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Foreword

This book is intended for graduate students and practitioners: it implies that readers

have a serious background in at least one of the four areas. A professional statis-

tician may discover how a regression model can facilitate control system design

and/or provide basis for process optimization. A control system engineer may

discover how to assess the accuracy of the traditional state-variable models. This

book may help industrial leaders recognize optimization as an additional resource

for improving process operation and motivate them to bring consultants. In the

Internet era promoting the concepts of recognizing the need for, knowing what is
available, and understanding how it works could be the most appealing feature of

this book. The book is fully consistent with the author’s motto, “I practice what I

teach and teach what I practice.”
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Preface

Modern manufacturing facilities can be utilized to their full potential only when

their operation is optimized. For the modern large-scale processes, even modest

steps toward optimum result in very significant monetary gains. The optimization in

Chap. 4 presents typical methods and problems of numerical optimization. These

methods are readily available from various sources, but only to those who are aware

of their existence and do recognize their applicability to particular situations. Once

an optimal regime of operation is found, it has to be implemented and maintained

over some time period. This task is hindered by adverse environmental effects and

undesirable dynamic behavior of the process. Both conditions could be alleviated

by (mostly discrete-time) control systems. Hence, Chap. 3 of this book features

typical control problems and their practical solutions. Mathematical models provide

a quantitative basis for the solution of optimization and control problems. In most

instances process optimization cannot be implemented experimentally. In numer-

ical optimization, mathematical models of the real processes are used as “guinea

pigs” for testing various operational regimes. Control system design is based on

mathematical models of the controlled processes in the form of transfer functions or

matrix–vector descriptions. Therefore, Chap. 2 shows how mathematical models

could be built and statistically validated. It includes cluster models that are not

commonly known but are very useful in some situations. Some statistical and

probabilistic concepts relevant to mathematical modeling are given in Chap. 1;

however, some of these techniques offer useful tools for process analysis. There-

fore, this book is not a book on optimization, control, mathematical modeling, or

statistical analysis—numerous books on these subjects already exist—this book is

intended to show how to apply these powerful disciplines as a set of tools to achieve

a very important goal: improving the operation of modern manufacturing facilities

(in chemistry, metallurgy, power generation, etc.)
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This book reflects 40 years of the author’s career as a university educator and

industrial consultant, including professional experiences of his numerous former

students. The author is grateful to Christina Stracquodaine and Matthew Davis for

refining this text and specific numerical examples.

Binghamton, NY, USA Victor A. Skormin
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Introduction

Due to the complexity of manufacturing processes, process operation, control, and

optimization constitute difficult tasks. Complexity of a typical manufacturing

process implies incomplete knowledge of its physical nature, a large number of

interrelated input and output process variables, noise in measurement channels,

significant delays and inertia in the particular input–output channels, measurement

inaccessibility of random factors relevant to process operation, and time depen-

dence (drift) of process characteristics. Consequently, process operation is often

based on the experience and intuition of the human operator and exhibits all

problems labeled as “human errors.” This approach does not allow utilization of

existing manufacturing processes to their full potential. Numerically justified opti-

mization and control methods can be implemented only on the basis of mathe-

matical models and computers. This book will present mathematical modeling

techniques and applications of model-based computer control and optimization

methods intended for a practicing engineer.
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Process Control

It is a quantitative world

We bend the properties of matter

We are invincible and bold

In going after bread and butter

We learn in the eternal school

We have an unforgiving teacher

We use a computer as a tool

Discover feature after feature

We use a statistical technique

In space of numerous dimensions

Reveal relations, strong and weak

For the sake of our intentions

We are on an unbiased way

With all the knowledge, strength, and vigor

And shaping mother nature’s clay

Into magnificence of figure

We master rigors of control

Its theory and application

And never use a crystal ball

For our efforts’ validation

We want to minimize the loss

Of time and money being spent

And utilizing the resource

To fullest possible extent

xvii



Chapter 1

Statistical Methods and Their Applications

In many ways, manufacturing processes are dominated by random phenomena that

have to be characterized in order to describe the processes quantitatively. Random

phenomena are the manifestation of “forces of nature,” measurement errors, noise

in the information channels, etc. Any attempt to characterize random phenomena on

a case-by-case basis is meaningless: random phenomena manifest themselves

differently under the same conditions. However, when a sufficiently large number

of realizations, also known as a population of occurrences, of these phenomena are

observed, one can detect general tendencies pertaining to the entire population.

These general tendencies are the only way to characterize random phenomena.

Statistics is a science that extracts general tendencies present in a large population

of random events. In addition, statistics offers the means for assessing the depend-

ability, or the limits of applicability, of the detected trends.

Random phenomena include random events, random variables, and random
processes.

1.1 Random Events

A random event is an event that may or may not occur as the result of a trial.

Random event is a concept that reflects the qualitative side of random phenomena.

Typically, random events are labeled as A, B, C,. . . and are characterized by

probability. Probability of a random event A, P[A], is a positive number that does

not exceed 1, i.e. 0�P[A]� 1. Event A is impossible if P[A]¼ 0; event A is certain
if P[A]¼ 1.

Frequency of a random event A represents the likelihood of the occurrence of

this event as the result of a trial. Unsurprisingly it is defined as the ratioNA

N where N is

the total number of trials, and NA is the number of trials where event A has occurred.

© Springer International Publishing Switzerland 2016
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Probability is perceived as the limit of frequency as the total number of trials

approaches infinity, P A½ � ¼ Lim
N!1

NA

N .

Random events A and B constitute a complete group of mutually exclusive events
if P[A]þP[B]¼ 1. This implies that any trial will result in the occurrence of only

one of these two events.

In the situation when two events, A and B, can occur as the result of an

experiment, the conditional frequency of event A subject to event B can be defined.

It represents the likelihood of the occurrence of event A as the result of a trial

providing that event B has already occurred in this trial. This is defined as the ratio
NAB

NB , where N
B is the total number of trials that resulted in the occurrence of event B,

and NAB is the number of trials that resulted in the occurrence of both events, A and B.
Conditional probability of event A subject to event B is viewed as the limit of

conditional frequency as the total number of trials approaches infinity, i.e.

P A=B½ � ¼ Lim
N!1

NAB

NB . Similarly, conditional probability of event B subject to event

A is defined as P B=A½ � ¼ Lim
N!1

NAB

NA . Note that N ! 1inevitably leads toNA ! 1,

NB ! 1, and NAB ! 1, however NAB � NA and NAB � NB.

Event C, defined as a simultaneous occurrence of event A and event B, is called
the product of two events, i.e. C¼A�B. It can be seen that the probability of event

C is equal to the conditional probability of event A subject to event B times the

probability of event B, i.e.P C½ � ¼ P A=B½ �P B½ �. Indeed,P A=B½ �P B½ � ¼ Lim
N!1

NAB

NB Lim
N!1

NB

N ¼ Lim
N!1

NAB

NB
NB

N

� �
¼ Lim

N!1
NAB

N ¼ P AB½ � ¼ P C½ �. Similarly, P C½ � ¼ P B=A½ �P A½ � and
therefore P A=B½ �P B½ � ¼ P B=A½ �P A½ �.

Events A and B are called independent events if P[A/B]¼P[A].

Multiplication of Probabilities If A and B are independent events, P[A/B]¼P[A],
then the probability of the simultaneous occurrence of two independent events,

A and B, is equal to the product of the probabilities of each event, P[AB]¼P[A]�P[B].
Addition of Probabilities If events A and B belong to a complete group of inde-

pendent events, i.e. P[A]þP[B]þP[C]þP[D]þ . . .¼ 1, then the probability of

occurrence of event A or event B as the result of a trial is defined as P[A or B]¼
P[A]þP[B], and the occurrence of A or B is called the sum of two events.

Bayes’ Theorem If events A1, A2, and A3 constitute a complete group of mutually

exclusive events, i.e. P[A1]þP[A2]þP[A3]¼ 1, and event B is related to A1, A2,

and A3 via conditional probabilities P[B/A1], P[B/A2], P[B/A3], then

P B½ � ¼ P B=A1½ � � P A1½ � þ P B=A2½ � � P A2½ � þ P B=A3½ � � P A3½ �:

Furthermore, if the number of trials N is very large then
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P B=A1½ � � P A1½ � þ P B=A2½ � � P A2½ � þ P B=A3½ � � P A3½ � � NBA1

NA1
� N

A1

N
þ NBA2

NA2
� N

A2

N

þ NBA3

NA3
� N

A3

N
¼ NBA1 þ NBA2 þ NBA3

N

where notations are self-explanatory.

Since A1 or A2 or A3 always occurs, NBA1 þ NBA2 þ NBA3 ¼ NB, P B=A1½ ��
P A1½ � þ P B=A2½ � � P A2½ � þ P B=A3½ � � P A3½ � � NB

N � P B½ �
It is known that

P B=A1½ � � P A1½ � ¼ P A1=B½ � � P B½ �and
P B½ � ¼ P B=A1½ � � P A1½ � þ P B=A2½ � � P A2½ � þ P B=A3½ � � P A3½ �

This results in a very useful expression known as the Bayes’ formula:

P A1=B½ � ¼ P B=A1½ � � P A1½ �
P B=A1½ � � P A1½ � þ P B=A2½ � � P A2½ � þ P B=A3½ � � P A3½ �

Example 1.1 Application to quality prediction of the product at a glass manufactur-

ing plant. The database contains 5500 data entries. This includes 879 cases of poor

quality of the product. These 879 cases were exhibited during the following events:

– 136 cases of short-time electrical failure

– 177 cases of poor quality of the raw material

– 83 cases of minor equipment malfunction

The good quality cases include

– 36 cases of short-time electrical failure

– 81 cases of poor quality of the raw material

– 63 cases of minor equipment malfunction

Define the probability of having poor quality of the product if at 10 am a short-

time electrical failure was reported, and later, at 2 pm poor quality of the raw

material was observed.

Solution Assume that event A1 — poor quality, event A2 —good quality, note that

P[A1]þP[A2]¼ 1, event B—occurrence of a short-time electrical failure, and

event C — occurrence of poor quality of the raw material.

Based on the available data, the probabilities of getting poor quality product and

good quality product are, P[A1]¼ 879/5500¼ 0.16 and P[A2]¼ (5500�879)/

5500¼ 0.84, respectively. The conditional probability relating an electric failure

to poor product quality isP B=A1½ � ¼ NBA1

NA1
¼ 136

879
¼ :155. The conditional probability

relating an electric failure to good product quality is P B=A2½ � ¼ NBA2

NA2
¼

36
5500�879

¼ :008.
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Now, one can compute the probability of poor quality product subject to the

short-time electrical failure reported at 10 am:

P A1=B½ � ¼ P B=A1½ � � P A1½ �
P B=A1½ � � P A1½ � þ P B=A2½ � � P A2½ � ¼

:155� :16

:155� :16þ :008� :84
¼ :771

Example 1.2 Identification of the manufacturer of the catalytic converter.

There are 3 possible manufacturers of these converters. Catalytic converters are

used to assure that the factory exhaust gases comply with the EPA requirements.

They are expected to maintain their catalytic properties during 2000 h of operation

with probabilities 0.83 (manufacturer #1), 0.87 (manufacturer #2), and 0.92 (man-

ufacturer #3). It is known that all catalytic converters installed at the factory were

produced by the same manufacturer. One of the converters failed after 1500 h of

operation and the second failed after 1800 h. The manufacturer of the converters is

unknown. What is the probability that manufacturer #3 produced them?

Solution Introduce events M1, M2, and M3 representing appropriate manufac-

turers; it can be shown that since the manufacturer is unknown, then P[M1]¼
P[M2]¼P[M3]¼ 0.3333, therefore, P[M1]þP[M2]þP[M3]¼ 1. Introduce event

A to represent the failure of a catalyst during the first 2000 h of its operation, then

P A=M1½ � ¼ 1� 0:83 ¼ 0:17

P A=M2½ � ¼ 1� 0:87 ¼ 0:13

P A=M3½ � ¼ 1� 0:92 ¼ 0:08

Now re-estimate the probability of M1, M2, and M3 subject to the failure of the

first converter:

P M1=A½ � ¼ P A=M1½ � � P M1½ �
P A=M1½ � � P M1½ � þ P A=M2½ � � P M2½ � þ P A=M3½ � � P M3½ �

¼ :17� :3333

:17� :3333þ :13� :3333þ :08� :3333
¼ :447

P M2=A½ � ¼ :13� :3333

:17� :3333þ :13� :3333þ :08� :3333
¼ :342

P M2=A½ � ¼ :08� :3333

:17� :3333þ :13� :3333þ :08� :3333
¼ :211

Re-estimate the probabilities of M1, M2, and M3 subject to the failure of the

second converter:

P M1=A½ � ¼ :17� :447

:17� :447þ :13� :342þ :08� :211
¼ :555
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P M2=A½ � ¼ :13� :342

:17� :447þ :13� :342þ :08� :211
¼ :321

P M3=A½ � ¼ :08� :211

:17� :447þ :13� :342þ :08� :211
¼ :124;

and this is the answer.

It is good to realize that random eventsM1,M2, andM3 constitute a full group of

mutually exclusive events and the sum of their probabilities is equal to 1.0 after

each reevaluation of their probabilities.

Example 1.3 Assessment of a student’s expected success based on the previous

performance.

According to departmental records out of 1200 students who took Automatic

Control, 225 got grade A, 511— grade B, 406— grade C, 32— grade D, and 26—

grade F. It is also known that among these groups the number of students who

received grade B in Signals and Systems are correspondingly 67, 211, 108, 4, and

3. It is known that Sam J. just got a grade of B in Signals and Systems (event BSS).

What are his chances of getting grade A, grade B, and grade C in Controls?

Solution First, evaluate initial probabilities of getting various grades in Control:

P A½ � ¼ 225

1200
¼ :187, P B½ � ¼ 511

1200
¼ :426, P C½ � ¼ 406

1200
¼ :338,

P D½ � ¼ 32

1200
¼ :027, P F½ � ¼ 26

1200
¼ :022

Now evaluate the following conditional probabilities:

P BSS=A
� � ¼ 67

225
¼ :298, P BSS=B

� � ¼ 211

511
¼ :413, P BSS=C

� � ¼ 108

406
¼ :266,

P BSS=D
� � ¼ 4

32
¼ :125, P BSS=F

� � ¼ 3

26
¼ :115

The resultant probabilities are as follows:

P A=BSS
� � ¼

P BSS=A
� �� P A½ �

P BSS=A
� �� P A½ � þ P BSS=B

� �� P B½ � þ P BSS=C
� �� P C½ � þ P BSS=D

� �� P D½ � þ P BSS=F
� �� P F½ �

¼ :298� :187

:298� :187þ :413� :426þ :266� :338þ :125� :027þ :115� :022

¼ :0557

:0557þ :1759þ :0899þ :0034þ :0025
¼ :17
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P B=BSS
� � ¼

P BSS=B
� �� P B½ �

P BSS=A
� �� P A½ � þ P BSS=B

� �� P B½ � þ P BSS=C
� �� P C½ � þ P BSS=D

� �� P D½ � þ P BSS=F
� �� P F½ �

¼ :413� :426

:298� :187þ :413� :426þ :266� :338þ :125� :027þ :115� :022

¼ :1759

:0557þ :1759þ :0899þ :0034þ :0025
¼ :537

P C=BSS
� �

¼ P BSS=C
� �� P C½ �

P BSS=A
� �� P A½ � þ P BSS=B

� �� P B½ � þ P BSS=C
� �� P C½ � þ P BSS=D

� �� P D½ � þ P BSS=F
� �� P F½ �

¼ :266� :338

:298� :187þ :413� :426þ :266� :338þ :125� :027þ :115� :022

¼ :0899

:0557þ :1759þ :0899þ :0034þ :0025
¼ :274

1.2 Random Variables

A random variable can have any numerical value, x(k), at each trial, k¼ 1,2,. . . is
the trial (realization) index. How can the general properties of a random variable be

extracted? Consider an array: x(k), k¼ 1,2,. . .,N.
Detect minimum and maximum values of the variable within the array, XMIN and

XMAX. Divide interval [XMIN, XMAX] into M divisions

Define step Dx¼ (XMAX�XMIN)/M.

Compute the number of realizations within each interval, i.e. number of reali-

zations nj such that XMINþ(j�1)�Dx<X(k)�XMINþ j�Dx, j¼ 1,2,. . .,M
Compute frequencies fj¼ nj/N, j¼ 1,2,. . .,M
Build a histogram showing frequencies fj vs x(k) values like the one shown

below in Fig. 1.1 (it is said that a histogram relates values of a random variable to

the frequency of occurrence of these values).

Then assume that N!1,M!1, andDx! 0. It can be seen that the histogram

turns into a continuous line that represents the distribution law of the random

variable x(k), this is called the probability density P(x).
The probability density function can be used to define the probability of random

variable x(k) which satisfies the condition x1< x(k)� x2 as follows:

P x1 < x kð Þ � x2½ � ¼
ðx2
x1

P xð Þdx ¼
ðx2
0

P xð Þdx�
ðx1
0

P xð Þdx
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One can realize that P �1 < x kð Þ � 1½ � ¼
ð1
0

P xð Þdx�
ð�1

0

P xð Þdx ¼
ð1
0

P xð Þdxþ

ð0
�1

P xð Þdx ¼ 1:

It is known that there are several “typical” distribution laws, however, the most

common is called normal distribution, which provides the best description of most

random phenomena that can be observed in real life.

Normal Distribution has the following probability density:

P xð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p exp � x� μð Þ2
2σ2

( )
¼ P x; μ; σð Þ;

where μ and σ are parameters of the normal distribution law: μ — mean value and

σ — standard deviation. It is said that the normal distribution law reflects funda-

mental properties of nature. In terms of manufacturing, the standard deviation of

any variable characterizing the product represents effects of “forces of nature” on a

manufacturing process, and the mean value represents effects of operators’ efforts
and adjustment of equipment.

The following is the definition of the probability of a normally distributed

random variable x(k), satisfying the condition x1< x(k)� x2:

P x1 < x kð Þ � x2½ � ¼
ðx2
x1

P x; μ; σð Þdx ¼
ðx2
0

P x; μ; σð Þdx�
ðx1
0

P x; μ; σð Þdx ¼ Φ z2ð Þ � Φ z1ð Þ

Frequencies

XMIN XMAXDX

f1
f2

f3

fj

fM

Fig. 1.1 Probability distribution function
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where

z ¼ x� μ

σ
, z1 ¼ x1 � μ

σ
, z2 ¼ x2 � μ

σ
, Φ z1ð Þ ¼ 1ffiffiffiffiffi

2π
p

ðz1
0

exp � z2

2

� �
dz and

Φ z2ð Þ ¼ 1ffiffiffiffiffi
2π

p
ðz2
0

exp � z2

2

� �
dz :

Note that function Φ(z)is an odd function, i.e. Φ �zð Þ ¼ �Φ zð Þ. This function is

tabulated and is readily available. One should realize that this function continuously

increases between zero and infinity, as shown below.

Φ 0ð Þ ¼ 1ffiffiffiffiffi
2π

p
ð0
0

exp � z2

2

� �
dz ¼ 0 and Φ 1ð Þ ¼ 1ffiffiffiffiffi

2π
p

ð1
0

exp � z2

2

� �
dz ¼ :5

Example 1.4 Evaluation of the effect of the improved automation

It is required to manufacture 300,000 special bolts. The factory’s cost is $0.43
per unit. The allowable length of a bolt is between .194 and .204 inches. When the

existing equipment is used, the length of manufactured bolts has a standard devi-

ation of .003 inches. The introduction of an advanced control results in the

reduction of this standard deviation to .00133 inches. Modification of the controls

costs $5000. Determine if this modification would pay for itself.

Solution Since the length of bolts varies and only the “good” bolts will be

accepted, the total number of manufactured bolts, N, will be greater than 300,000.

Let us determine this number. It is expected that the equipment will be adjusted to

assure the mean value of the length, μ¼ (x1þ x2)/2¼ (.194þ .204)/2¼ .199

(inches). Now, when μ¼ .199 and σ¼ .003 one can determine the probability of

the length of a bolt to be within the allowable limits, P[x1< x� x2], assuming the

normal distribution law:

z1 ¼ ðx1 � μÞ=σ ¼ ð:194� :199Þ=:003 ¼ �1:67 and

z2 ¼ ðx2 � μÞ=σ ¼ ð:204� :199Þ=:003 ¼ 1:67

Therefore, P[x1< x� x2]¼ 2�Φ(1.67). According to the table below in

Fig. 1.2, P[x1< x� x2]¼ 2� .4525¼ .905. This result indicates that in order to

manufacture 300,000 “good” bolts, a total of 300,000/.905¼ 331,492 units must be

produced.

Now let us repeat this calculation assuming the improved accuracy of the

equipment (or reduced standard deviation, σ¼ .00133):
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Fig. 1.2 Standard normal distribution table. http://unimasr.net/community/viewtopic.php?

f¼1791&t¼82994
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z1¼ (.194�.199)/.00133¼�3.76 and z2¼ 3.76, and Φ(3.76)� .4998, therefore,

P[x1< x� x2]¼ .9996. This indicates that the total of 300,000/.9996¼ 300,121

units must be produced, thus the effective savings of automation is $.43�
(331,492�300,121)¼ $13,489.53.

The conclusion is obvious: the modification of controls is well justified.

Estimation of Mean and Variance The mean value of a random variable is esti-

mated as Mx ¼ 1

N

XN
k¼1

x kð Þ. In some instances it is often said that Mx¼Mx(N ) to

emphasize that Mx is dependent on the number of realizations of the random

variable that were used for the estimation. It is known that as N!1 Mx(N )! μ,
where μ is the appropriate parameter of the distribution law.

The variance and standard deviation of a random variable are estimated as

Vx ¼ 1

N� 1

XN
k¼1

�
x kð Þ �Mx

�
2, and Sx ¼

ffiffiffiffiffiffi
Vx

p
. Again, it is often said that Vx¼

Vx(N) and Sx¼ Sx(N) to emphasize that these estimates are dependent on the number

of realizations of the random variable used for the estimation. It is known that as

N!1 Sx(N)! σ, where σ is the appropriate parameter of the distribution law.

Recursive Estimation is common in the situations when characteristics of a random

variable are calculated on-line. It is done to incorporate as many realizations, x(k),
as possible in the estimation without the penalty of storing an ever-increasing data

array. The following formulae are applied:

Mx N½ � ¼ Mx N� 1½ � þ 1

N
x Nð Þ �Mx N� 1½ �½ �

Vx½N� ¼Vx½N�1�þ 1

N�1
½½xðNÞ�MxðNÞ�2�Vx½N�1��, and Sx½N� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Vx½N�

p
The above expressions could be easily derived. Indeed,

Mx N½ � ¼ 1

N

XN
k¼1

x kð Þ ¼ 1

N
x Nð Þ þ

XN�1

k¼1

x kð Þ
" #

¼ 1

N
x Nð Þ þ N� 1

N N� 1ð Þ
XN�1

k¼1

x kð Þ

¼ 1

N
x Nð Þ þ N� 1

N
Mx N� 1ð Þ

Finally, Mx N½ � ¼ Mx N� 1½ � þ 1

N
x Nð Þ �Mx N� 1ð Þ½ �

Similar derivations could result in the formula for the estimation of variance.

Confidence Intervals for Mean Values and Variances One should realize that as

with any statistical estimate, estimates of mean value and standard deviation

extracted from N observations of random variable x(k) are different from

corresponding parameters of the distribution law. How is the discrepancy between
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the “true” and the estimated characteristics estimated? It is known that the estima-

tion error is a random variable with its own statistical distribution. It is also known

that estimation according to the above formulae results in unbiased estimates,

i.e. the mean value of the estimation error is zero. The knowledge of the distribution

law results in the following expression for the confidence interval for the mean

value:

P Mx Nð Þ � ΔM N; αð Þ � μ � Mx Nð Þ þ ΔM N; αð Þ	 
 ¼ 1� 2α

where ΔM N; αð Þ ¼ t N; αð Þ Sx Nð Þffiffiffiffi
N

p

The notations are,

Mx(N ) and Sx(N ) are mean value and standard deviation estimated using

N observations,

μ¼Mx(1) is the “true” mean value,

ΔM(N,α) is the width of the confidence interval that depends on the number of

observations N and the significance level α,
t(N, α) is the t-distribution or Student distribution (named after the statistician

who viewed himself as an eternal student). The t-distribution is tabulated and

defined as a function of significance level α and number of degrees of freedom

equal to N. Figure 1.3 is a table with values of t(N, α) for various N and α.

The above expression claims that the probability that the “true” mean value
belongs to the interval [Mx(N )�ΔM(N, α)] is equal to 1�2α.

The confidence interval for the standard deviation is:

P Sx Nð Þ � ΔS N; αð Þ � σ � Sx Nð Þ þ ΔS N; αð Þ	 
 ¼ 1� 2α

where ΔS N; αð Þ ¼ t N� 1, αð Þ Sx Nð Þffiffiffiffiffiffi
2N

p

The notations are,

Mx(N ) and Sx(N ) are mean value and standard deviation estimated using

N observations,

σ¼ Sx(1) is the “true” standard deviation,

ΔS(N, α) is width of the confidence interval that depends on the number of

observations N and the significance level α.
t(N�1, α) is the t-distribution or Student distribution.

Tabulated Students t-Distribution Law The above expression establishes that the
probability that the “true” standard deviation value belongs to the interval
[Sx(N )�ΔS(N, α)] is equal to 1�2α.

The analysis of the formulae for confidence intervals and the knowledge of

properties of t-distribution indicate that the confidence interval widens as standard
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deviation Sx increases and/or number of observations N decreases, or the required

degree of certainty P¼ 1�2α increases. It can be seen that in order to increase the

estimation accuracy without the sacrifice of certainty (or reliability of the estima-

tion) one has only one approach: increasing the number of observations.

Example 1.5 Mean value and standard deviation of a random variable estimated

using 43 measurements are: Mx(43)¼ 13.6 and Sx(43)¼ 3.2; define the confidence

intervals for these values with the confidence of 95 % and the confidence of 99 %,

i.e. define the intervals that would contain the “true” values of these parameters

with probability of .95 and with probability of .99.

These confidence probabilities correspond to significance levels of

α1¼ (1�.95)/2¼ .025 and α2¼ (1�.99)/2¼ .005. From the table in Fig. 1.3,

t(43,.025)� t(40,.025)� 2.021, t(43,.005)� t(40,.005)� 2.704.

Fig. 1.3 t-Distribution table. https://www.safaribooksonline.com/library/view/introduction-to-lin

ear/9780470542811/22_app-a.html
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Therefore,

P 13:6� 2:021� 3:2ffiffiffiffiffi
43

p � μ � 13:6þ 2:021� 3:2ffiffiffiffiffi
43

p
� �

¼ P 12:61 � μ � 14:59f g ¼ :95 and

P 3:2� 2:021� 3:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 43

p � σ � 3:2þ 2:021� 3:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 43

p
� �

¼ P 2:5 � σ � 3:9f g ¼ :95

Also,

P 13:6� 2:704� 3:2ffiffiffiffiffi
43

p � μ � 13:6þ 2:704� 3:2ffiffiffiffiffi
43

p
� �

¼ P 12:28 � μ � 14:92f g ¼ :99 and

P 3:2� 2:704� 3:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 43

p � σ � 3:2þ 2:704� 3:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 43

p
� �

¼ P 2:27 � σ � 4:13f g ¼ :99

Example 1.6 How many measurements of the iron ore density (Lb/cm3) should be

performed to achieve the accuracy of the result of at least .01 (Lb/cm3) with the

confidence of 95 %? Note that this analysis is performed by averaging results of

particular measurements and should be viewed as the estimation of the mean value

of a random variable, consequently, the estimation error for 95 % confidence is,

ΔM N; αð Þ ¼ ΔM N; :025ð Þ ¼ t N; :025ð Þ Sx Nð Þffiffiffiffi
N

p ¼ :01 abs: unitsð Þ

It could be seen that finding the solution requires the knowledge of Sx that could

be obtained by an auxiliary experiment. Assume that standard deviation of the

analysis error was defined by conducting 25 experiments, Sx(25)¼ 0.037. Now the

following computations must be performed:

t 25; :025ð Þ Sx 25ð Þffiffiffiffi
N

p ¼ 2:06
:037ffiffiffiffi
N

p ¼ :07622ffiffiffiffi
N

p ¼ :01 ) :07622

:01
¼

ffiffiffiffi
N

p
) N ¼ 58

It could be seen that the expected solution implies 58 measurements, therefore

t-distribution t(58,.025)¼ 2.0 should be utilized in the above calculation.

Therefore,

t 60; :025ð Þ Sx 25ð Þffiffiffiffi
N

p ¼ 2:0
:037ffiffiffiffi
N

p ¼ :074ffiffiffiffi
N

p ¼ :01 ) :074

:01
¼

ffiffiffiffi
N

p
) N ¼ 55

Exercise 1.1

Problem 1 According to the manufacturer, the probability of failure of a machine

tool during its first 1000 h of operation is .083. The available statistics feature

56 cases of the machine tool failure during the first 1000 h of operation. In 16 out of

these 56 cases, prior to the failure excessive vibration of the machine tool was

observed, and in 7 cases overheating took place. Reassess the probability of failure
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of the machine tool during the first 1000 h of its operation knowing that excessive

vibration has been observed once. Reassess this probability for the same machine

tool based on the occurrence of temporary overheating. Note that under normal

operational conditions the probability of overheating is .1 and the probability of

excessive vibration is .05.

Problem 2 Consider Example 1.1 of the class notes. Define the probability of

having poor quality of the product if at 10 am a short-time electrical failure was

reported, at 2 pm poor quality of the raw material was observed, and later at 4 pm a

minor equipment malfunction took place.

Problem 3 During the automatic assembly process, an electronic component must

be placed on the board with the accuracy of �.001 inches, otherwise the board will

be rejected by the quality controller. Under the existing technology positioning

accuracy is characterized by the standard deviation of the positioning error,

σ¼ .0009 inches. The improved controls may result in the reduction of the posi-

tioning error to σ¼ .0003 inches. Evaluate the productivity increase in % due to

improved controls. (Assume normal distribution.)

Problem 4 According to a conducted study, an average student needs 2.5 min to

read one page of the class notes with the standard deviation σ¼ 0.6 min. How much

time is required for 90% of students to read one page?

Problem 5 The findings given in the previous problem are based on the test

conducted on 17 students. (a) Evaluate the confidence interval for the mean value

and standard deviation featured in the problem. (b) How many students should be

tested to double the accuracy of the estimation of the mean value? (c) How many

students should be tested to double the accuracy of the estimation of the standard

deviation? Perform these calculations twice: for 95% confidence and 90% confidence.

1.3 Systems of Random Variables

Consider a group of 3 random variables, x(i), y(i), z(i), i¼ 1,2,. . .,N, where

i¼ 1,2,. . .,N is the realization index. How can the general properties of this group

of 3 random variables be extracted?

1. Find their Min and Max values: [XMIN, XMAX], [YMIN, YMAX], [ZMIN, ZMAX]

2. Divide the above intervals into L subintervals, thus resulting in three steps,

ΔX¼ [XMIN�XMAX]/L, ΔY¼ [YMIN�YMAX]/L, and ΔZ¼ [ZMIN�ZMAX]/L
3. Compute numbers NKJM, equal to the number of realizations [x(i), y(i), z(i)] such

that

XMINþ (K�1)ΔX� x(i)<XMINþKΔX,

YMINþ (J�1)ΔY� y(i)< YMINþ JΔY,

ZMINþ (M�1)ΔZ� z(i)< ZMINþMΔZ

for every K, J, M¼ 1, 2, 3, . . ., L
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4. Compute frequencies FKJM¼NKJM/N, K, J, M¼ 1,2,3,. . .,L of the multi-

dimensional histogram

5. Assume N!1, NKJM!1, ΔX! 0,ΔY! 0,ΔZ! 0, then the histogram turns

into a 3-dimensional probability density function, F(x,y,z,μx,μy,μz,σx,σy,σz,rXY,
rXZ,rYZ), representing the distribution law, where

μx,μy, μz and σx, σy, σz are mean values and standard deviations of the respective

variables representing their individual distribution laws,

rXY, rXZ, rYZ are parameters known as correlation coefficients representing

interrelation between individual variables.

In the most practical applications we are dealing with the normal

distribution law.

Correlation Coefficients rXY, rXZ, rYZ could be estimated according to the formula

that defines what is known as a normalized correlation coefficient

rXY ¼ rXY Nð Þ ¼ 1

N � SX � SY
XN
i¼1

x ið Þ �MX½ � � y ið Þ �MY½ �

where MX, MY, SX, SY are estimates of mean values and standard deviations of

particular variables. Note, that the normalized correlation coefficient does not

exceed 1, by its absolute value, i.e. �1� rXY� 1. It represents the extent of the

linear relationship between random variables x and y, not a functional relationship,

but a tendency, i.e. the relationship that may or may not manifest itself at any

particular test but could be observed on a large number of tests.

Note that

RXY ¼ RXY Nð Þ ¼ 1

N

XN
i¼1

x ið Þ �MX½ � � y ið Þ �MY½ �

� this is just a correlation coefficient not normalizedð Þ

Confidence Interval for Correlation Coefficients The following expression defines

the interval that with a particular probability that contains the “true” value of the

correlation coefficient:

P rXY � ΔR α;Nð Þ � rXY
TRUE � rXY þ ΔR α;Nð Þ� � ¼ 1� 2α

where ΔR α;Nð Þ ¼ t α, N� 1ð Þ 1� rXY
2ffiffiffiffi

N
p and

t(α, N�1) is t-distribution value defined for significance level α and number of

degrees of freedom N�1.
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It is said that the estimate of correlation coefficient is statistically significant if

rXYj j 	 ΔR α;Nð Þ. Indeed, the correlation coefficient could be only positive or only

negative therefore the confidence interval of a statistically-significant normalized

correlation coefficient cannot include both positive and negative values.

Example 1.7 Estimated correlation coefficient between the MPG value of Nissan

Pathfinder and outdoor temperature was obtained using 20 available records,

r¼ 0.12. Does this indicate that the correlation between these two random variables

exists?

Assume significance level α¼ .025, then t(.025, 19)¼ 2.093, then

D ¼ 2:093 � 1� :0144½ �=4:47 ¼ 0:46

0.46> 0.12, therefore, with 95 % confidence the r value is statistically insignificant.

Conditional Distributions Consider a group of 2 random variables, x(i) and y(i),
i¼ 1,2,. . .,N, where i¼ 1,2,. . .,N is the realization index. Let us investigate if there

is a trend-type dependence of random variable y(i) on random variable x(i)

1. Find Min and Max values of these variables: [XMIN, XMAX], [YMIN, YMAX]

2. Divide the above intervals into L subintervals, thus resulting in steps,

ΔX ¼ XMIN � XMAX½ �=L and ΔY ¼ YMIN � YMAX½ �=L

3. From the original array x(i), y(i), i¼ 1,2,. . .,N, select only the realizations

[x(i), y(i)] such that

XMIN þ K� 1ð ÞΔX � x ið Þ < XMIN þ KΔX;

Assume that the total number of such realizations is NK

4. Obtain histogram for random variable y(i) from the above array of NK

observations by

4a. Computing number of realizations, NM
K such that

YMIN þ M � 1ð ÞΔY � y ið Þ < YMIN þMΔY

for every M¼ 1,2,3,. . .,L
4b. Compute frequencies FM

K¼NM
K/NK, M¼ 1,2,3,. . .,L of the multi-

dimensional histogram

(Note that the above histograms in Fig. 1.4 for variable y(i) are built only

for those values y(i) when corresponding x(i) values fall within interval

[XMINþ (K�1)ΔX, <XMINþKΔX])

5. Assume N!1, NK!1, NM
K!1, ΔX! 0, ΔY! 0, then the histogram

turns into a 1-dimensional probability density function, P(y,μY,σY), representing the
distribution law of variable y(i) obtained under the assumption that corresponding

values of x(i) satisfy some particular conditions, i.e. P(y,μY,σY)¼P(y,μY,σY/x) is a
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probability density representing the distribution law of random variable y subject to
variable x. This concept is illustrated by the above Fig. 1.4, note that both the mean

value and variance (the spread of the distribution curve) of variable y change

subject to numerical values of the related variable x.
One could expect that P(y,μY,σY)¼P(y,μY,σY/x) is a normal distribution, its

dependence on x manifests itself as the dependence of its parameters, μY and σY,
i.e. μY¼ μY (x) and σY¼ σY(x). These relationships are known as “conditional mean

value” and “conditional standard deviation.” In reality, standard deviation seldom

depends on other variables, but the conditional mean value has a very important

role.

Example 1.8 Given three arrays of observations of two random variables, x(i) and y(i),
i¼ 1,2,3,. . . Based on the value of variable x(i) the observations are divided into three
groups, and mean values and standard deviations of the corresponding values of

variable y(i), i.e. MY and SY, are calculated within these groups, see the table below:

x-range

Number of

observations

Mean

value MY

Standard

deviation SY

Group 1 5.0� x(i)< 7.0 375 10.25 1.73

Group 2 7.0� x(i)< 9.0 633 10.67 1.82

Group 3 9.0� x(i)� 11.0 592 10.91 1.91

Determine if this information indicates that variable y(i) depends on variable x(i).

Solution It could be concluded that variable y(i) depends on variable x(i) if the
differences between mean values MY and/or standard deviation values SY in

particular groups are statistically significant, i.e. exceed the half-width of the

corresponding confidence intervals.

x

y/x=x1x1

x2

x3

y/x=x2

y/x=x3

P(y,

μ3

μ2

μ1

P(y,μY,σY/x3)

P(y,μY,σY/x2)

P(y,μY,σY/x1)

Fig. 1.4 Probability distributions of y for various x
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Assume the significance level α¼ .025 then t-distribution is t(1, .025)¼ 1.96.

The relevant quantities are as follows:

ΔM N; αð Þ ¼ t N; αð ÞSx Nð Þffiffiffiffi
N

p ΔS N; αð Þ ¼ t N; αð ÞSx Nð Þffiffiffiffiffiffi
2N

p
Group 1 0.175 .124

Group 2 0.142 .1

Group 3 0.154 .109

The analysis of the above result indicates that the differences between mean

values,

Group 1/Group 2

Δ12 ¼ 10:76� 10:25 ¼ :42 > :175

and Group 2/Group 3

Δ23 ¼ 10:91� 10:67 ¼ :24 > :142

exceed the half-widths of the appropriate confidence intervals and therefore are

statistically significant with the significance level of .025. At the same time,

differences between standard deviations, Group 1/Group 2

δ12 ¼ 1:73� 1:82 ¼ :09 < :124

and Group 2/Group 3

δ23 ¼ 1:91� 1:82 ¼ :09 < :10

are less than the half-widths of the confidence intervals and therefore are statisti-

cally insignificant with the significance level of .025. This finding should be

summarized as follows: with probability 95 % the mean value of variable y is

affected by variable x, however there is no evidence that standard deviation of

variable y depends on the value of variable x.

Regression Equation How to quantify the existing trend-type relationship between

variables y and x? Unlike a functional relationship, for any value x¼ x(i) a partic-
ular value of variable y¼ y(i) is defined through a function y¼φ(x). A trend does

not imply that for any x(i) a specific y(i) is prescribed. However, a trend manifests

itself by a functional relationship between value x(i) and the mean values μY of the
random variable y(i)corresponding to this x(i), i.e. μY¼φ(x). This is known as a

regression equation. There is another way to define a regression equation: y¼E{y/x}
which is the conditional mean value of y subject to x.E{. . ./. . .} is a symbol of

conditional mathematical expectation. A regression equation does allow computation

of the mean value of random variable y for any particular value x(i), but what about
the specific value y(i) that will be observed in conjunction with x(i)? It should
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be clear that y(i) will be different from E{y/x(i)} and the expected difference

depends on the variability of y represented by its variance, σY
2, that may or may

not depend on x(i). Unlike correlation, regression is suitable for nonlinear

relationships.

A trend-type relationship may exist between random variable y and a number of

random variables, x1, x2, x3,. . ., xn in the sense that the mean value of y could be

expressed as a function of these variables, μY¼φ(x1, x2, x3,. . ., xn). In this case we

are dealing with a multiple regression equation.
Regression equations are commonly used as mathematical models of

manufacturing processes; therefore, development of such equations will be

presented in the next chapter.

Correlation Analysis Correlation analysis is the analysis of stochastic (trend-type)

linear relationships between random variables x1, x2, x3, . . ., xn. It includes:

Computation of the correlation coefficient for every combination of two

variables,

rij ¼ 1

N � Si � Sj
XN
k¼1

xi kð Þ �Mi½ � � xj kð Þ �Mj

� �

Computation of the correlation matrix,

r11 r12 . . . r1n
r21 r22 . . . r2n
. . . . . . . . . . . .
rn1 rn2 . . . rnn

2
664

3
775

Computation of the multiple correlation coefficient,

Ry,x1,x2, x3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det

r11 r12 r13 r1y
r21 r22 r23 r2y
r31 r32 r33 r3y
ry1 ry2 ry3 ryy

2
664

3
775

Det

r11 r12 r13
r21 r22 r23
r31 r32 r33

2
4

3
5

vuuuuuuuuuuut
Note that 0 � Ry,x1, x2, x3 � 1

Where rjk and rjy—are normalized correlation coefficients between variables xj and
xk and between xj and y.
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1.4 Random Processes

A random process could be viewed as a continuous function of time y¼ y(t) that at
any particular moment of time, t*, has a random value, i.e. y*¼ y(t*) is a random
variable characterized by its specific distribution law. Recording a random process

over some period of time would result in a graph as the one shown below in Fig. 1.5.

It is said that the graph features a realization of the random process y(t).
However the same random process repeatedly initiated under the same condi-

tions would result in many different realizations that in combination constitute an

ensemble, see below in Fig. 1.6.

The broken line in Fig. 1.6, representing time t¼ t*, is known as the cross-

section of the random process y(t). It could be seen that in the cross-section multiple

realizations form a combination of numerical values of random variables, i.e. when

the time argument is fixed, y(t*) is a random variable with all previously described

properties and characteristics.

Due to the proliferation of computers, we should expect to deal with discretized

random processes represented by a sequence of random variables attached to the

y(t)

t

Fig. 1.5 Random process performance over time

y(t)

t 

t=t*

Fig. 1.6 Multiple iterations of random process
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time axis, y(Δt), y(2 �Δt), . . ., y(i �Δt), . . ., y(N �Δt), or just y(1), y(2), . . ., y(i), . . .,
y(N ), where i¼ 1,2,. . .,N is the discrete-time index, Δt is the time step, and NΔt is
the entire period of observation. It should be emphasized that “attached to the time

axis” is the key to distinguishing between a random variable and a random process.

While sequencing of the observations of a random variable is not important, the

“natural” sequencing of numbers representing a random process is crucial for the

analysis of the phenomenon represented by this random process.

A discretized ensemble of the realizations of a random process could be

represented by a square table, where rows represent particular realizations and

columns represent particular cross-sections (discrete-time values):

Realization index

Discrete-time values

t¼Δt t¼ 2 �Δt t¼ 3 �Δt . . . t¼ i �Δt . . . t¼N �Δt
1 y(1,1) y(1,2) y(1,3) . . . y(1,i) . . . y(1,N )

2 y(2,1) y(2,2) y(2,3) . . . y(2,i) . . . y(2,N )

. . . . . . . . . . . . . . . . . . . . . . . .

j y(j,1) y(j,2) y(j,3) . . . y(j,i) . . . y(j,N )

. . . . . . . . . . . . . . . . . . . . . . . .

M y(M,1) y(M,2) y(M,3) . . . y(M,i) . . . y(M,N )

The approach to analyzing statistical properties of a random process is similar to

the one suggested for a random variable: first a histogram is built provided that

N
 1 and M
 1 and eventually a distribution law is established. However,

immediate questions arise:

1. Should this distribution law be established for a realization of the process (one of

the rows of the table) or for a cross-section (one of the columns of the table)?

2. Is it necessary to establish an individual distribution law for every cross-section

(column) of the process?

Answers to these questions reflect fundamental properties of the random

process:

1. A random process is called ergodic if a distribution law established for one of its

realizations is identical to the one established for its cross-section. Otherwise the

process is said to be non-ergodic.
2. A random process is called stationary if a distribution law established for a

cross-section is independent of the cross-section. This implies that statistical

characteristics of the process are time-invariant. Otherwise it is said that the

process is non-stationary or has a parameter drift.
3. Any ergodic process is stationary, but not every stationary process is ergodic.

Most realistic random processes are ergodic and the normal distribution law is

suitable for their description. It is also known that most non-stationary random

processes are non-stationary only in terms of the mean value, i.e. μ¼ μ(t), but their
standard deviation σ is constant.
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A random process may involve one or more variables. A multi-variable distri-

bution law characterizes a multi-variable random process.

Autocorrelation Function Consider two cross-sections of a random process sepa-

rated by time interval τ, i.e. y(t1) and y(t1þ τ). It is known that y(t1) and y(t1þ τ) are
two random variables that may or may not be correlated. It is clear that when τ¼ 0,

y(t1þ τ) simply repeats y(t1) and y(t1þ τ)¼ y(t1) is just a linear functional relation-
ship between these two random variables. Intuitively, due to variability of the

random process the resemblance between y(t1þ τ) and y(t1) decreases with the

increase of time interval τ. Consequently, correlation between these two random

variables is expected to exist, to be positive, to decrease with the increase of τ, and
to approach zero as τ!1. The rate of decrease of this correlation represents

important properties, primarily inertia, of the underlying physical phenomena. An

autocorrelation function is a numerical tool for the analysis of the correlation

between any two cross sections of a random process, y(t) and y(tþ τ). It is defined
as a function of time interval τ, represented by the integer number n, and is

estimated as follows:

rY τð Þ ¼ rY nð Þ ¼ 1

N � nð Þ � SY2
XN�n

i¼1

y ið Þ �MY½ � � y iþ nð Þ �MY½ �,

n ¼ 0, 1, 2, . . . , n*; n* < N

where

y(i) is a discrete-time value of the available realization of the random process,

MY and SY
2 are estimated mean value and variance of the random process y(t),

n¼ τ/Δt is the time shift representing interval τ by an integer number of time steps

Δt,
N
 1 is the total number of data points of the realization of the random process.

One should realize the particular values rY(n), n¼ 0,1,2,. . . are nothing but

normalized correlation coefficients and, as such, could be statistically significant

or insignificant. Recall that the significance condition of a correlation coefficient

rY(n) estimated using N-n data points is defined as rY nð Þj j > ΔR where ΔR ¼ t

α,N � nð Þ 1�rY nð Þ2ffiffiffiffiffiffiffi
N�n

p is the width of the confidence interval of the estimate and t(N-n,

α) is the t-distribution value defined for significance level α and the number of

degrees of freedom N-n. It could be seen that ΔR ¼ ΔR nð Þ and analysis of the above
formula indicates that this is an increasing function of n.

Figure 1.7 depicts an estimated autocorrelation function of a random process y(t)
and the width of the confidence intervals of its values obtained for N
 1.

It could be seen that the estimated correlation function is statistically significant

only for n� nCORR. Time interval τCORR¼Δt � nCORR is known as the correlation

time of the random process y(t) and sometimes is called the memory of this process.
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Note that the number of values of the correlation function that are being

calculated is n*�N/4. However, it is meaningless to go beyond the limit of

significance nCORR.

Example 1.9 A computer-based monitoring system for an industrial power gener-

ator is being designed. The system will monitor generator variables, submit them

for analysis and record data in a permanent database. Determine the required time

interval for analyzing and recording data if the following autocorrelation function

of one of the variables is available.

n 0 1 2 3 4 5 6 7 8 9 10

rX(n) 1.0 .95 .81 .61 .23 .09 .03 .01 .006 .008 .007

Note that this correlation function was obtained using 1000 data points taken

with the time step Δt¼ 60 s.

Solution First, let us determine the correlation time nCORR by establishing the half-
width of the confidence interval for every available value of the correlation function

using the formula ΔR ¼ t α,N � nð Þ 1�rY nð Þ2ffiffiffiffiffiffiffi
N�n

p and assuming α¼ .025. Note that

according to the t-distribution table, the t-distribution value stays the same, t(1,

0.025)¼ 1.98, for all points. The results are shown in the table below.

n 0 1 2 3 4 5 6 7 8 9 10

rX(n) 1.0 .95 .81 .61 .23 .09 .03 .01 .006 .008 .007

ΔR 0. .001 .003 .006 .010 .0103 .0105 .011 .0108 .0109 .011

It could be easily seen that at n¼ 7, rX(n)�ΔR and at n> 7 rX(n)<ΔR thus

nCORR¼ 7 and the correlation time for this process is 7 min. Consequently, the

7 min period should be recommended as a rational time period for analyzing and

recording generator data. Indeed, having this time period under 7 min would result

in analyzing and recording data that contains duplicating information. Having this

time period greater than 7 min implies that some valuable information could be lost.

Cross-Correlation Function Cross-correlation function works exactly as the auto-

correlation function, but it describes the correlation between two random processes

1

0 n

rY(n)

nCORR

DR(n)

Fig. 1.7 Random function

autocorrelation
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(or two components of a multivariable random process), say x(t) and y(t). In order to
simplify the entire discussion of cross-correlation functions let us assume that

process x(t) could be viewed as the input (stimuli) of some physical process, and

y(t) as its response.

Cross-correlation function is estimated as follows:

rXY nð Þ ¼ 1

N � nð Þ � SYSX
XN�n

k¼1

x ið Þ �MX½ � � y iþ nð Þ �MY½ �, n ¼ 0, 1, 2, . . . , n*; n < N

where

x(i) and y(i) are discrete-time values of the available realizations of the random

processes,

MX,MY and SX, SY are estimated mean values and standard deviations of the random

processes x(t) and y(t),
τ is the time distance between the cross-section of the process x(t) and the cross-

section of the process y(t),
n¼ τ/Δt is the time interval τ represented by an integer number of time steps Δt,

and

N
 1 is the total number of data points of the realization of the random processes

x(t) and y(t).

Since particular values rXY(n), n¼ 0,1,2,. . . are nothing but normalized correla-

tion coefficients they could be statistically significant or insignificant. The signif-

icance condition of an estimate rXY(n) is defined as rXY nð Þj j > ΔR where ΔR ¼
t α,N � nð Þ 1�rXY nð Þ2ffiffiffiffiffiffiffi

N�n
p is the width of the confidence interval of the estimate and

t(N�n, α) is t-distribution value defined for significance level α and the number

of degrees of freedom N-n.
Note that unlike auto-correlation function, cross-correlation function could be

positive and negative but its absolute value cannot exceed 1.0. Typical configura-

tions of cross-correlation functions and widths of the confidence intervals of their

values, estimated for N
 1, are shown below in Fig. 1.8.

1

0 n

rXY(n)

ΔR(n)
-ΔR(n)

nCORRnMAX

0 n

rXY(n)

nCORRnMAX

-1

Fig. 1.8 Cross-correlation functions and confidence intervals
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In addition to the limits beyond which estimated cross-correlation functions

become statistically insignificant, nCORR, a graph of a cross-correlation function

has the maximum correlation point, nMAX. Maximum correlation point indicates

that the stimuli, x(t), has maximum effect on the response, y(t), not immediately but

with some delay of τMAX¼Δt�nMAX, therefore, τMAX facilitates the assessment of

the delay (transport lag) and/or inertia of the physical phenomenon represented by

random processes x(t)and y(t). Indeed, auto- and cross-correlation functions present
a technique to investigate and represent dynamics of an inertial system, how-

ever, they are not as versatile as transfer functions.

Example 1.10 A special study is conducted to determine the effect of carbon

dioxide on a process taking place in a chemical reactor. During this study, the

flow of carbon dioxide injected in the reactor (foot3/s) and the percent of sulfur in

the continuous flow of the end product were monitored with the sampling period of

20 s. A cross-correlation function between two resultant variables, the flow of

carbon dioxide (treated as the stimuli) and the percent of sulfur (as the response)

was obtained using 100 measurements, see table below.

n 0 1 2 3 4 5 6 7 8 9 10

rXY(n) .08 �.015 �.007 �.13 �.23 �.52 �.28 �.019 �.011 .06 .07

Give your conclusions on the carbon dioxide/percent of sulfur interaction on the

basis of the available cross-correlation function.

Solution Let us investigate the statistical significance of the particular values of

the cross-correlation function by computing their respective half-widths of the

confidence intervals ΔR ¼ t α,N � nð Þ 1�rXY nð Þ2ffiffiffiffiffiffiffi
N�n

p and assuming α¼ .025. As in the

previous example, t(120,.025) could be utilized. The results are as follows,

n 0 1 2 3 4 5 6 7 8 9 10

rXY(n) .08 �.015 �.007 �.13 �.23 �.52 �.28 �.019 �.011 .06 .07

ΔR .197 .199 .200 .197 .191 .148 .188 .205 .206 .207 .208

Although cross-correlation function shows some positive and negative values,

note that statistically significant values are only at n¼ 4, n¼ 5, and n¼ 6. Since

these significant values are negative, one can conclude that carbon dioxide causes a

reduction of the percent of sulfur in the end product. The second conclusion is that it

takes approximately 100 s for carbon dioxide to have its effect on the percent of

sulfur in the end product. Therefore, if further statistical studies of this effect would

be conducted, the percent of sulfur data records must be appropriately aligned

(shifted) with respect to the flow of carbon dioxide data.

Spectral Density Spectral density is another approach to address the variability of a

random process. It implies that a random process could be represented by a

combination of harmonics, i.e. particular sinusoidal signals defined by their fre-

quencies, magnitudes and phases. Although theoretically the number of such
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harmonics is infinite, a random process is often dominated by relatively few

harmonics. Spectral analysis is routinely performed by engineering software tools.

Exercise 1.2 Generate the following data arrays:

x(i)¼ 3þ 7�sin(0.1�i)þ 2�sin(0.7�i)þ 0.5�sin(1.77�i)þ 0.1�sin(713�i), i¼ 1,. . .,300
y(i)¼ 13þ 17�sin(i)þ 2�sin(.0137�i)þ 0.8�sin(6.77�i)þ 0.4�sin(7103�i)þ 0.05�x(i),

i¼ 1,. . .,300
z(i)¼�7þ sin(0.5�i)þ 2�sin(3.7�i)þ 0.05�sin(1677�i)þ 0.02�x(i)þ 0.1�y(i),

i¼ 1,. . .,300
v(i)¼ x(i)þ 5�sin(0.02�i), i¼ 1,. . .,300
w(i)¼ z(i)þ 11�sin(0.02�iþ 2.05), i¼ 1,. . .,300

Problem 1 Obtain correlation matrix for variables x, y, and z and evaluate statis-

tical significance of every correlation coefficient for the significance level α¼ .005.

Problem 2 Obtain multiple correlation coefficient Ryxzv

Problem 3 Investigate the possible effect of numerical values of variable x on the

mean value and standard deviation of variable z by dividing the range of variable

x into two equal subdivisions and analyzing corresponding values of characteristics
of variable z.

Problem 4 Assume that variables v(i) and w(i) are discretized realizations of a

random process. Obtain their cross-correlation function (treat v(i) as the stimuli).

Problem 5 Use a standard software frequency analysis tool to investigate random

process x(i). Since the actual frequency composition of this signal is known to you,

comment on the ability of this software tool to recover all harmonics of the signal.

Solutions

Exercise 1.1: Problem 1

The following probabilities can be extracted from the given information. Note that

fail represents the event of a machine tool failure, good represents the event that

there is no machine tool failure, vibration represents that there was excessive

vibration, and overheat represents the event of overheating.

P failð Þ ¼ 0:083

P goodð Þ ¼ 0:917

P vibrationjfailð Þ ¼ 16

56
¼ 0:286
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P vibrationjgoodð Þ ¼ 0:05

P overheatjfailð Þ ¼ 7

56
¼ 0:125

P overheatjgoodð Þ ¼ 0:1

Given these initial probabilities, the conditional probability that there was a failure

given an observed vibration can be calculated as follows.

P failjvibrationð Þ ¼ P vibration
��fail� 

∙P failð Þ
P vibrationjfailð Þ ∙P failð Þ þ P vibration

��good� 
∙P goodð Þ

P failjvibrationð Þ ¼ 0:286 ∙ 0:083
0:286 ∙ 0:083þ 0:05 ∙ 0:917

¼ 0:34

Now, this conditional probability of failure is going to be used as the probability for

failure in future calculations. Since the sum of all probabilities in a set must be one,

the probability that the product is good must be 0.66. Now that the first event

occurred and we have these new probabilities of failure, the probability of failure

can be calculated given the next event.

P fail
��overheat�  ¼ P overheat

��fail� 
∙P failð Þ

P overheatjfailð Þ ∙P failð Þ þ P overheat
��good� 

∙P goodð Þ

P failjoverheatð Þ ¼ 0:125 ∙ 0:34
0:125 ∙ 0:34þ 0:1 ∙ 0:66

¼ 0:392

So, after both events occurred, the probability of a failure is 0.392.

Exercise 1.1: Problem 2

The following frequencies (probabilities) can be extracted from the Example data.

P Ajpoorð Þ ¼ 136

879
¼ 0:155 P Bjpoorð Þ ¼ 177

879
¼ 0:201 P Cjpoorð Þ ¼ 83

879
¼ 0:094

P Ajgoodð Þ¼ 36

4621
¼ 0:0078 P Bjgoodð Þ ¼ 81

4621
¼ 0:0175 P Cjgoodð Þ ¼ 63

4621
¼ 0:0136

P poorð Þ ¼ 0:16 P goodð Þ ¼ 0:84

Now, the probability of poor quality given event A at 10 am:
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P poorjAð Þ ¼ P A
��poor� 

∙P poorð Þ
P Ajpoorð Þ ∙P poorð Þ þ P Ajgoodð Þ ∙P goodð Þ

P poorjAð Þ ¼ 0:155 ∙ 0:16
0:155 ∙ 0:16þ 0:0078 ∙ 0:84

¼ 0:791

The new probabilities are:

P poorð Þ ¼ 0:791 P goodð Þ ¼ 0:209

Now, the probability of poor quality given the consecutive event B at 2 pm:

P poorjBð Þ ¼ P B
��poor� 

∙P poorð Þ
P Bjpoorð Þ ∙P poorð Þ þ P Bjgoodð Þ ∙P goodð Þ

P poorjBð Þ ¼ 0:201 ∙ 0:791
0:201 ∙ 0:791þ 0:0175 ∙ 0:209

¼ 0:978

The new probabilities are:

P poorð Þ ¼ 0:978 P goodð Þ ¼ 0:022

Now, the probability of poor quality given the consecutive event C at 4 pm:

P poorjCð Þ ¼ P C
��poor� 

∙P poorð Þ
P Cjpoorð Þ ∙P poorð Þ þ P Cjgoodð Þ ∙P goodð Þ

P poorjCð Þ ¼ 0:094 ∙ 0:978
0:094 ∙ 0:978þ 0:0136 ∙ 0:022

¼ 0:9986

Given the three sequential events, the probability that there was a poor quality of

product became 99.86 %.

Exercise 1.1: Problem 3

The probability of passing the requirements can be calculated for the original

system as the area between two z-scores on a standard normal curve. The upper

and lower bound z-scores are calculated as:

zpass
þ ¼ 0:001� 0

0:0009
¼ 1:111 zpass

� ¼ �0:001� 0

0:0009
¼ �1:111

The probability inside these bounds is 0.7335, or 73.4 %.
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Now, to check the improvement from the controls added, the same process will

be done with the statistical data for the controlled process.

zpass
þ ¼ 0:001� 0

0:0003
¼ 3:333 zpass

� ¼ �0:001� 0

0:0003
¼ �3:333

The probability inside these bounds is 0.9991, or 99.91 %.

-3 -2 -1 0 1 2 3
Given this information, we can see that the probability of passing the require-

ments jumped from 73.4 % to 99.91 % with the addition of controls. This means

that there was a 25.61 % increase in the success rate of this procedure from the

introduction of controls.

Exercise 1.1: Problem 4

In this problem, we are looking for the amount of time sufficient for 90 % of

students to complete the reading task. For this, we will look at a normal distribution

with a mean of 2.5 and a standard deviation of 0.6 min. The z-value corresponding
to 90 % probability under is 1.282.
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The reading time value associated with this z is 3.3 min. We can conclude that

within 3.3 min, 90 % of students will be done reading one page.

Exercise 1.1: Problem 5

Part A

For a 90 % confidence interval and 17 students, the t-value for this calculation will

be

mean : t α;Nð Þ ¼ t :05, 17ð Þ ¼ 1:740

stddev : t α,N � 1ð Þ ¼ t :05, 16ð Þ ¼ 1:746

The 90 % confidence interval for mean:

Δ ¼ t α;Nð Þ ∙ σNffiffiffiffi
N

p ¼ 1:740 ∙
0:6ffiffiffiffiffi
17

p ¼ 0:253

P μ� Δ � μTRUE � μþ Δð Þ ¼ 90%

P 2:5� :253 � μTRUE � 2:5þ :253ð Þ ¼ 90%

P 2:247 � μTRUE � 2:753ð Þ ¼ 90%

The 90 % confidence interval for standard deviation:

Δ ¼ t α,N � 1ð Þ ∙ σNffiffiffiffiffiffi
2N

p ¼ 1:746 ∙
0:6ffiffiffiffiffiffiffiffiffiffi
2 ∙ 17

p ¼ 0:18

P σ � Δ � σTRUE � σ þ Δð Þ ¼ 90%

P 0:6� :18 � σTRUE � 0:6þ :18ð Þ ¼ 90%

P 0:42 � σTRUE � 0:78ð Þ ¼ 90%

For a 95 % confidence interval and 17 students, the t-value for this calculation

will be
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mean : t α;Nð Þ ¼ t :025, 17ð Þ ¼ 2:11

stddev : t α,N � 1ð Þ ¼ t :025, 16ð Þ ¼ 2:12

The 95 % confidence interval for mean:

Δ ¼ t α;Nð Þ ∙ σNffiffiffiffi
N

p ¼ 2:11 ∙
0:6ffiffiffiffiffi
17

p ¼ 0:307

P μ� Δ � μTRUE � μþ Δð Þ ¼ 95%

P 2:5� :307 � μTRUE � 2:5þ :307ð Þ ¼ 95%

P 2:193 � μTRUE � 2:807ð Þ ¼ 95%

The 95 % confidence interval for standard deviation:

Δ ¼ t α,N � 1ð Þ ∙ σNffiffiffiffiffiffi
2N

p ¼ 2:12 ∙
0:6ffiffiffiffiffiffiffiffiffiffi
2 ∙ 17

p ¼ :218

P σ � Δ � σTRUE � σ þ Δð Þ ¼ 95%

P 0:6� :218 � σTRUE � 0:6þ :218ð Þ ¼ 95%

P 0:382 � σTRUE � 0:818ð Þ ¼ 95%

Part B

Doubling the accuracy with a 90% confidence interval would require the followingN.

Δ ¼ 0:253 ! ΔNEW ¼ 0:1265

If we make our N¼ 63, we can observe a doubling in our accuracy by a halving of

our interval width.

ΔNEW ¼ 1:669 ∙
0:6ffiffiffiffiffi
63

p ¼ 0:126

Doubling the accuracy of a 95 % confidence interval would require the following N.

Δ ¼ 0:307 ! ΔNEW ¼ 0:1535

If we make our N¼ 61, we can observe a doubling in our accuracy by a halving of

our interval width.

ΔNEW ¼ 1:9996 ∙
0:6ffiffiffiffiffi
61

p ¼ 0:1536
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Part C

Doubling the accuracy for a 90 % confidence interval would require the following N.

Δ ¼ 0:18 ! ΔNEW ¼ 0:09

If we make our N¼ 60, we can observe a doubling in our accuracy by a halving of

our interval width.

ΔNEW ¼ 1:746 ∙
0:6ffiffiffiffiffiffiffiffi
120

p ¼ 0:095

Doubling the accuracy of a 95 % confidence interval would require the following N.

Δ ¼ 0:218 ! ΔNEW ¼ 0:109

If we make our N¼ 61, we can observe a doubling in our accuracy by a halving of

our interval width.

ΔNEW ¼ 2:12 ∙
0:6ffiffiffiffiffiffiffiffi
122

p ¼ 0:11

Exercise 1.2: Problem 1

The correlation matrix was calculated with the following configuration:

Rxyz ¼
rxx rxy rxz

rxy ryy ryz

rxz ryz rzz

2
64

3
75

In which the correlation coefficient for two variables, x and y, is defined as

rxy ¼ 1

N ∙ σx ∙ σy
∙
XN
n¼1

x nð Þ � x½ � ∙ y nð Þ � y½ �

The correlation matrix for x, y, and z is:

Rxyz ¼
0:9967 0:0251 0:0719

0:0251 0:9967 0:6053

0:0719 0:6053 0:9967

2
64

3
75
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Then, the statistical significance was evaluated by comparing the half-width if the

confidence interval for the correlation coefficients to the coefficients themselves.

The correlation coefficients were deemed significant of they were outside the

confidence interval, meaning that the correlation coefficient was greater than the

half-width of the interval. The half-widths of the intervals were calculated as

Δxy ¼ t α ¼ :005,N ¼ 300ð Þ ∙ 1� rxy
2ffiffiffiffi

N
p

Δxy¼ 0.14956 and rxy is 0.02506, so the x-y correlation is not significant.

Δxz¼ 0.14888 and rxz is 0.071861, so the x-z correlation is not significant.

Δyz¼ 0.094818 and ryz is 0.60531, so the y-z correlation is significant.

Exercise 1.2: Problem 2

The multiple correlation coefficient Ry,xvz is:

Ry,xvz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det

0:9967 0:8146 0:0719 0:0251

0:8146 0:9967 0:0822 0:0577

0:0719

0:0251

0:0822

0:0577

0:9967

0:6053

0:6053

0:9967

0
BBB@

1
CCCA

Det

0:9967 0:8146 0:0719

0:8146 0:9967 0:0822

0:0719 0:0822 0:9967

0
B@

1
CA

vuuuuuuuuuuuuut
¼ 0:7919

Exercise 1.2: Problem 3

First, the array of X was ordered from minimum to maximum value and then split

into two equal parts. The associated Z values were split respectively into two equal-

length sets. The mean value for Z for each set was calculated separately. The

difference of these two mean values was compared to the half-widths of their

confidence intervals.

The half-widths were calculated as:

ΔZ1 ¼ t α ¼ :025,N ¼ 50ð Þ ∙ σZ1ffiffiffiffi
N

p ¼ 2:01 ∙
1:965ffiffiffiffiffi

50
p ¼ 0:5586
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ΔZ2 ¼ t α ¼ :025,N ¼ 50ð Þ ∙ σZ2ffiffiffiffi
N

p ¼ 2:01 ∙
2:0875ffiffiffiffiffi

50
p ¼ 0:5934

The difference in mean values of Z1 and Z2 is 0.3387, and the half-width of the 95 %
confidence intervals for Z sets are 0.5586 and 0.5934. This indicates that there is no

evidence that value of variable X has an effect on mean value of variable Z.

Exercise 1.2: Problem 4

The cross-correlation function is a function calculated with respect to discrete

interval m that varies as m¼0,1,2,. . .,N/4. The value of this function is:

rcross vw ¼ 1

N � mð Þ ∙ σv ∙ σw ∙
XN=4
m¼0

XN�m

i¼1

v ið Þ � v½ � ∙ w iþ mð Þ � w½ �

The resulting cross-correlation function is plotted below against m.

Exercise 1.2: Problem 5

A frequency analysis tool in MATLAB was used to break down the frequency

spectrum of x(i).
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The detected peaks are consistent with the frequencies and magnitudes of the

sinusoidal components of the signal:

– Peak at 0.016 Hz (0.10 radians/s) with amplitude 7,

– Peak at 0.11 Hz (0.70 radians/s) with amplitude 2

– Peak at 0.28 Hz (1.77 radians/s) with amplitude .5
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Chapter 2

Mathematical Description of Manufacturing
Processes

Mathematical description of a manufacturing process resulting in a mathematical

model presents a basis for objective analysis, control, and optimization. Model-

based process analysis includes prediction of the process outcome and its particular

characteristics, “what if” analysis, and the evaluation of the effects of particular

factors on the process. Mathematical models in the form of transfer functions are

invaluable for the analysis and synthesis of control systems maintaining the desired

operation of the process in spite of various disturbance factors. A mathematical

model allows for the formalization of the process optimization problem, and serves

as a “guinea pig” during the optimization search. Implemented in a simulation

environment, a mathematical model presents an ideal testbed for the validation of

the most advanced control and optimization schemes. In order to be usable, a

mathematical model must be updated and valid. This section presents practical

techniques for the development, validation, and updating of mathematical models

utilizing statistical data.

2.1 Regression Analysis and the Least Squares Method

Regression analysis requires a data array and a configuration of the regression

equation.

A data array includes synchronously recorded values of the input and the output

variables of the process in question:

x1 kð Þ, x2 kð Þ, . . . , xm kð Þ, and y kð Þ;

where k¼ 1,2,. . .,N is the discrete-time index or the realization index.

© Springer International Publishing Switzerland 2016
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Model Configuration A regression model is visualized as

yMOD kð Þ ¼ E y=x1 kð Þ, x2 kð Þ, . . . , xm kð Þf g;

where E{./.} is the symbol of conditional mean value. It is good to realize that a

regression model it is not a relationship between the output and the input variables

but just a relationship between the mean value of the output and the inputs!

Case 1, linear relationship: yMOD kð Þ ¼
Xm
i¼1

aixi kð Þ

Case 2, nonlinear relationship: yMOD kð Þ ¼
Xm
i¼1

aixi kð Þ þ
Xm

i, j ¼ 1

aijxi kð Þxj kð Þ;

Case 3, nonlinear relationship:

yMOD kð Þ ¼
Xm
j¼1

ajΦj xi kð Þ, i ¼ 1, 2, . . . , m½ �,

where Φj xi kð Þ, i ¼ 1, 2, . . . , m½ � are nonlinear functions of xi kð Þ, i ¼ 1, 2, . . . , m

Least Squares Method First, we will concentrate on linear models and take advan-

tage of matrix–vector notations:

XN ¼

x1 1ð Þ x2 1ð Þ . . . xm 1ð Þ
x1 2ð Þ x2 2ð Þ . . . xm 2ð Þ
. . . . . . . . . . . .

x1 Nð Þ x2 Nð Þ . . . xm Nð Þ

26664
37775, YN ¼

y 1ð Þ
y 2ð Þ
. . .

y Nð Þ

26664
37775

Coefficients of the regression equation:

A ¼

a1

a2

. . .

am

26664
37775

Calculated (model) values of the output variable (actually, conditional mean

values of the actual variable estimated using the regression model) are:

YN
MOD ¼

yMOD 1ð Þ
yMOD 2ð Þ

. . .

yMOD Nð Þ

26664
37775 ¼

x1 1ð Þ x2 1ð Þ . . . xm 1ð Þ
x1 2ð Þ x2 2ð Þ . . . xm 2ð Þ
. . . . . . . . . . . .

x1 Nð Þ x2 Nð Þ . . . xm Nð Þ

26664
37775 �

a1

a2

. . .

am

26664
37775 ¼ XN � A
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Our goal is to minimize the accuracy criterion of the model, representing the

“goodness” of the A values represented by a scalar Q(a) defined as follows,

Q Að Þ ¼ YN�YN
MOD

� �T
YN�YN

MOD
� �

Q Að Þ ¼ YN
T � XNAð ÞT

h i
YN � XNA½ � ¼ YN

T � ATXN
T

� �
YN � XNAð Þ

YN
TYN� YN

TXNA � ATXN
TYN þ ATXN

TXNA ! Min

It is known from the theory of statistical estimation that the minimum of the above

expression is reached at XN
TXNA¼XN

TYN thus the least square solution for

coefficients A is:

A ¼ XN
TXN

� ��1
XN

TYN

Case 2 could be reduced to Case 1 by introducing secondary variables

xmþ1(k)¼ x1(k)
2, xmþ2(k)¼ x2(k)

2, . . ., x2m(k)¼ xm(k)
2, x2mþ1(k)¼ x1(k)x2(k),

x2mþ2(k)¼ x1(k)x3(k), . . . While numerical values of the original (primary) vari-

ables x1(k), x2(k), . . ., xm(k) are given, the secondary variables are to be calculated

prior to forming matrix XN. Note that vector A will be appropriately extended.

Case 3 could be reduced to Case 1 by introducing secondary variables

z1(k)¼Φ1[xi(k), i¼ 1,2,. . .,m], z2(k)¼Φ2[xi(k), i¼ 1,2,. . .,m], z3(k)¼Φ3[xi(k),

i¼ 1,2,. . .,m], . . .
Whilenumerical valuesof theoriginal (primary)variables x1(k), x2(k), . . ., xm(k) are

given, the secondary variables are to be calculated prior to forming matrix ZN

similarly to XN. Then vector A will be defined as (ZN
TZN)

�1ZN
TYN

Effect of Measurement Noise It is important to differentiate noise as a natural

component of the input signal and noise caused by measurement/data recording

errors. Being a component of the input signal (v1(k) and v2(k), see Fig. 2.1), noise

Process

x1(k)

x2(k)
y(k)

v1(k) v2(k)
l(k)

Data recordingXN+GN YN+LN

g1(k)
g2(k)

Fig. 2.1 Input and output

measurement with noise
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propagates through the system resulting in the additional variability of the output

signal—this noise is known to be beneficial for parameter estimation. Measurement

noise, γ1(k), γ2(k) and λ(k), has a detrimental effect on parameter estimation. We

will consider the measurement noise.

Assume that noise in the input channels, accompanying measurements XN, is

represented by matrix ΓN and noise in the output, accompanying measurements YN,

is represented by column ΛN. The following characteristics of noise, quite realistic,

are expected:

– noise is additive,

– noise is unbiased, i.e. has zero mean value,

– noise has a finite variance,

– noise is not correlated with input and output signals, xi(k), i¼ 1,2,3,. . .,m, and

y(k), and

– there is no correlation between noise in particular input/output channels

Consider the effect of noise in the output on the parameter estimation process.

Assume that in the original equation of the least-squares estimation matrix YN is

replaced by YNþΛN, then

A ¼ XN
TXN

� ��1
XN

T YN þ ΛNð Þ ¼ XN
TXN

� ��1
XN

TYN þ XN
TΛN

� �
Modify the above expression as follows,

A ¼ 1

N
XN

TXN

� ��1
1

N
XN

TYN þ 1

N
XN

TΛN

� �
: It could be seen that components

of column�matrix
1

N
XN

TΛN are
1

N

XN
k¼1

xi kð Þλ kð Þ, where i ¼ 1, 2, . . . , m, i:e: are

covariance coefficients between input variables

and noise in the output, therefore as
1

N

XN
k¼1

xi kð Þλ kð Þ ! 0 as N ! 1

Finally, for N� 1 A ¼ XN
TXN

� ��1
XN

T YN þ ΛNð Þ � XN
TXN

� ��1
XN

TYN

� �
.

Therefore the following conclusion could be drawn: noise in the output does not
result in biased estimates of parameters A, however, an increased number of
observations, N, should be processed to “average out” the effect of the noise.

Consider the effect of noise in the input channels. Assume that in the original

equation of the least-squares estimation matrix XN is replaced by XNþΓN, then

XN þ ΓNð ÞT XN þ ΓNð Þ
h i�1

XN þ ΓNð ÞTYN ¼

1

N
XN

TXN þ 1

N
ΓN

TXN þ 1

N
XN

TΓN þ 1

N
ΓN

TΓN

� ��1
1

N
XN

TYN þ 1

N
ΓN

TYN

� �
Then, due to the properties of the measurement noise
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Lim
N!1

1

N
ΓN

TXN

� �
¼ Lim

N!1
1

N
XN

TΓN

� �
¼ Lim

N!1
1

N
ΓN

TYN

� �
¼ 0

However Lim
N!1

1
N
ΓN

TΓN

� � ¼ σ12 0 . . . 0

0 σ22 . . . 0

. . . . . . . . . . . .
0 0 . . . σm2

2664
3775 6¼ 0; where σi

2, i¼ 1,2,. . .,

m, is the variance of noise in the ith input channel.

Therefore one has to conclude that measurement noise in the input channels
results in biased estimates of parameters A, regardless of the number of
observations, N.

Example 2.1 The purpose of this example is to illustrate the effect of measurement

noise in the output on parameter estimation. Variables x1(i), x2(i), x3(i) and x4(i),

i¼ 1,2,. . .,300 were generated as combinations of several sinusoidal signals of

different frequencies and amplitudes

x1 ið Þ ¼ 3* sin :2*ið Þ þ 1:1* sin 7*ið Þ þ :1* sin 7311*ið Þ
x2 ið Þ ¼ 5* sin :01*ið Þ þ 2* sin 17*ið Þ þ :2* sin 17311*ið Þ þ :2*x1 ið Þ
x3 ið Þ ¼ 7* sin :01*ið Þ þ :5* sin 3*ið Þ þ :05* sin 711*ið Þ � :2*x1 ið Þ

þ :3*x2 ið Þ
x4 ið Þ ¼ sin :03*ið Þ þ :05* sin 13*ið Þ þ :01* sin 799*ið Þ þ :3*x1 ið Þ

þ :03*x2 ið Þ þ :07*x3 ið Þ

and organized into array X300. Variable y(i) is defined as

y ið Þ ¼ 1*x1 ið Þ � 2*x2 ið Þ þ 3*x3 ið Þ þ 4*x4 ið Þ þ Δ ið Þ, i ¼ 1, ::, 300

where Δ(i)¼ .1*sin(717*i) is a signal imitating the unbiased output noise, and

organized in array Y300.

Although “true” coefficients of the regression equation are known, a1¼ 1,

a2¼�2, a3¼ 3, a4¼ 4, let us attempt to estimate these coefficients using the first

50 rows of arrays X300 and Y300, first 150 rows of arrays X300 and Y300, and the

entire arrays X300 and Y300:
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�
X50

T
X50

��1
�
X50

T
Y50

� ¼
1:006

�2:001

2:992

4:020

26664
37775

�
X100

T
X100

��1
�
X100

T
Y100

� ¼
1:015

�2:001

3:003

3:992

26664
37775

�
X300

T
X300

��1
�
X300

T
Y300

� ¼
1:011

�2:000

3:000

4:000

26664
37775

It could be seen that the output noise does result in the estimation error, however

this error tends to decrease as the number of observations increases. It is good to

note that the determinant of the covariance matrix of the input variables,

KXX¼ 142.09 6¼ 0.

Example 2.2 Introduce unbiased “measurement noise” in the input channels of the

previous problem,

n1 ið Þ ¼ :4* sin 77*ið Þ
n2 ið Þ ¼ :13* sin 177*ið Þ
n3 ið Þ ¼ 3:1* sin 1771*ið Þ
n4 ið Þ ¼ 1:1* sin 7177*ið Þ, i ¼ 1, 2, . . . , 300

and organize it in array N300. The output noise is removed, i.e.

y ið Þ ¼ 1*x1 ið Þ � 2*x2 ið Þ þ 3*x3 ið Þ þ 4*x4 ið Þ, i ¼ 1, ::, 300

Compute model parameters using array X300 “contaminated with noise”, i.e. X300

¼X300þN300 and array Y300 free of noise:

�
X300

T
X300

��1
�
X300

T
Y300

� ¼ :617
0:802
1:306
2:239

2664
3775

that is a completely wrong result.

Is it possible to improve this result using the information on measurement

errors? Assume that the variances of the particular components of the measurement
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errors (constituting the input noise) are known: σ12¼ 0.080, σ22¼ 0.008, σ32¼
4.807, and σ42¼ 0.605. Then the covariance matrix of noise could be constructed

under the assumption that there is no cross-correlation between noise components:

KNN ¼

0:080 0 0 0

0 0:008 0 0

0 0 4:807 0

0 0 0 0:605

26664
37775

Compute covariance matrices KXX and KYX using the available measurement

data X300 and Y300:

KXX ¼

5:161 1:060 � 0:615 1:753

1:060 15:330 22:75 2:381

� 0:615 22:750 43:04 3:173

1:753 2:381 3:173 1:888

26664
37775 and KYX ¼

7:155

48:000

81:200

11:370

2666664

3777775
Now the covariance matrix of the measurement noise, KNN, can be utilized in the

estimation task:

1

300
X300

T
X300 � KNN

� ��1
1

300
X300

T
Y300

� �
¼ KXX � KNNð Þ�1 1

300
X300

T
Y300

� �

¼

0:706

�1:898

2:915

4:205

26664
37775

It could be seen that new estimates are not perfect, but are drastically better than the

previous result. Why didn’t we obtain a perfect result?—Recall that matrix KNN

was constructed under the assumption that there is no cross-correlation between

noise components. Having the simulated “input noise array” N300, we can obtain the

“true” matrix KTRUE
NN that is quite different from KNN:

KTRUE
NN ¼ 1

300
N300

TN300 ¼

0:080 1e� 04 1e� 04 0:219

1e� 04 8e� 03 � 2e� 03 3e� 04

1e� 04 � 2e� 03 4:807 1e� 03

0:219 3e� 04 1e� 03 0:605

26664
37775

Effect of Cross-Correlation of Input Variables Imagine that two input variables,

say xi and xj are highly correlated, to such extent that xi� c�xjþ d, where c and d

are some constants. This condition will result in two rows of matrix XN
TXN
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to be or almost be linearly dependent, therefore the determinant of this matrix Det

(XN
TXN)� 0. This situation is known as a “poorly defined” parameter estimation

problem. An “almost singular” matrix XN
TXN presents a serious numerical diffi-

culty in the calculation of coefficients A. In addition, one can see that since xi
duplicates xj it does not make sense to introduce both variables in the mathematical

model.

Principal Component Analysis is a numerical technique that addresses both

issues.

Recall that

A ¼ XN
TXN

� ��1
XN

TYN ¼ 1

N
XN

TXN

� ��1
1

N
XN

TYN ¼ KXX
�1KXY

where KXX and KYY are the estimated covariance matrices of the appropriate

variables. Assume that matrix KXX is “almost singular”, i.e. Det (KXX)� 1.

Introduce a new set of input variables, z1(k), z2(k),. . .,zm(k), obtained by a linear

transformation of the original variables x1(k), x2(k),. . .,xm(k), i.e. W

z1 kð Þ
z2 kð Þ
. . .

zm kð Þ

26664
37775 ¼

x1 kð Þ
x2 kð Þ
. . .

xm kð Þ

26664
37775 or

z1 kð Þ
z2 kð Þ
. . .

zm kð Þ

26664
37775 ¼ W�1

x1 kð Þ
x2 kð Þ
. . .

xm kð Þ

26664
37775 where W is a speciallydefined m�mð Þ

matrix filter

Consequently, the regression equation (mathematical model) can be redefined as

yMOD kð Þ ¼
Xm
j¼1

bjzj kð Þ:

Define matrix ZN¼XNW, then coefficients bj, j¼ 1,2,. . .,m, represented by vector

B will be defined as

B ¼ ZN
TZN

� ��1
ZN

TYN ¼ 1

N
ZN

TZN

� ��1
1

N
ZN

TYN ¼ KZZ
�1KZY

where notations are self-explanatory. We want to assure that new variables, z1(k),

z2(k),. . .,zm(k), are orthogonal, i.e. their covariance matrix KZZ is diagonal. This

property of the new variables guarantees that the parameter estimation problem will

be successfully solved.

Consider

KZZ ¼ 1

N
ZN

TZN ¼ 1

N
XNWð ÞT XNWð Þ ¼ 1

N
WTXN

TXNW ¼ WT 1

N
XN

TXN

� �
W ¼ WTKXXW
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Written below is the matrix diagonalization formula (similarity transformation)

known from matrix theory:

M�1KXXM ¼ C;

where C ¼
λ1 0 . . . 0

0 λ2 . . . 0

. . . . . . . . . . . .
0 0 . . . λm

2664
3775,

λj, j¼ 1,2,. . .m, are eigenvalues of matrix KXX, and

M is known as the modal matrix of matrix KXX. It is good to remember that

eigenvalues of matrix KXX can be obtained by solving the following polynomial

equation,

Det λI� KXXð Þ ¼ 0

where I is a unity matrix, and all eigenvalues, λj, j¼ 1,2,. . .m, of matrix

KXX ¼ 1

N
XN

TXN are real and positive.

Recall now that a modal matrix could be defined for any square matrix that has

real eigenvalues, say KXX. If matrix KXX has the dimension of m�m, then its

modal matrix is also a m�m matrix. A modal matrix is formed as follows: its first

column is the eigenvector of matrix KXX corresponding to the first eigenvalue λ1, its
second column is the eigenvector of matrix KXX corresponding to the second

eigenvalue λ2, and so on. Finally, an eigenvector of a square matrix, say KXX

corresponding to its eigenvalue λj is defined by

– forming matrix λjI�KXX where I is a unit matrix

– taking the adjoint of this matrix D¼Adj(λjI�KXX)

– using any column of matrix D as the eigenvector of matrix KXX corresponding to

its eigenvalue λj.

Note that the matrix diagonalization is a computationally intensive procedure

that is routinely performed by engineering software tools. Keep in mind that any

constant multiplied by an eigenvector is still the same eigenvector, therefore many

software tools generate apparently different sets of eigenvectors for the same

matrix. The following numerical example features a matrix XN, matrix KXX, its

eigenvalues and eigenvectors, its modal matrix M, and the diagonalization of

matrix KXX
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Example 2.3 Definition and diagonalization of a covariance matrix.

X10 ¼

1 4 4 4

2 8 6 �4

3 �7 3 2

1 5 2 3

5 2 1 �2

7 1 1 1

9 �1 4 �3

�6 �6 �4 5

�1 7 9 �5

2 0 �7 8

26666666666666666664

37777777777777777775

, KXX ¼ 1

10
X10

TX10 ¼

21:1 4:1 7:6 �3:4

4:1 24:5 13:9 �8

7:6 13:9 22:9 �13

�3:4 �8 �13 17:3

26664
37775,

λ1

λ2

λ3

λ4

26664
37775 ¼

5:756

12:961

18:664

48:419

26664
37775

M ¼

�:163 :156 :922 :313

�:251 :702 �:355 :564

:736 �:258 �:038 :625

:607 :645 :147 �:440

26664
37775 It could be seen that

�:163 :156 :922 :313
�:251 :702 �:355 :564
:736 �:258 �:038 :625
:607 :645 :147 �:440

2664
3775
�1

�
21:1 4:1 7:6 �3:4
4:1 24:5 13:9 �8

7:6 13:9 22:9 �13

�3:4 �8 �13 17:3

2664
3775

�
�:163 :156 :922 :313
�:251 :702 �:355 :564
:736 �:258 �:038 :625
:607 :645 :147 �:440

2664
3775 ¼

5:756 0 0 0

0 12:961 0 0

0 0 18:664 0

0 0 0 48:419

2664
3775

Now one additional piece of information: it is known from the matrix theory that

if a matrix is defined as KXX ¼ 1
N
XN

TXN then the transpose of its modal matrix is

equivalent to the inverse. Let us demonstrate this property using our example:

�:163 :156 :922 :313
�:251 :702 �:355 :564
:736 �:258 �:038 :625
:607 :645 :147 �:440

2664
3775
�1

¼
�:163 �:251 :736 :607
:156 :702 �:258 :645
:922 �:355 �:038 :147
:313 :564 :625 �:440

2664
3775

¼
�:163 :156 :922 :313
�:251 :702 �:355 :564
:736 �:258 �:038 :625
:607 :645 :147 �:440

2664
3775
T
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Now one can see that matrix filter W, utilized to convert “old” input variables,

xj(k), j¼ 1,2,. . ., m, into the new orthogonal variables, zj(k), j¼ 1,2,. . .,m, is

nothing but the modal matrix M of the covariance matrix KXX.

Now define the array of diagonalized variables Z10¼X10M:

Z10 ¼

4:204 4:515 � 0:061 3:307

�0:346 1:803 � 1:813 10:646

4:692 � 3:928 5:431 � 2:014

1:874 5:087 � 0:487 3:062

�1:795 0:638 3:569 4:199

�0:049 2:184 6:211 2:941

�0:092 � 2:260 8:062 6:074

2:575 � 0:895 � 2:515 � 9:962

1:995 � 0:786 � 4:488 11:457

�0:624 7:277 3:291 � 7:267

26666666666666666664

37777777777777777775
and check their covariance matrix

KZZ ¼ 1

10
Z10

TZ10 ¼
5:756 0 0 0

0 12:961 0 0

0 0 18:664 0

0 0 0 48:419

2664
3775

Note a useful fact: the eigenvalues of the covariance matrix KXX, λk, are equal to the
“varianceþmean value squared” of the respective component of the diagonalized

vector, zk.

Application of the Principal Component Analysis (PCA) First, let us modify the

modeling problem: the model to be established is

yMOD ið Þ ¼
Xm
k¼1

akxk ið Þ ¼
Xm
k¼1

bkzk ið Þ

where zk(i), k¼ 1,2,. . .,m are orthogonalized variables. It could be seen that, in

principle, the parameter estimation task implies the solution of the familiar

equation,

B ¼ �ZN
T
ZN

��1
�
ZN

T
YN

� ¼ 1

N
ZN

TZN

� ��1�
1

N
ZN

TYN

�
¼ KZZ

�1

KYZ

where KZZ and KYZ are appropriate covariance matrices.

When parameters B are known, it is easy to convert them into parameters A of

the original regression equation of interest, indeed YN
MOD¼XN�A¼ZN�B¼

XN�M�B, therefore, A¼M�B
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The important part of the PCA is the fact that estimation of coefficients B does

not lead to a system of simultaneous linear equations and does not require matrix

inversion, indeed,

B ¼ KZZ
�1KZY ¼

λ1 0 . . . 0

0 λ2 . . . 0

. . . . . . . . . . . .

0 0 . . . λm

26664
37775
�1

�

KZY ¼

1

λ1
0 . . . 0

0
1

λ2
. . . 0

. . . . . . . . . . . .

0 0 . . .
1

λm

266666664

377777775
�

Kz1y

Kz2y

. . .

Kzmy

26664
37775 ¼

Kz1y

λ1
Kz2y

λ2
. . .
Kzmy

λm

266666664

377777775
i.e. every coefficient bk, k¼ 1,2,. . .,m, can be calculated using simple scalar

expressions.

Imagine that the computation of coefficients of a regression equation is part of an

on-going control procedure. Instead of utilizing the original matrix equation of the

LSM and risking possible computational instability due to “almost singular” matrix

KXX, it makes sense to obtain orthogonalized variables, estimate coefficients B,

avoiding matrix inversion, and then convert them into coefficient A.

It is important to realize that variables zj, j¼ 1,2,. . ., m, are mutually orthogonal

and therefore do not duplicate each other. Knowing the individual contributions of

these variables into the model would allow excluding those least contributive thus

simplifying the model. Then how can these individual contributions be evalu-

ated?—Variability of the model is defined by the variance

σMOD
2 ¼ 1

N

XN
i¼1

YMOD ið Þ � Y
MOD

h i2
¼ 1

N

XN
i¼1

Xm
k¼1

bkzk ið Þ � Y
MOD

" #2

¼ 1

N

XN
i¼1

Xm
k¼1

bk zk ið Þ � zk½ �
" #2

where Y
MOD

and zk, k¼ 1,2,. . .,m, are mean values of the respective variables.

Reversing the order of summation in the above expression and assuming that N� 1

results in

σMOD
2 ¼

Xm
k¼1

1

N
bk

2
Xn
i¼1

zk ið Þ � zk½ �2
" #

¼
Xm
k¼1

bk
2σk

2

where σk
2 is the variance of the kth orthogonalized variable.
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At this point, the only unknowns are variances σk
2, k¼ 1,2,. . .,m. They can be

found by computing the mean values of these variables, zk, k¼ 1,2,. . .,m, and then

computing every σk2 ¼ λk � zk
2 k¼ 1,2,. . .,m.

Finally, individual contributions (in percent) of particular variables zk into the

regression model can be expressed as

δj ¼ bj
2σj2Xm

k¼1

bk
2σk

2

, j ¼ 1, 2, . . . , m

Therefore, PCA provides an opportunity for choosing a subset of orthogonalized

variables zj whose combined contribution to the regression model is sufficiently

high, say 90%, and discarding the rest of these variables as non-contributive.

Assume that according to the above analysis, variable zH is the least contributive

component of the vector of orthogonalized variables. Then the column #H of the

array ZN can be discarded resulting in array ẐN and parameters B̂ will be defined as

follows:

B̂ ¼ �Ẑ N
T
Ẑ N

��1
�
Ẑ N

T
YN

�
Note that vector B̂ has one component less than vector B ¼ �ZN

T
ZN

��1
�
ZN

T
YN

�
,

i.e. B̂ is a m�1 vector. Remove column #H from the modal matrix M that will result

in matrix M̂ that has m column and m�1 rows. Finally, vector of the model

parameters A will me defined as

A ¼ M̂ B̂

Example 2.4 Application of the Principal Component Analysis, a simulation case

study

The following are the definitions of variables xk(i), k¼ 1,2,3,4, and y(i):

x1 ið Þ ¼ 3* sin :01*ið Þ þ :5* sin 7*ið Þ þ :1* sin 177*ið Þ
x2 ið Þ ¼ 6* sin :031*ið Þ þ :2* sin 17*ið Þ þ :3* sin 7177*ið Þ
x3 ið Þ ¼ 4* sin :077*ið Þ þ :2* sin 74*ið Þ þ :2* sin 7111*ið Þ
x4ðiÞ ¼ x3ðiÞ þ :00002∗sin ð17171∗iÞ
y ið Þ ¼ 3* x1 ið Þ � 2*x2 ið Þ þ 5* x3 ið Þ � 3* x4 ið Þ þ :07* sin 817371*ið Þ,

i ¼ 1, 2, 3, . . . , 500

This choice of variables reflects our intention to create a case when the first three

input variables are virtually independent, but the fourth input variable, x4, is almost

identical (highly correlated) to x3. In addition, it could be expected that mean values
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of the input variables be close to zero. According to the definition of output variable

y(i), the “true” values of the appropriate regression coefficients are 3, �2, 5, �3.

However, this relationship is quite superficial: since x4(i)� x3(i), the relationship is

effectively y(i)¼ 3* x1(i)�2* x2(i)þ 5* x3(i)�3* x3(i)¼ 3* x1(i)�2* x2(i)þ 2*

x3(i), however this reality is not apparent to the individual who attempts to establish

the regression model relating y(i) to x1(i), x2(i), x3(i), x4(i).

First, the above variables are to be organized into arrays X500 and Y500, then an

attempt to solve the LSM problem as follows could be made:

�
X500

T
X500

��1
�
X500

T
Y500

� ¼ 3:000
� 2:000
1:050
0:950

2664
3775

We do know that this result is erroneous, but there is a good reason to doubt this

result even if one does not know the “true” coefficient values, the covariance matrix

KXX is “almost singular”

Det KXXð Þ ¼ Det

4:890 � 1:197 0:209 0:209
�1:197 18:30 � 0:313 � 0:313
0:209 � 0:313 7:943 7:943
0:209 � 0:313 7:943 7:943

2664
3775 ¼ 1e� 07

Consequently, this situation presents an ideal target for PCA.

Obtain the modal matrix of KXX and its eigenvalues:

M ¼
�0:090 7e� 03 0:996 � 1e� 09

0:980 0:178 0:087 7e� 10

�0:125 0:696 � 0:016 � 0:707
�0:125 0:696 � 0:016 0:707

2664
3775 and the eigenvalues are

λ1
λ2
λ3
λ4

2664
3775

¼
18:49
15:81
4:778
1e� 10

2664
3775

It is known that eigenvalues represent the variability of the particular compo-

nents of the vector of orthogonalized variables whose values are defined by the

array Z500¼X500M, indeed

1

500
Z500

TZ500 ¼
18:49 � 1e� 15 2e� 15 � 1e� 15

�1e� 15 15:81 8e� 16 � 2e� 15

2e� 15 8e� 16 4:778 � 6e� 17

�1e� 15 � 2e� 15 � 6e� 17 1e� 10

2664
3775

50 2 Mathematical Description of Manufacturing Processes



This indicates that the fourth component of array Z500 is irrelevant and the first

three columns of the array Z500 are sufficient for the modeling process. With the

trimmed array Ẑ 500 the estimation results are as follows:

B ¼ �Ẑ 500
T
Ẑ 500

��1
�
Ẑ 500

T
Y500

� ¼ �2:481
1:056
2:780

24 35
This result could be trusted:

KZZ ¼ 1

500
Ẑ 500

T
Ẑ 500 ¼

18:49 � 1e� 15 2e� 15

�1e� 15 15:81 8e� 16

2e� 15 8e� 16 4:778

24 35and Det KZZð Þ� 1eþ 03

Finally, convert coefficients B into the required coefficients A. Note that since the

last column of array Z500 was eliminated, the last column of matrix M must be also

crossed out:

Â ¼ M̂ B ¼
�0:090 7e� 03 0:996
0:980 0:178 0:087
�0:125 0:696 � 0:016
�0:125 0:696 � 0:016

2664
3775 �2:481

1:056
2:780

24 35 ¼
3:000
�2:000
1:000
1:000

2664
3775

Note that since x3� x4, this result is completely consistent with the way the

original data was generated.

2.2 Validation of Regression Models

While the computational task of the least squares method is very straight forward,

one should realize that

– the obtained regression equation may or may not be statistically valid, i.e. it may

not reflect the existing trend-type relationship, but just “numerical noise”,

– obtained parameter values are only statistical estimates and the “true” values

could be found within some confidence intervals,

– computation of yMOD(k) for any combination of input variables, xj(k),

j¼ 1,2,. . .,m, results only in a statistical estimate, and the “true” value could

be found within a confidence interval.

Let us address these issues.

Coefficient of Determination Recall that regression-based models do not represent

a functional relationship between variable y(k) and inputs xj(k), j¼ 1,2,. . .,m but

rather a trend. Indeed, variable y(k) depends on a very large number of random
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factors, and only partially depends on the chosen inputs (regressors). It is very

important to determine to what extent variable y(k) depends on the inputs of the

model and to what extent it depends on the factors not included in the model.

It is known that all factors, included and not included in the model result in

variability of the measured (true) value of variable y(k). This variability is

represented by the natural variance of y(k) defined as

σy2 ¼ 1

N� 1

XN
k¼1

y kð Þ �My

� �2
where My is the estimated mean value of y(k). When parameters of the model aj,

j¼ 1, 2,. . ., m, are established, variations of the input variables of the regression

equation, xj, j¼ 1, 2,. . ., m, result in the variability of the output variable of the

regression equation, yMOD(k) that is characterized by the model variance,

σMOD
2 ¼ 1

N� 1

XN
k¼1

yMOD kð Þ �My

� �2
(Note that due to one of the known properties of the LSM mean values of y(k) and

yMOD(k) are the same). Finally, the variance of the model error, e(k)¼ y(k)�y
MOD(k), that could be easily defined as

σE2 ¼ 1

N� 1
YN � XN � Að ÞT YN � XN � Að Þ;

represents the variability of y(k) caused by all factors not included in the regression

equation.

It is known that σy2¼ σMOD
2þ σE2. The coefficient of determination represents

the ratio between the joint effect of the factors included in the regression equation

and the joint effect of all factors (included and not included) on the variable y(k), it

is therefore defined as

η ¼ σMOD
2

σy2
¼ σy2 � σE2

σy2
¼ 1� σE2

σy2
:

Coefficient of determination is always positive and does not exceed 1, i.e. 0	 η	 1.

It can be seen that it presents a “measure of goodness” of a regression equation,

approaching 1 for very accurate models. Traditionally, for a successfully established

regression equation, the coefficient of determination is expected to be at least 0.85.

It is important that coefficient of determination can be used for both linear and

nonlinear equations. In the case of a linear regression equation, the coefficient of

determination is equal to the multiple correlation coefficient squared.
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Statistical Validation of a Regression Equation Coefficient of determination pro-

vides a rather qualitative way of statistical validation: a regression model is

definitely valid if η
 0.85 and is definitely invalid if η	 .3, however there is a

more formal way to claim statistical significance or insignificance of a model. It is

also based on comparing variances σy2, σMOD
2, and σE2 utilizing the Fisher distri-

bution. However, it is important to recognize that the modeling techniques

presented in this course are intended for the analysis and design of control systems,

not for the “better understanding of complex laws in nature and society.” Regression

equations developed herein will be eventually reformulated as transfer functions.

Consequently, the only mathematical models that are of any use in our application,

are those “definitely valid.” Therefore, we will use only one criterion of the validity of

a model: its coefficient of determination must be at least 0.85. This would eliminate

the use of the Fisher criterion, which allows one to justify the validity of a model that

correctly reflects only 50% of the variability of an output variable.

For example, let “true” relationship, y(i)¼ 3x1(i)�2x2(i)þ 5x3(i)�3x4(i), be

modeled by a regression equation yMOD(i)¼ 2.989x1(i) obtained using y(i) and

x1(i) observations. According to Fisher criterion this model could easily be statis-

tically valid, because it correctly describes the existing relationship between vari-

ables y(i) and x1(i). However, such a model is absolutely meaningless for the

control process when in order to maintain the desired value of the output all
relevant variables must be taken into account. Indeed, requesting the coefficient

of determination to be at least 0.85 is a good way to qualify a mathematical model

to be used as a transfer function.

Example 2.5 Application of the coefficient of determination for model simplifica-

tion is illustrated by the following table. Assume that the available measurements of

the output and input variables are assembled into eight various configurations of

array XN. The following table contains regression models obtained by solving the

matrix equation of the LSM:

# Regression equation σy2 σE2 η Validity

1 yMOD¼ 3.5x1þ 4.2x2þ .5x1
2þ 1.1x2

2�1.3x1x2 12.4 .86 .931 Valid

2 yMOD¼ 3.5x1þ 4.2x2þ .5x1
2þ 1.1x2

2 12.4 1.28 .897 Valid

3 yMOD¼ 3.5x1þ 4.2x2þ .5x1
2�1.3x1x2 12.4 1.36 .89 Valid

4 yMOD¼ 3.5x1þ 4.2x2þ 1.1x2
2�1.3x1x2 12.4 1.12 .91 Valid

5 yMOD¼ 3.5x1þ .5x1
2þ 1.1x2

2�1.3x1x2 12.4 4.39 .646 Invalid

6 yMOD¼ 4.2x2þ .5x1
2þ 1.1x2

2�1.3x1x2 12.4 5.58 .55 Invalid

7 yMOD¼ 3.5x1þ 4.2x2þ .5x1
2 12.4 1.52 .877 Valid

8 yMOD¼ 3.5x1þ 4.2x2�1.3x1x2 12.4 1.41 .886 Valid

9 yMOD¼ 3.5x1þ 4.2x2 12.4 2.04 .835 Invalid

It can be seen that the applied procedure includes estimation of the “natural”

variance of variable y, estimation of the regression coefficients for particular

combinations of column of the array XN, computation of the standard deviation

of the modeling error, computation of the coefficient of determination, and finally

making a conclusion on the validity of the model. It is seen that cases 7 and

8 represent the simplest valid models.
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Confidence Intervals of the Model Parameters Due to limited number of observa-

tions, each model parameter estimated by the least squares procedure is a random

variable. Assume that aj (j¼ 1,2,. . .,m) is one of the parameters estimated by the

least squares procedure, and aj
TRUE is the “true” value of this parameter that could

be obtained by processing infinite number of observations, or by averaging all

possible values of estimates aj. Then it is known that with probability P¼ 1�2α

j aj�aj
TRUE j	 tðα, nÞSEQ1=2

jj

where

j¼ 1,2,. . .,m is the parameter index,

t(α,n) is t-distribution for the significance level α, and number of degrees of

freedom n¼N-m,

Qjj is the jth diagonal element of the matrix (XN
TXN)

�1, and

SE is standard deviation of the modeling error.

Note that for N� 1, XN
TXN�N�KXX where KXX is the covariance matrix of the

input vector. Then the above definition of the width of the confidence interval could

be rewritten as

aj � aj
TRUE

�� �� ¼ t a, N�mð Þ � SE � ffiffiffiffiffi
qjj

pffiffiffiffi
N

p

where qjj is the jj� th diagonal element of matrix KXX
�1

Confidence Intervals for Model-Based Prediction of the Output Variable Due to

the stochastic nature of the relationship between input variables xj(k), j¼ 1,2,. . .,m,

and variable y(k), the stochastic nature of estimated model parameters, aj,

j¼ 1,2,. . .,m, and possible measurement noise, the calculated value of the output

variable, yMOD(k), and its measured value, y(k) are expected to be different. How-

ever, it is known that with probability P¼ 1�2α

j yðkÞ � yMODðkÞ j	 tðα, nÞSE½xðkÞTQ xðkÞ�1=2

where

x(k)¼ [x1(k) x2(k). . . xm(k)]
T is the vector of the input variables,

Q¼ (XN
TXN)

�1

yMODðkÞ ¼
Xm
j¼1

ajxjðkÞ ¼ xTðkÞA and y(k) are the model and measured values of

the output variable, respectively.

54 2 Mathematical Description of Manufacturing Processes



Again for N� 1 the width of the confidence interval could be redefined as

y kð Þ � yMOD kð Þ�� �� ¼ t α, N�mð Þ � SE �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x kð ÞT � KXX

�1 � x kð Þ
q
ffiffiffiffi
N

p

Example 2.6 The model y¼ 4.969x1�4.012 x2þ 2.65x3�2.093x4þ 2.063x5 was

obtained using 300 observations of y(k), x1(k), x2(k), x3(k), x4(k), and x5(k).

Variance of the modeling error SE
2¼ 29.49¼ 5.432. Obtain 95% confidence inter-

vals for model parameters.

First, find the covariance matrix X300
TX300 and its inverse:

KXX ¼

708:0 253:6 347:9 � 130:1 103:0

253:6 3eþ 03 1eþ 03 31:32 432:5

347:9 1eþ 03 2eþ 03 0:631 463:1

�130:1 31:32 0:631 949:6 79:94

103:0 432:5 463:1 79:94 170:0

26666664

37777775
KXX

�1

¼

1:645209e � 003 4:118080e� 005 � 1:141253e � 004 3:026922e � 004 � 9:330502e� 004

4:118080e� 005 6:112089e� 004 2:546555e � 005 1:294520e � 004 � 1:710311e� 003

�1:141253e� 004 2:546555e� 005 2:855153e � 003 6:623047e� 004 � 8:085377e� 003

3:026922e� 004 1:294520e� 004 6:623047e � 004 1:337917e � 003 � 2:946240e� 003

�9:330502e� 004 � 1:710311e � 003� 8:085377e � 003 � 2:946240e � 003 0:0342119

26666664

37777775
Finding the t-distribution value, t(.025,300)¼ t(.025,1)¼ 1.96, and the follow-

ing “widths” of the confidence intervals:

Δ1 ¼ 1:96� 5:43� 1:645e� 3ð Þ1=2 ¼ 0:431

Δ2 ¼ 1:96� 5:43� 6:112e� 4ð Þ1=2 ¼ 0:263

Δ3 ¼ 1:96� 5:43� 2:855e� 3ð Þ1=2 ¼ 0:569

Δ4 ¼ 1:96� 5:43� 1:338e� 3ð Þ1=2 ¼ 0:389

Δ5 ¼ 1:96� 5:43� 0:0342ð Þ1=2 ¼ 1:968

Then, with 95 % probability “true” parameter values will stay within the

following limits:

4:538 	 a1
TRUE 	 5:4;

�4:275 	 a2
TRUE 	 �3:749;

2:081 	 a3
TRUE 	 3:219;
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�2:482 	 a4
TRUE 	 �1:704;

0:095 	 a4
TRUE 	 4:031

We have the “luxury” of knowing the “true” parameter values, 5, �4, 3, �2, and

1 and can conclude that they are indeed within the confidence intervals.

Example 2.7 Given a set of particular values of the input variables, x1(k)¼ 1.0,

x2(k)¼ 4.0, x3(k)¼ 10.0, x4(k)¼ 3.5, and x5¼ 12.3. Estimate the value of the

output variable y(k) using the model,

y ¼ 4:969x1 � 4:012x2 þ 2:65x3 � 2:093x4 þ 2:063x5

and obtain a 95% confidence interval for the estimate.

YMOD kð Þ ¼ 4:969� 1:0 � 4:012� 4:0þ 2:65� 10:0 � 2:093� 3:5þ 2:063
� 12:3

¼ 33:469

To determine the confidence interval, note that

t(.025,1)¼ 1.96, SE¼ 5.43,

[x(k)TQx (k)]1/2¼ 1.763

“Width” of the confidence interval: Δ¼ 1.96� 5.43� 1.763¼ 18.76, therefore,

33.469�18.76	 y(k)	 33.469þ 18.76 and, finally, P{14.709	 y TRUE (k)	
52.229}¼ 95 %

Exercise 2.1

Generate input and the output variables as follows (k¼ 1, 2,. . ., 500):

x1 kð Þ ¼ 5þ 3 � Sin 17 � kð Þ þ Sin 177 � kð Þ þ :3 � Sin 1771 � kð Þ
x2 kð Þ ¼ 1 � 2 � Sin 91 � kð Þ þ Sin 191 � kð Þ þ :2 � Sin 999 � kð Þ
x3 kð Þ ¼ 3þ Sin 27 � kð Þ þ :5 � Sin 477 � kð Þ þ :1 � Sin 6771 � kð Þ
x4 kð Þ ¼ �:1 � x1 kð Þ þ 3 � x2 kð Þ þ :5 � Sin 9871 � kð Þ þ :7 � Cos 6711 � kð Þ
y kð Þ ¼ 2 � x1 kð Þ þ 3 � x2 kð Þ � 2 � x3 kð Þ þ 5 � x4 kð Þ þ :3 � Sin 1577 � kð Þ

þ :2 � Cos 7671 � kð Þ

Problem 1 Obtain “unknown” coefficients of the regression equation using the

least squares method using the first 30 rows of arrays X500, Y500, first 100 rows, first

200 rows, and finally all 500 rows. Compare coefficients with the “true” coefficients

and discuss your conclusions.

Problem 2 Compute 95 % confidence intervals for the coefficients of the model

based on 500 observations. Check if the “true” coefficients are within the confi-

dence intervals.
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Problem 3 Assume x(k)¼ [2.5, 3.0,�6.3, 10.]T and compute y(k) using the “true”

relationship between the variables. Compute yMOD(k) using the final model and

compute its 95 % confidence interval. Check if the “true” value, y(k), is within the

confidence intervals.

Problem 4 Given covariance matrices

KXX ¼

3:084 0:846 1:158 � 0:434 0:343

0:846 10:90 4:012 0:104 1:442

1:158 4:012 6:269 1e� 03 1:543

�0:434 0:104 1e� 03 3:425 0:266

0:343 1:442 1:543 0:266 0:677

26666664

37777775 and KYX ¼

12:970
�19:470

7:213
� 8:649
0:610

266664
377775

estimated using measurement data. It is known that measurement errors in the

corresponding input channels have the following variances: σ12¼ 0.75, σ22¼ 1.66,

σ32¼ 0.96, σ42¼ .26, σ52¼ 0.11. Compute parameters of the mathematical model

using this information. Compute parameter estimation errors caused by input noise.

Problem 5 Redefine variables x4(k) and y(k) as follows:

x4 kð Þ ¼ x3 kð Þ þ :000012 � Cos 7671 � kð Þ;
y kð Þ ¼ 2 � x1 kð Þ þ 3 � x2 kð Þ � 2 � x3 kð Þ þ 5 � x4 kð Þ þ :3 � Sin 1577 � kð Þ þ :2

� Cos 7671 � kð Þ, k ¼ 1, 2, . . . , 500

Apply principal component analysis for the evaluation of the regression parameters.

2.3 Recursive Parameter Estimation

Assume that input/output measurement data is given by arrays: XN and YN and the

model configuration is defined. Assume that model parameters are calculated via

the Least Squares Method (LSM):

AN ¼ XN
TXN


 ��1
XN

TYN


 �
How can an additional observation, y(Nþ 1), x(Nþ 1)¼ [x1(Nþ 1),. . .,xm(Nþ 1)]

be utilized?

But, should this additional measurement be utilized in the first place?—Yes, it

should. First, because real measurement data is contaminated by noise and the

estimation accuracy improves with the increased amount of data. Second, because
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the process described by input/output measurements may exhibit slow changes that

must be reflected by its model by using the most recent measurements. Recursive

Least Squares Method (RLSM) theory provides the necessary mechanism for the

incorporation of additional data in already existing model, thus continuous model

updating utilizing the flow of incoming measurements.

The RLSM is consistent with the principle of recursive estimation mentioned in

Chap. 1. It does not require the accumulation of measurement arrays XN and YN and

consequent processing of these arrays. Instead, it allows processing one observation

at a time by using this observation to upgrade already existing estimates, i.e. it

generates a set of coefficients of a regression model, AN, not by solving the matrix

equation

AN ¼ XN
TXN

� ��1
XN

TYN

� �
but by using only the last rows of arrays XN and YN, i.e. x(N)¼ [x1(N),. . .,xm(N)]
and y(N), to update the previously obtained coefficients AN�1:

AN ¼ AN�1 þ Δ AN�1, X Nð Þ, y Nð Þ½ �

where Δ[.] is a specially defined increment, dependent on the initial conditions,

AN�1, and the most recent data x(N)¼ [x1(N),. . .,xm(N)] and y(N). The first

advantage of this approach is very obvious: the approach eliminates the need for

storing large data arrays XN and YN. The second advantage is even more important:

the RLSM provides a mechanism for tracking the properties of time-varying

processes by on-going correction of parameter estimates using the most recent

data. The third advantage will become obvious later: RLSM eliminates the need

for highly demanding computational procedure-matrix inversion.

Let us consider the mathematics behind the RLSM.

Recursive Least Squares Method Assume that several input variables, xj,

j¼ 1,2,. . .,m, and one output variable, y, form the following relationship:

y tð Þ ¼
Xm
j¼1

αjxj tð Þ

where t is continuous time, and αj, j ¼ 1, 2, ::, m are unknown coefficients.

In order to estimate these coefficients, one should perform synchronous sam-

pling of the input and output variables that would result in the following data arrays

(it is expected that the sampling time step is constant)
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XN ¼

x1 1ð Þ x2 1ð Þ x3 1ð Þ . . . xm 1ð Þ
x1 2ð Þ x2 2ð Þ x3 2ð Þ . . . xm 2ð Þ
. . . . . . . . . . . . . . .

x1 kð Þ x2 kð Þ x3 kð Þ . . . xm kð Þ
. . . . . . . . . . . . . . .

x1 Nð Þ x2 Nð Þ x3 Nð Þ . . . xm Nð Þ

26666664

37777775 and YN ¼

y 1ð Þ
y 2ð Þ
. . .
y kð Þ
. . .
y Nð Þ

26666664

37777775
where k¼ 1,2,. . ., N is the discrete-time index, and N�m is the total number of

measurements

It is known that the Least Square Method solution provides not the unknown

coefficients, but rather their estimates

AN ¼

a1
a2
. . .
aj
. . .
am

26666664

37777775 ¼ XN
TXN

� ��1
XN

TYN

where T is the transpose symbol. Note that vector A has a subscript N that should

remind the reader that estimates AN are obtained using the total of N measurements

of I/O variables.

It is also known that under some conditions estimates AN have the following

property:

Lim
N!1

AN ¼

α1
α2
. . .
αj
. . .
αm

26666664

37777775
and therefore, it could be concluded that as number N increases, the “goodness” of

the estimates also increases.

Assume the following situation: the total of N measurement have been accumu-

lated, arrays XN and YN have been formed, and estimates AN have been computed.

What to do when an additional measurement,

x Nþ 1ð Þ ¼

x1 Nþ 1ð Þ
x2 Nþ 1ð Þ

. . .
xj Nþ 1ð Þ

. . .
xm Nþ 1ð Þ

26666664

37777775 and y Nþ 1ð Þ
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has arrived? Should we upgrade arrays XN and YN into

XNþ1 ¼

x1 1ð Þ x2 1ð Þ x3 1ð Þ . . . xm 1ð Þ
x1 2ð Þ x2 2ð Þ x3 2ð Þ . . . xm 2ð Þ
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

x1 Nð Þ x2 Nð Þ x3 Nð Þ . . . xm Nð Þ
x1 Nþ 1ð Þ x2 Nþ 1ð Þ x3 Nþ 1ð Þ . . . xm Nþ 1ð Þ

26666664

37777775 and

YNþ1 ¼

y 1ð Þ
y 2ð Þ
. . .
. . .
y Nð Þ

y Nþ 1ð Þ

26666664

37777775
and compute a new vector of estimates ANþ1 ¼ XNþ1

TXNþ1

� ��1
XNþ1

TYNþ1 ?

Should we assume that a new set of I/O measurements will be received at time

Nþ 2, Nþ 3, . . .. and continue this process at every time step? Obviously, the

answer is “no” because of the following reasons:

1. We cannot designate an ever-growing memory for storing ever-growing arrays

XN and YN

2. We cannot perform the most time-consuming computation, matrix inversion, in

real time, i.e. at every discrete time value k¼ 1, 2, 3, . . ., N, Nþ 1, Nþ 2, . . .
3. Statistics offers special recursive computational schemes for addressing the need

for upgrading estimates utilizing continuously arriving “new” measurement data

Recall the recursive mean formula that demonstrates the power and numerical

efficiency of recursive computations:

ZNþ1 ¼ ZN þ 1

Nþ 1
z Nþ 1ð Þ � ZN

� �
, where N ¼ 1, 2, 3, ::::::

It can be seen that the above formula is very attractive: it indicates that regard-

less of the number of measurements actually incorporated in the computation

process, at any moment of discrete time, k, only the “old” estimate Zk�1, the

“new” measurement z(k), and the discrete-time index “k” are to be stored. The

computation results in the replacement of the “old” estimate Zk�1 by the “new”

estimate Zk that incorporates not only all previous measurements, z(1), z(2), . . .,
z(k�1), but also z(k).

Now we will consider how to utilize this recursive approach for the Least Square

Method computations. This has been accomplished by one of the brightest people in

the world, Professor Kalman. First, recall the matrix inversion Lemma that Kalman

formulated in 1960:
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Aþ BCDð Þ�1 ¼ A�1 � A�1B C�1 þ DA�1B
� ��1

DA�1;

where A, C, and C�1þDA�1B are nonsingular square matrices. Now realize that if

a single observation of the input variables is

x kð Þ ¼

x1 kð Þ
x2 kð Þ
. . .
xj kð Þ
. . .

xm kð Þ

26666664

37777775 , k ¼ 1, 2, . . . , N;

then array XN could be defined as

XN ¼

x1 1ð Þ x2 1ð Þ x3 1ð Þ . . . xm 1ð Þ
x1 2ð Þ x2 2ð Þ x3 2ð Þ . . . xm 2ð Þ
. . . . . . . . . . . . . . .

x1 kð Þ x2 kð Þ x3 kð Þ . . . xm kð Þ
. . . . . . . . . . . . . . .

x1 Nð Þ x2 Nð Þ x3 Nð Þ . . . xm Nð Þ

26666664

37777775 ¼

x 1ð ÞT
x 2ð ÞT
. . .

x kð ÞT
. . .

x Nð ÞT

26666664

37777775
Therefore XN

TXN has the following expression using particular measurement

vectors x(k):

XN
TXN ¼

x1 1ð Þ x1 2ð Þ x1 3ð Þ . . . x1 Nð Þ
x2 1ð Þ x2 2ð Þ x2 3ð Þ . . . x2 Nð Þ
. . . . . . . . . . . . . . .
xj 1ð Þ xj 2ð Þ xj 3ð Þ . . . xj Nð Þ
. . . . . . . . . . . . . . .

xm 1ð Þ xm 2ð Þ xm 3ð Þ . . . xm Nð Þ

26666664

37777775
x1 1ð Þ x2 1ð Þ x3 1ð Þ . . . xm 1ð Þ
x1 2ð Þ x2 2ð Þ x3 2ð Þ . . . xm 2ð Þ
. . . . . . . . . . . . . . .
x1 kð Þ x2 kð Þ x3 kð Þ . . . xm kð Þ
. . . . . . . . . . . . . . .

x1 Nð Þ x2 Nð Þ x3 Nð Þ . . . xm Nð Þ

26666664

37777775

¼

XN
k¼1

x1 kð Þ2
XN
k¼1

x1 kð Þx2 kð Þ . . .
XN
k¼1

x1 kð Þxm kð Þ
XN
k¼1

x2 kð Þx1 kð Þ
XN
k¼1

x2 kð Þ2 . . .
XN
k¼1

x2 kð Þxm kð Þ
. . . . . . . . . . . .XN

k¼1

xm kð Þx1 kð Þ
XN
k¼1

xm kð Þx2 kð Þ . . .
XN
k¼1

xm kð Þ2

26666666664

37777777775
¼
XN
k¼1

x kð Þx kð ÞT

Similarly, XN
TYN could be expressed as XN

TYN ¼
XN
k¼1

x kð Þy kð Þ
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Then rewrite the LSM equation as follows

AN ¼ XN
TXN

� ��1
XN

TYN ¼
XN
k¼1

x kð Þx kð ÞT
 !�1XN

k¼1

x kð Þy kð Þ

or

AN ¼ PN
XN
k¼1

x kð Þy kð Þ where PN ¼ XN
TXN

� ��1 ¼
XN
k¼1

x kð Þx kð ÞT
 !�1

Note that

PN
�1 ¼

XN
k¼1

x kð Þx kð ÞT ¼ x Nð Þx Nð ÞT þ
XN�1

k¼1

x kð Þx kð ÞT

¼ x Nð Þx Nð ÞT þ PN�1
�1 Ø

Also realize that

AN ¼ PN
XN
k¼1

x kð Þy kð Þ ¼ PN x Nð Þy Nð Þ þ
XN�1

k¼1

x kð Þy kð Þ
 !

^

Since AN ¼ PN
XN
k¼1

x kð Þy kð Þ, it is obvious that AN�1 ¼ PN�1

XN�1

k¼1

x kð Þy kð Þ and

therefore,

XN�1

k¼1

x kð Þy kð Þ ¼ PN�1
�1AN�1

Since according to ØPN�1
�1 ¼ PN

�1 � xðNÞxðNÞT, the above expression can be

rewritten as

XN�1

k¼1

x kð Þy kð Þ ¼ PN�1
�1AN�1 ¼ PN

�1 � x Nð Þx Nð ÞT
� 

AN�1

Then ^ could be rewritten as

AN ¼ PN x Nð Þy Nð Þ þ
XN�1

k¼1

x kð Þy kð Þ
 !

¼ PN x Nð Þy Nð Þ þ PN
�1AN�1 � x Nð Þx Nð ÞTAN�1

� 
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or

AN ¼ PNx Nð Þy Nð Þ þ PNPN
�1AN�1 � PNx Nð Þx Nð ÞTAN�1 or

AN ¼ AN�1 þ PNx Nð Þ y Nð Þ � x Nð ÞTAN�1

� 
or

AN ¼ AN�1 þ KN y Nð Þ � x Nð ÞTAN�1

� 
_

where KN ¼ PNx Nð Þ

Expression _ constitutes a classical recursive formula. Indeed, it allows us to

compute the “new” set of coefficients AN on the basis of the “old” set AN�1 and the

“new” measurement data, x(N) and y(N). However, it is too early to rejoice: note

that matrix KN is defined as

KN ¼ PNx Nð Þ ¼
XN
k¼1

x kð Þx kð ÞT
 !�1

x Nð Þ

i.e. formula _ does not eliminate the need for matrix inversion at every step of the

procedure.

Let us utilize the Matrix Inversion Lemma:

Aþ BCDð Þ�1 ¼ A�1 � A�1B C�1 þ DA�1B
� ��1

DA�1

assuming that A¼ PN�1
�1, B¼ x(N), C¼ I, and D¼ xT(N):

PN ¼ PN�1
�1 þ x Nð Þx Nð ÞT

� �1

¼ PN�1 � PN�1x Nð Þ Iþ x Nð ÞTPN�1x Nð Þ
� �1

x Nð ÞTPN�1

Use this result to define KN:

KN¼ PNx Nð Þ¼ PN�1x Nð Þ� PN�1x Nð Þ Iþ x Nð ÞTPN�1x Nð Þ
� �1

x Nð ÞTPN�1x Nð Þor

KN ¼ PN�1x Nð Þ I� Iþ x Nð ÞTPN�1x Nð Þ
� �1

x Nð ÞTPN�1x Nð Þ
� �

Let us treat Iþ x Nð ÞTPN�1x Nð Þ
� �1

as a “common denominator” in the above

expression, then

KN ¼ PN�1x Nð Þ Iþ x Nð ÞTPN�1x Nð Þ � x Nð ÞTPN�1x Nð Þ
n o

Iþ x Nð ÞTPN�1x Nð Þ
� �1
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or

KN ¼ PN�1x Nð Þ Iþ x Nð ÞTPN�1x Nð Þ
� �1

,

Note that expression, does not contain matrix inversion: I þ x Nð ÞTPN�1x Nð Þ is a
1� 1 matrix!

Now, using result , let us rewrite

PN ¼ PN�1 � PN�1x Nð Þ Iþ x Nð ÞTPN�1x Nð Þ
� �1

x Nð ÞTPN�1

¼ PN�1 � KNx Nð ÞTPN�1 or PN ¼ I� KNx Nð ÞT
� 

PN�1

Now the recursive parameter updating procedure (RLSM) can be defined as

follows:

#1 Define Kalman gain: KN ¼ PN�1x Nð Þ Iþ x Nð ÞTPN�1x Nð Þ
� �1

#2 Update parameters: AN ¼ AN�1 þ KN y Nð Þ � x Nð ÞTAN�1

� 
#3 Provide matrix P for the next step: PN ¼ I� KNx Nð ÞT

� 
PN�1, N¼ 1,2,3,. . ..

and its block-diagram is given below in Fig. 2.2.

INITIALIZATION: A 0, P0

Acquisition of  x(N), y(N)

N=1

Define Kalman Gain
( )K P x N I x N P x NN N

T
N= +− −

−

1 1

1
( ) ( ) ( )

( )A A K y N x N AN N N
T

N= + −− −1 1( ) ( )

Update parameters

( )P = I − K x(N)N N
T PN−1

Compute matrix P for the next step

N=N+1

Fig. 2.2 RLSM procedure flowchart
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It is well established that as the number of iterations approaches to infinity the

parameter estimates AN converge to the solution of the matrix equation of the LSM

regardless of the initial conditions A0 and P0, i.e.

Lim
N!1

AN�1 þ KN y Nð Þ � x Nð ÞTAN�1

� h i
¼ Lim

N!1
�
XN

T
XN

��1
�
XN

T
YN

�h i
In reality, especially when noise in the output is low, estimate AN converges to the

solution of the LSM equation very fast for any initial conditions. But how can these

initial conditions be established?

Initial parameter estimates A0 are the “best guess value” that are based on

experience, intuition, preliminary experiments, or relevant equations of physics.

Often, without any adverse consequences, it is assumed that A0¼ [0, 0,. . ., 0]T. The
situation with the choice of matrix P0 is more complex. It is often assumed that

P0¼ αI, where α is a positive constant and I is a unity matrix of the appropriate

dimension. The choice of constant α has a profound effect on the convergence rate

of the RLSM procedure—larger values of parameter α result in greater convergence

rates of the RLSM estimation (see Example 2.8 below). Note that should the input/

output data be contaminated with noise, a much greater “overshoot” could be

expected that potentially could crash the numerical process. Therefore, it is prac-

tical to test the procedure by choosing α¼ 0.01, and if it would be found that a

greater α value could be “afforded”, the procedure should be tested with

α¼ 0.1, etc.

Estimation and Tracking It is known that for a large N� 1

AN ¼ AN�1 þ KN y Nð Þ � x Nð ÞTAN�1

� 
� �XN

T
XN

��1
�
XN

T
YN

�
This property has a quite important implication: estimates AN are based on entire

arrays XN and YN regardless of how large they are. On one hand, it seems to be an

attractive property—utilization of large number of observations allows for “aver-

aging out” the measurement noise. But there is an equally important consideration:

most realistic processes exhibit parameter drift and their models, especially those

developed for control applications, must reflect not the entire history of the process,

but only its most current properties. The following graph in Fig. 2.3 provides an

illustration of this concept.

First, note that yMOD(N,k) represents particular numerical values of the model

output calculated as yMOD(N,k)¼ x(k)TAN where AN¼ (XN
TXN)

�1(XN
TYN),

k¼ 1,2,3,. . ., N is a discrete-time index, and N is the total number of observations

utilized for the estimation of model parameters and consequently for the computa-

tion of the variance of the modeling error σERR2(N). It could be realized the

variance of the error increases as N decreases due to the inability to “average out

noise”, and increases as N increases due to the inability of the model to reflect

current properties of the process that change during the observation period. Fortu-

nately, σERR2(N) has a minimum point, NOPT, that clearly represents a rational
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compromise between two tendencies. Then a very important problem arises, how to

assure that the model parameters estimated by the RLSM would be primarily based

on the most recent NOPT points and “forget” the impact of the preceding observa-

tions x(k), y(k), k¼ 1,2,3,. . ., NOPT�1?

This is achieved by the modification of the RLSM procedure by the introduction

of the “forgetting factor” β, 0< β	 1:

#1 Define Kalman gain: KN ¼ PN�1x Nð Þ β þ x Nð ÞTPN�1x Nð Þ
� �1

#2 Update parameters: AN ¼ AN�1 þ KN y Nð Þ � x Nð ÞTAN�1

� 
#3 Provide matrix P for the next step: PN ¼ 1

β I� KNx Nð ÞT
� 

PN�1, N¼ 1,2,3,. . ..

It can be demonstrated that the above modification of the RLSM results in the

estimates that are dominated by the last M observations, where M is known as the

memory of the RLSM procedure,M ¼ 1
1�β. Choosing β such thatM ¼ 1

1�β¼NOPT is

the way to respond to the above question. It converts the RLSM from being a

conventional estimation tool (β¼ 1 and M ¼ 1
1�β ¼1) to a tracking tool, i.e. the

procedure that is capable of tracking time-varying properties of the process on the

basis of M¼NOPT most recent process measurements.

Example 2.8 Investigation of the RLSM properties

The following CC code is utilized for generating the input, x(k), and output, y(k),

data k¼ 1,2,3,. . .n, (note that random noise is introduced in the output variable):

Variance of the error
increases because the
ability to “average
noise out” decreased

Variance of the error increases because of the
drift of process’ characteristics

This period of observation presents a
compromise between “averaging out noise”
and avoiding the effects of parameter drift

k=1

N

sERR
2 (N) =

1
N

Σ [y(k) − yMOD (N,k)]2

Number of observation points N

Fig. 2.3 Variance vs number of observation points due to system parameter drift
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n¼150;

p¼(1,2,-3.6,8,-5);

p¼diag(p);

x¼randn(n,5)þones(n,5)*p;

y¼x*(5,-4,3,2.7,-6)’;

for i¼1:n & y(i,1)¼y(i,1)þ.1*randn(1,1)& end;

Then the RLSM with the forgetting factor is applied to estimate the “unknown”

parameters of the model (note that “b” is the forgetting factor):

p¼.01*iden(5);

b¼1;

a¼(0,0,0,0,0)’;

for i¼1:n & k¼p*x(i,)’*(bþx(i,)*p*x(i,)’)^-1 & a¼aþk*(y(i,1)-x(i,)

*a)&;

aa(i,1)¼a(1,1)’ & p¼(iden(5)-k*x(i,))*p/b & end;

a;

(x’*x)^-1*(x’*y);

plot(aa)

It can be seen that for comparison, the LSM-based estimates are being calcu-

lated, and the first component of the estimated parameters is plotted vs. the iteration

index

A150 ¼

4:991
�3:990
3:001
2:697
�6:001

266664
377775 ALSM ¼

4:994
�3:993
3:003
2:697
�6:004

266664
377775 ATRUE ¼

5

�4

3

2:7
�6

266664
377775

For comparison, A1000 ¼

5:000
�4:001
3:002
2:703
�5:997

266664
377775

One can conclude that 150 iterations results in the estimates that are practically

equivalent to the LSM estimates and are very close to the “true” parameter values.

The convergence of the estimate of the coefficient #1 is demonstrated below in

Fig. 2.4.

Now let us investigate the effect of the forgetting factor on “averaging out noise”

(using coefficient #1 of the model), as shown in Figs. 2.5 and 2.6.

Indeed, the increase of the forgetting factor leads to the increase of the memory

thus reducing the effect of noise on the convergence of the estimates (Fig. 2.7).

Let us consider a very practical approach for the selection of the numerical value

of the forgetting factor β. Assume that x(k), y(k), k¼ 1,2,. . ., N� 1 represent input/

output measurements of a process that exhibits parameter drift. It is also assumed
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that measurements y(k), k¼ 1,2,. . . are contaminated with noise. It is proposed to

select some value of the forgetting factor, β¼ βj, run the RLSM procedure and

simultaneously use the following recursive procedure for computing the coefficient

of determination:

MY kð Þ ¼ MY k� 1ð Þ þ 1

k
y kð Þ �MY k� 1ð Þ½ �

σY2 kð Þ ¼ σY2 k� 1ð Þ þ 1

k
y kð Þ �MY kð Þ½ �2 � σY

2 k� 1ð Þ
� 

σMOD
2 kð Þ ¼ σMOD

2 k� 1ð Þ þ 1

k
y kð Þ � x kð ÞTAk

�
2 � σMOD

2
�
k� 1

h � 
η kð Þ ¼ σY2 kð Þ � σMOD

2 kð Þ
σY2 kð Þ , k ¼ 1, 2, 3, ::::::

where Ak, k¼ 1,2,3,. . . are estimates of the model parameters generated by the

RLSM with the forgetting factor β¼ βj.
Plotting η(k) as a function of the iteration index k¼ 1,2,3,. . . (see Example 2.9

below) reveals important insight on the selection of the forgetting factor:

1. In the situation when the forgetting factor is too small, the quality of the model

represented by the coefficient of determination increases very fast, but the

convergence of the RLSM is very much affected by noise because of the

inability to “average noise out”

2. In the situation when the forgetting factor is too large, the quality of the model

represented by the coefficient of determination improves slow and later even

decreases because the RLSM cannot keep up with the parameter drift

3. In the situation when the forgetting factor is just right, the quality of the model,

represented by the coefficient of determination, reaches and stays at its highest

value

6

5

4

3

2

1

0
0 50 100

Forgetting factor=.98

150

Fig. 2.7 Coefficient #1 convergence with forgetting factor 0.98
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Properties of the RLSM Procedure

1. Under normal circumstances, the RLSM solution converges to the LSM, i.e. for

N� 1

AN ¼ AN�1 þ K Nð Þ y Nð Þ�AN�1
TX Nð Þ
 � � XN

TXN

� ��1
XN

TYN

regardless of initial conditions A0 and P0
2. Noise in the input results in the biased parameter estimates

3. Noise in the output does not result in biased estimates. Estimation errors, caused

by the output noise, could be controlled by increasing the memory size of the

procedure, or by increasing the value of the forgetting factor.

4. The tracking ability of the RLSM procedure, i.e. the ability to generate accurate

estimates of the time-varying parameters of the process, can be increased by

reducing the memory size of the procedure, or by reducing the value of the

forgetting factor.

5. Excessive cross correlation between input variables prevents RLSM from con-

verging. This is the most common factor causing an RLSM procedure to fail.

Let us discuss the implications of property # 5. The Principal Component

Analysis addresses numerical problems caused by cross correlation between input

variables. It requires establishing the covariance matrix of the input vector, KXX,

defining its modal matrix, M, and reformulating the parameter estimation problem

in terms of orthogonalized variables z:

B ¼ ZN
TZN

� ��1
ZN

TYN

where ZN¼XNM. While ZN is the array of N observations, particular observation

z(k) could be obtained from x(k) as follows: z(k)¼MTx(k), k¼ 1,2,. . . Moreover,

according to the PCA, some of the components of the vector z could be eliminated,

resulting in the input vector of lower dimension, Ẑ . For example component zj,

could be eliminated because of the appropriate eigenvalue λj of matrix KXX being

much smaller then other eigenvalues. Consequently the RLSM will be reduced to a

very reliable (because of dealing with orthogonalized input variables) and fast

(because of the reduced size of the problem) procedure:

KN ¼ PN�1ẑ Nð Þ β þ ẑ Nð ÞTPN�1ẑ Nð Þ
� �1

BN ¼ BN�1 þ KN y Nð Þ � ẑ Nð ÞTBN�1

� 
PN ¼ 1

β
I� KNẑ Nð ÞT
� 

PN�1, and AN ¼ MBN, N ¼ 1, 2, 3, . . . :

Example 2.9 Selection of the optimal memory of the RLSM procedure. The

following CC code presents the simulation study that performs this task:

70 2 Mathematical Description of Manufacturing Processes



n¼1000;

p¼(1,2,-3.6,8,-5);

p¼diag(p);

x¼randn(n,5)þones(n,5)*p;

p¼1*iden(5);

b¼.999;

m¼1/(1-b);

a¼(0,0,0,0,0)’;

my¼0 & vy¼0 & ve¼0;

g¼10

for i¼1:n &;

c(1,1)¼5þ.2*g*i & c(2,1)¼�4þg*.7*i &;

c(3,1)¼3-g*.3*i & c(4,1)¼2.7þg*.2*i &;

c(5,1)¼�6þg*.13*i &;

y(i,1)¼x(i,)*cþrandn(1,1) &;

k¼p*x(i,)’*(bþx(i,)*p*x(i,)’)^-1 & a¼aþk*(y(i,1)-x(i,)*a) &;

aa(i,1)¼a(1,1)’ & p¼(iden(5)-k*x(i,))*p/b &;

err¼y(i,1)-x(i,)*a;

my¼myþ(y(i,1)-my)/m & vy¼vyþ((y(i,1)-my)^2-vy)/m;

ve¼veþ(err^2-ve)/m & nu(i,1)¼(vy-ve)/vy & end;

plot(nu)

The results of this study, seen below in Fig. 2.8, indicate that the value of

forgetting factor, β¼ .9, presents a compromise between the necessity to “average

noise out” and perform successful tracking of time-variant process parameters.

Convergence of the RLSM with different valies of the forgetting factor
1

0.9
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0.999
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Fig. 2.8 RLSM convergence with different forgetting factors
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Exercise 2.2

Problem 1 Utilize MATLAB to generate input and output variables as follows

(k¼ 1,2,. . .,500):

x1 kð Þ ¼ 5þ 3 � Sin 17 � kð Þ þ Sin 177 � kð Þ þ :3 � Sin 1771 � kð Þ
x2 kð Þ ¼ 1 � 2 � Sin 91 � kð Þ þ Sin 191 � kð Þ þ :2 � Sin 999 � kð Þ
x3 kð Þ ¼ 3þ Sin 27 � kð Þ þ :5 � Sin 477 � kð Þ þ :1 � Sin 6771 � kð Þ
y kð Þ ¼ 2 � x1 kð Þ þ 3 � x2 kð Þ � 0:4 � x3 kð Þ þ :5 � x1 kð Þ � x3 kð Þ

þx2 kð Þ2 þ 0:2 � Cos 7671 � kð Þ � 0:1 � Sin 17717 � kð Þ

Pretend that the “true” model configuration is unknown to you and assume that

the model may include all linear and all second-order terms. Utilize LSM and the

coefficient of determination technique to obtain the simplest but sufficiently accu-

rate model. Document your work.

Problem 2 Implement RLSM with exponential forgetting in MATLAB. Test it by

using x1(k), x2(k), and x3(k) as per Problem 1 and

y kð Þ ¼ 8x1 kð Þ � 6x2 kð Þ þ 5x3 kð Þ þ 0:2 � Cos 7671 � kð Þ � 0:1 � Sin 17717 � kð Þ,
k ¼ 1, 2, . . . 500

Assume β¼ 1., P(0)¼ .5*I and A(0)¼
0

0

0

24 35. Plot the resultant parameter estimates.

Check if parameters AN converge to the solution of the LSM problem. Compute the

coefficient of determination of the “final” model yMOD(k)¼ xT(k)A500

Problem 3 Redefine y(k) to emulate a process with parameter drift

y kð Þ ¼ 8þ :08k½ �x1 kð Þ � 6� :04k½ �x2 kð Þ þ 5þ :02k½ �x3 kð Þ þ 0:2 � Cos 7671 � kð Þ
� 0:1 � Sin 17717 � kð Þ,

k ¼ 1, 2, . . . 500

Assume β¼ 1., P(0)¼ .5*I and A(0)¼
0

0

0

24 35. Plot the resultant parameter estimates

and the “true” time-dependent parameters. Compute the coefficient of determina-

tion of the “final” model yMOD(k)¼ xT(k)A500, compare its value with the one

obtained in Problem 2.

Problem 4 Redo Problem 3 with the forgetting factor β< 1. Plot the time-

dependent “true” coefficients of the model and their RLSM estimates. Choose the

optimal value of the forgetting factor that allows for the best tracking of the time-

dependent “true” parameters.

72 2 Mathematical Description of Manufacturing Processes



2.4 Non-parametric Models. Cluster Analysis

Developing a Cluster Model Cluster analysis is a group of statistical techniques

facilitating the detection of informative components of what could be a very

extensive database. It is clear that this task cannot be accomplished without

relevance to some decision-making or a classification problem. We will visualize

the database as a combination of realizations of real status variables, X, and a binary
class indicator, Q:

X kð Þ,Q kð Þf g ¼ x1 kð Þ, x2 kð Þ, x3 kð Þ, . . . , xn kð Þ,Q kð Þf g ð2:1Þ

where k ¼ 1, 2, 3, . . . ,N is the realization index, and Q(k) can have only two

alternative values, “a” or “b”. Then the classification rule is established on the

basis of some function defined in the X space, F[X], such that, generally, F X½ � 	 0

for the majority of realizations when Q kð Þ ¼ }a} and F½X� � 0 for the majority of

realizations when Q kð Þ ¼ }b}, or in terms of conditional probabilities,

PfF½k� 	 0 jQ½k� ¼ }a}g � PfF½k� 	 0 jQ½k� ¼ }b}g ð2:2Þ

where P{A/B} denotes the probability of event A subject to the occurrence of

event B.

It is also understood that the classification problem does not have a unique solution,

and there is a wide class of functions F[X] that could satisfy condition (2.2) to a

greater or a lesser extent. A simplification of the classification rule requires reduc-

ing the number of the components of vector X to the necessary minimum by

choosing the smallest group of informative components that, in combination,

allow for achieving reliable classification.

Selection of the informative components implies that contributions of particular

groups of components of vector X to the classification are to be evaluated, and the

most contributive group(s) be chosen for the definition of the classification rule.

One can realize that in order to achieve the required discrimination power of the

selection procedure, the groups must be small, and in order to consider combined

effects of several variables must include at least two variables. Consider all possible

combinations of two variables taken out of n, where n is the dimension of vector X.
It could be said that the classification problem, originally defined in the space X,
will now be considered on particular two-dimensional subspaces,

xi\xj, where i, j ¼1, 2, . . . , n, and i 6¼ j.
Assume that the entire array of points, marked as “a” or “b”, defined in the n-

dimensional space X by the database (2.1), is projected on particular

two-dimensional subspaces (planes). Let us visualize possible distributions of

these projections. Figure A below in Fig. 2.9 illustrates a subspace that has no

potential for the development of a classification rule due to the fact that points

marked as “a” and “b” are distributed quite uniformly in this plane. The subspace of

Figure B indicates a certain degree of separation between points “a” and “b” and,
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therefore, should be viewed as informative. Figures D, E, F also illustrate possible

cases of separation pattern in informative subspaces.

Consider the choice of some combination of the most informative

two-dimensional subspaces xi\xj. This task could be performed by computing

some informativity measure for every combination of two variables. The weighted

average distance between points “a” and “b” in the particular subspaces,

xj

xi

abbabaababbaabbababababab
aabbababbaabababaaababbb
ababababababaaabaabaabba

ababaabababbabaababbaabb
bbabaabbababababaabababab
aabbababbaaaabbabababaaba

bbaabababbababababaab

xj

xi

aaaaaaaaaaabaabbbabbbbbbb
aaaaaabaabbbabbb

aaaaaaaabaabbbabbbbb
aaaaaaaaaaabaabbbabbbbbbb
aaaaaaaaaaababbbbabbbbbbb

aaaaaaabbbbabbbabbbbbb
abbbababbbabbbbbbb

aaaaababbbabbbbbbb

xj

xi [xi,xj]

[α2,β2]

[α1,β1]

xj

xi

bbbbbbaaaaaaaaababbbbbbbb
bbbbbbbbbbabbb

bbbbbbaaaaabaabbbabbbbb
bbbbbbaaaaaaaaabaabbbabbbbb
bbbbbaaaaaaaaaaababbbbbbb

bbbbaaaaaaaaababbbabbbbb
bbbbbaaaaaaaaabbbbbbbbb
bbbbbbaaabbbbbbbbbbbb

xj

xi

aaaaaaaaaaabaabbbabbbbbbb
aaaaaaaaaaababbb

aaaaaaaaaaaabaabbbbb
aaaaaaaaaaabaabbbabbbbbbb
aaaaaaaaaaababbbbabbbbbbb
aaaaaaaabbbbabbbabbbbbbb
aaaababbbabbbbbbbbb

xj

xi

aaaaaaaaaaabaabbbabbbbbbb
aaaaaabaabbbabbb

aaaaaaaabaabbbabbbbb
aaaaaaaaaaabaabbbabbbbbbb
aaaaaaaaaaababbbbabbbbbbb

aaaaaaabbbbabbbabbbbbb
abbbababbbabbbbbbb

aaaaababbbabbbbbbb

Figure A Figure B

Figure C Figure D

Figure E Figure F

Fig. 2.9 Cluster analysis examples
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ρij ¼
1

NaNbσiσj

XNa

k¼1

XNb

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xia kð Þ � xib mð Þ½ �2 þ xja kð Þ � xjb mð Þ
 �2q

where σi are σj are standard deviations of variables xi and xj provides such a

measure.

As shown in Figures D, E, F, a correlation ellipse, properly defined in the

particular informative subspace, presents an ideal choice of the separating function.

Figure C indicates that size, shape, position, and orientation of such an ellipse are

defined by five parameters: coordinates of two focal points, [α1, β1], [α2, β2] and the
constant δ, such that for any points of the ellipse, [xi, xj], the following equation

holds, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � α1ð Þ2 þ xj � β1

� �2q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � α2ð Þ2 þ xj � β2

� �2q
¼ δ ð2:3Þ

Similarly, equationsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � α1ð Þ2 þ xj � β1

� �2q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � α2ð Þ2 þ xj � β2

� �2q
	 δ ð2:3aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � α1Þ2 þ ðxj � β1Þ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � α2Þ2 þ ðxj � β2Þ2

q
� δ ð2:3bÞ

represent any point [xi, xj] within and outside the ellipse.

Consider the problem of the optimal definition of parameters [α1, β1, α2, β2, δ] of
a correlation ellipse for a particular separation pattern in the plane comprising

variables xi and xj. According to condition (2.2), this problem could be interpreted

as the minimization of a loss function that includes a “penalty” for any point “a”

outside the ellipse, Ra kð Þ ¼ Ra xi
a kð Þ, xja kð Þ
 �

, and a “penalty” for any point “b”

within the ellipse, Rb kð Þ ¼ Rb xi
b kð Þ, xjb kð Þ
 �

, i.e.

L α1; β1; α2; β2; δð Þ ¼
XNa

k¼1

Ra kð Þ þ
XNb

k¼1

Rb kð Þ ð2:4Þ

where Na and Nb are number of points “a” and “b” in the database. Intuitively, these

penalties are defined as follows:

Ra kð Þ ¼
0, if point xi

a kð Þ, xja kð Þ
 �
satisfies condition 3að Þ

1

xia kð Þ � μia½ �2 þ xja kð Þ � μja
h i2, if point xi

a kð Þ, xja kð Þ
 �
satisfies condition 3bð Þ

8>>><>>>:
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and

Rb kð Þ ¼
0, if point xi

b kð Þ, xjb kð Þ
 �
satisfies condition 3bð Þ

1

xib kð Þ � μib½ �2 þ xjb kð Þ � μjb
h i2, if point xi

b kð Þ, xjb kð Þ
 �
satisfies condition 3að Þ

8>>><>>>:
where [μi

a, μj
a] and [μi

b, μj
b] are coordinates of the geometric centers of points “a”

and points “b” distributed in the plain xi\xj. Such a choice of penalty functions

places highest emphasis on the points in the immediate vicinity of geometric

centers.

It could be seen that the loss function (2.4) is not only nonlinear but also

discontinuous with respect to the unknown parameters of the separation ellipse

[α1, β1,α2, β2, δ]. Therefore our attempt to obtain the numerical values of these

parameters by minimizing this loss function leads to a highly nonlinear multivariable

optimization problem that does not have an analytical solution. Moreover, finding its

global solution numerically would also be a very difficult task. Such an optimization

problem presents an ideal application for a genetic optimization procedure that

combines the advantages of both direct and random search. Application of genetic

algorithms will be considered later in this course. It will result in the definition of an

ellipse that indeed contains the largest possible number of points “a”, Naa, and the

smallest possible number of points “b”,Nab. Then the “goodness” of the ellipse-based

separating rule could be characterized by the following two quantities:

Pin a=af g � Naa

Na and Pin a=bf g � Nab

Nb
ð2:5Þ

representing the probabilities of a point “a” and a point “b” to be found within the

ellipse, see Fig. 2.4.

Should we assume that the obtained classification rule, reflecting some compro-

mise solution, could not be further improved? In our experience an alternative

classification rule could be obtained by establishing an ellipse containing as many

points “b”, Nbb, and as few points “a”, Nba, as possible. This task is accomplished

by the appropriate modification of the penalty functions. The resultant separating

rule is characterized by:

Pout a=af g � 1� Nba

Na and Pout a=bf g � 1� Nbb

Nb
ð2:6Þ

representing theprobabilitiesofapoint“a”andapoint“b” tobe foundoutside theellipse,
see Fig. 2.5. The final selection of a separating rule implies the comparison of ratios

ρin ¼
Pin a=af g
Pin a=bf g and ρout ¼

Pout a=af g
Pout a=bf g ð2:7Þ

obtained for the “inside the ellipse” and “outside the ellipse” rules, and choosing the

rule that results in the largest ρ value.
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Finally, the proposed procedure implies

1. Definition of all two-dimensional subspaces of the space X
2. Computation of the informativity measure for every subspace xi\xj
3. Selection of a number M of the most informative subspaces

4. Selecting one of the M informative subspaces

5. Establishing the “inside the ellipse” classification rule by the application of a

genetic optimization procedure, and computation of the ρin value for this subspace
6. Establishing the “outside the ellipse” classification rule by the application of a

genetic optimization procedure, and computation of the ρout value for this subspace
7. Selection of the classification rule that has the largest ρ value for this subspace,

and return to Step 4, until the list of informative subspaces will be exhausted.

Outcome Prediction Based on a Cluster Model Cluster analysis of the database

results in the extraction and formalized representation of knowledge of various

effects of the process outcome that constitutes a mathematical model of a special

type. This model can be used for the prediction of the process outcome. The

following mathematical framework is suggested for the attack detection scheme.

Assume that the preliminary cluster analysis utilizing the informativity criterion

has resulted in the set ofM two-dimensional informative subspaces. Then the set of

M respective, either “inside the ellipse” or “outside the ellipse” classification rules,

Ri[X(k)], i¼ 1,2,3,. . .M, has been developed. One can realize that each rule utilizes

only those two components of vector X that constitute the ith informative subspace.

For simplicity, assume that each classification rule is designed to return a negative

value for the majority of points X(k) marked by an “a”. It is expected that every

vector Xa, representing the outcome “a”, and every vector Xb, representing the

outcome “b”, would satisfy only some classification rules but not all of them.

Consider the following random events:

E1 : R1 X kð Þ½ � 	 0 \ R2 X kð Þ½ � 	 0 \ R3 X kð Þ½ � 	 0 \ R4 X kð Þ½ �
	 0 \ . . . RM X kð Þ½ � 	 0

E2 : R1 X kð Þ½ � > 0 \ R2 X kð Þ½ � 	 0 \ R3 X kð Þ½ � < 0 \ R4 X kð Þ½ �
	 0 \ . . . RM X kð Þ½ � 	 0

E3 : R1 X kð Þ½ � 	 0 \ R2 X kð Þ½ � > 0 \ R3 X kð Þ½ � 	 0 \ R4 X kð Þ½ �
	 0 \ . . . RM X kð Þ½ � 	 0

E4 : R1 X kð Þ½ � > 0 \ R2 X kð Þ½ � > 0 \ R3 X kð Þ½ � 	 0 \ R4 X kð Þ½ �
	 0 \ . . . RM X kð Þ½ � 	 0

E5 : R1 X kð Þ½ � 	 0 \ R2 X kð Þ½ � 	 0 \ R3 X kð Þ½ � > 0 \ R4 X kð Þ½ �
	 0 \ . . . RM X kð Þ½ � 	 0

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . ..

EL : R1 X kð Þ½ � > 0 \ R2 X kð Þ½ � > 0 \ R3 X kð Þ½ � > 0 \ R4 X kð Þ½ �
> 0 \ . . . RM X kð Þ½ � > 0 ð2:8Þ
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representing specific combinations of classification rules satisfied by every vector

X(k). First, note that L¼ 2M. Probabilities of events (2.8), evaluated separately for

vectors Xa and Xb, constitute the following set of conditional probabilities instru-

mental for the outcome assessment procedure:

P Ei=af g and P Ei=bf g, i ¼ 1, 2, . . . ,L ð2:9Þ

Now consider the utilization of the cluster model for the outcome assessment.

Assume that the probability of the outcome “a” has some initial value, established

according to the existing statistics, γ[0], and therefore the probability of the

outcome “b” is λ 0½ � ¼ 1� γ 0½ �.
Assume that vector X kð Þ ¼ x1 kð Þ, x2 kð Þ, x3 kð Þ, . . . , xn kð Þ½ � represents the set of

the most process measurements. Numerical values of components of this vector,

applied to the classification rules Ri[X], i¼ 1,2,. . .,M, results in a particular com-

bination of numerical values

R1 X kð Þ½ �, R2 X kð Þ½ �, R3 X kð Þ½ �, . . . , RM X kð Þ½ �

that could be identified as the occurrence of one of the events (2.8), for example, Ej.

Now the availability of conditional probabilities (2.9) facilitates the application of

Bayesian approach for the re-evaluation of the probability of the outcome “a”

(i.e. the probability of the point X(k) to be marked by an “a”) subject to the

occurrence of the event Ej, P{a/Ej}. One can realize that unconditional probabil-

ities, P af g þ P bf g ¼ 1, therefore

P a=Ej

� �
P Ej

� � ¼ P Ej=a
� �

P af g and P Ej

� � ¼ P Ej=a
� �

P af g þ P Ej=b
� �

P bf g;

and the required probability can be expressed as,

P a=Ej

� � ¼ P Ej=a
� �

P af g
P Ej=a
� �

P af g þ P Ej=b
� �

P bf g

¼ γ 0½ � � P Ej=a
� �

γ 0½ � � P Ej=a
� �þ λ 0½ � � P Ej=b

� � ð2:10Þ

Computation (2.10) results in an updated value of the probability of attack, P{a/
Ej} that could be compared against some arbitrary defined threshold value. A

message indicating that the expected outcome of the process is “a” could be issued

if the probability of “a” exceeds the threshold. This completes one cycle of the

proposed procedure. At the next cycle, the “prior” probabilities of the outcome “a”

and the outcome “b” are defined as,

γ k½ � ¼ P a=Ej

� �
and λ k½ � ¼ 1� P a=Ej

� �
and the new value of the vector,
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X k þ 1ð Þ ¼ x1 k þ 1ð Þ, x2 k þ 1ð Þ, x3 k þ 1ð Þ, . . . , xn k þ 1ð Þ½ �

is to be analyzed with the consequent computation of probabilities

γ k þ 1½ � and λ k þ 1½ �. This procedure, intended for continuous real-time applica-

tion, is capable of providing timely and objective information to the operator

providing mathematically justified support of his/her decisions.

Example 2.10 Application of the clustering approach. Consider a data array of

1000 measurements of the input and output variables of a complex industrial

process. Each row of this array consists of the input vector X(k)¼ [x1(k),

x2(k),. . .x15(k)]
T and the corresponding output variable y(k), k¼ 1,2,. . .1000 is

the measurement index. The first 10 rows of the array could be seen below:

0.242726997 0.512632787 0.818820655 0.91894865 0.769801617 0.0557382442 0.792608202

0.365868866 0.158111617 0.381986767 0.0516359918 0.846051693 0.590528488

0.0123677235 0.864344776 0.6

0.0426672176 0.107910089 0.644807339 0.276805937 0.277515411 0.201748148 0.78121233

0.835532427 0.793120861 0.982161403 0.186749861 0.704956293 0.200024605 0.813628316

0.651033878 0.3

0.9261868 0.42181316 0.413958639 0.403003871 0.286023498 0.197082624 0.367629111

0.742382228 0.21803984 0.595475078 0.149892643 0.245591044 0.64862299 0.406341761

0.385907948 0.3

0.954634905 0.548775196 0.265029967 0.358599812 0.987211764 0.0684124753 0.80856663

0.57912004 0.270609707 0.137545109 0.720605493 0.216057882 0.284717888 0.25370416

0.00561538851 0.6

0.37790516 0.451865882 0.510103941 0.316611052 0.282071263 0.771665752 0.386009216

0.656956315 0.464612007 0.734265924 0.807381988 0.669486225 0.0551473089 0.860757768

0.755808294 0.3

0.870281875 0.827693462 0.0444668382 0.354088038 0.157880038 0.489894211 0.65190345

0.541297495 0.586609721 0.149126768 0.3736476 0.89600569 0.167734399 0.112052664

0.269221336 0.3

0.803052962 0.911425292 0.325179785 0.296805978 0.41806373 0.397285581 0.178858578

0.076258339 0.673950911 0.0937418342 0.518537939 0.0672319382 0.967123985

0.452468336 0.635296941 0.3

0.436127335 0.992104292 0.297061145 0.706475794 0.739071906 0.581460834 0.611842692

0.240244925 0.796370625 0.601304591 0.126385853 0.167113319 0.673507452 0.639618158

0.0626505017 0.6

0.967029989 0.873083532 0.915036321 0.0154176317 0.124073751 0.307632506 0.379356772

0.849460721 0.886274338 0.6125983 0.940086484 0.0336527638 0.602025151 0.236870512

0.0828597248 0.3

0.623347759 0.605348408 0.091186963 0.579296052 0.228726849 0.212254003 0.352962255

0.236755803 0.154763222 0.105398573 0.433777779 0.50333643 0.575454414 0.662479639

0.295345724 0.3

Note that the output variable y(k) has only two distinct values, .3 and .6 that for

all practical purposes could be interpreted as A and B correspondingly.

To discover unknown internal properties of the process leading to the outcome A
or B, we will use cluster analysis implemented in computer program CLUSTER by

the author (1995). This program extracts the prespecified number of the most
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informative subspaces and provides a very convincing visualization of the cluster-

ing phenomenon. The following is the printout of the program CLUSTER featuring

six subspaces formed by input variables

x4&x5 - informativity criterion¼ 5.243, x4&x9 - informativity criterion¼ 5.050

x1&x4 - informativity criterion¼ 5.045, x2&x4 - informativity criterion¼ 5.043

x4&x10 - informativity criterion¼ 5.041, x4&x8 - informativity criterion¼ 5.037
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The results of cluster analysis provide important insight into the understanding

of the nature of the process, and most important, enable the process operator to

establish the recommended “operational window” in terms of the process variables.

In addition, as shown below it facilitates the predicting of the process outcome.

Example 2.11 Prediction of the process outcome based on the cluster analysis. The

clustering pattern featured in Example 2.10 indicates that separating rules could be
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defined simply by straight lines rather than ellipses. A straight line,

x1þ a1x2þ a0¼ 0, is to be defined in each subspace in such a way that the majority

of points A and B be located on different sides of this line, i.e. x1þ a1x2þ a0> 0 for

the majority of coordinates of points A and x1þ a1x2þ a0< 0 for the majority of

coordinates of points B. The development of such lines for the chosen subspaces

presents a simple manual task.

For simplicity, consider the first three subspaces of the previous example formed

by process variables x4&x5, x4&x9 and x1&x4. First consider the subspace x4&x5.

As shown in the figure below, the separating line x4þ a1x5þ a0¼ 0 can be drawn

by inspection:

This results in the computation of coefficients a1 and a0 based on equations:

x4 þ a1x5 þ a0 ¼ 0 or

:7þ a1 � 0þ a0 ¼ 0 ! a0 ¼ �:7
:15þ a1 � :7 ¼ 0 ! a1 ¼ :55

Now perform the same task for subspace x4&x9, see the figure below. The equations

are:

x4 þ a1x9 þ a0 ¼ 0 or

:6þ a1 � 0þ a0 ¼ 0 ! a0 ¼ �:6
:3þ a1 � :6 ¼ 0 ! a1 ¼ :3

2.4 Non-parametric Models. Cluster Analysis 83



Finally, the analysis of the third chosen subspace x1&x4 is as follows:
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x1 þ a1x4 þ a0 ¼ 0 or

1:0þ a1 � :2þ a0 ¼ 0

:05þ a1 � :6þ a0 ¼ 0 ! a1 ¼ 2:375
1:0þ 2:375 � :2þ a0 ¼ 0 ! a0 ¼ �1:475

Now, the existence of the separating conditions, enables us to subject the original

data array X(k)¼ [x1(k), x2(k),. . .x15(k)]
T, y(k), k¼ 1,2,. . .1000, to probabilistic

analysis by using program ANALYST written by V. Skormin (2015). This analysis

implies

– The calculation of probabilities of occurrence of two possible outcomes of the

process P(A) and P(B),
– The detection of the occurrence of events E1, E2, E3, E4, E5, E6, E7, E8 for

each measurement of process variables by computing the following functions for

each k¼ 1,2,. . .,1000

φ1 :ð Þ ¼ x4 :ð Þ þ a1x5 :ð Þ þ a0
φ2 :ð Þ ¼ x4 :ð Þ þ a1x9 :ð Þ þ a0
φ3 :ð Þ ¼ x1 :ð Þ þ a1x4 :ð Þ þ a0

then E1 is defined as φ1 < 0 & φ2 < 0 & φ3 < 0

E2 is defined as φ1 < 0 & φ2 < 0 & φ3 
 0

E3 is defined as φ1 < 0 & φ2 
 0 & φ3 < 0

E4 is defined as φ1 < 0 & φ2 
 0 & φ3 
 0

E5 is defined as φ1 
 0 & φ2 < 0 & φ3 < 0

E6 is defined as φ1 
 0 & φ2 < 0 & φ3 
 0

E7 is defined as φ1 
 0 & φ2 
 0 & φ3 < 0

E8 is defined as φ1 
 0 & φ2 
 0 & φ3 
 0

– The calculation of conditional probabilities of events E1, E2, E3, E4, E5, E6,

E7, E8 subject to outcome A and outcome B, i.e.

P(E1/A), P(E2/A), P(E3/A), P(E4/A), P(E5/A), P(E6/A), P(E7/A), P(E8/A),
P(E1/B), P(E2/B), P(E3/B), P(E4/B), P(E5/B), P(E6/B), P(E7/B), P(E8/B)

The following is the printout of the program ANALYST:

These results offer a probabilistic basis for the prediction of the process outcome

based on the immediate measurements of the input variables. The importance of

this problem is justified by possible considerable delays in receiving the
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information on process outcome due to the process dynamics and delays in mea-

surement channels (the end product may be transported to a laboratory for testing).

Note that according to available data, initial probabilities of the process outcome

are P(A)¼ .625 and P(B)¼ .375, i.e. P(A)þ P(B)¼ 1.

Assume that the table below contains two consequent measurements of the

process variables:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

.470 .827 .044 .354 .158 .490 .652 .541 .887 .149 .373 .896 .168 .112 .269

.703 .911 .325 .296 .418 .397 .179 .076 .674 .094 .518 .067 .967 .452 .635

Compute functions representing the separating lines for the first and second

measurements:

φ1 :ð Þ ¼ x4 :ð Þ þ a1x5 :ð Þ þ a0 ¼ :354þ :158 � :55� :7 ¼ �:259 < 0

φ2 :ð Þ ¼ x4 :ð Þ þ a1x9 :ð Þ þ a0 ¼ :354þ :887 � :3� :6 ¼ �:02 > 0

φ3 :ð Þ ¼ x1 :ð Þ þ a1x4 :ð Þ þ a0 ¼ :470þ :354 � 2:375� 1:475 ¼ �:164 < 0

This result is indicative of event E3. According to Bayes’ formula,

P A=E3ð Þ ¼ P E3=Að Þ � P Að Þ
P E3=Að Þ � P Að Þ þ P E3=Bð Þ � P Bð Þ ¼

:018 � :625
:018 � :625þ :045 � :375 ¼ :402

Consequently, P(B/E3)¼ 1�.402¼ .598

Let us upgrade this result further based on the second measurement:

φ1 :ð Þ ¼ x4 :ð Þ þ a1x5 :ð Þ þ a0 ¼ :296þ :418 � :55� :7 ¼ �:174 < 0

φ2 :ð Þ ¼ x4 :ð Þ þ a1x9 :ð Þ þ a0 ¼ :295þ :674 � :3� :6 ¼ �:102 < 0

φ3 :ð Þ ¼ x1 :ð Þ þ a1x4 :ð Þ þ a0 ¼ :703þ :296 � 2:375� 1:475 ¼ �:069 < 0

This result indicates event E1. According to Bayes’ formula assuming P(A)¼ .402

and P(B)¼ .598

P A=E1ð Þ ¼ P E1=Að Þ � P Að Þ
P E1=Að Þ � P Að Þ þ P E1=Bð Þ � P Bð Þ ¼

:014 � :402
:014 � :402þ :711 � :598 ¼ :013

Consequently, P(B/E1)¼ 1�.013¼ .987

The analysis indicates that almost certainly the outcome of the process is

expected to be A, i.e. output variable y¼ .6

86 2 Mathematical Description of Manufacturing Processes



2.5 Non-parametric Models. Singular-Value
Decomposition as a Tool for Cluster Analysis

Singular Value Decomposition (SVD) is a standard numerical tool readily available

to a modern engineer. It could be utilized for various process control applications

providing a dependable feature extraction, cluster analysis and pattern matching

techniques.

It is understood that monitoring of any complex phenomenon (situation, process,

structure, data set, etc.) results in a set of real numbers {x1, x2, . . ., xj, . . ., xN} that

could be “folded” in an m� n matrix,

A ¼
x1 x2 . . . xn
xnþ1 xnþ2 . . . x2n
. . . . . . . . . . . .
xN�1 xN . . . 0

2664
3775

In many cases the matrix is obtained by the very nature of the data monitoring

system, recall array XN from the LSM material.

It is known that SVD allows for the representation of such a matrix in the form

A ¼
XK
j¼1

σjPjQj
T

where

K¼m, if m> n, and K¼ n otherwise,

σj, j¼ 1,2,. . .,K are non-negative singular values of matrix A,
Pj, j¼ 1,2,. . .,K are m-dimensional left singular vectors of matrix A, and
Qj, j¼ 1,2,. . .,K are n-dimensional right singular vectors of matrix A

Since most SVD procedures list singular vectors in order of their decreasing

contribution to the sum, matrix A could be approximated by a partial sum of first

L<K terms of the above expression and the accuracy of such an approximation

increases as L approaches K. It could be said that if matrix A represents a particular

process, then its left and right singular vectors carry essential features of this

process and could be utilized for the purpose of process identification.

Consider the task of determining the degree of similarity between a process

represented by matrix A and a process represented by matrix B of the same

dimension. Traditionally, this task requires comparing these matrices on the ele-

ment-by-element basis thus for high-dimensional matrices results in a computa-

tionally intensive task. This task, however, could be carried out by measuring

matrix B not against the entire matrix A, but against features extracted from matrix

A, i.e. by computing and analyzing scalars
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wj ¼ Pj
TBQj, j ¼ 1, 2, . . . ,K

It is important that one can reduce this task to a very short list of features thus

utilizing only the most important features of matrix A

wj ¼ PT
jBQj, j ¼ 1, 2, . . . ,L < K

In most practical situations it is sufficient to have L¼ 2, 3, 4. For the purpose of

visualization, introduce two-dimensional feature space, where coordinates (fea-

tures) are the first two scalars,

w1 ¼ PT
1BQ1 andw2 ¼ PT

2BQ2

Then the location of point {w1,w2} in the feature space would represent the degree

of commonality between matrices A and B, or between the two complex phenomena

(situations, processes, structures, data sets, etc.) that they represent. It is important

to realize that the largest absolute numerical values of quantities wi, i¼ 1,2,. . . are
expected when A¼B.

Figure 2.10 depicts the degree of commonality between process A and processes

B, C, and D represented by points labeled as AB, AC and AD in the feature space. It

clearly indicates that the degree of commonality between processes A and B is

different from the one between A and C and A and D.
Figure 2.11 represents the results of matching various processes, B, C, D, E, F,

G, H, L to process A using two pairs of its singular vectors to compute quantities w1

& w2.

It is obvious that according to the resultant clustering pattern there are three

groups of processes of similar nature: Group 1: A and B, Group 2: C, E, F, and

Group 3: D, G, H, L.

Note that two-dimensional feature space is considered only to facilitate the

visualization. In order to perform computer-based analyses, the dimensionality of

the feature space could be increased, or more than one purposely chosen subspaces

Fig. 2.10 Commonality

plot for A to B, C, and D
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of the feature space could be utilized. Then the analysis would address specific

properties of the processes and enhance the robustness of the recognition procedure.

Originally, feature extraction and cluster analysis were developed for computer-

based pattern recognition and, historically, are known as machine learning. The

SVD approach is highly instrumental for both supervised and unsupervised leaning.

In the case of supervised learning, assume that m� n-dimensional matrices,

matrix A, matrix B, and matrix C are known to be representatives of three different

classes of processes. The application of SVD procedure to respective matrices will

result in the extraction of the following left and right singular vectors of these

matrices,

PAj, QAj, PBj, QBj, PCj, QCj, j ¼ 1, 2, . . . ;

where notations are self-explanatory. Now assume that an m� n-dimensional

matrix S representing unknown process could be subjected to the following

computation

δA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PA1

TSQA1ð Þ2 þ PA2
TSQA2ð Þ2 þ . . .

q
;

where PAi
TSQAi, represents the ith component, i¼ 1,2,. . .of the feature space where

matrix S in question is compared with known matrix A, and T is the transpose

symbol. In the similar fashion matrix S is compared with known matrix B and

known matrix C

δB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PB1

TSQB1ð Þ2 þ PB2
TSQB2ð Þ2 þ . . .

q
δC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PC1

TSQC1

� �2 þ PC2
TSQC2

� �2 þ . . .

q

Fig. 2.11 Commonality

plot for A to B, C, D, E, F,

G, H, and L
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Then process (matrix) S can be easily recognized as a process of class A if δA > δB

and δA > δC.
The unsupervised learning could be implemented as follows. Assume that a

complex process has a number of distinctive states, A, B, C, . . .. Assume that a

sequence of measurement vectors X(1), X(2), . . ., X(k), . . ., X(N), where X kð Þ ¼
x1 kð Þ x2 kð Þ :::: xm kð Þ½ �T is taken over a sufficiently long period of time

representing all distinctive states of process. This data could be compiled in a

m� n matrix XN defined as

XN ¼
x1 1ð Þ x2 1ð Þ . . . xm 1ð Þ
x1 2ð Þ x2 2ð Þ . . . xm 2ð Þ
. . . . . . . . . . . .

x1 Nð Þ x2 Nð Þ . . . xm Nð Þ

2664
3775 ¼

X 1ð ÞT
X 2ð ÞT
. . .

X Nð ÞT

2664
3775

Subject matrix XN to SVD that results in singular values, left and right singular

vectors, σj,Pj, Qj, j ¼ 1, 2, . . .. Then utilizing the first two right singular vectors

Q1 and Q2 of matrix XN compute the two coordinates of the feature space for each

k¼ 1,2,. . .,N,

w1 kð Þ ¼ X kð ÞT 1
σ1

Q1, and w2 kð Þ ¼ X kð ÞT 1
σ2

Q2

These coordinates are highly instrumental for making a distinction between the

process states A, B, C, . . . represented by vectors X(k), k¼ 1,2,. . .,N. Indeed, in the
feature space points with coordinates [w1(k),w2(k)], k¼ 1,2,. . .,N tend to form

clusters consistent with process states (classes) A, B, C, . . . This reality enables

one to discover the very existence of specific classes A, B, C, . . . and define them in

the factor space utilizing the clustering phenomenon. It should be noted that the

feasibility and dependability of the described procedure is dependent on the char-

acteristics of noise in the information channels forming vectors X(k), k¼ 1,2,. . .,N.
Consequently, one can conclude that the analytical technique, described herein,

could facilitate solution of a wide class of feature extraction, and feature-based

recognition tasks.

Illustration of Unsupervised Learning at Different Signal-to-Noise Ratio A simu-

lation study described below demonstrates a successful application of the SVD to

unsupervised learning. The following numerical procedure generates matrices,

representing four different processes, A, B, C, and D. Each matrix is contaminated

by noise, note that two signal-to-noise ratios were considered: .5 and 1.0. The

results are highly robust with respect to signal-to-noise ratio and are displayed in

Figs. 2.12 and 2.13. The application of the unsupervised learning procedure results

in a clear clustering phenomenon that could be used for the process recognition/

identification.
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N¼350

m¼100

f¼.5

a¼randn(m,1)

b¼randn(m,1)

Fig. 2.12 SVD for noise to signal ratio 0.5

Fig. 2.13 SVD for noise to signal ratio 1.0
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c¼randn(m,1)

d¼randn(m,1)

for k¼1:N

x¼randn(1,1)

if x>¼0

mat¼aþrandn(m,1)*f

else

mat¼bþrandn(m,1)*f

end

h(,k)¼mat

end

for k¼1:N

x¼randn(1,1)

if x>¼0

mat¼cþrandn(m,1)*f

else

mat¼dþrandn(m,1)*f

end

h(,kþN)¼mat

end

hh¼h’

(u,S,v)¼svd(hh)

svl1¼u(,1)

svl2¼u(,2)

svr1¼v(,1)

svr2¼v(,2)

mm¼2*N

for k¼1:mm

x¼hh(k,)

w1(k,1)¼x*svr1

w2(k,1)¼x*svr2

end

plot(w1,w2,’*’)

One can enhance the unsupervised learning procedure by utilizing more than two

components of the feature space, perhaps, several subspaces of the feature space. A

special recognition procedure utilizing the classification rules established by

unsupervised learning could be developed.

Exercise 2.3 The purpose of this assignment is to add the conventional cluster

analysis and analysis based on singular value decomposition to students’ profes-
sional toolbox. Both techniques will significantly extend students’ ability to

develop useful mathematical models of complex industrial processes.

Problem 1 Cluster analysis for modeling and outcome prediction of a multivari-

able process with real inputs and discrete-event output.
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Task 1. Run program GENERATOR.EXE that will create a customized array of

1000 measurements of a complex industrial process with 15 input variables and a

discrete event-type output. The value of the output variable could be only .3

(outcome A) or .6 (outcome B). This data will be recorded in file TSMD.DAT

Task 2. Run program CLUSTER.EXE that will process data in the file TSMD.

DAT by

a) assessing the impact of every combination of two process variables on the

process outcome (i.e. their contribution to the classification problem)

b) creating file SUBSPACE.DAT that will contain the prespecified number

(three is recommended) of the most informative subspaces and depict the clustering

phenomena in each subspace

Task 3. At each subspace x1&x2 establish the separating line, x1þ k � x2þ q¼ 0

such that the majority of points A and majority of points B be located on different

sides of the separating line. This task requires one to evaluate coefficients k and

q for each of the three subspaces.

Task 4. Run program ANALYST.EXE that will

a) request pairs of variable indexes for each of the three most informative

subspaces

b) request values of coefficients k and q for every separating line

c) detect events E1–E8 that may occur at each row of TSMD.DAT defined as

follows:

E1: φ1 < 0 & φ2 < 0 & φ3 < 0

E2: φ1 < 0 & φ2 < 0 & φ3 
 0

E3: φ1 < 0 & φ2 
 0 & φ3 < 0

E4: φ1 < 0 & φ2 
 0 & φ3 
 0

E5: φ1 
 0 & φ2 < 0 & φ3 < 0

E6: φ1 
 0 & φ2 < 0 & φ3 
 0

E7: φ1 
 0 & φ2 
 0 & φ3 < 0

E8: φ1 
 0 & φ2 
 0 & φ3 
 0

where

φj ¼ xi
j þ kj � xkj þ qj is the equation of the separating line of the j� th subspace,

comprizing two process variables, xi
j&xk

j

d) display self explanatory results of the probabilistic analysis of the TSMD.DAT

data

Task 5. Given two successive measurements of the input variables of the

process:

[0.633 0.768 0.502 0.814 0.371 0.057 0.618 0.141 0.279 0.363 0.538 0.662 0.844

0.322 0.298]T

[0.255 0.018 0.318 0.967 0.884 0.640 0.813 0.488 0.402 0.067 0.235 0.257 0.413

0.393 0.849]T

Utilize Bayes’ approach to define probabilities of the process outcomes based on

these measurements.
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Problem 2 Familiarizing with properties of SVD and its applications for cluster

analysis.

Task 1. Find the singular value decomposition (SVD) facility in the MATLAB

library. Learn how to access first and second, left and right singular vectors, L1, R1

and L2, R2

Task 2. Find the random matrix generator (RMG) facility in the MATLAB

library. Learn how to access the resultant matrix.

Task 3. Use RMG to generate a 400� 600 matrix A. Use SVD to obtain singular

vectors, LA1, RA1 and LA2, RA2 of this matrix.

Task 4. Use MATLAB code to generate ten “noisy versions” of matrix A,

i.e. A(i)¼Aþ.3 �Δ(i), where each Δ(i) is a unique random 400� 600 matrix

generated by the RMG. For each matrix A(i) compute wA1(i)¼LA1
T �A(i) �RA1

and wA2(i)¼LA2
T �A(i) �RA2, i¼ 1,2,. . .,10

Task 5. Use RMG to generate a 400� 600 matrix B. Use MATLAB code to

generate ten “noisy versions” of matrix B, i.e. B(i)¼Bþ.3 �Δ(i), where each Δ(i) is
a unique random 400� 600 matrix generated by the RMG. For each matrix B

(i) compute wB1(i)¼LA1
T �B(i) �RA1 and wB2(i)¼LA2

T �B(i) �RA2, i¼ 1,2,. . .,10.
(Note: use the same singular vectors LA1, RA1 and LA2, RA2 as in Task 4)

Task 6. Use RMG to generate a 400� 600 matrix C. Use MATLAB code to

generate ten “noisy versions” of matrix C, i.e. C(i)¼Cþ.3 �Δ(i), where each Δ(i) is
a unique random 400� 600 matrix generated by the RMG. For each matrix

C(i) compute wC1(i)¼LA1
T �C(i) �RA1 and wC2(i)¼LA2

T �C(i) �RA2, i¼
1,2,. . .,10. (Note: use the same singular vectors LA1, RA1 and LA2, RA2 as

in Task 4)

Task 7. Use MATLAB plotting facility to place points with coordinates [wA1(i),

wA2(i)], i¼ 1,. . .10, marked with “■”, and points with coordinates [wB1(i), wB2(i)],

i¼ 1,. . .10, marked with “□”, and points with coordinates [wC1(i), wC2(i)],

i¼ 1,. . .10, marked with “☻” on the w1w2 plane. Print out the resultant figure.

Comment on the capabilities of SVD.

Solutions

Exercise 2.1: Problem 1

For each subset of the X and Y matrices, the coefficients of A were calculated using

the following LSM procedure:

A ¼ ðXT � XÞ�1 � XT � Y

The following is the set of coefficient obtained from respective number of data

points and their “true” values:
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30 100 200 500 True

1.9811 1.9996 1.9967 1.9998 2.0000

3.0406 2.9106 3.0463 2.9823 3.0000

�2.0476 �2.0071 �2.0084 �2.0020 �2.0000

4.9867 5.0290 4.9838 5.0058 5.0000

It could be seen that the greater the number of data points, the more accurate the

approximation of A coefficients is.

Exercise 2.1: Problem 2

For each coefficient of the suggested model, a 95% confidence interval was built

based on the error of the model and the respective diagonal elements of the

covariance matrix, i.e. qii

Q ¼ K�1
xx ¼ 1

N
� XT � X

� ��1

The half-width for each confidence interval was calculated as

Δi ¼ t α ¼ :025,N ¼ 300ð Þ � σ2E �
ffiffiffiffiffi
qii
N

r
The 95 % confidence interval for the model coefficient a1 is 1.9561 to 2.0435 and

the “true” a1 is 2, so the true parameter lies within the interval.

The 95 % confidence interval for the model coefficient a2 is 2.4562 to 3.5084 and
the “true” a2 is 3, so the true parameter lies within the interval.

The 95 % confidence interval for the model coefficient a3 is�2.0745 to�1.9296

and the “true” a3 is �2, so the true parameter lies within the interval.

The 95 % confidence interval for the model coefficient a4 is 4.832 to 5.1797 and
the “true” a4 is 5, so the true parameter lies within the interval.

Exercise 2.1: Problem 3

Given the following set of input values:

eX ¼ 2:5 3 �6:3 10½ �

and matrix Q ¼ K�1
xx ¼ 1

N � XT � X

 ��1
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The 95 % confidence interval half-width was calculated as

Δ ¼ t α ¼ :025,N ¼ 300ð Þ � σ2E �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieX T � Q� eX

N

s

The 95 % confidence interval for output Y is 75.9734 to 77.2616 and the “true” Y is

76.31, so the true Y lies within the interval.

Exercise 2.1: Problem 4

The required covariance matrices are:

Kxx ¼

3.0840 0.8460 1.1580 �0.4340 0.3430

0.8460 10.9000 4.0120 0.1040 1.4420

1.1580 4.0120 6.2690 0.0010 1.5430

�0.4340 0.1040 0.0010 3.4250 0.2660

0.3430 1.4420 1.5430 0.2660 0.6770

Kxy ¼
12.9700

�19.7400

7.2130

�8.6490

0.6100

Knoise ¼

0.7500 0 0 0 0

0 1.6600 0 0 0

0 0 0.9600 0 0

0 0 0 0.2600 0

0 0 0 0 0.1100

The model parameters were estimated by the following procedure:

A ¼ ðKxxÞ�1 � Kxy

The calculated model parameters A are:

3.0896

�2.4294

1.5077

�2.0313

1.6105
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The estimation errors were calculated with the following procedure:

Errornoise ¼ Kxx � Knoiseð ÞT � Kxx � Knoiseð Þ
h i�1

� Kxy � KT
xx � Kxx

� ��1 � Kxy

The parameter estimation errors cause by this known noise are:

0.8977

�0.4328

0.0208

0.0433

0.4748

Exercise 2.1: Problem 5

First, matrix Z was calculated from matrix X and matrix W.

Z ¼ X �W

“Artificial” coefficients B were calculated from Z.

B ¼ ðZT � ZÞ�1 � ZT � Y

Then, the variance of Y was calculated and the variance for each B was calculated.

σz ið Þ2 ¼ λi � zið Þ2

σY
2 ¼

X
bðiÞ2 � σzðiÞ2

The percent of contribution from each Z was calculated as follows:

%zi ¼
bðiÞ2 � σzðiÞ2

σY2
� 100%

The contribution of z1 is 68.241 %

The contribution of z2 is 14.5954 %

The contribution of z3 is 17.1277 %

The contribution of z4 is 0.035818 %

Because of this, we will keep z1, z2, and z3.

The new vector B is:

�3.2903

1.6415

�1.9924
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0

The new W matrix:

�0.7808 �0.5914 �0.2012 0

�0.1474 0.4874 �0.8606 0

�0.4293 0.4542 0.3308 0

�0.4293 0.4542 0.3308 0

Next, we calculated the “real” coefficients A based on “artificial” coefficients

Bnew:

Aimportant ¼ Wnew � Bnew

Our calculated coefficients A are :

1.9992

2.9998

1.4990

1.4990

The coefficient of determination for the new model is 0.99863.

Exercise 2.2: Problem 1

Although the following analysis does not include “all possible combinations of first

and second order regressors, it demonstrates the principle of establishing the model

configuration using the coefficient of determination

Equation 1 with x1, x2, x3, x1x3, x2
2 has coefficients

A1 ¼ ½1:9989 2:9983 � 0:4002 0:5003 1:0009�

Equation 2 with x1, x2, x3, x1x3 has coefficients

A2 ¼ ½1:9989 2:9983 � 0:4002 0:5003�

Equation 3 with x1, x2, x3, x2
2 has coefficients

A3 ¼ ½1:9989 2:9983 � 0:4002 1:0009�

Equation 4 with x1, x2, x1x3, x2
2 has coefficients

A4 ¼ ½1:9989 2:9983 0:5003 1:0009�
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Equation 5 with x1, x3, x1x3, x2
2 has coefficients

A5 ¼ ½1:9989 � 0:4002 0:5003 1:0009�

Equation 6 with x2, x3, x1x3, x2
2 has coefficients

A6 ¼ ½2:9983 � 0:4002 0:5003 1:0009�

Equation 7 with x1, x2, x1x3 has coefficients

A7 ¼ ½1:9989 2:9983 0:5003�

Equation 8 with x1, x2, x2
2 has coefficients

A8 ¼ ½1:9989 2:9983 1:0009�

For Equations 1–8, the respective natural variance (Sy), error variance (Se), and

coefficient of determination (CD) values are:

Eqn Sy Se CD

1 132.8594 0.0250 0.9998

2 132.8594 28.8738 0.7827

3 132.8594 70.8680 0.4666

4 132.8594 1.5644 0.9882

5 132.8594 31.7197 0.7613

6 132.8594 119.9781 0.0970

7 132.8594 22.0554 0.8340

8 132.8594 53.3903 0.5981

Equation 7, y¼ 2x1þ 3x2þ 0.5x1x3, seems to be a rational model in terms of

complexity and accuracy

Exercise 2.2: Problem 2

The obtained RLSM and “true” parameters are:

RLSM “True”

7.9989 8.0000

�5.9883 �6.0000

4.9960 5.0000

The coefficient of determination for this model is 0.99994. The plot showing the

convergence of the RLSM procedure is shown below. It could be seen that RLSM

estimation of constant parameters results in the same parameter values that could be

obtained by the LSM.
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Exercise 2.2: Problem 3

It could be seen that with the forgetting factor of 1. the RLSM procedure does not

allow for tracking of drifting “true” parameters. The “final” parameter values are

(see the plot below):
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RLSM “True”

28.0449 48.0000

5.3351 14.0000

9.6195 15.0000

The coefficient of determination for the resultant model is 0.40497, compare

with the value of 0.99994 for problem 2. These results are unusable, but justify the

use of forgetting factor value of less than 1.

Exercise 2.2: Problem 4

RLSM results with the forgetting factor (Beta) Beta¼ 0.1 are shown below:

RLSM True

47.6793 48.0000

13.9316 14.0000

15.4238 15.0000

When Beta¼ 0.2, the results for A are:

RLSM True

47.6748 48.0000

13.9308 14.0000

15.4287 15.0000

Solutions 101



When Beta¼ 0.3, the results are:

RLSM True

47.6545 48.0000

13.9228 14.0000

15.4561 15.0000
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When Beta¼ 0.4, the converged coefficients of A are:

RLSM True

47.6172 48.0000

13.9090 14.0000

15.5045 15.0000

When Beta¼ 0.5:

RLSM True

47.5709 48.0000

13.8944 14.0000

15.5529 15.0000
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When Beta¼ 0.6, the converged coefficients of A are:

RLSM True

47.5318 48.0000

13.8832 14.0000

15.5578 15.0000
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When Beta¼ 0.9 and Beta¼ 1. the tracking results are:

It could be seen that as Beta approaches the value of 1.0 the tracking ability of

the RLSM procedure diminishes.
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Exercise 2.3: Problem 1

Running program GENERATOR.EXE results in an array of 1000 measurements of

a complex process with 15 input variables and a discrete event-type output that is

rated as outcome A or outcome B. This data is recorded in file TSMD.DAT.

Running program CLUSTER.EXE results in the display of the three most informa-

tive subspaces featuring distributions of events A and B in the appropriated sub-

spaces.

Subspace: X1 & X4 - Separation Line is: X1þ 1.8139X4� 1.4506¼ 0

Subspace: X1 & X5 - Separating Line: X1þ 2.858X5 – 2.0003¼ 0
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Subspace: X1 & X10 - Separating Line: X1þ 6.6622X10 – 3.6642¼ 0

Events E1–E8 represent location of a measurement point within the domain A or

domain B in the above subspaces. Below are the probabilities of these events for

outcomes A and B:

Prediction of the process outcome based on the particular measurement, X(1).

Although vector X(t) has 15 components, our analysis indicates that the values

of the following four components are to be considered:

X1 1ð Þ ¼ 0:633, X4 1ð Þ ¼ 0:814, X5 1ð Þ ¼ 0:371, X10 1ð Þ ¼ 0:363

Compute values of functionsΦ1,Φ2, andΦ3 for the selected components of vector

X(1) and based on these results define the location of the point X(1) as the

appropriate event:

Φ1 ¼ X1 1ð Þ þ K*X4 1ð Þ þ Q ¼ 0:633þ 1:8139*0:814 � 1:4506 ¼ 0:6589146
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Φ2 ¼ X1 1ð Þ þ K*X5 1ð Þ þ Q ¼ 0:633þ 2:858*0:371 � 2:0003
¼ �0:306982

Φ3 ¼ X1 1ð Þ þ K*X10 1ð Þ þ Q ¼ 0:633þ 6:6622*0:363 � 3:6642
¼ �0:6128214

The resultant event is E5, then

P Að Þ ¼ 0:563 P Bð Þ ¼ 0:437 P E5
��A� � ¼ 0:140 P E5

��B� � ¼ 0:057

P AjE5ð Þ ¼ P E5jAð Þ*P Að Þ
P E5jAð Þ*P Að Þ þ P E5jBð Þ*P Bð Þ ¼

0:140*0:563

0:140*0:563þ 0:057*0:437

¼ :7599

P BjE5ð Þ ¼ P E5jBð Þ*P Bð Þ
P E5jBð Þ*P Bð Þ þ P E5jAð Þ*P Að Þ ¼

0:057*0:437

0:057*0:437þ 0:140*0:563

¼ :2401

Consider the next measurement vector X(2) and repeat the above procedure:

X1 2ð Þ ¼ 0:255, X4 2ð Þ ¼ 0:967, X5 2ð Þ ¼ 0:884, X10 2ð Þ ¼ 0:067

Φ1 ¼ X1 2ð Þ þ K*X4 2ð Þ þ Q ¼ 0:255þ 1:8139*0:967 � 1:4506 ¼ 0:5584413

Φ2 ¼ X1 2ð Þ þ K*X5 2ð Þ þ Q ¼ 0:255þ 2:858*0:884 � 2:0003 ¼ 0:781172

Φ3 ¼ X1 2ð Þ þ K*X10 2ð Þ þ Q ¼ 0:255þ 6:6622*0:067 � 3:6642

¼ �2:9628326

That results in Event E7, therefore

P E7
��A� � ¼ 0:176 P E7

��B� � ¼ 0:016 P Að Þ ¼ 0:7599 P Bð Þ ¼ 0:2401

P AjE7ð Þ ¼ P E7jAð Þ*P Að Þ
P E7jAð Þ*P Að Þ þ P E7jBð Þ*P Bð Þ ¼

0:176*0:7599

0:176*0:7599þ 0:016*0:2401

¼ :9721

P BjE7ð Þ ¼ P E7jBð Þ*P Bð Þ
P E7jBð Þ*P Bð Þ þ P E7jAð Þ*P Að Þ ¼

0:016*0:2401

0:016*0:2401þ 0:176*0:7599

¼ :0279

The probability that these two sets of X(t) values yields result B is less than 0.03,

while the probability that the outcome would be A is above 0.97. It can be said with

much certainty that the outcome associated with these two X(t) sets would be A.
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Exercise 2.3: Problem 2

For this problem, a 400� 600 random matrix A0, matrix B0, and matrix C0 were

generated.

SVD was performed in MATLAB on matrix A0 to retrieve the first two left and

right vectors.

Then, a set of matrices A0(k)þnoise (20% of the original magnitude used to

generate matrix A), k¼1,2,3,10 and two-coordinate points {W1(k),W2(k)} were

defined by multiplication:

WðkÞ1 ¼ LA1
T � AðkÞ � RA1

WðkÞ2 ¼ LA2
T � AðkÞ � RA2

k¼1,2,. . .10

This process was repeated still using the left and right vectors of the

original matrix A0, but instead of A(k) matrices B(k) and C(k), generated

by adding noise to B0 and C0, were used, and a sequence of points {W1(k),

W2(k)}, k¼10þ1, 10þ2,. . .20, 20þ1, 20þ2,. . .,30 were established.

All of the points were plotted on a W1–W2 plane. As it can be seen, this

SVD-based procedure results in the clustering pattern revealing in spite of noise

the three classes of matrices originated from matrix A0, B0, C0.

Indeed, the SVD could be used as a tool for classification of large groups of

data sets.
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Chapter 3

Computer Control of Manufacturing
Processes

The availability of a mathematical description of a manufacturing process provides

a quantitative basis for process control that is understood as maintaining the desired

status of the process in spite of many external and internal disturbance effects. The

desired status is defined by the set points, also known as reference signals that

represent the desired numerical values of controlled variables of the process. The

control task implies that the difference between the actual and desired process

variables (error) is determined, and on the basis of this difference and according to

the control law, the control efforts are defined and applied to the process. The

manner in which the control effort drives the system from its actual state to the

desired state, and the allowable discrepancy between the actual and the desired

states are quite important. They are dependent on the control law and are explicitly

defined by the design specifications along with the discrete time step (or clock

frequency). Modern computer systems facilitate every function of the control task;

process monitoring, specification of the set points, extraction of the errors, imple-

mentation of the control law, and the application of control efforts.

3.1 S- and Z-Domain Transfer Functions

An s-domain transfer function, defined as a “Laplace transform of the output signal

over Laplace transform of the input signal under zero initial conditions” presents

the most common technique for the mathematical description of linear, dynamic,

single-input-single-output systems. In the case of a multi-input-multi-output linear

dynamic system, transfer functions of particular channels could be easily assembled

into a transfer matrix. Transfer functions enable us to address the rigors of linear

differential equations through simple algebra. Control engineers commonly use

s-domain transfer functions for the analysis and design of continuous-time control

systems. The situation changes when a discrete-time control system is to be

developed, which is a very typical case in our computer-dominated environment.
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Although discrete-time control synthesis requires the use of z-domain transfer

functions, the material of this chapter allows students to utilize their experience

with s-domain transfer functions to the fullest.

A z-domain transfer function, defined as a “Z-transform of the output signal over

Z-transform of the input signal under zero initial conditions”, is used for mathe-

matical description of linear, dynamic, single-input-single-output systems operated

by a discrete-time controller. The output of such a controller is a “number

sequence” i.e. a sequence of real numbers, u*(k), k¼ 1,2,3,. . ., generated at the

clock frequency, fCL, of the computer implementing the control law. The purpose of

the asterisk is to remind the reader that this number should be represented by an

analog signal, w(t), known as a “pulse train”

wðtÞ ¼ u∗ðkÞ if t ¼ kT

0 if ðk� 1ÞT < t < kT

�

where T ¼ 1
fCL

is the time step. A “number sequence” simply has no power to drive

the control plant, but it serves as the input to many different devices labeled as the

zero-order-hold that convert these periodically generated real numbers into a

“staircase”-type control effort

u *ðkÞ if ðkÞT � t < ðkþ 1ÞT

Note that �u*(k) is not equal to u*(k); in actuality �u*(k) is the approximation of u*

(k) by the integer number of discretization steps Δu, so that u*(k)�Δu��u * (k). It
looks like this representation results in a special round-off error that is being

introduced in the system at each time step. This is true, but the error process is

dominated by clock frequency fCL that is normally chosen well beyond the system

bandwidth.

The utilization of a zero-order-hold imposes some requirements on the mathe-

matical description of the controlled plant in the discrete-time domain. Note that the

direct z-domain equivalent of an s-domain transfer function obtained for a partic-

ular time step T

G sð Þ!T G zð Þ ¼ Z G sð Þf g

is suitable only when the process is driven by a pulse train signal. In the case of a

“controlled plant driven through a zero-order-hold” the z-domain transfer function

of the plant is defined as

G zð Þ ¼ 1� z�1
� �

Z
1

s
G sð Þ

� �

This conversion is routinely performed using a software tool and specifying the

required time step T and the ZOH conversion option:
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G sð Þ
T!

ZOH

G zð Þ ¼ 1� z�1
� �

Z
1

s
G sð Þ

� �

Speaking of this conversion, it should be mentioned that G(z) is expected to be of

the same order as G(s), and G(z) may have zeros even if G(s) does not. In the future,

we will always refer to z-domain transfer functions intended for the zero-order-hold

applications.

Consider a z-domain transfer function G zð Þ ¼ N zð Þ
D zð Þ ¼ Y zð Þ

U zð Þ where

N zð Þ ¼ bmz
m þ bm�1z

m�1 þ . . .þ b1zþ b0 ,

D zð Þ ¼ zn þ an�1z
n�1 þ an�2z

n�2 þ . . .þ a1zþ a0

are numerator and denominator of the transfer function, n�m, and Y(z) and U(z) are

Z-transforms of the output and input signals,

Y zð Þ
U zð Þ ¼

bmz
m þ bm�1z

m�1 þ . . .þ b1zþ b0

zn þ an�1zn�1 þ an�2zn�2 þ . . .þ a1zþ a0

The following is the discrete-time equivalent of the above relationship,

y kþ nð Þ ¼ �an�1y kþ n� 1ð Þ � an�2y kþ n� 2ð Þ � . . .� a1y kþ 1ð Þ � a0y kð Þ
þ bmu kþmð Þ þ bm�1u kþm� 1ð Þ þ . . .þ b1u kþ 1ð Þ þ b0u kð Þ

Example 3.1 Given transfer function of a controlled process, G sð Þ ¼ 2s2þ5sþ3
s3þ5s2þ10sþ8

,

obtain its discrete-time mathematical description assuming that this process will be

driven through a zero-order-hold and the time step T¼ 0.02 s. First, let us convert

G(s) into G(z) for the required time step and using the ZOH option:

2s2 þ 5sþ 3

s3 þ 5s2 þ 10sþ 8

T¼:02!
ZOH

G zð Þ ¼ :039z2 � :076zþ :037

z3 � 2:091z2 þ 2:806z� :905

Assume that u(k) and y(k) are the discrete-time input and output signals, then the

discrete-time description of the y(k)–u(k) relationship could be obtained as follows:

Y zð Þ
U zð Þ ¼

:039z2 � :076zþ :037

z3 � 2:091z2 þ 2:806z� :905
! Y zð Þ z3 � 2:091z2 þ 2:806z� :905

� �

¼ U zð Þ :039z2 � :076zþ :037ð Þ
and

y kþ 3ð Þ ¼ 2:091y kþ 2ð Þ � 2:806y kþ 1ð Þ þ :905y kð Þ þ :039u kþ 2ð Þ
� :076u kþ 1ð Þ þ :037u kð Þ
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Note that although the above expression properly represents the dynamic relation-

ship between variables y(k) and u(k), it is not particularly usable for computing

values of the output, y(k), given values of the input, u(k). Indeed, if k represents the
current time, the above expression deals with the future, presumably unknown,

values of the variables. Therefore, it must be converted to a recursive formula
relating the current value of the output, y(k), to the already known values of the

input and output. The recursive formula could be obtained by dividing the numer-

ator and denominator of the z-domain transfer function by the highest power of

z and making the following transformations:

Y zð Þ
U zð Þ ¼

:039z2 � :076zþ :037

z3 � 2:091z2 þ 2:806z� :905
¼ :039z�1 � :076z�2 þ :037z�3

1� 2:091z�1 þ 2:806z�2 � :905z�3
!

Y zð Þ 1� 2:091z�1 þ 2:806z�2 � :905z�3ð Þ ¼ U zð Þ :039z�1 � :076z�2 þ :037z�3ð Þ, and

y kð Þ ¼ 2:091y k� 1ð Þ � 2:806y k� 2ð Þ þ :905y k� 3ð Þ þ :039u k� 1ð Þ � :076u k� 2ð Þ
þ :037u k� 3ð Þ

thus enabling us to compute the output on the basis of already existing input/output

observations.

The following computer code could be written to perform this task (assuming

zero initial conditions):

Initialization

y3old ¼ 0

y2old ¼ 0

y1old ¼ 0

u3old ¼ 0

u2old ¼ 0

u1old ¼ 0

8>>>>>><
>>>>>>:

Beginning of the loop

Loop

Input . . . ; . . .ð Þ u
y ¼ 2:091*y1old� 2:806*y2oldþ :905*y3oldþ

:039*u1old� :076*u2oldþ :037*u3old
y3old ¼ y2old
y2old ¼ y1old
y1old ¼ y
u3old ¼ u2old
u2old ¼ u1old
u1old ¼ u
Output . . . ; . . .ð Þy

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

Return to the beginning of the loop
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The following Figs. 3.1 and 3.2 are the step responses of an analog system

described by transfer function G sð Þ ¼ 2s2þ5sþ3
s3þ5s2þ10sþ8

and the values of y(k),

k¼ 0,1,2,3,. . . obtained on the basis of the recursive formula

y kð Þ ¼ 2:091y k� 1ð Þ � 2:806y k� 2ð Þ þ :905y k� 3ð Þ þ :039u k� 1ð Þ
� :076u k� 2ð Þ þ :037u k� 3ð Þ

assuming that u(k)� 1. One can realize that the responses completely match.
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SIMULATION OF THE SYSTEM’S STEP RESPONSE USING THE S-DOMAIN TRANSFER FUNCTION

3 4 5

Fig. 3.1 s-domain transfer function step response
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SIMULATION OF THE SYSTEM’S STEP RESPONSE USING THE RECURSIVE FORMULA
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Fig. 3.2 Recursive formula representation step response
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3.2 Mathematical Modeling of Dynamic Systems

It has been agreed that a z-domain transfer function is the most attractive form of

mathematical description of a dynamic system facilitating the controls related tasks.

We will consider the development of such transfer functions using the input/output

data, u(k), y(k), k¼ 1,2,3,. . .. Unlike a static model, relating immediate values of

input/output variables, i.e. y(t)¼φ[u(t)], a dynamic model relates the immediate

value of the output variable to the immediate value of the input variable, to the

previous values of the input variables, and to the previous values of the output

variables, i.e. y(t)¼φ[u(t), u(t�τ), y(t�τ)]. In the case of a discrete-time model of a

dynamic system, relating its discrete-time values, a dynamic model can be

represented as

y kþ nð Þ ¼ φ y kþ n� 1ð Þ, y kþ n� 2ð Þ, . . . , y kð Þ, u kþ nð Þ, u kþm� 1ð Þ,½
u kþm� 2ð Þ, . . . , u kð Þ�, k ¼ 1, 2, 3, . . . :

An expression of this type can also be called a recursive formula. In the case of a

linear model the above expression can be written as

y kþ nð Þ ¼
Xn
j¼1

an�jy kþ n� jð Þ þ
Xm
j¼0

bm�ju kþm� jð Þ, k ¼ 1, 2, 3, . . . :

Having a recursive formula allows for straightforward definition of the z-domain

transfer function. Taking the Z-transform of the left-hand and right-hand sides of

the above expression and assuming zero initial conditions results in

znY zð Þ ¼
Xn
j¼1

an�jz
n�jY zð Þ þ

Xm
j¼0

bm�jz
m�jU zð Þ

Further transformation of this expression leads to the definition of a z-domain

transfer function:

Y zð Þ�zn �Xn
j¼1

an�jz
n�j

� ¼ U zð Þ
Xm
j¼0

bm�jz
m�j

Y zð Þ
U zð Þ ¼

Xm
j¼0

bm�jz
m�j

1�
Xn
j¼1

an�jz
n�j

¼ bmz
m þ bm�1z

m�1 þ bm�2z
m�2 þ . . .þ b0

zn � an�1zn�1 � an�2zn�2 � . . .� a0
¼ G zð Þ
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In many practical situations the expression for the linear dynamic model is

known in the form of a z-domain transfer function G(z) or a recursive formula,

but its parameters (coefficients), aj and bj, are unknown. Then the modeling

problem is reduced to the estimation of the unknown parameters on the basis of

the available input/output measurements, u(k), y(k), k¼ 1,2,3,. . ., N.
In order to utilize the familiar LSM, consider the recursive formula again:

y kþ nð Þ ¼
Xn
j¼1

an�jy kþ n� jð Þ þ
Xm
j¼0

bm�ju kþm� jð Þ

Introduce a set of new variables:

v kð Þ ¼ y kþ nð Þ
x1 kð Þ ¼ �y kþ n� 1ð Þ xnþ1 kð Þ ¼ u kþmð Þ
x2 kð Þ ¼ �y kþ n� 2ð Þ xnþ2 kð Þ ¼ u kþm� 1ð Þ
. . . . . .
xn�1 kð Þ ¼ �y kþ 1ð Þ xnþm kð Þ ¼ u kþ 1ð Þ
xn kð Þ ¼ �y kð Þ xnþmþ1 kð Þ ¼ u kð Þ

Since we are not equipped for dealing with negative discrete-time index values, and

n>m, assume that k¼ 1,2,. . ., N�n. Introduce vector

x kð Þ ¼ x1 kð Þ, x2 kð Þ, . . . , xn kð Þ, . . . , xnþ1 kð Þ½ �T, k ¼ 1, 2, 3, . . .N� n

and organize all values of x(k) into the array X (realize that transposed vectors x

(k) serve as rows in this array and it contains only N�n rows). Measurements v(k),

k¼ 1, 2,. . ., N�n could be arranged in array V that also has N�n rows. Now our

original recursive formula could be represented as

v kð Þ ¼ x kð ÞTC;

where

x kð Þ ¼

x1 kð Þ
x2 kð Þ
. . .

xnþm kð Þ
xnþmþ1 kð Þ

2
666664

3
777775

and C ¼

c1

c2

. . .
cnþm

cnþmþ1

2
666664

3
777775
¼

�an�1

�an�2

. . .

�a0

bm

. . .

b0

2
66666666664

3
77777777775
:
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It is understood that known measurements u(k), y(k), k¼ 1,2,3,. . ., N result in

the known arrays XN and VN, and unknown coefficients C can be estimated using

the LSM approach, i.e.,

C ¼ XTX
� ��1

XTV
� �

and then interpreted as parameters of the z-domain transfer function

G zð Þ ¼ Y zð Þ
U zð Þ ¼

bmz
m þ bm�1z

m�1 þ bm�2z
m�2 þ . . .þ b0

zn þ an�1zn�1 þ an�2zn�2 þ . . .þ a0

Moreover, the RLSM could be utilized for the same estimation task which is even

more desirable since it assures that the most recent changes in the controlled plant

are reflected by the model. Note that all techniques for model validation and

confidence analysis of model parameters are applicable in this case.

It is good to know that LSM/RLSM –based parameter estimation of a dynamic

model results in the coefficients of a z-domain transfer function intended for the

zero-order-hold applications.

Example 3.2 Estimation of parameters of a z-domain transfer function

G zð Þ ¼ b1zþ b0

z2 þ a1zþ a0

of a controlled plant utilizing input/output measurement data.

First, realize that computationally this problem can be reduced to the estimation

of coefficients of the following regression equation:

v kð Þ ¼ c1x1 kð Þ þ c2x2 kð Þ þ c3x3 kð Þ þ c4x4 kð Þ

where v(k)¼ y(kþ 2), x1(k)¼�y(kþ 1), x2(k)¼�y(k), x3(k)¼ u(kþ 1), and

x4(k)¼ u(k).

The following are the measurement data for u(k), y(k), k¼ 1,2,. . ., and arrays X

and V:
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k

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

2
66666666666666666666666666664

3
77777777777777777777777777775

u

�1:723
1:871
16:15
�1:768
6:531
�5:464
1:941
9:257
12:040
15:310
�13:56
0:515
10:20
�12:26
7:085
8:717

2
66666666666666666666666666664

3
77777777777777777777777777775

y

0:000
�0:101
0:014
0:959
0:809
1:152
0:775
0:849
1:347
1:984
2:780
1:845
1:777
2:278
1:438
1:769

2
66666666666666666666666666664

3
77777777777777777777777777775

X ¼

0:101 0:000 1:871 � 1:723
�0:014 0:101 16:150 1:871
�0:959 � 0:014 � 1:768 16:15
�0:809 � 0:959 6:531 � 1:768
1:152 � 0:809 � 5:464 6:531
�0:775 � 1:152 1:941 � 5:464
�0:849 � 0:775 9:257 1:941
�1:347 � 0:849 12:04 9:257
�1:984 � 1:347 15:31 12:04
�2:780 � 1:984 � 13:56 15:31
�1:845 � 2:780 0:515 � 13:56
�1:777 � 1:845 10:20 0:515
�2:278 � 1:777 � 12:26 10:20
�1:438 � 2:278 7:085 � 12:26

2
66666666666666666666664

3
77777777777777777777775

,

V ¼

0:014
0:959
0:809
1:152
0:775
0:849
1:347
1:984
2:780
1:845
1:777
2:278
1:438
1:769

2
66666666666666666666664

3
77777777777777777777775

then (XTX)�1(XTV)¼
0:0023
�0:892
0:0589
0:0568

2
664

3
775¼ C and the resultant z-domain transfer function

is

GðzÞ ¼ YðzÞ
UðzÞ ¼

0:0589þ 0:0568z�1

1� 0:0023z�1 þ 0:892z�2
¼ ð0:0589zþ 0568Þz

z2 � 0:0023zþ 0:892

Example 3.3 Investigation of the effect of measurement noise on parameter

estimation.

Assume that a continuous-time controlled plant is described by the following

transfer function:
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G sð Þ ¼ 5s2 þ 6s þ 1

s2 þ 5s þ 10ð Þ sþ 11ð Þ

The conversion of this transfer function in the z-domain for the time step of 0.01 s

and the ZOH option yields

G zð Þ ¼ 0:04644 z2 � 1:988z þ 0:9881ð Þ
z2 � 1:95z þ 0:9512ð Þ z� 0:8958ð Þ ¼

0:046z2 � 0:092zþ 0:046

z3 � 2:846z2 þ 2:698z� 0:852

A software tool has been used to simulate the response of the continuous-time

system to a random signal that was sampled every 0.01 s and the resultant input/

output data, y(k), u(k), k¼ 1,2,. . ., 1500, was placed in a file. On the basis of this

data, a 1500	 6 array X and a 1500	 1 array V were obtained. The following are

covariance matrices KXX and KXV:

KXX ¼

1:007 0:884 0:778 � 0:179 � 5:024 � 4:239
0:884 1:007 0:883 � 0:283 � 0:175 � 5:020
0:778 0:883 1:006 � 0:289 � 0:280 � 0:173
�0:179 � 0:283 � 0:289 105:6 � 0:759 1:309
�5:024 � 0:175 � 0:280 � 0:759 105:6 � 0:790
�4:239 � 5:020 � 0:173 1:309 � 0:790 105:6

2
6666664

3
7777775
,

KXV ¼

�0:884
�0:778
�0:684
5:029
4:244
3:644

2
6666664

3
7777775

Application of the LSM procedure results in the estimation of the parameters of the

regression equation

C ¼ KXX
�1*KXV ¼

�2:846

2:698

�0:852

0:046

�0:092

0:046

2
6666664

3
7777775

that can easily be recognized as particular parameters of the z-domain transfer

function.

Now let us introduce “measurement noise” with the standard deviation of 0.0002

in the output channel by adding appropriately chosen random signal to the [y(k),

k¼ 1,2,. . .] data.
This results in a significant change in the parameters C due to the fact that in the

regression equation, representing the dynamic model some of the inputs
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(regressors) are nothing but the output variable shifted in time. Consequently, the

“noise in the output” becomes the “input noise”

C ¼ KXX
�1*KXV ¼

�1:834

0:811

0:027

0:046

�0:045

�0:001

2
6666664

3
7777775

At the same time, knowing the variance of this noise can be quite fruitful for

improving the estimates. Let us approximate the covariance matrix of the noise as

follows:

Knoise ¼

σn2 0 0 0 0 0

0 σn2 0 0 0 0

0 0 σn2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775
¼

4e� 8 0 0 0 0 0

0 4e� 8 0 0 0 0

0 0 4e� 8 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775

where σn
2¼ 4e-8 is the variance of the noise in the output channel (note that only

first three regressors are defined as shifted output y(k)). Now the improved param-

eter estimates can be obtained as

C ¼ KXX � Knoiseð Þ�1*KXV ¼

�2:823
2:655
�0:832
0:046
�0:091
0:045

2
6666664

3
7777775

Model validation includes,

(1) Computation of the modeling error: E¼V�X*C,

(2) Computation of the variance of the modeling error: σERR2¼ 1
1500

ETE¼ 1e�6

(3) Computation of the natural variance of variable y (using the CC function):

σY2¼ var(V)¼ 0.95

(4) Computation of the coefficient of determination η, which in our case is very

close to 1. It can be concluded that a high quality model was obtained.
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3.3 Control System with an Output Feedback Controller

Since most realistic manufacturing processes are continuous-time processes, con-

sider its original mathematical description in the form of an s-domain transfer

function G(s). To simplify the presentation, assume that transfer function G

(s) does not have right-hand-side zeros. It is quite common that the exact definition

of the transfer function is unknown, and the system designer must rely on its

discrete-time equivalent G(z) obtained by regression analysis. Recall that G

(z) corresponds to the chosen discrete time step T and reflects the most realistic

scheme of discrete-time control: the plant is driven through a zero-order-hold.

Assume that the design specifications are given by the system bandwidth, ωBW,

and the disturbance rejection, δ db.

First, let us present the general description of the design methodology.

Assume that the transfer function of the controlled plant is given in the form

GP zð Þ ¼ NP zð Þ
DP zð Þ where NP(z) and DP(z) are m-th order polynomial numerator and

n-th polynomial denominator, and n�m. Similarly, the model transfer function,

originally defined in the s-domain to comply with the system design specifications

and then converted into the z-domain (for the appropriate time step and the ZOH

option), is GM zð Þ ¼ NM zð Þ
DM zð Þ where NM(z) and DM(z) are n-1-th order polynomial

numerator and n-th polynomial denominator. Next, filter Q zð Þ ¼ 1
NP zð Þ is to be

introduced in the input of the plant and a feedback H(z), where H(z) is a n�1 order

polynomial must be introduced forming the system configuration in Fig. 3.3.

It could be seen that the closed-loop transfer function of this system is

GCL zð Þ ¼
Q zð Þ NP zð Þ

DP zð Þ
1þ H zð ÞQ zð Þ NP zð Þ

DP zð Þ
¼

1
NP zð Þ

NP zð Þ
DP zð Þ

1þ H zð Þ 1
NP zð Þ

NP zð Þ
DP zð Þ

¼ 1

DP zð Þ þ H zð Þ

It is necessary to ensure that the closed-loop transfer function GCL(z) can be

modified to become equal to the model transfer function. First, the characteristic

polynomial of the closed-loop system must be equal to the characteristic polyno-

mial of the model transfer function, i.e.

DP zð Þ þ H zð Þ ¼ DM zð Þ

Q(z) GP(z)

H(z)

_

Fig. 3.3 System with filter and feedback controller
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that results in the straight-forward definition of the polynomial H(z):

H zð Þ ¼ DM zð Þ � DP zð Þ

Second, the zeros of the closed-loop transfer function must be equal to the zeros of

the model transfer function, that can be achieved by placing a polynomial filter

NM(z) in the reference channel of the above system. This setup is shown in Fig. 3.4.

Finally, the above block diagram in Fig. 3.4 should be transformed resulting in

the configuration of the control system as shown below in Fig. 3.5.

Note that the presented design procedure does not address the steady-state error

requirements that could be a part of design specifications. These requirements could

be satisfied by the manipulation of the non-dominant poles of the model transfer

function and/or introduction of an integrator in the control loop as will be demon-

strated by the numerical examples below.

The design methodology could be best illustrated by the following numerical

example.

Example 3.4 Given the transfer function of a fourth order controlled plant,

established on the basis of input/output measurement data (time step of 0.01 s):

GP zð Þ ¼ :01 z3 � 2:94z2 þ 2:88z � :94ð Þ
z4 � 3:98z3 þ 5:94z2 � 3:94z þ 0:98

The design specifications call for the system bandwidth ωBW¼ 10 rad/s and the

disturbance rejection δ¼ 15 db.

Recall that GP(z) is consistent with the time step of 0.01 s and the ZOH case.

First, let us introduce an s-domain model transfer function, GM(s), of the same

order as the controlled plant, representing a system with the desired bandwidth of

Q(z) GP(z)

H(z)

__NM(z)

Fig. 3.4 System with filter, feedback controller, and input pre-filter

GP(z)

H(z)Q(z)

_NM(z)Q(z) _

Fig. 3.5 Simplified system from Fig. 3.4
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10 rad/s. Recall that the frequency response of this system must have the magnitude

of zero db within the frequency range 0<ω�ωBW and then should exhibit a

magnitude drop of 20 db/dec or more. For this purpose it is recommended to choose

a system with a dominant second order term with the damping ratio of 0.8 and the

natural frequency of 10 rad/s. The non-dominant part of the characteristic polyno-

mial may have two first order terms. For low overshoot of the system step response

it is recommended not to have zeros, and the constant gain of the transfer function

shall be chosen to assure thatGCL 0ð Þ ¼ 1:One can realize that this transfer function
represents the desired closed-loop dynamics of the reference channel of the system

to be designed:

GCL sð Þ ¼ 200000

s2 þ 2 � 0:8 � 10 � sþ 102
� �

sþ 40ð Þ sþ 50ð Þ
¼ 200000

s2 þ 16 � sþ 100ð Þ sþ 40ð Þ sþ 50ð Þ

Obtain the z-domain equivalent of this transfer function for the ZOH option and

the time step of 0.01 s (a computer tool is recommended for this task):

GCL zð Þ ¼ 6:76e� 05 z3 þ 8:94z2 þ 7:24z þ :53ð Þ
z4 � 3:12z3 þ 3:61z2 � 1:84zþ :35

Note that although the s-domain transfer function GCL(s) does not have zeros, its

z-domain equivalent, GCL(z) has zeros.

Assume that filter

Q zð Þ ¼ 1

:01 z3 � 2:94z2 þ 2:88z � :94ð Þ ¼
100

z3 � 2:94z2 þ 2:88z � :94

is placed in the input of the controlled plant and a polynomial feedback,

H zð Þ ¼ h3z
3 þ h2z

2 þ h1zþ h0

is introduced. It could be seen that the overall transfer function of this system is

GOV zð Þ ¼ 1

z4 þ h3 � 3:98ð Þz3 þ h2 þ 5:94ð Þz2 þ h1 � 3:94ð Þzþ h0 þ :98

and its characteristic polynomial must be equal to the denominator of the desired

closed-loop transfer function GCL(z), i.e.

z4 þ h3 � 3:98ð Þz3 þ h2 þ 5:94ð Þz2 þ h1 � 3:94ð Þzþ h0 þ :98 ¼ z4 � 3:12z3

þ 3:61z2 � 1:84zþ :35
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This relationship leads to the following equations defining numerical values of

parameters h0 – h3:

h3� 3.98¼�3.12! h3¼ .86

h2þ 5.94¼ 3.61! h2¼�2.33

h1� 3.94¼�1.84! h1¼ 2.10

h0þ .98¼ .35! h0¼�.63

Now that the controller H(z) has been defined, let us modify the system block

diagram as follows in Fig. 3.6.

It can easily be found that the overall transfer function of this system is

1

:01 z3 � 2:94z2 þ 2:88z � :94ð Þ 	
:01 z3 � 2:94z2 þ 2:88z � :94ð Þ

z4 � 3:98z3 þ 5:94z2 � 3:94z þ 0:98

1þ :01 z3 � 2:94z2 þ 2:88z � :94ð Þ
z4 � 3:98z3 þ 5:94z2 � 3:94z þ 0:98

	 1

:01 z3 � 2:94z2 þ 2:88z � :94ð Þ 	 :86z3 � 2:33z2 þ 2:10z � :63
� �

¼ 1

z4 � 3:98z3 þ 5:94z2 � 3:94z þ 0:98ð Þ þ :86z3 � 2:33z2 þ 2:10z � :63ð Þ
¼ 1

z4 � 3:12z3 þ 3:61z2 � 1:84z þ 0:35

This indicates that the “last touch” of our design procedure is the modification of

the filter in the reference channel. The modified filter should have the transfer

function

F zð Þ ¼ NM zð ÞQ zð Þ ¼ 6:76e� 05 z3 þ 8:94z2 þ 7:24z þ :53
� �

Q zð Þ

where NM(z) is the polynomial numerator of the model transfer function, then the

overall system transfer function for the reference input will be exactly equal to

GM(z).

Let us also define the closed-loop transfer function of the control system for the

disturbance channel, understanding that the disturbance could be approximated by a

staircase- type signal applied directly to the input of the controlled plant as shown

below in Fig. 3.7. Then the closed loop transfer function of the disturbance channel is,

GP (z)

H(z)Q(z)

Q(z)R(z) Y(z)
_

U(z)

_

Fig. 3.6 System with zero-cancelling filter and feedback controller
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GD zð Þ ¼
:01 z3 �2:94z2 þ2:88z �:94ð Þ

z4�3:98z3 þ5:94z2 �3:94z þ0:98

1þ :01 z3 �2:94z2 þ2:88z �:94ð Þ
z4�3:98z3 þ5:94z2 �3:94z þ0:98

	 :86z3 �2:33z2 þ2:10z �:63
:01 z3 �2:94z2 þ2:88z �:94ð Þ

¼ :01 z3 � 2:94z2 þ 2:88z � :94ð Þ
z4 � 3:12z3 þ 3:61z2 � 1:84zþ :35

The following Figs. 3.8, 3.9, 3.10, and 3.11 demonstrate the closed-loop char-

acteristics of the design system

GP(z)

H(z)Q(z)

_NM(z)Q(z)

Disturbance

Reference

__

Fig. 3.7 System with input filter and feedback controller
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Fig. 3.8 Reference step response of closed-loop system
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3.4 Control System with a State-Variable Feedback
Controller

3.4.1 Discrete-Time State-Variable Description of Control
Systems

In many instances the controlled process is described in continuous-time state-

variable form,

_X ¼ ACXþ BCU, and Y ¼ CU

where X ¼ X tð Þ and _X ¼ _X tð Þ is the state vector (n	 1) comprising relevant

physical variables (state variables) of the process and its first derivative, Y¼Y(t) is

the vector (m	 1, m� n) of controlled variables, U¼U(t) is the vector (m	 1) of

controlled efforts, AC is the fundamental matrix (n	 n) of the system, BC is the

matrix (n	m) through which control efforts contribute to particular state equations,

C is the matrix (m	 n) that is used to designate the output variables, and subscript C is

intended to remind the reader that we are dealing with a continuous-time system, and

t is continuous time. It is expected state equations reflect laws of physics and state

variables are real physical variables that can be continuously monitored through

special sensors.

Development of a computer-based control system for a controlled plant

represented by a state-variable model requires that its continuous-time description

be converted into a discrete-time state-variable form,
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Fig. 3.11 Disturbance channel frequency response of closed-loop system
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X kþ 1ð Þ ¼ AX kð Þ þ BU kð Þ
Y kð Þ ¼ CX kð Þ, k ¼ 0, 1, 2, ::::

Again, the conversion must be performed for the required time step, T, and for the

zero-order-hold application. Although the conversion should be accomplished

using an engineering software tool, it is good to remember that

A ¼ Iþ T � AC þ T2

2
AC

2 þ T3

2 � 3AC
3 þ T4

2 � 3 � 4AC
4 þ ::::

B ¼ T � Iþ T2

2
AC þ T3

2 � 3AC
2 þ T4

2 � 3 � 4AC
3 þ ::::

� �
� BC

where I is the identity matrix, and matrix C is the same for the continuous- and

discrete-time forms.

A state-variable controller implements the following control law:

U kð Þ ¼ R kð Þ � FX kð Þ, k ¼ 1, 2, 3, . . .

where U(k) is the control effort (m	 1) applied to the plant in the form of staircase-

type signals, R(k) is the reference signal (m	 1), and F is a matrix (m	 n) of

parameters of the controller. Note that signal R(k) may be different from the

set-point signal R0(k) actually representing the desired values of the output vari-

ables Y(k). As shown in the diagram below in Fig. 3.12, signal R(k) can be defined

as R(z)¼W(z)R0(z) where W(z) is a digital matrix-filter (m	m).

The matrix diagram above helps to realize that the control system has two

different channels and two closed-loop transfer functions (transfer matrices), for

the reference channel,

GCL
R zð Þ ¼ C zI� Aþ BFð Þ�1

BW zð Þ

CBR

A

F

W(z) Y
X(k)

R0

X(k+1 )

+
_

Disturbance
BD

z-1 

FF

_

Fig. 3.12 State-variable definition of system with filter and feedback controller
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and for the disturbance channel,

GCL
D zð Þ ¼ C zI� Aþ BFð Þ�1

BD,

where BD is the matrix through which the disturbance contributes to the state

equations. Note that generally speaking, matrix BD is different from matrix B.

Indeed, combining the control law with the state-variable description of the

controlled plant, results in the state-variable description of the closed-loop system,

X kþ 1ð Þ ¼ AX kð Þ þ BR kð Þ � BFX kð Þ and Y kð Þ ¼ CX kð Þ, k ¼ 0, 1, 2, ::::

Taking the Z-transform of these equations under zero initial conditions results in

zX zð Þ ¼ AX zð Þ þ BR zð Þ � BFX zð Þ and Y zð Þ ¼ CX zð Þ
zX zð Þ ¼ AX zð Þ þ BR zð Þ � BFX zð Þ or zI� Aþ BFð ÞX zð Þ ¼ BR zð Þ, and
X zð Þ ¼ zI� Aþ BFð Þ�1

BR zð Þ

Multiplying left and right-hand sides of the last equation by matrix C results in the

relationship between the reference and the output vector,

CX zð Þ ¼ C zI� Aþ BFð Þ�1
BR zð Þ ¼ Y zð Þ

Recall that R(z)¼W(z)R0(z), then

Y zð Þ ¼ C zI� Aþ BFð Þ�1
BW zð ÞR0 zð Þ

and consequently, C zI� Aþ BFð Þ�1
BW zð Þ should be interpreted as the transfer

function (transfer matrix) of the reference channel.

In the case of the disturbance input that may contribute to the state equations

through matrix BD 6¼B, the situation is as follows:

X kþ 1ð Þ ¼ AX kð Þ þ BU kð Þ þ BDD kð Þ
U kð Þ ¼ R kð Þ � FX kð Þ
Y kð Þ ¼ CX kð Þ, k ¼ 0, 1, 2, ::::

X kþ 1ð Þ ¼ AX kð Þ þ BR kð Þ � BFX kð Þ þ BDD kð Þ
Y kð Þ ¼ CX kð Þ, k ¼ 0, 1, 2, ::::

zX zð Þ ¼ AX zð Þ þ BR zð Þ � BFX zð Þ þ BDD zð Þ, Y zð Þ ¼ CX zð Þ
zI� Aþ BFð ÞX zð Þ ¼ BR zð Þ þ BDD zð Þ
X zð Þ ¼ zI� Aþ BFð Þ�1

BR zð Þ þ zI� Aþ BFð Þ�1
BDD zð Þ

Multiply the left-hand side and right-hand side of the equation by C and for the

disturbance input assume R(z)¼ 0, then
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Y zð Þ ¼ C zI� Aþ BFð Þ�1
BDD zð Þ

and finally the transfer function (transfer matrix) of the disturbance channel is

C zI� Aþ BFð Þ�1
BD

X kþ 1ð Þ ¼ AMX kð Þ þ BMU kð Þ, Y kð Þ ¼ CMX kð Þ, k ¼ 0, 1, 2, ::::

In many instances the state-variable description of the control system in its

arbitrary form (most likely consistent with the laws of physics or results of

regression analysis)

X kþ 1ð Þ ¼ AX kð Þ þ BU kð Þ þ BDD kð Þ
U kð Þ ¼ R kð Þ � FX kð Þ
Y kð Þ ¼ CX kð Þ, k ¼ 0, 1, 2, ::::

should be converted into the canonical controllable form (CCF),

V kþ 1ð Þ ¼ ACCFV kð Þ þ BCCFU kð Þ þ BD
CCFD kð Þ

U kð Þ ¼ R kð Þ � FCCFV kð Þ
Y kð Þ ¼ CCCFV kð Þ, k ¼ 0, 1, 2, ::::

whereACCF¼PAP�1, BCCF¼PB, BD
CCF¼PBD, FCCF¼FP�1, CCCF¼CP�1, V(k)¼

PX(k), and P is a n	n matrix, providing the “key” to converting an arbitrary state-

variable form to the CCF. As per undergraduate controls,

P ¼

Q

QA

QA2

. . .

QAn�1

2
6666664

3
7777775
where Q ¼ 0 0 . . . 0 1½ � � B AB A2B . . . An�1B

� 	�1

Let us verify the relationship between V(k) and X(k) state vectors (assume

D(k)¼ 0):

V kþ 1ð Þ ¼ PAP�1V kð Þ þ PBU kð Þ or P�1V kþ 1ð Þ ¼ AP�1V kð Þ þ BU kð Þ

Indeed, if P�1V(k)¼X(k) the last equation turns into the original state equation in

the arbitrary form, X(kþ 1)¼AX(k)þBU(k)
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3.4.2 Design of a Discrete-Time State-Variable Controller

Assume that the design specifications are given by the settling time, TSET, over-

shoot of the step response, P%, and the steady-state error caused by a unit step

disturbance. Consider a design procedure resulting in a control system with a state-

variable controller consistent with the above specifications. The procedure is

intended for the situation when the transfer function of the controlled plant,

GP zð Þ ¼ C zI� Að Þ�1
B

does not have zeros outside the unit circle.

First, it is recommended to define an s-domain model transfer function GM(s) in

full compliance with the settling time and the overshoot of the step response that

can be achieved by the choice of dominant and non-dominant poles. The order of

this transfer function must be the same as the order of the controlled plant, and it

shall not have zeros. The constant gain of this transfer function must be chosen such

that GM(0)¼ 1.

The next step is to convert model transfer function into the discrete-time domain

using the ZOH option and the appropriate time step, T, that will result in transfer

function GM(z):

GM sð Þ
T

!
ZOH

GM zð Þ

Finally, GM(z) should be subjected to direct decomposition that will yield the

state-variable equivalent of GM(z) in the canonical controllable form (CCF),

X kþ 1ð Þ ¼ AMX kð Þ þ BMU kð Þ, Y kð Þ ¼ CMX kð Þ, k ¼ 0, 1, 2, ::::

Convert the state-variable description of the control system

X kþ 1ð Þ ¼ AX kð Þ þ BU kð Þ þ BDD kð Þ
U kð Þ ¼ R kð Þ � FX kð Þ
Y kð Þ ¼ CX kð Þ, k ¼ 0, 1, 2, ::::

into the CCF form,

V kþ 1ð Þ ¼ ACCFV kð Þ þ BCCFU kð Þ þ BD
CCFD kð Þ

U kð Þ ¼ R kð Þ � FCCFV kð Þ
Y kð Þ ¼ CCCFV kð Þ, k ¼ 0, 1, 2, ::::

This conversion would drastically simplify the controller design problem.
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It can be seen that the state equation of the closed-loop system is

V kþ 1ð Þ ¼ ACCF � BCCFFCCFð ÞV kð Þ þ BCCFR kð Þ þ BD
CCFD kð Þ

It is our goal to assure that the fundamental matrix of the closed-loop system in

CCF, ACCF�BCCFFCCF, be equal to the fundamental matrix of the model system,

AM, i.e.

ACCF � BCCFFCCF ¼ AM

Therefore, BCCFFCCF ¼ ACCF � AM. Generally speaking, this equation is not “user-

friendly”, especially when BCCF is not a square matrix, however, in the case of a

single-input-single-output system and a CCF format of all relevant matrices, this

equation looks like,

0

0

. . .
0

1

2
66664

3
77775 f1 f2 . . . fn�1 fn½ � ¼

0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1

a1
CCF a2

CCF a3
CCF . . . an

CCF

2
66664

3
77775

�

0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1

a1
M a2

M a3
M . . . an

M

2
66664

3
77775

and consequently,

FCCF ¼ BCCF
T ACCF � AMð Þ ¼ 0 0 . . . 0 1½ � ACCF � AMð Þ

The designed controller is intended for the state vector of the CCF, V(k), to

provide the state-variable feedback. It is now time to obtain the controller consistent

with the “real” state vector, X(k), by post-multiplying matrix FCCF by matrix P:

F ¼ FCCFP

It can be found that closed-loop transfer function

C zI� Aþ BFð Þ�1
B

has the same denominator (characteristic polynomial) as the model transfer func-

tion, GM(z). However, its numerator, N(z)¼NP(z), is equal to the numerator of the

transfer function of the controlled plant, GP zð Þ ¼ C zI� Að Þ�1
B and is different

from the numerator of the model transfer function NM(z). This reality will adversely
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affect the overshoot of the step response of the designed system, and can be

corrected by the introduction of a digital filter in the reference channel of the

designed system,

W zð Þ ¼ NM zð Þ
NP zð Þ

Finally, the steady-state error caused by unit step disturbance applied to the

designed system can be evaluated. Recall that the error caused by disturbance is the

system response to this disturbance. The z-transform of the error caused by unit step

disturbance, E(z), can be defined as the z-transform of the unit step signal multi-

plied by the transfer function of the disturbance channel:

E zð Þ ¼ C zI� Aþ BFð Þ�1
BD z

z� 1

The steady-state error, ESS, is defined by the application of the final value

theorem of z-transform to the above expression:

ESS ¼ Lim
k!1

E kð Þ ¼ Lim
z!1

z� 1

z
E zð Þ ¼ Lim

z!1

z� 1

z
C zI� Aþ BFð Þ�1

BD z

z� 1

¼ C I� Aþ BFð Þ�1

According to this result, the value of the steady-state error, ESS, can be manip-

ulated by the choice of non-dominant poles of the model transfer function GM(s) in

the beginning of the design procedure.

Example 3.5 The following are the state and output equations of the controlled

plant obtained on the basis of regression models, note explicitly defined matrices A,

B, and C:

X kþ 1ð Þ ¼
�0:440 4:095 4:716 4:072
�0:333 3:090 2:730 1:468
�0:331 � 2:612 � 1:164 0:408
�0:440 2:716 2:851 2:504

2
664

3
775X kð Þ þ

2

0

1

2

2
664

3
775U kð Þ and Y kð Þ

¼ �1 � 0:3 1 3½ � 	 1e� 5

The design specifications call for 0.67 s settling time, overshoot of the step

response of 10%, and the steady-state error for unit step disturbance ESS� 0.15

(abs. units). The time step of the digital controller is 0.005 s.

The following model transfer function is defined in the s-domain in compliance

with the settling time and overshoot requirements:

GM sð Þ ¼ 200000

s2 þ 12s þ 100ð Þ sþ 40ð Þ sþ 50ð Þ
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It has been converted into the z-domain for the time step of 0.005 s using the

zero-order-hold option:

GM zð Þ ¼ 4:707e� 06 z3 þ 9:947z2 þ 8:982z þ 0:7364ð Þ
z2 � 1:939z þ 0:9418ð Þ z� 0:8187ð Þ z� 0:7788ð Þ

The direct decomposition of the above transfer function results in the following

fundamental matrix:

AM ¼
0 1 0 0

0 0 1 0

0 0 0 1

�0:600 2:741 � 4:678 3:537

2
664

3
775

The following matrix filter facilitating the conversion of the state-variable

description of the controlled plant to CCF was obtained:

P ¼
0:222 � 0:302 � 0:090 � 0:177
0:111 � 0:273 � 0:180 � 0:021
0:111 0:025 � 0:072 � 0:075

�2e� 04 0:514 0:460 0:270

2
664

3
775

The following matrix is the result of converting the fundamental matrix of the

controlled plant to CCF, i.e. ACCF¼ PAP�1:

ACCF ¼
0 1 0 0

0 0 1 0

0 0 0 1

� 0:991 3:973 � 5:974 3:990

2
664

3
775

Since ACCF�BCCFFCCF¼AM, due to specific configuration of matrix BCCF the

matrix of the controller FCCF can be found as the “last row of the difference

ACCF�AM”:

FCCF ¼ 0 0 0 1½ � ACCF � AMð Þ ¼ �0:390 1:232 � 1:296 0:453½ �

Finally, matrix F of the state-variable controller consistent with the state vector

X(k) is defined as follows:

F ¼ FCCFP ¼ �0:094 � 0:017 0:115 0:263½ �
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Define the closed-loop transfer function GCL(z)¼C(zI�AþBF)�1B:

GCL zð Þ ¼ 5e� 5 z� 0:6002ð Þ z2 � 2:1z þ 1:802ð Þ
z� 0:7788ð Þ z� 0:8187ð Þ z2 � 1:939z þ 0:9418ð Þ

One can realize that it has the denominator of the model transfer function, as

required, but its numerator is quite different from the numerator of the model

transfer function. Note that the computation of the closed-loop transfer function

is quite a formidable task; it is much easier to define this numerator from the matrix

CCCF of the plant:

CCCF ¼ �5:407 15:31 � 13:50 5:000½ �1e� 5

NP zð Þ ¼ 1e� 5 5z3 � 13:50z2 þ 15:31z� 5:407
� �

W zð Þ ¼ 4:707e� 06 z3 þ 9:947z2 þ 8:982z þ 0:7364ð Þ
1e� 5 5z3 � 13:50z2 þ 15:31z� 5:407ð Þ

or

W zð Þ ¼ 0:4707 z3 þ 9:947z2 þ 8:982z þ 0:7364ð Þ
5z3 � 13:50z2 þ 15:31z� 5:407

The simulation indicates that the reference channel of the designed system is

compliant with the design specifications (see Fig. 3.13).

Application of the final value theorem results in the following value of the

steady-state error for unit step disturbance (it is assumed that BD¼B):

ESS ¼ C I� Aþ BFð Þ�1
B ¼ 0:144 unitsð Þ

1.2

1

0.8

0.6y 1

0.4

0.2

0
0 0.5

Response of the closed-loop system to unit step reference

Response of the closed-loop system to unit step disturbance

1 1.5 2
Time

Fig. 3.13 System response to step reference and step disturbance
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Exercise 3.1

Problem 1 The controlled plant is defined by its transfer function,

GP sð Þ ¼ s2 þ 6sþ 10

s3 þ 2s2 þ 9sþ 8

Utilize a simulator to obtain the response of the controlled plant to a combination of

random noise and a sinusoidal signal. Record 500 successive measurements of the

resultant input/output data discretized with the time step of 0.05 s. Obtain the

z-domain transfer function of the controlled plant, GP(z), using the LSM. Verify

your result using a software tool performing the conversion GP sð Þ
0:05 sec

!
ZOH

GP zð Þ.

Problem 2 Utilize the transfer function, GP(z), obtained in the above problem to

design a discrete-time output-feedback control system compliant with the following

specifications: settling time TSET¼ 2 s, overshoot of a step response P%¼ 5%, and

the steady-state error for unit-step disturbance ESS� 0.2 (units). Show all stages of

your design. Investigate the design by computer simulation.

Problem 3 The controlled plant is defined by the following continuous-time

equations:

_x 1 ¼ �10:4x1 þ 10:3x2 þ 8:8x3 � 3u

_x 2 ¼ 0:6x1 � 0:65x2 � 0:2x3 þ u

_x 3 ¼ �11:9x1 þ 11:7x2 þ 9:6x3 � 4u

y ¼ �7:3x1 þ 7:6x2 þ 6:8x3

Obtain the discrete-time equivalent of these equations for the time step of 0.005 s

and zero-order-hold application. Utilize 6 terms of the series approximation.

Problem 4 Utilize the solution of the previous problem to design a discrete-time

state-variable feedback control system compliant with the following specifications:

settling time TSET¼ 2 s, overshoot of a step response P%¼ 5%, and the steady-state

error for unit-step disturbance ESS� 0.2 (units). Show all stages of your design.

3.5 Control System with a State-Variable Feedback
and a State Observer

3.5.1 Discrete-Time State-Variable Control Systems
with State Observers

Discrete-time state-variable control has a number of advantages over the output-

feedback control scheme. Due to these advantages, it can be utilized even when
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state-variables of the controlled plant are not accessible. This is accomplished by

the use of a state observer, a software-based dynamic system capable of computing

the estimated state vector using the input and output data of the controlled plant:

Z iþ 1ð Þ ¼ MZ ið Þ þ BU ið Þ þ KY ið Þ, i ¼ 1, 2, 3, . . .

where M is a fundamental matrix of the state observer and I is the discrete-time

index. It can be seen that the control effort, U(i), and the plant output, Y(i), are

playing the role of the “forcing functions” for the observer. Under some conditions,

the state vector of the observer, Z(i), having the same dimensions as the unavailable

state vector of the controlled plant, X(i), converges to X(i), i.e. the state observation

error, E ið Þ ¼ X ið Þ � Z ið Þ, is such that lim
i!1

EðiÞ ¼ 0.

Consider the full description of a controlled plant with a state observer and a

state-variable controller:

X iþ 1ð Þ ¼ AX ið Þ þ BU ið Þ
Z iþ 1ð Þ ¼ MZ ið Þ þ BU ið Þ þ KY ið Þ
U ið Þ ¼ R ið Þ � FZ ið Þ
Y ið Þ ¼ CX ið Þ, i ¼ 0, 1, 2, ::::

Subtracting the second state equation from the first yields:

X iþ 1ð Þ � Z iþ 1ð Þ ¼ AX ið Þ þ BU ið Þ �MZ ið Þ � BU ið Þ � KY ið Þ or

X iþ 1ð Þ � Z iþ 1ð Þ ¼ AX ið Þ þ BU ið Þ �MZ ið Þ � BU ið Þ � KCX ið Þ or

E iþ 1ð Þ ¼ A� KCð ÞX ið Þ �MZ ið Þ

Define matrix M as A-KC, then

E iþ 1ð Þ ¼ A� KCð ÞX ið Þ �MZ ið Þ ¼ A� KCð ÞX ið Þ � A� KCð ÞZ ið Þ or

E iþ 1ð Þ ¼ A� KCð ÞE ið Þ

The resultant equation describes the error conversion (or the state estimation)

process. It is known that to assure that lim
i!1

EðiÞ ¼ 0, one has to properly assign

the eigenvalues of the fundamental matrix of the state estimation process, A-KC.

Since it is a discrete-time process the eigenvalues must be chosen inside the unit

circle in the complex plane, i.e.

λkj j < 1 for all k ¼ 1, 2, . . . , n

One can realize that this can be accomplished by the choice of matrix K.

Now transform the state equation of the closed-loop system as follows:

X iþ 1ð Þ ¼ AX ið Þ þ BR ið Þ � BFZ ið Þ
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Since E(i)¼X(i)�Z(i), Z(i)¼X(i)�E(i),

X iþ 1ð Þ ¼ AX ið Þ þ BR ið Þ � BFX ið Þ þ BFE ið Þ or X iþ 1ð Þ
¼ A� BFð ÞX ið Þ þ BFE ið Þ þ BR ið Þ

Combining the last equation with the equation of the estimation process, one can

obtain the complete state-variable description of the control system with the state-

variable controller and the state observer that would describe both the control and

the state estimation processes:

X iþ 1ð Þ ¼ A� BFð ÞX ið Þ þ BFE ið Þ þ BR ið Þ
E iþ 1ð Þ ¼ A� KCð ÞE ið Þ

or in a block-matrix form

X iþ 1ð Þ
E iþ 1ð Þ

� �
¼ A� BF BF

∅ A� KC

� �
X ið Þ
E ið Þ

� �
þ B

∅

� �
R ið Þ

This result demonstrates the separation principle: the estimation process is

completely independent from the control process. However, it can be seen that

the estimation error may affect the control process during the transient regime but

not in steady-state, since lim
i!1

EðiÞ ¼ 0.

It shall not be forgotten that a special filter W(z) in the reference channel and a

filter H(z) in the input of the controlled plant may be required to achieve the full

compliance of the designed system with the model transfer function GM(z) and

simplify the design procedure. The final configuration of a discrete-time control

system with a state-variable controller and a state observer is shown below in

Fig. 3.14.

A-KC

B

K

B

R0
U Y

Z(i)

_

+ +
+

PlantH(z)W(z)

Z(i+1)

Disturbance

R

z-1

_

Fig. 3.14 State-variable system with state observer
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3.5.2 Design and Analysis

Contribution of a state observer in the control process can be seen from the

following, previously obtained equations,

X iþ 1ð Þ ¼ A� BFð ÞX ið Þ þ BFE ið Þ þ BR ið Þ
E iþ 1ð Þ ¼ A� KCð ÞE ið Þ

One can conclude that state estimation error shall not interfere with the control

process. This can be achieved by making its convergence time much shorter that the

settling time of the control system and eigenvalues of matrix A-KC should be

chosen appropriately.

Consider the computational task of defining the matrix

K ¼
K1

K2

. . .
Kn

2
664

3
775

First note that matrix A, matrix B and matrix C represent the CCF of the

controlled plant’s mathematical description. Since the state vector of the plant is

inaccessible and is to be estimated, it makes a lot of sense to estimate it for the

CCF—the most convenient state-variable form. Matrix K must be chosen such that

eigenvalues of the matrix A-KC be equal to the desired eigenvalues λ1, λ2, . . ., λn
that would assure the necessary convergence rate of state estimation errors. This

requirement leads to the equation

Det zI� Aþ KCð Þ ¼ z� λ1ð Þ � z� λ2ð Þ � . . . � z� λnð Þ ¼ zn þ pn�1z
n�1

þ pn�2z
n�2 þ . . .þ p1zþ p0

The left-hand side of this equation, in more detail, looks like this:

Det

z 0 0 . . . 0

0 z 0 . . . 0

0 0 z . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . z

2
66664

3
77775�

0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1

an1 an2 an3 . . . ann

2
66664

3
77775þ

K1

K2

K3

. . .
Kn

2
66664

3
77775 c1 c2 c3 . . . cn½ �

0
BBBB@

1
CCCCA

and constitutes a n-order polynomial with respect to z. While matrix A and matrix C

are known, coefficients of z in the powers of n�1, n�2, . . ., 1, 0 in this polynomial

are functions of K1, K2, . . ., Kn. Technically, these coefficients can be equated to the

corresponding coefficients of the polynomial zn þ pn�1z
n�1 þ pn�2z

n�2 þ . . .þ p1z

þp0 resulting in the system of n equations with n unknowns, K1, K2, . . ., Kn. This

concept has one major flaw: it can be seen that these equations will be non-linear with

respect to unknowns and their solution will present a formidable task.
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We propose the following approach to overcome this difficulty. Introduce a

digital filter in the input of the controlled plant as shown in the block diagram

above,

H zð Þ ¼ 1

NP zð Þ

where NP(z) is the numerator of the controlled plant transfer function. Now the CCF

description of the controlled plant & filter will have the same matrix A and matrix B

as the plant alone, but its matrix C will be replaced by

C ¼ 1 0 . . . 0 0½ �

Now the polynomial Det zI� Aþ KC
� �

looks as follows,

Det

zþ K1 �1 0 . . . 0

K2 z �1 . . . 0

K3 0 z . . . 0

. . . . . . . . . . . . . . .
�an1 þ Kn �an2 �an3 . . . z� ann

2
66664

3
77775

0
BBBB@

1
CCCCA¼ Q z;Kð Þ

and coefficients of the resultant polynomial

Q z;Kð Þ ¼ zn þ p̂ n�1 Kð Þzn�1 þ p̂ n�2 Kð Þzn�2 þ . . .þ p̂ 1 Kð Þzþ p̂ 0 Kð Þ

are linear with respect to unknown elements of matrix K.

When the state observer matrix K has been established, the design of the state-

variable controller matrix F is very consistent with the previous section and

Example 3.5.

Finally, consider matrix equations describing the entire control system,

X iþ 1ð Þ
E iþ 1ð Þ

� �
¼ ACL

X ið Þ
E ið Þ

� �
þ BCLR ið Þ

Y ið Þ ¼ CCL
X ið Þ
E ið Þ

� �
;

where

ACL ¼ A� BF BF

∅ A� KC

� �
, BCL ¼ B

∅

� �
, and CCL ¼ C ∅

� 	

Note that in these equations matrix C is replaced by C ¼ 1 0 . . . 0 0½ � to
account for the cancelled zeros of the plant.

In order to finalize the design and, later, to subject the resultant system to steady-state

error analysis, obtain the transfer functions of this system for the reference channel:
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GR
CL zð Þ ¼ CCL zI� ACLð Þ�1

BCL

In the situation when the system is properly designed, the first transfer function

GR
CL zð Þ ¼ 1

DM zð Þ

where DM(z) is the denominator of the model transfer function. Therefore, in order

to comply with design specifications it is required to define the input signal R(z) as

R zð Þ ¼ R0 zð ÞW zð Þ ¼ R0 zð ÞNM zð Þ

where R0(z) is the set point signal (or control input), W(z) is a filter in the reference

channel, and NM(z) is the numerator of the model transfer function.

To perform the analysis of the steady-state error caused by disturbance, typically,

a unit-step disturbance, a transfer function of the disturbance channel, GD
CL(z),

should be established. Since the disturbance D zð Þ ¼ z
z�1

, according to the z-domain

final value theorem, the steady-state error for unit step disturbance is defined as

ESS ¼ Lim
k!1

E kð Þ ¼ Lim
z!1

z� 1

z
E zð Þ ¼ Lim

z!1

z� 1

z
GD

CL zð Þ z

z� 1
¼ GD

CL 1ð Þ
or

ESS ¼ CE I� AE
� ��1

BE

where AE, BE and CE are matrices of the CCF obtained by the direct decomposition

of the transfer function GD
CL(z). However, derivation of this transfer function is not

a straightforward task. It is “safe” therefore to consider the following interpretation

of the block diagram of a control system with state-variable feedback and a state

observer seen in Fig. 3.15:

PlantH(z)

M(z)

W(z)

N(z)

Disturbance

R0 _

_
Y

PlantH(z)_

_

_

_

Fig. 3.15 Control system with state-variable feedback and state observer
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where

M zð Þ ¼ F zI� AP þ KC
� ��1

BP and N zð Þ ¼ F zI� AP þ KC
� ��1

K

Then the transfer function of the disturbance channel can be defined as

GD
CL zð Þ ¼ Y zð Þ

D zð Þ ¼
GP zð Þ

1þ GP zð ÞH zð ÞN zð Þ 1

1þM zð Þ
¼ GP zð Þ 1þM zð Þ½ �

1þM zð Þ þ GP zð ÞH zð ÞN zð Þ

thus providing the basis for the steady-state error analysis.

Example 3.6 Given transfer function of a controlled plant, GP sð Þ ¼
3s2 þ 5sþ 10

s3 þ 2s2 þ 3sþ 5
. It is required to design a discrete-time control system with a

state-variable controller operating with the clock frequency of 0.005 s to achieve

the settling time of 5 s, overshoot of the step response of 10% and the steady-state

error for a unit-step disturbance of 0.025 abs units. Since the state variables of the

controlled plant are not accessible, a state observer must be designed as well.

First, let us convert G(s) into the z-domain using the zero-order-hold option and

the time step T¼ 0.005 s:

GP zð Þ ¼ 0:01499 z2 � 1:992z þ 0:9917ð Þ
z2 � 1:999z þ 0:9992ð Þ z� 0:9908ð Þ

and obtain matrices of the CCF of this expression:

AP ¼
0 1 0

0 0 1

0:990 � 2:980 2:990

2
4

3
5 , BP ¼

0

0

1

2
4

3
5, CP ¼ 0:015 � 0:030 0:015½ �

Introduce filterH zð Þ ¼ 1
0:01499 z2 �1:992z þ0:9917ð Þ in the input of the controlled plant,

the CCF description of the filter & plant is as follows:

AP ¼
0 1 0

0 0 1

0:990 � 2:980 2:990

2
4

3
5 , BP ¼

0

0

1

2
4

3
5, CP ¼ 1 0 0½ �

Introduce an s-domain model transfer function consistent with the required

closed-loop dynamics of the reference channel:

GM sð Þ ¼ 7:076

s2 þ 1:596s þ 1:769ð Þ sþ 4ð Þ

Conversion of GM(s) into the z-domain using the zero-order-hold option and the

time step T¼ 0.005 s and consequent direct decomposition of this transfer function

yield:
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GM zð Þ ¼ 1:464e� 07 z2 þ 3:972z þ 0:9861ð Þ
z2 � 1:992z þ 0:9921ð Þ z� 0:9802ð Þ

AM ¼
0 1 0

0 0 1

0:972 � 2:945 2:972

2
4

3
5, BM ¼

0

0

1

2
4

3
5, CM ¼ 1 6 1½ � 	 1e� 7

Introduce an s-domain transfer function representing the desired dynamics of the

on process (note that its transient terms are approximately 4 times faster then the

non-dominant term of the control process):

GE sð Þ ¼ 1

sþ 15ð Þ sþ 16ð Þ sþ 18ð Þ

Conversion of GE(s) into the z-domain using the zero-order-hold option and the

time step T¼ 0.005 s yields:

GE zð Þ ¼ 1:96e� 08 z2 þ 3:763z þ 0:8847ð Þ
z� 0:9277ð Þ z� 0:9231ð Þ z� 0:9139ð Þ

While the numerator of this transfer function is meaningless, the denominator

exhibits three desired eigenvalues of the fundamental matrix of the state observer,

λ1¼ 0.9277, λ2¼ 0.9231, and λ3¼ 0.9139. As a matter of fact,

Det zI�
0 1 0

0 0 1

0:990 � 2:980 2:990

2
4

3
5 þ

K1

K2

K3

2
4

3
5 1 0 0½ �

0
@

1
A

¼ z� 0:9277ð Þ z� 0:9231ð Þ z� 0:9139ð Þ

or

Det

zþ K1 � 1 0

K2 z � 1

K3 � 0:990 2:980 z� 2:990

2
4

3
5¼ z3 � 2:765z2 þ 2:548 z� 0:783

Transform the determinant in the left-hand of the equation as follows:

z zþ K1ð Þ z� 2:990ð Þ þ K3 � 0:990ð Þ þ 2:980 zþ K1ð Þ þ K2 z� 2:990ð Þ ¼
z3 þ z2 K1 � 2:990ð Þ � 2:990zK1 þ K3 � 0:990þ 2:980zþ 2:980K1 þ zK2

� 2:990K2 ¼
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z3 þ z2 K1 � 2:990ð Þ þ z �2:990K1 þ 2:980þ K2ð Þ
þ K3 � 0:990þ 2:980K1 � 2:990K2ð Þ

Now it can be stated that

K1�2.990¼�2:765
�2.990K1þ2.980þK2¼ 2.548

K3�0.990þ2.980K1�2.990K2¼�0:783

Note that these equations are linear with respect to K1, K2 and K3 and their

solution is very straightforward:

K ¼
K1

K2

K3

2
4

3
5 ¼

:225
:241
:258

2
4

3
5

The following recursive formula, obtained by the author for his students, facil-

itates easy computation of the matrix K for any size of the problem. For example,

for n¼ 3:

K1 ¼ �AE 3; 3ð Þ þ AP 3; 3ð Þ
K2 ¼ �AE 3; 2ð Þ þ AP 3; 2ð Þ þ AP 3; 3ð Þ*K1

K3 ¼ �AE 3; 1ð Þ þ AP 3; 1ð Þ þ AP 3; 2ð Þ*K1 þ AP 3; 3ð Þ*K2

For n¼ 4:

K1 ¼ �AE 4; 4ð Þ þ AP 4; 4ð Þ
K2 ¼ �AE 4; 3ð Þ þ AP 4; 3ð Þ þ AP 4; 4ð Þ*K1

K3 ¼ �AE 4; 2ð Þ þ AP 4; 2ð Þ þ AP 4; 3ð Þ*K1 þ AP 4; 4ð Þ*K2

K4 ¼ �AE 4; 1ð Þ þ AP 4; 1ð Þ þ AP 4; 2ð Þ*K1 þ AP 4; 3ð Þ*K2 þ AP 4; 4ð Þ*K1

and etc.

Generally a software tool, such as program CC, is used for the “automated”

solution for the observer matrix. The utilization of a software tool does not require

canceling the zeros of the controlled plant and should be recommended for a

problem where the order of the plant is greater than 3.

Speaking of the controller design, recall that AM¼AP�BPF, and since AM, AP,

and BP are consistent with the CCF configuration, F¼ [0 0 . . . 0 1](AP�AM)¼
[0.018 �0.035 0.018].

Now it is time to “assemble” the entire model of the designed system following

the previously obtained expression,
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X iþ 1ð Þ
E iþ 1ð Þ

� �
¼ AP � BPF BPF

∅ AP � KĈ

� �
X ið Þ
E ið Þ

� �
þ BP

∅

� �
R ið Þ, i ¼ 1, 2, 3, . . .

where Ĉ¼ [1 0 0 . . . 0] is the matrix reflecting the fact that filter H(z) has been

placed in the input of the controlled plant, also

ACL ¼ A� BF BF

∅ A� KC

� �
¼

0 1 0 0 0 0

0 0 1 0 0 0

0:972 � 2:945 2:972 0:018 � 0:035 0:018
0 0 0 � 0:225 1 0

0 0 0 � 0:241 0 1

0 0 0 0:732 � 2:980 2:990

2
6666664

3
7777775

and

BCL ¼ BP

∅

� �
¼

0

0

1

0

0

0

2
6666664

3
7777775

Then the closed-loop transfer function for the reference channel of the closed-loop

system, obtained using the CC software tool is

GCL
R zð Þ ¼ 1 0 . . . 0½ � zI� ACL

� ��1
BCL ¼ 1

z3 � 2:972z2 þ 2:945z � :972

One can realize the denominator of this expression is consistent with the denom-

inator of the model transfer function, and with the filter

W zð Þ ¼ 1:464e� 7 z2 þ 3:972z þ :986
� �

¼ 1:464e� 7 1 þ 3:972z�1 þ :986z�2ð Þ
z�2

in the reference channel the transfer function of the resultant system is equal to the

model transfer function that guarantees the full compliance with the design spec-

ifications, except the steady-state error requirement.
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GCL
R zð Þ ¼ 1 0 . . . 0½ � zI� ACL

� ��1
BCLW zð Þ

¼ 1:464e� 7 z2 þ 3:972z þ :986ð Þ
z3 � 2:972z2 þ 2:945z � :972

Let us compute the steady-state error in the designed system caused by the unit

step disturbance. It was shown that the error can be calculated as follows

M zð Þ ¼ :018z2 � :031z þ :014

z3 � 2:765z2 þ 2:548z � :783

N zð Þ ¼ 7:415e� 06 z � :993ð Þ z � 1:00ð Þ
z3 � 2:765z2 þ 2:548z � :783

Then the transfer function of the error channel is

GD
CL zð Þ ¼ GP zð Þ 1þM zð Þ½ �

1þM zð Þ þ GP zð ÞH zð ÞN zð Þ

In our problem

GD
CL zð Þ ¼ 0:01499 s� 0:8791ð Þ s2 � 1:868s þ 0:8745ð Þ s2 � 1:992s þ 0:9917ð Þ

s� 0:9141ð Þ s� 0:9228ð Þ s� 0:928ð Þ s� 0:9802ð Þ s2 � 1:992s þ 0:9921ð Þ

and ESS ¼ GD
CL 1ð Þ ¼ 2:36 (units).

It can be seen that the error requirement has not been met. Let us investigate the

opportunities for manipulating the steady state error without affecting the settling

time and overshoot requirements. The results of this numerical study are summa-

rized in the following table.

Time step Non-dominant pole of GM(s) ESS

0.005 �4 2.36

0.005 �40 1.20

0.005 �100 1.12

0.005 �200 1.10

0.002 �4 2.32

0.002 �40 1.17

0.002 �100 1.09

0.01 �4 2.41

The analysis of this table indicates that:

– an increase of the absolute value of the non-dominant pole results in the decrease

of steady-state error

– a decrease of the time step results in the decrease of the steady-state error
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Note that the availability of transfer functions M(z) and N(z) provides an

additional opportunity to define the closed-loop transfer function GR
CL(z):

GR
CL zð Þ ¼ GP zð ÞH zð ÞW zð Þ

1þM zð Þ þ GP zð ÞH zð ÞN zð Þ

This definition could be preferable from the computational point of view.

The closed-loop system response is shown below in Fig. 3.16.

It should be noted that the design and especially re-design of a control system

should be facilitated by a special MATLAB or in our case Program CC code:

tstep¼.005

pole¼40

format long zeros compact

gps¼(3*s^2þ5*sþ10)/(s^3þ2*s^2þ3*sþ5)

gp¼convert(gps,8,tstep)

gms¼1.33^2*pole/(s^2þ2*.6*1.33*sþ1.33^2)/(sþpole)

gm¼convert(gms,8, tstep)

ges¼1/(sþ15)/(sþ16)/(sþ18)

ge¼convert(ges,8, tstep)

geccf¼ccf(ge)

(ae,be,ce,d)¼unpack(geccf)

gpccf¼ccf(gp)

(ap,bp,cp,d)¼unpack(gpccf)

h¼1/(cp(1,3)*z^2þcp(1,2)*zþcp(1,1))

1.2

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4

System response to a unit step reference signal

5 6 7

Time, sec

8 9 10

Fig. 3.16 Closed loop step response
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gmccf¼ccf(gm)

gmccf¼ccf(gm);

(am,bm,cm,d)¼unpack(gmccf)

w¼cm(1,3)*z^2þcm(1,2)*zþcm(1,1)

f¼(0,0,1)*(ap-am);

c¼(1,0,0);

k(1,1)¼�ae(3,3)þap(3,3)

k(2,1)¼�ae(3,2)þap(3,2)þap(3,3)*k(1,1)

k(3,1)¼�ae(3,1)þap(3,1)þap(3,2)*k(1,1)þap(3,3)*k(2,1)

m¼f*(z*iden(3)-apþk*c)^-1*bp;

n¼f*(z*iden(3)-apþk*c)^-1*k;

mm¼1|m

gcl¼w*(h*gp*mm)|n

gcl¼near(gcl)

gerr¼gp|(mm*h*n)

gerr¼near(gerr)

gerr¼ccf(gerr)

(ar,br,cr,d)¼unpack(gerr)

err¼cr*(iden(6)-ar)^-1*br

err

3.6 Decoupling Control of a MIMO Process

A multi-input-multi-output (MIMO) process is characterized by a transfer matrix,

G(z), that may comprise of several regression equations,

Y1 zð Þ
. . .

Ym zð Þ

2
4

3
5 ¼

G11 zð Þ . . . G1m zð Þ
. . . . . . . . .

Gm1 zð Þ . . . Gmm zð Þ

2
4

3
5 U1 zð Þ

. . .
Um zð Þ

2
4

3
5 or simply Y zð Þ ¼ G zð ÞU zð Þ

where notations are obvious. It is said that particular elements of the transfer matrix

represent particular dynamic channels of the MIMO system, i.e.

Gjk zð Þ ¼ Yj zð Þ
Uk zð Þ

Note that the number of control efforts is expected to be equal to the number of

controlled variables.

The control task of a MIMO process is complicated because of the cross-

coupling effects, i.e. generally speaking any input signal affects all controlled

variables and the independent access to any desired output variable can be achieved

by simultaneous utilization of all input signals. The purpose of decoupling control
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is to enable the process operator to independently manipulate any output variable of

choice without affecting other outputs. We will consider several discrete-time

decoupling control techniques: steady-state decoupling, state-variable decoupling

and full decoupling.

3.6.1 Steady-State Decoupling

Steady-state decoupling is an open-loop control technique that results in the

independent access to the steady-state values of the output variables. While the

transient process affects all output variables, the residual (i.e. steady-state) effects

can be found only in the output variable(s) of choice.

Assume that transfer matrix G(z) describes a combination of interrelated indus-

trial control systems that already have been stabilized by the introduction of “local”

controllers, i.e. the stability, settling times, and overshoot properties of the partic-

ular channels have been assured.

Define the input vector U(z) as W*R0(z), where R0(z) is the set point vector

representing the desired steady-state values of all output variables, and W is an

m	m matrix gain, defined as

W ¼ G 1ð Þ�1

Indeed,

YSS ¼ Lim
k!1

Y kð Þ ¼ Lim
z!1

z� 1

z
Y zð Þ ¼ Lim

z!1

z� 1

z
G zð ÞU zð Þ

Assume that YDES is the vector of desired steady-state values of the output vari-

ables, and define the set point R0(t)¼YDESu(t) as a set of step functions of the

appropriate magnitudes,

YDES ¼
Y1

DES

. . .

Ym
DES

2
64

3
75

Then R0 zð Þ ¼ YDES z
z�1

and consequently,

U zð Þ ¼ WR0 zð Þ ¼ z

z� 1
G�1 1ð ÞYDES

In this case, providing that matrix G(1) is not singular,

YSS ¼ Lim
k!1

Y kð Þ ¼ Lim
z!1

z� 1

z
G zð Þ z

z� 1
G�1 1ð ÞYDES ¼ YDES
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Example 3.7 Given a z-domain mathematical model of several interrelated control

loops of a MIMO process relating the output variables to the input signals U1, U2,

U3 (time step¼ 0.001 s):

Y1 zð Þ
Y2 zð Þ
Y3 zð Þ

2
64

3
75 ¼

0:0495 z� 0:99ð Þ
z2 � 1:97z þ 0:9704

0:003986 z� 0:995ð Þ
z2 � 1:985z þ 0:99

0:001015 z� 0:9418ð Þ
z2 � 1:97z þ 0:9704

0:00398 z� 0:9802ð Þ
z� 0:9962ð Þ z� 0:9742ð Þ

0:02029 z� 0:9512ð Þ
z2 � 1:979z þ 0:9802

0:002996 z� 0:9417ð Þ
z2 � 1:934z þ 0:9418

0:007884 z� 0:9988ð Þ
z2 � 1:969z þ 0:9704

0:0009998 z� 0:99ð Þ
z2 � 1:989z þ 0:99

0:05824

z� 0:9418

2
66666666664

3
77777777775

	
U1 zð Þ
U2 zð Þ
U3 zð Þ

2
64

3
75

First, let us observe the cross-coupling “in action.” The graph in Fig. 3.17

features the response in each of the three outputs of the system to a unit step signal

applied to the input #1. It is important to observe the residual (steady-state) effects

of this input signal in all outputs.

The following simulation features the step response of the same system driven

through a decoupling filter assuming that R02 is a step with magnitude of 3 (units)

and R01¼R03¼ 0

MIMO
SYSTEM

G(z) y3

y2

y1

U3

U2

U1

W
R01

R03

R02

2

1.5

0.5

0

−0.5
0 0.005 0.01 0.015 0.02 0.025

1

Fig. 3.17 Demonstration of cross-coupling to a step response
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where

W ¼ G 1ð Þ�1 ¼
1:0040123 � 3:113591e� 003 � 0:0752309
1:199517e� 003 1:0001570 � 0:0225935
� 0:0535559 � 6:977921e� 003 1:0041737

2
4

3
5

It can be seen that the goal of the steady-state decoupling control has been achieved:

the intended output has been incremented by 3 units and no residual effects in other

outputs are observed (Fig. 3.18).

3.6.2 Full Decoupling

The full decoupling problem does not have an assured general solution. Its solution

can be worked out on a case-by-case basis as follows.

Given an n	 n z-domain transfer matrix of a MIMO process, G(z). Given design

specifications, settling time, overshoot of the step response, and steady-state error

for its direct input–output channels, i.e. R0j!Yj, j¼ 1,2,. . .,n.
The design procedure requires that a rational decoupling filter, W(z), be

designed that matrix Q(z)¼G(z)W(z) be diagonal, however, each of its diagonal

elements, Qjj(z), should have the order of the numerator lower than the order of the

denominator and does not have zeros outside the unit circle. Then diagonal ele-

ments Qjj(z) should be treated as transfer functions of independent single-input-

single-output processes and equipped with the feedback controllers and input filters

to comply with the design specifications.

5

4

3

2

1

0

−1
0 0.005 0.01 0.015 0.02 0.025

Fig. 3.18 Steady state decoupling for a step response
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Let us consider the design procedure in more detail for n¼ 3. Assume

G zð Þ ¼
G11 zð Þ G12 zð Þ G13 zð Þ
G21 zð Þ G22 zð Þ G23 zð Þ
G31 zð Þ G32 zð Þ G33 zð Þ

2
64

3
75

and

W zð Þ ¼
W11 zð Þ W12 zð Þ W13 zð Þ
W21 zð Þ W22 zð Þ W23 zð Þ
W31 zð Þ W32 zð Þ W33 zð Þ

2
64

3
75

Define elements of the matrix W(z) from the following equations reflecting the

requirement that matrix Q(z)¼G(z)W(z) must be diagonal:

Q12 zð Þ ¼ G11 zð ÞW12 zð Þ þ G12 zð ÞW22 zð Þ þ G13 zð ÞW32 zð Þ ¼ 0

Q13 zð Þ ¼ G11 zð ÞW13 zð Þ þ G12 zð ÞW23 zð Þ þ G13 zð ÞW33 zð Þ ¼ 0

Q21 zð Þ ¼ G21 zð ÞW11 zð Þ þ G22 zð ÞW21 zð Þ þ G23 zð ÞW31 zð Þ ¼ 0

Q23 zð Þ ¼ G21 zð ÞW13 zð Þ þ G22 zð ÞW23 zð Þ þ G23 zð ÞW33 zð Þ ¼ 0

Q31 zð Þ ¼ G31 zð ÞW11 zð Þ þ G32 zð ÞW21 zð Þ þ G33 zð ÞW31 zð Þ ¼ 0

Q32 zð Þ ¼ G31 zð ÞW12 zð Þ þ G32 zð ÞW22 zð Þ þ G33 zð ÞW32 zð Þ ¼ 0

Note that the above system contains six equations and nine unknowns and therefore

allows for many solutions thus providing the opportunity for a rational choice of the

elements of matrix W(z). Then, the non-zero diagonal elements of matrix Q(z) can

be defined as follows

Q11 zð Þ ¼ G11 zð ÞW11 zð Þ þ G12 zð ÞW21 zð Þ þ G13 zð ÞW31 zð Þ
Q22 zð Þ ¼ G21 zð ÞW12 zð Þ þ G22 zð ÞW22 zð Þ þ G23 zð ÞW32 zð Þ
Q33 zð Þ ¼ G31 zð ÞW13 zð Þ þ G32 zð ÞW23 zð Þ þ G33 zð ÞW33 zð Þ

In the situation when transfer functions Q11(z), Q22(z) and Q33(z) are acceptable,

the design of three “local” control loops should follow the previously established

procedures.

Note that design of a decoupling filter W(z) has a more rigorous but not

necessarily more simple solution: transfer matrix W(z) could be defined as the

adjoint matrix of G(z):

W zð Þ ¼ Adj G zð Þf g
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Indeed,

G zð Þ�1 ¼ 1

Det G zð Þ½ �Adj G zð Þf g

where Det[.] is the symbol of determinant. Since G(z)G(z)�1¼ I, matrix multiplication

Q zð Þ ¼ G zð Þ � Adj G zð Þf g

results in a diagonal matrix where every diagonal element is equal to the determi-

nant Det[G(z)], i.e. Qkk(z)¼Det[G(z)] for all k¼ 1,2,. . .

Example 3.8 Given transfer matrix of a two-input-two-output controlled plant

defined for the time step of 0.01 s:

G zð Þ ¼

0:01995 z� 0:9753ð Þ
z2 � 1:97z þ 0:9704

0:02 z� 0:99ð Þ
z2 � 1:989z þ 0:99

0:01972 z� 0:998ð Þ
z� 0:9962ð Þ z� 0:9742ð Þ

0:0199

z� 0:99

2
6664

3
7775

Define the decoupling filter

W zð Þ ¼ W11 zð Þ W12 zð Þ
W21 zð Þ W22 zð Þ

� �
;

then elements Wij(z), i,j¼ 1,2, can be defined from the equations

0:01995 z� 0:9753ð Þ
z2 � 1:97z þ 0:9704

W12 zð Þ þ 0:02 z� 0:99ð Þ
z2 � 1:989z þ 0:99

W22 zð Þ ¼ 0

0:01972 z� 0:998ð Þ
z� 0:9962ð Þ z� 0:9742ð ÞW11 zð Þ þ 0:0199

z� 0:99
W21 zð Þ ¼ 0

Assume W12(z)¼G11(z)
�1G12(z), W22(z)¼�1, W21(z)¼G22(z)

�1G21(z), and

W11(z)¼�1, this choice results in off-diagonal elements of matrix Q(z), Q12(z)¼
Q21(z)¼ 0, and diagonal elements

Q11 zð Þ ¼ �0:0001329 z2 � 1:897z þ 0:8998ð Þ z� 0:9789ð Þ zþ 1:016ð Þ
z� 0:9742ð Þ z2 � 1:97z þ 0:9704ð Þ z2 � 1:989z þ 0:99ð Þ

Q22 zð Þ ¼ �0:0001326 z2 � 1:897z þ 0:8998ð Þ z� 0:9789ð Þ zþ 1:016ð Þ
z� 0:9742ð Þ z� 0:9753ð Þ z� 0:99ð Þ z2 � 1:989z þ 0:99ð Þ

It can be seen that the choice of transfer matrix W(z) has been a success: the

diagonal elements of matrix Q(z)¼G(z)W(z) have the required properties. Now the

MIMO controlled plant with the transfer matrix G(z) driven through the decoupling
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filter W(z) for all practical purposes is just a combination of two completely

independent single-input-single-output systems with transfer functions Q11(z) and

Q22(z) that has to be stabilized to comply with the design specifications by intro-

ducing feedback controllers and prefilters as shown in Fig. 3.19.

Let us consider the design of the controller and prefilter for the first dynamic

channel, Q11(z). Assume the required settling time TSET¼ 5 s, overshoot of the step

response P% <3% and time step¼ 0.01 s.

First, introduce an s-domain model transfer function, compliant with the design

specifications:

GM sð Þ ¼ 2419

sþ 0:8ð Þ sþ 3:2ð Þ sþ 4:5ð Þ sþ 5ð Þ sþ 6ð Þ sþ 7ð Þ

that has the following z-domain ZOH equivalent for the time step of 0.01 s:

GM zð Þ ¼ 1e� 10 0:032z5 þ 1:776z4 þ 9:060z3 þ 8:723z2 þ 1:585zþ 0:027
� �

z6 � 5:742z5 þ 13:74z4 � 17:52z3 þ 12:57z2 � 4:812zþ 0:767

Then zeros of the transfer function Q11(z) will be cancelled by placing the filter

K zð Þ ¼ � 1

0:0001329 z2 � 1:897z þ 0:8998ð Þ z� 0:9789ð Þ zþ 1:016ð Þ

in the input of the “controlled plant” and a negative feedback polynomial H(z) will

be introduced such that the closed-loop system transfer function become equal to

Q11 zð ÞK zð Þ
1þ H zð ÞQ11 zð ÞK zð Þ ¼

1

H zð Þ þ DQ zð Þ

G(z)W(z)
y1

y2

u1

u
r1

r2 P2(z)

P1(z)

F2(z)

F1(z)

-

-

Q22(z)

Q11(z)

u2

-

-

-

-

Fig. 3.19 Full decoupling

system setup

3.6 Decoupling Control of a MIMO Process 155



where DQ(z) is the denominator of the transfer function Q11(z). Note that

1

H zð Þ þ DQ zð Þ ¼
1

H zð Þ þ z� 0:9742ð Þ z2 � 1:97z þ 0:9704ð Þ z2 � 1:989z þ 0:99ð Þ
¼ 1

H zð Þ þ z6 � 5:929z5 þ 14:65z4 � 19:30z3 þ 14:31z2 � 5:659zþ 0:932

Recall that it is our goal to assure that the above transfer function must be

modified to match the model transfer function GM(z). This modification includes,

1. Choosing polynomial H(z) as

H zð Þ ¼ DM zð Þ � DQ zð Þ
¼ z6 � 5:742z5 þ 13:74z4 � 17:52z3 þ 12:57z2 � 4:812zþ 0:767

� 	
� z6 � 5:929z5 þ 14:65z4 � 19:30z3 þ 14:31z2 � 5:659zþ 0:932
� 	

¼ 0:187z5 � 0:912z4 þ 1:779z3 � 1:736z2 þ 0:847z � 0:165

where DM(z) is the denominator of the model transfer function

2. Defining the feedback F1(z) (see the block diagram above) as

F1 zð Þ ¼ K zð ÞH zð Þ

¼ 0:187z5 � 0:912z4 þ 1:779z3 � 1:736z2 þ 0:847z � 0:165

0:0001329 z2 � 1:897z þ 0:8998ð Þ z� 0:9789ð Þ zþ 1:016ð Þ

3. Defining the prefilter P1(z) (see the block diagram above) as

P1 zð Þ ¼ K zð ÞNM zð Þ

¼ � 1e� 10 0:032z5 þ 1:776z4 þ 9:060z3 þ 8:723z2 þ 1:585zþ 0:027
� �

0:0001329 z2 � 1:897z þ 0:8998ð Þ z� 0:9789ð Þ zþ 1:016ð Þ

Example 3.9
Given transfer matrix of a two-input-two-output continuous-time controlled

process:

G sð Þ ¼
2

sþ 1

0:2

sþ 1ð Þ sþ 0:1ð Þ
0:1

sþ 1ð Þ sþ 0:2ð Þ
4

sþ 1

2
664

3
775

Design a discrete-time decoupling control system operating with the time step of

0.02 s and meet the following design specifications: both channels must use a
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state-variable feedback controller, the settling time Tset¼ 8 s and overshoot of step

response � 0 %

First, obtain a z-domain description of the controlled plant for the ZOH input:

G zð Þ ¼
3:96e� 02

z� :9802

3:971e� 05 zþ :9927ð Þ
z� :998ð Þ z� :98ð Þ

1:984e� 05 zþ :992ð Þ
z� :996ð Þ z� :98ð Þ

:0792

z� :9802

2
664

3
775

Using a MATLAB tool obtain W(z)¼Adj[G(z)]¼

:0792

z� :98

�3:9708e� 05 zþ :9927ð Þ
z� :998ð Þ z� :98ð Þ

�1:984e� 05 zþ :992ð Þ
z� :98ð Þ z� :996ð Þ

3:9603e� 02

z� :98

2
664

3
775

Now obtain Q(z)¼G(z)W(z). Indeed, Q(z) is a diagonal matrix and its diagonal

elements, Q11 zð Þ ¼ Q22 zð Þ ¼ 3:137e�03 z�:9956ð Þ z�:9984ð Þ
z�:998ð Þ z�:996ð Þ z�:98ð Þ2 .

The next task is to establish an s-domain transfer function representing the

desired dynamics of the decoupled channel and its z-domain equivalent for ZOH

input and time step of 0.02 s:

GM sð Þ ¼ 8

sþ :2ð Þ sþ 2ð Þ sþ 4ð Þ sþ 5ð Þ
GM zð Þ ¼ 5:1e� 08 z3 þ 10:52z2 þ 10:059zþ :8742ð Þ

z� :996ð Þ z� :961ð Þ z� :923ð Þ z� :9048ð Þ

Assume that zeros of transfer function Q11(z) are cancelled by the introduction

of a special filter

H zð Þ ¼ 1

3:137e� 03 z� :9956ð Þ z� :9984ð Þ ¼
318:776

z� :9956ð Þ z� :9984ð Þ

Let us represent transfer function Q zð Þ ¼Q11(z)H(z) by a CCF:

AQ ¼
0 1 0 0

0 0 1 0

0 0 0 1

�:955 3:8645 �5:8638 3:9544

2
664

3
775, BQ ¼

0

0

0

1

2
664

3
775, and

C ¼ 1 0 0 0½ �
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Representing transfer function GM(z) by a CCF results in:

AM ¼

0 1 0 0

0 0 1 0

0 0 0 1

�:799 3:384 �5:369 3:785

2
6664

3
7775, BM ¼

0

0

0

1

2
6664

3
7775, and

CM ¼ 4:459 51:306 53:657 5:1½ � � e� 08

Now the matrix F of the state-variable controller can be defined as:

F ¼ 0 0 0 1½ � � AQ � AMð Þ ¼ �:1557 :4808 �:4947 :1696½ �

In order to design the state observer, introduce an s-domain transfer function

representing the desired dynamics of the state estimation process and its z-domain

equivalent for ZOH input and time step of 0.02 s:

GE sð Þ ¼ 1

sþ 5ð Þ sþ 6ð Þ sþ 7ð Þ sþ 8ð Þ
GE zð Þ ¼ 6:e� 09 z3 þ 9:92z2 þ 8:94zþ :732ð Þ

z� :904ð Þ z� :887ð Þ z� :869ð Þ z� :852ð Þ

The appropriate discrete-time domain fundamental matrix is:

AE ¼
0 1 0 0

0 0 1 0

0 0 0 1

�:594 2:709 �4:628 3:513

2
664

3
775

This shall be followed by the evaluation of the element of matrix K of the state

observer using the recursive formula of page 141:

K1 ¼ �AE 4; 4ð Þ þ AQ 4; 4ð Þ ¼ :4411

K2 ¼ �AE 4; 3ð Þ þ AQ 4; 3ð Þ þ AQ 4; 4ð Þ*K1 ¼ :5085

K3 ¼ �AE 4; 2ð Þ þ AQ 4; 2ð Þ þ AQ 4; 3ð Þ*K1 þ AQ 4; 4ð Þ*K2 ¼ :5794

K4 ¼ �AE 4; 1ð Þ þ AQ 4; 1ð Þ þ AQ 4; 2ð Þ*K1 þ AQ 4; 3ð Þ*K2 þ AQ 4; 4ð Þ*K1 ¼ :6541

Finally, matrix K of the state observer and its fundamental matrix M are:

K ¼
:4411
:5085
:5794
:6541

2
664

3
775 and M ¼ AQ � KC ¼

�:4411 1 0 0

�:5085 0 1 0

�:5794 0 0 1

�1:6091 3:8644 �5:8638 3:9544

2
664

3
775
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The verification of the state-variable controller could be achieved by obtaining

the following closed-loop transfer function:

GCL zð Þ ¼ C � z � I� AQ þ BQ � Fð Þ�1 � BQ

¼ 1

z� :996ð Þ z� :961ð Þ z� :923ð Þ z� :9048ð Þ

This indicates that the design goal is partially achieved, i.e. the denominator of the

transfer function describing the dynamics of the control loop is indeed equal to the

denominator of the model transfer function. The desired numerator could be

obtained by placing a special filter in the reference channel of the system:

P zð Þ ¼ 5:1e� 08 z3 þ 10:52z2 þ 10:059zþ :8742ð Þ
z4

Note that having z4 in the denominator does not affect dynamics of the control loop

but may be required for the implementation of this filter.

It should be noted that since decoupled channels have identical dynamics, the

obtained state-variable controller and state observer shall be utilized in both

channels. The resultant designed system should be subjected to simulation analysis.

3.6.3 State-Variable Decoupling

Consider a discrete-time state-variable description of a MIMO controlled plant,

controller, and a filter,

X kþ 1ð Þ ¼ AX kð Þ þ BU kð Þ
U kð Þ ¼ WR kð Þ � FX kð Þ
Y kð Þ ¼ CX kð Þ, k ¼ 1, 2, 3, . . .

Assume that X, Y, U, and R are (n	 1) vectors, A, B, W, F, and C are (n	 n)

matrices. This design is based on the attempt to “force” the above system to behave

as a set of fully independent first-order systems with the pre-specified settling time.

The problem may or may not have a solution.

First, obtain the closed-loop system description

X kþ 1ð Þ ¼ AX kð Þ þ B WR kð Þ � FX kð Þ½ � or
X kþ 1ð Þ ¼ A� BFð ÞX kð Þ þ BWR kð Þ or
Y kþ 1ð Þ ¼ CX kþ 1ð Þ ¼ CA� CBFð ÞX kð Þ þ CBWR kð Þ k ¼ 1, 2, 3, . . .
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Define the required first order dynamics of the input–output channels as

Yj sð Þ
Rj sð Þ ¼

αj
sþ αj

where αj> 0 are found from the condition Tj
SET ¼ 4

αj
where Tj

SET, j¼ 1,2,. . .,n are

the required settling times of the particular input–output channels. These first order

transfer functions are to be converted into the z-domain for the particular time step

of interest and using the ZOH equivalence:

Yj zð Þ
Rj zð Þ ¼

pj

zþ qj

that has the following discrete-time domain representation

Yj kþ 1ð Þ ¼ �qjYj kð Þ þ pjRj kð Þ, j ¼ 1, 2, . . . , n, and k ¼ 1, 2, 3, . . .

Combining these equations results in the following matrix–vector equation

Y kþ 1ð Þ ¼ QY kð Þ þ PR kð Þ or Y kþ 1ð Þ ¼ QCX kð Þ þ PR kð Þ

where

Q ¼
�q1 0 . . . 0

0 �q2 . . . 0

. . . . . . . . . . . .
0 0 . . . �qn

2
664

3
775 and P ¼

p1 0 . . . 0

0 p2 . . . 0

. . . . . . . . . . . .
0 0 . . . pn

2
664

3
775

Matching the above equation to the matrix–vector equation of the closed-loop

system results in the following equalities

QC ¼ CA� CBF and P ¼ CBW

that provide the definition for the controller matrix and the input filter

F ¼ CBð Þ�1
CA� QCð Þ

W ¼ CBð Þ�1
P

It can be seen that the existence of the inverse of matrix CB presents the only

restriction to the solution of this problem.

Example 3.10 Given discrete-time domain state-variable description of a con-

trolled plant corresponding to the time step of 0.01 s and the ZOH application:
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X1ðkþ 1Þ
X2ðkþ 1Þ
X3ðkþ 1Þ

2
64

3
75 ¼

1:0099947 0:0205451 0:0295186

�0:0199078 1:0003840 0:0383450

9:414670e� 03 0:0290774 0:9331087

2
64

3
75

X1ðkÞ
X2ðkÞ
X3ðkÞ

2
64

3
75

þ
0:0209903 3:520221e� 04 0:0195443

9:673052e� 04 0:0201970 � 0:0403990

0:0580587 9:954242e� 03 � 0:0101520

2
64

3
75

U1ðkÞ
U2ðkÞ
U3ðkÞ

2
64

3
75

and

Y1 kð Þ
Y2 kð Þ
Y3 kð Þ

2
4

3
5 ¼

1 1 2

2 1 5

5 �2 0

2
4

3
5 X1 kð Þ

X2 kð Þ
X3 kð Þ

2
4

3
5

The design specifications call for the overshoot under 3 % and settling times of

2 s, 5 s and 1 s for the respective decoupled channels of the closed-loop system.

First, express these requirements in terms of three s-domain first order transfer

functions and their appropriate z-domain equivalents:

Y1ðsÞ
R1ðsÞ ¼

2

sþ 2
and

Y1ðzÞ
R1ðzÞ ¼

1:98e� 02

z� :980

Y2ðsÞ
R2ðsÞ ¼

0:8

sþ 0:8
and

Y2ðzÞ
R2ðzÞ ¼

7:968e� 03

z� :992

Y3ðsÞ
R3ðsÞ ¼

4

sþ 4
and

Y3ðzÞ
R3ðzÞ ¼

3:921e� 02

z� :961

Consequently, matrices Q and P are as follows:

Q ¼
0:980 0 0

0 0:992 0

0 0 0:961

2
4

3
5 and P ¼

0:0198 0 0

0 7:968e� 03 0

0 0 0:03921

2
4

3
5

and finally,

W ¼ CBð Þ�1
P ¼

�6:172941e� 03 1:312376e� 03 � 9:225882e� 04

0:0385518 � 6:843106e� 03 7:611353e� 03

0:0119965 � 2:249788e� 03 4:382294e� 03

2
4

3
5

and

F ¼ CBð Þ�1
CA� QCð Þ ¼

0:3918118 0:4969176 � 2:3058824
�1:7369471 0:5169294 9:6435294
�0:3706059 0:5011412 3:8129412

2
4

3
5
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The analysis of the closed-loop transfer matrix

GCL zð Þ ¼ C zI� Aþ BFð Þ�1
BW

indicates that GCL(z) is indeed a diagonal matrix and its diagonal elements are

1:98e� 02

z� :980
,
7:968e� 03

z� :992
,
3:921e� 02

z� :961

Exercise 3.2

Problem 1 The controlled plant is defined by its transfer function

GP sð Þ ¼ 5s2 þ 4sþ 1

s3 þ 2s2 þ 3sþ 10

Design a discrete-time state-variable controller with a discrete-time state

observer operating with the time step of 0.005 s. The design specifications call

for the settling time of 5 s, overshoot of step response under 3 %, and the steady-

state error under 0.2 (units) for a unit step disturbance signal.

Problem 2 Given the transfer matrix of a controlled plant:

GP sð Þ ¼
sþ 2

s2 þ sþ 6

:5

sþ 8

:3

s2 þ sþ 25

sþ 10

s2 þ 8sþ 12

2
6664

3
7775

Design a discrete-time steady-state decoupling system operating with the time step

of 0.01 s. Verify your design by computer simulation. It is required that each dynamic

channel has settling time of 2 s and the overshoot of step response under 3 %

Problem 3 Given continuous-time domain state equations of a controlled plant

_x 1 ¼ 4x1 þ 3x2 þ 8x3 � 3u1 þ u2 � u3
_x 2 ¼ 6x1 � 5x2 � 2x3 þ u1 þ 2u2 þ u3
_x 3 ¼ �x1 þ 7x2 þ 9x3 � 4u1 þ u2 � 5u3
y1 ¼ �3x1 þ 7x2 þ 4x3
y2 ¼ �x1 þ x2 � 2x3
y3 ¼ x1 þ 3x2 � x3

Design a discrete-time state-variable decoupling system operating with the time

step of 0.01 s. The design specifications call for the settling times of 3 s, 6 s and 8 s

and the overshoot under 3 % for the respective input/output channels. Show all

stages of your design. Verify your results by computer simulation.
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3.7 Direct Self-Tuning Control

Consider a controlled plant with the transfer function defined in the Z-domain

presumably for a ZOH input,

G zð Þ ¼ bn�1z
n�1 þ bn�2z

n�2 þ . . .þ b1zþ b0

zn þ an�1zn�1 þ an�2zn�2 þ . . .þ a1zþ b0
¼ NP zð Þ

DP zð Þ
Assume that the desired closed-loop operation of the control system is specified by

the Z-domain model transfer function that should be of the same order as the plant,

GM zð Þ ¼ cLz
L þ cL�1z

L�1 þ . . .þ c1zþ c0

zn þ dn�1zn�1 þ dn�2zn�2 þ . . .þ d1zþ d0
¼ NM zð Þ

DM zð Þ
where notations are self-explanatory.

For simplicity, it is also assumed that the plant transfer function GP(z) does not

have zeros outside the unit circle.

Assume the following configuration of the resultant discrete-time domain con-

trol system in Fig. 3.20.

Where
NF zð Þ
DF zð Þ and

NC zð Þ
DC zð Þ represent a filter in the reference channel and the feedback

controller, R(z) and U(z) are the reference signal and the control effort. It is

expected that the order of polynomial NF(z) is equal to the “order of the controlled

plant minus 1”.

Recall from your feedback controller design experience that since GP(z) does not

have “bad” zeros, DC zð Þ ¼ DF zð Þ ¼ NP zð Þ and consequently the overall transfer

function of the control system is

GCL zð Þ ¼ NF zð Þ
DF zð Þ

NP zð Þ
DP zð Þ

1þ NP zð ÞNC zð Þ
DP zð ÞDC zð Þ

¼ NF zð Þ
NP zð Þ

NP zð ÞDC zð Þ
DP zð ÞDC zð Þ þ NP zð ÞNC zð Þ

¼ NF zð ÞDC zð Þ
DP zð ÞDC zð Þ þ DC zð ÞNC zð Þ

¼ NF zð Þ
DP zð Þ þ NC zð Þ

NP(z)

DP(z)

NC(z)

DC(z)

NF(z)

DF(z)
R(z) Y(z)

U(z)

__

Fig. 3.20 Discrete-time domain control system
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It is clear that the system would comply with the design specifications if

GCL zð Þ ¼ NF zð Þ
DP zð Þ þ NC zð Þ ¼ GM zð Þ ¼ NM zð Þ

DM zð Þ

Then,

NF zð Þ ¼ NM zð Þ

and

DP zð Þ þ NC zð Þ ¼ DM zð Þ

Multiplying the above expression by Y(z) yields

Y zð ÞDP zð Þ þ Y zð ÞNC zð Þ ¼ Y zð ÞDM zð Þ

Recall the according to the transfer function of the controlled plant,

G zð Þ ¼ NP zð Þ
DP zð Þ ¼ Y zð Þ

U zð Þ, and

Y zð ÞDP zð Þ ¼ U zð ÞNP zð Þ

therefore

U zð ÞNP zð Þ þ Y zð ÞNC zð Þ ¼ Y zð ÞDM zð Þ

or

U zð ÞDC zð Þ þ Y zð ÞNC zð Þ ¼ Y zð ÞDM zð Þ

Finally,

U zð Þ 1

DM zð ÞDC zð Þ þ Y zð Þ 1

DM zð ÞNC zð Þ ¼ Y zð Þ

Note that in the above expression DM(z) is a known polynomial and 1
DM zð Þ can be

viewed as a transfer function of a digital filter converting signal U(z) into signal

UNEW zð Þ ¼ U zð Þ 1

DM zð Þ ;

Similarly, signal

YNEW zð Þ ¼ Y zð Þ 1

DM zð Þ
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can be introduced. Then the above equation can be rewritten as

UNEW zð ÞDC zð Þ þ YNEW zð ÞNC zð Þ ¼ Y zð Þ ðvÞ

This equation, converted into the discrete-time domain facilitates the direct

estimation of the parameters of the controller. Note that the plant transfer function

is not used in this equation. Indeed, the controller design does not require the

knowledge of the mathematical description of the controlled plant! The following

example provides an illustration of how this is done (for simplicity the order of the

plant n¼ 4).

Assume

G zð Þ ¼ b3z
3 þ b2z

2 þ b1zþ b0

z4 þ a3z3 þ a2z2 þ a1zþ b0
¼ NP zð Þ

DP zð Þ

and

GM zð Þ ¼ c3z
3 þ c2z

2 þ c1zþ c0

z4 þ d3z3 þ d2z2 þ d1zþ d0
¼ NM zð Þ

DM zð Þ

Introduce

NF zð Þ ¼ c3z
3 þ c2z

2 þ c1zþ c0

UNEW zð Þ ¼ U zð Þ 1

z4 þ d3z3 þ d2z2 þ d1zþ d0

¼ U zð Þ z�4

1þ d3z�1 þ d2z�2 þ d1z�3 þ d0z�4

or

UNEW zð Þ 1þ d3z
�1 þ d2z

�2 þ d1z
�3 þ d0z

�4
� � ¼ U zð Þz�4

or

UNEW zð Þ ¼ U zð Þz�4 � UNEW zð Þ d3z
�1 þ d2z

�2 þ d1z
�3 þ d0z

�4
� �

or in the discrete-time domain

UNEW ið Þ ¼ U i� 4ð Þ � d3U
NEW i� 1ð Þ � d2U

NEW i� 2ð Þ � d1U
NEW i� 3ð Þ

� d0U
NEW i� 4ð Þ
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Similarly,

YNEW ið Þ ¼ Y i� 4ð Þ � d3Y
NEW i� 1ð Þ � d2Y

NEW i� 2ð Þ � d1Y
NEW i� 3ð Þ

� d0Y
NEW i� 4ð Þ

where i¼ 1,2,. . . is discrete-time index.

These recursive formulae utilize known parameters of the model transfer func-

tion, measurements of the control effort and the plant output, previously calculated

filtered values of the control effort and the plant output, and are easy to implement

in a computer code.

Let us now return to equation (_) assuming that

NC zð Þ ¼ h3z
3 þ h2z

2 þ h1zþ h0

DC zð Þ ¼ NP zð Þ ¼ b3z
3 þ b2z

2 þ b1zþ b0

where h3, h2, h1, h0 and b3, b2, b1, b0 are unknown coefficients,

UNEW zð Þ b3z
3 þ b2z

2 þ b1zþ b0
� �þ YNEW zð Þ h3z

3 þ h2z
2 þ h1zþ h0

� � ¼ Y zð Þ

Multiplying these equation by z�3 results in

UNEW zð Þ b3 þ b2z
�1 þ b1z

�2 þ b0z
�3

� �þ YNEW zð Þ h3 þ h2z
�1 þ h1z

�2 þ h0z
�3

� �
¼ z�3Y zð Þ

that can be interpreted in the discrete-time domain as

b3U
NEW ið Þ þ b2U

NEW i� 1ð Þ þ b1U
NEW i� 2ð Þ þ b0U

NEW i� 3ð Þ þ h3Y
NEW ið Þ

þ h2Y
NEW i� 1ð Þ þ h1Y

NEW i� 2ð Þ þ h0Y
NEW i� 3ð Þ ¼ Y i� 3ð Þ

Introduce auxiliary variables,

x1 ið Þ ¼ UNEW ið Þ
x2 ið Þ ¼ UNEW i� 1ð Þ
x3 ið Þ ¼ UNEW i� 2ð Þ
x4 ið Þ ¼ UNEW i� 3ð Þ

x5 ið Þ ¼ YNEW ið Þ
x6 ið Þ ¼ YNEW i� 1ð Þ
x7 ið Þ ¼ YNEW i� 2ð Þ
x8 ið Þ ¼ YNEW i� 3ð Þ

w ið Þ ¼ Y i� 3ð Þ

and a vector of unknown coefficients

α1 α2 α3 α4 α5 α6 α7 α8½ �T ¼ b3 b2 b1 b0 h3 h2 h1 h0½ �T
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Then the controller design problem can be interpreted as the estimation of the

unknown vector of coefficients,

A ¼ α1 α2 α3 α4 α5 α6 α7 α8½ � T

using the available measurements of the “vector of input variables”,

X ið Þ ¼ x1 x2 x3 x4 x5 x6 x7 x8½ � T

and the “output variable, w(i) (T is the transpose symbol). One can realize that this is

a typical problem that could be solved by the application of the LSM or RLSM

approach.

It is good to realize that since the initial numerical values of the parameters A0,

may not be consistent with the properties of the controlled plant, application of the

RLSM estimation of these parameters results in the gradual improvement of the

operation of the closed-loop system thus its output variable converges to the output

variable of the model transfer function GM(z).

Application of the RLSM with exponential forgetting results in a more realistic

situation: parameters of the control law are being continuously adjusted in order to

track time-varying properties of the controlled plant.

The block diagram in Fig. 3.21 illustrates the principle of operation of the

resultant adaptive control system.

R(z)
Y(z)

U(z)_

DC(z)

DC(z)

NC(z)

NF(z)

NC(z)

DC(z)

R
L
S
M

UNEW

YNEW

GP(z)

DM(z)
1

DM(z)
1

_

Fig. 3.21 RLSM adaptive control system
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Example 3.11 The given plant is

Gp sð Þ ¼ b2s
2 þ b1sþ b0

s3 þ a2s2 þ a1sþ a0

Where as the “true” plant (assumed to be unknown to the designer) is

Gp sð Þ ¼ s2 þ 2sþ 10

s3 þ 5s2 þ 10sþ 20

The desired model specifications are Tset� 4 s and overshoot P%� 10 %.

Hence we can define the dominant poles as

p1,2 ¼ � 1 
 1:0202j

Let the non-dominant pole be

p3 ¼ � 10

Consequently, the s-domainmodel transfer function in continuous time domain will be

Gm sð Þ ¼ 20:41

s3 þ 12s2 þ 22:04sþ 20:41ð Þ

And the discrete time model transfer function will be

Gm zð Þ ¼ 2:564 � 10�5z2 þ 9:666 � 10�5zþ 2:274 � 10�5

z3 � 2:779z2 þ 2:565z � 0:7866

The closed-loop transfer function could be found as

GCL zð Þ ¼ Nf zð Þ
Dp zð Þ þ Nc zð Þ ¼ Gm zð Þ ¼ Nm zð Þ

Dm zð Þ

Then,

Nf zð Þ ¼ Nm zð Þ

and

Dp zð Þ þ Nc zð Þ ¼ Dm zð Þ

Multiplying the above equation by Y(z) yields

Y zð ÞDp zð Þ þ Y zð ÞNc zð Þ ¼ Y zð ÞDm zð Þ

168 3 Computer Control of Manufacturing Processes



But from the system transfer function,

Np zð Þ
Dp zð Þ ¼

Y zð Þ
U zð Þ

U zð ÞNp zð Þ ¼ Y zð ÞDp zð Þ

Then,

U zð ÞNp zð Þ þ Y zð ÞNc zð Þ ¼ Y zð ÞDm zð Þ

or,

U zð ÞDc zð Þ þ Y zð ÞNc zð Þ ¼ Y zð ÞDm zð Þ

Let,

Nc zð Þ ¼ α2z2 þ α1zþ α0

Dc zð Þ ¼ b2z
2 þ b1zþ b0

For the given problem, the above equation will be

U zð Þ b2z
2 þ b1zþ b0

� �þ Y zð Þ α2z
2 þ α1zþ α0

� �
¼ Y zð Þ z3 � 2:779 z2 þ 2:565 z � 0:7866

� �

Rearranging a few terms,

U zð Þ
z3 � 2:779 � z2 þ 2:565 z � 0:7866


 �
b2z

2 þ b1zþ b0
� �

þ Y zð Þ
z3 � 2:779 z2 þ 2:565 z � 0:7866


 �
α2z

2 þ α1zþ α0
� �

¼ Y zð Þ

Where,

U zð Þ
z3 � 2:779 z2 þ 2:565 z � 0:7866


 �
¼ Unew zð Þ

Y zð Þ
z3 � 2:779 z2 þ 2:565 z � 0:7866


 �
¼ Ynew zð Þ

ð3:2Þ

are the filtered responses.

Let’s call α2z2 þ α1zþ α0ð Þ ¼ h2z
2 þ h1zþ h0ð Þ for simplicity in utilizing same

coefficients in the simulation.

3.7 Direct Self-Tuning Control 169



Now the final expression for direct self tuning controller is

Unew zð ÞDc zð Þ þ Ynew zð ÞNc zð Þ ¼ Y zð Þ

i.e.

Unew zð Þ b2z
2 þ b1zþ b0

� �þ Ynew zð Þ h2z
2 þ h1zþ h0

� � ¼ Y zð Þ ð3:3Þ

To estimate these parameters we use recursive Least Squares method (RLSM),

see Sect. 2.3. It is known that as the number of RLSM iterations increases,

parameter estimates converge to the solution of the LSM problem regardless of

their initial values A0 and the choice of initial matrix P0¼ αI, where arbitrary

α> 0 determines the rate of convergence.

In our example the RLSM block, readily available in Simulink, was utilized. The

forgetting factor was set as β¼ 0.5, parameter α of the initial matrix P0¼ αI was
selected as α¼ 0.01, the total number of iterations was limited to 1000, and initial

values of estimated parameters A0 were set to zero. The simulation setup is shown

below.

As could be seen at the simulation setup above in Fig. 3.22, the following

variables of the system are calculated:

output of the controlled plant

Y zð Þ ¼ GP zð Þ � U zð Þ ¼ 0:01942z2 � 0:038z þ 0:01866

z3 � 2:901z2 þ 2:806z � 0:9048
� U zð Þ

output of the model

YM zð Þ ¼ GM zð Þ � R zð Þ ¼ 2:564 � 10�5z2 þ 9:666 � 10�5zþ 2:274 � 10�5

z3 � 2:779z2 þ 2:565z � 0:7866
� R zð Þ

DC(z)

NF(z) GP(s)

DC(z)

NC(z)

Y

U

GM(z) YM

R Y

U

Y

R
L
S
M

-

NC(z)

DC(z)

Y

yM

-
eDC(z)

NC(z)
DC(z)

W

UV

α β

A0

DM(z)

1

DM(z)

1

Unew

Ynew

Fig. 3.22 RLSM simulation setup
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output of the prefilter

V zð Þ ¼ NM zð Þ
DC zð Þ � R zð Þ ¼ 2:564 � 10�5z2 þ 9:666 � 10�5zþ 2:274 � 10�5

b2z2 þ b1zþ b0
� R zð Þ

output of the controller

W zð Þ ¼ Nc zð Þ
Dc zð Þ � Y zð Þ ¼ h2z

2 þ h1zþ h0
b2z2 þ b1zþ b0

� Y zð Þ

control effort:

U zð Þ ¼ V zð Þ �W zð Þ

variable Unew(z)

Unew zð Þ ¼ 1

z3 � 2:779z2 þ 2:565z � 0:7866
� U zð Þ

variable Ynew(z)

Ynew zð Þ ¼ 1

z3 � 2:779z2 þ 2:565z � 0:7866
� Y zð Þ

error representing the discrepancy between the self-tuning system and the model

e zð Þ ¼ YM zð Þ � Y zð Þ

The R(t) was a unit step signal

The RLSM outputs were interpreted as time-dependent parameters of the con-

troller and prefilter, i.e.

A kð Þ ¼

a1 kð Þ
a2 kð Þ
a3 kð Þ
a4 kð Þ
a5 kð Þ
a6 kð Þ

2
6666664

3
7777775
¼

b2 kð Þ
b1 kð Þ
b0 kð Þ
h2 kð Þ
h1 kð Þ
h0 kð Þ

2
6666664

3
7777775
, k ¼ 1, 2, . . . , 1000

The “final values” of the obtained parameters are

Parameters Values

b2 0.0194

b1 �0.0380

b0 0.0187

h2 0.1222

h1 �0.2405

h0 0.1182

3.7 Direct Self-Tuning Control 171



As can be seen from Fig. 3.23, the output of the plant, driven by self-tuning

controller, converges to the output of the model over 1000 steps of the RLSM

procedure.

Exercise 3.3

Develop and implement in the simulation environment a discrete-time self-

tuning control system under the following assumptions:

The controlled plant is a first order system that does not have right-hand-side

zeros.

The “true” transfer function of the controlled plant, “unknown to the system

designer”, is

GTRUE sð Þ ¼ 9

s2 þ 4sþ 13

The design specifications are: system settling time TSET¼ 6 s, overshoot of the step

response P%� 2 %, discrete time step is 0.05 s

0

1.2

.9

.6

.3

0

−.3

−.6
2 4

Response of the
control system
with self-tuning

Model response

6 8 10 12

Time

14 16 18 20

Fig. 3.23 Simulation result to step response of model and self-tuning defined system
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Solutions

Exercise 3.1: Problem 1

First, a simulation setup was used to generate the input signal, u(t), and simulate the

output, y(t), of the continuous-time dynamic system with transfer function

GP sð Þ ¼ s2 þ 6sþ 10

s3 þ 2s2 þ 9sþ 8

Over 500 samples of input–output data were taken with a time step of 0.05 s and

recorded in the data array X500 and data array Y500 defined as follows:

X500 ¼

�y 3ð Þ �y 2ð Þ �y 1ð Þ u 3ð Þ u 2ð Þ u 1ð Þ
�y 4ð Þ �y 3ð Þ �y 2ð Þ u 4ð Þ u 3ð Þ u 2ð Þ
. . . . . . . . . . . . . . . . . .

�y 501ð Þ �y 500ð Þ �y 499ð Þ u 501ð Þ u 500ð Þ u 499ð Þ
�y 502ð Þ �y 501ð Þ �y 500ð Þ u 502ð Þ u 501ð Þ u 500ð Þ

2
66664

3
77775 and

Y500 ¼

y 4ð Þ
y 5ð Þ
. . .

y 502ð Þ
y 503ð Þ

2
66664

3
77775

The estimated coefficients of the z-domain transfer function

GP zð Þ ¼ A 4ð Þz2 þ A 5ð Þzþ A 6ð Þ
z3 þ A 1ð Þz2 þ A 2ð Þzþ A 3ð Þ

were obtained as

A ¼ X500
T � X500

� ��1
X500

T � Y500

� � ¼
A 1ð Þ
A 2ð Þ
A 3ð Þ
A 4ð Þ
A 5ð Þ
A 6ð Þ

2
6666664

3
7777775
¼

�2:883
2:798
�:905
:0564
�:0942
:905

2
6666664

3
7777775

The following are simulated step responses of the original continuous-time system

defined by transfer function GP(s) and its discrete-time model obtained from the

recorded data:
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The estimated coefficients of the transfer function GP(z) were verified by

obtaining this transfer function directly by conversion of the original GP(s) into
the z-domain using the ZOH option and the time step of 0.05 s:

GP
DIRECT zð Þ ¼ :054847z2 � :094252zþ :040593

z3 � 2:88298z2 þ 2:78877z� :904837

It could be seen below that step responses of the continuous-time system defined by

GP(s) and its discrete-time equivalent GP
DIRECT(z) perfectly match:

Exercise 3.1: Problem 2

Assume that the controlled plant is represented by its estimated discrete-time

transfer function:
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GP zð Þ ¼ :0564z2 � :0942zþ :039

z3 � 2:883z2 þ 2:789z� :905

that is reasonably close to its “true” transfer function GP
DIRECT(z). To achieve the

design specs, the desired s-domain closed-loop system transfer function has a

dominant pole of �2
 2.16j, and the non-dominant pole is chosen as 20 times

the size of the dominant pole, such that the steady state errors should be sufficiently

small:

GM sð Þ ¼ 173:4

sþ 20ð Þ s2 þ 4sþ 8:67ð Þ

Conversion of this transfer function into the z-domain with the time step of 0.05 s

and ZOH option results in:

GM zð Þ ¼ 2:7168e� 03 z2 þ 8:1852e� 3 z þ 1:4936e� 3

z3 � 2:167 z2 þ 1:4806 z � 0:3012

The step response of this model, consistent with the design specifications, is shown

below:

Now, the numerator of the feedback controller will be defined as the “desired

closed-loop characteristic polynomial minus the characteristic polynomial of the

controlled plant”, i.e.

z3 � 2:167 z2 þ 1:4806 z � 0:3012
� 	� z3 � 2:883z2 þ 2:789z� :905

� 	
¼ :716z2 � 1:3084zþ :6038
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Then the denominator of the feedback controller is defined as the numerator of the

transfer function of the controlled plant, and the entire transfer function of the

controller is:

H zð Þ ¼ :716z2 � 1:3084zþ :6038

:0564z2 � :0942zþ :039

The transfer function of the filter in the reference channel, W(z), is defined as

“numerator of the desired closed-loop transfer function GM(z) over the numerator

of the transfer function of the controlled plant”, and the entire transfer function of

the controller is:

W zð Þ ¼ 2:7168e� 03 z2 þ 8:1852e� 3 z þ 1:4936e� 3

:0564z2 � :0942zþ :039

The following simulation setup demonstrates the step response of the designed

system:

GCL zð Þ ¼ W zð Þ GP zð Þ
1þ GP zð Þ � H zð Þ

It could be seen that it is indistinguishable from the step response of the desired

closed-loop system GM(z)

Recall that transfer function GP(z) is an imperfect discrete-time approximation

of the properties of the continuous-time “true” controlled plant. Let us investigate

the performance of the designed system with respect to the “true” plant:
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It could be seen that the designed system performance is fairly close to the

desired system performance represented by transfer function GM(z).
Finally, to investigate the compliance with steady-state error requirement, a unit

step disturbance signal is applied directly to the input of the controlled plant, as

shown below. It could be seen that the steady-state response of the system is

approximately equal to 0.1 (units) that indicates that the requirement is met. The

effectiveness of the designed control circuitry is demonstrated by the next simula-

tion: disconnection of the feedback results in fully unacceptable system operation in

terms of dynamics and in terms of the sensitivity to disturbance signals.
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Exercise 3.1: Problem 3

Represent the given equations in a matrix–vector form

_X ¼ AX þ Bu, y ¼ CX

where

A ¼
�10:4 10:3 8:8
:6 �:65 �:2

�11:9 11:7 9:6

2
4

3
5, B ¼

�3

1

�4

2
4

3
5 , C ¼ �7:3 7:6 6:8½ �

Converting this state-variable form into the discrete-time domain, time step

Δt¼ 0.05 s, using six terms of the series (note that the result is consistent with

ZOH application):

X kþ 1½ � ¼ AX k½ � þ Bu k½ �, y k½ � ¼ CX k½ � ¼ CX k½ �

where

A ¼
:49205 :5014 :4206
:0248 :9727 �:00574
�:5744 :5628 1:4615

2
4

3
5, B ¼

�:1422
:048

�:1889

2
4

3
5 , C ¼ �7:3 7:6 6:8½ �

Exercise 3.1: Problem 4

Converting the state-variable description obtained in the above problem into

canonical controllable form (CCF):

A
CCF ¼ PAP�1, B

CCF ¼ PB, C
CCF ¼ CP�1

where conversion filter

P ¼
2:8304e3 1:4367e3 �1:7654e3
2:4425e3 1:82306e3 �1:3752e3
2:0370e3 2:224e3 �973:46

2
4

3
5

A
CCF ¼

0 1 0

0 0 1

:93 �2:8564 2:92627

2
64

3
75, B

CCF ¼
0

0

1

2
64

3
75 ,

C
CCF ¼ :10373 �:22179 :11821½ �
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Note that the state vector of the CCF, XCCF[k]¼PX[k], where X[k] is the state

vector of “real” variables.

Since design specifications in this problem are consistent with those of Problem

1, let us utilize the same model describing the required closed-loop dynamics:

GM zð Þ ¼ 2:7168e� 03 z2 þ 8:1852e� 3 z þ 1:4936e� 3

z3 � 2:167 z2 þ 1:4806 z � 0:3012

The CCF equivalent of this model has

AM ¼
0 1 0

0 0 1

:3012 �1:4806 2:167

2
64

3
75, BM ¼

0

0

1

2
64

3
75 ,

CM ¼ 1:4936e� 3 8:1852e� 3 2:7168e� 3½ �

Define the state-variable controller matrix as

FCCF ¼ 0 0 1½ � A
CCF � AM

� 
¼

0 0 1½ �
0 1 0

0 0 1

:93 �2:8564 2:92627

2
4

3
5�

0 1 0

0 0 1

:3012 �1:4806 2:167

2
4

3
5

0
@

1
A

¼ :62887 �1:3758 :75927½ �

Finally,

F ¼ FCCFP ¼ :62887 �1:3758 :75927½ �
2:8304e3 1:4367e3 �1:7654e3
2:4425e3 1:82306e3 �1:3752e3
2:0370e3 2:224e3 �973:46

2
4

3
5

¼ �33:761 83:9036 42:7114½ �

Use a computer tool to obtain the transfer function representing the dynamics of the

closed-loop system defined as:

GCL zð Þ ¼ C Iz� Aþ BF
� ��1

B ¼ :1182 z� :88812ð Þ z� :98807ð Þ
z� :36788ð Þ z2 � 1:799zþ :81873ð Þ

It could be seen that GCL(z) has the numerator of the original transfer function of the

controlled plant and the denominator of the discrete-time model transfer function.

This implies that the transfer function of the filter in the reference channel is to be

defined as the “numerator of the discrete-time model transfer function divided by

the numerator of the original transfer function of the controlled plan”, i.e.
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W zð Þ ¼ 2:7168e� 03 z2 þ 8:1852e� 3 z þ 1:4936e� 3

:1182 z� :88812ð Þ z� :98807ð Þ

Now implement this system in the simulation environment and subject it to some

tests.

The following graphs represent the implementation of the continuous-time

controlled plant and the state-variable controller:
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The above plots indicate that the system design specifications in terms of system

dynamics and steady-state error are properly addressed.

Exercise 3.2: Problem 1

Based on the design specifications, the following s-domain model transfer function

is suggested:

GM sð Þ ¼ 26

s3 þ 12s2 þ 40sþ 26

This transfer function is converted into the z-domain using the ZOH option and the

time step of 0.005 s:

GM zð Þ ¼ 5:3361e� 7 z2 þ 2:1827e� 6 z þ 5:1784e� 7

z3 � 2:9408 z2 þ 2:88256 z � 0:94176
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Represent the model transfer function by a CCF:

X kþ 1½ � ¼ AMX k½ � þ BMu k½ �, y k½ � ¼ CMX k½ �

where

AM ¼
0 1 0

0 0 1

:94176 �2:88256 2:9408

2
64

3
75, BM ¼

0

0

1

2
64

3
75,

CM ¼ 5:1784e� 7 2:1027087e� 6 5:33361e� 7½ �

Converted into the z-domain (ZOH option and the time step of 0.005 s) the transfer

function of the controlled plant is:

GP zð Þ ¼ 0:02492 z2 � 0:04975 z þ 0:02483

z3 � 2:99 z2 þ 2:98 z � 0:99

The CCF equivalent of this transfer function has the following matrices:

AP ¼
0 1 0

0 0 1

:99 �2:98 2:99

2
4

3
5, BP ¼

0

0

1

2
4

3
5, CP ¼ :0248 �:0498 :0907½ �

Now, the controller matrix F can be defined as:

F ¼ 0 0 0½ � AP � AMð Þ ¼ :04828 �:09746 :04918½ �

Now, configuring the state observer. The continuous-time transfer function

representing the observer dynamics is suggested as (note that the numerator of

this transfer function is irrelevant):

GOBS sð Þ ¼ 1

s3 þ 83:2 s2 þ 1280 s þ 3277

The conversion of this transfer function to the z-domain (ZOH option and the time

step of 0.005 s) results in the following discrete-time domain fundamental matrix of

the observation process:

AOBS ¼
0 1 0

0 0 1

:6597 �2:2934 2:6334

2
4

3
5
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The application of the recursive formula for matrix K results in the following

K-matrix of the observer: K ¼
:3566
:3796
:4026

2
4

3
5, and the fundamental matrix of the state

observer:

AP � KC1 ¼
�:3566 1 0

�:3796 0 1

:5875 �2:98 2:99

2
4

3
5

where matrix C1¼ [1 0 0]. Note that in order to obtain matrix C1, the following filter

is place in the input of the controlled plant:

P zð Þ ¼ 1

0:02492 z2 � 0:04975 z þ 0:02483

And finally, a special filter must be placed in the reference channel of the closed-

loop system: the constant gain must be added. Since this is discrete time, there must

be a delay in this block.

W zð Þ ¼ 5:3361e� 7 z2 þ 2:1827e� 6 z þ 5:1784e� 7

z2

The following are the simulation setup of the designed system and its responses to

unit step reference and unit step disturbance signals indicating that the design

requirements are successfully met.

0
0 0
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0.2

0.3

0.4
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1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
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Exercise 3.2: Problem 2

First represent the controlled plant by a discrete-time transfer matrix obtained for

the time step of 0.01 s and the ZOH option:

GP zð Þ ¼

1:0048e� 2 z� :9802ð Þ
z2 � 1:9894zþ :99

4:8052e� 3

z� :9231

1:4947e� 5 zþ :9966ð Þ
z2 � 1:9876zþ :99

1:0095e� 2 z� :9048ð Þ
z� :9802ð Þ z� :9418ð Þ

2
6664

3
7775

Now define the decoupling filter as a transfer matrix adjoint to GP(z):

W zð Þ ¼

1:0095e� 2 z� :9048ð Þ
z� :9802ð Þ z� :9418ð Þ � 4:8052e� 3

z� :9231

� 1:4947e� 5 zþ :9966ð Þ
z2 � 1:9876zþ :99

1:0048e� 2 z� :9802ð Þ
z2 � 1:9894zþ :99

2
6664

3
7775

Now it is known that the product of GP(z)W(z) is a diagonal matrix and its non-zero

elements Q11(z)¼Q22(z)¼Q(z)¼Det{GP(z)}:

Q zð Þ ¼ N zð Þ
D zð Þ

where polynomials N(z) and D(z) are

N zð Þ ¼ 1:0e� 5
�
1:0135z5 � 48:63z4 þ 93:30153z3 � 89:492z2 þ 42:913z� 8:2294

D zð Þ ¼ z7 � 6:822z6 þ 19:9465z5 � 32:4001z4 þ 31:578z3 � 18:466z2 þ 5:9992z� :8353

Introduce a 7-th order s-domain transfer function consistent with the required

dynamics of decoupled channels:

GM sð Þ ¼ 2 � 8 � 9 � 10 � 11 � 12 � 13
sþ 2ð Þ sþ 8ð Þ sþ 9ð Þ sþ 10ð Þ sþ 11ð Þ sþ 12ð Þ sþ 13ð Þ

and its z-domain equivalent (for ZOH option and time step of 0.01 s):

GM zð Þ ¼ NM zð Þ
DM zð Þ

We chose not to offer explicit expressions for polynomials NM(z) and DM(z) that
could obtained via a software tool, however, the components of the control systems

stabilizing the decoupled channels, identical for both channels, are defined as:
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feedback controller:

H zð Þ ¼ DM zð Þ � D zð Þ
N zð Þ

filter in the reference channel:

P zð Þ ¼ NM zð Þ
D zð Þ

The implementation of the obtained results and simulation based analysis is clar-

ified by the figure below that features a continuous-time two-input-two-output

controlled process driven by discrete-time circuitry.

Exercise 3.2: Problem 3

Obtain the matrix–vector description of the controlled plant:

_X ¼ APX þ BPU, Y ¼ CPX

where

AP ¼
4 3 8

6 �5 �2

�1 7 9

2
4

3
5, BP ¼

�3 1 �1

1 2 1

�4 1 �5

2
4

3
5, CP ¼

�3 7 4

�1 1 �2

1 3 �1

2
4

3
5

The discrete-time equivalent of the above description for ZOH option and time step

Δt¼ 0.01 s is found as follows:
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A ¼
1:0413 :03273 :0851
:0598 :9515 �:0179
�:0085 :0713 1:0931

2
4

3
5, B ¼

�:0321 :0109 �:0121
:0092 :0197 :0099
�:0413 :0111 �:0519

2
4

3
5,

C ¼ CP ¼
�3 7 4

�1 1 �2

1 3 �1

2
4

3
5

Next, each channel’s desired transfer function can be represented by a first order

s-domain transfer function based on the required settling time:

G1 sð Þ ¼
4
Tset

sþ 4
Tset

¼ 1:33

sþ 1:33
G2 sð Þ ¼

4
Tset

sþ 4
Tset

¼ 0:667

sþ 0:667
G3 sð Þ ¼

4
Tset

sþ 4
Tset

¼ 0:5

sþ 0:5

Next, these transfer functions are converted into z-domain transfer functions (ZOH

option and Δt¼ 0.01 s):

G1 zð Þ ¼ 0:01324

z� 0:9868
G2 zð Þ ¼ 0:0066

z� 0:9934
G3 zð Þ ¼ 0:005

z� 0:995

These transfer functions are used to defined the following matrices representing the

desired closed-loop three-input-three-output decoupled system:

Q ¼
0:9868 0 0

0 0:9934 0

0 0 0:995

2
4

3
5

P ¼
0:01324 0 0

0 0:0066 0

0 0 0:005

2
4

3
5

Finally, matrix W of the filter is calculated as:

W ¼ C � Bð Þ�1 � P

W ¼
0:0818 0:0805 �0:0644
0:0389 �0:0169 0:0445
�0:0764 �0:0284 0:0682

2
4

3
5

And matrix F of the controller is calculated as:

F ¼ C � Bð Þ�1 � C � A� Q � Cð Þ
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F ¼
�1:3102 �0:8201 �2:5295
2:6645 �1:1310 0:3051
1:8059 �1:0389 0:1228

2
4

3
5

The calculated control system was simulated in Simulink with the following model:

The decoupling effect and compliance with the settling time requirements the

following simulation results are shown below.

1. Unit step reference signal applied to input #1 results in the response of output

#1 reaching the steady state value of 1.0 with the settling time of approximately 3 s.

System responses observed in channels #2 and #3 have very low magnitudes.

Similar results could be observed when unit step reference signal was applied to

the inputs #2 and #3, see below.
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Exercise 3.3: Problem 1

The output of the plant alone was simulated first with this input to demonstrate the

need for a controller in the system. The system does not have the desired settling

time or overshoot of the step response, so the system must be controlled to achieve

such an output.

Next, a second order model was created in the s-domain to meet the design

specifications. The dominant pole is chosen to be a first order pole equal to 4/Tset

such that this pole will control the settling time. The dominant pole is �0.667 and the

non-dominant pole is chosen to be�10 simply to address the possible error requirement.

GM sð Þ ¼ 6:67

s2 þ 10:67sþ 6:67

The step response for this model is plotted below. As seen in the step response plot,

the settling time is almost exactly 6 s and there is 0% overshoot, so this model meets

the design specifications.
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Then, for discrete-time control, the model is converted into the z-domain using

the zero-order-hold option and the time step provided of 0.05 s. The resulting

discrete model transfer function is

GM zð Þ ¼ 0:007024zþ 0:005882

z2 � 1:574zþ 0:5866

And its step response is below. It still meets all of its design specifications, as is to

be expected.

The closed-loop transfer function can be defined as

GCL zð Þ ¼ NF zð Þ
DP zð Þ þ NC zð Þ ¼ GM zð Þ ¼ NM zð Þ

DM zð Þ

Following the approach outlined in Sect. 3.3

NC zð Þ ¼ α1zþ α0 andDC zð Þ ¼ b1zþ b0

and

UNEW zð Þ � b1zþ b0ð Þ þ YNEW zð Þ � h1zþ h0ð Þ ¼ Y zð Þ
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where

UNEW zð Þ ¼ U zð Þ
z2 � 1:574zþ 0:5866


 �

YNEW zð Þ ¼ Y zð Þ
z2 � 1:574zþ 0:5866


 �

To estimate parameters b1, b0, h1 and h0 we use the RLSM that is performed inside a

function block in Simulink. The simulation model obtains parameter values from

the RLSM block and used them to tune the controller in real time. Signals Y and U

subjected to filtering along with their delayed values form the input vector of the

RLSM block.

The simulation ran for 10 s, and the results are:

b1 0.002391

b0 0.01061

h1 0.07248

h0 �0.07808

The output of the controlled system and the output of the model

It could be seen that the system output (yellow) converges to the output of the

chosen model (blue) representing the design requirements.

The entire Simulink setup is shown below.
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Chapter 4

Methods and Models of Optimization

Most engineering problems, including planning, control and design, have more than

one solution. The theory of optimization provides a mathematical basis for

establishing the acceptability conditions that outline the class of acceptable solu-

tions, for the definition of the criterion that provides the measure of goodness of

every individual solution, and the optimization procedure (algorithm) that results in

finding the optimal solution, i.e. the solution maximizing the value of the goodness

criterion. These three components, the class of acceptable solutions, the criterion of
goodness, and the optimization procedure are to be present in any definition of the

optimization problem.

The solution vector of the optimization problem is a set of particular numerical

values of some optimization variables, X¼ [x1, x2, . . ., xn]
T that represent the nature

of the problem. For example, in a resource distribution problem when some

material, monetary, or energy resources have to be distributed between n con-

sumers, vector X represents the amounts of these resources designated to each

consumer.

The class of acceptable solutions is typically defined as a set of conditions,

equations and/or inequalities that the solution vector must satisfy. Thus in the

resource distribution problem these conditions include the requirements that the

amounts of the resource designated to individual consumers cannot be negative, i.e.

xi � 0, i ¼ 1, 2, . . . , n

that the sum of the amounts of this resource designated to consumers shall not

exceed the total amount available (i¼ 1,2,.. is the consumer index), i.e.

Xn
i¼1

xi � PTOT
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that the amounts of the resources provided to some of the consumers are not

negotiable (k is the consumer index), i.e.

xk ¼ PK, k ¼ k1, k2, . . .

or shall have allowable minimal and maximal values, i.e.

PMIN
K � xk � PMAX

K, k ¼ k1, k2, . . .

It is said that the conditions outlining the class of acceptable solutions reflect the

feasibility requirements and the specifics of the problem, and form a special region

in the solution space X.
The optimization criterion is always a scalar function defined in the solution

space

Q Xð Þ ¼ Q x1, x2, . . . , xnð Þ

that represents the degree of the consistence of any solution vector X to the general

goal of the engineering task. For example, the resource distribution problem may

reflect the goal of maximizing the resource utilization, and intuitively its solution

would provide maximum allowable amounts of the resource to the consumers

having the highest coefficients of its utilization, αi, i¼ 1,2,. . .,n. It could be seen

that in this case the criterion could be defined as

Q Xð Þ ¼
Xn
i¼1

αixi

In the situation when the goal of the resource distribution problem is to minimize

the total cost of transporting the resource to the consumers, and intuitively the most

remote consumers are expected to receive the least amounts of the resource within

the allowable limits, the criterion could be visualized as

Q Xð Þ ¼
Xn
i¼1

βixi

where βi, i¼ 1,2,. . ., n are the transportation costs per unit of the resource for

particular consumers. It is common to refer to the function Q(X) as criterion, or
objective function, or a loss function, that highlights various aspects of the nature
of the optimization problem.

Finally, the optimization procedure must result in the rule that would facilitate

the detection of such a point, XOPT, in the region of acceptable solutions in the space

X where criterion Q(X) has its minimum (maximum) value

QOPT ¼ Q XOPT
� �
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One should realize that the search for the maximum of criterion Q1(X) is

equivalent to the search of the minimum of the criterion Q2(X)¼�Q1(X) and

vice versa, therefore we will always refer to the task of optimization as the task

of minimization.
Recall the approach to minimization presented as a part of undergraduate

calculus. It suggests that if a minimum of some scalar function

Q Xð Þ ¼ Q x1, x2, . . . , xnð Þ;

i.e. X*¼ [x1*, x2*, . . ., xn*], could be found as the solution of the system of n
equations,

∂
∂x1

Q x1; x2; . . . ; xnð Þ ¼ f 1 x1; x2; . . . ; xnð Þ ¼ 0

∂
∂x2

Q x1; x2; . . . ; xnð Þ ¼ f 2 x1; x2; . . . ; xnð Þ ¼ 0

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
∂
∂xn

Q x1; x2; . . . ; xnð Þ ¼ f n x1; x2; . . . ; xnð Þ ¼ 0

While this suggestion is consistent with the rigors of a community college, from the

engineering point of view it is quite unrealistic because of the following reasons,

1. Function Q(x1, x2, . . ., xn) is typically so complex that its derivatives

∂
∂xi

Q x1; x2; . . . ; xnð Þ, i ¼ 1, 2, . . . , n

are very difficult and sometimes impossible to define analytically

2. Derivatives ∂
∂xi

Q x1; x2; . . . ; xnð Þ, i ¼ 1, 2, . . . , n are nonlinear functions of x1,

x2, . . ., xn, and the system of equations shown above may have multiple solu-

tions, may have no solution, and in any case, cannot be solved analytically.

3. The entire definition of the function minimization task does not address the

existence of constraints.

4. The function to be minimized may not have any analytical definition, but for any

combination of numerical values of its arguments its value could be defined

numerically, for example by conducting an experiment.

In most real life situations, the optimization task could be performed only

numerically and be compared with the navigation through a very complex terrain

to the highest (in the maximization case) existing peak while avoiding the obstacles

and low peaks. The task is aggravated by the fact that the terrain is

multidimensional and the obstacles could be detected only by direct contact.

Figure 4.1 below drawn by my cartoonist friend Joseph Kogan depicts the task of

optimization based on my comments.

Unsurprisingly, the optimization became an engineering tool only due to the

proliferation of modern computers. We will present several common models,
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methods and applications of optimization that should be included in the toolbox of a

modern engineer. These techniques will include linear programming, numerical

techniques of nonlinear programming (gradient, random and direct search), genetic

optimization, and dynamic programming. We do not expect a modern engineer to

develop optimization techniques, this is the mathematicians’ domain, however a

good engineer shall be able to:

• recognize a situation lending itself to an optimization task

• formulate the optimization problem, i.e. define its variables, criterion and

constraints

• recognize the resultant problem as one of the typical optimization problems

• find and apply a suitable optimization tool (perhaps available in MATLAB)

4.1 Linear Programming

Linear programming is an optimization technique suitable for the situations when

the set of conditions, outlining the region of acceptable solutions, and the goodness

criterion are linear functions defined in the solution space.

In a linear programming problem, the region of acceptable solutions is defined

by the set of equalities and inequalities as follows:

Xn
i¼1

aijxi ¼ bj and
Xn
i¼1

aiKxi � bK

where xi, i¼ 1,2,.., n are optimization variables that constitute the solution space,

j¼ 1,2,. . ., L is the equality index, and k¼ 1,2,. . ., M is the inequality index. Note

that the number of equalities must be less than the dimension of the solution space

otherwise the region of the acceptable solutions will include only one point (when

n¼ L ), or could be empty (when L> n). One should understand that inequalities

Fig. 4.1 Myth vs. reality of optimization
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can always be redefined as the standard “greater or equal” type, indeed inequality of

“less or equal” type, i.e.
Xn
i¼1

aiKxi � bK could be easily converted into the “greater

or equal” type by changing signs: �
Xn
i¼1

aiKxi � �bK , consequently only the

“greater or equal” type inequalities will be considered. Note that the class of

acceptable solutions could be empty even when n> L: the inequalities and equal-

ities could be mutually contradictive.

The criterion of a linear optimization problem is defined by a linear function,

Q x1; x2; . . . ; xnð Þ ¼
Xn
i¼1

cixi

that has to be minimized,

Q x1; x2; . . . ; xnð Þ ¼
Xn
i¼1

cixi ! min

or

�Q x1; x2; . . . ; xnð Þ ¼ �
Xn
i¼1

cixi ! min

if the original criterion Q(X) had to be maximized.

Example 4.1 Consider one of the typical problems of linear programming, the task

distribution problem. There are 5 reactors operating at a chemical plant and produc-

ing the same product. Due to capacity, design specifics and the technical status, the

reactors have different efficiency expressed by the extraction coefficients, αj,
j¼ 1,2,3,4,5. The capacities of these reactors, qj, j¼ 1,2,3,4,5, are also different

reactor, j 1 2 3 4 5

coefficient αj 0.81 0.76 0.63 0.71 0.68

capacity qj (units) 150 200 175 120 96

The chemical plant is required to process a certain amount of raw material, say

P¼ 500 units that should be rationally distributed between the reactors in the sense

that the overall extraction coefficient will be maximized. It could be seen that the

solution space of this problem comprises of 5 variables, x1–x5, representing the

amount of raw material loaded in respective reactors. The constraints of this

problem must address the following requirements:

Amount of raw material loaded in the j-th reactor must be non-negative: xj� 0,

j¼ 1,2,. . .,5

The total amount of raw material to be loaded in reactors is defined:
X5
j¼1

xj ¼ P
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The amount of raw material loaded in a particular reactor cannot exceed the

capacity of this reactor: xj� qj, j¼ 1,2,. . .,5

The criterion of this problem could be defined as
X5
j¼1

αjxj ! max or

�
X5
j¼1

αjxj ! min

The mathematical formulation of this problem is

�0:81x1 � 0:76x2 � 0:63x3 � 0:71x4 � 0:68x5 ! min

subject to conditions

x1 � 0, x2 � 0, x3 � 0, x4 � 0, x5 � 0

�x1 � �150, � x2 � �200, � x3 � �175, � x4 � �120, � x5 � �96

x1 þ x2 þ x3 þ x4 þ x5 ¼ 500

One can realize that this problem has an infinite number of alternative solutions

providing that the total amount of raw material P is less than the total capacity of the

reactors, thus creating the opportunity for the optimization. In the case when the

total amount of raw material P is equal to the total capacity of the reactors, only one

solution exists and the optimization is impossible. Finally, in the case when the total

amount of raw material P is greater than the total capacity of the reactors, the

problem does not have any solution.

It could be also realized that the optimal solution procedure for this problem is

quite trivial:

Step 1. The first reactor, having the highest efficiency coefficient, should be

loaded to full capacity (x1
OPT¼ 150, 350 units still is to be distributed),

then

Step 2. The second most efficient reactor must be loaded to full capacity (x2
OPT

¼ 200, 150 units is to be distributed), then

Step 3. The third most efficient reactor must be loaded to full capacity (x4
OPT

¼ 120, 30 units is to be distributed), then

Step 4. The fourth most efficient reactor must be loaded with the remaining

amount of raw material (x5
OPT¼ 30 units, zero units to be distributed),

then x3
OPT¼ 0.

It should be noted that most linear programming problems do not allow for such

a simple solution procedure.

Example 4.2 The transportation problem. A product stored at 3 warehouses must

be distributed between 5 consumers in such a fashion that the total cost of

transporting the product is minimized.

198 4 Methods and Models of Optimization



The solution space of this problem is formed by 3� 5¼ 15 variables, xjk,
j¼ 1,2,3, k¼ 1,2,3,4,5, representing the amount of the product delivered from the

j-th warehouse to the k-th consumer. Introduce the matrix of transportation costs,

cjk, j¼ 1,2,3, k¼ 1,2,3,4,5, representing the cost of transportation of one unit of the

product from the j-th warehouse to the k-th consumer. Introduce quantities Pj,

j¼ 1,2,3, representing the amount of the product at j-th warehouse, and quantities

Wk, k¼ 1,2,3,4,5, representing the amount of the product requested by k-th con-

sumer. Then the mathematical formulation of the problem is

X5
k¼1

X3
j¼1

cjkxjk ! min

subject to the following conditions

a) non-negativity, xjk� 0, j¼ 1,2,3, k¼ 1,2,3,4,5

b) amount of the product available at each warehouse,
X5
k¼1

xjk � Pj, j¼ 1,2,3

c) amount of product delivered to each consumer,
X3
j¼1

xjk ¼ Wk, k¼ 1,2,3,4,5

One can realize that the solution of this problem exists if
X5
k¼1

Wk �
X3
j¼1

Pj,

however it cannot be obtained without a computationally intensive and rigorously

justified algorithm. It also should be noted that typical solutions of linear program-

ming problems comprise non-negative variables and therefore the non-negativity of

the solution is assured not by special constraints but by the solution procedure itself.

Example 4.3 The mixing problem. Preparing the right raw material is one of the

conditions for obtaining a high quality end product in chemical or metallurgical

manufacturing. Assume that the raw material is characterized by percentages of

four ingredients: A1%, A2%, A3%, and A4%. The raw material is prepared by mixing

six components in the amounts (in tons) x1, x2, . . ., x6. Each component contains all

four ingredients, but the concentrations are all different, for example ajk (%) is the

concentration of the ingredient #j ( j¼ 1,2,3,4) in the component #k
(k¼ 1,2,3,4,5,6). The cost of each component is given: ck ($/ton),

(k¼ 1,2,3,4,5,6). Also given are the required total amount of the raw material, P
(tons) and the available amounts of the individual components, qk (tons),

(k¼ 1,2,3,4,5,6). It is required to prepare the least expensive mixture.

The problem definition is as follows:

Minimize the cost of the mixture:

X6
k¼1

ckxk ! min

Subject to constraints on
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the total amount of the raw material
X6
k¼1

xk ¼ P

percentages of four ingredients (j¼ 1,2,3,4)
X6
k¼1

ajkxk ¼ Aj � P
available amounts of individual components, (k¼ 1,2,3,4,5,6) xk � qk

Again, the optimal problem solution, if it exists, could be obtained via some

numerically extensive procedure.

Let us consider such a procedure.

4.1.1 Geometrical Interpretation of Linear Programming

Geometrical interpretation of linear programming is crucial for the understanding

of the computational nature of its algorithm. Geometrical interpretation works best

for the two-dimensional solution space and the inequality-type constraints.

Consider a straight line in two-dimensional space defined by the equation

a1x1þ a2x2¼ b like the one below in Fig. 4.2.

It is known that any point on this line, for example [x1
1, x2

1] satisfies this

equation, i.e. a1x1
1þ a2x2

1¼ b. It also known that any point above this line, such

as [x1
2, x2

2], results in a1x1
2þ a1x2

2> b, and any point below this line, [x1
3, x2

3],

results in a1x1
3þ a2x2

3< b. Consequently, any condition a1x1þ a2x2� b (or

�a1x1�a2x2��b) outlining the class of acceptable solutions indicates that the

acceptable solutions must be located on or below the appropriate straight line. At

the same time, any condition a1x1þ a2x2� b (or �a1x1�a2x2��b) indicates that
acceptable solutions must be located on or above the appropriate straight line. One

can visualize a domain of acceptable solutions defined by inequality-type condi-

tions as the part of the plane that simultaneously complies with all inequality-type

conditions (highlighted below in Fig. 4.3):

x1

x2

[x1
3, x2

3]

[x1
2, x2

2]
[x1

1, x2
1]

Fig. 4.2 How linear

constraints work
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Now consider a straight line c1x1þ c2x2¼ 0 and two points, [x1
A, x2

A] and [x1
*,

x2
*], located in the two-dimensional space. Note that the distance between the

straight line and point [x1
A, x2

A] is greater than the distance between this line and

point [x1
*, x2

*]. This results in the following result that could be easily verified by a

numerical example: c1x1
Aþ c2x2

A> c1x1
*þ c2x2

*.

Consider the combination of the domain of acceptable solutions bounded by

contour ABCDEF and the straight line c1x1þ c2x2¼ 0 representing the criterion of

a minimization problem seen below in Fig. 4.4. Note that the domain of acceptable

solutions bounded by contour ABCDEF, generally speaking, forms a convex
polyhedron in the n-dimensional space, and its individual vertices (corner points),

i.e. A, B, C, . . ., are known as basic acceptable solutions of the linear programming

problem.

It could be concluded that the solution of the problem [x1
OPT, x2

OPT] minimizing

the criterion Q(x1,x2)¼ c1x1þ c2x2 is located in the point that belongs to the

domain of acceptable solutions and has the shortest distance from the straight line

x1

x2

x1

x2

A
B

C
D

E
F

Fig. 4.3 Combination of linear constraints and domain of acceptable solutions

[x1
*, x2

*]

X2

[x1
A, x2

A]

X1

Fig. 4.4 Solution point and

criterion value
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c1x1þ c2x2¼ 0. It could be seen that in the above Fig. 4.5 this point is F. Should the

solution maximizing the criterion Q(x1,x2)¼ c1x1þ c2x2 be sought, it will be found
in the point D that belongs to the domain of acceptable solutions and has the largest

distance from the straight line c1x1þ c2x2¼ 0.

Now consider the specifics of the linear programming problem preventing us

from obtaining its optimal solution. The first condition is caused by the situation

where at least two constraints are mutually exclusive, in this case even acceptable

solutions do not exist. In the second case, the domain of acceptable solutions is not

empty but unbounded, thus the solution minimizing the criterion does not exist.

Both cases are shown in Fig. 4.6. Finally, Fig. 4.7 represents the situation where no

unique optimal solution minimizing the criterion exists: the straight line

representing the criterion is parallel to the side AB of the domain of acceptable

solutions.

So far our discussion addressed only the inequality-type constraints. Imagine

that a linear programming problem contains k equality-type constraints, m inequal-

ity-type constraints and has n solution variables where n> k. Assume that the

problem is formulated as follows:

x1

x2

A

B C
D

E
F

Fig. 4.5 Graphical

interpretation of a linear

programming problem

x2

x1

x2

x1
Mutually exclusive constraints Minimum does not exist

Fig. 4.6 Situations when the solution does not exist

202 4 Methods and Models of Optimization



minimize
Xn
i¼1

cixi

subject to constraints
Xn
i¼1

pijxi ¼ qj , j ¼ 1, 2, 3, . . . , k

and
Xn
i¼1

aijxi � bj , j ¼ 1, 2, 3, . . . ,m

Note that condition n> k creates the situation when k variables could be

assigned arbitrary values and removed from the list of solution variables. Since

our goal is the minimization of the criterion
Xn
i¼1

cixi we shall assign zero values

preferably to those variables that have largest values of the corresponding coeffi-

cients ci. This is done by sequential application of a special computational operation

known in linear algebra as pivoting. Indeed, after k pivoting steps the problem will

be reduced to the following definition:

minimize
Xn�k

i¼1

cixi

subject to constraints
Xn�k

i¼1

aijxi � bj , j ¼ 1, 2, 3, . . . ,m

where aij , bj , cj , i ¼ 1, 2, . . . , n� k, j ¼ 1, 2, 3, . . .m are problem parameters

modified by pivoting steps:

In summary, a linear programming procedure intended for solution of a mini-

mization problem with n variables, k equality-type and m inequality-type con-

straints (n> k), could be formulated as follows:

x1

x2

A

B

Fig. 4.7 No unique

minimum exists
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Step 1. Reduction of the dimension of the solution space by the elimination of k
strategically chosen variables and setting their values in the optimal

solution to zero

Step 2. Finding basic acceptable solutions of the problem by solving possible

combinations of n�k out of m equations
Xn�k

i¼1

aijxi ¼ bj , j ¼
1, 2, 3, . . . ,m

Step 3. Finding the optimal solution of the problem as the basic acceptable

solution that �
Note that there are many highly efficient software tools that could be

recommended for the solution of a linear programming problem. (For example

see http://www.onlinecalculatorfree.org/linear-programming-solver.html).

Example 4.4 Solving a simple linear programming problem given below:

MinimizeQ Xð Þ ¼ 3x1 þ 10x2 þ 5x3 þ 2x4

subject to conditions

x1 þ x2 þ x3 þ x4 � 125

x2 � 8x3 þ x4 � 12

� x1 þ 2x2 � 3x3 þ x4 � 24

x1 þ x2 ¼ 36

2x1 � 5x2 þ 8x3 þ 4x4 ¼ 16

The optimal solution (as per tool http://www.onlinecalculatorfree.org/linear-

programming-solver.html):

QOPT ¼ 164; x1 ¼ 28, x2 ¼ 8, x3 ¼ 0, x4 ¼ 0

Example 4.5 A resource distribution problem. A product available from three

suppliers is to be provided to four consumers. The amounts of the product requested

by individual consumers are respectively: 150, 230, 80 and 290 (units). The

amounts of the product available at each supplier are: 300, 270 and 275 units.

The transportation costs of the product from each supplier to each consumer in $ per

unit are listed in the table below:

Consumer #1 Consumer #2 Consumer #3 Consumer #4

Supplier #1 25 16 33 48

Supplier #2 45 15 36 11

Supplier #3 21 31 40 52
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It is required to minimize the overall transportation cost while satisfying the

consumers’ demands and not to exceed suppliers’ capabilities. The following

problem definition is self-explanatory and at the same time is fully consistent

with the data format of the tool offered at

http://www.onlinecalculatorfree.org/linear-programming-solver.html

Maximize p ¼ �25x11 � 16x12 � 33x13 � 48x14 � 45x21 � 15x22 � 36x23 � 11x24
� 21x31 � 31x32 � 40x33 � 52x34

subject to

x11 þ x12 þ x13 þ x14 <¼ 300

x21 þ x22 þ x23 þ x24 <¼ 270

x31 þ x32 þ x33 þ x34 <¼ 275

x11 þ x21 þ x31 þ x41 ¼ 150

x12 þ x22 þ x32 þ x42 ¼ 230

x13 þ x23 þ x33 þ x43 ¼ 80

x14 þ x24 þ x34 þ x44 ¼ 290

The Optimal Solution: p¼�13,550; x11¼ 0, x12¼ 230, x13¼ 70, x14¼ 0,

x21¼ 0, x22¼ 0, x23¼ 0, x24¼ 270, x31¼ 150, x32¼ 0, x33¼ 10, x34¼ 20 and

could be summarized as

Consumer

#1

Consumer

#2

Consumer

#3

Consumer

#4 Supplier total

Supplier #1 0 230 70 0 300

Supplier #2 0 0 0 270 270

Supplier #3 150 0 10 20 170

Consumer

total

150 230 80 290 Total transportation
cost: $13,550

4.2 Nonlinear Programming: Gradient

Gradient of a function of several variables, Q(x1, x2, . . ., xn), is defined as a vector

comprising partial derivatives of this function with respect to individual variables, i.e.

∇Q Xð Þ ¼ ∇Q x1; x2; . . . ; xnð Þ ¼ ∂Q
∂x1

∂Q
∂x2

. . . ∂Q
∂xn

h iT
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The above expression refers to an analytical definition of the gradient, however,

it could be numerically defined at a particular location of the problem space, X*¼
[x1*, x2*, . . ., xn*]T. Let us refer to numerically defined gradient as ∇Q(X*)
where * is the index of the particular point where this gradient is defined. It is

known that a numerically defined gradient is a good navigational tool: it is a vector

always pointing in the direction of the increase of function Q in the space X.
Let us utilize this property of gradient for the minimization of function Q(X).

First, select some initial point X1¼ [x1
1, x2

1,. . ., xn
1]T and numerically evaluate

derivatives of function Q(X) in the vicinity of this point:

∂Q X1
� �
∂x1

� Q x1
1 þ Δ, x21, . . . , xn1ð Þ � Q x1

1, x2
1, . . . , xn

1ð Þ
Δ

∂Q X1
� �
∂x2

� Q x1
1, x2

1 þ Δ , . . . , xn
1ð Þ � Q x1

1, x2
1, . . . , xn

1ð Þ
Δ

:::::::::::::::::::::::::::::::::::::::::::::::::

∂Q X1
� �
∂xi

� Q x1
1, x2

1, . . . , xi
1 þ Δ, . . . , xn

1ð Þ � Q x1
1, x2

1, . . . , xn
1ð Þ

Δ
:::::::::::::::::::::::::::::::::::::::::::::::::

∂Q X1
� �
∂xn

� Q x1
1, x2

1, . . . , xn
1 þ Δð Þ � Q x1

1, x2
1, . . . , xn

1ð Þ
Δ

where Δ is a small positive increment chosen on the basis of experience and intuition

(V.S.:Δ¼ 0.0001 is a goodchoice).Note that this approximation of derivatives, known

as a forward difference, is not unique but is good enough for most applications. Now,

when the direction towards the increase of function Q(X) is known, and the direction
towards the minimum is the opposite one, we can make a step from the initial point X1

to the new point X2 that is expected to be closer to the point of minimum: X2¼X1

�a �∇Q(X1). Individual components of point X2 will be defined as follows:

x1
2 ¼ x1

1 � a � ∂Q X1
� �
∂x1

x2
2 ¼ x2

1 � a � ∂Q X1
� �
∂x2

::::::::::::::::::::::::::::::::::

xn
2 ¼ xn

1 � a � ∂Q X1
� �
∂xn

Now the procedure will repeat itself, but derivatives will be calculated in the

vicinity of the new point X2 and a transition to the point X3 will be performed.

This iterative process will lead to the vicinity of the minimum point of function

Q(X) providing that some conditions be met. Parameter a in the expressions above

is a positive adjustable constant responsible for the convergence rate of the mini-

mization procedure. Its initial value is arbitrarily defined and could be changed

(typically decreased) in the process according to the following rule. Assume that the

transition from point Xk to Xkþ1 is taking place: Xkþ1¼Xk�a �∇Q(Xk). The transi-

tion is successful ifQ(Xkþ1)<Q(Xk), however in the situationwhenQ(Xkþ1)�Q(Xk)
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the value of parameter a must be reduced, for example by half, and the transition

must be repeated with the value aNEW¼ 0.5a, i.e. Xkþ1¼Xk�aNEW �∇Q(Xk). If

necessary, a value shall be repeatedly reduced until a successful transition will take

place. The reduced a value shall be kept unchanged for the consequent step.
Termination conditions for the described procedure could be defined in a number

of ways. First, and the simplest, is the definition of the maximum number of

iterations (successful reduction steps of the function to be minimized). It is

also common to stop the procedure if several (5, 10, 20) iterations did not result

in a noticeable change in the optimization variables, i.e. │Xk�6�Xk�5│� ξ and
│Xk�5�Xk�4│� ξ and . . . and │Xkþ1�Xk│� ξ where ξ> 0 is a small arbitrary

number. A block diagram of the procedure is seen in Fig. 4.8.

Compute 
gradient∇Q(Xi)
in the vicinity of  

point X i

Compute 
X*=Xi-a·∇Q(Xi)

Q(X*)<Q(Xi)
?

YES

i=i+1
Xi=X*

NO
a=a/2

INITIALIZATION
i=1

X1, a, Δ, iMAX

i=iMAX

?

YES

NO

Print X i and 
Q(Xi)

STOP

Fig. 4.8 Block diagram of

gradient minimization

procedure
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The gradient minimization procedure is quite common due to its simplicity. It

does not require analytical expressions for derivatives. Values of function Q may

be defined by analytical expressions or experimentally. The drawbacks of this

approach are also evident. The function must be continuous, otherwise working

with derivatives presents an impossible task. This reality creates difficulties with

constrained minimization. The approach implies that the function to be minimized

has only one minimum point: it works only as a local minimization technique.

4.3 Nonlinear Programming: Search

Search-based optimization presents a valuable alternative to gradient optimization:

it does not utilize derivatives of the function to be optimized thus expanding the

range of its applications to discontinuous functions. But, how common are the

discontinuous functions? It is common to introduce constraints in the optimization

procedure through so-called penalty functions, and penalty functions are the typical

sources of discontinuities. Therefore, search becomes very useful in many practical

problems.

4.3.1 Penalty Functions

Consider the following optimization problem where criterion and constraints are

represented by generally speaking, nonlinear functions Q(.) and fi(.), i¼ 1,2. . .:

MinimizeQ x1, x2, . . . xnð Þ

subject to conditions

f1 x1, x2, . . . xnð Þ � a1

f2 x1, x2, . . . xnð Þ � a2

:::::::::::::::::::::::::::::::::

fK x1, x2, . . . xnð Þ � aK

Introduce penalty functions defined as

Pi x1; x2; . . . ; xnð Þ ¼ Ci � f i x1; x2; . . . ; xnð Þ � ai½ �2, if f i x1; x2; . . . ; xnð Þ � ai
0, if f i x1; x2; . . . ; xnð Þ < ai

�

or Pi x1; x2; . . . ; xnð Þ ¼ Ci � f i x1; x2; . . . ; xnð Þ � aij j, if f i x1; x2; . . . ; xnð Þ � ai
0, if f i x1; x2; . . . ; xnð Þ < ai

�
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or Pi x1; x2; . . . ; xnð Þ ¼ Ci, if f i x1; x2; . . . ; xnð Þ � ai
0, if f i x1; x2; . . . ; xnð Þ < ai

�

where Ci	 1 are arbitrary weights reflecting the importance of particular con-

straints, i¼ 1,2,. . .K. Then the original constrained optimization problem can be

represented by the following unconstrained optimization problem

Minimize L x1; x2; . . . ; xnð Þ ¼ Q x1; x2; . . . ; xnð Þ þ
XK
i¼1

Pi x1; x2; . . . ; xnð Þ
Function L(.) is commonly referred to as the “loss function”. It could be seen that

due to the definition of penalty functions Pi(.) it is a discontinuous function. It also

could be seen that due to large values of weights Ci virtually any minimization

algorithm would first “drive” penalty values to zero, and then, when constraints are

satisfied, minimize the original function Q(.).
Consider the following example illustrating the introduction of penalty

functions.

Example 4.6 unconstrained optimization problem

Minimize Q x1; x2; x3ð Þ ¼ 5 x1 þ 6ð Þ2 þ 2 x1 � x2 � 6x3ð Þ2 � 10x2 x3 � 2ð Þ3
subject to conditions:

x1 þ x2 þ 6x3 ¼ 10

0 � x1 � 25

�10 � x2 þ x3 � 10

x1 � 4x3 � 100

Define penalty functions representing the imposed constraints:

P1 ¼ 1015 � x1 þ x2 þ 6x3 � 10½ �2

P2 ¼ 1010 � x12, if x1 < 0

0, if x1 � 0

(

P3 ¼ 1010 � x1 � 25ð Þ2, if x1 > 25

0, if x1 � 0

(

P4 ¼ 1010 � x2 þ x3 � 10ð Þ2, if x2 þ x3 � 10ð Þ2 > 0

0, otherwise

(

P5 ¼ 1010 � x1 � 4x3 � 100ð Þ2, if x2 � 4x3 > 100

0, otherwise

(

The resultant loss function

L x1; x2; x3ð Þ ¼ 5 x1 þ 6ð Þ2 þ 2 x1 � x2 � 6x3ð Þ2 � 10x2 x3 � 2ð Þ3 þ
X5
i¼1

Pi x1; x2; x3ð Þ
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could be easily defined by a computer code. Understandably, it should be mini-

mized by a procedure that does not utilize derivatives

∂L x1; x2; x3ð Þ
∂x1

,
∂L x1; x2; x3ð Þ

∂x2
,
∂L x1; x2; x3ð Þ

∂x3

It should also be noted that due to nonlinear criterion and constraints, this problem

most likely does not have one minimum, and finding the global minimum presents

an additional challenge. As it is commonly done when some parameters are

arbitrarily chosen (in this case, weight coefficients) the user shall inspect the

obtained solution and if necessary, change the weight values. It is a good practice

to demonstrate that the solution does not depend on the choice of the weights.

4.3.2 Random Search

This approach could be perceived as the most straight forward “trial-and-error”

technique utilizing the full power of a modern computer and perhaps a supercom-

puter. It facilitates finding the global solution of linear and nonlinear, constrained

and unconstrained, continuous and discontinuous optimization problems. Its only

drawback is the gigantic amount of computations that is prohibitive in many

practical situations. The strategy of random search is illustrated by Fig. 4.9.

4.3.3 Simplex Method of Nelder and Mead

Direct search is a much more efficient alternative to random search. One can define

direct search as a thoughtful and insightful trial-and-error approach. It still has to

start from some initial conditions but its steps are based on a reasonable expectation

of success. It works well with continuous and discontinuous, linear and nonlinear,

constrained and unconstrained functions. Its only drawback compared to random

search is the inherent inability to assure that the global minimum be found. This

fault is not that crucial: direct search is typically used in realistic situations where

properly chosen, the initial point guarantees that the global minimum can be found.

Since direct search does not call for a gigantic number of steps, it could be used in

situations when values of the objective functions are defined by computer simula-

tions and even by physical experiments.

Although there is a good number of direct search procedures utilizing different

rationale for making the “next step,” one of the most practical is the Simplex

Method by Nelder-Mead (1965). The algorithm works with nþ 1 vertices of a

simplex (convex polytope) defined in the n-dimensional search space. It calculates

(obtains) numerical values of the function to be minimized at every vertex, com-

pares these values, and implements some rules for replacing the worst vertex (i.e.
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the one with the largest value of the objective function). This process could be best

illustrated in two dimensional space when simplex, with its three vertices, is just a

triangle.

RANDOM NUMBER GENERATOR

COMPUTE
L(X)

L(X ) < L(XOPT)
?

XOPT=X

NO

CHOSING THE DISTRIBUTION
LAW and ITS PARAMETERS

and INITIAL SOLUTION XOPT

PRINTING
XOPT,  L(XOPT)

STOP

YES

TERMINATION
CONDITIONS

RANDOM VECTOR
X

YES NO

Fig. 4.9 Random search
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First assume that the initial simplex with vertices A, B, C is established. It is

often done by specifying some initial point, say point A, and the step size that

determines the size of the resultant initial simplex, i.e. triangle ABC. Next is the
evaluation of the objective function Q(x1,x2) at each vertex (x1, x2 are coordinates
of points A, B, C) thus resulting in numerical values Q(A), Q(B) and Q(C). Assume

that the comparison reveals that Q(A)>Q(B)>Q(C), and since our task is mini-

mization, the “worst” point is A. Then as seen in Fig. 4.10 above, the algorithm

performs a special operation, reflection, thus establishing a new point D. What

happens next, depends on the value Q(D). If Q(A)>Q(D), the algorithm performs

expansion as shown above, creating a new point E. The expansion could be

repeated providing that still Q(A)>Q(E). In the situation when Q(D)>Q(A), the
contraction is performed. It should be performed repeatedly until condition Q(A)>
Q(E) is achieved. Upon the establishment of the “new” point E, the “old” point A is

discarded. Now the new simplex with vertices B, C, and E is ready for performing

the same computational cycle.

The termination conditions can be defined in terms of the total number of steps

(optimization cycles), or in terms of the distance between vertices of the simplex.

It is good to realize that besides “purely computational” applications, the

Simplex procedure can be implemented in the “(wo)man in the loop” regime for

the real-time optimization of technical systems that could be represented by a

simulator. Figure 4.11 below illustrates an application of the Simplex optimization

to the tuning of a PID (proportional-integral-derivative) controller. The Vissim-

based simulator (see http://www.vissim.com/) features a controlled process with a

PID controller with manually adjustable parameters KP, KI, and KD known as

proportional, integral and derivative gains.

x1

x2

A

B
C

Q(A)>Q(B)>Q(C)

REFLECTION

x1

x2

A

B
C

D

Q(A)>Q(D)

EXPANSION

x1

x2

A

B
C

E

x1

x2

A

B
C

D

Q(D)>Q(A)

CONTRACTION

x1

x2

A

B
C

E

Q(A)>Q(E)

Q(A)>Q(E)

Fig. 4.10 How the simplex procedure works
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The optimization criterion is the commonly used ITSE (integral-time-squared-

error) defined as

Q KP;KI;KDð Þ ¼
ðT
0

t � e2 � dt

where e is the system error (the discrepancy between the actual and desired system

output values), t is continuous time, and T is the simulation period. It is known from

Controls that minimization of ITSE-type criteria leads to the most desirable tran-

sient process in the system.

4.3.4 Exercise 4.1

Problem 1 Solving a mixing problem. The table below contains characteristics of

several materials that are to be mixed to obtain a raw material for a metallurgical

process. Obtain the mixture recipe that would have the following required chemical

composition and total volume at minimum cost. The mixture characteristics are as

follows:

Fe� 20%, Zn� 10%, SiO2� 42%, Cu� 5%, total weight 500 tons

Fe % Zn % SiO2 % Cu % Cost, $/ton Availability

Material 1 15 38 41 6 120 250 tons

Material 2 40 12 40 1 150 590 tons

Material 3 35 5 27 28 211 1000 tons

Material 4 16 11 21 18 140 520 tons

Material 5 33 1 60 5 75 2500 tons

Material 6 7 23 45 25 214 800 tons

Problem 2 Solving an LSM parameter estimation problem using a gradient pro-

cedure. Generate input and the output variables as follows (k¼ 1, 2,. . ., 500):

x1 kð Þ ¼ 5 þ 3 � Sin 17 � kð Þ þ Sin 177 � kð Þ þ :3 � Sin 1771 � kð Þ
x2 kð Þ ¼ 1 � 2 � Sin 91 � kð Þ þ Sin 191 � kð Þ þ :2 � Sin 999 � kð Þ
x3 kð Þ ¼ 3 þ Sin 27 � kð Þ þ :5 � Sin 477 � kð Þ þ :1 � Sin 6771 � kð Þ
x4 kð Þ ¼ � :1 � x1 kð Þ þ :3 � x2 kð Þ þ 2:5 � Sin 9871 � kð Þ þ :7 � Cos 6711 � kð Þ
y kð Þ ¼ 2 � x1 kð Þ þ 3 � x2 kð Þ � 2 � x3 kð Þ þ 5 � x4 kð Þ þ :3 � Sin 1577 � kð Þ

þ :2 � Cos 7671 � kð Þ
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Obtain “unknown” coefficients of the regression equation

yMOD kð Þ ¼ a1x1 kð Þ þ a2x2 kð Þ þ a3x3 kð Þ þ a4x4 kð Þ

using the least squares method implemented via the gradient procedure listed below

(that could be rewritten in MATLAB). Assume zero initial values of the coeffi-

cients. Compute the coefficient of determination of the obtained regression

equation.

Problem 3 Utilize data of Problem #2 to obtain coefficients of the regression

equation vMOD kð Þ ¼ a1x1 kð Þ þ a2x2 kð Þ þ a3x3 kð Þ þ a4x4 kð Þ applying the gradient

procedure. It is required, however, that all regression coefficients be positive. Show

the obtained coefficients. Compute the coefficient of determination for the resultant

regression equation. Explain the change in the coefficient of determination com-

paring with Problem #2

PROGRAM GRADIENT
DIMENSION X(10),X1(10),DER(10)
WRITE(*,*)’ ENTER NUMBER OF VARIABLES ’
READ(*,*) N
WRITE(*,*)’ ENTER THE gain OF THE PROCEDURE ’
READ(*,*)A
WRITE(*,*)’ ENTER INITIAL NUMBER OF STEPS ’
READ(*,*) NSTEP
H¼.001
DO 1 I¼1,N
WRITE(*,*)’ ENTER INITIAL VALUE FOR X(’,I,’)’

1 READ(*,*)X(I)
10 CONTINUE

K¼1
CALL SYS(N,X,Q)
QI¼Q

100 CONTINUE
DO 4 I¼1,N
X(I)¼X(I)+H
CALL SYS(N,X,Q1)
DER(I)¼(Q1-Q)/H
X(I)¼X(I)-H

4 CONTINUE
50 CONTINUE

DO 5 I¼1,N
5 X1(I)¼X(I)-DER(I)*A

CALL SYS(N,X1,Q1)
IF(Q1.GE.Q) A¼A/2
IF(Q1.GE.Q) GOTO 50
DO 30 I¼1,N

30 X(I)¼X1(I)
Q¼Q1
IF(ABS(Q).LE.1e-5)GOTO 2
K¼K+1
IF(K.GT.NSTEP) GOTO 2
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GOTO 100
2 CONTINUE

WRITE(*,*)’ ITERATIONS RUN: ’,NSTEP
WRITE(*,*)’ INITIAL CRITERION AVLUE: ’,QI
WRITE(*,*)’ CRITERION VALUE REACHED: ’,Q
DO 7 I¼1,N

7 WRITE(*,*)’ OPTIMAL VALUE: X(’,I,’)¼’,X(I)
WRITE(*,*)’ ENTER ADDITIONAL NUMBER OF STEPS ’
IF(ABS(Q).LE.1e-5)CALL EXIT
READ(*,*) NSTEP
IF(NSTEP.EQ.0)CALL EXIT
GOTO 10
END

C
SUBROUTINE SYS(N,X,Q)
DIMENSION X(10)
Q¼0.
DO 1 I¼1,N
Q¼Q+(X(I)-5.*I)**2

1 CONTINUE
Q¼Q**2
RETURN

END

4.4 Genetic Optimization

Genetic optimization algorithms possess the advantages of random and direct

search optimization procedures. Combined with the availability of high perfor-

mance computers they alleviate major obstacles in the way of solving multivari-

able, nonlinear constrained optimization problems. It is believed that these

algorithms emulate some concepts of the natural selection process responsible for

the apparent perfection of the natural world. One can argue about the concepts, but

the terminology of genetic optimization is surely adopted from biological sciences.

Assume that we are in the process of finding the optimum, say the maximum, of

a complex, multivariate, discontinuous, nonlinear cost function Q(X). The con-

straints of the problem have already been addressed by the penalty functions

introduced in the cost function and contributing to its complexity.

Introduce the concepts of an individual, generation, and successful generation.

An individual is an entity that is characterized by its location in the solution space,

XI and the corresponding value of the function Q, i.e. Q(XI). A generation is a very
large number of individuals created during the same cycle of the optimization

procedure. A successful generation is a relatively small group of K individuals

that have some common superior trait, for example, they all have the highest

associated values Q(.) within their generation. The genetic algorithm consists of

repeated cycles of creation of successful generations.
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Creation of the Initial Generation First, the feasibility range [xk
MIN

,xk
MAX] for

each solution variable xk k¼ 1,2,3,. . .,n, is to be established. Each interval [xk
MIN

,xk
MAX] is divided into the same number of subintervals, say L, thus resulting in a

grid within the solution space with numerous nodes. The next task is the evaluation

of function Q at each node of the grid, i.e. the creation of individuals “residing” at

every node. During this process the successful generation is selected consisting of K
individuals that have the highest values of the function Q. It is done by forming a

group of individuals ordered according to their Q values, i.e.

Q XK
� � � Q XK�1

� � � . . .Q X2
� � � Q X1

� �
*ð Þ

Any newly generated individual XI is discarded if Q(XI)�Q(XK). However if

Q(XI)>Q(XL), it is included in the group replacing the individualXLwith the lowest

Qvalue.Therefore the successful generation still includesK individuals that are being

renumbered and reordered to assure (*). This process is repeated each time a new

individual is generated i.e. until the entire initial generation is created and analyzed.

Creation of the Next Successful Generation involves only members of the existing

successful generation. Two techniques are utilized for this purpose, parenting and

mutation. Parenting (crossover) involves two individuals, XA and XB and results in

an “offspring”

XC ¼ x1
C
, x2

C
, . . . xk

C
, . . . xn

C
� �T

defined as follows:

x1
C ¼ λ1x1A þ ð1� λ1Þx1B

x2
C ¼ λ2x2A þ ð1� λ2Þx2B

::::::::::::::
xk

C ¼ λkxkA þ ð1� λkÞxkB
::::::::::::::
xn

C ¼ λnxnA þ ð1� λnÞxnB

where 0< λk< 1 are random numbers generated by a random number generator.

Then, based on the computation of Q(XC) the newly created individual XC is

accepted into the successful generation or discarded. The parenting process is

repeated several number times for every combination of two members of the

original successful generation.

The mutation process implies that every member of the original successful

generation, XI originates a “mutant” XM¼ [x1
M, x2

M, . . .xk
M,. . .xn

M]T defined as

follows:
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x1
M ¼ α1x1I

x2
M ¼ α2x2I

:::::::::::::

xk
M ¼ αkxkA

::::::::::::::

xn
M ¼ αnxnA

where αk are normally distributed random numbers generated by a random number

generator. Based on the computation of Q(XM) the newly created individual XM is

accepted into the successful generation or discarded. The mutation process is repeated

several number times for every member of the original successful generation.

Understandably, parenting and mutation upon completion results in a new

successful generation that is to be subjected to a new cycle of the procedure unless

the termination conditions be satisfied. The most common termination condition

refers to the variability within a successful generation, and could be expressed as:

XK�1

i¼1

Xi � Xiþ1
�� �� � δ

where δ> 0 is some judiciously chosen small positive number.

It is good to remember that genetic optimization is capable of finding a global

minimum of virtually any function Q(X). Moreover, it works even when this

function does not exist as an analytical expression: in this situation for any

particular XI the value of Q(XI) could be determined by running a computer

simulation or by an experiment. Figure 4.12 provides a block diagram of the genetic

optimization procedure.

The following MATLAB code implementing a genetic optimization procedure

was written by my former student Dr. Jozef Sofka

%genetic algorithm for minimization of a nonlinear function
%(c) Jozef Sofka 2004
%number of crossovers in one generation
cross¼50;
%number of mutations in one generation
mut¼30;
%extent of mutation
mutarg1¼.5;
%size of population
population¼20;
%number of alleles
al¼5;
%trying to minimize function
%abs(a^2/b+c*sin(d)+b^c+1/(e+a)^2)
clear pop pnew;
%definition of "best guess" population
pop(1:population,1)¼12+1*randn(population,1);
pop(1:population,2)¼1.5+.1*randn(population,1);
pop(1:population,3)¼13+1*randn(population,1);
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pop(1:population,4)¼1.5+.2*randn(population,1);
pop(1:population,5)¼(.5*randn(population,1));

% evaluation of fitness population
for f¼1:population

e(f)¼abs(pop(f,1)^2/pop(f,2)+pop(f,3)*sin(pop(f,4))+pop(f,2)
^pop(f,3)+1/(pop(f,5)+pop(1))^2);
end

[q,k]¼sort(e);
%number of generations
for r¼1:500

parameters(r,1:al)¼pop(k(1),1:al);
fitness(r)¼e(k(1));

%crossover
for f¼1:cross

Forming the 
initial grid

Forming the 
initial successful 

generation

Parenting 
(crossover)

Mutation

INITIALIZATION

Forming a 
successful 
generation

YES

Print Xi and
Q(Xi)

STOP

Termination ?

Evaluation of
Q(.)

Evaluation of
Q(.)

Evaluation of
Q(.)

Fig. 4.12 Block diagram of

a genetic optimization

procedure
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p1¼round((rand+rand)/2*(population-1))+1;
p2¼round((rand+rand)/2*(population-1))+1;
p3¼(2*rand-.5);

pnew(f,:)¼pop(k(p1),1:al)+p3*(pop(k(p2),1:al)-pop(k(p1),1:
al));
%evaluation of fitness
fit(f)¼abs(pnew(f,1)^2/pnew(f,2)+pnew(f,3)*sin(pnew(f,4))+pnew

(f,2)^pnew(f,3)+1/(pnew(f,5)+pnew(1))^2);
end

%selection
for f¼1:cross
if (fit(f)<e(k(population-3)))
pop(k(population),:)¼pnew(f,:);
e(k(population))¼fit(f);
[q,k]¼sort(e);
end
end

%mutation
for f¼1:mut
p¼round(rand*(population-1))+1;
o¼round((al-1)*rand)+1;
pnew(f,:)¼pop(p,:);
pnew(f,o)¼pnew(f,o)+mutarg1*randn(1,1);
%evaluation of fitness
fit(f)¼abs(pnew(f,1)^2/pnew(f,2)+pnew(f,3)*sin(pnew(f,4))+pnew

(f,2)^pnew(f,3)+1/(pnew(f,5)+pnew(1))^2);
end

%selection
for f ¼1:mut
if (fit(f)<e(k(population-1)))
pop(k(population),:)¼pnew(f,:);
e(k(population))¼fit(f);
[q,k]¼sort(e); end

end
end
fprintf(’Parameters a¼%f; b¼%f; c¼%f; d¼%f; e¼%f\n’, . . .,
pop(k(1),1), pop(k(1),2), pop(k(1),3), pop(k(1),4), pop(k(1),5))
fprintf(’minimize function abs(a^2/b+c*sin(d)+b^c+1/(e+a)^2)
\n’)
figure
plot(parameters)
figure

semilogy(fitness)

4.4.1 Exercise 4.2

Problem 1 Use Simplex Optimization procedure (to be provided) to tune param-

eters of a PID controller as shown in Fig. 3.3. The simulation setup could be

implemented in Simulink or Vissim. The following transfer function is

recommended for the controlled plant:
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G sð Þ ¼ sþ 6

s3 þ 6s2 þ 10sþ 10

To show the effectiveness of the tuning procedure provide a sequence (five or so) of

numerical values of the parameters of the controller, values of the criterion, and the

system step responses.

Problem 2 Given input–output data representing a highly nonlinear, static process:

x1 x2 x3 y

1 1 1 17.59141

1 1 2 21.59141

1 2 2 44.94528

2 2 2 81.89056

2 2 3 89.89056

2 3 3 216.8554

3 3 3 317.2831

�3 3 3 �285.2831

�3 �3 3 15.25319

�3 �3 �3 �0.496806

�3 3 �3 �301.0331

�1 3 �3 �100.1777

�1 3 5 �36.42768

�5 2 4 �152.7264

5 2 1 188.7264

Given the configuration of the mathematical model of this process:

yMOD ¼ a1x1e
a2x2 þ a3

a4x3þa5ð Þ

Utilize the Genetic Optimization (GO) program provided above and the input/

output data to estimate unknown parameters of the mathematical model given

above. Experiment with values of the control parameters of the GO procedure.

Compute the coefficient of determination for the obtained regression model and

comment on the model accuracy. Document your work.

4.5 Dynamic Programming

Many physical, managerial, and controlled processes could be considered as a

sequence of relatively independent but interrelated stages. This division, natural

or imaginative, could be performed in the spatial, functional, or temporal domains.

The following diagram in Fig. 4.13 represents a typical multi-stage process

containing four stages. Every stage or sub-process is relatively independent in the

sense that it is characterized by its own (local) input xi, local output yi, local control
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effort ui, and the local goodness criterion qi. Both the output and the criterion of

each stage (sub-process) are defined by its local input and the control effort, i.e.

yi ¼ yi xi; uið Þ and qi ¼ yi xi; uið Þ.
At the same time, individual stages (sub-processes) are interrelated. Indeed the

output of every stage, except the last (n-th) stage, serves as the input of the

consequent stage, i.e. for i ¼ 1, 2, 3, . . . , n� 1 yi ¼ xiþ1: This reality results in

the following relationships that links the entire sequence:

yi ¼ yi xi; uið Þ ¼ yi yi�1 xi�1; ui�1ð Þ, ui½ � ¼ yi xi�1; ui�1; uið Þ
¼ yi yi�2 xi�2; ui�2ð Þ, ui�1, ui½ � ¼ yi xi�2; ui�2; ui�1; uið Þ ¼ . . .
¼ yi x1, u1, u2, u3, . . . , uið Þ

and similarly qi ¼ qi x1, u1, u2, u3, . . . , uið Þ, where i¼ 1,2,3,. . ., n is the sequential

number of the stage.

These relationships indicate that the output and criterion value of any stage of

the process, except the first stage, are defined by the input of the first stage, control

effort applied at this stage and control efforts applied at all previous stages. In

addition to the above relationships, the stages of the process are linked by the

“overall goodness criterion” defined as the sum of all “local” criteria,

Q ¼
Xn
k¼1

q xk; uið Þ where n is the total number of the stages. It could be seen that

the overall criterion depends on the input of the first stage and all control efforts, i.e.

Q ¼ Q x1, u1, u2, u3, . . . , unð Þ

Therefore the optimization problem of a multistage process implies the minimi-

zation (maximization) of the overall criterion Q(.) with respect to control efforts

applied at individual stages,uk, k ¼ 1, 2, . . . n, for any given input of the first stage,
x1, and may be subject to some constraints imposed on the outputs of the individual

stages, yk, k ¼ 1, 2, . . . n. One can realize that the process optimization problem

cannot be solved by the independent optimization of the individual stages with

respect to their “local” criteria, qk, k ¼ 1, 2, . . . n. The optimal control strategy

must be “wise”: “local” optimization of any sub-process may result in such an

output that will completely jeopardize the operation of the consequent stages thus

causing poor operation of the entire multistage process. Therefore, optimization of

Fig. 4.13 Multi-stage process with four stages
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any stage of a multi-stage process must take into account the consequences of this

optimization for all consequent stages. Selection of any “local” control effort

cannot be performed without assessing its impact on the overall criterion.

Dynamic programming is an optimization technique intended for the optimiza-

tion of multi-stage processes. It is based on the fundamental principle of optimality

of dynamic programming formulated by Richard Bellman. A problem is said to
satisfy the Principle of Optimality if the sub-solutions of an optimal solution of
the problem are themselves optimal solutions for their sub-problems. Fortunately,
optimization problems of multi-stage processes do satisfy the Principle of Opti-

mality that offers a powerful solution approach in the most realistic situations. The

key to the application of the Principle of Optimality is in the following statement

that is stemming from this principle: any last portion of an optimal sequence of
steps is optimal.

Let us illustrate this principle using the chart below in Fig. 4.14 that presents a

process comprising of 12 sequential stages divided into two sections, AB and BC. It

is assumed that each j-th stage of this process is characterized by its “local”

criterion, qj. Assume that the overall criterion of the process is defined as the sum

of local criteria: Q ¼
X12
j¼1

qj

Let us define the sectional criteria for each of the two sections:

QAB ¼
X5
j¼1

qj and QBC ¼
X12
j¼6

qj. Assume that for every stage of the process some

control effort is chosen, such that the entire combination of these control efforts,

uOPT
j , j ¼ 1, 2, . . . , 12, optimizes (minimizes) the overall process criterion Q. Then

according to the principle of dynamic programming control efforts uOPT
j , j ¼ 6, 7,

. . . , 12 optimize the last section of the sequence, namely BC, thus bringing criterion

QBC ¼
X12
j¼6

qj to its optimal (minimal) value. At the same time, control efforts uOPT
j ,

j ¼ 1, 2, . . . , 5 are not expected to optimize section AB of the process, thus criterion

QAB ¼
X12
j¼6

qj could be minimized by a completely different combination of control

efforts, say uALT
j , j ¼ 1, 2, . . . , 5.

A B C

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 4.14 Twelve stage process
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The fundamental principle provides the framework for a highly efficient and

versatile optimization procedure of dynamic programming that works on a step-by-

step basis and defines optimal control efforts for individual stages of the multi-stage

process. It is important that control decisions made at each step of the procedure do

not optimize individual stages of the process, i.e. do not solve the “local” optimi-

zation problems. Instead, they optimize the last portion of the entire process that

starts at the stage in question and end at the last stage of the process.

When doing so, every step of the optimization procedure takes into account not

only the particular stage of the process but also all consequent stages. The proce-

dure is iterative, therefore it shall start from the last section of the multistage

process where there are no consequent stages to be considered. At the same time,

the optimal solution of the control problem uOPTj , cannot be explicitly defined

without knowing the input xj applied to the appropriate section of the process.

Therefore, the dynamic programming procedure is performed in two steps: condi-

tional optimization and unconditional optimization. Conditional optimization starts

from the end of the process addressing the last stage of the process first, then the last

two stages of the process, then the last three stages, and finally the entire process.

Why is it called conditional?—because at the first step, the procedure defines the

optimal conditional control effort (OCCE) for the last stage of the process that is

dependent on the input of the last stage of the process:

uOPT
N ¼ F xNð Þ

that minimizes the sectional criterion

QN xN; uNð Þ ¼ qN xN; uNð Þ

(Note that the sectional criterion is marked by the index of the first stage of the

section). Now the output of the last stage of the process (and the output of the entire

process) is

yN ¼ yN xN , u
OPT
N

� �
This solution must be consistent with the required (allowed) value of the output of

the process, Y*, i.e.

yN ¼ yN xN , u
OPT
N

� � ¼ Y*

At the next step the OCCE for the second stage from the end of the process is

defined as a function of the input applied to this stage:

uOPT
N�1 ¼ F xN�1ð Þ
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that minimizes the sectional criterion for the last two stages of the process:

QN�1 xN�1; uN�1; u
OPT
N

� � ¼ qN�1 xN�1; uN�1ð Þ þ qN xN; u
OPT
N

� �
Note that in this expression xN does not work as an independent factor, it is defined

as the output of the previous stage of the process:

xN ¼ yN�1 xN�1; u
OPT
N�1

� �
and therefore criterionQN�1 actually depends only on two variable factors,xN�1 and

uN�1:

QN�1 xN�1; uN�1ð Þ ¼ qN�1 xN�1; uN�1ð Þ þ qN yN�1 xN�1; uN�1ð Þ, uOPT
N

� �
The solution must ensure that the resultant output

yN�1 ¼ yN�1 xN�1, u
OPT
N�1 , u

OPT
N

� �
is within its allowed limits, i.e.

yN�1
MIN � yN�1 � yN�1

MAX

Now let us define the OCCE for the third stage from the end of the process as a

function of the input applied to this stage:

uOPT
N�2 ¼ F xN�2ð Þ

that minimizes the sectional criterion that “covers” the last three stages:

QN�2 xN�2; uN�2; u
OPT
N�1 ; u

OPT
N

� � ¼ qN�2 xN�2; uN�2ð Þ þ qN�1 xN�1; u
OPT
N�1

� �
þ qN xN; u

OPT
N

� �
Again, in this expression xN�1 and xN are not independent factors, they are defined

as outputs of the previous stages of the process:

xN�1 ¼ yN�2 xN�2; uN�2ð ÞandxN ¼ yN�1 xN�1; u
OPT
N�1

� �
and therefore criterion QN�2 actually depends only on two variable factors, xN�2

and uN�2

QN�2 ¼ qN�2 xN�2; uN�2ð Þ þ qN�1 yN�2 xN�2; u
OPT
N�2

� �
, uOPT

N�1

� �
þ qN yN�1 xN�1; u

OPT
N�1

� �
, uOPT

N

� � ¼ QN�2 xN�1, uN�2, u
OPT
N�1,u

OPT
N

� �
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The optimal value of this criterion is:

QN�2 xN�1, u
OPT
N�2, , u

OPT
N�1,u

OPT
N

� �
Again, the appropriate output,

yN�2 ¼ yN�2 xN�2, u
OPT
N�2

� �
must be consistent with the allowed value for the output of the appropriate stage of

the process:

yN�2
MIN � yN�2 � yN�2

MAX

It could be seen that eventually the procedure defines the control effort for the

first stage of the process as a function of the input applied to this stage:

uOPT
1 ¼ F x1ð Þ

that minimizes the sectional criterion

Q1 x1, u1, u
OPT
2 , uOPT

3 , . . . , uOPT
N�1 , u

OPT
N

� �
However, the input of the first stage (the input of the overall process), x1, is

explicitly known, therefore the control effort uOPT1 could be explicitly defined.

This results in the explicitly defined output of the first stage, y1. Since x2 ¼ y1,
the optimal conditional control effort

uOPT
2 ¼ F x2ð Þ

could be explicitly defined thus resulting in an explicit definition of the output of the

second stage and the input of the third stage, and so on. . . It could be seen that the

procedure moves now from the first stage of the process to the last stage, converting

conditional control efforts into explicitly defined unconditional optimal control

efforts.

Let us consider the application of the outlined approach to the following

numerical example representing the so-called optimal routing problem.

Example 4.7 Apply dynamic programming to establish the optimal (“minimum

cost”) route within the following graph in Fig. 4.15

It could be seen that the transportation problem featured by the above graph

consists of five stages and four steps. Step 1 consists of four alternative transitions:

1/1! 2/1, 1/1! 2/2, 1/1! 2/3 and 1/1! 2/4 with the associated costs of 5, 3, 1,

and 2 (units). Step 2 consists of 12 alternative transitions: 2/1! 3/1, 2/1! 3/2, 2/

226 4 Methods and Models of Optimization



1! 3/3 with the associated costs of 8, 4, and 3 (units); 2/2! 3/1, 2/2! 3/2, 2/

2! 3/3 with the associated costs of 4, 6, and 7 (units); 2/3! 3/1, 2/3! 3/2, 2/

3! 3/3 with the associated costs of 5, 6, and 8 (units); and 2/4! 3/1, 2/4! 3/2, 2/

4! 3/3 with the associated costs of 9, 5, and 6 (units). Step 3 also consists of 12

alternative transitions: 3/1! 4/1, 3/1! 4/2, 3/1! 4/3, 3/1! 4/4 with the associ-

ated costs of 6, 3, 4, and 10 (units); 3/2! 4/1, 3/2! 4/2, 3/2! 4/3, 3/2! 4/4 with

the associated costs of 5, 6, 7, and 3 (units); 3/3! 4/1, 3/3! 4/2, 3/3! 4/3, 3/

3! 4/4 with the associated costs of 11, 2, 6, and 8 (units). Finally, the last step, 4,

consists of four alternative transitions: 4/1! 5/1, 4/2! 5/1, 4/3! 5/1 and 4/4! 5/

1 with the associated costs of 13, 16, 10, and 11 (units). It is required to establish

such a sequence of transitions (optimal path) that would lead from the initial to the

final stage (nodes of the above graph) and had the minimal sum of the transition

costs.

Could we have established the optimal path by considering all possible alterna-

tive paths within this graph?—perhaps, but the required computational effort is

expected to be very high. Should the number of stages and alternative transitions at

every step be greater, this approach will become prohibitively formidable.

According to the dynamic programming procedure, let us define conditionally

optimal transitions for the last step of the process, step #4. This task is quite

simple: if the starting node of the stage #4 is 4/1 then the optimal (and the only)

transition to the last stage is 4/1! 5/1 with the cost of 13 units. Should we start

from node 4/2, the optimal (and the only) transition is 4/2! 5/1 with the cost of

16 units, and so on. The results of the conditional optimization of the step #4 are

tabulated below

Fig. 4.15 Process graph
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Conditional optimization of step 4

Starting node

of the stage 4

Final node

of the stage 5 Transition costs Optimal transition

Total cost for this

portion of the path

4/1 5/1 13 4/1! 5/1 13

4/2 5/1 16 4/2! 5/1 16

4/3 5/1 10 4/3! 5/1 10

4/4 5/1 11 4/4! 5/1 11

Let us compile the table representing conditional optimization of the last two

steps of the transportation process, namely steps 3 and 4. Assuming that the starting

node of the stage 3 is 3/1 then the first available transition within step 3 is 3/1! 4/1

with the cost of 6 units. At the next step, this transition will be followed by 4/1! 5/1

and the total cost of both transitions, 3/1! 4/1! 5/1, is 19 units. Then, consider the

second available transition within step 3, 3/1! 4/2. It comes with the cost of 3 units

and must be followed by the transition 4/2! 5/1 with the total cost of transition 3/

1! 4/2! 5/1 of 19 units. Upon consideration of transitions 3/1! 4/3! 5/1 and 3/

1! 4/4! 5/1 it could be seen that for 3/1 as the entry point to step 3 the best

transition is 3/1! 4/3! 5/1 with the lowest total cost of 14 units.

Conditional optimization of steps 3 and 4

Starting

point of

steps 3

Alternative

transitions

to states

Transition

costs

Possible

transition

Total cost

for two

stages

Optimal

transition

3/1 4/1 6 3/1! 4/1! 5/1 6 + 13¼ 19

4/2 3 3/1! 4/2! 5/1 3 + 16¼ 19

4/3 4 3/1! 4/3! 5/1 4 + 10¼ 14 3/1! 4/3! 5/1

4/4 10 3/1! 4/4! 5/1 10 + 11¼ 21

3/2 4/1 5 3/2! 4/1! 5/1 5 + 13¼ 18

4/2 6 3/2! 4/2! 5/1 6 + 16¼ 22

4/3 7 3/2! 4/3! 5/1 7 + 10¼ 17

4/4 3 3/2! 4/4! 5/1 3 + 11¼ 14 3/2! 4/4! 5/1

3/3 4/1 11 3/3! 4/1! 5/1 11 + 13¼ 24

4/2 2 3/3! 4/2! 5/1 2 + 16¼ 18

4/3 6 3/3! 4/3! 5/1 6 + 10¼ 16 3/3! 4/3! 5/1

4/4 8 3/3! 4/4! 5/1 8 + 11¼ 19

Now let us compile the table representing conditional optimization of the last

three steps of the transportation process, namely step 2 followed by steps 3 and 4.

Assume that the starting point of stage 2 is 2/1 and the first available transition is

2/1! 3/1 with the cost of 8 units. The optimal transition from 3/1 to the last stage has

been already established: 3/1! 4/3! 5/1 and its cost is 14 units, therefore the cost

of transition 2/1! 3/1! 4/3! 5/1 is 8þ 14¼ 22 units. Assume that the starting

point is 2/1 and the chosen transition is 2/1! 3/2 with the cost of 4 units. The
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already established optimal transition from 3/2 to the last stage is 3/2! 4/4! 5/1

with the cost of 14 units, therefore the cost of transition 2/1! 3/2! 4/4! 5/1 is

4þ 14¼ 18 units. Now assume that the starting point is still 2/1 and the chosen

transition is 2/1! 3/3 with the cost of 3 units. The already established optimal

transition from 3/3 to the last stage is 3/3! 4/3! 5/1 with the cost of 16 units and

the total cost is 3þ 16¼ 19 units. This indicates that the optimal path from point 2/1

to 5/1 is 2/1! 3/2! 4/4! 5/1 with the cost of 18 units. In the similar fashion

optimal paths from points 2/2, 2/3 and 2/4 to point 5/1 are to be established. They

are: 2/2! 3/2! 4/4! 5/1 with the cost of 18 units, 2/3! 3/2! 4/4! 5/1 with

the cost of 19 units, and 2/4! 3/2! 4/4! 5/1 with the cost of 18 units.

Conditional optimization of steps 2, 3 and 4

Starting

point of

step 2

Alternative

transitions to

states

Transition

costs

Possible

transition

Total cost

for two

stages Optimal transition

2/1 3/1 8 2/1! 3/1 8þ 14¼ 22

3/2 4 2/1! 3/2 4þ 14¼ 18 2/1! 3/2! 4/4! 5/1

3/3 3 2/1! 3/3 3þ 16¼ 19

2/2 3/1 4 2/2! 3/1 4þ 14¼ 18 2/2! 3/1! 4/3! 5/1

3/2 6 2/2! 3/2 6þ 14¼ 20

3/3 7 2/2! 3/3 7þ 16¼ 23

2/3 3/1 5 2/3! 3/1 5þ 14¼ 19 2/3! 3/1! 4/3! 5/1

3/2 6 2/3! 3/2 6þ 14¼ 20

3/3 8 2/3! 3/3 8þ 16¼ 24

2/4 3/1 9 2/4! 3/1 9þ 14¼ 23

3/2 5 2/4! 3/2 5þ 14¼ 19 2/4! 3/2! 4/4! 5/1

3/3 6 2/4! 3/3 6þ 16¼ 22

Finally, let us compile the table representing optimization of all four steps of the

transportation process. Note that the optimization results are not conditional any-

more: the transition process is originated at the very particular point, 1/1. Assume

that the first available transition is 1/1! 2/1 with the cost of 5 units. The optimal

transition from 2/1 to the last stage has been already established: 2/1! 3/2! 4/

4! 5/1 and its cost is 18 units, therefore the cost of transition 1/1! 2/1! 3/1! 4/

3! 5/1 is 5þ 18¼ 23 units. Assume that the chosen transition is 1/1! 2/2 with the

cost of 3 units. The already established optimal transition from 2/2 to the last stage

is 2/2! 3/1! 4/3! 5/1 with the cost of 18 units, therefore the cost of transition 1/

1! 2/2! 3/1! 4/3! 5/1 is 3þ 18¼ 21 units. Now assume that the chosen

transition is 1/1! 2/3 with the cost of 1 units. The already established optimal

transition from 2/3 to the last stage is 2/3! 3/1! 4/3! 5/1 with the cost of 19

units and the total cost of transition 1/1! 2/3! 3/1! 4/3! 5/1 is 1þ 19¼ 20

units. Should the chosen transition be 1/1! 2/4 with the cost of 2 units, and since

the already established optimal transition from 2/4 to the last stage is 2/4! 3/
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2! 4/4! 5/1 with the cost of 19 units, the total cost of transition 1/1! 2/4! 3/

2! 4/4! 5/1 is 5þ 19¼ 21 units. This clearly indicates that the optimal path from

point 1/1 to 5/1 is 1/1! 2/3! 3/1! 4/3! 5/1. See this analysis summarized in

the table below.

Optimization of steps 1, 2, 3 and 4

Starting point

of step 1

Alternative

transitions

to states

Transition

costs

Possible

transition

Total cost

for two

stages Optimal transition

1/1 2/1 5 1/1! 2/1 5þ 18¼ 23

2/2 3 1/1! 2/2 3þ 18¼ 21

2/3 1 1/1! 2/3 1þ 19¼ 20 1/1! 2/3! 3/1!
4/3! 5/1

2/4 2 1/1! 2/4 2þ 19¼ 21

Consider another quite practical example that ideally lends itself to the applica-

tion of dynamic programming. It is the optimization of a sequence of manufacturing

processes that could be found in chemistry and metallurgy. Each process has its

own mathematical description representing quality/quantity of its end product and

manufacturing costs as functions of the characteristics of the raw material xi and
control efforts ui. Consider the mathematical model of i-th manufacturing process

within a sequence consisting of N processes:

characteristic of the end material yi¼ yi(xi,ui), i¼ 1,2,. . .,N

manufacturing cost qi¼ qi(xi,ui), i¼ 1,2,. . .,N

quality/quantity requirements yi
MIN� yi� yi

MAX, i¼ 1,2,. . .,N

connection to neighboring processes yi¼ xiþ1, i¼ 1,2,. . .,N

For simplicity, let us assume that the above functions are scalar and are

represented on the basis of their mathematical model by numerical values of yi
and ui for discretized xi¼ k �Δxi and ui¼m �Δui, i.e. yi(k,m)¼ yi(k �Δxi,m �Δui)
and qi(k,m)¼ qi(k �Δxi,m �Δui) where k, m¼ 1,2,3,.... Does this representation of

the manufacturing process result in the loss of accuracy? No, providing that the

discretization steps Δxi, Δui are judiciously chosen.

Example 4.8 Apply dynamic programming to optimize the operation of a

sequence of three manufacturing processes represented by the tabulated descrip-

tion below. Note that the inputs of the individual processes are defined in %

assuming that the 100 % value of the respective input corresponds to the maxi-

mum value of the output of the previous process. To simplify the problem further,

the control efforts are defined not by real numbers, but as “control options.” The

overall cost of manufacturing is defined as the sum of costs of individual pro-

cesses. Finally, it could be seen that the specified acceptability limits of the

process outputs are different from their feasibility limits that could be seen in

the tables.
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PROCESS #1
Cost q1(x,u)

U=
1                    2                   3

U=
1                    2                   3

33≥ x≥0→
66≥ x≥34→

100≥ x≥67→

X%

Output y1(x,u), 30≥ y1≥10

PROCESS #2
Cost q2(x,u)

U=
1                    2                   3

U=
1                    2                   3

33≥ x≥0→
66≥ x≥34→

100≥ x≥67→

X%

Output y2(x,u), 70≥ y2≥20

PROCESS #3
Cost q3(x,u)

U=
1                    2                   3

U=
1                    2                   3

33≥ x≥0→
66≥ x≥34→

100≥ x≥67→

X%

Output y3(x,u), 30≥ y3≥15

2.000
9.000

11.000

8.000
24.000

1.000

12.000
9.000

16.000

50.000
13.000
19.000

18.000
19.000
31.000

21.000
27.000
29.000

16.000
29.000
28.000

73.000
130.000

21.000

11.000
13.000
15.000

21.000
90.000
35.000

70.000
61.000
55.000

76.000
64.000
77.000

100.000
92.000
88.000

50.000
13.000
19.000

18.000
19.000
31.000

21.000
27.000
29.000

16.000
19.000
18.000

73.000
130.000

21.000

First, let us address the issue of acceptability limits of the process outputs. Com-

putationally, it could be done by replacing associate cost values by penalties (1015)

in the situations when output values are not acceptable—this will automatically

exclude some cases from consideration, see the modified tables below

PROCESS #1
Cost q1(x,u)

U=
1                    2                   3

2.000
9.000

11.000

50.000
13.000
19.000

18.000
19.000
31.000

.10E+16

.10E+16
29.000

.10E+16
19.000
29.000

73.000
130.000
.10E+16

U=
1                    2                   3X%

Output y1(x,u), 30≥ y1≥10

33≥ x≥0→
66≥ x≥34→

100≥ x≥67→
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U=
1                    2                   3

8.000
24.000

1.000

11.000
13.000
15.000

21.000
90.000
35.000

.10E+16
61.000

.10E+16

.10E+16

.10E+16

.10E+16

100.000
.10E+16

88.000

U=
1                    2                   3

33≥ x≥0→
66≥ x≥34→

100≥ x≥67→

X%

PROCESS #2
Cost q2(x,u)Output y2(x,u), 70≥ y2≥20

PROCESS #3
Cost q3(x,u)

U=
1                    2                   3

12.000
9.000

16.000

50.000
13.000
19.000

18.000
19.000
31.000

.10E+16

.10E+16
29.000

.10E+16

.10E+16
28.000

73.000
130.000
.10E+16

U=
1                    2                   3

33≥ x≥0→
66≥ x≥34→

100≥ x≥67→

X%

Output y3(x,u), 30≥ y3≥15

The following analysis of the problem solution is based on the printout of a

specially written computer code. According to the Principle of Optimality, the solution

starts from the conditional optimization of the last, third, process. It will provide an

optimal recipe for the process operation for every possible grade of the process input.

The printout below considers application of various control options when the input of

the process is between 0 and 33 % of its maximum attainable value (grade 1). It could

be seen that the acceptable value of the process output is obtained only when control

option #3 is applied. This defines option #3 as the conditional optimal control

option, and the associated cost of 73 units as the conditionally minimal cost.

PROCESS # 3
INP # 1 CONTR# 1 Q¼.10000Eþ16 Y¼ 12.00
INP # 1 CONTR# 2 Q¼.10000Eþ16 Y¼ 50.00
INP # 1 CONTR# 3 Q¼.73000Eþ02 Y¼ 18.00

OPT: INP # 1, CONTR# 3, QSUM¼.73000Eþ02, Y¼ 18.00

The following printout presents similar results for the situations when the input

grade is 2 and 3.

INP # 2 CONTR# 1 Q¼.10000Eþ16 Y¼ 9.00
INP # 2 CONTR# 2 Q¼.10000Eþ16 Y¼ 13.00
INP # 2 CONTR# 3 Q¼.13000Eþ03 Y¼ 19.00

OPT: INP # 2, CONTR# 3 QSUM¼.13000Eþ03, Y¼ 19.00
INP # 3 CONTR# 1 Q¼.29000Eþ02 Y¼ 16.00
INP # 3 CONTR# 2 Q¼.28000Eþ02 Y¼ 19.00
INP # 3 CONTR# 3 Q¼.10000Eþ16 Y¼ 31.00
OPT: INP # 3, CONTR# 2 QSUM¼.28000Eþ02, Y¼ 19.00
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Now consider conditional optimization of process #2. Note that QSUM repre-

sents the sum of costs associated with the chosen input and control option of process

#2 and the consequent conditionally optimal inputþ control option of process #3.

Consider the application of various control options when the input of process #2 is

of grade 1 (i.e. between 0 and 33 % of its maximum attainable value). The resultant

QSUM value includes the specific cost at the process #2 and the consequent already

known optimal cost at process #3. Since the first two control options are penalized

for resulting in unacceptable values of the output, the optimal result is offered by

the control option #3 and the accumulated cost value is QSUM¼ 73þ 100¼ 173

units. Some additional information seen in the printout addresses the following

issue. Note that the action at step #2 has resulted in y2¼ 21 units, then how does one

determine the consequent action at process #3? It could be seen that the highest y2
value in the output of process #2 is 90 units. Therefore the output value y2¼ 21 falls

within 0–33 % of the y2 range, i.e. y2¼ 21 constitutes grade #1 of the input product

for process #3. Based on the conditional optimization of process #3, for the input

grade #1 control option #1 with the associate cost of 73 units is optimal (see

Y¼ 21.00¼> 1þ (.73000Eþ 02) QSUM¼ .17300Eþ 03)

PROCESS # 2
INP # 1 CONTR# 1 Q¼.10000Eþ16 Y¼ 8.00 ¼>1þ(.73000Eþ02)
QSUM¼.10000Eþ16
INP # 1 CONTR# 2 Q¼.10000Eþ16 Y¼ 11.00 ¼>1þ(.73000Eþ02)
QSUM¼.10000Eþ16
INP # 1 CONTR# 3 Q¼.10000Eþ03 Y¼ 21.00 ¼>1þ(.73000Eþ02)
QSUM¼.17300Eþ03

OPT: INP # 1, CONTR# 3, QSUM¼.17300Eþ03, Y¼ 21.00 ¼¼>1

Similar analysis is conducted to perform conditional optimization of process #2

for two other grades of the input.

INP # 2 CONTR# 1 Q¼.61000Eþ02 Y¼ 24.00 ¼>1þ(.73000Eþ02)
QSUM¼.13400Eþ03
INP # 2 CONTR# 2 Q¼.10000Eþ16 Y¼ 13.00 ¼>1þ(.73000Eþ02)
QSUM¼.10000Eþ16
INP # 2 CONTR# 3 Q¼.10000Eþ16 Y¼ 90.00 ¼>3þ(.28000Eþ02)
QSUM¼.10000Eþ16

OPT: INP # 2, CONTR# 1, QSUM¼.13400Eþ03, Y¼ 24.00 ¼¼>1
INP # 3 CONTR# 1 Q¼.10000Eþ16 Y¼ 1.00 ¼>1þ(.73000Eþ02)
QSUM¼.10000Eþ16
INP # 3 CONTR# 2 Q¼.10000Eþ16 Y¼ 15.00 ¼>1þ(.73000Eþ02)
QSUM¼.10000Eþ16
INP # 3 CONTR# 3 Q¼.88000Eþ02 Y¼ 35.00 ¼>2þ(.13000Eþ03)
QSUM¼.21800Eþ03

OPT: INP # 3, CONTR# 3, QSUM¼.21800Eþ03, Y¼ 35.00 ¼¼>2

Consider conditional optimization of process #1, that results in the optimization

of the entire combination of three sequential processes. Consider the application of

various control options when the input of process #1 is of grade 2 (i.e. between 34

and 66 % of its maximum attainable value). The resultant QSUM value includes the
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specific cost at the process #1 and the consequent already known optimal costs at

process #2 and #3. The first control option results in the unacceptable value of the

output and is penalized. The application of control option #2 results in y1¼ 13 or #1

grade of the input for process #2, and the cost of 19 units. The already established

optimal decisions for this input grade for process #2 come with the cost of 173 units.

Consequently QSUM¼ 19þ 173¼ 192 units. The application of control option #3

results in y1¼ 19 (or #2 grade of the input for process #2), and the cost of 130 units.

The already established optimal decisions for this input grade for process #2 comes

with the cost of 134 units. Therefore QSUM¼ 130þ 134¼ 264 units. It is clear that

the control option #2 is optimal grade #2 of the input material.

PROCESS # 1
INP # 2 CONTR# 1 Q¼.10000E+16 Y¼ 9.00 ¼>1+(.17300E+03)
QSUM¼.10000E+16
INP # 2 CONTR# 2 Q¼.19000E+02 Y¼ 13.00 ¼>1+(.17300E+03)
QSUM¼.19200E+03
INP # 2 CONTR# 3 Q¼.13000E+03 Y¼ 19.00 ¼>2+(.13400E+03)
QSUM¼.26400E+03

OPT: INP # 2, CONTR# 2, QSUM¼.19200E+03, Y¼ 13.00 ¼¼>1

Consider conditional optimization of process #1 when the input of process #1 is

of grade #1 and grade #3 is featured below.

INP # 1 CONTR# 1 Q¼.10000E+16 Y¼ 2.00 ¼>1+(.17300E+03)
QSUM¼.10000E+16
INP # 1 CONTR# 2 Q¼.10000E+16 Y¼ 50.00 ¼>3+(.21800E+03)
QSUM¼.10000E+16
INP # 1 CONTR# 3 Q¼.73000E+02 Y¼ 18.00 ¼>2+(.13400E+03)

QSUM¼.20700E+03
OPT: INP # 1, CONTR# 3, QSUM¼.20700E+03, Y¼ 18.00 ¼¼>2

INP # 3 CONTR# 1 Q¼.29000E+02 Y¼ 11.00 ¼>1+(.17300E+03)
QSUM¼.20200E+03
INP # 3 CONTR# 2 Q¼.18000E+02 Y¼ 19.00 ¼>2+(.13400E+03)
QSUM¼.15200E+03
INP # 3 CONTR# 3 Q¼.10000E+16 Y¼ 31.00 ¼>2+(.13400E+03)
QSUM¼.10000E+16

OPT: INP # 3, CONTR# 2, QSUM¼.15200E+03, Y¼ 19.00 ¼¼>2

Finally, the following printout summarizes the results of the optimization of the

entire sequence of three processes for every grade of the raw material.

OPTIMAL PROCESS OPERATION
RAW MATERIAL GRADE: 1 2 3

PROCESS # 1
CONTROL OPTION: 3 2 2
OUTPUT ¼ 18.00 13.00 19.00
PROCESS # 2

CONTROL OPTION: 3 1 3
OUTPUT ¼ 21.00 24.00 35.00
PROCESS # 3

CONTROL OPTION: 3 3 2
OUTPUT ¼ 18.00 19.00 19.00
¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
TOTAL COST: 207.00 192.00 152.00

234 4 Methods and Models of Optimization



4.5.1 Exercise 4.3

Problem 1 Apply dynamic programming to optimize the following sequence of

manufacturing processes.

The characteristics of each process are given below:

y1(x,u) q1(x,u) y2(x,u) q2(x,u)

u¼ 1 u¼ 2 u¼ 3 u¼ 1 u¼ 2 u¼ 3 u¼ 1 u¼ 2 u¼ 3 u¼ 1 u¼ 2 u¼ 3

10< x� 40 25 45 55 25 28 25 65 44 74 13 21 33

40< x� 70 37 48 63 27 33 27 66 50 81 15 22 37

70< x� 100 45 58 79 22 24 25 78 62 96 18 28 40

y3(x,u) q3(x,u) y4(x,u) q4(x,u)

u¼ 1 u¼ 2 u¼ 3 u¼ 1 u¼ 2 u¼ 3 u¼ 1 u¼ 2 u¼ 3 u¼ 1 u¼ 2 u¼ 3

10< x� 40 13 45 92 16 18 9 56 85 97 2 4 3

40< x� 70 48 18 68 13 17 8 42 61 81 3 6 4

70< x� 100 81 66 21 10 14 6 21 39 70 4 5 3

It is known that x1¼ 37 (units) and the end product must be such that

70� y4� 85. Obtain the optimal choice of control options for each process that

would minimize the sum of “local” criteria, Q¼ q1þ q2þ q3þ q4, and define the

corresponding values of the characteristics of the intermediate products.

Problem 2 Use dynamic programming to solve the optimal routing problem based

on the graph below featuring the available transitions and the associated costs.
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Solutions

Exercise 4.1: Problem 1

The first constraint reflects the requirement on the total weight of the mixture:

x1 þ x2 þ x3 þ x4 þ x5 þ x6 ¼ 500

The following expressions represent the required concentrations of each chemical

ingredient in the final mixture:

Fe ¼ :15 � x1 þ :40 � x2 þ :35 � x3 þ :16 � x4 þ :33 � x5 þ :07 � x6 � :20 � 500
Zn ¼ :38 � x1 þ :12 � x2 þ :05 � x3 þ :11 � x4 þ :01 � x5 þ :23 � x6 � :10 � 500
SiO2 ¼ :41 � x1 þ :40 � x2 þ :27 � x3 þ :21 � x4 þ :60 � x5 þ :45 � x6 � :42 � 500
Cu ¼ :06 � x1 þ :01 � x2 þ :28 � x3 þ :18 � x4 þ :05 � x5 þ :25 � x6 � :05 � 500

The feasibility constraints reflect the availability of the materials. The amount of

each material used is equal to the percentage of that material multiplied by the total

weight of the end mixture. This must be no greater than the available weight of the

material.

x1 � 250

x2 � 590

x3 � 1000

x4 � 520

x5 � 2500

x6 � 800

It should be noted that all variables of this problem are non-negative, but this

requirement is very common for linear programming problems and is addressed by

the solution algorithm.

The “minimum cost” requirement is addressed as follows:

120 � x1 þ 150 � x2 þ 211 � x3 þ 140 � x4 þ 75 � x5 þ 214 � x6 ! Min

236 4 Methods and Models of Optimization



The problem solution is obtained by the use of the linear programming software

available in MATLAB. The optimal weight of each material in tons is:

x1 x2 x3 x4 x5 x6 Total Cost,$

68.2363 0.0000 0.0000 197.5259 234.2378 0.0000 500.0000 53409.80

and the chemical composition of the mixture is

Fe% Zn% SiO2% Cu%

23.83 10.00 42.00 10.27

Exercise 4.1: Problem 2

For this problem, we were required to use the gradient-based LSM procedure to find

the optimal solution of the a coefficients in the following equation.

ymod kð Þ ¼ a1 � x1 kð Þ þ a2 � x2 kð Þ þ a3 � x3 kð Þ þ a4 � x4 kð Þ

The method for the gradient-based LSM is a simple iterative procedure which

“moves” the point representing unknown coefficients in four-dimensional space

in the direction toward the minimum value of the criterion. In this case, the

criterion, Q, is calculated as the sum of squared values of the discrepancy e(k)¼ y
(k)�ymod(k):

Anew ¼

A 1ð Þ � γ � ΔQ A 1ð Þ,A 2ð Þ,A 3ð Þ,A 4ð Þ½ �
Δ 1ð Þ

A 2ð Þ � γ � ΔQ A 1ð Þ,A 2ð Þ,A 3ð Þ,A 4ð Þ½ �
Δ 2ð Þ

A 3ð Þ � γ � ΔQ A 1ð Þ,A 2ð Þ,A 3ð Þ,A 4ð Þ½ �
Δ 3ð Þ

A 4ð Þ � γ � ΔQ A 1ð Þ,A 2ð Þ,A 3ð Þ,A 4ð Þ½ �
Δ 4ð Þ

2
66666666666664

3
77777777777775

where
ΔQ A 1ð Þ,A 2ð Þ,A 3ð Þ,A 4ð Þ½ �

Δ ið Þ are estimated partial derivatives of the LSM

criterion Q with respect to particular coefficients (i¼ 1,2,3,4) chosen to be

0.0001, and γ> 0, is a scaling factor. Initially, γ is chosen to be 0.02, however, in

the case of an unsuccessful step leading to an increase of criterion Q criterion
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instead of a decrease, the magnitude of gamma is cut in half. This ensures that the

procedure will converge.

The results of this procedure were reached after 250 iterations, starting with zero

initial conditions. This procedure could be less accurate but also faster if the

termination conditions were made less strict. For this termination condition, the

change between the newly generated Q and the previous Q needs to be less than

.0000001 in absolute. The optimal result was:

A ¼

2:0001

2:9918

�2:0001

5:0235

2
66664

3
77775

Since the coefficient of determination for this model is 0.9996, this is an excellent

model of our linear system.

Exercise 4.1: Problem 3

This problem differs from the previous one because of the additional requirement:

all model parameters are to be positive. This condition is achieved by the use of

penalty functions added to the original LSM criterion Q. In this problem the

criterion to be minimized is:

Q1 ¼ Qþ
X4
i¼1

Pi

where Pi ¼ 0 if A ið Þ � 0

1010 � A ið Þ2 if A ið Þ < 0

(
, i¼ 1,2,3,4

The optimal result, with a coefficient of determination of 0.9348, reached after

300 iterations was:

A ¼

1:0790

2:4456

:0009

4:4795

2
66664

3
77775

Comparing the coefficient of determination to the one from Problem 2,

0.9348< 0.9996 Therefore the coefficients found in Problem 2 are a better

representation of the actual system. Since the actual system includes a
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negative coefficient for a3, not allowing negative coefficients in Problem 3

impacted the ability of the optimization to get close to the actual coefficient

values.

Exercise 4.2: Problem 1

For this problem, we were given the following transfer function of the controlled

plant, and were required to use the Simplex code provided to find the optimal

coefficients of a PID controller. The PID controller was configured to use the

system error as its input for the controller.

Product
P

X
Ramp

Step

Derivative

du/dt

Integrator 1

Integrator Step Response

s+6

s3+6s2+10s+10

Transfer Function

++
++_

D

I

k_I

k_D

k_P

Q

0.020421
s

1
s

As could be seen, the optimization criterion, known as “integral-time-error-

squared” was chosen. The Simplex procedure began with zero initial coefficient

values, and progressively changed these values, minimizing the criterion. All 30

iteration of the Simplex procedure are shown below.

Iteration k_P k_I k_D Q

1 0.000 0.000 0.000 50.00000

2 0.094 0.024 0.024 38.18000

3 0.024 0.094 0.024 25.61000

4 0.024 0.024 0.094 41.24000

5 0.094 0.094 0.094 24.15000

6 0.141 0.141 0.141 17.33000

7 0.149 0.149 0.031 16.29000

8 0.212 0.212 0.000 10.76000

(continued)
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Iteration k_P k_I k_D Q

9 0.157 0.275 0.086 7.86200

10 0.189 0.401 0.118 4.21000

11 0.338 0.409 0.149 3.87000

12 0.495 0.566 0.212 2.06500

13 0.456 0.644 0.079 1.62100

14 0.613 0.896 0.047 0.86220

15 0.652 1.029 0.251 0.72740

16 0.872 1.438 0.377 0.48830

17 1.131 1.532 0.306 0.39070

18 1.603 2.098 0.401 0.29570

19 1.563 2.388 0.338 0.34080

20 2.079 3.054 0.697 0.29080

21 2.813 4.133 1.021 0.26310

22 3.114 4.308 0.796 0.25040

23 4.235 5.743 1.006 0.21720

24 4.203 5.594 1.281 0.19470

25 5.523 7.197 1.752 0.15960

26 6.778 9.284 2.119 0.14560

27 9.365 12.877 2.978 0.11670

28 9.936 13.079 2.802 0.10360

29 13.498 17.552 3.693 0.08105

30 14.689 19.341 4.609 0.08550

The following plots illustrate gradual improvement of the closed-loop step

response of the system, iterations 1, 2, 8, 12, 14, 16 are shown below. Technically,

the procedure could be terminated after the 16-th iteration when the design require-

ments were met.

1
2

(continued)
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Exercise 4.2: Problem 2

The task is to estimate parameters a1, a2, a3, a4, a5 of the following model

yMOD ¼ a1x1e
a2x2 þ a3

a4x3þa5ð Þ

based on the input–output data presented in the table below. It could be seen that

while the Least Squares Method (LSM) is to be applied, due to the nonlinearity of

the model, traditional LSM equation is unusable and the LSM criterion,

Q a1, a2, a3, a4, a5ð Þ ¼
X
i

y ið Þ � yMOD ið Þ� �2

could be minimized only by a genetic optimization (GO) procedure.

Assume that a “generation” size is 20. To start the procedure, begin with 20

randomly generated sets of 5 coefficients compiled into in a 20� 5 matrix, with

each row representing a particular set of coefficients (an individual). In each

generation these 20 “individuals” will become the source of off-spring and mutants.

Each combination of two individuals within a generation results in 5 off-spring.

Each individual in the generation originates 5 mutants.
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It could be seen that this process results in an immense number of new individ-

uals, however, each newly created individual is subjected to the “fitness test” and

only the 20 most fit individuals are included in the next generation. Each “next

generation” is subjected to the same treatment until some termination conditions are

met.

Below are several successive generation created by GO and accompanying

values of the coefficient of determination of the resultant model.

Initial generation

a1 a2 a3 a4 a5

2.8985 1.1513 1.3472 0.7978 �1.7259

1.6345 0.3528 �3.1390 �0.4051 �1.6175

4.0328 �0.2817 �0.8104 �0.2262 2.0505

0.5651 �0.3717 �1.4612 2.1874 0.2249

0.0178 �2.6064 0.7837 2.0933 0.9262

�0.4143 1.3217 0.6731 �1.0293 0.6581

0.3766 2.1826 2.5247 �1.7790 �0.3017

1.9690 �1.3128 �0.5600 2.6983 �2.0503

1.5223 �1.7655 �1.0972 �6.0455 1.9243

�1.9364 2.2881 �2.5293 1.9482 �1.2985

�0.1199 3.7093 0.4981 0.0415 �0.1648

�2.6940 2.6746 �2.0002 1.0056 �0.6448

�1.6309 3.0015 �1.4742 2.2930 2.2985

�1.6146 3.2141 3.1189 1.3045 �4.4747

3.7037 �0.5679 0.2711 �1.9776 0.4899

1.3725 �0.5816 0.3215 �2.4576 1.0954

0.9418 2.1572 �0.3685 3.4800 �3.1552

�2.9340 �4.9244 �0.0846 0.5385 �1.4570

3.5418 �0.5850 �0.3802 �4.0273 0.3840

0.5160 �4.4928 �0.1777 3.0757 �1.5804

Generation 1

a1 a2 a3 a4 a5 Determination coefficient

2.8985 1.1513 1.3472 0.7978 �1.7259 0.8825

2.2881 1.2683 1.3268 0.3294 �0.2899 0.8756

3.1209 1.2110 1.8546 �1.8284 0.2756 0.8755

2.5022 1.2605 0.6157 �0.9998 1.3549 0.8656

1.8744 1.2679 �0.9757 0.6641 2.0549 0.8601

1.1644 1.4379 �1.7683 �1.0123 �0.8917 0.8532

1.6140 1.2957 �0.5244 �0.5290 1.4760 0.8408

0.7947 1.6388 0.9696 �2.4417 0.6111 0.8397

2.0885 1.1947 0.8106 �0.2046 �0.5338 0.8384

0.8033 1.5508 2.2729 �0.0392 �0.5913 0.8352

(continued)
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a1 a2 a3 a4 a5 Determination coefficient

2.5520 1.1144 0.4245 �0.3246 0.5987 0.8319

1.1761 1.5435 1.4602 �2.2510 �0.0922 0.8282

3.4343 1.0007 �0.5871 0.2609 1.1236 0.8243

1.6577 1.2627 �0.9837 1.3665 �0.4513 0.8215

1.3407 1.4972 �2.5164 0.8116 �2.9722 0.8175

2.9522 1.0467 0.1449 0.5600 1.8093 0.8157

0.6689 1.5793 �0.7417 2.8365 0.1993 0.8074

2.7650 1.0530 1.1006 0.2516 �1.6950 0.7990

1.8029 1.2170 �1.9619 1.3318 �1.5114 0.7959

2.8907 1.2643 0.7140 0.1415 �2.4496 0.7925

Generation 3

a1 a2 a3 a4 a5 Determination coefficient

3.2330 1.1311 0.1180 0.1429 �1.5847 0.9203

3.4089 1.1194 0.1505 0.2626 �1.3844 0.9178

3.0811 1.1600 0.1540 0.3674 �1.2171 0.9152

3.2224 1.1584 0.1650 0.2263 �1.4428 0.9142

3.2893 1.1546 0.1817 0.8279 �0.1388 0.9137

2.5298 1.2368 0.0907 0.5090 �0.1884 0.9114

3.0611 1.1398 0.0935 0.0080 �1.5563 0.9112

2.4017 1.2431 0.2474 0.7796 �0.6685 0.9102

3.3596 1.1058 0.1555 0.1667 �1.3748 0.9095

2.8410 1.1452 0.1536 0.0956 �1.7017 0.9089

2.4652 1.2277 0.0785 0.3539 �0.4969 0.9087

2.2753 1.2568 0.2190 0.5816 �0.8525 0.9073

2.3878 1.2545 0.1447 0.5450 �0.3459 0.9068

2.6861 1.1952 0.2399 0.2100 �1.6736 0.9057

3.1428 1.1634 0.2227 0.1615 �1.6702 0.9056

2.6985 1.1850 0.2020 0.1200 �1.6083 0.9054

2.4388 1.2495 0.0313 0.3191 �0.1237 0.9054

3.2899 1.1293 0.2615 0.2999 �1.4908 0.9051

2.3510 1.2336 0.2180 0.3131 �1.4478 0.9048

2.8936 1.1421 0.1960 0.1882 �1.6563 0.9044

Generation 5

a1 a2 a3 a4 a5 Determination coefficient

3.2187 1.1474 0.1081 0.1070 �1.5610 0.9243

3.2307 1.1444 0.1065 0.0930 �1.5475 0.9242

3.1887 1.1535 0.1066 0.0969 �1.5458 0.9241

3.1930 1.1516 0.1153 0.0942 �1.6730 0.9241

3.1678 1.1503 0.1164 0.1062 �1.5840 0.9239

3.3344 1.1401 0.1163 0.1289 �1.5773 0.9239

3.2312 1.1458 0.1056 0.0839 �1.5436 0.9239

(continued)
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a1 a2 a3 a4 a5 Determination coefficient

3.1755 1.1476 0.1139 0.0927 �1.5828 0.9238

3.1045 1.1533 0.1032 0.0814 �1.5745 0.9238

3.1020 1.1555 0.1101 0.0826 �1.5823 0.9238

3.1053 1.1523 0.1109 0.0850 �1.5895 0.9237

3.2088 1.1392 0.1033 0.0831 �1.5563 0.9237

3.3173 1.1454 0.1160 0.1322 �1.5786 0.9236

3.1123 1.1533 0.1164 0.1001 �1.5813 0.9236

3.2996 1.1295 0.1009 0.0858 �1.5604 0.9236

3.3068 1.1395 0.1328 0.1453 �1.6407 0.9236

3.3615 1.1333 0.1098 0.1346 �1.5013 0.9235

3.2392 1.1462 0.1213 0.1365 �1.5729 0.9235

3.2177 1.1370 0.1105 0.0952 �1.5843 0.9235

3.0982 1.1542 0.1172 0.1026 �1.5828 0.9235

Generation 7

a1 a2 a3 a4 a5 Determination coefficient

3.2964 1.1409 0.1069 0.1003 �1.5657 0.9244

3.2921 1.1406 0.1063 0.0987 �1.5740 0.9244

3.2906 1.1400 0.1057 0.1014 �1.5538 0.9244

3.2617 1.1426 0.1080 0.1004 �1.5746 0.9244

3.2937 1.1406 0.1141 0.1063 �1.6061 0.9244

3.2497 1.1445 0.1063 0.1002 �1.5612 0.9244

3.2837 1.1424 0.1048 0.0966 �1.5579 0.9244

3.2246 1.1478 0.1122 0.1016 �1.6072 0.9244

3.2764 1.1418 0.1104 0.1047 �1.5810 0.9244

3.2292 1.1473 0.1077 0.1007 �1.5728 0.9244

3.2272 1.1467 0.1149 0.1005 �1.6283 0.9244

3.2825 1.1422 0.1085 0.0975 �1.5793 0.9244

3.2831 1.1400 0.1081 0.1029 �1.5699 0.9244

3.2317 1.1464 0.1090 0.1021 �1.5838 0.9244

3.2291 1.1462 0.1074 0.0996 �1.5691 0.9244

3.2202 1.1473 0.1083 0.1002 �1.5767 0.9244

3.2817 1.1425 0.1073 0.1012 �1.5615 0.9244

3.2629 1.1422 0.1116 0.1037 �1.5985 0.9244

3.2778 1.1426 0.1187 0.1053 �1.6354 0.9244

3.2414 1.1462 0.1072 0.1030 �1.5708 0.9244
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Generation 9

a1 a2 a3 a4 a5 Determination coefficient

3.2931 1.1403 0.1067 0.0996 �1.5671 0.9244

3.2946 1.1402 0.1062 0.0997 �1.5652 0.9244

3.2915 1.1403 0.1077 0.1000 �1.5749 0.9244

3.2941 1.1402 0.1060 0.0996 �1.5644 0.9244

3.2921 1.1404 0.1069 0.0999 �1.5686 0.9244

3.2934 1.1404 0.1059 0.0986 �1.5632 0.9244

3.2905 1.1404 0.1056 0.0991 �1.5608 0.9244

3.2936 1.1404 0.1113 0.1011 �1.5986 0.9244

3.2937 1.1404 0.1064 0.0998 �1.5654 0.9244

3.2936 1.1402 0.1061 0.1000 �1.5628 0.9244

3.2917 1.1402 0.1062 0.0996 �1.5629 0.9244

3.2895 1.1405 0.1055 0.0987 �1.5605 0.9244

3.2943 1.1403 0.1063 0.1001 �1.5638 0.9244

3.2900 1.1404 0.1057 0.0986 �1.5612 0.9244

3.2913 1.1403 0.1060 0.0996 �1.5622 0.9244

3.2918 1.1404 0.1064 0.0999 �1.5648 0.9244

3.2902 1.1402 0.1056 0.0985 �1.5612 0.9244

3.2901 1.1406 0.1072 0.0997 �1.5719 0.9244

3.2918 1.1406 0.1057 0.0988 �1.5631 0.9244

3.2933 1.1405 0.1065 0.0999 �1.5674 0.9244

After 9 iterations of the GO procedure stopped, and the resultant value of the

coefficient of determination was 0.9244 for coefficients [3.2931, 1.1403, 0.1067,

0.0996, �1.5671], and the model expression is: yMOD¼ 3:2931x1e
1:1403x2þ

0:10670:0996x3�1:5671

Exercise 4.3: Problem 1

Conditional optimization of Process IV:

If x4 ¼ 10; 40½ �
Choose u4¼ 2

Cost¼ 4

If x4 ¼ 40; 70ð �
Choose u4¼ 3

Cost¼ 4
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If x4 ¼ 70; 100ð �
Choose u4¼ 3

Cost¼ 3

Conditional optimization of Process III and Process IV:

If x3 ¼ 10; 40½ �
If u3¼ 1, cost¼ 16þ cost(x4¼ 13)¼ 16þ 4¼ 20

If u3¼ 2, cost¼ 18þ cost(x4¼ 45)¼ 18þ 4¼ 22

If u3¼ 3, cost¼ 9þ cost(x4¼ 92)¼ 9þ 3¼ 12 (optimal)

Choose u3¼ 3

Cost¼ 12

If x3 ¼ 40; 70ð �
If u3¼ 1, cost¼ 13þ cost(x4¼ 48)¼ 13þ 4¼ 17

If u3¼ 2, cost¼ 17þ cost(x4¼ 18)¼ 17þ 4¼ 21

If u3¼ 3, cost¼ 8þ cost(x4¼ 68)¼ 8þ 4¼ 12 (optimal)

Choose u3¼ 3

Cost¼ 12

If x3 ¼ 70; 100ð �
If u3¼ 1, cost¼ 10þ cost(x4¼ 81)¼ 10þ 3¼ 13

If u3¼ 2, cost¼ 14þ cost(x4¼ 66)¼ 14þ 4¼ 18

If u3¼ 3, cost¼ 6þ cost(x4¼ 21)¼ 6þ 4¼ 10 (optimal)

Choose u3¼ 3

Cost¼ 10

Conditional optimization of Process II, Process III and Process IV:

If x2 ¼ 10; 40½ �
If u2¼ 1, cost¼ 13þ cost(x3¼ 65)¼ 13þ 12¼ 25 (optimal)

If u2¼ 2, cost¼ 21þ cost(x3¼ 44)¼ 21þ 12¼ 33

If u2¼ 3, cost¼ 33þ cost(x3¼ 74)¼ 33þ 10¼ 43

Choose u2¼ 1

Cost¼ 25

If x2 ¼ 40; 70ð �
If u2¼ 1, cost¼ 15þ cost(x3¼ 66)¼ 15þ 12¼ 27 (optimal)

If u2¼ 2, cost¼ 22þ cost(x3¼ 50)¼ 22þ 12¼ 33

If u2¼ 3, cost¼ 37þ cost(x3¼ 81)¼ 37þ 10¼ 47

Choose u2¼ 1

Cost¼ 27
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If x2 ¼ 70; 100ð �
If u2¼ 1, cost¼ 18þ cost(x3¼ 78)¼ 18þ 10¼ 28 (optimal)

If u2¼ 2, cost¼ 28þ cost(x3¼ 62)¼ 28þ 12¼ 40

If u2¼ 3, cost¼ 40þ cost(x3¼ 96)¼ 40þ 10¼ 50

Choose u2¼ 1

Cost¼ 28

Conditional optimization of Process I, Process II, Process III, and Process IV:

If x1 ¼ 10; 40½ �
If u1¼ 1, cost¼ 25þ cost(x2¼ 25)¼ 25þ 25¼ 50 (optimal)

If u1¼ 2, cost¼ 28þ cost(x2¼ 45)¼ 28þ 27¼ 55

If u1¼ 3, cost¼ 25þ cost(x2¼ 55)¼ 25þ 27¼ 52

Choose u1¼ 1

PATH: u1¼ 1 ! u2 ¼ 1 ! u3 ¼ 3 ! u4 ¼ 3

Cost¼ 50

If x1 ¼ 40; 70ð �
If u1¼ 1, cost¼ 27þ cost(x2¼ 37)¼ 27þ 25¼ 52 (optimal)

If u1¼ 2, cost¼ 33þ cost(x2¼ 48)¼ 33þ 27¼ 60

If u1¼ 3, cost¼ 27þ cost(x2¼ 63)¼ 27þ 28¼ 55

Choose u1¼ 1

PATH: u1¼ 1 ! u2 ¼ 1 ! u3 ¼ 3 ! u4 ¼ 3

Cost¼ 52

If x1 ¼ 70; 100ð �
If u1¼ 1, cost¼ 22þ cost(x2¼ 45)¼ 22þ 27¼ 49 (optimal)

If u1¼ 2, cost¼ 24þ cost(x2¼ 58)¼ 24þ 27¼ 51

If u1¼ 3, cost¼ 25þ cost(x2¼ 79)¼ 25þ 28¼ 53

Choose u1¼ 1

PATH: u1¼ 1 ! u2 ¼ 1 ! u3 ¼ 3 ! u4 ¼ 3

Cost¼ 49

Optimal Plan

Since x¼ 37, the optimal path is u1¼ 1 ! u2 ¼ 1 ! u3 ¼ 3 ! u4 ¼ 3 and the

cost¼ 50.
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Exercise 4.3: Problem 2

Conditional optimization of particular stages of the process starting from the last

stage:

Stage 5 ! 6

If at A5!A6�Cost¼ 8 (optimal)

If at B5!A6�Cost¼ 7 (optimal)

Stage 4 ! 5

If at A4!A5 – Cost¼ 15þ 8¼ 23

!B5�Cost¼ 10þ 7¼ 17 (optimal)

If at B4 !A5 – Cost¼ 19þ 8¼ 27

!B5�Cost¼ 14þ 7¼ 21 (optimal)

If at C4!A5 – Cost¼ 16þ 8¼ 24

!B5�Cost¼ 13þ 7¼ 20 (optimal)

Stage 3 ! 4

If at A3!A4 – Cost¼ 6þ 17¼ 23

!B4 – Cost¼ 4þ 21¼ 25

!C4�Cost¼ 2þ 20¼ 22 (optimal)

If at B3!A4�Cost¼ 7þ 17¼ 24 (optimal)

!B4 – Cost¼ 4þ 21¼ 25

!C4 – Cost¼ 12þ 20¼ 32

If at C3!A4�Cost¼ 5þ 17¼ 22 (optimal)

!B4�Cost¼ 3þ 21¼ 24

!C4�Cost¼ 7þ 20¼ 27

Stage 2 ! 3

If at A2!A3 – Cost¼ 2þ 22¼ 24

!B3 – Cost¼ 3þ 24¼ 27

!C3�Cost¼ 1þ 22¼ 23 (optimal)

If at B2!A3 – Cost¼ 9þ 22¼ 31

!B3 – Cost¼ 2þ 24¼ 26

!C3�Cost¼ 2þ 22¼ 24 (optimal)

If at C2!A3 – Cost¼ 6þ 22¼ 28

!B3 – Cost¼ 4þ 24¼ 28

!C3�Cost¼ 3þ 22¼ 25 (optimal)

If at D2!A3�Cost¼ 3þ 22¼ 25 (optimal)

!B3 – Cost¼ 3þ 24¼ 27

!C3 – Cost¼ 4þ 22¼ 26
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Stage 1 ! 2

If at A1!A2 – Cost¼ 7þ 23¼ 30

!B2�Cost¼ 4þ 24¼ 28 (optimal)

!C2 – Cost¼ 5þ 25¼ 30

!D2 – Cost¼ 6þ 25¼ 31

Optimal Path

A1!B2!C3!A4!B5!A6, Cost: 28

Bibliography

http://www.onlinecalculatorfree.org/linear-programming-solver.html

MATLAB: https://www.mathworks.com/products/matlab-home/

Simulink: http://www.mathworks.com/products/simulink/

VISSIM: http://www.vissim.com/

Bibliography 249

http://www.onlinecalculatorfree.org/linear-programming-solver.html
https://www.mathworks.com/products/matlab-home/
http://www.mathworks.com/products/simulink/
http://www.vissim.com/


Index

A
Adaptive control system. See RLSM

Adaptive Control System

Autocorrelation function, 22, 23

B
Bayes’ theorem, 2

C
Characteristics of random phenomena, 1–14

autocorrelation function, 22, 23

computer-based monitoring system, 23

correlation matrix, 26, 32, 33

cross-correlation function, 23–25

description, 1

discrete-time values, 21

ergodic, 21

multiple correlation coefficient, 26–28, 33

random events (see Random events)

random variables (see Random variables)

spectral density, 25

stationary, 21

Cluster analysis, 87

application of, 79, 82

Bayesian approach, 78

classification rule, 73

description, 73

ellipse-based separating rule, 76

examples, 73, 74

informativity criterion, 77

penalties, 75

probabilities of events, 78

procedure, 77

process outcome, prediction of, 77, 82,

84–86

real inputs and discrete-event output, 92,

93, 106–108

SVD (see Singular value decomposition

(SVD))

Computer control, manufacturing processes,

116–121

decoupling control, MIMO process,

149–162

discrete-time equivalent, 137, 178

discrete-time state-variable controller,

discrete-time state observer, 162,

181–183

discrete-time state-variable feedback

control system, 137, 178, 179, 181

estimated coefficients, z-domain transfer

function, 137, 173, 174

mathematical modeling, dynamic systems

(see Mathematical modeling,

dynamic systems)

output feedback controller, 122–128

S- and Z-domain transfer functions, 112–115

self-tuning control, 163–172

self-tuning control, discrete-time, 172,

188–191

state-variable feedback and state observer,

137–149

state-variable feedback controller, 128–137

Confidence intervals

model-based prediction, 54–57

model parameters, 54

t-distribution table, 11

unbiased estimates, 11

Correlation analysis, 19
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Correlation coefficients, 15

confidence interval, 15, 16

description, 15

Cross-correlation function, 23–25

D
Decoupling control, MIMO process

discrete-time state-variable, 162, 185–187

discrete-time steady-state, 162, 184, 185

full decoupling problem, 152–154,

156–159

state-variable, 159–161

steady-state, 150–152

Discrete-time state-variable control, 128–137

control law, 129

design, 132–137

state observers, 137–142

state-variable feedback controller (see
State-variable feedback controller)

Dynamic programming, 235, 245–247

conditional optimization, 227–228, 229

description, 223

manufacturing processes, 230, 231,

233, 234

mathematical model, i-th manufacturing

process, 230

multi-stage process, 221

optimal (“minimum cost”) route, 226–230

optimal control strategy, 222

optimal routing problem, 235, 248, 249

principle of optimality, 223

G
Genetic optimization (GO) program, 221

Genetic optimization algorithms

generation, 216

individual, 216

initial generation, creation of, 217

MATLAB code, implementation,

218, 220

mutation process, 218

procedure, 218

I
Independent events, 2

L
Least squares method (LSM)

calculated (model) values, 38

matrix–vector notations, 38

Linear programming

acceptable solutions, 196

description, 196

geometrical interpretation, 200–203

linear function, 197

mixing problem, 199, 214, 236, 237

resource distribution problem, 204, 205

simple linear programming problem, 204

task distribution problem, 197, 198

transportation problem, 198, 199

LSM. See Least squares method (LSM)

M
Mathematical modeling, dynamic systems

discrete-time model, 116

“measurement noise”, 119–121

parameter estimation, z-domain transfer

function, 118, 119

recursive formula, 116, 117

validation, 121

z-domain transfer function, 116

Measurement noise

characteristics of, 40

coefficients, 41

covariance matrices, 43

input and output, with noise, 40

parameter estimation, 40, 41

properties of, 40

unbiased, 42

Model-based process analysis, 37

Multi-input-multi-output (MIMO) process

control task, 149

transfer matrix, 149, 152

N
Nonlinear programming, 205–212

gradient

definition, 205

forward difference, 206

minimization procedure, 208

termination conditions, 207

search

penalty functions, 208–210

random, 210, 211

simplex method optimization, PID

tuning, 212

simplex method, Nelder and Mead,

210, 212

unconstrained optimization problem,

209, 210

Non-parametric models, 73–86

Normal distribution, 7, 8
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O
Optimization, 205–216

coefficients, regression equation, 215,

216, 238

dynamic programming, 221–227, 229–234

genetic, 216–218, 219

linear programming, 196, 197, 199–205

LSM parameter estimation problem,

gradient procedure, 215, 237, 238

nonlinear programming

gradient, 205–208

search, 208–216

objective function, 194

simplex optimization procedure, 220,

239, 240

solution vector, 193

Output-feedback control system, 126, 127

closed-loop system

disturbance step response, 126, 127

reference channel frequency response,

126, 127

reference step response, 126

closed-loop transfer function, 122, 123

design methodology, 123, 124

discrete-time, 137, 174–177

filter and feedback controller, 122

filter, feedback controller, and input

pre-filter, 123

modified filter, 125

s-domain model transfer function, 123

zero-cancelling filter and feedback

controller, 125

P
Principal component analysis (PCA)

application of, 49–51

orthogonalized variables, 47–49

simple scalar expressions, 48

Probability distribution function, 6

R
Random events

addition of probabilities, 2

Bayes’ theorem, 2

complete group of mutually exclusive

events, 2

conditional frequency, 2

conditional probability, 2

independent events, 2

multiplication of probabilities, 2

probability of, 1

quality prediction, product, 3

student’s expected success,

assessment of, 5

Random variables

conditional distributions, 16–18

confidence intervals, 11

correlation analysis, 19

correlation coefficients, 15

improved automation, effect of, 8

mean and variance, estimation of, 10

mean value and standard deviation, 12

normal distribution, 7, 8

probability density function, 6

probability distribution function, 6

recursive estimation, 10

regression equation, 18, 19

trial realization index, 6

Recursive estimation, 10

Recursive least squares method (RLSM) theory

advantages, 58

conventional estimation and tracking

tool, 66

convergence of coefficient, 67

convergence with forgetting factor, 67

description, 58

flowchart, 64, 65

“forgetting factor”, 66

iteration index, 69

MATLAB, 72, 98, 99

matrix inversion lemma, 63

measurement arrays, 58

measurement vectors, 61

model parameters, 57

process with parameter drift, 72, 100, 101

properties of, 70, 71

recursive computations, 60

system parameter drift, 65

unknown coefficients, 58

Regression analysis, 39, 47, 54

coefficient of determination, 51, 52

confidence intervals (see Confidence
intervals)

covariance matrix, 47

data array and configuration, 37

eigenvalue λj, 45 (see also Least squares

method (LSM))

matrix diagonalization, 45

measurement noise (see Measurement

noise)
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Regression analysis (cont.)
model configuration, 38

PCA (see Principal component analysis

(PCA))

“poorly defined” parameter estimation

problem, 44

principal component analysis, 44

statistical validation of, 53

Regression equations, 18, 19

RLSMAdaptive Control System, 168, 170, 171

operation principle, 167

simulation setup, 169

time-dependent parameters, 171

S
S-domain transfer functions

definition, 111

step response, 115

Singular value decomposition (SVD)

computer-based analyses, 88

data monitoring system, 87

degree of commonality, 88

element-by-element basis, 87

machine learning, 89

matching processes, 88

process control applications, 87

supervised learning, 89

unsupervised learning, 90, 92

Spectral density, 25

State-variable feedback controller

closed-loop transfer function, 136

design, 132–137

discrete-time state-variable control

systems, 128–137

regression models, 134, 135

steady-state error, 134

Students t-Distribution law, 11

T
Trial (realization) index, 6

Z
Z-domain transfer functions

definition, 112

discrete-time equivalent, 113

recursive formula, 114

zero-order-hold, 112, 113

254 Index


	Foreword
	Preface
	Contents
	Introduction
	Process Control
	Chapter 1: Statistical Methods and Their Applications
	1.1 Random Events
	1.2 Random Variables
	1.3 Systems of Random Variables
	1.4 Random Processes
	Solutions
	Exercise 1.1: Problem 1
	Exercise 1.1: Problem 2
	Exercise 1.1: Problem 3
	Exercise 1.1: Problem 4
	Exercise 1.1: Problem 5
	Part A
	Part B
	Part C

	Exercise 1.2: Problem 1
	Exercise 1.2: Problem 2
	Exercise 1.2: Problem 3
	Exercise 1.2: Problem 4
	Exercise 1.2: Problem 5

	Bibliography

	Chapter 2: Mathematical Description of Manufacturing Processes
	2.1 Regression Analysis and the Least Squares Method
	2.2 Validation of Regression Models
	2.3 Recursive Parameter Estimation
	2.4 Non-parametric Models. Cluster Analysis
	2.5 Non-parametric Models. Singular-Value Decomposition as a Tool for Cluster Analysis
	Solutions
	Exercise 2.1: Problem 1
	Exercise 2.1: Problem 2
	Exercise 2.1: Problem 3
	Exercise 2.1: Problem 4
	Exercise 2.1: Problem 5
	Exercise 2.2: Problem 1
	Exercise 2.2: Problem 2
	Exercise 2.2: Problem 3
	Exercise 2.2: Problem 4
	Exercise 2.3: Problem 1
	Exercise 2.3: Problem 2

	Bibliography

	Chapter 3: Computer Control of Manufacturing Processes
	3.1 S- and Z-Domain Transfer Functions
	3.2 Mathematical Modeling of Dynamic Systems
	3.3 Control System with an Output Feedback Controller
	3.4 Control System with a State-Variable Feedback Controller
	3.4.1 Discrete-Time State-Variable Description of Control Systems
	3.4.2 Design of a Discrete-Time State-Variable Controller

	3.5 Control System with a State-Variable Feedback and a State Observer
	3.5.1 Discrete-Time State-Variable Control Systems with State Observers
	3.5.2 Design and Analysis

	3.6 Decoupling Control of a MIMO Process
	3.6.1 Steady-State Decoupling
	3.6.2 Full Decoupling
	3.6.3 State-Variable Decoupling

	3.7 Direct Self-Tuning Control
	Solutions
	Exercise 3.1: Problem 1
	Exercise 3.1: Problem 2
	Exercise 3.1: Problem 3
	Exercise 3.1: Problem 4
	Exercise 3.2: Problem 1
	Exercise 3.2: Problem 2
	Exercise 3.2: Problem 3
	Exercise 3.3: Problem 1

	Bibliography

	Chapter 4: Methods and Models of Optimization
	4.1 Linear Programming
	4.1.1 Geometrical Interpretation of Linear Programming

	4.2 Nonlinear Programming: Gradient
	4.3 Nonlinear Programming: Search
	4.3.1 Penalty Functions 
	4.3.2 Random Search
	4.3.3 Simplex Method of Nelder and Mead
	4.3.4 Exercise 4.1

	4.4 Genetic Optimization
	4.4.1 Exercise 4.2

	4.5 Dynamic Programming
	4.5.1 Exercise 4.3

	Solutions
	Exercise 4.1: Problem 1
	Exercise 4.1: Problem 2
	Exercise 4.1: Problem 3
	Exercise 4.2: Problem 1
	Exercise 4.2: Problem 2
	Exercise 4.3: Problem 1
	Optimal Plan

	Exercise 4.3: Problem 2
	Optimal Path


	Bibliography

	Index



