BEE B EEBE BE BEBEX B X BBEB
0.2504>|8 X BB BB EEE B BE EB EEB BB AAB B B ABBEB XB BBX
0.3003>|B B B BAB XX B B A B BB BE BXB A B BBE BBBBBB|
0.3503>|ABBA BABB BBB X BBX B XXBX B BA ABXAB X BX —BEBBEA B
0.4002> AE XBBBEBABBAX AA B B-B—AX—XA B AX X XXX ABB BX XA
0.4502> BEA ANAA—BXEA BAAA A XB BA XX BBX B A AB B A B BBA

—B-5001>TA XA AABAAAM ABB ABAAA XBA A BX AB A B A XEBBB

0.5500>|xxX ABBA AB B A AABA BABX A AA A AB BX AAA XX ABA
0.6000>|8B A A AABA A A XAAXAAA A X B XAA AA BABX BA
0.6499>]AAA X A AXAB AA A AAAAAA  AA ABAAXA A AA BA A A AAA A
0. 6999> BA AA AAX A A B A AA A ABA AAA AA A A AA  AA
0.7498> AA AA AAA AAAA A A A A AA AA A AAX A X AA A
0.7997> A AAA A AAAA A A A A AAAA  AAAA AAA AA A AAA AA
0.8497> AA A A AAA  AA AAAA A AAAAA A A AAAAAAAA AAA A AAA A
0.8996>|A A AAA A A AA AAAAA AA  AA A A A AAAAA AA A AA  AA
0.9496> | AAA AAA A AA  AAAAAA A A AAA A AAAAAA AA A A AA AA A
0.9995>| AAA A AAAAAAA AAA A AA A A A AA A AAA AAA A A A AAA
0.5567E-03<===mmcmmnmnaaaan- Y6 11 F R —— >0. 9987E+00

Subspace: X; & X - Separating Line: X; + 6.6622X,,—3.6642 =0

Events E1-ES8 represent location of a measurement point within the domain A or
domain B in the above subspaces. Below are the probabilities of these events for
outcomes A and B:

P[A1=B.563 PI[B1=0.437

PLE1/A1=0.837 PIE2,A1=0.048 PI[E3-/A1=0.108 PL[E4-/A1=0.119
P[ES/A1=0.148 PL[E6-A1=0.138 PIE7?/A1=0.176 PLE8/A1=0.234

P[E1/B1=0.284 PIE2/B1=0.296 P[E3/B1=0.148 PIE4/A1=0.126
PLES/B1=6.857 P[E6/B1=0.860 PLE7?/B]1=0.616 PL[E8/B1=0.621

Prediction of the process outcome based on the particular measurement, X(1).
Although vector X(t) has 15 components, our analysis indicates that the values
of the following four components are to be considered:

X, (1) = 0.633, X4(1) = 0.814, Xs5(1) = 0.371, X;(1) = 0.363

Compute values of functions @1, ®2, and ®3 for the selected components of vector
X(1) and based on these results define the location of the point X(1) as the
appropriate event:

@1 =XI1(1) + K*X4(1) + Q = 0.633 4 1.8139*0.814 — 1.4506 = 0.6589146
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@2 = X1(1) + K*X5(1) + Q = 0.633 + 2.858%0.371 — 2.0003
= —0.306982

®3 = X1(1) + K*X10(1) + Q = 0.633 + 6.6622%0.363 — 3.6642
= —0.6128214

The resultant event is ES, then
P(A) =0.563 P(B) =0.437 P(ES‘A) =0.140 P(ES]B) = 0.057

P(A|ES) = P(ES|A)*P(A) N 0.140%0.563
~ P(ES|A)*P(A) + P(ES[B)*P(B) ~ 0.140%0.563 + 0.057%0.437

— 7599
P(BIES) = P(E5|B)*P(B) B 0.057+0.437
~ P(ES|B)*P(B) + P(ES|A)*P(A) ~ 0.057%0.437 + 0.140%0.563

= .2401
Consider the next measurement vector X(2) and repeat the above procedure:

X1(2) = 0.255, X4(2) = 0.967, X5(2) = 0.884, X;o(2) = 0.067
@1 = X1(2) + K*X4(2) + Q = 0.255 + 1.8139%0.967 — 1.4506 = 0.5584413
@2 = X1(2) + K*X5(2) + Q = 0.255 + 2.858*0.884 — 2.0003 = 0.781172
®3 = X1(2) + K*X10(2) + Q = 0.255 + 6.6622%0.067 — 3.6642
= —2.9628326

That results in Event E7, therefore

P(E7|A) =0.176 P(E7|B) =0.016 P(A) =0.7599 P(B) = 0.2401

P(AET) = P(ET|A)*P(A) N 0.176%0.7599
~ P(ET|A)*P(A) + P(ET[B)*P(B)  0.176%0.7599 + 0.016%0.2401

— 9721
P(B|ET) = P(ET|B)*P(B) _ 0.016+0.2401
~ P(E7|B)*P(B) + P(ET|A)*P(A) ~ 0.016%0.2401 + 0.176%0.7599

=.0279

The probability that these two sets of X(t) values yields result B is less than 0.03,
while the probability that the outcome would be A is above 0.97. It can be said with
much certainty that the outcome associated with these two X(t) sets would be A.
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Exercise 2.3: Problem 2

For this problem, a 400 x 600 random matrix A,, matrix By, and matrix C, were
generated.

SVD was performed in MATLAB on matrix A, to retrieve the first two left and
right vectors.

Then, a set of matrices Ay(k)+noise (20 % of the original magnitude used to
generate matrix A), k=1,2,3,10 and two-coordinate points {W;(k),W,(k)} were
defined by multiplication:

W(k)l = LAlT X A(k) X RAl
W(k)2 = LAZT X A(k) X RA2

k=1,2,...10

This process was repeated still using the left and right vectors of the
original matrix Ay, but instead of A(k) matrices B(k) and C(k), generated
by adding noise to B, and C,, were used, and a sequence of points {W(k),
Ws(k)}, k=10+1, 1042,...20, 20+1, 20+2,...,30 were established.

All of the points were plotted on a W;—W, plane. As it can be seen, this
SVD-based procedure results in the clustering pattern revealing in spite of noise
the three classes of matrices originated from matrix A, By, Co.

SVD of Matrix A
6000 T T T T T

+
>

+
O m

5000 - a K+t W

4000} .

3000 - -

2000 - by

1000 |- —

-1000

1477

1.1785
w1

1.179

1.1795

1.18

x10°

Indeed, the SVD could be used as a tool for classification of large groups of

data sets.
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Chapter 3
Computer Control of Manufacturing
Processes

The availability of a mathematical description of a manufacturing process provides
a quantitative basis for process control that is understood as maintaining the desired
status of the process in spite of many external and internal disturbance effects. The
desired status is defined by the set points, also known as reference signals that
represent the desired numerical values of controlled variables of the process. The
control task implies that the difference between the actual and desired process
variables (error) is determined, and on the basis of this difference and according to
the control law, the control efforts are defined and applied to the process. The
manner in which the control effort drives the system from its actual state to the
desired state, and the allowable discrepancy between the actual and the desired
states are quite important. They are dependent on the control law and are explicitly
defined by the design specifications along with the discrete time step (or clock
frequency). Modern computer systems facilitate every function of the control task;
process monitoring, specification of the set points, extraction of the errors, imple-
mentation of the control law, and the application of control efforts.

3.1 S- and Z-Domain Transfer Functions

An s-domain transfer function, defined as a “Laplace transform of the output signal
over Laplace transform of the input signal under zero initial conditions” presents
the most common technique for the mathematical description of linear, dynamic,
single-input-single-output systems. In the case of a multi-input-multi-output linear
dynamic system, transfer functions of particular channels could be easily assembled
into a transfer matrix. Transfer functions enable us to address the rigors of linear
differential equations through simple algebra. Control engineers commonly use
s-domain transfer functions for the analysis and design of continuous-time control
systems. The situation changes when a discrete-time control system is to be
developed, which is a very typical case in our computer-dominated environment.

© Springer International Publishing Switzerland 2016 111
V.A. Skormin, Introduction to Process Control, Springer Texts
in Business and Economics, DOI 10.1007/978-3-319-42258-9_3



112 3 Computer Control of Manufacturing Processes

Although discrete-time control synthesis requires the use of z-domain transfer
functions, the material of this chapter allows students to utilize their experience
with s-domain transfer functions to the fullest.

A z-domain transfer function, defined as a “Z-transform of the output signal over
Z-transform of the input signal under zero initial conditions”, is used for mathe-
matical description of linear, dynamic, single-input-single-output systems operated
by a discrete-time controller. The output of such a controller is a “number
sequence” i.e. a sequence of real numbers, u*(k), k=1,2,3,..., generated at the
clock frequency, f<~, of the computer implementing the control law. The purpose of
the asterisk is to remind the reader that this number should be represented by an
analog signal, w(t), known as a “pulse train”

w(t) = u*(k) if t=KkT
1 0if (k—DT<t<kT

where T = fé—L is the time step. A “number sequence” simply has no power to drive
the control plant, but it serves as the input to many different devices labeled as the
zero-order-hold that convert these periodically generated real numbers into a
“staircase”-type control effort

u*k) if WT<t<(k+1T

Note that u*(k) is not equal to u*(k); in actuality u*(k) is the approximation of u*
(k) by the integer number of discretization steps Au, so that u*(k) =~ Au-u * (k). It
looks like this representation results in a special round-off error that is being
introduced in the system at each time step. This is true, but the error process is
dominated by clock frequency f°* that is normally chosen well beyond the system
bandwidth.

The utilization of a zero-order-hold imposes some requirements on the mathe-
matical description of the controlled plant in the discrete-time domain. Note that the
direct z-domain equivalent of an s-domain transfer function obtained for a partic-
ular time step T

G(s) - G(z) = Z{G(s)}
is suitable only when the process is driven by a pulse train signal. In the case of a

“controlled plant driven through a zero-order-hold” the z-domain transfer function
of the plant is defined as

G(z) = (1- z_])Z{éG(s)}

This conversion is routinely performed using a software tool and specifying the
required time step T and the ZOH conversion option:
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G(s) L G(z) = (1 - zl)Z{éG(s)}

ZOH

Speaking of this conversion, it should be mentioned that G(z) is expected to be of
the same order as G(s), and G(z) may have zeros even if G(s) does not. In the future,
we will always refer to z-domain transfer functions intended for the zero-order-hold
applications.

N(z) Y(z)

B = Ulz) where

Consider a z-domain transfer function G(z) =

N(Z) = bmZm + t)m71Z[1171 +...+ bll + b() .
D(z) = 2"+ a, 12" ' + 2, 27" 2 + ... + a1z + a9

are numerator and denominator of the transfer function, n > m, and Y(z) and U(z) are
Z-transforms of the output and input signals,

Y(z) bmz™ + b1z + ...+ bz + by

U(z) 7" +a, 2 4+a, ,2 2+ ... +a;z+ag

The following is the discrete-time equivalent of the above relationship,

y(k4+n)=—a, 1y(k+n—1)—a, ,y(k+n—2) —... —a;y(k + 1) — agy(k)
+bpu(k+m) +by_julk+m—1)+... +bjulk + 1) + bou(k)

25 +55+3
$34+5524+10s+8”

obtain its discrete-time mathematical description assuming that this process will be
driven through a zero-order-hold and the time step T =0.02 s. First, let us convert
G(s) into G(z) for the required time step and using the ZOH option:

Example 3.1 Given transfer function of a controlled process, G(s) =

2§ + 5543 T=02 03922 — .076z + .037
TR —G(z) =
s> + 58+ 10s + 8 ZOH

T 73 —2.09122 + 2.806z — .905

Assume that u(k) and y(k) are the discrete-time input and output signals, then the
discrete-time description of the y(k)—u(k) relationship could be obtained as follows:

Y(z) 03922 — .076z + .037 3 N
- Y(2) (23 — 2.0912% + 2.8062 — .905
Ulz) ~ 7 —2.09172 + 2806, — 905 _ 1@ (z 7t 2o )

= U(2)(.03922 — .076z + .037)

and
y(k+3) =2.091y(k +2) — 2.806y(k + 1) + .905y(k) + .03%u(k + 2)
—.076u(k + 1) + .037u(k)
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Note that although the above expression properly represents the dynamic relation-
ship between variables y(k) and u(k), it is not particularly usable for computing
values of the output, y(k), given values of the input, u(k). Indeed, if k represents the
current time, the above expression deals with the future, presumably unknown,
values of the variables. Therefore, it must be converted to a recursive formula
relating the current value of the output, y(k), to the already known values of the
input and output. The recursive formula could be obtained by dividing the numer-
ator and denominator of the z-domain transfer function by the highest power of
z and making the following transformations:

Y(z) .039z% — .076z + .037 .039z7! — 076272 + .037273

U(z) 25 —2.0912% + 2.806z — 905 1—2.091z' +2.8062 2 — 9052 °
Y(z)(1 —2.091z7" 4+ 2.806272 — .905273) = U(z)(.039z~' — 07622 + .037z3), and

y(k) = 2.091y(k — 1) — 2.806y(k — 2) + .905y(k — 3) 4 .03%u(k — 1) — .076u(k — 2)
+.037u(k — 3)

thus enabling us to compute the output on the basis of already existing input/output
observations.

The following computer code could be written to perform this task (assuming
zero initial conditions):

y30ld =0

y201d =0

o : . ylold =0
Initialization Bold -0
u2o0ld =0

ulold=0

Beginning of the loop

Input(...,..)u

y =2.091*ylo1d — 2.806¥y201d + .905*y301d+
.039*ulo1ld - .076*u201d + .037*u301d

y3old =y20ld

y20ld =ylold

yviold=y

u3old =u20ld

u20ld =ulold

ulold =u

Output (...,..)y

Loop

Return to the beginning of the loop



3.1 S- and Z-Domain Transfer Functions 115

SIMULATION OF THE SYSTEM’S STEP RESPONSE USING THE S-DOMAIN TRANSFER FUNCTION
0.6

0 ; -
0 1 2 3 4 5

Fig. 3.1 s-domain transfer function step response

SIMULATION OF THE SYSTEM’S STEP RESPONSE USING THE RECURSIVE FORMULA
0.6

044 )i

0 ; ; ; i
0 1 2 3 4 5

Fig. 3.2 Recursive formula representation step response

The following Figs. 3.1 and 3.2 are the step responses of an analog system

28245543
$34+5s2+10s+8

k=0,1,2,3,... obtained on the basis of the recursive formula

described by transfer function G(s) = and the values of y(k),

y(k) = 2.091y(k — 1) — 2.806y(k — 2) + .905y(k — 3) +.039u(k — 1)
— .076u(k — 2) + .037u(k — 3)

assuming that u(k) = 1. One can realize that the responses completely match.
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3.2 Mathematical Modeling of Dynamic Systems

It has been agreed that a z-domain transfer function is the most attractive form of
mathematical description of a dynamic system facilitating the controls related tasks.
We will consider the development of such transfer functions using the input/output
data, u(k), y(k), k=1,2,3,.... Unlike a static model, relating immediate values of
input/output variables, i.e. y(t) = @[u(t)], a dynamic model relates the immediate
value of the output variable to the immediate value of the input variable, to the
previous values of the input variables, and to the previous values of the output
variables, i.e. y(t) = @[u(t), u(t—7), y(t—7)]. In the case of a discrete-time model of a
dynamic system, relating its discrete-time values, a dynamic model can be
represented as

ykk+n)=¢lyk+n-1), yk+n-2),..., yk), u(k+n), uk + m—1),
uk+m-2), ..., uk)], k=1,2,3, ....

An expression of this type can also be called a recursive formula. In the case of a
linear model the above expression can be written as

n m
y(k+n) = a,jyk+n—j)+ ) bpjuk+m—j), k=123, ...
=1 j=0

Having a recursive formula allows for straightforward definition of the z-domain
transfer function. Taking the Z-transform of the left-hand and right-hand sides of
the above expression and assuming zero initial conditions results in

n m
2"Y(z) = Z an_iz" Y (z) + Z bz 7U(z)
] =0

Further transformation of this expression leads to the definition of a z-domain
transfer function:

n m
Y(z)(z" - Z ay_jz" 1) = U(Z)Z bpy_jz™
=1 =0
D a2
=0 :mﬂ+mHﬂ”+m4ﬂ4+m+m:G®

= o — —
| Z i 0 —ap_1z" ! —a,_ 72 — ... —a
— ap—jZ
=1
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In many practical situations the expression for the linear dynamic model is
known in the form of a z-domain transfer function G(z) or a recursive formula,
but its parameters (coefficients), a; and b;, are unknown. Then the modeling
problem is reduced to the estimation of the unknown parameters on the basis of
the available input/output measurements, u(k), y(k), k=1,2,3,..., N.

In order to utilize the familiar LSM, consider the recursive formula again:

y(k+n)=> ayjy(k+n—j)+> b juk +m —j)
=1 =0

Introduce a set of new variables:

v(k) = y(k + )
xi(k) = —y(k 40— 1) xaa(k) = ulk +m)
x2(k) = —y(k+n—-2) xppo(k) =uk+m-—1)
fo 1K) = —y(k+ 1) xarm(k) = u(k+ 1)
xo(k) = —y(K) Xome1 () = u(k)

Since we are not equipped for dealing with negative discrete-time index values, and
n > m, assume that k =1,2,..., N—n. Introduce vector

x(k) = [x1(K), x2(k). ... Xn(K). ... .xne1(K)]", k=1,2,3,...N—n

and organize all values of x(k) into the array X (realize that transposed vectors x
(k) serve as rows in this array and it contains only N—n rows). Measurements v(k),
k=1, 2,..., N—n could be arranged in array V that also has N—n rows. Now our
original recursive formula could be represented as

where
a, T
X1 (k) Ci —ap—2
Xo (k) C e
x(k) = and C= = | —a
Xn-+m (k) Cn+m b
Xn+m+1 (k) Cnim+1 R
L bo
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It is understood that known measurements u(k), y(k), k=1,2,3,..., N result in
the known arrays Xy and Vy, and unknown coefficients C can be estimated using
the LSM approach, i.e.,

Cc=(X"X)" (XTV)

and then interpreted as parameters of the z-domain transfer function

Y(z) buz™ + by 1z by oz™ 24 ...+ by
U(z)  z"4a, 27 +a, 272 +... +a

Moreover, the RLSM could be utilized for the same estimation task which is even
more desirable since it assures that the most recent changes in the controlled plant
are reflected by the model. Note that all techniques for model validation and
confidence analysis of model parameters are applicable in this case.

It is good to know that LSM/RLSM —based parameter estimation of a dynamic
model results in the coefficients of a z-domain transfer function intended for the
zero-order-hold applications.

Example 3.2 Estimation of parameters of a z-domain transfer function

. b1z + by
T2t az+a

G(z)

of a controlled plant utilizing input/output measurement data.

First, realize that computationally this problem can be reduced to the estimation
of coefficients of the following regression equation:

v(k) = c1x1(k) + caxa(k) + c3x3(k) + caxa(k)

where v(k) =y(k+2), x;(k)=—yk+1), xo(k)=—y(k), x3(k)=u(k+1), and
x4(k) =u(k).

The following are the measurement data for u(k), y(k), k=1,2,.. ., and arrays X
and V:
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K0 u My
é 7118;%3 369?81 70.101 0.000 1.871 —1.723
3 16.15 0.014 —-0.014 0.101 16.150 1.871
4 —1.768 0.959 —-0.959 —0.014 —1.768 16.15
5 6.531 0.809 —0.809 —0.959 6.531 —1.768
6 _5464 1.152 1.152 —0.809 —5.464 6.531
7 1.941 0.775 —0.775 —1.152 1.941 —5.464
8 9.257 0.849 X — —0.849 —0.775 9.257 1.941
—1.347 —0.849 12.04 9.257 ’
9 12.040 1.347
10 15.310 1.984 —1.984 —1.347 1531 12.04
11 ~13.56 2780 —2.780 —1.984 —13.56 15.31
12 0.515 1.845 —1.845 —2.780 0.515 —13.56
13 10.20 1.777 —1.777 —1.845 10.20 0.515
14 —12.26 2278 —2.278 —1.777 —12.26 10.20
15 7.085 1.438 | —1.438 —2.278 7.085 —12.26
6] | 8717 ][ 1769 |
[0.014
0.959
0.809
1.152
0.775
0.849
1.347
V= 1984
2.780
1.845
1.777
2.278
1.438
| 1769 |
0.0023
Ty —1 T —0.892 ) .
then (X' X)  (X'V) = 0.0589 = C and the resultant z-domain transfer function
0.0568
is
Gz) = X&) __ 00589+ 0.05682"" (0.0589z + 0568)z

U(z) 1-00023z1+0.892z2 22— 0.0023z + 0.892

Example 3.3 Investigation of the effect of measurement noise on parameter
estimation.

Assume that a continuous-time controlled plant is described by the following
transfer function:
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552 +6s + 1
(s2 +5s +10)(s + 11)

G(s) =

The conversion of this transfer function in the z-domain for the time step of 0.01 s
and the ZOH option yields

G(z) = 0.04644(z> — 1.988z +0.9881)  0.046z> — 0.092z + 0.046
(22 —1.952 +0.9512)(z — 0.8958) 73 — 2.84672 + 2.698z — 0.852

A software tool has been used to simulate the response of the continuous-time
system to a random signal that was sampled every 0.01 s and the resultant input/
output data, y(k), uk), k=1,2,..., 1500, was placed in a file. On the basis of this
data, a 1500 x 6 array X and a 1500 x 1 array V were obtained. The following are
covariance matrices Kxx and Kxy:

[1.007 0.884 0.778 —0.179 —5.024 —4.239
0.884 1.007 0.883 — 0.283 —0.175 — 5.020
Koy — 0.778 0.883 1.006 — 0.289 —0.280 — 0.173
—0.179 —0.283 —0.289 105.6 — 0.759 1.309 ’
—5.024 —0.175 —0.280 — 0.759 105.6 — 0.790
| —4.239 —5.020 —0.173 1.309 —0.790 105.6
[—0.884
—0.778
—0.684
K 5.029
4.244
| 3.644

Application of the LSM procedure results in the estimation of the parameters of the
regression equation

—2.846
2.698
—0.852
0.046
—0.092
0.046

that can easily be recognized as particular parameters of the z-domain transfer
function.

Now let us introduce “measurement noise” with the standard deviation of 0.0002
in the output channel by adding appropriately chosen random signal to the [y(k),
k=1,2,...] data.

This results in a significant change in the parameters C due to the fact that in the
regression equation, representing the dynamic model some of the inputs

C =Kxx "*Kxv =
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(regressors) are nothing but the output variable shifted in time. Consequently, the
“noise in the output” becomes the “input noise”

—1.834
0.811
0.027
0.046
—0.045
—0.001

C =Kxx "*Kxv =

At the same time, knowing the variance of this noise can be quite fruitful for
improving the estimates. Let us approximate the covariance matrix of the noise as
follows:

&2 0 0 0 0 0 4e—8 0 0 000
0 62 0 00 0 0 4-8 0 00 0
K _|0 0 ao0o0o0|_| 0 0 4-8 0 0 0
M=o 0 0 00 0| | O 0 0 00 0
0 0 0 000 0 0 0 00 0
0 0 0 000 0 0 0 000

where o,,> =4e-8 is the variance of the noise in the output channel (note that only
first three regressors are defined as shifted output y(k)). Now the improved param-
eter estimates can be obtained as

—2.823
2.655
—0.832
0.046
—0.091
0.045

C= (KXX - Knoise)il*KXV -

Model validation includes,

(1) Computation of the modeling error: E =V—-X*C,

(2) Computation of the variance of the modeling error: GERR2 = 15%ETE =1le—06

(3) Computation of the natural variance of variable y (using the CC function):
oy’ =var(V)=0.95

(4) Computation of the coefficient of determination 1, which in our case is very
close to 1. It can be concluded that a high quality model was obtained.
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3.3 Control System with an Output Feedback Controller

Since most realistic manufacturing processes are continuous-time processes, con-
sider its original mathematical description in the form of an s-domain transfer
function G(s). To simplify the presentation, assume that transfer function G
(s) does not have right-hand-side zeros. It is quite common that the exact definition
of the transfer function is unknown, and the system designer must rely on its
discrete-time equivalent G(z) obtained by regression analysis. Recall that G
(z) corresponds to the chosen discrete time step T and reflects the most realistic
scheme of discrete-time control: the plant is driven through a zero-order-hold.
Assume that the design specifications are given by the system bandwidth, ®®",
and the disturbance rejection, o db.

First, let us present the general description of the design methodology.

Assume that the transfer function of the controlled plant is given in the form

Gp(z) = gig where Np(z) and Dp(z) are m-th order polynomial numerator and

n-th polynomial denominator, and n > m. Similarly, the model transfer function,
originally defined in the s-domain to comply with the system design specifications
and then converted into the z-domain (for the appropriate time step and the ZOH

Nm(z)
Dw[<Z)

numerator and n-th polynomial denominator. Next, filter Q(z) =

option), is Gu(z) = where Ny(z) and Dy(z) are n-1-th order polynomial

ﬁ(Z) is to be
introduced in the input of the plant and a feedback H(z), where H(z) is a n—1 order
polynomial must be introduced forming the system configuration in Fig. 3.3.

It could be seen that the closed-loop transfer function of this system is

GCL (Z) =

w2 Ne@ De(o) !
I+ H@Z)Q@)pHE  1+H(z) gl pag  De(z) +H(2)

o
o
N
N

It is necessary to ensure that the closed-loop transfer function G¢r(z) can be
modified to become equal to the model transfer function. First, the characteristic
polynomial of the closed-loop system must be equal to the characteristic polyno-
mial of the model transfer function, i.e.

Dp(z) + H(z) = Dum(z)

L | {Ga] -

Fig. 3.3 System with filter and feedback controller
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— Ny(2) Q(2) » Gp(z) >

H(z) |«

Fig. 3.4 System with filter, feedback controller, and input pre-filter

——Nu(2)Q(2) Gp(2) >

H(2)Q(2)

Fig. 3.5 Simplified system from Fig. 3.4

that results in the straight-forward definition of the polynomial H(z):
H(z) = Dy(z) — Dp(2)

Second, the zeros of the closed-loop transfer function must be equal to the zeros of
the model transfer function, that can be achieved by placing a polynomial filter
Nwm(z) in the reference channel of the above system. This setup is shown in Fig. 3.4.

Finally, the above block diagram in Fig. 3.4 should be transformed resulting in
the configuration of the control system as shown below in Fig. 3.5.

Note that the presented design procedure does not address the steady-state error
requirements that could be a part of design specifications. These requirements could
be satisfied by the manipulation of the non-dominant poles of the model transfer
function and/or introduction of an integrator in the control loop as will be demon-
strated by the numerical examples below.

The design methodology could be best illustrated by the following numerical
example.

Example 3.4 Given the transfer function of a fourth order controlled plant,
established on the basis of input/output measurement data (time step of 0.01 s):

Go(2) 01(z> —2.9422 +2.88z — .94)
VA =
P 7* —3.9873 +59422 —3.94z +0.98

The design specifications call for the system bandwidth ®®" = 10 rad/s and the
disturbance rejection & = 15 db.

Recall that Gp(z) is consistent with the time step of 0.01 s and the ZOH case.
First, let us introduce an s-domain model transfer function, Gys(s), of the same
order as the controlled plant, representing a system with the desired bandwidth of
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10 rad/s. Recall that the frequency response of this system must have the magnitude
of zero db within the frequency range 0 <® <®"" and then should exhibit a
magnitude drop of 20 db/dec or more. For this purpose it is recommended to choose
a system with a dominant second order term with the damping ratio of 0.8 and the
natural frequency of 10 rad/s. The non-dominant part of the characteristic polyno-
mial may have two first order terms. For low overshoot of the system step response
it is recommended not to have zeros, and the constant gain of the transfer function
shall be chosen to assure that G(0) = 1. One can realize that this transfer function
represents the desired closed-loop dynamics of the reference channel of the system
to be designed:

200000
(s2+2-0.8-10- s+ 10%)(s +40)(s + 50)
200000
(s> +16 - s+ 100)(s 4 40)(s + 50)

GCL(S) _

Obtain the z-domain equivalent of this transfer function for the ZOH option and
the time step of 0.01 s (a computer tool is recommended for this task):

G () 6.76e — 05(z> + 8.9422 +7.24z + .53)
7Z) =
z* —3.1223 + 3.6122 — 1.84z + .35
Note that although the s-domain transfer function GCL(s) does not have zeros, its
z-domain equivalent, GCL(Z) has zeros.
Assume that filter

1 100

Q@):ouﬁ—49@2+z%z—9@:}3—29u2+2%z—94

is placed in the input of the controlled plant and a polynomial feedback,
H(z) = h3z® +hyz2 + hyz + hy

is introduced. It could be seen that the overall transfer function of this system is

1

GOV _
() z* + (h; — 3.98)z3 + (hy + 5.94)z% + (h; — 3.94)z + hy + .98

and its characteristic polynomial must be equal to the denominator of the desired
closed-loop transfer function GCL(Z), i.e.

7'+ (hy —3.98)7° + (hy 4 5.94)z> + (h; — 3.94)z + hy + .98 = z* — 3.127°
+3.612% — 1.84z + .35
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U(z)
R(z) —— Q@ [—>O— G (@ » Y(2)

A

H(2)Q(2)

Fig. 3.6 System with zero-cancelling filter and feedback controller

This relationship leads to the following equations defining numerical values of
parameters hy—hs:

hy —3.98=—3.12— h; = .86
hy45.94=3.61 —h,=—2.33
h; —3.94=—184—h,=2.10
ho+ .98 = .35 — hy = —.63

Now that the controller H(z) has been defined, let us modify the system block
diagram as follows in Fig. 3.6.
It can easily be found that the overall transfer function of this system is

1 " 01(z> —2.947> +2.88z — .94)
01(z — 29472 +2.882 — 94) " 7* — 3.982° +5.942% — 3942 + 098
01(z —2.947> +2.88z — .94) 1 5 )
1 8670 —2.332% +2.102 — .63
T 398 13947 394 1098 017 2947 1288 — 94) < 5% 2 +2.102 - .63)

1
T (24— 39825 +5.9422 —3.94z +0.98) + (.862> —2.3322 +2.10z — .63)
1

T 74 —3.1273 +3.6122 — 1.84z +0.35

This indicates that the “last touch” of our design procedure is the modification of
the filter in the reference channel. The modified filter should have the transfer
function

F(z) = Nm(2)Q(z) = 6.76e — 05(2’ +8.94z> +7.24z + .53)Q(z)

where Ny(z) is the polynomial numerator of the model transfer function, then the
overall system transfer function for the reference input will be exactly equal to
Gm(2).

Let us also define the closed-loop transfer function of the control system for the
disturbance channel, understanding that the disturbance could be approximated by a
staircase- type signal applied directly to the input of the controlled plant as shown
below in Fig. 3.7. Then the closed loop transfer function of the disturbance channel is,
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Disturbance

Reference
——Nu(@Q(2) Gp(2) >

A

H(2)Q(z)

Fig. 3.7 System with input filter and feedback controller

RESPONSE OF THE CLOSED-LOOP SYSTEM TO UNIT STEP REFERENCE

1.2
14
; ; ; : ; ; : : Time, sec
O T T T T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3.8 Reference step response of closed-loop system

01(z —2.942> +2.882 —94)
4 3 2 _
GD(Z) z*—3.982° +5.94z°> —3.94z +0.98

= | 4 Ol —2.942> 12882 —94) 8673 ~2.332’ +2.102 —.63
75—3.0827 15.9422 —3.04z +0.98 * 0l1(z7 —2.94z2 +2.88z —.94)

_01(2 —2.9472 4+2.88z — .94)
- 74 —3.122° +3.6122 — 1.84z + 35

The following Figs. 3.8, 3.9, 3.10, and 3.11 demonstrate the closed-loop char-
acteristics of the design system
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RESPONSE OF THE CLOSED-LOOP SYSTEM TO UNIT STEP DISTURBANCE
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Fig. 3.9 Disturbance step response of closed-loop system
CLOSED-LOOP FREQUENCY RESPONSE OF THE REFERENCE CHANNEL
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Fig. 3.10 Reference channel frequency response of closed-loop system
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CLOSED-LOOP FREQUENCY RESPONSE OF THE DISTURBANCE CHANNEL
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Fig. 3.11 Disturbance channel frequency response of closed-loop system

3.4 Control System with a State-Variable Feedback
Controller

3.4.1 Discrete-Time State-Variable Description of Control
Systems

In many instances the controlled process is described in continuous-time state-
variable form,

X = AcX +BcU, and Y = CU

where X = X(t) and X = X (t) is the state vector (nx 1) comprising relevant
physical variables (state variables) of the process and its first derivative, Y = Y(t) is
the vector (m x 1, m <n) of controlled variables, U= U(t) is the vector (m x 1) of
controlled efforts, Ac is the fundamental matrix (n x n) of the system, B¢ is the
matrix (n x m) through which control efforts contribute to particular state equations,
C is the matrix (m X n) that is used to designate the output variables, and subscript ¢ is
intended to remind the reader that we are dealing with a continuous-time system, and
t is continuous time. It is expected state equations reflect laws of physics and state
variables are real physical variables that can be continuously monitored through
special sensors.

Development of a computer-based control system for a controlled plant
represented by a state-variable model requires that its continuous-time description
be converted into a discrete-time state-variable form,
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X(k+ 1) = AX(k) + BU(k)
Y(k) =CX(k), k=0,1,2,....
Again, the conversion must be performed for the required time step, T, and for the

zero-order-hold application. Although the conversion should be accomplished
using an engineering software tool, it is good to remember that

4

™, , T 4
A=1+T Ac+—A — A A -
+ C+2 C+2'3 c+2.3'4 c +
T2 T3
B=|T -1+ —Ac+—Ac? A+ ... B
tyfcty A A T ¢

where I is the identity matrix, and matrix C is the same for the continuous- and
discrete-time forms.
A state-variable controller implements the following control law:

U(k) = R(k) — FX(k), k=1,2,3, ...

where U(k) is the control effort (m X 1) applied to the plant in the form of staircase-
type signals, R(k) is the reference signal (m x 1), and F is a matrix (m X n) of
parameters of the controller. Note that signal R(k) may be different from the
set-point signal Ry(k) actually representing the desired values of the output vari-
ables Y(k). As shown in the diagram below in Fig. 3.12, signal R(k) can be defined
as R(z) = W(z)Ry(z) where W(z) is a digital matrix-filter (m X m).

The matrix diagram above helps to realize that the control system has two
different channels and two closed-loop transfer functions (transfer matrices), for
the reference channel,

GeR(z) = C(z1 — A + BF) 'BW(2)

Disturbance

X(k)
Ry— W(2) Z-1 ,@—> Y

F

Fig. 3.12 State-variable definition of system with filter and feedback controller
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and for the disturbance channel,
GeLP(z) = C(z1 — A + BF) 'BP,

where B is the matrix through which the disturbance contributes to the state

equations. Note that generally speaking, matrix B® is different from matrix B.
Indeed, combining the control law with the state-variable description of the

controlled plant, results in the state-variable description of the closed-loop system,

X(k+ 1) = AX(k) + BR(k) — BFX(k) and Y(k) = CX(k), k=0,1,2,....
Taking the Z-transform of these equations under zero initial conditions results in
zX(z) = AX(z) + BR(z) — BFX(z) and Y(z) = CX(z)

zX(z) = AX(z) + BR(z) — BFX(z) or (zI — A + BF)X(z) = BR(z), and
X(z) = (z1 — A + BF) 'BR(z)

Multiplying left and right-hand sides of the last equation by matrix C results in the
relationship between the reference and the output vector,

CX(z) = C(z1 — A + BF) 'BR(z) = Y(z)
Recall that R(z) = W(z)Ry(z), then
Y(z) = C(zl — A + BF) 'BW(2)Ry(z)

and consequently, C(zI — A 4+ BF)”'BW(z) should be interpreted as the transfer
function (transfer matrix) of the reference channel.

In the case of the disturbance input that may contribute to the state equations
through matrix BP =B, the situation is as follows:

X(k + 1) = AX(k) + BU(k) + BPD(k)
U(k) = R(k) — FX(k)
Y (k) = CX(k), k=0,1,2,..

X(k + 1) = AX(k) + BR(k) — BFX(k) + BPD(k)

Y (k) = CX(k), k=0,1,2,...
zX(z) = AX(z) + BR(z) — BEX(z) + BPD(z), Y(z) = CX(z)
(z1 — A + BF)X(z) = BR(z) + B’D(2)
X(z) = (zI — A + BF)'BR(z) + (z — A + BF) 'BPD(2)

Multiply the left-hand side and right-hand side of the equation by C and for the
disturbance input assume R(z) =0, then
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Y(z) = C(z — A + BF) 'BPD(2)
and finally the transfer function (transfer matrix) of the disturbance channel is
—1nD
C(zl-A+BF)" B
X(k+1) = AuX(k) + ByU(k), Y(k) =CuX(k), k=0,1,2,....
In many instances the state-variable description of the control system in its

arbitrary form (most likely consistent with the laws of physics or results of
regression analysis)

Y(k) = CX(k), k=0,1,2,....
should be converted into the canonical controllable form (CCF),

V(k+1) = AccrV(k) + BecrU(k) + BPccrD(k)
U(k) = R(k) — FecrV (k)
Y (k) = CecrV(k), k=0,1,2,..

where ACCF = PAP_l s BCCF =PB, BDCCF = PBD, FCCF =FP~ ! 5 CCCF = Cp_l s V(k):

PX(k), and P is a n x n matrix, providing the “key” to converting an arbitrary state-
variable form to the CCF. As per undergraduate controls,

Q
QA
P=| QA? |whereQ=1[0 0 ... 0 1]-[B AB A’ ... A"'B]"

QAIFI

Let us verify the relationship between V(k) and X(k) state vectors (assume
D(k) =0):

V(k+1) = PAP'V(k) + PBU(k) or P"'V(k + 1) = AP"'V(k) + BU(k)

Indeed, if PflV(k) = X(k) the last equation turns into the original state equation in
the arbitrary form, X(k + 1) = AX(k) +BU(k)
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3.4.2 Design of a Discrete-Time State-Variable Controller

Assume that the design specifications are given by the settling time, Tsgt, over-
shoot of the step response, P%, and the steady-state error caused by a unit step
disturbance. Consider a design procedure resulting in a control system with a state-
variable controller consistent with the above specifications. The procedure is
intended for the situation when the transfer function of the controlled plant,

Gp(z) = C(zI—A)"'B

does not have zeros outside the unit circle.

First, it is recommended to define an s-domain model transfer function Gys(s) in
full compliance with the settling time and the overshoot of the step response that
can be achieved by the choice of dominant and non-dominant poles. The order of
this transfer function must be the same as the order of the controlled plant, and it
shall not have zeros. The constant gain of this transfer function must be chosen such
that Gp(0) =1.

The next step is to convert model transfer function into the discrete-time domain
using the ZOH option and the appropriate time step, T, that will result in transfer
function Gy(z):

T

GM(S) Zg;_l GM(Z)

Finally, Gy(z) should be subjected to direct decomposition that will yield the
state-variable equivalent of Gy(z) in the canonical controllable form (CCF),

X(k+1) = AuX(k) + ByU(k), Y(k) =CuX(k), k=0,1,2,....
Convert the state-variable description of the control system
= AX(k) + BU(k) + BPD(k)
Y (k) = CX(k), k=0,1,2,...
into the CCF form,
V(k+ 1) = AccrV (k) + BecrU(k) + BPccrD(k)
U(k) = R(k) — FecrV (k)

Y (k) = CccrV(k), k=0,1,2,....

This conversion would drastically simplify the controller design problem.
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It can be seen that the state equation of the closed-loop system is
V(k+ 1) = (Accr — BecrFeer) V (k) 4 BecrR (k) + BPccrD(K)

It is our goal to assure that the fundamental matrix of the closed-loop system in
CCF, Accr—BccrFccr, be equal to the fundamental matrix of the model system,
Ay, e,

Accr — BecrFecr = Am

Therefore, BccpFecr = Accr — Am. Generally speaking, this equation is not “user-
friendly”, especially when Bccr is not a square matrix, however, in the case of a
single-input-single-output system and a CCF format of all relevant matrices, this
equation looks like,

0 0 1 0 ... 0
0 0 0 1 0
I B fa RD=| o
0 0 0 0 1
1 alCCF a2CCF ag(:CF . anCCF

0 1 0 0

0 0 1 0

0 0 0 1

aM aM aM a,M

and consequently,
Fecr = Becr' (Accr —Am) =[0 0 ... 0 1](Accr — Awm)

The designed controller is intended for the state vector of the CCF, V(k), to
provide the state-variable feedback. It is now time to obtain the controller consistent
with the “real” state vector, X(k), by post-multiplying matrix Fccg by matrix P:

F = FccpP
It can be found that closed-loop transfer function
C(z1 — A+BF)"'B

has the same denominator (characteristic polynomial) as the model transfer func-
tion, Gy(z). However, its numerator, N(z) = Np(z), is equal to the numerator of the
transfer function of the controlled plant, Gp(z) = C(zI — A)"'B and is different
from the numerator of the model transfer function Ny (z). This reality will adversely
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affect the overshoot of the step response of the designed system, and can be
corrected by the introduction of a digital filter in the reference channel of the
designed system,

_ Nu(z)
NP(Z)

W(z)

Finally, the steady-state error caused by unit step disturbance applied to the
designed system can be evaluated. Recall that the error caused by disturbance is the
system response to this disturbance. The z-transform of the error caused by unit step
disturbance, E(z), can be defined as the z-transform of the unit step signal multi-
plied by the transfer function of the disturbance channel:

E(z) = C(zl — A + BF) 'BP—"—

The steady-state error, Egg, is defined by the application of the final value
theorem of z-transform to the above expression:

—1 1
Ess = Lim E(K) = Lim 2 E(z)=LimZ2_~C(zl— A+ BF)“BDL1
—00 z— VA

z—1 Z z—

=CI-A+BF)!

According to this result, the value of the steady-state error, Egg, can be manip-
ulated by the choice of non-dominant poles of the model transfer function Gy(s) in
the beginning of the design procedure.

Example 3.5 The following are the state and output equations of the controlled
plant obtained on the basis of regression models, note explicitly defined matrices A,
B, and C:

—0.440 4.095 4716 4.072
0333 3.090 2730 1468
Xk+1)= 10331 “2612 _ 1.164 0.408 | <&+

—0.440 2.716 2.851 2504
<1 —0313]xle—5

U(k) and Y (k)

D= O N

The design specifications call for 0.67 s settling time, overshoot of the step
response of 10 %, and the steady-state error for unit step disturbance Egg <0.15
(abs. units). The time step of the digital controller is 0.005 s.

The following model transfer function is defined in the s-domain in compliance
with the settling time and overshoot requirements:

200000
(s2 + 125 + 100)(s + 40)(s + 50)

GM(S) =
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It has been converted into the z-domain for the time step of 0.005 s using the
zero-order-hold option:

47707e — 06(23 +9.947z% +8.982z + 0.7364)

G =
w(2) = 21939, £0.9418)(2 = 0.8187)(z — 0.7788)

The direct decomposition of the above transfer function results in the following
fundamental matrix:

0 1 0 0
0 0 1 0
Au=1| 0 0 1
—0.600 2.741 — 4.678 3.537

The following matrix filter facilitating the conversion of the state-variable
description of the controlled plant to CCF was obtained:

0.222 —-0.302 —0.090 —0.177
0.111 -0.273 —-0.180 —0.021
0.111 0.025 —-0.072 -0.075
—2e—04 0514 0.460 0.270

P =

The following matrix is the result of converting the fundamental matrix of the
controlled plant to CCF, i.e. Accp=PAP ™

0 1 0 0

0 0 1 0

Accr = 0 0 0 1
—0.991 3.973 —5.974 3.990

Since Accr—BccrFecr = Awm, due to specific configuration of matrix Becp the
matrix of the controller Fccr can be found as the “last row of the difference
Accr—Am™:

Fecr=[0 0 0 1])(Accr — Am) =[~0.390 1.232 —1.296 0.453]

Finally, matrix F of the state-variable controller consistent with the state vector
X(k) is defined as follows:

F = FccpP = [-0.094 —0.017 0.115 0.263]
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Define the closed-loop transfer function G¢y (z) = C(zI-A + BF)™ 'B:

5e — 5(z — 0.6002)(z2 — 2.1z + 1.802)

G =
a(z) (z—0.7788)(z — 0.8187)(22 — 1.939z + 0.9418)

One can realize that it has the denominator of the model transfer function, as
required, but its numerator is quite different from the numerator of the model
transfer function. Note that the computation of the closed-loop transfer function
is quite a formidable task; it is much easier to define this numerator from the matrix
Cccr of the plant:

Cecr = [-5.407 1531 —13.50 5.000]le — 5
Np(z) = le —5(52° — 13.502> + 15.31z — 5.407)

 4.707¢ — 06(z* +9.94772 +8.982z + 0.7364)

w
(z) le — 5(52% — 13.502% + 1531z — 5.407)

or
0.4707(2° +9.94772> + 8.982z + 0.7364)

W
() 523 — 13.5022 + 15.31z — 5.407

The simulation indicates that the reference channel of the designed system is
compliant with the design specifications (see Fig. 3.13).

Application of the final value theorem results in the following value of the
steady-state error for unit step disturbance (it is assumed that B® = B):

Ess = C(I — A+ BF) 'B = 0.144 (units)

1.2 - ;
Response of the closed-loop system to unit step reference

14

0.8 1
= 0.6 1

0.4 -
0.2 Jsuss e R . Response of the closed-loop system to unit step disturbance

0 L= ; ; :

0 0.5 1 1.5 2

Time

Fig. 3.13 System response to step reference and step disturbance
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Exercise 3.1

Problem 1 The controlled plant is defined by its transfer function,

2+ 6s + 10

G = —
p(s) $34+2s24+9s+ 8
Utilize a simulator to obtain the response of the controlled plant to a combination of
random noise and a sinusoidal signal. Record 500 successive measurements of the
resultant input/output data discretized with the time step of 0.05 s. Obtain the
z-domain transfer function of the controlled plant, Gp(z), using the LSM. Verify
0.05 sec

your result using a software tool performing the conversion Gp(s) —  Gp(z).
ZOH

Problem 2 Utilize the transfer function, Gp(z), obtained in the above problem to
design a discrete-time output-feedback control system compliant with the following
specifications: settling time Tsgr =2 s, overshoot of a step response P% =5 %, and
the steady-state error for unit-step disturbance Egg < 0.2 (units). Show all stages of
your design. Investigate the design by computer simulation.

Problem 3 The controlled plant is defined by the following continuous-time
equations:

X1 = —10.4x; + 10.3x5 + 8.8x3 — 3u

X, = 0.6x; — 0.65x; — 0.2x3 +u

X3 = —11.9X1 + 11.7X2 + 9.6X3 —4u

y = —7.3x; + 7.6X3 + 6.8x3

Obtain the discrete-time equivalent of these equations for the time step of 0.005 s
and zero-order-hold application. Utilize 6 terms of the series approximation.

Problem 4 Utilize the solution of the previous problem to design a discrete-time
state-variable feedback control system compliant with the following specifications:
settling time Tsgr =2 s, overshoot of a step response P% = 5%, and the steady-state
error for unit-step disturbance Egg < 0.2 (units). Show all stages of your design.

3.5 Control System with a State-Variable Feedback
and a State Observer

3.5.1 Discrete-Time State-Variable Control Systems
with State Observers

Discrete-time state-variable control has a number of advantages over the output-
feedback control scheme. Due to these advantages, it can be utilized even when
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state-variables of the controlled plant are not accessible. This is accomplished by
the use of a state observer, a software-based dynamic system capable of computing
the estimated state vector using the input and output data of the controlled plant:

Z(i+ 1) = MZ(i) + BU(i) + KY(i), i=1,2,3, ...

where M is a fundamental matrix of the state observer and I is the discrete-time
index. It can be seen that the control effort, U(i), and the plant output, Y(i), are
playing the role of the “forcing functions” for the observer. Under some conditions,
the state vector of the observer, Z(i), having the same dimensions as the unavailable
state vector of the controlled plant, X(i), converges to X(i), i.e. the state observation
error, E(i) = X(i) — Z(i), is such that lim E(i) = 0.

1—00

Consider the full description of a controlled plant with a state observer and a
state-variable controller:

X(i+ 1) = AX(i) + BU(i)
Z(i+ 1) = MZ(i) + BU(i) + KY (i)
U(i) = R(i) — FZ(i)

Y(i) = CX(i), i=0,1,2,....

Subtracting the second state equation from the first yields:

X(i+1)—Z(i+1) = AX(i) + BU(i) — MZ(i) - BU(i) - K
X(i+1)—Z(i+1) = AX(i) + BU(i) — MZ(i) — BU(i) — KCX(i) or
E(i+ 1) = (A — KO)X(i) — MZ(i)

Define matrix M as A-KC, then

E(i+ 1) = (A — KC)X(i) — MZ(i) = (A — KC)X(i) — (A — KC)Z(i) or
E(i+ 1) = (A — KC)E(i)

The resultant equation describes the error conversion (or the state estimation)
process. It is known that to assure that lim E(i) = 0, one has to properly assign

1—00
the eigenvalues of the fundamental matrix of the state estimation process, A-KC.
Since it is a discrete-time process the eigenvalues must be chosen inside the unit
circle in the complex plane, i.e.

A& <1 foralk=1,2,...,n

One can realize that this can be accomplished by the choice of matrix K.
Now transform the state equation of the closed-loop system as follows:

X(i + 1) = AX(i) + BR(i) — BFZ(i)
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Since E(i) = X(i)—Z(i), Z(i) = X(i)—E(),

X(i + 1) = AX(i) + BR(i) — BFX(i) + BFE(i) or X(i+ 1)
= (A — BF)X(i) + BEE(i) + BR(i)

Combining the last equation with the equation of the estimation process, one can
obtain the complete state-variable description of the control system with the state-
variable controller and the state observer that would describe both the control and
the state estimation processes:

X(i+ 1) = (A — BF)X(i) + BFE(i) + BR(i)
E(i + 1) = (A — KO)E())

or in a block-matrix form

minl= [0 Atk e+ Lol

This result demonstrates the separation principle: the estimation process is
completely independent from the control process. However, it can be seen that
the estimation error may affect the control process during the transient regime but
not in steady-state, since lim E(i) = 0.

1—00

It shall not be forgotten that a special filter W(z) in the reference channel and a
filter H(z) in the input of the controlled plant may be required to achieve the full
compliance of the designed system with the model transfer function Gy(z) and
simplify the design procedure. The final configuration of a discrete-time control
system with a state-variable controller and a state observer is shown below in
Fig. 3.14.

Disturbance

R v —»i—»
R,— W(2) H(z) Plant Y

Fig. 3.14 State-variable system with state observer
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3.5.2 Design and Analysis

Contribution of a state observer in the control process can be seen from the
following, previously obtained equations,

X(i+ 1) = (A — BF)X(i) + BFE(i) + BR(i)
E(i+1) = (A — KCO)E(i)

One can conclude that state estimation error shall not interfere with the control
process. This can be achieved by making its convergence time much shorter that the
settling time of the control system and eigenvalues of matrix A-KC should be
chosen appropriately.

Consider the computational task of defining the matrix

K,
K
K=|"72
Ki

First note that matrix A, matrix B and matrix C represent the CCF of the
controlled plant’s mathematical description. Since the state vector of the plant is
inaccessible and is to be estimated, it makes a lot of sense to estimate it for the
CCF—the most convenient state-variable form. Matrix K must be chosen such that
eigenvalues of the matrix A-KC be equal to the desired eigenvalues Ay, Ay, ..., Ay

that would assure the necessary convergence rate of state estimation errors. This
requirement leads to the equation

Det(zI—A+KC) = (z—M\)-(z—N) ... (z—A) =2" +p,_12""
+PaaZ T Piz P

The left-hand side of this equation, in more detail, looks like this:

z 0 0 0 0 1 o ... 0 K,
0 z 0 0 0 0 1 0 K,
Det 0 0 =z 0| - + | Ks|[c1 e ez ... e
0 0 0 1
0 0 0 z A, Ay a3 ... ap K,

and constitutes a n-order polynomial with respect to z. While matrix A and matrix C
are known, coefficients of z in the powers of n—1, n—2, ..., I, 0 in this polynomial
are functions of Ky, Ky, . . ., K. Technically, these coefficients can be equated to the
corresponding coefficients of the polynomial z" +p,_,;z"' +p, ,z" 2 + ... +p,z
—+p, resulting in the system of n equations with n unknowns, K;, K, ..., K. This
concept has one major flaw: it can be seen that these equations will be non-linear with
respect to unknowns and their solution will present a formidable task.
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We propose the following approach to overcome this difficulty. Introduce a
digital filter in the input of the controlled plant as shown in the block diagram
above,

1

" Np(2)

H(z)

where Np(z) is the numerator of the controlled plant transfer function. Now the CCF
description of the controlled plant & filter will have the same matrix A and matrix B
as the plant alone, but its matrix C will be replaced by

C=[10 ... 0 0]

Now the polynomial Det(zI — A + KC) looks as follows,

z + K, —1 0 . 0
Kz z -1 0
Det K; 0 z ... 0 = Q(z,K)
—ay + Kn —an2 —an3 ce. Z—ap

and coefficients of the resultant polynomial
Q(z,K) = 2" +p, 1 (K)2" " + P, oK)z + ...+ (K)z + po(K)

are linear with respect to unknown elements of matrix K.

When the state observer matrix K has been established, the design of the state-
variable controller matrix F is very consistent with the previous section and
Example 3.5.

Finally, consider matrix equations describing the entire control system,

XED] - pa[S0] i

Y(i) = CaL ﬁ;g” ;

where
A —BF BF B
AcL = o A—KE}’ BCL:|:®:|’ and CcL = [C O]
Note that in these equations matrix C is replaced by C=[1 0 ... 0 0] to

account for the cancelled zeros of the plant.
In order to finalize the design and, later, to subject the resultant system to steady-state
error analysis, obtain the transfer functions of this system for the reference channel:
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GReL(z) = Cer(zl — AcL) 'BeL

In the situation when the system is properly designed, the first transfer function

where Dy;(z) is the denominator of the model transfer function. Therefore, in order
to comply with design specifications it is required to define the input signal R(z) as

R(z) = Ro(2)W(z) = Ro(z)Npm(z)

where Ry(z) is the set point signal (or control input), W(z) is a filter in the reference
channel, and Ny4(z) is the numerator of the model transfer function.

To perform the analysis of the steady-state error caused by disturbance, typically,
a unit-step disturbance, a transfer function of the disturbance channel, GPeL(2),
should be established. Since the disturbance D(z) = %5, according to the z-domain

final value theorem, the steady-state error for unit step disturbance is defined as

z

z—1 z—1
Ess = Lim E(k) = Li E(z) = Lim=——=GP
58 klrono () er{l z (Z) zl»n? z G CL(Z)z—l

=GP (1)
or

Egs = CE(1— AF) 'BF

where A, BF and CF are matrices of the CCF obtained by the direct decomposition
of the transfer function GDCL(Z). However, derivation of this transfer function is not
a straightforward task. It is “safe” therefore to consider the following interpretation
of the block diagram of a control system with state-variable feedback and a state
observer seen in Fig. 3.15:

Disturbance

M(z)

Ry— | W(2) H(z) Plant

v

N(z)

Fig. 3.15 Control system with state-variable feedback and state observer
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where

M(z) = F(z1 — Ap + KC) 'Bp and N(z) = F(zl — Ap + KC) 'K
Then the transfer function of the disturbance channel can be defined as

_Y() _ Ge(z) _ Gl +M(2)]
1 + Gp(2)H(z)N(2) %M() I+ M(z) + Gp(z)H(2)N(z)

thus providing the basis for the steady-state error analysis.

Example 3.6 Given transfer function of a controlled plant, Gp(s) =
3s2 +5s+ 10
$34+282+3s+5
state-variable controller operating with the clock frequency of 0.005 s to achieve
the settling time of 5 s, overshoot of the step response of 10% and the steady-state
error for a unit-step disturbance of 0.025 abs units. Since the state variables of the

controlled plant are not accessible, a state observer must be designed as well.
First, let us convert G(s) into the z-domain using the zero-order-hold option and
the time step T = 0.005 s:

It is required to design a discrete-time control system with a

0.01499(z2 — 1.992z + 0.9917)
(22 —1.9992 +0.9992)(z — 0.9908)

Gp(z) =

and obtain matrices of the CCF of this expression:

0 1 0 0
Ap = 0 0 1 ,Bp= 0|, Cp=[0.015 —0.030 0.015]
0.990 — 2.980 2.990 1
Introduce filter H(z) = 013992 71f9922 T0.9517) in the input of the controlled plant,

the CCF description of the filter & plant is as follows:

o 1 0 0
Ap = 0 0 1 ,Bp=1]0|,Cp=[1 0 0]
0.990 — 2.980 2.990 1

Introduce an s-domain model transfer function consistent with the required
closed-loop dynamics of the reference channel:

7.076

Onls) = (@ 15965 + 1.769)(5 - 4)

Conversion of Gy(s) into the z-domain using the zero-order-hold option and the
time step T = 0.005 s and consequent direct decomposition of this transfer function
yield:
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_ 1.464e — 07(z* +3.972z + 0.9861)

G
M) = 2 = 1992, +09921)(z —09802)
0 1 0 0
Au=| 0 0 1 |.Bu=|0],Cu=[1 6 1] xle—7
0.972 —2.945 2.972 1

Introduce an s-domain transfer function representing the desired dynamics of the
on process (note that its transient terms are approximately 4 times faster then the
non-dominant term of the control process):

1
(s+15)(s + 16)(s + 18)

GE(S) =

Conversion of Gg(s) into the z-domain using the zero-order-hold option and the
time step T =0.005 s yields:

1.96e — 08(z2 + 3.763z + 0.8847)

Ge(z) = (z — 0.9277)(z — 0.9231)(z — 0.9139)

While the numerator of this transfer function is meaningless, the denominator
exhibits three desired eigenvalues of the fundamental matrix of the state observer,
M =0.9277, A, =0.9231, and A3 =0.9139. As a matter of fact,

0 10 K,
Det | zI — o 0 1 +|K [[1 0 0]
0.990 —2.980 2.990 Ks

= (z - 0.9277)(z — 0.9231)(z — 0.9139)

or

7z + K] —1 0
Det K, z —1 |=2%—2.7657> +2.548 z — 0.783
K; —0.990 2.980 z—2.990

Transform the determinant in the left-hand of the equation as follows:

z(z 4+ Ky)(z — 2.990) + (K3 — 0.990) + 2.980(z + K;) + Ka(z — 2.990) =
2> 4+ 22 (K; —2.990) — 2.990zK; + K3 — 0.990 + 2.980z + 2.980K, + zK,
—2.990K, =
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7 + 72(K; — 2.990) + z(—2.990K; + 2.980 + K)
+ (K3 — 0.990 + 2.980K; — 2.990K})

Now it can be stated that

K,—2.990 = —2.765
—2.990K,+2.980+K, = 2.548
K3—0.990+2.980K, —2.990K, = —0.783

Note that these equations are linear with respect to K;, K, and K3 and their
solution is very straightforward:

K, 225
K=K, | = |.241
K; 258

The following recursive formula, obtained by the author for his students, facil-
itates easy computation of the matrix K for any size of the problem. For example,
for n=3:

Kl - _AE(373) + AP(37 3)

K> = —Ar(3,2) + Ap(3,2) + Ap(3,3)*K,
K3 = —Ag(3,1) + Ap(3, 1) + Ap(3,2)*K; + Ap(3,3)*K,

Forn=4:
K| = —Ag(4,4) + Ap(4,4)
K, = —Ag(4,3) + Ap(4,3) + Ap(4,4)*K,
K; = —Ag(4,2) + Ap(4,2) + Ap(4,3)*K; + Ap(4,4)*K,
Ky = _AE(47 1) =+ AP(4, 1) =+ Ap(4, 2)*K1 + AP(4, 3)*K2 + AP(4,4)*K1
and etc.

Generally a software tool, such as program CC, is used for the “automated”
solution for the observer matrix. The utilization of a software tool does not require
canceling the zeros of the controlled plant and should be recommended for a
problem where the order of the plant is greater than 3.

Speaking of the controller design, recall that Ay; = Ap—BpF, and since Ay, Ap,
and Bp are consistent with the CCF configuration, F=[0 0 ... 0 1](Ap—Apn) =
[0.018 —0.035 0.018].

Now it is time to “assemble” the entire model of the designed system following
the previously obtained expression,
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) [ [ -

where C=[1 00 ... 0] is the matrix reflecting the fact that filter H(z) has been
placed in the input of the controlled plant, also

ACL _ [A—BF BF ]

%) A —KC
0 1 0 0 0 0
0 0 1 0 0 0
0.972 —2.945 2.972 0.018 —0.035 0.018
0 0 0 —0.225 1 0
0 0 0 —0.241 0 1
0 0 0 0.732 —2.980 2.990
and
0
0
cL Bp| |1
B —{@ = lo
0
0

Then the closed-loop transfer function for the reference channel of the closed-loop
system, obtained using the CC software tool is

1
73 —2.97272 +2.9452z — 972

GUR(z) =[1 0 ... 0)(zl — A®Y)'B =

One can realize the denominator of this expression is consistent with the denom-
inator of the model transfer function, and with the filter
W(z) = 1.464e — 7(z* +3.972z + .986)

 1464e —7(1 +3.97227" + 98622
- —

in the reference channel the transfer function of the resultant system is equal to the
model transfer function that guarantees the full compliance with the design spec-
ifications, except the steady-state error requirement.
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GUlr(z) =[1 0 ... 0)(zI — A®Y)'BoW(2)

_ 1.464e —7(z> +3.972z + .986)
T 73 —2.97272 +2.9457 — 972

Let us compute the steady-state error in the designed system caused by the unit
step disturbance. It was shown that the error can be calculated as follows

M(z) = 01822 — .031z +.014
T 23 — 276522 +2.548z — 783

N(z) = 7.415¢ — 06(z — .993)(z — 1.00)
T Z3 —2.76522 +2.548z — 783

Then the transfer function of the error channel is

Ge(2)[1 + M(2)]

GDCL(Z) 1 + M(z) + Gp(z)H(z)N(z)

In our problem

0.01499(s — 0.8791)(s* — 1.868s + 0.8745)(s*> — 1.992s + 0.9917)

GP =
a(z) (s —0.9141)(s — 0.9228)(s — 0.928)(s — 0.9802)(s2 — 1.992s + 0.9921)

and Esg = GDCL(l) = 2.36 (units).

It can be seen that the error requirement has not been met. Let us investigate the
opportunities for manipulating the steady state error without affecting the settling
time and overshoot requirements. The results of this numerical study are summa-
rized in the following table.

Time step Non-dominant pole of Gy(s) Ess

0.005 —4 2.36
0.005 —40 1.20
0.005 —100 1.12
0.005 —200 1.10
0.002 —4 2.32
0.002 —40 1.17
0.002 —100 1.09
0.01 —4 2.41

The analysis of this table indicates that:

— anincrease of the absolute value of the non-dominant pole results in the decrease
of steady-state error
— adecrease of the time step results in the decrease of the steady-state error
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System response to a unit step reference signal

Time, sec
T

0 i i i
0 1 2 3 4 5 6 7 8 9 10

Fig. 3.16 Closed loop step response

Note that the availability of transfer functions M(z) and N(z) provides an
additional opportunity to define the closed-loop transfer function GX¢y (z):

_ Gp(z)H(z)W(2)
1 +M(z) + Gp(z)H(z)N(z)

GRCL (Z)

This definition could be preferable from the computational point of view.

The closed-loop system response is shown below in Fig. 3.16.

It should be noted that the design and especially re-design of a control system
should be facilitated by a special MATLAB or in our case Program CC code:

tstep=.005

pole=40

format long zeros compact
gps=(3*s"2+5*s4+10) / (s"34+2*s"243*s+5)
gp=convert (gps, 8, tstep)
gms=1.33"2*pole/ (s"2+4+2*.6*1.33*s+1.33"2) / (s+pole)
gm=convert (gms, 8, tstep)
ges=1/(s+15)/(s+16)/ (s+18)
ge=convert (ges, 8, tstep)

geccf=ccf (ge)

(ae,be, ce,d)=unpack (gecctf)

gpccf=ccf (gp)

(ap, bp, cp, d) =unpack (gpccf)
h=1/(cp(1,3)*z"2+cp(l,2)*z+cp(l,1))
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gmccf=ccf (gm)
gmccf=ccf (gm) ;
(am,bm, cm, d) =unpack (gmccf)
w=cm(1l,3)*z"24cm(1,2)*z+cm(1,1)
£f=(0,0,1)* (ap-am) ;
c=(1,0,0);
k(1,1)=—ae(3,3)+ap(3,3)
k(2,1)=—ae(3,2)4+ap(3,2)+ap(3,3) *k(1,1)
k(3,1 3,1 3,1)

(

(

7

)=—ae( ) +ap ( +ap(3,2)*k(1,1)+ap(3,3)*k(2,1)

m=f*(z*iden(3) -ap+k*c) " -1*bp;
n=f*(z*iden (3) -ap+k*c) *-1*k;
mm=1 |m

gcl=w* (h*gp*mm) |n

gcl=near (gcl)

gerr=gp| (mm*h*n)

gerr=near (gerr)

gerr=ccf (gerr)
(ar,br,cr,d)=unpack (gerr)
err=cr* (iden(6) -ar)~-1*br

err

3.6 Decoupling Control of a MIMO Process

A multi-input-multi-output (MIMO) process is characterized by a transfer matrix,
G(z), that may comprise of several regression equations,

Yi(z) Gii(z) ... Gmm(z) | | Ui(z)
= cee . o or simply Y(z) = G(z)U(z)
Y (z) Gmi(z) ... Gmm(2) Un(z)

where notations are obvious. It is said that particular elements of the transfer matrix
represent particular dynamic channels of the MIMO system, i.e.

ij(Z) =

Note that the number of control efforts is expected to be equal to the number of
controlled variables.

The control task of a MIMO process is complicated because of the cross-
coupling effects, i.e. generally speaking any input signal affects all controlled
variables and the independent access to any desired output variable can be achieved
by simultaneous utilization of all input signals. The purpose of decoupling control
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is to enable the process operator to independently manipulate any output variable of
choice without affecting other outputs. We will consider several discrete-time
decoupling control techniques: steady-state decoupling, state-variable decoupling
and full decoupling.

3.6.1 Steady-State Decoupling

Steady-state decoupling is an open-loop control technique that results in the
independent access to the steady-state values of the output variables. While the
transient process affects all output variables, the residual (i.e. steady-state) effects
can be found only in the output variable(s) of choice.

Assume that transfer matrix G(z) describes a combination of interrelated indus-
trial control systems that already have been stabilized by the introduction of “local”
controllers, i.e. the stability, settling times, and overshoot properties of the partic-
ular channels have been assured.

Define the input vector U(z) as W*Ry(z), where Ry(z) is the set point vector
representing the desired steady-state values of all output variables, and W is an
m X m matrix gain, defined as

W =0G(1)"
Indeed,

-1 _
Ygs = Lim Y(k) = Lim 27 Y(z) = Lim 2" G(2)U(2)

z—1 Z z—1 VA

Assume that YPFS is the vector of desired steady-state values of the output vari-
ables, and define the set point Re(t) :YDESu(t) as a set of step functions of the
appropriate magnitudes,

YIDES

YDES —

Ym DES

Then Ry(z) = YP®5-Z- and consequently,

7—

z
z—1

U(z) = WRy(z) = G '(1)YPEs

In this case, providing that matrix G(1) is not singular,

—1
Yss = Lim Y (k) = Lim 2 Gt

z—1 Z z—1

G71 (I)YDES — YDES
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Example 3.7 Given a z-domain mathematical model of several interrelated control
loops of a MIMO process relating the output variables to the input signals U, U,,
Us; (time step = 0.001 s):

r 0.0495(z — 0.99) 0.003986(z — 0.995) 0.001015(z — 0.9418) T
722 —1.97z +0.9704 72 —1.985z +0.99 72 —1.97z +0.9704
Yi(z)
Yl | - 0.00398(z — 0.9802) 0.02029(z — 0.9512)  0.002996(z — 0.9417)
YZ( | (z—0.9962)(z—0.9742) 22 —1.979z +0.9802 2z — 1.934z + 0.9418
3\Z
0.007884(z — 0.9988) 0.0009998(z — 0.99) 0.05824
L 22 —1.969z + 0.9704 72 —1.989z +0.99 z—0.9418 J
Ui(z)
X Uz(Z)
U3 (Z)

First, let us observe the cross-coupling “in action.” The graph in Fig. 3.17
features the response in each of the three outputs of the system to a unit step signal
applied to the input #1. It is important to observe the residual (steady-state) effects
of this input signal in all outputs.

The following simulation features the step response of the same system driven
through a decoupling filter assuming that R, is a step with magnitude of 3 (units)
and R()l = R03 =0

Ror — 3‘ y MmO
Rpyp— W U2 »  SYSTEM [z
ROS" 3, G(Z) —>y3
2 +
14/
i . R S
| P e
-0.5 : ; ;
0 0.005 0.01 0.015 0.02 0.025

Fig. 3.17 Demonstration of cross-coupling to a step response
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5
4 4
f
2 [ A
|
1 .
0 PR oo
-1 T T T T
0 0.005 0.01 0.015 0.02 0.025

Fig. 3.18 Steady state decoupling for a step response

where
1.0040123 —3.113591e — 003 — 0.0752309
W= G(l)f1 = 1.199517e — 003 1.0001570 —0.0225935
—0.0535559 —6.977921e — 003 1.0041737

It can be seen that the goal of the steady-state decoupling control has been achieved:
the intended output has been incremented by 3 units and no residual effects in other
outputs are observed (Fig. 3.18).

3.6.2 Full Decoupling

The full decoupling problem does not have an assured general solution. Its solution
can be worked out on a case-by-case basis as follows.

Given an n X n z-domain transfer matrix of a MIMO process, G(z). Given design
specifications, settling time, overshoot of the step response, and steady-state error
for its direct input—output channels, i.e. Roj— Yj, j=1,2,...,n.

The design procedure requires that a rational decoupling filter, W(z), be
designed that matrix Q(z) = G(z)W(z) be diagonal, however, each of its diagonal
elements, Qjj(z), should have the order of the numerator lower than the order of the
denominator and does not have zeros outside the unit circle. Then diagonal ele-
ments Qjj(z) should be treated as transfer functions of independent single-input-
single-output processes and equipped with the feedback controllers and input filters
to comply with the design specifications.



3.6 Decoupling Control of a MIMO Process 153

Let us consider the design procedure in more detail for n=3. Assume
G11(Z) G12(Z) G13(Z)
G(z) = | Ga(z) Gno(z) Gn(2)
Gsi1(z) Gaa(z) Gas(z)

and

W]](Z) W]Q(Z) W13(Z)
W(z) = | Wai(z) Wax(z) Was(z)
W31 (Z) W32 (Z) W33 (Z)

Define elements of the matrix W(z) from the following equations reflecting the
requirement that matrix Q(z) = G(z)W(z) must be diagonal:

Q12(z) = G11(z2)Wia(z) + Gi2(2)Waa(z) + Gi3(2)Waa(z) =0
Qi3(z) = G (2)Wi3(z) + Gi2(z2)Was(z) + Gi3(z)W33(z) =0
Q21(2z) = G21(2)W11(z) + Ga2(2)Wai(z) + G3(2)W31(z) =0
Q23(2) = G21(2)W13(z) + G22(2)W23(z) + Go3(2)W33(z) =0
Q31(z) = G31(2)W11(z) + G32(2)Wai(z) + G33(z)W31(z) =0
Q32(z) = G31(2)Wi2(2) + G32(2)Wa2(2) + Ga3(2)Wa2(z) =0

Note that the above system contains six equations and nine unknowns and therefore
allows for many solutions thus providing the opportunity for a rational choice of the
elements of matrix W(z). Then, the non-zero diagonal elements of matrix Q(z) can
be defined as follows

Q11(z) = G (2)Wi1(2) + Gi2(2)Wai(2) + Gi3(2)W3i(2)
Q0 (z) = G (z)Wia(z) + Gn(z)Wan(z) + G (2)Wa(z)
Q33(z) = G31(2)Wi3(z) + G32(2)Wa3(z) + G33(z)W3s(z)

In the situation when transfer functions Q,(z), Q»,(z) and Q33(z) are acceptable,
the design of three “local” control loops should follow the previously established
procedures.

Note that design of a decoupling filter W(z) has a more rigorous but not
necessarily more simple solution: transfer matrix W(z) could be defined as the
adjoint matrix of G(z):

W(z) = Adi{G(2)}
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Indeed,

G(z)™' = Adj{G(2)}

Det[G(z)]
where Det][.] is the symbol of determinant. Since G(Z)G(z)f1 = I, matrix multiplication
Q(z) = G(z) - Adj{G(2)}

results in a diagonal matrix where every diagonal element is equal to the determi-
nant Det[G(z)], i.e. Qu(z) =Det[G(z)] for allk=1,2,. ..

Example 3.8 Given transfer matrix of a two-input-two-output controlled plant
defined for the time step of 0.01 s:

0.01995(z — 0.9753) 0.02(z — 0.99)
G(z) 22 =197z +0.9704 22 —1.9892 +0.99
7Z) =
0.01972(z — 0.998) 0.0199
(2 — 0.9962)(z — 0.9742) z—0.99

Define the decoupling filter

_ | Wiu(z) Wi(z)
W)= (Wi W]

then elements Wjy;(z), i,j = 1,2, can be defined from the equations

0.01995(z — 0.9753) 0.02(z — 0.99) B

2 1972 109704 V2 T 21089, + 099 20 =0
0.01972(z — 0.998) 0.0199 -

(2= 0992)(z — 0.9742) "D T g g () =0

Assume W15(2) =G11(2) "' G1a(2), Waa(z) = =1, W2 (2) = G(2) ' G21(2), and
Wi11(z) = —1, this choice results in off-diagonal elements of matrix Q(z), Q2(z) =
Q>1(z) =0, and diagonal elements

—0.0001329(z2 — 1.897z + 0.8998)(z — 0.9789)(z + 1.016)
(z—0.9742)(22 — 1.97z +0.9704)(2 — 1.989z + 0.99)
—0.0001326(z> — 1.897z + 0.8998)(z — 0.9789)(z + 1.016)
(z — 0.9742)(z — 0.9753)(z — 0.99)(z2 — 1.989z + 0.99)

Qui(z) =

Qn(z) =

It can be seen that the choice of transfer matrix W(z) has been a success: the
diagonal elements of matrix Q(z) = G(z)W(z) have the required properties. Now the
MIMO controlled plant with the transfer matrix G(z) driven through the decoupling
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Fig. 3.19 Full decoupling Q(2)
system setup Fi(2)

u

Wi(Z) uy l(Z)

Fy(2)

Qul2)

filter W(z) for all practical purposes is just a combination of two completely
independent single-input-single-output systems with transfer functions Q(z) and
Q2>(z) that has to be stabilized to comply with the design specifications by intro-
ducing feedback controllers and prefilters as shown in Fig. 3.19.

Let us consider the design of the controller and prefilter for the first dynamic
channel, Q,(z). Assume the required settling time Tsgt =35 s, overshoot of the step
response P% <3 % and time step =0.01 s.

First, introduce an s-domain model transfer function, compliant with the design
specifications:

2419
(s4+08)(s+32)(s+4.5)(s+3)(s+6)(s+7)

GM(S) =

that has the following z-domain ZOH equivalent for the time step of 0.01 s:

Gu(2) = le — 10(0.0322° + 1.776z* + 9.060z* + 8.723z% + 1.585z + 0.027)
M T T8 574225 + 137474 — 17522° + 12.5722 — 48122+ 0767

Then zeros of the transfer function Qq,(z) will be cancelled by placing the filter

1
0.0001329(z> — 1.897z + 0.8998)(z — 0.9789)(z + 1.016)

K(z) =

in the input of the “controlled plant” and a negative feedback polynomial H(z) will
be introduced such that the closed-loop system transfer function become equal to

Qi1 (2)K(2) _ 1
1 +H(z)Qi1(2)K(z) H(z) + Dq(z)
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where Dg(z) is the denominator of the transfer function Q,,(z). Note that

1 1

H(z) + Dg(z) H(z) + (z — 0.9742)(z2 — 1.97z +0.9704)(z> — 1.989z + 0.99)
1

H(z) + 2% — 5.9292% + 14.65z* — 19.30z> + 14.3122 —5.659z + 0.932
Recall that it is our goal to assure that the above transfer function must be
modified to match the model transfer function Gy,(z). This modification includes,
1. Choosing polynomial H(z) as
H(z) = Du(2) — Do(2)
= [0 —5.7422° +13.742* —17.522° +12.572% — 4812z + 0.767]

— [26—5.9292° +14.65z* —19.30z> + 14312 —5.659z + 0.932]
=0.1872° —0.912z* +1.7792° — 1.7362> + 0.847z — 0.165

where Dy(z) is the denominator of the model transfer function

2. Defining the feedback F;(z) (see the block diagram above) as

Fi(z) = K(2)H(z)

0.1872° —0.9127* +1.7792% — 173622 +0.847z — 0.165
~ 70.0001329(z2 — 1.897z + 0.8998)(z — 0.9789)(z + 1.016)

3. Defining the prefilter P1(z) (see the block diagram above) as

Pi(z) = K(z)Nm(z)
le — 10(0.0322° + 1.776z* + 9.060z° + 8.723z% + 1.585z + 0.027)
0.0001329(z> — 1.897z + 0.8998)(z — 0.9789)(z + 1.016)

Example 3.9
Given transfer matrix of a two-input-two-output continuous-time controlled
process:

2 0.2
G(s) = s()—;l (s—i—l)(4s+0.1)
(s+1)(s+0.2) s+1

Design a discrete-time decoupling control system operating with the time step of
0.02 s and meet the following design specifications: both channels must use a
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state-variable feedback controller, the settling time Ty = 8 s and overshoot of step
response ~ 0 %

First, obtain a z-domain description of the controlled plant for the ZOH input:

3.96¢ — 02 3.971e — 05(z + .9927)
Glz) = z —.9802 (z—.998)(z — .98)
1.984e — 05(z + .992) .0792
(z— .996)(z — .98) z— 9802

Using a MATLAB tool obtain W(z) = Adj[G(z)]=

.0792 —3.9708e — 05(z + .9927)
z— .98 (z —.998)(z — .98)
~1.984e — 05(z + .992) 3.9603¢ — 02
(z—.98)(z — .996) z— .98

Now obtain Q(z) = G(z)W(z). Indeed, Q(z) is a diagonal matrix and its diagonal

elements, Q;;(z) = Qxn(z) = 3A}:ze‘9_9(:33)<(2z_—:9999566))(iz—_:9989)§4)'

The next task is to establish an s-domain transfer function representing the
desired dynamics of the decoupled channel and its z-domain equivalent for ZOH
input and time step of 0.02 s:

8
G =
m(s) 5+ 2)(s+2)(s+4)(s+5)
5.1e — 08(2® + 10.527% + 10.059z + .8742)
Gum(z) =

(z—.996)(z — .961)(z — .923)(z — .9048)

Assume that zeros of transfer function Q;(z) are cancelled by the introduction
of a special filter

1 318.776

H() = 3 137c —03(z = 9956) (- — 9984) ~ (= — .9936)(z — 9984)

Let us represent transfer function G(Z) =Q,1(z)H(z) by a CCF:

0 1 0 0 0
0 0 1 0 0
Ao=1 0 0 1 |*Be= g and
~955 3.8645 —5.8638 3.9544 1
C=[1 0 0 0]
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Representing transfer function Gy(z) by a CCF results in:

0 1 0 0 0

Am = 0 0 ! 0 , By = 0 , and
0 0 0 1 0
—.799 3.384 —5.369 3.785 1

Cy = [4.459 51306 53.657 5.1]-e—08

Now the matrix F of the state-variable controller can be defined as:
F=[0 0 0 1]-(Ag—Am)=[-.1557 .4808 —.4947 .1696]

In order to design the state observer, introduce an s-domain transfer function
representing the desired dynamics of the state estimation process and its z-domain
equivalent for ZOH input and time step of 0.02 s:

1
(s+3)(s+6)(s+7)(s+38)

6. — 09(z> +9.927> + 8.94z + .732)
(z — .904)(z — .887)(z — .869)(z — .852)

Gg(s) =

GE(Z) =

The appropriate discrete-time domain fundamental matrix is:

0 1 0 0
0 0 1 0
Ae = 0 0 0 1
—.594 2709 —4.628 3.513

This shall be followed by the evaluation of the element of matrix K of the state
observer using the recursive formula of page 141:

K| = —Ag(4,4) + Ag(4,4) = 4411

Ko = —Ag(4,3) + Ag(4,3) + Ag(4,4)*K, = .5085

Ks = —Ag(4,2) + Ao(4,2) + Ag(4,3)*K, + Ag(4,4)*K, = 5794

Ks = —Ap(4,1) + Ag(4, 1) + Ag(4,2)*K, + Aqg(4,3)*K, + Ag(4,4)*K; = .6541

Finally, matrix K of the state observer and its fundamental matrix M are:

4411 — 4411 1 0 0
5085 _ | =508 0 1 0
K=1 5794 | MdM=Aq—KC= 559, 0 0 1

.6541 —1.6091 3.8644 —5.8638 3.9544
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The verification of the state-variable controller could be achieved by obtaining
the following closed-loop transfer function:

Ger(z) =C-(z-1—Ag+Bo-F) ' - Bg
1
" (z—.996)(z — .961)(z — .923)(z — .9048)

This indicates that the design goal is partially achieved, i.e. the denominator of the
transfer function describing the dynamics of the control loop is indeed equal to the
denominator of the model transfer function. The desired numerator could be
obtained by placing a special filter in the reference channel of the system:

5.1e — 08(z° + 10.522% + 10.059z + .8742)
Z4

P(z) =

Note that having z* in the denominator does not affect dynamics of the control loop
but may be required for the implementation of this filter.

It should be noted that since decoupled channels have identical dynamics, the
obtained state-variable controller and state observer shall be utilized in both
channels. The resultant designed system should be subjected to simulation analysis.

3.6.3 State-Variable Decoupling

Consider a discrete-time state-variable description of a MIMO controlled plant,
controller, and a filter,

X(k+1) = AX(k) +BU(K)
U(k) = WR(k) — FX(k)
Y(k) =CX(k), k=123, ...

Assume that X, Y, U, and R are (n x 1) vectors, A, B, W, F, and C are (n X n)
matrices. This design is based on the attempt to “force” the above system to behave
as a set of fully independent first-order systems with the pre-specified settling time.
The problem may or may not have a solution.

First, obtain the closed-loop system description

X(k+1) = AX(k) + B[WR(k) — FX(k)] or
X(k+1) = (A BF)X (k) + BWR(K) or
Y(k+1) =CX(k+ 1) = (CA — CBF)X(k) + CBWR(k) k=1,2,3, ...
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Define the required first order dynamics of the input—output channels as

Yis) g
Rj(s) s+a

where a; > 0 are found from the condition TjSET = ﬁ where TjSET, j=12,...,nare
]

the required settling times of the particular input—output channels. These first order
transfer functions are to be converted into the z-domain for the particular time step
of interest and using the ZOH equivalence:

Yi(z) _ b
Rj(z) z+q

that has the following discrete-time domain representation

Yik+1)= —quj(k) +ijj(k), j=12,...,n,andk =1,2,3, ...

Combining these equations results in the following matrix—vector equation

Y(k+1) = QY(k) + PR(k) or Y(k+ 1) = QCX(k) + PR(k)

where
—q 0 0 pp O 0
Q= 0 - ... 0 and P — 0 p 0
0 0 ... —q, 0 0 ... p,

Matching the above equation to the matrix—vector equation of the closed-loop
system results in the following equalities

QC =CA — CBFand P = CBW
that provide the definition for the controller matrix and the input filter

F = (CB) '(CA — QC)
W = (CB)'P
It can be seen that the existence of the inverse of matrix CB presents the only
restriction to the solution of this problem.

Example 3.10 Given discrete-time domain state-variable description of a con-
trolled plant corresponding to the time step of 0.01 s and the ZOH application:
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Xi(k+1) 1.0099947 0.0205451  0.0295186 X (k)
Xo(k+1) = | —0.0199078 1.0003840  0.0383450 Xa(k)
Xs3(k+1) 9.414670e — 03 0.0290774  0.9331087 X;3(k)
0.0209903 3.520221e — 04 0.0195443 U, (k)
+ | 9.673052¢ — 04 0.0201970 —0.0403990 | | Uy(k)
0.0580587 9.954242¢ — 03 —0.0101520 | | Us(k)
and
Y (k) 1 1 2 X (k)
Y.k) =12 1 5 X, (k)
Y;(k) 5 =2 0 X;5(k)

The design specifications call for the overshoot under 3 % and settling times of
2's, 5 s and 1 s for the respective decoupled channels of the closed-loop system.

First, express these requirements in terms of three s-domain first order transfer
functions and their appropriate z-domain equivalents:

Y1 (S) - 2 and Y1 (Z) - 1.98e — 02
Ri(s) s+2 Ri(z) z—.980
Ya(s) 0.8 and Ya(z) 7.968e — 03
Ry(s) s+0.8 Ry(z)  z—.992
Yi(s) 4 and Y3(z) 3.92le — 02
Ri(s) s+4 Ri(z)  z—.961
Consequently, matrices Q and P are as follows:
0.980 0 0 0.0198 0 0
Q= 0 0.992 0 and P= 0 7.968e — 03 0
0 0 0.961 0 0 0.03921
and finally,
—6.172941e — 03 1.312376e — 03 — 9.225882¢ — 04
W= (CB)flP = | 0.0385518 — 6.843106e — 03 7.611353e — 03
0.0119965 —2.249788e — 03  4.382294e — 03
and

0.3918118  0.4969176  — 2.3058824
F=(CB) '(CA—QC)= | —1.7369471 05169294  9.6435294
—0.3706059  0.5011412  3.8129412
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The analysis of the closed-loop transfer matrix
GeL(z) = C(zI — A + BF) 'BW
indicates that G (z) is indeed a diagonal matrix and its diagonal elements are

1.98e — 02 7.968e — 03 3.921e — 02
z—980 ° z—.992 ° z—.961

Exercise 3.2

Problem 1 The controlled plant is defined by its transfer function

587 +4s+ 1
TS 4282435+ 10

Gp(s)

Design a discrete-time state-variable controller with a discrete-time state
observer operating with the time step of 0.005 s. The design specifications call
for the settling time of 5 s, overshoot of step response under 3 %, and the steady-
state error under 0.2 (units) for a unit step disturbance signal.

Problem 2 Given the transfer matrix of a controlled plant:

s+ 2 5
s2+s+6 s+8
Grl(s) = 3 s+ 10

s24+s+25 s2+8+12

Design a discrete-time steady-state decoupling system operating with the time step
of 0.01 s. Verify your design by computer simulation. It is required that each dynamic
channel has settling time of 2 s and the overshoot of step response under 3 %

Problem 3 Given continuous-time domain state equations of a controlled plant

X1 =4x; + 3% +8x3 —3u; +uy —u3
Xy = 6X; — 5%y — 2x3 +uy + 2uy + us
X3 = —X; + 7X2 + 9x3 — 4u; +up — Sus
y, = —3x; + 7x2 + 4x3

Yy, = —X] + X2 — 2X3

y3 = X1 +3X2 — X3

Design a discrete-time state-variable decoupling system operating with the time
step of 0.01 s. The design specifications call for the settling times of 3s,6sand 8 s
and the overshoot under 3 % for the respective input/output channels. Show all
stages of your design. Verify your results by computer simulation.
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3.7 Direct Self-Tuning Control

Consider a controlled plant with the transfer function defined in the Z-domain
presumably for a ZOH input,

G(z) by 1z L+ by0z™ 2+ ... +biz+ by Np(z)
7) = =
2"+ a7z a7 2+ . .+ ajz+ by Dp(Z)

Assume that the desired closed-loop operation of the control system is specified by
the Z-domain model transfer function that should be of the same order as the plant,

ezt +e 2V 4+ ezt ~ Nu(z)
2" +dy 7 4 dy 07224 ..+ diz+dy Du(z)

where notations are self-explanatory.

For simplicity, it is also assumed that the plant transfer function Gp(z) does not
have zeros outside the unit circle.

Assume the following configuration of the resultant discrete-time domain con-
trol system in Fig. 3.20.

GM(Z) =

Where NFE ; and E ; represent a filter in the reference channel and the feedback

controller, R(z) and U(z) are the reference signal and the control effort. It is
expected that the order of polynomial Ng(z) is equal to the “order of the controlled
plant minus 1.

Recall from your feedback controller design experience that since Gp(z) does not
have “bad” zeros, Dc(z) = Dg(z) = Np(z) and consequently the overall transfer
function of the control system is

NP( )
NEg(z) Dp(z) _ Ni(z) Np(z)Dc(z)
Dg(z),  Np(z)Nc(z) — Np(z) Dp(2)Dc(z) + Np(z)Nc(z)
Dp(z)Dc(z)
_ Nk(z)Dc¢(z)
Dp(z)Dc(z) + Dc(z)Ne(z)
NF(Z)
Dp(z) + N¢(z)

GCL(Z) =
1 +

R(Z) NF(Z) C)%Z NP(Z)

Dy(z) D,(z)

» Y(2)

Ne(z) P
D(z)

Fig. 3.20 Discrete-time domain control system
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164
It is clear that the system would comply with the design specifications if
NE(z) Nu(z)
G 72)=—— " =QGp¥(z) =
(@) Dyp(z) + Ne(z) m(@) D(z)

Then,
NF (Z) = NM (Z)

and
DP(Z) + NC (Z) == DM(Z)

Multiplying the above expression by Y(z) yields
Y(z)Dp(z) + Y(z)Nc(z) = Y(z)Dpm(z)

Recall the according to the transfer function of the controlled plant,
— Ne(z) _ Y(2)
G(z) = DE(Z) = and

Y(z)Dp(z) = U(z)Np(z)

therefore
U(z)Np(z) + Y(z)Nc(z) = Y(z)Dpm(z)
U(z)Dc(z) + Y(2)Nc(z) = Y(z)Dwm(z)
Finally,
Ule)55 Del®) + Y(2) s Ne(a) = Y(2)

Note that in the above expression Dy(z) is a known polynomial and #(Z) can be
viewed as a transfer function of a digital filter converting signal U(z) into signal

NEW _ 7z 1
U (2) = U)o

Similarly, signal
1
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can be introduced. Then the above equation can be rewritten as
UMW (2)De(z) + Y™V (2)Ne(2) = Y(2) (v)

This equation, converted into the discrete-time domain facilitates the direct
estimation of the parameters of the controller. Note that the plant transfer function
is not used in this equation. Indeed, the controller design does not require the
knowledge of the mathematical description of the controlled plant! The following
example provides an illustration of how this is done (for simplicity the order of the

plant n=4).
Assume
G( ) b3Z3 +b2Z2 +b12+bo Np(Z)
zZ) = —
2t + a3 + a2 +ajz+by  Dp(z)
and
Gui(2) 328 + oz + iz + o Nm(z)
z) = =
M 24+ d37? + doz> +diz+dy  Du(2)
Introduce
NF(Z) = C3Z3 + C2Z2 +ci1z+c¢o
1
UNEV () — U
(2) (2) 74 +d3z3 + dpz2 +dyz 4+ dg
54
=U
O T T e F diz 1 dor?
or

UMW) (1+dsz +doz 2 +diz 7 +doz ) =U(z)z™*
or
UNWY(z2) = U(z)z* — UMWV (2) (daz ' + doz 2 +dyz7° + doz ?)
or in the discrete-time domain

UNEV () = U(i — 4) — dsUNEV (i — 1) — d, UMV (1 — 2) — 4, UNEWV (i — 3)
— doUNEV (i — 4)
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Similarly,
YNEVG) = Y(i —4) —dsYNEV (i — 1) — dy YNEV (i — 2) — d YRV (i — 3)

—doYNEV(i — 4)

where i=1,2,. .. is discrete-time index.

These recursive formulae utilize known parameters of the model transfer func-
tion, measurements of the control effort and the plant output, previously calculated
filtered values of the control effort and the plant output, and are easy to implement
in a computer code.

Let us now return to equation (V) assuming that

Nc(Z) = 1’13Z3 + hzZ2 + h]Z + ho
Dc(z) = Np(z) = b3z® + byz?> + b1z + by

where hs, h,, hy, hg and b3, b,, by, by are unknown coefficients,
UNEY(2) (b32° + byz? + biz + by) + YNV (2) (haz® + hoz® + hyz + hy) = Y(2)
Multiplying these equation by z > results in

UNEW(z) (b3 + bz ' + b1z 2 +boz ?) + YNV (z) (hs + hoz ™' + hjz 2 + hoz )
= Z_3Y(Z)

that can be interpreted in the discrete-time domain as

b3 UNEV (i) + by UNEW (i — 1) + b UNEV (i — 2) + bgUNEW (i — 3) 4+ hy YNEW(4)
+h YNEW (G — 1) + h YNEV (i — 2) + hoYNEVY (i — 3) = Y(i — 3)

Introduce auxiliary variables,

x (i) = UNEW(j) xs5(i) = YNEW (i)
x(1) = UMWV —1)  x6(1) = YV (i—1)
x3(i) = UNEW(i —2)  x;(i) = YNEWV(i —2)
x4(i) = UMW (i —3)  xg(i) = YEW(i —3)
w(i) = Y(i-3)

and a vector of unknown coefficients

a1 @ @ ay as as a7 ag] =[by by by by hy hy hy ho]"
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Then the controller design problem can be interpreted as the estimation of the
unknown vector of coefficients,

A= T
—[(11 a; a3 04 QA5 Qg 07 ag]

using the available measurements of the “vector of input variables”,
X(l) = [Xl X2 X3 X4 X5 X X7 Xg] T

and the “output variable, w(i) (T is the transpose symbol). One can realize that this is

a typical problem that could be solved by the application of the LSM or RLSM

approach.

It is good to realize that since the initial numerical values of the parameters Ay,
may not be consistent with the properties of the controlled plant, application of the
RLSM estimation of these parameters results in the gradual improvement of the
operation of the closed-loop system thus its output variable converges to the output
variable of the model transfer function Gy(z).

Application of the RLSM with exponential forgetting results in a more realistic
situation: parameters of the control law are being continuously adjusted in order to
track time-varying properties of the controlled plant.

The block diagram in Fig. 3.21 illustrates the principle of operation of the
resultant adaptive control system.

1 UNEW
’| Dy ”
R
1 YNEW L
Dy(2) 7 S
M
Y
Rz Ne@ M Gi2) “_
Dc(2) U(z)
NC(Z)
DC(Z)
t Ne(2)
D.(2)

Fig. 3.21 RLSM adaptive control system
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Example 3.11 The given plant is

. b2S2+b1S+bo
TS 4 as® 4 ais + ao

Gp(s)

Where as the “true” plant (assumed to be unknown to the designer) is

_ 2425+ 10
T 345824105+ 20

Gp(s)

The desired model specifications are T, <4 s and overshoot P% < 10 %.
Hence we can define the dominant poles as

pra= —1 + 1.0202

Let the non-dominant pole be

p3= —10

Consequently, the s-domain model transfer function in continuous time domain will be

20.41

G =
() = 129§ 22,085 1 2041)

And the discrete time model transfer function will be

G(2) 2.564 - 10722 + 9.666 - 1072z +2.274 - 107
Z) =
" 73 —2.77922 +2.565z — 0.7866

The closed-loop transfer function could be found as

Garle) = s = 0ol = )
Then,
Ny(z) = Nu(2)
and

Dp(z) +Ne(z) = Dy (2)
Multiplying the above equation by Y(z) yields

Y(2)Dy(z) + Y (2)Ne(2) = Y (2)D(2)
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But from the system transfer function,

Ny() _ Y()
Dy(z)  U(2)
U(z)Np(z) = Y(2)Dy(2)
Then,
U(z)Np(z) + Y(z)Nc(z) = Y(2)Dp(2)
U(z)D.(z) + Y(2)N.(z) = Y(2)Dn(2)
Let,

N.(z) = mz2? + a1z + ap
DL.(Z) = szz + biz+ by

For the given problem, the above equation will be

U(z) (b222 + bz + bo) +Y(2) (a222 4+ az + ao)
=Y(2) (2 — 2.7792> + 2.565z — 0.7866)

Rearranging a few terms,

UG :
b b b
<Z3 — 2779 22 + 2.565z — 0.7866>( 22 + b1z + bo)
re) 2
" <z3 — 277972 + 25652 — 0.7866) (a22® + a1z + ap)
=Y(2)
Where,
U(Z) —_ new
<z3 — 277922 + 2.5652 — 0.7866) =U""(2)

Y(z) ,
— YﬂKW
<z3 — 277922 + 25652 — 0.7866) )

are the filtered responses.
Let’s call (aa2 + a1z + ) = (haz* + hyz + hy) for simplicity in utilizing same
coefficients in the simulation.
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Now the final expression for direct self tuning controller is
U™ (2)De(z) + Y"" (2)Ne(2) =Y (2)

ie.

U"(2) (ba” + buz + bo) + Y (2) (a2 + iz + ho) =Y(2)  (3.3)

To estimate these parameters we use recursive Least Squares method (RLSM),
see Sect. 2.3. It is known that as the number of RLSM iterations increases,
parameter estimates converge to the solution of the LSM problem regardless of
their initial values Ay and the choice of initial matrix Py=al, where arbitrary
o > 0 determines the rate of convergence.

In our example the RLSM block, readily available in Simulink, was utilized. The
forgetting factor was set as = 0.5, parameter « of the initial matrix Po=al was
selected as o = 0.01, the total number of iterations was limited to 1000, and initial
values of estimated parameters A, were set to zero. The simulation setup is shown
below.

As could be seen at the simulation setup above in Fig. 3.22, the following
variables of the system are calculated:

output of the controlled plant

_ 0.01942z2 — 0.038z + 0.01866
23 -2.90122 +2.806z — 0.9048

Y(z) = Gp(z) - U(2) U(z2)

output of the model

2564107722 4+ 9.666 - 102 +2.274 - 107

R
23— 277922 +2.565z — 0.7866 )

Yyu(z) = Gu(z) - R(2)

1 yren
'@ @_' Dyy(z) >
R IN.(z)
1 yrew L
@ @_’ Dyy(2) —> S
M D((Z)
DD—

Fig. 3.22 RLSM simulation setup
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output of the prefilter
N 2.564 107922 4 9.666 - 10792 +2.274 - 107°
V() = M(Z)-R(Z): 564 - 107z +9.666 - 107°z 4 2.27 0 R(2)
Dc(z2) byz2 + byz + by

output of the controller

W) =B T e e Y
control effort:
U(z) =V(z) —W(z)

variable U""(z)

Ure(z) = - V()

75 —2.779z% +2.565z — 0.7866

variable Y"*"(z)

Y™ (z) = ! Y(z)

T 3277922 £2.565z — 0.7866

error representing the discrepancy between the self-tuning system and the model

The R(t) was a unit step signal
The RLSM outputs were interpreted as time-dependent parameters of the con-

troller and prefilter, i.e.

al(k) bz(k)
a2(k) bl(k)
Alk) = Zzgg = 2283 k=1,2,...,1000
as(k) hy (k)
(lé(k) ]’lo(k)

The “final values” of the obtained parameters are

Parameters Values
b, 0.0194
b, —0.0380
bg 0.0187
h, 0.1222
h, —0.2405
hg 0.1182
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1.2

Response of the
control system
with self-tuning

4 6 8 10 12 14 16 18 20
Time

Fig. 3.23 Simulation result to step response of model and self-tuning defined system

As can be seen from Fig. 3.23, the output of the plant, driven by self-tuning
controller, converges to the output of the model over 1000 steps of the RLSM
procedure.

Exercise 3.3

Develop and implement in the simulation environment a discrete-time self-
tuning control system under the following assumptions:

The controlled plant is a first order system that does not have right-hand-side
Zeros.

The “true” transfer function of the controlled plant, “unknown to the system
designer”, is

9

Greor®) = g+ 13

The design specifications are: system settling time Tsgr = 6 s, overshoot of the step
response P% <2 %, discrete time step is 0.05 s
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Solutions

Exercise 3.1: Problem 1

First, a simulation setup was used to generate the input signal, u(f), and simulate the
output, y(¢), of the continuous-time dynamic system with transfer function

s2 4+ 6s+ 10

Gp(s) =
p(s) §3 4252 4+9s+8

Over 500 samples of input—output data were taken with a time step of 0.05 s and
recorded in the data array Xsoy and data array Ysq, defined as follows:

The estimated coefficients of the z-domain transfer function

A(4)22 + A(5)z + A(6)

Gp(z) = 2B+ A(1)2 +A(2)z+A(3)

were obtained as

(1) —2.883

(2) 2.798
_ r . r A3 | —.905
A= (Xsoo" - Xsoo)  (Kso0” - ¥soo) = 14 | = | o564
(5) —.0942
(6) 905

The following are simulated step responses of the original continuous-time system
defined by transfer function Gp(s) and its discrete-time model obtained from the
recorded data:
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57465410

5°425°40548
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The estimated coefficients of the transfer function Gp(z) were verified by
obtaining this transfer function directly by conversion of the original Gp(s) into
the z-domain using the ZOH option and the time step of 0.05 s:

~.054847z% — 094252z + .040593
23 —2.8829822 4 2.78877z — .904837

GPDIRECT (Z)

It could be seen below that step responses of the continuous-time system defined by

Gp(s) and its discrete-time equivalent GPD IRECT(Z) perfectly match:

s%46s+10 =TS
R ] =1z
3 ool |
5 +28"+0s+8 | 20
1.8
10548472°-.0942522+,040593 J—' b
2'-2,882982°+2.788772-.904837 [
>
14+
R /\/\/‘v
1.0
= 8+
B
=
al J{
> 24
o . -4 od e L 4 L A Lo b »
» ] 1 2 3 4 5 ] 7 8 9 10
Time (sec)

Exercise 3.1: Problem 2

Assume that the controlled plant is represented by its estimated discrete-time
transfer function:
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056422 — .0942z + .039
— 2.883z% 4 2.789z — .905

GP(Z) =

that is reasonably close to its “true” transfer function GpP™RECT (7). To achieve the

design specs, the desired s-domain closed-loop system transfer function has a
dominant pole of —2 £2.16j, and the non-dominant pole is chosen as 20 times
the size of the dominant pole, such that the steady state errors should be sufficiently
small:

173.4

GM(S) = (S + 20)(52 +4s + 867)

Conversion of this transfer function into the z-domain with the time step of 0.05 s
and ZOH option results in:

2.7168e — 03 7> + 8.1852e —3z + 1.4936e — 3
3 — 21677 + 1.4806z — 0.3012

GM<Z) =

The step response of this model, consistent with the design specifications, is shown
below:

im! ’{ 2 71682°+8.18522+1.4936 ‘—> 20]

2°-2.1672°+1.48062-.3012 18l

Time (sec)

Now, the numerator of the feedback controller will be defined as the “desired
closed-loop characteristic polynomial minus the characteristic polynomial of the
controlled plant”, i.e.

[z} — 21672 + 1.4806z — 0.3012] — [’ — 2.8832% +2.789z — .905]
= .7162> — 1.3084z + .6038
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Then the denominator of the feedback controller is defined as the numerator of the
transfer function of the controlled plant, and the entire transfer function of the
controller is:

71627 — 1.3084z + .6038

H(z) —
(2) = 056472 — 09425 1 039

The transfer function of the filter in the reference channel, W(z), is defined as
“numerator of the desired closed-loop transfer function G,(z) over the numerator
of the transfer function of the controlled plant”, and the entire transfer function of
the controller is:

_ 2.7168e — 032> + 8.1852¢ —3z + 1.4936e —3
B 056422 — 0942z + .039

W(z)

The following simulation setup demonstrates the step response of the designed
system:

GP(Z)

Gew(z) =W(z) 1+Gp(z)-H(2)

It could be seen that it is indistinguishable from the step response of the desired
closed-loop system Gy,(z)

> a

f : ] — 20
1] |.e-32?m& +8.1852z+1 4938 I[ ty . 0564’ 00422+.039 | el
L_meetc-0aapeh0d9 | tad 22,8832 +2 7892-.905 |

18}

Ll
p— 7162°-1.30842+.6038
W il PRl il il
05642°- 094224039 |
+ sk
5
=
4l
» 2}
ol n 1 L L L n 1 1
0 ] 1 15 2 25 3 s 4

" Time (sec)

Recall that transfer function Gp(z) is an imperfect discrete-time approximation
of the properties of the continuous-time “true” controlled plant. Let us investigate
the performance of the designed system with respect to the “true” plant:



Solutions

e 2 71687 +8, 1852241 4836
I 3

e

13 5
Z-2.1672 +1.4806z-. 3012

2,71682°+8,1852241, 9% .
| " osear-onazzenz |

=

s *Ev—iO
s -25 +H5+8 |

z-m&

J L
0564z~ 09422+ 039

-y

177

¥

8 J

4 :

b — I D 3
Time (sec)

It could be seen that the designed system performance is fairly close to the
desired system performance represented by transfer function Gy (z).

Finally, to investigate the compliance with steady-state error requirement, a unit
step disturbance signal is applied directly to the input of the controlled plant, as
shown below. It could be seen that the steady-state response of the system is
approximately equal to 0.1 (units) that indicates that the requirement is met. The
effectiveness of the designed control circuitry is demonstrated by the next simula-
tion: disconnection of the feedback results in fully unacceptable system operation in
terms of dynamics and in terms of the sensitivity to disturbance signals.

i _32-?16&:2+E 1852241.4936 L
[05842°-.09422+ 039

+
2.71682°+8.18522+1.4938 \

1 g.j';‘i
0564z - 09422+.039

+y

s +Bs+10
525 40548 |

[~ s'vesvi0
| s'ezstensen

E 7162°-1.30842+ 6038

05647°-.00422+.039 |

>

— — —
i )
051{
o4t
|
02 I
Py \ \ \ . . . \
0 5 1 1.5 2 25 3 35 4
Time (sec)
. BRI
20
18}
16+
14} — .
/ \ — S
12 /
10+ /
Bl /
B J,f
i/
2
° . \ . \
0 5 1 15 2 25 3 15 4

Time (sec)



178 3 Computer Control of Manufacturing Processes
Exercise 3.1: Problem 3

Represent the given equations in a matrix—vector form

X =AX +Bu, y=CX

where
-10.4 103 8.8 -3
A= .6 -65 =-2|,B=|1|,C=[-73 76 638]
—-119 11.7 9.6 —4

Converting this state-variable form into the discrete-time domain, time step
At=0.05 s, using six terms of the series (note that the result is consistent with
ZOH application):

X[k + 1] = AX[K] + Bulk], y[k] = CX[k] = CX[K]

where
49205 .5014 4206 —.1422

A= | 0248 9727 —.00574|, B= .048 , C=[-73 76 6.38]
—.5744 5628 1.4615 —.1889

Exercise 3.1: Problem 4

Converting the state-variable description obtained in the above problem into
canonical controllable form (CCF):

C

A" — pap—!, B¢

CF — —CCF —,_
=PB, C  =cCP!
where conversion filter

2.8304¢3  1.4367e3 —1.7654€3
P = [24425¢3 1.82306¢3 —1.3752¢3

2.0370e3  2.224¢€3 —973.46

0 1 0 0
T _ | o 0 | ’ 3 _ 1o ’

93 —-2.8564 2.92627 1

Cr = 10373 —22179 .11821]
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Note that the state vector of the CCF, X“¥ [k] = PX[k], where X[k] is the state
vector of “real” variables.

Since design specifications in this problem are consistent with those of Problem
1, let us utilize the same model describing the required closed-loop dynamics:

2.7168¢ — 03 z2 + 8.1852¢ — 3z + 1.4936e — 3
z3 — 2.1672%2 + 1.4806z — 0.3012

GM(Z) =

The CCF equivalent of this model has

0 1 0 0
Au = 0 0 1 , Bu=10],
3012 —1.4806 2.167 1

Cy =[1.4936¢ —3 8.1852¢ —3 2.7168¢ — 3]

Define the state-variable controller matrix as

FCF = [0 0 1](KCCF_AM):
0 1 0 0 1 0
[0 o0 1]f | o 0 1 -1 0 0 1
93 —2.8564 2.92627 3012 —1.4806 2.167

=[.62887 —1.3758 .75927]

Finally,

2.8304¢3  1.4367¢3  —1.7654¢3
F =FCFp =[.62887 —1.3758 .75927]|2.4425¢3 1.82306e3 —1.3752¢3

2.0370e3  2.224e3  —973.46
=[-33.761 83.9036 42.7114]

Use a computer tool to obtain the transfer function representing the dynamics of the
closed-loop system defined as:

1182(z — .88812)(z — .98807)
(z — 36788)(z2 — 1.799z + .81873)

Ge(z) =C(Ilz—A+BF) B =

It could be seen that G (z) has the numerator of the original transfer function of the
controlled plant and the denominator of the discrete-time model transfer function.
This implies that the transfer function of the filter in the reference channel is to be
defined as the “numerator of the discrete-time model transfer function divided by
the numerator of the original transfer function of the controlled plan”, i.e.
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(2) = 2.7168e — 03 7> + 8.1852e —3z + 1.4936e — 3
N 1182(z — .88812)(z — .98807)

Now implement this system in the simulation environment and subject it to some

tests.
The following graphs represent the implementation of the continuous-time

controlled plant and the state-variable controller:
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The above plots indicate that the system design specifications in terms of system
dynamics and steady-state error are properly addressed.

Exercise 3.2: Problem 1

Based on the design specifications, the following s-domain model transfer function
is suggested:

26
s3 + 1252 + 40s + 26

Gu(s) =
This transfer function is converted into the z-domain using the ZOH option and the

time step of 0.005 s:

G (2) _5.336le —72% + 2.1827¢ — 6z + 5.1784¢ — 7
M8 29408 22 + 2882562 — 0.94176
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Represent the model transfer function by a CCF:

X[k + 1] = AyX[K] + Byulk], y[k] = CyX[K]

where
0 1 0 0
AM = 0 0 1 5 BM == O s
94176 —2.88256 2.9408 1

Cy =[5.1784¢ —7 2.1027087¢ — 6 5.33361e — 7]

Converted into the z-domain (ZOH option and the time step of 0.005 s) the transfer
function of the controlled plant is:

~0.02492 22 — 0.04975z + 0.02483
T3 -29922 4298z — 0.99

GP (Z)

The CCF equivalent of this transfer function has the following matrices:

0 1 0 0
Ap=10 0 1 |, Bp=|0], Cp=[.0248 —.0498 .0907]
99 -298 2.99 1

Now, the controller matrix F can be defined as:

F=[0 0 0](Ap—Ay)=.04828 —.09746 .04918]

Now, configuring the state observer. The continuous-time transfer function
representing the observer dynamics is suggested as (note that the numerator of
this transfer function is irrelevant):

1

G —
oss(9) = 55355 T 12805 + 3277

The conversion of this transfer function to the z-domain (ZOH option and the time
step of 0.005 s) results in the following discrete-time domain fundamental matrix of
the observation process:

0 1 0
AOBS = 0 0 1
.6597 —2.2934 2.6334
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The application of the recursive formula for matrix K results in the following
.3566

K-matrix of the observer: K = | .3796 |, and the fundamental matrix of the state
4026

observer:

—.3566 1 0
Ap —KCy = | —=.3796 0 1
5875 298 2.99

where matrix C; =[1 0 0]. Note that in order to obtain matrix C, the following filter
is place in the input of the controlled plant:

1
©0.02492 22 — 0.04975z + 0.02483

P(z)

And finally, a special filter must be placed in the reference channel of the closed-
loop system: the constant gain must be added. Since this is discrete time, there must
be a delay in this block.

_5.3361e—7z2 + 2.1827¢ — 6z + 5.1784e — 7
- 2

W(z)

V4

The following are the simulation setup of the designed system and its responses to
unit step reference and unit step disturbance signals indicating that the design
requirements are successfully met.

controlled

process

- - 5s%+ds+1

Fiter |—* - D 15—
W(z s Eﬂ 5§ +25°+35+10

\ 4

»yH
Discrete-Time >z}
State observer =

:
A
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Exercise 3.2: Problem 2

First represent the controlled plant by a discrete-time transfer matrix obtained for
the time step of 0.01 s and the ZOH option:

1.0048¢ — 2(z — .9802) 4.8052¢ — 3
7> —1.9894z + .99 z —.9231

1.4947¢ — 5(z + .9966)  1.0095¢ — 2(z — .9048)
219876z + .99  (z—.9802)(z — .9418)

Now define the decoupling filter as a transfer matrix adjoint to Gp(z):

1.0095¢ — 2(z — .9048) _ 4.8052¢ — 3
(z — .9802)(z — .9418) z— 9231

W(z) =
| 1.4947¢ = 5(z + .9966)  1.0048¢ — 2(z — .9802)
z2 — 1.9876z + .99 72 —1.9894z 4+ .99

Now it is known that the product of GP(z)W(z) is a diagonal matrix and its non-zero
elements Q1(z) = 02(2) = Q(z) = Det{ Gp(z) }:

where polynomials N(z) and D(z) are

N(z) = 1.0e — 5(1.0135z2° — 48.63z* 4 93.301532° — 89.4922% + 42.913z — 8.2294
D(z) = 2" — 6.8222° + 19.94652° — 32.4001z* 4 31.578z° — 18.4662> + 5.9992z — .8353

Introduce a 7-th order s-domain transfer function consistent with the required
dynamics of decoupled channels:

2-8:9-10-11-12-13
(5+2)(s+8)(s+9)(s+ 10)(s+ 11)(s + 12)(s + 13)

GM (S) =

and its z-domain equivalent (for ZOH option and time step of 0.01 s):

Nu(z)
Gul(z) =
u(@) Dy (z)
We chose not to offer explicit expressions for polynomials Ny,(z) and Dy,(z) that
could obtained via a software tool, however, the components of the control systems
stabilizing the decoupled channels, identical for both channels, are defined as:
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feedback controller:

Dy(z) —D(z)
H(z) = NG
filter in the reference channel:
N
P(z) = w(2)
D(z)

The implementation of the obtained results and simulation based analysis is clar-
ified by the figure below that features a continuous-time two-input-two-output
controlled process driven by discrete-time circuitry.

X D]
T ime feedback [~
| controller H(z)
| Discrete- —};’;’— v u]
nrn; filter LI Deereies __—»{ZOH] L/ Continuous- Pyl —
P | time decoupling timeprocess| -
—— [PliterWiz) [ Ue[ZOH}—*p-  [TLGls) [
»{Reference -—| jine fiter [, *15—
P(z) [*
Xl ek [
time feedback |
controller H(z)

Exercise 3.2: Problem 3

Obtain the matrix—vector description of the controlled plant:

X = ApX + BpU, Y = CpX

where
4 3 8 -3 1 -1 -3 7 4
Ap=16 -5 =2|,Bp=|1 2 1|, Cp=|-11 =2
-1 7 9 -4 1 -5 1 3 -1

The discrete-time equivalent of the above description for ZOH option and time step
At=0.01 s is found as follows:
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1.0413 .03273  .0851 —.0321 .0109 —-.0121

A= .0598 9515 —-.0179|, B=| .0092 .0197 .0099 |,

—.0085 .0713 1.0931 —.0413 0111 -.0519
-3 7 4
C=Cp=|-1 1 =2
1 3 -1

Next, each channel’s desired transfer function can be represented by a first order
s-domain transfer function based on the required settling time:

1.33 2 0.667 + 0.5
Gi(s) = —p = Ga(s) = —p = Gs(s) = —p =

st s+133 2 T s BT 510,667 s+ 5405

Next, these transfer functions are converted into z-domain transfer functions (ZOH
option and At=0.01 s):

0.01324 _0.0066 0.005

Gi(z) = 2 Go(2) = — 2 Ga(z) =
1(5) = oses 929 = 00035 ) =995

These transfer functions are used to defined the following matrices representing the
desired closed-loop three-input-three-output decoupled system:

0.9868 0 0

0= 0 0.9934 0
0 0 0.995

0.01324 0 0

P = 0 0.0066 0
0 0 0.005

Finally, matrix W of the filter is calculated as:

W=(C-B)"-P

0.0818 0.0805 —0.0644
W= 0.0389 —0.0169 0.0445
—0.0764 —0.0284 0.0682

And matrix F of the controller is calculated as:

F=(C-B)'-(C-A-—0Q-C)
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—1.3102 -0.8201 —2.5295
F=1 26645 —1.1310 0.3051
1.8059 —1.0389 0.1228

The calculated control system was simulated in Simulink with the following model:

The decoupling effect and compliance with the settling time requirements the
following simulation results are shown below.

1. Unit step reference signal applied to input #1 results in the response of output
#1 reaching the steady state value of 1.0 with the settling time of approximately 3 s.
System responses observed in channels #2 and #3 have very low magnitudes.

Similar results could be observed when unit step reference signal was applied to
the inputs #2 and #3, see below.




188 3 Computer Control of Manufacturing Processes

Exercise 3.3: Problem 1

The output of the plant alone was simulated first with this input to demonstrate the
need for a controller in the system. The system does not have the desired settling
time or overshoot of the step response, so the system must be controlled to achieve
such an output.

Next, a second order model was created in the s-domain to meet the design
specifications. The dominant pole is chosen to be a first order pole equal to 4/Tset
such that this pole will control the settling time. The dominant pole is —0.667 and the
non-dominant pole is chosen to be —10 simply to address the possible error requirement.

6.67

G f—
() = T 10675 1 6.67

The step response for this model is plotted below. As seen in the step response plot,
the settling time is almost exactly 6 s and there is 0% overshoot, so this model meets
the design specifications.

Step Response of Second-order Model

i System: Gm_s
09 , Settling time (seconds): 5.97

0.8} '
0.7} | -
06 I .

05¢ ' .

Amplitude

041 | R

03+ ' 1

01} |

0 1 ] ] ] ] | ] I
0 1 2 3 4 5 6 7 8 9

Time (seconds)



Solutions 189

Then, for discrete-time control, the model is converted into the z-domain using
the zero-order-hold option and the time step provided of 0.05 s. The resulting
discrete model transfer function is

~0.007024z + 0.005882
T 22 -1.574z + 0.5866

GM(Z)

And its step response is below. It still meets all of its design specifications, as is to
be expected.

Step Response of the Discrete Second-Order Model

' System: Gm_z

0.9r I Settiing time (seconds): 5.97

I
I
0.8+ ‘
I
07} :
06+ | 1

0.5} ' 2

Amplitude

04+
0.3}
0.2}

0.1} |

0[][|J]‘.|'l
0o 1 2 3 4 5 6 7 8 9 10

Time (seconds)

The closed-loop transfer function can be defined as

__ Ne® _
GCL(Z) = m = GM(Z) =

Following the approach outlined in Sect. 3.3
Nc(Z) =iz + anch(z) =biz+ by
and

UNEW(Z) . (b]Z + bo) + YNEW<Z) . (h]Z + ho) = Y(Z)
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where

) UG)
Unew(z) = (22 — 1574z + 0.5866)

Fagw (2) = re)
NEWAZ) =\ 2215742 + 0.5866

To estimate parameters by, by, h; and hy we use the RLSM that is performed inside a
function block in Simulink. The simulation model obtains parameter values from
the RLSM block and used them to tune the controller in real time. Signals Y and U
subjected to filtering along with their delayed values form the input vector of the
RLSM block.

The simulation ran for 10 s, and the results are:

by 0.002391
bo 0.01061
h 0.07248
ho —0.07808

The output of the controlled system and the output of the model

It could be seen that the system output (yellow) converges to the output of the
chosen model (blue) representing the design requirements.

The entire Simulink setup is shown below.
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Chapter 4
Methods and Models of Optimization

Most engineering problems, including planning, control and design, have more than
one solution. The theory of optimization provides a mathematical basis for
establishing the acceptability conditions that outline the class of acceptable solu-
tions, for the definition of the criterion that provides the measure of goodness of
every individual solution, and the optimization procedure (algorithm) that results in
finding the optimal solution, i.e. the solution maximizing the value of the goodness
criterion. These three components, the class of acceptable solutions, the criterion of
goodness, and the optimization procedure are to be present in any definition of the
optimization problem.

The solution vector of the optimization problem is a set of particular numerical
values of some optimization variables, X =[x, x,, .. ., xn]T that represent the nature
of the problem. For example, in a resource distribution problem when some
material, monetary, or energy resources have to be distributed between n con-
sumers, vector X represents the amounts of these resources designated to each
consumer.

The class of acceptable solutions is typically defined as a set of conditions,
equations and/or inequalities that the solution vector must satisfy. Thus in the
resource distribution problem these conditions include the requirements that the
amounts of the resource designated to individual consumers cannot be negative, i.e.

x;>0,i=1,2,...,n

that the sum of the amounts of this resource designated to consumers shall not
exceed the total amount available (i=1,2,.. is the consumer index), i.e.

n
in < PTOT
i=1

© Springer International Publishing Switzerland 2016 193
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that the amounts of the resources provided to some of the consumers are not
negotiable (k is the consumer index), i.e.

xk:PK, k:kl, kz,
or shall have allowable minimal and maximal values, i.e.
Pun® < x < Puax®, k=ky, ko, ...

It is said that the conditions outlining the class of acceptable solutions reflect the
feasibility requirements and the specifics of the problem, and form a special region
in the solution space X.

The optimization criterion is always a scalar function defined in the solution
space

O(X) = Q(x1,x2, ..., Xy)

that represents the degree of the consistence of any solution vector X to the general
goal of the engineering task. For example, the resource distribution problem may
reflect the goal of maximizing the resource utilization, and intuitively its solution
would provide maximum allowable amounts of the resource to the consumers
having the highest coefficients of its utilization, a;, i=1,2,...,n. It could be seen
that in this case the criterion could be defined as

0X) = awi
=

In the situation when the goal of the resource distribution problem is to minimize
the total cost of transporting the resource to the consumers, and intuitively the most
remote consumers are expected to receive the least amounts of the resource within
the allowable limits, the criterion could be visualized as

n

o(X) = Zﬁfxi

i=1

where f;, i=1,2,..., n are the transportation costs per unit of the resource for
particular consumers. It is common to refer to the function Q(X) as criterion, or
objective function, or a loss function, that highlights various aspects of the nature
of the optimization problem.

Finally, the optimization procedure must result in the rule that would facilitate
the detection of such a point, X°F", in the region of acceptable solutions in the space
X where criterion Q(X) has its minimum (maximum) value

QOFT = Q(X°FT)
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One should realize that the search for the maximum of criterion Q(X) is
equivalent to the search of the minimum of the criterion Q»(X)=—Q(X) and
vice versa, therefore we will always refer to the task of optimization as the task
of minimization.

Recall the approach to minimization presented as a part of undergraduate
calculus. It suggests that if a minimum of some scalar function

O(X) = O(x1, x2, ..., Xp),

ie. X*=[x* xp%, ..., x,*], could be found as the solution of the system of n
equations,

0
a—XIQ(xhxz,...,x,,) =fi(x,x2,...,%,) =0

0
a—sz(xhxz,...,x,,) =fo(x1,x2,...,%,) =0

While this suggestion is consistent with the rigors of a community college, from the
engineering point of view it is quite unrealistic because of the following reasons,

1. Function Q(x, x5, . .., X,) is typically so complex that its derivatives

=— 01, x0,...,x), i=1,2, ..., n

aX,‘

are very difficult and sometimes impossible to define analytically
2. Derivatives @Q(xl,xz .oy Xn), i =1,2, ..., n are nonlinear functions of x,
Ox; ’

X3, ..., X, and the system of equations shown above may have multiple solu-

tions, may have no solution, and in any case, cannot be solved analytically.

3. The entire definition of the function minimization task does not address the
existence of constraints.

4. The function to be minimized may not have any analytical definition, but for any
combination of numerical values of its arguments its value could be defined
numerically, for example by conducting an experiment.

In most real life situations, the optimization task could be performed only
numerically and be compared with the navigation through a very complex terrain
to the highest (in the maximization case) existing peak while avoiding the obstacles
and low peaks. The task is aggravated by the fact that the terrain is
multidimensional and the obstacles could be detected only by direct contact.
Figure 4.1 below drawn by my cartoonist friend Joseph Kogan depicts the task of
optimization based on my comments.

Unsurprisingly, the optimization became an engineering tool only due to the
proliferation of modern computers. We will present several common models,
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Fig. 4.1 Myth vs. reality of optimization

methods and applications of optimization that should be included in the toolbox of a
modern engineer. These techniques will include linear programming, numerical
techniques of nonlinear programming (gradient, random and direct search), genetic
optimization, and dynamic programming. We do not expect a modern engineer to
develop optimization techniques, this is the mathematicians’ domain, however a
good engineer shall be able to:

* recognize a situation lending itself to an optimization task

» formulate the optimization problem, i.e. define its variables, criterion and
constraints

e recognize the resultant problem as one of the typical optimization problems

» find and apply a suitable optimization tool (perhaps available in MATLAB)

4.1 Linear Programming

Linear programming is an optimization technique suitable for the situations when
the set of conditions, outlining the region of acceptable solutions, and the goodness
criterion are linear functions defined in the solution space.

In a linear programming problem, the region of acceptable solutions is defined
by the set of equalities and inequalities as follows:

n n
E a;iXi = bjand E aigXi § bK
i=1 i=1

where x;, i=1,2,.., n are optimization variables that constitute the solution space,
j=12,..., L is the equality index, and k= 1,2,..., M is the inequality index. Note
that the number of equalities must be less than the dimension of the solution space
otherwise the region of the acceptable solutions will include only one point (when
n=L), or could be empty (when L > n). One should understand that inequalities
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can always be redefined as the standard “greater or equal” type, indeed inequality of
n
“less or equal” type, i.e. Z aixx; < by could be easily converted into the “greater
i—1

n
or equal” type by changing signs: —Z aixx; > —bg, consequently only the
i=1
“greater or equal” type inequalities will be considered. Note that the class of
acceptable solutions could be empty even when n > L: the inequalities and equal-
ities could be mutually contradictive.
The criterion of a linear optimization problem is defined by a linear function,

n
Q(-xlaxZa s ,Xn) - Z CiXj
i=1

that has to be minimized,

n
Q(-x17x27 cee 7xn> - ZC,‘X,' — min
i=1
or

n
_Q('x17x27 cee axn) - _Z CiXj — min
i=1

if the original criterion Q(X) had to be maximized.

Example 4.1 Consider one of the typical problems of linear programming, the task
distribution problem. There are 5 reactors operating at a chemical plant and produc-
ing the same product. Due to capacity, design specifics and the technical status, the
reactors have different efficiency expressed by the extraction coefficients, a;,
1=12,3,4,5. The capacities of these reactors, g;, j = 1,2,3,4,5, are also different

reactor, j 1 2 3 4 5
coefficient a; 0.81 0.76 0.63 0.71 0.68
capacity g;j (units) 150 200 175 120 96

The chemical plant is required to process a certain amount of raw material, say
P =500 units that should be rationally distributed between the reactors in the sense
that the overall extraction coefficient will be maximized. It could be seen that the
solution space of this problem comprises of 5 variables, x;—xs, representing the
amount of raw material loaded in respective reactors. The constraints of this
problem must address the following requirements:

Amount of raw material loaded in the j-th reactor must be non-negative: x; >0,
ji=12,..5
5

The total amount of raw material to be loaded in reactors is defined: ij =P
=1
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The amount of raw material loaded in a particular reactor cannot exceed the
capacity of this reactor: x; <g¢j, j=1,2,...,5
5
The criterion of this problem could be defined as Z Qjx; — max or

j=1
5
72 a;x; — min
=1
The mathematical formulation of this problem is

—0.81x; — 0.76x5 — 0.63x3 — 0.71x4 — 0.68x5 — min

subject to conditions

x; >0,x>0,x3 >0,x4 >0,x5 >0
—x; > =150, —xp > =200, —x3 > —175, — x4 > —120, — x5 > —96
x| +x + x3 4+ x4 + x5 =500

One can realize that this problem has an infinite number of alternative solutions
providing that the total amount of raw material P is less than the total capacity of the
reactors, thus creating the opportunity for the optimization. In the case when the
total amount of raw material P is equal to the total capacity of the reactors, only one
solution exists and the optimization is impossible. Finally, in the case when the total
amount of raw material P is greater than the total capacity of the reactors, the
problem does not have any solution.

It could be also realized that the optimal solution procedure for this problem is
quite trivial:

Step 1. The first reactor, having the highest efficiency coefficient, should be
loaded to full capacity (x;°F" =150, 350 units still is to be distributed),
then

Step 2. The second most efficient reactor must be loaded to full capacity (x;
=200, 150 units is to be distributed), then

Step 3. The third most efficient reactor must be loaded to full capacity (x4Olyr
=120, 30 units is to be distributed), then

Step4. The fourth most efficient reactor must be loaded with the remaining
amount of raw material (xs°" = 30 units, zero units to be distributed),

then x;°FT=0.

OPT

It should be noted that most linear programming problems do not allow for such
a simple solution procedure.

Example 4.2 The transportation problem. A product stored at 3 warehouses must
be distributed between 5 consumers in such a fashion that the total cost of
transporting the product is minimized.
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The solution space of this problem is formed by 3 x 5=15 variables, xj,
=123, k=1,2,3,4,5, representing the amount of the product delivered from the
j-th warehouse to the k-th consumer. Introduce the matrix of transportation costs,
¢ j=1,2,3,k=1,2,3,4,5, representing the cost of transportation of one unit of the
product from the j-th warehouse to the k-th consumer. Introduce quantities P;,
j=1,2,3, representing the amount of the product at j-th warehouse, and quantities
Wi, k=1,2,3,4,5, representing the amount of the product requested by k-th con-
sumer. Then the mathematical formulation of the problem is

E E CjiXjx — min

5
k=1 j=1

subject to the following conditions

a) non-negativity, x>0, j=1,23,k=1,2,3,4,5
5
b) amount of the product available at each warehouse, ijk <P,j=123
k=1
3

¢) amount of product delivered to each consumer, ijk =Wi, k=1234,5
=1
5 3
One can realize that the solution of this problem exists if Z Wi < Z P,
k=1 =1
however it cannot be obtained without a computationally intensive and rigorously
justified algorithm. It also should be noted that typical solutions of linear program-
ming problems comprise non-negative variables and therefore the non-negativity of
the solution is assured not by special constraints but by the solution procedure itself.

Example 4.3 The mixing problem. Preparing the right raw material is one of the
conditions for obtaining a high quality end product in chemical or metallurgical
manufacturing. Assume that the raw material is characterized by percentages of
four ingredients: A1%, A,%, A3%, and A4%. The raw material is prepared by mixing
six components in the amounts (in tons) x1, X5, . . ., Xs. Each component contains all
four ingredients, but the concentrations are all different, for example a;, (%) is the
concentration of the ingredient # (j=1,2,3,4) in the component #k
(k=1,2,34,5,6). The cost of each component is given: ¢; ($/ton),
(k=1,2,3,4,5,6). Also given are the required total amount of the raw material, P
(tons) and the available amounts of the individual components, g, (tons),
(k=1,2,3,4,5,6). It is required to prepare the least expensive mixture.

The problem definition is as follows:
Minimize the cost of the mixture:

6
E Cr Xk — min
k=1

Subject to constraints on
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6

the total amount of the raw material Zxk =P
k=1

6
percentages of four ingredients (j = 1,2,3,4) Z apxy =A;- P
k=1
available amounts of individual components, (k=1,2,3,4,5,6) x; < g,

Again, the optimal problem solution, if it exists, could be obtained via some
numerically extensive procedure.
Let us consider such a procedure.

4.1.1 Geometrical Interpretation of Linear Programming

Geometrical interpretation of linear programming is crucial for the understanding
of the computational nature of its algorithm. Geometrical interpretation works best
for the two-dimensional solution space and the inequality-type constraints.

Consider a straight line in two-dimensional space defined by the equation
a,X +a,x, = b like the one below in Fig. 4.2.

It is known that any point on this line, for example [x,', x,'] satisfies this
equation, i.e. alxll +a2x21 =b. It also known that any point above this line, such
as [xlz, x22], results in alxl2 —|—a1x22 > b, and any point below this line, [x13, x23],
results in a1x13 +a2x23<b. Consequently, any condition a;X;+a>x; <b (or
—aX;—a,X, > —b) outlining the class of acceptable solutions indicates that the
acceptable solutions must be located on or below the appropriate straight line. At
the same time, any condition ax; + a»x, > b (or —a;x;—a,Xx, < —b) indicates that
acceptable solutions must be located on or above the appropriate straight line. One
can visualize a domain of acceptable solutions defined by inequality-type condi-
tions as the part of the plane that simultaneously complies with all inequality-type
conditions (highlighted below in Fig. 4.3):

Fig. 4.2 How linear X,
constraints work 3

Xy
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Fig. 4.3 Combination of linear constraints and domain of acceptable solutions
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Now consider a straight line ¢x; 4 ¢>x, =0 and two points, [x,2, x,™] and [x,",
xz*], located in the two-dimensional space. Note that the distance between the
straight line and point [xlA, sz] is greater than the distance between this line and
point [x;", x,"]. This results in the following result that could be easily verified by a
numerical example: ¢x lA + czsz >cx 1* + czxz*.

Consider the combination of the domain of acceptable solutions bounded by
contour ABCDEEF and the straight line ¢,x; 4 ¢x, = 0 representing the criterion of
a minimization problem seen below in Fig. 4.4. Note that the domain of acceptable
solutions bounded by contour ABCDEF, generally speaking, forms a convex
polyhedron in the n-dimensional space, and its individual vertices (corner points),

ie. A, B, C, ..., are known as basic acceptable solutions of the linear programming
problem.
It could be concluded that the solution of the problem [x,°FT, x,°PT) minimizing

the criterion Q(x;,x) =c x|+ ¢ox; is located in the point that belongs to the
domain of acceptable solutions and has the shortest distance from the straight line
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Fig. 4.5 Graphical X
. . . 2
interpretation of a linear
programming problem

X

>
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. . \
Mutually exclusive constraints Minimum does not exist

Fig. 4.6 Situations when the solution does not exist

¢1x1 + ¢ox, =0. It could be seen that in the above Fig. 4.5 this point is F. Should the
solution maximizing the criterion Q(x,x,) =c1Xx; + ¢,X; be sought, it will be found
in the point D that belongs to the domain of acceptable solutions and has the largest
distance from the straight line ¢;x; 4+ ¢x, =0.

Now consider the specifics of the linear programming problem preventing us
from obtaining its optimal solution. The first condition is caused by the situation
where at least two constraints are mutually exclusive, in this case even acceptable
solutions do not exist. In the second case, the domain of acceptable solutions is not
empty but unbounded, thus the solution minimizing the criterion does not exist.
Both cases are shown in Fig. 4.6. Finally, Fig. 4.7 represents the situation where no
unique optimal solution minimizing the criterion exists: the straight line
representing the criterion is parallel to the side AB of the domain of acceptable
solutions.

So far our discussion addressed only the inequality-type constraints. Imagine
that a linear programming problem contains k equality-type constraints, m inequal-
ity-type constraints and has r solution variables where n > k. Assume that the
problem is formulated as follows:
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Fig. 4.7 No unique X,
minimum exists A

n
minimize g CiX;
i=1

n
subject to constraints Zpl-jxi =q;,J=1, 2,3, ...,k

i=1

n
and Zaijx,- <b,j=123,....m
i=1

Note that condition n >k creates the situation when k variables could be
assigned arbitrary values and removed from the list of solution variables. Since

n
our goal is the minimization of the criterion Z c;x; we shall assign zero values
i=1
preferably to those variables that have largest values of the corresponding coeffi-
cients ¢;. This is done by sequential application of a special computational operation
known in linear algebra as pivoting. Indeed, after k pivoting steps the problem will
be reduced to the following definition:

n—k
minimize Z CiX;
i=1
n—k _
subject to constraints Zaijx,- <b,j=123,....m
i—1
where ajj EJ- ¢, i=12,...,n—k, j=1,2,3,...m are problem parameters
modified by pivoting steps.
In summary, a linear programming procedure intended for solution of a mini-

mization problem with n variables, k equality-type and m inequality-type con-
straints (rn > k), could be formulated as follows:
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Step 1. Reduction of the dimension of the solution space by the elimination of k
strategically chosen variables and setting their values in the optimal

solution to zero

Step 2. Finding basic acceptable solutions of the problem by solving possible
n—k

combinations of n—k out of m equations Za,»jxi = Ej ,J=
i=1

1,2,3,...,m

Finding the optimal solution of the problem as the basic acceptable

solution that <

Step 3.

Note that there are many highly efficient software tools that could be
recommended for the solution of a linear programming problem. (For example
see http://www.onlinecalculatorfree.org/linear-programming-solver.html).

Example 4.4 Solving a simple linear programming problem given below:
Minimize Q(X) = 3x; + 10x; + 5x3 + 2x4
subject to conditions

X1+ X+ x3+x4 <125

X, —8x3+ x4 < 12

— X1+ 2x —3x3+x4 <24
X +x, =36

2x1 — 5x, + 8x3 +4x, = 16

The optimal solution (as per tool http://www.onlinecalculatorfree.org/linear-
programming-solver.html):

0T = 164;x;, = 28, xo= 8, x3= 0, x4= 0

Example 4.5 A resource distribution problem. A product available from three
suppliers is to be provided to four consumers. The amounts of the product requested
by individual consumers are respectively: 150, 230, 80 and 290 (units). The
amounts of the product available at each supplier are: 300, 270 and 275 units.
The transportation costs of the product from each supplier to each consumer in $ per
unit are listed in the table below:

Consumer #1

Consumer #2

Consumer #3

Consumer #4

Supplier #1 |25 16 33 48
Supplier #2 | 45 15 36 11
Supplier #3 |21 31 40 52
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It is required to minimize the overall transportation cost while satisfying the
consumers’ demands and not to exceed suppliers’ capabilities. The following
problem definition is self-explanatory and at the same time is fully consistent
with the data format of the tool offered at

http://www.onlinecalculatorfree.org/linear-programming-solver.html

Maximize p= —25)(11 — 16)(12 — 33)(]3 — 48)(]4 — 45X21 — 15)C22 — 36)C23 — 11X24
— 21]631 — 31)(32 — 40)(33 — 52)(34

subject to
X1 + X2 + X133 + X4 <= 300
X21 + X2 + Xo3 + Xog <= 270
X31 + X3 + X33 + X34 <= 275
X11 + Xo1 + X31 + X41 = 150
X2 + X0 + X3+ X420 = 230
X13 + X3 + X33+ X43 = 80

Xi4 + Xo4 + X34 + X4 = 290

The Optimal Solution: p=—13,550; x;;,=0, x;,=230, x;3=70, x;4=0,
X21 = 0, X202 = O, X23 = O, X4 = 270, X31 = 150, X3p = O, X33 = 10, X34 — 20 and
could be summarized as

Consumer Consumer Consumer Consumer

#1 #2 #3 #4 Supplier total
Supplier #1 0 230 70 0 300
Supplier #2 0 0 0 270 270
Supplier #3 | 150 0 10 20 170
Consumer 150 230 80 290 Total transportation
total cost: $13,550

4.2 Nonlinear Programming: Gradient

Gradient of a function of several variables, Q(x;, x5, . ..,X,), is defined as a vector
comprising partial derivatives of this function with respect to individual variables, i.e.

T
VOX) = VO, 12, o) = [£2 82 %]


http://www.onlinecalculatorfree.org/linear-programming-solver.html
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The above expression refers to an analytical definition of the gradient, however,
it could be numerically defined at a particular location of the problem space, X* =
[x1%*, x2%, ..., xn*]T. Let us refer to numerically defined gradient as VQ(X*)
where * is the index of the particular point where this gradient is defined. It is
known that a numerically defined gradient is a good navigational tool: it is a vector
always pointing in the direction of the increase of function Q in the space X.

Let us utilize this property of gradient for the minimization of function Q(X).
First, select some initial point X' = [xll,le,. . .,xnl]T and numerically evaluate
derivatives of function Q(X) in the vicinity of this point:

00(x") 0 4w, w0 w!x)

~

aX1 A
BQ(XI) N O, ' +4, .. .,x6") -0, x»',...,x"
axz - A
aQ(Xl) N O, xb o, xt+4, b -0t x»!x))
ax,- - A
00(x") 0, oL +4) -0l wlLxt)
ox, A

where A is a small positive increment chosen on the basis of experience and intuition
(V.S.: A =0.0001 is a good choice). Note that this approximation of derivatives, known
as a forward difference, is not unique but is good enough for most applications. Now,
when the direction towards the increase of function Q(X) is known, and the direction
towards the minimum is the opposite one, we can make a step from the initial point X"
to the new point X that is expected to be closer to the point of minimum: X* = X'
—a- VOX"). Individual components of point X* will be defined as follows:

2 1 _aQ(Xl)

X" =x1 —a-——s—
8x1

v, 02K

X" =x —a - ——

Now the procedure will repeat itself, but derivatives will be calculated in the
vicinity of the new point X and a transition to the point X> will be performed.
This iterative process will lead to the vicinity of the minimum point of function
O(X) providing that some conditions be met. Parameter a in the expressions above
is a positive adjustable constant responsible for the convergence rate of the mini-
mization procedure. Its initial value is arbitrarily defined and could be changed
(typically decreased) in the process according to the following rule. Assume that the
transition from point X* to X**! is taking place: X**' = X*—a- VQ(X*). The transi-
tion is successful if Q(XkH) < Q(Xk), however in the situation when Q(Xkﬂ) > Q(Xk)
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the value of parameter @ must be reduced, for example by half, and the transition
must be repeated with the value a™°" =0.5a, i.e. X*'' = X*~a"EV. VOXY). If
necessary, a value shall be repeatedly reduced until a successful transition will take
place. The reduced a value shall be kept unchanged for the consequent step.
Termination conditions for the described procedure could be defined in a number
of ways. First, and the simplest, is the definition of the maximum number of
iterations (successful reduction steps of the function to be minimized). It is
also common to stop the procedure if several (5, 10, 20) iterations did not result
in a noticeable change in the optimization variables, i.e. | Xk76—Xk75| <& and
kaSka%l <&and...and | XkaXkl <& where & >0 is a small arbitrary
number. A block diagram of the procedure is seen in Fig. 4.8.

Fig. 4.8 Block diagram of
gradient minimization
procedure

INITIALIZATION
i=1
X!, a, A, iMAX

|

Compute
gradientVQ(X")
in the vicinity of

point X'

|

Compute
X'=X-a-V Q(X)

}

O(X)< (X))
?

—>  a=a/2

d
o
X}

Print Xiand
ax)

STOP
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The gradient minimization procedure is quite common due to its simplicity. It
does not require analytical expressions for derivatives. Values of function Q may
be defined by analytical expressions or experimentally. The drawbacks of this
approach are also evident. The function must be continuous, otherwise working
with derivatives presents an impossible task. This reality creates difficulties with
constrained minimization. The approach implies that the function to be minimized
has only one minimum point: it works only as a local minimization technique.

4.3 Nonlinear Programming: Search

Search-based optimization presents a valuable alternative to gradient optimization:
it does not utilize derivatives of the function to be optimized thus expanding the
range of its applications to discontinuous functions. But, how common are the
discontinuous functions? It is common to introduce constraints in the optimization
procedure through so-called penalty functions, and penalty functions are the typical
sources of discontinuities. Therefore, search becomes very useful in many practical
problems.

4.3.1 Penalty Functions

Consider the following optimization problem where criterion and constraints are
represented by generally speaking, nonlinear functions Q(.) and fi(.), i=1,2.. .:

Minimize Q(x, X2, ... X,)

subject to conditions

Introduce penalty functions defined as

it 2, o) = Ci- [fi(x1, %2, ... x0) —ai]?s i fi(x1,%2,. .. xn) >
B ’ 0, iffi(xl,)(g,...,xn) < q;

' G iy X2, xn) —ai|, i fi(xn, 2, x0) >
OI’PI(XI,XL...,Xn)—{ O, iffi(X1,X2,...,Xn)<ai
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o Ci, iffi(xl,XQ,...,Xn) Zdi
or i1, %2, ) = { 0, if fi(x1,x2,...,%) < @

where C;>> 1 are arbitrary weights reflecting the importance of particular con-
straints, i=1,2,...K. Then the original constrained optimization problem can be
represented by the following unconstrained optimization problem

K
Minimize L(xy,x,...,%,) = Q(x1,X2, ..., %) + ZPi(xl,xz, ey Xn)
i=1

Function L(.) is commonly referred to as the “loss function”. It could be seen that
due to the definition of penalty functions P;(.) it is a discontinuous function. It also
could be seen that due to large values of weights C; virtually any minimization
algorithm would first “drive” penalty values to zero, and then, when constraints are
satisfied, minimize the original function Q(.).

Consider the following example illustrating the introduction of penalty
functions.

Example 4.6 unconstrained optimization problem
Minimize Q(x;,x2,x3) = 5(x; + 6)2 +2(x1 - xp — 6)(3)2 — 10xp(x3 — 2)3
subject to conditions:

X1 —|—X2+6)C3 =10
0§X1 §25
—10<x+x3 <510
X1 —4X3 S 100

Define penalty functions representing the imposed constraints:

Py =10 [x; +x; + 6x; — 10°
1010 %2, if x, <0
Py = .
0, ifx; >0

b 10" (x; — 25)%, if x; > 25
’ 0, ifx1 <0

p_ 10" (xy +x3 — 10)%, if (xa +x3 — 10)> >0
N 0, otherwise

b 10" (x; — 4x3 — 100)%, if x, —4x3 > 100
> 0, otherwise

The resultant loss function

5
L(x1,%2,x3) = 5(x1 +6)% +2(x1 - x, — 6x3)" — 10x,(x3 — 2)° + ZPi(Xl,Xz,X3)

i=1



210 4 Methods and Models of Optimization

could be easily defined by a computer code. Understandably, it should be mini-
mized by a procedure that does not utilize derivatives

OL(x1,x2,x3) OL(xy,x2,x3) OL(x1,x2,x3)
0x ’ 0x2 ’ Ox3

It should also be noted that due to nonlinear criterion and constraints, this problem
most likely does not have one minimum, and finding the global minimum presents
an additional challenge. As it is commonly done when some parameters are
arbitrarily chosen (in this case, weight coefficients) the user shall inspect the
obtained solution and if necessary, change the weight values. It is a good practice
to demonstrate that the solution does not depend on the choice of the weights.

4.3.2 Random Search

This approach could be perceived as the most straight forward “trial-and-error”
technique utilizing the full power of a modern computer and perhaps a supercom-
puter. It facilitates finding the global solution of linear and nonlinear, constrained
and unconstrained, continuous and discontinuous optimization problems. Its only
drawback is the gigantic amount of computations that is prohibitive in many
practical situations. The strategy of random search is illustrated by Fig. 4.9.

4.3.3 Simplex Method of Nelder and Mead

Direct search is a much more efficient alternative to random search. One can define

direct search as a thoughtful and insightful trial-and-error approach. It still has to
start from some initial conditions but its steps are based on a reasonable expectation
of success. It works well with continuous and discontinuous, linear and nonlinear,
constrained and unconstrained functions. Its only drawback compared to random
search is the inherent inability to assure that the global minimum be found. This
fault is not that crucial: direct search is typically used in realistic situations where
properly chosen, the initial point guarantees that the global minimum can be found.
Since direct search does not call for a gigantic number of steps, it could be used in
situations when values of the objective functions are defined by computer simula-
tions and even by physical experiments.

Although there is a good number of direct search procedures utilizing different
rationale for making the “next step,” one of the most practical is the Simplex
Method by Nelder-Mead (1965). The algorithm works with n+ 1 vertices of a
simplex (convex polytope) defined in the n-dimensional search space. It calculates
(obtains) numerical values of the function to be minimized at every vertex, com-
pares these values, and implements some rules for replacing the worst vertex (i.e.
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Fig. 4.9 Random search
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the one with the largest value of the objective function). This process could be best
illustrated in two dimensional space when simplex, with its three vertices, is just a

triangle.



212

X2

0(4)>Q(B)>0(C) I

X3

4 Methods and Models of Optimization

E
0(A4)>Q(E)

Q(A)>Q(D) '
c b T C
Bﬁ B%, i

4 i

X4 X1 X1
X3 X2
O(D)>Q(A4) 0(4)>Q(E)
) ;
D Y
B*, i B%, &
o
A
Xl X]_

Fig. 4.10 How the simplex procedure works

First assume that the initial simplex with vertices A, B, C is established. It is
often done by specifying some initial point, say point A, and the step size that
determines the size of the resultant initial simplex, i.e. triangle ABC. Next is the
evaluation of the objective function Q(x;,x,) at each vertex (x;, x, are coordinates
of points A, B, C) thus resulting in numerical values Q(A), Q(B) and Q(C). Assume
that the comparison reveals that Q(A) > Q(B) > Q(C), and since our task is mini-
mization, the “worst” point is A. Then as seen in Fig. 4.10 above, the algorithm
performs a special operation, reflection, thus establishing a new point D. What
happens next, depends on the value Q(D). If Q(A) > Q(D), the algorithm performs
expansion as shown above, creating a new point E. The expansion could be
repeated providing that still Q(A) > Q(E). In the situation when Q(D) > Q(A), the
contraction is performed. It should be performed repeatedly until condition Q(A) >
Q(E) is achieved. Upon the establishment of the “new” point E, the “old” point A is
discarded. Now the new simplex with vertices B, C, and E is ready for performing
the same computational cycle.

The termination conditions can be defined in terms of the total number of steps
(optimization cycles), or in terms of the distance between vertices of the simplex.

It is good to realize that besides “purely computational” applications, the
Simplex procedure can be implemented in the “(wo)man in the loop” regime for
the real-time optimization of technical systems that could be represented by a
simulator. Figure 4.11 below illustrates an application of the Simplex optimization
to the tuning of a PID (proportional-integral-derivative) controller. The Vissim-
based simulator (see http://www.vissim.com/) features a controlled process with a
PID controller with manually adjustable parameters Kp, K;, and Kp known as
proportional, integral and derivative gains.


http://www.vissim.com/
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The optimization criterion is the commonly used ITSE (integral-time-squared-
error) defined as

T
Q(Kp, Ky, Kp) = Jt~e2 -dt
0

where e is the system error (the discrepancy between the actual and desired system
output values), ¢ is continuous time, and T is the simulation period. It is known from
Controls that minimization of ITSE-type criteria leads to the most desirable tran-
sient process in the system.

4.3.4 Exercise 4.1

Problem 1 Solving a mixing problem. The table below contains characteristics of
several materials that are to be mixed to obtain a raw material for a metallurgical
process. Obtain the mixture recipe that would have the following required chemical
composition and total volume at minimum cost. The mixture characteristics are as
follows:

Fe >20%, Zn > 10 %, Si0, <42 %, Cu > 5 %, total weight 500 tons

Fe % 7Zn % SiO, % Cu % Cost, $/ton Availability
Material 1 15 38 41 6 120 250 tons
Material 2 40 12 40 1 150 590 tons
Material 3 35 5 27 28 211 1000 tons
Material 4 16 11 21 18 140 520 tons
Material 5 33 1 60 5 75 2500 tons
Material 6 7 23 45 25 214 800 tons

Problem 2 Solving an LSM parameter estimation problem using a gradient pro-
cedure. Generate input and the output variables as follows (k=1, 2,.. ., 500):

>

(k) = 5 + 3-Sin(17 k) + Sin(177 k) +.3-Sin (1771 -k)

2(k) = 1 — 2-Sin(91-k) + Sin(191-k) + .2 - Sin (999 - k)

3(k) = 3 + Sin(27-k) + .5-Sin (477 -k) +.1-Sin (6771 -k)

JK) = —1-x(K) + 3-x(k) + 2.5-Sin(9871-k) + .7-Cos(6711-k)
y(k) =2-x1(k) + 3-x2(k) — 2-x3(k) + 5-x4(k) + .3-Sin (1577 - k)

+ .2-Cos(7671 ¥)

1

>

>

e
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Obtain “unknown” coefficients of the regression equation
yMOD(k) = da1Xi (k) + (12)(2(/() —+ azx3 (k) + (14)64(/()

using the least squares method implemented via the gradient procedure listed below
(that could be rewritten in MATLAB). Assume zero initial values of the coeffi-
cients. Compute the coefficient of determination of the obtained regression
equation.

Problem 3 Utilize data of Problem #2 to obtain coefficients of the regression
equation vWOP (k) = ayx; (k) 4 axxs (k) + azx3(k) + asx4(k) applying the gradient
procedure. It is required, however, that all regression coefficients be positive. Show
the obtained coefficients. Compute the coefficient of determination for the resultant
regression equation. Explain the change in the coefficient of determination com-
paring with Problem #2

PROGRAM GRADIENT
DIMENSION X (10),X1(10),DER(10)
WRITE (*,*)’ ENTER NUMBER OF VARIABLES ’
READ (*, *) N
WRITE(*,*)’ ENTER THE gain OF THE PROCEDURE ’
READ (*, *)A
WRITE(*,*)’ ENTER INITIAL NUMBER OF STEPS '
READ (*, *) NSTEP
H=.001
DO1I=1,N
WRITE (*,*)’ ENTER INITIAL VALUE FORX(’,I,")"
1 READ(*,*)X(I)
10 CONTINUE
K=1
CALL SYS (N, X, Q)
QI=0Q
100 CONTINUE
DO4I=1,N
X(I)=X(I)+H
CALL SYS (N, X, Q1)
DER(I) = (Q1l-Q)/H
X(I)=X(I)-H
4 CONTINUE
50 CONTINUE
DO5I=1,N
5 X1(I)=X(I)-DER(I)*A
CALL SYS (N, X1,01)
IF(QL.GE.Q) A=A/2
IF(Q1.GE.Q) GOTO 50
DO30I=1,N
30 X(I)=X1(I)

Q=01
IF (ABS(Q) .LE.1e-5)GOTO 2
K=K+1

IF (K.GT.NSTEP) GOTO 2
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GOTO 100
2 CONTINUE
WRITE(*,*)’ ITERATIONS RUN: ' ,NSTEP
WRITE(*,*)’ INITIAL CRITERION AVLUE: ',QI
*)

WRITE (*, ’ CRITERION VALUE REACHED: ', Q
DO7I=1,N
7 WRITE(*,*)’ OPTIMAL VALUE: X(’,I,’)="',X(I)

WRITE (*,*)’ ENTER ADDITIONAL NUMBER OF STEPS ’
IF(ABS(Q) .LE.le-5)CALL EXIT

READ(*, *) NSTEP

IF (NSTEP.EQ.0)CALL EXIT

GOTO 10

END

SUBROUTINE SYS (N, X, Q)

DIMENSION X (10)

Q=0.

DO1I=1,N

Q=0+ (X (I)-5.%I)**2
1 CONTINUE

Q=0%*2
RETURN
END

4.4 Genetic Optimization

Genetic optimization algorithms possess the advantages of random and direct
search optimization procedures. Combined with the availability of high perfor-
mance computers they alleviate major obstacles in the way of solving multivari-
able, nonlinear constrained optimization problems. It is believed that these
algorithms emulate some concepts of the natural selection process responsible for
the apparent perfection of the natural world. One can argue about the concepts, but
the terminology of genetic optimization is surely adopted from biological sciences.

Assume that we are in the process of finding the optimum, say the maximum, of
a complex, multivariate, discontinuous, nonlinear cost function Q(X). The con-
straints of the problem have already been addressed by the penalty functions
introduced in the cost function and contributing to its complexity.

Introduce the concepts of an individual, generation, and successful generation.
An individual is an entity that is characterized by its location in the solution space,
X' and the corresponding value of the function Q, i.e. @(X"). A generation is a very
large number of individuals created during the same cycle of the optimization
procedure. A successful generation is a relatively small group of K individuals
that have some common superior trait, for example, they all have the highest
associated values Q(.) within their generation. The genetic algorithm consists of
repeated cycles of creation of successful generations.
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MIN MAX
Xy ] for
MIN

Creation of the Initial Generation First, the feasibility range [x
each solution variable x;, k=1,2,3,...,n, is to be established. Each interval [x;
’kaAX] is divided into the same number of subintervals, say L, thus resulting in a
grid within the solution space with numerous nodes. The next task is the evaluation
of function @ at each node of the grid, i.e. the creation of individuals “residing” at
every node. During this process the successful generation is selected consisting of K
individuals that have the highest values of the function Q. It is done by forming a

group of individuals ordered according to their Q values, i.e.
0(X%) <o(x*") < ...0(X°) <o(X") (¥

Any newly generated individual X" is discarded if Q(X') < Q(X). However if
QX" > Q(X"), it is included in the group replacing the individual X~ with the lowest
QO value. Therefore the successful generation still includes K individuals that are being
renumbered and reordered to assure (*). This process is repeated each time a new
individual is generated i.e. until the entire initial generation is created and analyzed.

Creation of the Next Successful Generation involves only members of the existing
successful generation. Two techniques are utilized for this purpose, parenting and
mutation. Parenting (crossover) involves two individuals, X* and X® and results in
an “offspring”

XC = [xlc,xzc, ...xkc, ...xnC]T

defined as follows:

x1C = /lelA + (1 —Al)xlB
x2C = /12X2A + (1 — /12)ng

where 0 <Ay <1 are random numbers generated by a random number generator.
Then, based on the computation of Q(X©) the newly created individual X€ is
accepted into the successful generation or discarded. The parenting process is
repeated several number times for every combination of two members of the
original successful generation.

The mutation process implies that every member of the original successful
generation, X! originates a “mutant” XM= [le, sz, .. .ka,. . .ng]T defined as
follows:
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le = 011361I
sz =X

ka = akxkA
ng = anan

where oy are normally distributed random numbers generated by a random number
generator. Based on the computation of Q(X™) the newly created individual X™ is
accepted into the successful generation or discarded. The mutation process is repeated
several number times for every member of the original successful generation.
Understandably, parenting and mutation upon completion results in a new
successful generation that is to be subjected to a new cycle of the procedure unless
the termination conditions be satisfied. The most common termination condition
refers to the variability within a successful generation, and could be expressed as:

K-1
Z | Xi—xitl|<s
i=1
where ¢ > 0 is some judiciously chosen small positive number.

It is good to remember that genetic optimization is capable of finding a global
minimum of virtually any function Q(X). Moreover, it works even when this
function does not exist as an analytical expression: in this situation for any
particular X' the value of Q(X") could be determined by running a computer
simulation or by an experiment. Figure 4.12 provides a block diagram of the genetic
optimization procedure.

The following MATLAB code implementing a genetic optimization procedure
was written by my former student Dr. Jozef Sofka

%genetic algorithm for minimization of a nonlinear function

% (c) Jozef Sofka 2004

gnumber of crossovers in one generation

cross=50;

$number of mutations in one generation

mut =30;

%extent of mutation

mutargl=.5;

%size of population

population=20;

gnumber of alleles

al=5;

$trying tominimize function

%abs (a”2/b+c*sin(d) +b"c+1/(e+a)"2)
clear pop pnew;
%definition of "best guess" population
pop (l:population,l) =12+ l*randn (population, 1) ;
pop (l:population,2) =1.5+ .1*randn (population,1);
pop (l:population,3) =13 +1*randn (population,l) ;
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Fig. 4.12 Block diagram of

a genetic optimization
procedure

pop(l:population,4) =1.5+ .2*randn (population,l);
pop (l:population,5) = (.5*randn (population, 1)) ;

% evaluation of fitness population

for f=1:population

INITIALIZATION

!

Forming the
initial grid

Evaluation of

o¢)

Forming the
initial successful
generation
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|
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Evaluation of

()
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!
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Forming a
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v
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()

|

NO

Termination ?

l YES

Print X' and
ox)

STOP

e(f) =abs(pop(f,1)"2/pop(f,2) +pop(£f,3)*sin(pop(£f,4)) +pop(£f,2)
“pop (£,3) +1/(pop(£f,5) +pop(1l))"2);

end
[g, k] =sort (e);

$number of generations

forr=1:500

parameters(r,l:al) =pop(k(l),1l:al);

fitness (r) =e(k(1));

$crossover
for f=1:cross



220 4 Methods and Models of Optimization

pl=round( (rand+rand) /2* (population-1)) +1;
p2 =round( (rand +rand) /2* (population-1)) +1;
p3 = (2*rand-.5);
pnew(f, :) =pop(k(pl),l:al) +p3* (pop(k(p2),1l:al)-pop(k(pl),1l:
al));
%evaluation of fitness
fit (f) =abs (pnew(f,1)"2/pnew(f,2) +pnew(f,3) *sin(pnew(f,4)) + pnew
(f,2)"pnew(f,3) +1/ (pnew(f,5) +pnew(1l))"2);
end
$selection
for f=1:cross
if (fit(f) <e(k(population-3)))
pop (k (population), :) =pnew(f, :);
e (k(population)) =fit (f) ;
[g,k] =sort(e);
end
end
gmutation
for f=1:mut
p=round (rand* (population-1)) +1;
o=round((al-1)*rand) +1;
pnew (£, :) =pop(p, :);
pnew (f,o0) =pnew(f,0) +mutargl*randn(1,1);
%evaluation of fitness
fit (f) =abs (pnew(f,1)"2/pnew(f,2) +pnew(f,3) *sin(pnew(f,4)) + pnew
(£,2)"pnew(f,3) +1/ (pnew(£f,5) +pnew(1l))"2);
end
%selection
for £f =1:mut
if (fit(f) <e(k(population-1)))
pop (k (population), :) =pnew(f, :);

e (k (population)) =fit (f) ;
[qg,k] =sort(e); end
end
end

fprintf (' Parameters a=%f; b=%f; c=%£f; d=%f; e=%f\n’, ...,
pop(k(1),1), pop(k(1l),2), pop(k(1l),3), pop(k(1l),4), pop(k(l),5))
fprintf (‘minimize function abs(a”2/b+c*sin(d) +b*c+1/(e+a)"2)
\n’)
figure
plot (parameters)
figure

semilogy (fitness)

4.4.1 Exercise 4.2

Problem 1 Use Simplex Optimization procedure (to be provided) to tune param-
eters of a PID controller as shown in Fig. 3.3. The simulation setup could be
implemented in Simulink or Vissim. The following transfer function is
recommended for the controlled plant:


http://dx.doi.org/10.1007/978-3-319-42258-9_3
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s+6

G =
(s) s34+ 652+ 10s + 10

To show the effectiveness of the tuning procedure provide a sequence (five or so) of
numerical values of the parameters of the controller, values of the criterion, and the
system step responses.

Problem 2 Given input—output data representing a highly nonlinear, static process:

=
=
N
-
&

Y
17.59141
21.59141
44.94528
81.89056
89.89056
216.8554
317.2831
—285.2831
15.25319
-3 -3 -3 —0.496806
3 -3 —301.0331
3 -3 —100.1777
—1 3 5 —36.42768
2
2

WIW[(W[(N ||| ==

Wl w w w ||| =]

—152.7264
1 188.7264

Given the configuration of the mathematical model of this process:

MOD

y — alxleazxg + a3(a4X3+a5)

Utilize the Genetic Optimization (GO) program provided above and the input/
output data to estimate unknown parameters of the mathematical model given
above. Experiment with values of the control parameters of the GO procedure.
Compute the coefficient of determination for the obtained regression model and
comment on the model accuracy. Document your work.

4.5 Dynamic Programming

Many physical, managerial, and controlled processes could be considered as a
sequence of relatively independent but interrelated stages. This division, natural
or imaginative, could be performed in the spatial, functional, or temporal domains.
The following diagram in Fig. 4.13 represents a typical multi-stage process
containing four stages. Every stage or sub-process is relatively independent in the
sense that it is characterized by its own (local) input x;, local output y;, local control
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Fig. 4.13 Multi-stage process with four stages

effort u;, and the local goodness criterion ¢;. Both the output and the criterion of
each stage (sub-process) are defined by its local input and the control effort, i.e.
Yi = yi(xi,u;) and q; = y;(x;, ;).

At the same time, individual stages (sub-processes) are interrelated. Indeed the
output of every stage, except the last (n-th) stage, serves as the input of the
consequent stage, i.e. for i =1,2,3,...,n— 1 y; = x;;;. This reality results in
the following relationships that links the entire sequence:

Vi = yi(xi,u) = iy (ximr, wi1), i) = yi(xioy, wioy, u;)
=Vilyia(Xio, i), iy wi) = yi(Xi o, i g iy, u) = ...
=y(xi,u, uy w3, ... u)

and similarly q; = q;(x1, w1, wy, w3, ..., u;), where i =1,2,3,. . ., n is the sequential
number of the stage.

These relationships indicate that the output and criterion value of any stage of
the process, except the first stage, are defined by the input of the first stage, control
effort applied at this stage and control efforts applied at all previous stages. In
addition to the above relationships, the stages of the process are linked by the
“overall goodness criterion” defined as the sum of all “local” criteria,

n
0= Z q(x, u;) where n is the total number of the stages. It could be seen that
k=1
the overall criterion depends on the input of the first stage and all control efforts, i.e.

0= Q(xlaul, uy us ...,un)

Therefore the optimization problem of a multistage process implies the minimi-
zation (maximization) of the overall criterion Q(.) with respect to control efforts
applied at individual stages, uy, kK = 1,2, ...n, for any given input of the first stage,
x1, and may be subject to some constraints imposed on the outputs of the individual
stages, y;, k = 1,2, ...n. One can realize that the process optimization problem
cannot be solved by the independent optimization of the individual stages with
respect to their “local” criteria, ¢4, k = 1,2, ...n. The optimal control strategy
must be “wise”: “local” optimization of any sub-process may result in such an
output that will completely jeopardize the operation of the consequent stages thus
causing poor operation of the entire multistage process. Therefore, optimization of
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any stage of a multi-stage process must take into account the consequences of this
optimization for all consequent stages. Selection of any “local” control effort
cannot be performed without assessing its impact on the overall criterion.

Dynamic programming is an optimization technique intended for the optimiza-
tion of multi-stage processes. It is based on the fundamental principle of optimality
of dynamic programming formulated by Richard Bellman. A problem is said to
satisfy the Principle of Optimality if the sub-solutions of an optimal solution of
the problem are themselves optimal solutions for their sub-problems. Fortunately,
optimization problems of multi-stage processes do satisfy the Principle of Opti-
mality that offers a powerful solution approach in the most realistic situations. The
key to the application of the Principle of Optimality is in the following statement
that is stemming from this principle: any last portion of an optimal sequence of
steps is optimal.

Let us illustrate this principle using the chart below in Fig. 4.14 that presents a
process comprising of 12 sequential stages divided into two sections, AB and BC. It
is assumed that each j-th stage of this process is characterized by its “local”

criterion, g;. Assume that the overall criterion of the process is defined as the sum
12

of local criteria: Q = Z q;
=1

Let us define the sectional criteria for each of the two sections:

5 12
Oup = qu and Qpc = qu. Assume that for every stage of the process some

= =6
control effort is chosen, such that the entire combination of these control efforts,
ujOP T, j=1,2,...,12, optimizes (minimizes) the overall process criterion Q. Then
according to the principle of dynamic programming control efforts u,-OP T j=6,7,

..., 12 optimize the last section of the sequence, namely BC, thus bringing criterion
12

Opc = Z g; to its optimal (minimal) value. At the same time, control efforts uiOP T
=6
j=1,2, ...,5are notexpected to optimize section AB of the process, thus criterion

12
Oup = Z g; could be minimized by a completely different combination of control
=6
efforts, say ujALT, j=12,...,5.

Fig. 4.14 Twelve stage process
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The fundamental principle provides the framework for a highly efficient and
versatile optimization procedure of dynamic programming that works on a step-by-
step basis and defines optimal control efforts for individual stages of the multi-stage
process. It is important that control decisions made at each step of the procedure do
not optimize individual stages of the process, i.e. do not solve the “local” optimi-
zation problems. Instead, they optimize the last portion of the entire process that
starts at the stage in question and end at the last stage of the process.

When doing so, every step of the optimization procedure takes into account not
only the particular stage of the process but also all consequent stages. The proce-
dure is iterative, therefore it shall start from the last section of the multistage
process where there are no consequent stages to be considered. At the same time,

oPT

the optimal solution of the control problem u;"", cannot be explicitly defined

without knowing the input x; applied to the appropriate section of the process.
Therefore, the dynamic programming procedure is performed in two steps: condi-
tional optimization and unconditional optimization. Conditional optimization starts
from the end of the process addressing the last stage of the process first, then the last
two stages of the process, then the last three stages, and finally the entire process.
Why is it called conditional?—because at the first step, the procedure defines the
optimal conditional control effort (OCCE) for the last stage of the process that is
dependent on the input of the last stage of the process:

u,g PT — F(xy)
that minimizes the sectional criterion
Oy (xn,uy) = qy(xn, uy)
(Note that the sectional criterion is marked by the index of the first stage of the

section). Now the output of the last stage of the process (and the output of the entire
process) is

YN =N (-’CN, ”A?PT)

This solution must be consistent with the required (allowed) value of the output of
the process, Y*, i.e.

YN :yN(xN’ ungT) =Y

At the next step the OCCE for the second stage from the end of the process is
defined as a function of the input applied to this stage:

ug™l = F(xy_1)
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that minimizes the sectional criterion for the last two stages of the process:

Oy (xnv—r,uy—1,u)"") = gy (xn—1,uv-1) + gy (xn, uf™T)

Note that in this expression x does not work as an independent factor, it is defined
as the output of the previous stage of the process:

XN = Vn-1 (xN—l ) uﬁf{)

and therefore criterion Qy_; actually depends only on two variable factors, xy_; and
Un_1:

Oy 1 (xn—1,uy-1) = qy_y (Xn—1,un-1) + gy [nyl(xN—h”N—l)’”gPTJ

The solution must ensure that the resultant output

_ OPT , OPT
IYn-1 _nyl(xN—l’ Uy_1,uUy )

is within its allowed limits, i.e.

MIN MAX
YN-1 < Yv-1 S In-a

Now let us define the OCCE for the third stage from the end of the process as a
function of the input applied to this stage:

ug"y = F(xy_2)

that minimizes the sectional criterion that “covers” the last three stages:

Oy (foz, Uy, llfv)f{,llﬁPT) = qn_o(Xn-2,un2) + qy_; (fou uﬁflT)

+ qn (xN7 uﬁPT)

Again, in this expression xy_; and x, are not independent factors, they are defined
as outputs of the previous stages of the process:

xXy_1 = Py_o(Xn_2,uy_2)andxy = py_, (fol, Il,f/)flT)

and therefore criterion Qy_, actually depends only on two variable factors, xy_»
and uy_»

Oy s =qy2(xn—2,uy-2) + gy [Py_2 (xn—2,u0"3) u’T]

OPT) OPT

+ gy [yy_1 (evor, uy ] OPT yOPT)

Uy ] = QNfz(xN—l’"N‘z’ Un-1,UN
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The optimal value of this criterion is:

OPT . OPT ., OPT
QN—Z(xN—l’”N—L’ Uy_y Uy )

Again, the appropriate output,

YN-2 = VNn-2 (foZ’ ”1(\?1—35)

must be consistent with the allowed value for the output of the appropriate stage of
the process:

MIN MAX
Y2 SIn—2 SPno2

It could be seen that eventually the procedure defines the control effort for the
first stage of the process as a function of the input applied to this stage:

OPT __
u " =F(x)
that minimizes the sectional criterion

OPT  OPT OPT ., OPT
Ql(xl,ul,u2 JUT L, Uy Uy )

However, the input of the first stage (the input of the overall process), x;, is
explicitly known, therefore the control effort #{"" could be explicitly defined.
This results in the explicitly defined output of the first stage, y;. Since x, =y,

the optimal conditional control effort
™" = F(xy)

could be explicitly defined thus resulting in an explicit definition of the output of the
second stage and the input of the third stage, and so on. .. It could be seen that the
procedure moves now from the first stage of the process to the last stage, converting
conditional control efforts into explicitly defined unconditional optimal control
efforts.

Let us consider the application of the outlined approach to the following
numerical example representing the so-called optimal routing problem.

Example 4.7 Apply dynamic programming to establish the optimal (“minimum
cost”) route within the following graph in Fig. 4.15

It could be seen that the transportation problem featured by the above graph
consists of five stages and four steps. Step 1 consists of four alternative transitions:
1/1 —2/1, 1/1 —2/2, 1/1 — 2/3 and 1/1 — 2/4 with the associated costs of 5, 3, 1,
and 2 (units). Step 2 consists of 12 alternative transitions: 2/1 — 3/1, 2/1 — 3/2, 2/
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Fig. 4.15 Process graph

1 — 3/3 with the associated costs of 8, 4, and 3 (units); 2/2 — 3/1, 2/2—3/2, 2/
2 — 3/3 with the associated costs of 4, 6, and 7 (units); 2/3 — 3/1, 2/3 —3/2, 2/
3 — 3/3 with the associated costs of 5, 6, and 8 (units); and 2/4 — 3/1, 2/4 — 3/2, 2/
4 — 3/3 with the associated costs of 9, 5, and 6 (units). Step 3 also consists of 12
alternative transitions: 3/1 — 4/1, 3/1 — 4/2, 3/1 — 4/3, 3/1 — 4/4 with the associ-
ated costs of 6, 3, 4, and 10 (units); 3/2 — 4/1, 3/2 — 4/2, 3/2 — 4/3, 3/2 — 4/4 with
the associated costs of 5, 6, 7, and 3 (units); 3/3 —4/1, 3/3—4/2, 3/3—4/3, 3/
3 — 4/4 with the associated costs of 11, 2, 6, and 8 (units). Finally, the last step, 4,
consists of four alternative transitions: 4/1 — 5/1,4/2 — 5/1,4/3 — 5/1 and 4/4 — 5/
1 with the associated costs of 13, 16, 10, and 11 (units). It is required to establish
such a sequence of transitions (optimal path) that would lead from the initial to the
final stage (nodes of the above graph) and had the minimal sum of the transition
costs.

Could we have established the optimal path by considering all possible alterna-
tive paths within this graph?—perhaps, but the required computational effort is
expected to be very high. Should the number of stages and alternative transitions at
every step be greater, this approach will become prohibitively formidable.

According to the dynamic programming procedure, let us define conditionally
optimal transitions for the last step of the process, step #4. This task is quite
simple: if the starting node of the stage #4 is 4/1 then the optimal (and the only)
transition to the last stage is 4/1 — 5/1 with the cost of 13 units. Should we start
from node 4/2, the optimal (and the only) transition is 4/2 — 5/1 with the cost of
16 units, and so on. The results of the conditional optimization of the step #4 are
tabulated below
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Conditional optimization of step 4

Starting node | Final node Total cost for this
of the stage 4 | of the stage 5 | Transition costs | Optimal transition | portion of the path
4/1 51 13 4/1—5/1 13

4/2 5/1 16 4/2 —5/1 16

4/3 5/1 10 4/3 —5/1 10

4/4 5/1 11 4/4 —5/1 11

Let us compile the table representing conditional optimization of the last two
steps of the transportation process, namely steps 3 and 4. Assuming that the starting
node of the stage 3 is 3/1 then the first available transition within step 3 is 3/1 — 4/1
with the cost of 6 units. At the next step, this transition will be followed by 4/1 — 5/1
and the total cost of both transitions, 3/1 — 4/1 — 5/1, is 19 units. Then, consider the
second available transition within step 3, 3/1 — 4/2. It comes with the cost of 3 units
and must be followed by the transition 4/2 — 5/1 with the total cost of transition 3/
1—4/2 — 5/1 of 19 units. Upon consideration of transitions 3/1 — 4/3 — 5/1 and 3/
1 —4/4—5/1 it could be seen that for 3/1 as the entry point to step 3 the best
transition is 3/1 — 4/3 — 5/1 with the lowest total cost of 14 units.

Conditional optimization of steps 3 and 4

Starting Alternative Total cost
point of transitions Transition | Possible for two Optimal
steps 3 to states costs transition stages transition
3/1 4/1 6 3/1—-4/1—5/1 |6+13=19
4/2 3 3/1—-4/2—5/1 |3+16=19
4/3 4 3/1—-4/3—5/1 |4+10=14 |3/1—4/3—5/1
4/4 10 3/1—4/4—5/1 | 10+11=21
3/2 4/1 5 32—4/1—5/1 |5+13=18
4/2 6 32—4/2—5/1 | 6+16=22
4/3 7 32—4/3—5/1 |7+10=17
4/4 3 32—4/4—5/1 |3+11=14 |3/2—4/4—5/1
3/3 4/1 11 3/3—4/1—-5/1 |11+13=24
4/2 2 3/3—4/2—5/1 |2+16=18
4/3 6 3/3—4/3—5/1 6+10=16 |3/3—4/3—5/1
4/4 8 3/3—4/4—5/1 |8+11=19

Now let us compile the table representing conditional optimization of the last
three steps of the transportation process, namely step 2 followed by steps 3 and 4.
Assume that the starting point of stage 2 is 2/1 and the first available transition is
2/1 — 3/1 with the cost of 8 units. The optimal transition from 3/1 to the last stage has
been already established: 3/1 — 4/3 — 5/1 and its cost is 14 units, therefore the cost
of transition 2/1 — 3/1 —4/3 — 5/1 is 8 4+ 14 =22 units. Assume that the starting
point is 2/1 and the chosen transition is 2/1 — 3/2 with the cost of 4 units. The



4.5 Dynamic Programming 229

already established optimal transition from 3/2 to the last stage is 3/2 — 4/4 — 5/1
with the cost of 14 units, therefore the cost of transition 2/1 — 3/2 — 4/4 — 5/1 is
4 4 14 = 18 units. Now assume that the starting point is still 2/1 and the chosen
transition is 2/1 — 3/3 with the cost of 3 units. The already established optimal
transition from 3/3 to the last stage is 3/3 — 4/3 — 5/1 with the cost of 16 units and
the total cost is 3 4 16 = 19 units. This indicates that the optimal path from point 2/1
to 5/1 is 2/1 — 3/2 — 4/4 — 5/1 with the cost of 18 units. In the similar fashion
optimal paths from points 2/2, 2/3 and 2/4 to point 5/1 are to be established. They
are: 2/2 — 3/2 — 4/4 — 5/1 with the cost of 18 units, 2/3 — 3/2 — 4/4 — 5/1 with
the cost of 19 units, and 2/4 — 3/2 — 4/4 — 5/1 with the cost of 18 units.

Conditional optimization of steps 2, 3 and 4

Starting Alternative Total cost

point of transitions to | Transition | Possible for two

step 2 states costs transition stages Optimal transition

2/1 3/1 8 2/1—=3/1 |8+14=22
32 4 2/1—-3/2 |4+14=18 |2/1—3/2—4/4—5/1
3/3 3 2/1—=3/3 |3+16=19

2/2 311 4 2/2—73/1 44+14=18 |2/2—3/1—4/3—-5/1
3/2 6 2/2—3/2 |6+14=20
3/3 7 2/2—3/3 |74+16=23

2/3 3/1 5 2/3—-3/1 |54+14=19 |2/3—3/1—-4/3—5/1
3/2 6 2/3—3/2 |64+14=20
3/3 8 2/3—3/3 |8+16=24

2/4 3/1 9 2/4—3/1 |9+14=23
3/2 5 2/4—3/2 |5+14=19 |2/4—3/2—4/4—5/1
3/3 6 2/4—3/3 |6+16=22

Finally, let us compile the table representing optimization of all four steps of the
transportation process. Note that the optimization results are not conditional any-
more: the transition process is originated at the very particular point, 1/1. Assume
that the first available transition is 1/1 — 2/1 with the cost of 5 units. The optimal
transition from 2/1 to the last stage has been already established: 2/1 — 3/2 — 4/
4 — 5/1 and its cost is 18 units, therefore the cost of transition 1/1 — 2/1 — 3/1 — 4/
3 —5/11is 5+ 18 =23 units. Assume that the chosen transition is 1/1 — 2/2 with the
cost of 3 units. The already established optimal transition from 2/2 to the last stage
is 2/2 — 3/1 — 4/3 — 5/1 with the cost of 18 units, therefore the cost of transition 1/
1—2/2—-3/1—-4/3—5/1 is 3+ 18 =21 units. Now assume that the chosen
transition is 1/1 — 2/3 with the cost of 1 units. The already established optimal
transition from 2/3 to the last stage is 2/3 — 3/1 — 4/3 — 5/1 with the cost of 19
units and the total cost of transition 1/1 —2/3 —3/1 —-4/3—5/11is 14+19=20
units. Should the chosen transition be 1/1 — 2/4 with the cost of 2 units, and since
the already established optimal transition from 2/4 to the last stage is 2/4 — 3/
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2 — 4/4 — 5/1 with the cost of 19 units, the total cost of transition 1/1 — 2/4 — 3/
2 —4/4 — 5/11is 5+ 19 =21 units. This clearly indicates that the optimal path from
point 1/1 to 5/1 is 1/1 —2/3 —3/1 — 4/3 — 5/1. See this analysis summarized in
the table below.

Optimization of steps 1, 2, 3 and 4

Alternative Total cost
Starting point | transitions | Transition | Possible for two
of step 1 to states costs transition stages Optimal transition
171 2/1 5 1/1—2/1 5+418=23

2/2 3 1/1—2/2 |3+18=21

2/3 1 1/1—2/3 1+19=20 |1/1-2/3—-3/1—

4/3 —5/1
2/4 2 1/1—=2/4 |2419=21

Consider another quite practical example that ideally lends itself to the applica-
tion of dynamic programming. It is the optimization of a sequence of manufacturing
processes that could be found in chemistry and metallurgy. Each process has its
own mathematical description representing quality/quantity of its end product and
manufacturing costs as functions of the characteristics of the raw material x; and
control efforts u;. Consider the mathematical model of i-th manufacturing process
within a sequence consisting of N processes:

characteristic of the end material y; =y;(x;,u;),i=1,2,....N
manufacturing cost ¢; = q;(x;,u;),i=1,2,....N

. . . MIN MAX - _
quality/quantity requirements y; <y; <y; ,i=12,.. N
connection to neighboring processes y; =x;; i=1,2,....N

For simplicity, let us assume that the above functions are scalar and are
represented on the basis of their mathematical model by numerical values of y;
and u; for discretized x; =k - Ax; and u; =m - Au;, i.e. y;(k,m) =y;(k- Ax;,m - Au;)
and q;(k,m) = q;(k - Ax;,;m - Au;) where k, m=1,2,3,.... Does this representation of
the manufacturing process result in the loss of accuracy? No, providing that the
discretization steps Ax;, Au; are judiciously chosen.

Example 4.8 Apply dynamic programming to optimize the operation of a
sequence of three manufacturing processes represented by the tabulated descrip-
tion below. Note that the inputs of the individual processes are defined in %
assuming that the 100 % value of the respective input corresponds to the maxi-
mum value of the output of the previous process. To simplify the problem further,
the control efforts are defined not by real numbers, but as “control options.” The
overall cost of manufacturing is defined as the sum of costs of individual pro-
cesses. Finally, it could be seen that the specified acceptability limits of the
process outputs are different from their feasibility limits that could be seen in
the tables.
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PROCESS #1
Outputy,(x,u), 30>y,>10 Cost g,(x,u)
U= U=
X% 1 2 3 1 2 3
332x20->| 2.000 50.000 18.000 21.000 16.000 73.000
66>x>34->| 9.000 13.000 19.000 27.000 19.000 130.000
100> x>67->| 11.000 19.000 31.000 29.000 18.000 21.000
PROCESS #2
Outputy,(x,u), 70> y,>20 Cost g,(x,u)
U= U=
X% 1 2 3 1 2 3
33>x>0->| 8.000 11.000 21.000 70.000 76.000 100.000
66>x>34-> 24.000 13.000 90.000 61.000 64.000 92.000
100mcoe7s| 1000 15.000 35000 | 55.000 77.000 88.000
PROCESS #3
Outputys(x,u), 30> y,>15 Cost g5(x,u)
U= U=
X% 1 2 3 1 2 3
33>x20-| 12.000 50.000 18.000 | 21.000 16.000 73.000
66>x>34-> 9.000 13.000 19.000 | 27.000 29.000 130.000
100> x>67->| 16.000 19.000 31.000 | 29.000 28.000 21.000

First, let us address the issue of acceptability limits of the process outputs. Com-
putationally, it could be done by replacing associate cost values by penalties (10'°)
in the situations when output values are not acceptable—this will automatically
exclude some cases from consideration, see the modified tables below

PROCESS #1
Outputy,(x,u), 30>y,>10 | Cost q,(x,u)
U= U=
X% 1 2 3 1 2 3
332x20- 2.000 50.000 18.000 | .10E+16 .10E+16 73.000
66> x>34-> 9.000 13.000 19.000 | .10E+16 19.000 130.000
1003 x>67->| 11.000 19.000 31.000 | 29.000 29.000 10E+16
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PROCESS #2
Outputy,(x,u), 70> y,>20 | Cost g,(x,u)
U= U=
X% 1 2 3 1 2 3
33>x>0->| 8.000 11.000 21.000 .10E+16 .10E+16 100.000
66> xo34| 24.000 13.000 90,000 | "61.000 ‘10E+16 10E+16
100so675| 1.000 15000 35000 | .10E+16 10E+16 88.000
Outputy;(x,u), 30> y,>15 | Cost g5(x,u)
U= U=
X% 1 2 3 1 2 3
332x=20->| 12.000 50.000 18.000 | .10E+16 .10E+16 73.000
66> x>34-> 9.000 13.000 19.000 | .10E+16 .10E+16 130.000
100> x267-| 16.000 19.000 31.000 | 29.000 28.000 10E+16

The following analysis of the problem solution is based on the printout of a
specially written computer code. According to the Principle of Optimality, the solution
starts from the conditional optimization of the last, third, process. It will provide an
optimal recipe for the process operation for every possible grade of the process input.
The printout below considers application of various control options when the input of
the process is between 0 and 33 % of its maximum attainable value (grade 1). It could
be seen that the acceptable value of the process output is obtained only when control
option #3 is applied. This defines option #3 as the conditional optimal control
option, and the associated cost of 73 units as the conditionally minimal cost.

PROCESS # 3
INP # 1 CONTR# 1 Q= .10000E+16 Y=12.00
INP # 1 CONTR# 2 Q= .10000E+16 Y=50.00
INP # 1 CONTR# 3 Q= .73000E+ 02 Y=18.00
OPT: INP # 1, CONTR# 3, QSUM= .73000E+ 02, Y=18.00

The following printout presents similar results for the situations when the input
grade is 2 and 3.

INP # 2 CONTR# 1 Q= .10000E+16 Y=9.00

INP # 2 CONTR# 2 Q= .10000E+16 Y=13.00
INP # 2 CONTR# 3 Q= .13000E+ 03 Y=19.00

OPT: INP # 2, CONTR# 3 QSUM= .13000E+ 03, Y=19.00
INP # 3 CONTR# 1 Q= .29000E+ 02 Y=16.00
INP # 3 CONTR# 2 Q= .28000E+ 02 Y=19.00
INP # 3 CONTR# 3 Q= .10000E+16 Y=31.00
OPT: INP # 3, CONTR# 2 QSUM= .28000E+ 02, Y=19.00
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Now consider conditional optimization of process #2. Note that QSUM repre-
sents the sum of costs associated with the chosen input and control option of process
#2 and the consequent conditionally optimal input 4 control option of process #3.
Consider the application of various control options when the input of process #2 is
of grade 1 (i.e. between 0 and 33 % of its maximum attainable value). The resultant
QSUM value includes the specific cost at the process #2 and the consequent already
known optimal cost at process #3. Since the first two control options are penalized
for resulting in unacceptable values of the output, the optimal result is offered by
the control option #3 and the accumulated cost value is QSUM =73 4 100 =173
units. Some additional information seen in the printout addresses the following
issue. Note that the action at step #2 has resulted in y, = 21 units, then how does one
determine the consequent action at process #3? It could be seen that the highest y,
value in the output of process #2 is 90 units. Therefore the output value y, =21 falls
within 0-33 % of the y, range, i.e. y, =21 constitutes grade #1 of the input product
for process #3. Based on the conditional optimization of process #3, for the input
grade #1 control option #1 with the associate cost of 73 units is optimal (see
Y =21.00=> 1+ (.73000E + 02) QSUM = .17300E + 03)

PROCESS # 2
INP # 1 CONTR# 1 Q=.10000E+16 Y= 8.00 =>1+ (.73000E+02)
QSUM= .10000E+16
INP # 1 CONTR# 2 Q=.10000E+16 Y= 11.00 =>1+ (.73000E+02)
QSUM= .10000E+16
INP # 1 CONTR# 3 Q=.10000E+03 Y= 21.00 =>1+ (.73000E+02)
QSUM= .17300E+03
OPT: INP # 1, CONTR# 3, QSUM= .17300E+ 03, Y=21.00==>1

Similar analysis is conducted to perform conditional optimization of process #2
for two other grades of the input.

INP # 2 CONTR# 1 Q=.61000E+02 Y= 24.00 =>1+ (.73000E+02)
QSUM= .13400E+03
INP # 2 CONTR# 2 Q=.10000E+16 Y= 13.00 =>1+(.73000E+02)
QSUM= .10000E+16
INP # 2 CONTR# 3 Q=.10000E+16 Y= 90.00 =>3+ (.28000E+02)
QSUM= .10000E+16

OPT: INP # 2, CONTR# 1, QSUM= .13400E+03, Y=24.00==>1
INP # 3 CONTR# 1 Q=.10000E+16 Y= 1.00 =>1+ (.73000E+02)
QSUM= .10000E+16
INP # 3 CONTR# 2 Q=.10000E+16 Y= 15.00 =>1+ (.73000E+02)
QSUM= .10000E+16
INP # 3 CONTR# 3 Q=.88000E+02 Y= 35.00 =>2+ (.13000E+03)
QSUM= .21800E+ 03

OPT: INP # 3, CONTR# 3, QSUM= .21800E+ 03, Y=35.00 ==>2

Consider conditional optimization of process #1, that results in the optimization
of the entire combination of three sequential processes. Consider the application of
various control options when the input of process #1 is of grade 2 (i.e. between 34
and 66 % of its maximum attainable value). The resultant QSUM value includes the
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specific cost at the process #1 and the consequent already known optimal costs at
process #2 and #3. The first control option results in the unacceptable value of the
output and is penalized. The application of control option #2 results iny; = 13 or #1
grade of the input for process #2, and the cost of 19 units. The already established
optimal decisions for this input grade for process #2 come with the cost of 173 units.
Consequently QSUM = 19 + 173 = 192 units. The application of control option #3
results iny; = 19 (or #2 grade of the input for process #2), and the cost of 130 units.
The already established optimal decisions for this input grade for process #2 comes
with the cost of 134 units. Therefore QSUM = 130 + 134 =264 units. It is clear that
the control option #2 is optimal grade #2 of the input material.

PROCESS # 1

INP # 2 CONTR# 1 Q=.10000E+16 Y= 9.00 =>1+(.17300E+03)
QSUM= .10000E+ 16
INP # 2 CONTR# 2 Q=.19000E+02 Y= 13.00 =>1+(.17300E+03)
QSUM= .19200E+03
INP # 2 CONTR# 3 Q=.13000E+03 Y= 19.00 =>2+ (.13400E+03)

QSUM= .26400E+03
OPT: INP # 2, CONTR# 2, QSUM=.19200E+03, Y= 13.00==>1

Consider conditional optimization of process #1 when the input of process #1 is
of grade #1 and grade #3 is featured below.

INP # 1 CONTR# 1 Q=.10000E+16 Y= 2.00 =>1+(.17300E+03)
QSUM= .10000E+16
INP # 1 CONTR# 2 Q=.10000E+16 Y= 50.00 =>3+ (.21800E+03)
QSUM= .10000E+16
INP # 1 CONTR# 3 Q=.73000E+02 Y= 18.00 =>2+ (.13400E+03)

QSUM= .20700E+ 03
OPT: INP # 1, CONTR# 3, QSUM=.20700E+03, Y= 18.00==>2

INP # 3 CONTR# 1 Q=.29000E+02 Y= 11.00 =>1+(.17300E+03)
QSUM= .20200E+03
INP # 3 CONTR# 2 Q=.18000E+02 Y= 19.00 =>2+ (.13400E+03)
QSUM= .15200E+03
INP # 3 CONTR# 3 Q=.10000E+16 Y= 31.00 =>2+ (.13400E+03)

QSUM= .10000E+16
OPT: INP # 3, CONTR# 2, QSUM=.15200E+03, Y= 19.00==>2

Finally, the following printout summarizes the results of the optimization of the
entire sequence of three processes for every grade of the raw material.

OPTIMAL PROCESS OPERATION

RAW MATERIAL GRADE: 1 2 3
PROCESS # 1
CONTROL OPTION: 3 2 2
OUTPUT = 18.00 13.00 19.00
PROCESS # 2
CONTROL OPTION: 3 1 3
OUTPUT = 21.00 24.00 35.00
PROCESS # 3
CONTROL OPTION: 3 3 2
OUTPUT = 18.00 19.00 19.00

TOTAL COST: 207.00 192.00 152.00
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4.5.1 Exercise 4.3

Problem 1 Apply dynamic programming to optimize the following sequence of
manufacturing processes.

u, u, U, u,
b §| Y2 ¥s
X, — | » I [11 vy IV — W
qQ G 9 qQq

The characteristics of each process are given below:

yi(x,u) qi(X,u) ya(x,u) qa2(x,u)

u=1 |u=2 |u=3 |u=1 |u=2 |u=3 |u=1 |u=2 |[u=3 |u=1 |u=2 |u=3

10<x<40 [25 |45 |55 [25 [28 [25 |65 |44 |74 13 |2l 33

40<x<70 37 48 63 27 33 27 66 50 81 15 22 37
70<x <100 |45 58 79 22 24 25 78 62 96 18 28 40

y3(x,u) q3(x,u) ya(x,u) qa(x,u)

u=1 |u=2 (u=3 |u=1 |u=2 |u=3 |u=1 |u=2 |(u=3 |u=1 |u=2 |u=3
10<x <40 13 45 92 16 18 9 56 85 97 2 4 3
40<x<70 48 18 68 13 17 8 42 61 81 3 6 4
70<x <100 |81 66 21 10 14 6 21 39 70 4 5 3

It is known that x; =37 (units) and the end product must be such that
70 <y, <85. Obtain the optimal choice of control options for each process that
would minimize the sum of “local” criteria, Q =q; + q» + q3 + q4, and define the
corresponding values of the characteristics of the intermediate products.

Problem 2 Use dynamic programming to solve the optimal routing problem based
on the graph below featuring the available transitions and the associated costs.
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Solutions

Exercise 4.1: Problem 1
The first constraint reflects the requirement on the total weight of the mixture:
X1+ X2 +x3 + x4 + x5 +x6 = 500

The following expressions represent the required concentrations of each chemical
ingredient in the final mixture:
Fe=.15-x; +.40 -x, + .35 -x3 +.16 - x4 + .33 - x5 + .07 - x¢ > .20 - 500
Zn=2.38-x1+.12- 20+ .05 - x5+ .11 - x4 + .01 - x5 + .23 - x¢ > .10 - 500
SiOy, = 41 -x1 + .40 - xp + .27 - x3 + 21 - x4 + .60 - x5 + .45 - x¢ < .42 - 500

Cu=.06-x; +.01 X2+ .28 x3+ .18 - x4 + .05 - x5 + .25 - x5 > .05 - 500

The feasibility constraints reflect the availability of the materials. The amount of
each material used is equal to the percentage of that material multiplied by the total
weight of the end mixture. This must be no greater than the available weight of the
material.

x; <250
x2 <590
x3 < 1000
xs <520
x5 <2500
xe < 800

It should be noted that all variables of this problem are non-negative, but this
requirement is very common for linear programming problems and is addressed by
the solution algorithm.

The “minimum cost” requirement is addressed as follows:

120 - x; + 150 - xp + 211 - x3 + 140 - x4 + 75 - x5 + 214 - x¢ — Min
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The problem solution is obtained by the use of the linear programming software
available in MATLAB. The optimal weight of each material in tons is:

X X5 X3 Xy X5 X¢ Total Cost,$
68.2363 0.0000 0.0000 197.5259 234.2378 0.0000 500.0000 53409.80

and the chemical composition of the mixture is

Fe% Zn% Si0>% Cu%
23.83 10.00 42.00 10.27

Exercise 4.1: Problem 2

For this problem, we were required to use the gradient-based LSM procedure to find
the optimal solution of the a coefficients in the following equation.

Y™l k) = ay - x1 (k) + ay - x2(k) + a3 - x3(k) + ay - x4(k)

The method for the gradient-based LSM is a simple iterative procedure which
“moves” the point representing unknown coefficients in four-dimensional space
in the direction toward the minimum value of the criterion. In this case, the

criterion, Q, is calculated as the sum of squared values of the discrepancy e(k) =y
(k)=y"*"(k:

'A(l) ., AQ[A(I)’AA(Z()l,>A(3),A(4)]'
) AQ) =y AQ[A(I),AA(2(;,)A(3),A(4)]
new AG) AQ[A(]),AA(Z(;,)A(3),A(4)]
_A(4> —y AQ[A(l),AA(Z(i,)A(3)»A(4)]_
where AQ[A(I)’AS()I,;AB)’A(“)] are estimated partial derivatives of the LSM

criterion Q with respect to particular coefficients (i=1,2,3,4) chosen to be
0.0001, and y > 0, is a scaling factor. Initially, y is chosen to be 0.02, however, in
the case of an unsuccessful step leading to an increase of criterion Q criterion
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instead of a decrease, the magnitude of gamma is cut in half. This ensures that the
procedure will converge.

The results of this procedure were reached after 250 iterations, starting with zero
initial conditions. This procedure could be less accurate but also faster if the
termination conditions were made less strict. For this termination condition, the
change between the newly generated Q and the previous O needs to be less than
.0000001 in absolute. The optimal result was:

2.0001

2.9918
—2.0001

5.0235

Since the coefficient of determination for this model is 0.9996, this is an excellent
model of our linear system.

Exercise 4.1: Problem 3

This problem differs from the previous one because of the additional requirement:
all model parameters are to be positive. This condition is achieved by the use of
penalty functions added to the original LSM criterion Q. In this problem the
criterion to be minimized is:

4
Q=0+ P
i=1

0 ifA(i) >0
10" A(i)* if A(i) <0
The optimal result, with a coefficient of determination of 0.9348, reached after
300 iterations was:

where Pi = { i=1,2,34

1.0790
2.4456
.0009
4.4795

Comparing the coefficient of determination to the one from Problem 2,
0.9348 < 0.9996 Therefore the coefficients found in Problem 2 are a better
representation of the actual system. Since the actual system includes a
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negative coefficient for as, not allowing negative coefficients in Problem 3
impacted the ability of the optimization to get close to the actual coefficient
values.

Exercise 4.2: Problem 1

For this problem, we were given the following transfer function of the controlled
plant, and were required to use the Simplex code provided to find the optimal
coefficients of a PID controller. The PID controller was configured to use the
system error as its input for the controller.

/,_ixl
»

Ramp

Integrator 1 Q

Product
P

v

(- » 1l o o |-
S $3+65%+10s+10
Step Integrator Transfer Function Step Response

—P| du/dt P

Derivative

3

As could be seen, the optimization criterion, known as “integral-time-error-
squared” was chosen. The Simplex procedure began with zero initial coefficient
values, and progressively changed these values, minimizing the criterion. All 30
iteration of the Simplex procedure are shown below.

Iteration k_P k_I k_D Q

1 0.000 0.000 0.000 | 50.00000
2 0.094 0.024 0.024 | 38.18000
3 0.024 0.094 0.024 |25.61000
4 0.024 0.024 0.094 | 41.24000
5 0.094 0.094 0.094 | 24.15000
6 0.141 0.141 0.141 17.33000
7 0.149 0.149 0.031 16.29000
8 0.212 0.212 0.000 10.76000

(continued)
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Iteration k P k 1 k D Q

9 0.157 0.275 0.086 | 7.86200
10 0.189 0.401 0.118 | 4.21000
11 0.338 0.409 0.149 | 3.87000
12 0.495 0.566 0.212  |2.06500
13 0.456 0.644 0.079 1.62100
14 0.613 0.896 0.047 ]0.86220
15 0.652 1.029 0.251 ]0.72740
16 0.872 1.438 0.377 | 0.48830
17 1.131 1.532 0.306 | 0.39070
18 1.603 2.098 0.401 ]0.29570
19 1.563 2.388 0.338 | 0.34080
20 2.079 3.054 0.697 |0.29080
21 2.813 4.133 1.021 0.26310
22 3.114 4.308 0.796 | 0.25040
23 4.235 5.743 1.006 |0.21720
24 4.203 5.594 1.281 ]0.19470
25 5.523 7.197 1.752 ] 0.15960
26 6.778 9.284 2.119 ]0.14560
27 9.365 12.877 2978 0.11670
28 9.936 13.079 |2.802 |0.10360
29 13.498 17.552 |3.693 |0.08105
30 14.689 19.341 4.609 |0.08550

The following plots illustrate gradual improvement of the closed-loop step
response of the system, iterations 1, 2, 8, 12, 14, 16 are shown below. Technically,
the procedure could be terminated after the 16-th iteration when the design require-
ments were met.
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Exercise 4.2: Problem 2

The task is to estimate parameters a;, a,, s, ds, as of the following model

yMOD — alxleazxz +a3

(asx3+as)

based on the input—output data presented in the table below. It could be seen that
while the Least Squares Method (LSM) is to be applied, due to the nonlinearity of
the model, traditional LSM equation is unusable and the LSM criterion,

O(ai, az, az, as, as) = Z () —YMOD(l')}z

i

could be minimized only by a genetic optimization (GO) procedure.

Assume that a “generation” size is 20. To start the procedure, begin with 20
randomly generated sets of 5 coefficients compiled into in a 20 x 5 matrix, with
each row representing a particular set of coefficients (an individual). In each
generation these 20 “individuals” will become the source of off-spring and mutants.
Each combination of two individuals within a generation results in 5 off-spring.
Each individual in the generation originates 5 mutants.
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It could be seen that this process results in an immense number of new individ-
uals, however, each newly created individual is subjected to the “fitness test” and
only the 20 most fit individuals are included in the next generation. Each “next
generation” is subjected to the same treatment until some termination conditions are

met.

Below are several successive generation created by GO and accompanying
values of the coefficient of determination of the resultant model.

Initial generation

a; as az ay as
2.8985 1.1513 1.3472 0.7978 —1.7259
1.6345 0.3528 —3.1390 —0.4051 —1.6175
4.0328 —0.2817 —0.8104 —0.2262 2.0505
0.5651 —0.3717 —1.4612 2.1874 0.2249
0.0178 —2.6064 0.7837 2.0933 0.9262
—0.4143 1.3217 0.6731 —1.0293 0.6581
0.3766 2.1826 2.5247 —1.7790 —0.3017
1.9690 —1.3128 —0.5600 2.6983 —2.0503
1.5223 —1.7655 —1.0972 —6.0455 1.9243
—1.9364 2.2881 —2.5293 1.9482 —1.2985
—0.1199 3.7093 0.4981 0.0415 —0.1648
—2.6940 2.6746 —2.0002 1.0056 —0.64438
—1.6309 3.0015 —1.4742 2.2930 2.2985
—1.6146 3.2141 3.1189 1.3045 —4.4747
3.7037 —0.5679 0.2711 —1.9776 0.4899
1.3725 —0.5816 0.3215 —2.4576 1.0954
0.9418 2.1572 —0.3685 3.4800 —3.1552
—2.9340 —4.9244 —0.0846 0.5385 —1.4570
3.5418 —0.5850 —0.3802 —4.0273 0.3840
0.5160 —4.4928 —0.1777 3.0757 —1.5804

Generation 1
a; a as ay as Determination coefficient
2.8985 1.1513 1.3472 0.7978 —1.7259 0.8825
2.2881 1.2683 1.3268 0.3294 —0.2899 0.8756
3.1209 1.2110 1.8546 —1.8284 0.2756 0.8755
2.5022 1.2605 0.6157 —0.9998 1.3549 0.8656
1.8744 1.2679 —0.9757 0.6641 2.0549 0.8601
1.1644 1.4379 —1.7683 —1.0123 —0.8917 0.8532
1.6140 1.2957 —0.5244 —0.5290 1.4760 0.8408
0.7947 1.6388 0.9696 —2.4417 0.6111 0.8397
2.0885 1.1947 0.8106 —0.2046 —0.5338 0.8384
0.8033 1.5508 2.2729 —0.0392 —0.5913 0.8352

(continued)



Solutions

243

a; a as ay as Determination coefficient
2.5520 1.1144 0.4245 —0.3246 0.5987 0.8319
1.1761 1.5435 1.4602 —2.2510 —0.0922 0.8282
3.4343 1.0007 —0.5871 0.2609 1.1236 0.8243
1.6577 1.2627 —0.9837 1.3665 —0.4513 0.8215
1.3407 1.4972 —2.5164 0.8116 —2.9722 0.8175
2.9522 1.0467 0.1449 0.5600 1.8093 0.8157
0.6689 1.5793 —0.7417 2.8365 0.1993 0.8074
2.7650 1.0530 1.1006 0.2516 —1.6950 0.7990
1.8029 1.2170 —1.9619 1.3318 —1.5114 0.7959
2.8907 1.2643 0.7140 0.1415 —2.4496 0.7925
Generation 3
a; a as ay as Determination coefficient
3.2330 1.1311 0.1180 0.1429 —1.5847 0.9203
3.4089 1.1194 0.1505 0.2626 —1.3844 0.9178
3.0811 1.1600 0.1540 0.3674 —1.2171 0.9152
3.2224 1.1584 0.1650 0.2263 —1.4428 0.9142
3.2893 1.1546 0.1817 0.8279 —0.1388 0.9137
2.5298 1.2368 0.0907 0.5090 —0.1884 09114
3.0611 1.1398 0.0935 0.0080 —1.5563 09112
2.4017 1.2431 0.2474 0.7796 —0.6685 0.9102
3.3596 1.1058 0.1555 0.1667 —1.3748 0.9095
2.8410 1.1452 0.1536 0.0956 —1.7017 0.9089
2.4652 1.2277 0.0785 0.3539 —0.4969 0.9087
2.2753 1.2568 0.2190 0.5816 —0.8525 0.9073
2.3878 1.2545 0.1447 0.5450 —0.3459 0.9068
2.6861 1.1952 0.2399 0.2100 —1.6736 0.9057
3.1428 1.1634 0.2227 0.1615 —1.6702 0.9056
2.6985 1.1850 0.2020 0.1200 —1.6083 0.9054
2.4388 1.2495 0.0313 0.3191 —0.1237 0.9054
3.2899 1.1293 0.2615 0.2999 —1.4908 0.9051
2.3510 1.2336 0.2180 0.3131 —1.4478 0.9048
2.8936 1.1421 0.1960 0.1882 —1.6563 0.9044
Generation 5
a; a; as ay as Determination coefficient
3.2187 1.1474 0.1081 0.1070 —1.5610 0.9243
3.2307 1.1444 0.1065 0.0930 —1.5475 0.9242
3.1887 1.1535 0.1066 0.0969 —1.5458 0.9241
3.1930 1.1516 0.1153 0.0942 —1.6730 0.9241
3.1678 1.1503 0.1164 0.1062 —1.5840 0.9239
3.3344 1.1401 0.1163 0.1289 —1.5773 0.9239
3.2312 1.1458 0.1056 0.0839 —1.5436 0.9239

(continued)
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a; a as ay as Determination coefficient
3.1755 1.1476 0.1139 0.0927 —1.5828 0.9238
3.1045 1.1533 0.1032 0.0814 —1.5745 0.9238
3.1020 1.1555 0.1101 0.0826 —1.5823 0.9238
3.1053 1.1523 0.1109 0.0850 —1.5895 0.9237
3.2088 1.1392 0.1033 0.0831 —1.5563 0.9237
3.3173 1.1454 0.1160 0.1322 —1.5786 0.9236
3.1123 1.1533 0.1164 0.1001 —1.5813 0.9236
3.2996 1.1295 0.1009 0.0858 —1.5604 0.9236
3.3068 1.1395 0.1328 0.1453 —1.6407 0.9236
3.3615 1.1333 0.1098 0.1346 —1.5013 0.9235
3.2392 1.1462 0.1213 0.1365 —1.5729 0.9235
3.2177 1.1370 0.1105 0.0952 —1.5843 0.9235
3.0982 1.1542 0.1172 0.1026 —1.5828 0.9235

Generation 7

a; a asz ay as Determination coefficient
3.2964 1.1409 0.1069 0.1003 —1.5657 0.9244
3.2921 1.1406 0.1063 0.0987 —1.5740 0.9244
3.2906 1.1400 0.1057 0.1014 —1.5538 0.9244
3.2617 1.1426 0.1080 0.1004 —1.5746 0.9244
3.2937 1.1406 0.1141 0.1063 —1.6061 0.9244
3.2497 1.1445 0.1063 0.1002 —1.5612 0.9244
3.2837 1.1424 0.1048 0.0966 —1.5579 0.9244
3.2246 1.1478 0.1122 0.1016 —1.6072 0.9244
3.2764 1.1418 0.1104 0.1047 —1.5810 0.9244
3.2292 1.1473 0.1077 0.1007 —1.5728 0.9244
3.2272 1.1467 0.1149 0.1005 —1.6283 0.9244
3.2825 1.1422 0.1085 0.0975 —1.5793 0.9244
3.2831 1.1400 0.1081 0.1029 —1.5699 0.9244
3.2317 1.1464 0.1090 0.1021 —1.5838 0.9244
3.2291 1.1462 0.1074 0.0996 —1.5691 0.9244
3.2202 1.1473 0.1083 0.1002 —1.5767 0.9244
3.2817 1.1425 0.1073 0.1012 —1.5615 0.9244
3.2629 1.1422 0.1116 0.1037 —1.5985 0.9244
3.2778 1.1426 0.1187 0.1053 —1.6354 0.9244
3.2414 1.1462 0.1072 0.1030 —1.5708 0.9244
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a; a asz ay as Determination coefficient
3.2931 1.1403 0.1067 0.0996 —1.5671 0.9244
3.2946 1.1402 0.1062 0.0997 —1.5652 0.9244
3.2915 1.1403 0.1077 0.1000 —1.5749 0.9244
3.2941 1.1402 0.1060 0.0996 —1.5644 0.9244
3.2921 1.1404 0.1069 0.0999 —1.5686 0.9244
3.2934 1.1404 0.1059 0.0986 —1.5632 0.9244
3.2905 1.1404 0.1056 0.0991 —1.5608 0.9244
3.2936 1.1404 0.1113 0.1011 —1.5986 0.9244
3.2937 1.1404 0.1064 0.0998 —1.5654 0.9244
3.2936 1.1402 0.1061 0.1000 —1.5628 0.9244
3.2917 1.1402 0.1062 0.0996 —1.5629 0.9244
3.2895 1.1405 0.1055 0.0987 —1.5605 0.9244
3.2943 1.1403 0.1063 0.1001 —1.5638 0.9244
3.2900 1.1404 0.1057 0.0986 —1.5612 0.9244
3.2913 1.1403 0.1060 0.0996 —1.5622 0.9244
3.2918 1.1404 0.1064 0.0999 —1.5648 0.9244
3.2902 1.1402 0.1056 0.0985 —1.5612 0.9244
3.2901 1.1406 0.1072 0.0997 —1.5719 0.9244
3.2918 1.1406 0.1057 0.0988 —1.5631 0.9244
3.2933 1.1405 0.1065 0.0999 —1.5674 0.9244

After 9 iterations of the GO procedure stopped, and the resultant value of the
coefficient of determination was 0.9244 for coefficients [3.2931, 1.1403, 0.1067,

0.0996, —1.5671], and the model expression is: yMOP = 3.2931xe! 140324
0. 10670.099@(3—145671

Exercise 4.3: Problem 1

Conditional optimization of Process IV:

If Xq4 =

If Xq4 =

[10,40]
Choose uy =2
Cost=4

(40,70]
Choose uys =3
Cost=4



246 4 Methods and Models of Optimization

If x4 = (70, 100]
Choose uys =3
Cost=3

Conditional optimization of Process III and Process IV:

If x3 = [10,40]
If us=1, cost=16+cost(x,=13)=16+4=20
If u3 =2, cost =18 +cost(x, =45)=18 +4 =22
If u3 =3, cost =9 + cost(xy =92) =9 4+ 3 =12 (optimal)
Choose u3; =3
Cost=12

If x5 = (40, 70]
If us=1, cost=13 +cost(x;,=48) =13 +4=17
If us =2, cost=17 +cost(x,=18)=17+4=21
If u3 =3, cost =8 + cost(x; =68) =8 +4 =12 (optimal)
Choose u; =3
Cost=12

If x3 = (70, 100]
If u3=1, cost=10+cost(x,=81)=10+3=13
If us =2, cost=14+ cost(xy,=66) =14 +4 =18
If u3 =3, cost =6+ cost(x4 =21) =6 +4 =10 (optimal)
Choose u3; =3
Cost=10

Conditional optimization of Process II, Process III and Process I'V:

If x, = [10,40]
If u, =1, cost =13 + cost(x3 = 65) = 13 + 12 =25 (optimal)
If u, =2, cost =21+ cost(x3=44)=21+4+12=33
If u, =3, cost =33 + cost(x3=74) =334+ 10=43
Choose u, =1
Cost=25

If x, = (40, 70]
If u, =1, cost =15+ cost(x3 = 66) = 15 + 12 =27 (optimal)
If u, =2, cost =22+ cost(x3 =50) =22+ 12 =33
If u, =3, cost =37 + cost(x3=81) =374+ 10=47
Choose u, =1
Cost =27
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If x, = (70, 100]
If u, =1, cost =18 + cost(x3 = 78) = 18 + 10 = 28 (optimal)
If up =2, cost =28 + cost(x3 =62) =28 + 12 =40
If u, =3, cost =40+ cost(x3 =96) =40 + 10 =50
Choose u, =1
Cost =28

Conditional optimization of Process I, Process II, Process III, and Process IV:

If x; = [10,40]
If u; =1, cost =25+ cost(x, =25) =25 + 25 =50 (optimal)
If u; =2, cost =28 + cost(x, =45) =28 427 =155
If u; =3, cost =25 + cost(x, =55)=25+27=52
Choose u; =1
PATH: u1=1— up=1— u3=3 — us=3
Cost =50

If x; = (40,70]
If uy =1, cost =27 + cost(x, =37) =27 + 25 = 52 (optimal)
If uy =2, cost =33+ cost(x, =48) =33 +27=60
If u; =3, cost =27 + cost(x, =63) =27 428 =55
Choose u; =1
PATH: u1=1— u,=1— uz3=3 — uy=3
Cost =52

If x; = (70, 100]
If uy =1, cost =22 + cost(x, =45) =22 + 27 =49 (optimal)
If u; =2, cost =24 + cost(x, =58) =24 + 27 =51
If u; =3, cost =25 + cost(x, =79) =25 +28 =53
Choose u; =1
PATH: u1=1— wp=1— u3=3 — us=3
Cost =49

Optimal Plan

Since x =37, the optimal path is uy =1 — up =1 — u3 =3 — uy =3 and the
cost =50.
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Exercise 4.3: Problem 2

Conditional optimization of particular stages of the process starting from the last
stage:

Stage 5 — 6
If at A5 — A6 — Cost =8 (optimal)
If at B5 — A6 — Cost =7 (optimal)

Stage 4 — 5
If at A4 - AS—Cest=45+8=23

— B5 — Cost=10+7 =17 (optimal)
If at B4 - AS—Cest=19 +8=27

— B5 — Cost=14 +7 =21 (optimal)
Ifat C4 > AS5—Cest=146+8=24

— B5 — Cost =13+ 7 =20 (optimal)

Stage 3 — 4

If at A3 > A4—Cest=6+17=23
—B4—Ceost=4+2+=25
— C4 — Cost =2 420 =22 (optimal)

If at B3 — A4 — Cost =7 + 17 =24 (optimal)
—B4—Cest=4+24+=25
—C4—Cost=121+20=32

If at C3 — A4 — Cost =5 + 17 =22 (optimal)
— B4 —Cost=3+21=24
—C4 —Cost=7420=27

Stage 2 — 3
If at A2 - A3—Cest=2+22=24
—B3—Cost —3--24_27
— C3 — Cost=1+422 =23 (optimal)
If at B2 > A3—Cest=9+22=34
—B3—Cost=2+24=26
— C3 — Cost =2+ 22 =24 (optimal)
If at C2 > A3—Cest=6+22=28
—B3—Cost=4+24=28
— C3 — Cost =3 422 =25 (optimal)
If at D2 — A3 — Cost =3 + 22 =25 (optimal)
—B3—Cest=3+24=27
—E3—Cost=4+22=26
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Stage 1 —2

If at Al - A2—Cest=7+23=30
— B2 — Cost =4 4 24 =28 (optimal)
—E2—Cost=5+25=30
—P2—Cost=6+25=3+

Optimal Path

Al —B2— C3 — A4 — B5 — A6, Cost: 28
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