
Chapter 19

Parameter Identification of Nonlinear Viscoelastic Material Model
Using Finite Element-Based Inverse Analysis

Salah U. Hamim and Raman P. Singh

Abstract This study focuses on identifying the parameters of a nonlinear viscoelastic model from Berkovich

nanoindentation experiment of an epoxy polymer using finite element-based inverse analysis approach. Instead of traditional

approach of online optimization of model parameters, where finite element computation is placed inside of the optimization

algorithm, this study utilizes a surrogate or meta-modeling approach. The surrogate model, which is based on Proper

Orthogonal Decomposition (POD) and Radial Basis Function (RBF), is trained with finite element load–displacement data

obtained by varying the different model parameters in a parameter space. Once trained POD–RBF based surrogate model is

used to approximate the nanoindentation simulation data inside a multi-objective Genetic Algorithm. Current efforts are

focused to validate identified parameter set of nonlinear viscoelastic model for different experimental conditions

(e.g. maximum load, loading/unloading rate).

Keywords Taguchi orthogonal array • Nonlinear viscoelastic model • Finite element analysis • Radial basis function •

Proper orthogonal decomposition

19.1 Introduction

Polymer materials have found applications in a wide variety of industries in the last few decades e.g. automotive, aerospace,

packaging, and microelectronics. Unlike most materials polymer exhibit time-dependent mechanical response. Due to the

inherent viscoelastic or viscoplastic behavior, understanding long-term mechanical response of these materials has been a

challenge.

In addition to that, these materials are often used in micro- or nano-scale applications, e.g. thin films. Conventional testing

methods, which can only provide the macro-scale mechanical behavior, are not suitable in characterizing nano- or micro-

scale behavior of these materials [1, 2]. If a material system is non-homogeneous, such as ultraviolet irradiated polymer

surface or nanofiller reinforced polymer, macro-scale test data fails to reflect the localized changes in a material [3]. In these

situations nanoindentation or depth sensing indentation (DSI) can provide nano-scale mechanical behavior due to its high

spatial resolution [4].

However, relating nanoindentation load–displacement data to mechanical properties requires suitable analytical or

numerical methods [5, 6]. For materials exhibiting simple elastic or elastoplastic behavior, use of nanoindentation has

been widely reported [7–10]. On the contrary, for materials exhibiting time-dependent mechanical behavior, the application

of nanoindentation is still a challenge [11].

In this study, model parameters of a nonlinear viscoelastic model has been identified using finite element-based inverse

analysis and a global optimization technique known as genetic algorithm (GA). Calibrating a complex mechanical

constitutive relationship with the help of genetic algorithm is computationally expensive when finite element analysis is

placed within the optimization algorithm. To circumvent this issue, a surrogate model trained with finite element data is used

within the optimization loop. The surrogate model has been created using Proper Orthogonal Decomposition (POD) and

Radial Basis Function (RBF) technique. The number of training points for the surrogate model has been reduced by utilizing

the sensitivity of individual model parameters.
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19.2 Experimental Details

19.2.1 Materials

An epoxy polymer, named EPON 862, was selected for carrying out nanoindentation experiments. EPON 862 is a diglycidyl

ether of bisphenol F (DGEBF). The curing agent used for this resin system was a moderately reactive, low viscosity aliphatic

amine curing agent, called Epikure 3274. Both of these chemicals were supplied by Miller-Stephenson Chemical Company,

Inc., Dunbury, Connecticut.

Epoxy and hardener was mixed at 100:40 weight ratio and hand-mixed using a glass-rod for 5–10 min. The mixture was

then degassed for around 10–20 min to remove any entrapped air bubbles. The mixture was then poured into an aluminum

mold and cured at room temperature for 24 h and subsequently post-cured at 121 �C for 6 h. The final sample was cut from

the prepared epoxy plate using a bandsaw. Sample surface preparation was carried out by polishing using standard

metallographic techniques.

19.2.2 Nanoindentation

Nanoindentation experiments were conducted on an MTS Nanoindenter XP (Agilent Technologies, Santa Clara, CA, USA)

using a load-controlled scheme with a Berkovich tip. The maximum load was set to be 1.0 mN for the experiments. A

triangular loading profile was chosen with 30, 45, 60, and 240 s durations. The durations were kept constant for both the

loading and unloading segments.

Before conducting the actual experiments the Berkovich tip was calibrated using a fused silica reference material. Also,

the acceptable thermal drift rate was chosen to be 0.15 nm/s. After ensuring that the thermal drift rate was stable and below

the target drift rate nanoindentation experiments were carried out.

19.2.3 Material Model

In this study, a spring–dashpot model developed byMarin and Pao [12] was used. In linear case this model is generally called

four-parameter Burgers model [13] and it is formed by a serial connection of a Maxwell element to a Voigt element. For an

increased relaxation spectrum, the viscoelastic response can be modeled by increasing the number of Voigt elements.

The nonlinear characteristic is introduced when the dashpot constants (ms and mt) take values other than unity. In the

three-dimensional model, the total strains are calculated as the summation of the elastic (εe), transient creep (εt), and steady
creep strains (εs) [14]. In this study, the nonlinear creep deformation is assumed to be incompressible. Under these

assumptions, the three-dimensional nonlinearly viscoelastic law can be expressed as:

εeij ¼
1þ ν

E
σij � ν

E
σkkδij ð19:1Þ

_ε s
ij ¼ CsJ

ms

2 ðtÞsijðtÞ ð19:2Þ

_ε t
ij þ

εtij
tε

¼ Ct

tε
Jmt

2 ðtÞsijðtÞ ð19:3Þ

where E, ν are the Young’s modulus and Poisson ratio, respectively; J2 is the second invariant of the deviator stress tensor s;
Cs, Ct,ms,mt, tε are the nonlinear material parameters. σ is the Cauchy stress tensor; i, j are the indices ranging among 1–3. δij
is the Kronecker delta which used in the context of summation convention with the well-known property δij ¼ 1 when i ¼ j

and δij ¼ 0 otherwise. Small deformations are assumed in the formulation. When more than one Voigt element is included in

the model, the total strain components can be given as the sum of elastic, steady creep, and transient creep components for all

Voigt elements,
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εij ¼ εeij þ εsij þ εtij ¼ εeij þ εsij þ
Xn
i¼1

εtiij ð19:4Þ

where n is the number of Voigt elements. Equations (19.2) and (19.3) can also be written in integral form:

εsij ¼ Cs

ðt
0

Jms

2 ðt0 Þsijðt0 Þdt0 ð19:5Þ

εtij ¼
Ct

tε
eð�t=tεÞ

ðt
0

Jmt

2 ðt0 Þsijðt0 Þeð�t
0
=tεÞdt

0 ð19:6Þ

An UMAT was developed in order to implement the nonlinear Burgers model. UMAT requires the tangent stiffness

matrix of the material model for finite element calculations. For implementation of the nonlinear Burgers viscoelastic model,

the UMAT required temporal discretization. This was done following the procedure implemented by Kucuk et al. [15, 16]. A

simple, stable integration operator for these equations is the central difference operator:

_f tþ1
2
Δt ¼

Δf
Δt

, f tþ1
2
Δt ¼ f t þ

Δf
2

ð19:7Þ

where f is a function, ft is its value at the beginning of the increment, Δ f is the change in the function over the increment, and

Δ t is the time increment.

Tangent stiffness matrix δ Δ σ/δ Δ ε of the constitutive model, with Δ σ being the stress increments and Δ ε the strain

increments, can be derived by applying central difference operator to the rate-dependent constitutive equations (Eqs. (19.1)–

(19.3)). The compliance matrices obtained for these three equations are given below–

C ¼

1=E �ν=E �ν=E 0 0 0

1=E �ν=E 0 0 0

1=E 0 0 0

1þ ν

E
0 0

1þ ν

E
0

1þ ν

E

2
6666666666666664

3
7777777777777775
symmetric

ð19:8Þ

C ¼ ΔtCsJ
ms

2 ðtÞ

1=3 0 0 0 0 0

1=3 0 0 0 0

1=3 0 0 0

1=2 0 0

1=2 0

1=2

2
666666666664

3
777777777775
symmetric

ð19:9Þ
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C ¼ Δt
2tε þ Δt

CtJ
mt

2 ðtÞ

2=3 0 0 0 0 0

2=3 0 0 0 0

2=3 0 0 0

1 0 0

1 0
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From Eq. (19.4), the total compliance is now

δΔεij
δΔσkl

¼ δΔεeij
δΔσkl

þ δΔεsij
δΔσkl

þ δΔεtij
δΔσkl

ð19:11Þ

By investigating the total compliance matrix, system tangent stiffness matrix (Jacobian matrix)
δΔσij
δΔεkl can be obtained from

Eq. (19.11). It should be noted that the Jacobian matrix in Eq. (19.11) accounts only for the elastic deformation and creep

deformation caused by load or stress increment. The rest of the creep strain is developed over the time period during the time

increment and controlled by the applied stress. An artificial stress increment is introduced to include this creep strain in the

system equation. This part of creep strain can be extracted as

Δε0 ¼ ΔtCtJ
mt

2 ðtÞsijðtÞ þ 1

2tε þ Δt
ð2ΔtCtJ

mt

2 ðtÞsijðtÞ � 2ΔtεtÞ ð19:12Þ

A stress increment Δ σ0 ¼ C Δ ε0 is then added into the system equation to account for the creep strain in Eq. (19.12), with

C being the Jacobian stiffness matrix calculated from Eq. (19.11).

19.2.4 Finite Element Modeling

The 3D finite element model of nanoindentation experiment was constructed using commercial finite element package

ABAQUS (Dassault Systemes, Providence, RI). The Berkovich indenter was modeled as discrete rigid body, while the

sample was modeled as deformable body.

To ensure accuracy of the simulation results, the sample was modeled with finer mesh near the contact area, where the

stress and strain generated was much higher. The contact between the indenter and the sample was defined as surface-to-

surface contact, where the indenter was designated as master surface and the sample was as designated as slave surface. The
contact was assumed to have sliding friction with a friction coefficient of 0.25. The element types for the sample was chosen

from the eight-node brick element family (C3D8). Material behavior of the sample was defined in the model using a

subroutine (UMAT). Figure 19.1 shows the schematic of the finite element nanoindentation experiment model.

Fig. 19.1 Schematic of finite

element model of Berkovich

nanoindentation
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19.2.5 Design of Experiments for Sensitivity Analysis

Before generating finite element simulation data by varying the model parameters, a sensitivity study of the parameters was

conducted. This information helped to reduce the number of finite element simulation that was used to train a POD–RBF

based surrogate model [17].

The nonlinear Burgers model that was chosen to represent the behavior of the epoxy has seven independent parameters.

These parameters are E, ν, Cs, ms, Ct, mt, and tε. It is already known that a nanoindentation load–displacement response is not

highly influenced by Poisson’s ratio, ν [18–20]. Therefore, in order to keep the number of independent parameters to a

minimum, ν was given a constant value of 0.34, and was not included in the sensitivity analysis scheme.

Sensitivity analysis was carried out using Analysis of Variance (ANOVA) technique. The data required for ANOVA was

generated using the Taguchi Design of Experiments (DOE) method. In this study, the six nonlinear model parameters were

varied in three equidistant levels. A statistical software, Minitab (Minitab Inc., State College, PA, USA) was used to design

the experiments. For six parameters, where each parameters were varied in three levels, Taguchi L27 orthogonal array design

was appropriate. Table 19.1 shows the levels of the six individual parameters of the nonlinear Burgers model. The

experimental design required a total of 27 individual computer experiments. In these 27 experiments, except for material

model parameters every other parameters (e.g. load, loading–unloading time, boundary conditions) were kept same.

Each of these 27 computer simulations resulted in data in terms of indenter displacement. The resulting value of error

function, δ was calculated using the Eq. (19.13). This was then utilized in ANOVA to determine the effect of each

parameters on the error function.

δ ¼ 1

n

X
ðhiexp � hisimÞ2
h i

ð19:13Þ

In Eq. (19.13), i ¼ 1, 2, 3, . . ., n, and n is the number of data points in a single nanoindentation simulation or experiment.

19.2.6 POD–RBF Surrogate Model

The POD theory, also known as PCA, was developed to approximate a function over some domain of interest based on the

known relationships between the input and the output [21–23]. This study followed the POD–RBF procedure outlined by

Buljak [24] and Rogers et al. [25]. POD–RBF method requires creating snapshots (input–output relationships of the system)

from which the surrogate model could be established. Each of the data that provides a one-to-one relationship between the

input and the output is called a snapshot. The more snapshots or training data points that could be utilized to generate the

surrogate model the better the approximation becomes.

However, the computational burden associated with generating large number of snapshots becomes the limiting factor in

obtaining very high-fidelity predictions from the surrogate model. Sensitivity analysis could be utilized to reduce the number

of snapshots without sacrificing approximation error [17]. Hence, in this study, a similar approach was adopted to reduce the

computation burden of training the surrogate model for nonlinear Burgers model.

Once the appropriate number of levels for different parameters were selected using information from sensitivity analysis,

a full factorial approach was taken to generate the input parameter sets. These parameter sets were combined to produce the

input matrix, P. Finite element simulation experiments were carried out for every individual parameter sets and their

corresponding indenter displacement data was assimilated in the snapshot matrix, U, which can be defined as–

Table 19.1 Levels of nonlinear

Burgers model parameters
Parameters Level 1 Level 2 Level 3

E 3 3.25 3.5

Cs 0.02 0.06 0.1

ms 0.15 0.25 0.35

Ct 0.15 0.25 0.35

mt 0.2 0.5 0.8

tε 0.1 0.25 0.4
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U ¼

u11 u21 � � � uM1

u12 u22 � � � uM2

⋮ ⋮ ⋮ ⋮

u1N u2N � � � uMN

2
66664

3
77775

ð19:14Þ

In this study, four different experimental conditions were utilized for which the training data would be generated. In these

experimental conditions, the maximum load was kept constant at 1 mN, while the strain rate was varied from 1/30 s�1 to

1/240 s�1. One surrogate model was created for each of those experimental conditions using finite element data. The

approximations from each surrogate model was compared against their own experimental indenter displacement data to

form the objective or error function.

A Multiquadratic RBF was chosen for this study. Hamim and Singh reported that the value of the shape parameter (cj) did

not influence the POD–MQ RBF surrogate model’s performance significantly [17]. So, for this study it was chosen 0.5.

19.2.7 Genetic Algorithm

A multi-objective genetic algorithm-based optimization procedure was used to identify the parameters of the nonlinear

Burgers model. The procedure was implemented using MATLAB’s (Mathworks Inc., Natick, MA, USA) global optimiza-

tion toolbox.

An initial population of 200 was randomly created with a uniform distribution (Double vector population type). Scores of
the first and all subsequent generations were determined by evaluating the fitness function that was submitted to the program

via MATLAB script. Selection of the worthy candidates for being the next generation parent were carried out via tournament

of size 2. Eighty percent of the next generation population was produced via crossover, while the remainder of the was

created through mutation. Gaussian mutation was selected, where a random number from a Gaussian distribution centered

on zero was added to each vector entry of an individual. Scale and Shrink parameters were set to 1 for this study.

In this study, the crossover function was chosen to be intermediate. Ratio ¼ 1 was used for creating next generation

children. Forward migration direction was chosen. This meant individuals from nth subpopulation would replace individuals

from (n+1)th subpopulation and so on. The migration fraction and interval were chosen to be 0.2 and 20, respectively. Total

number of generations for the optimization algorithm was chosen to 100� number of parameters, i.e. 100� 6 ¼ 600 for this

study. The fitness (error) function tolerance was chosen to be 1e�4.

19.3 Results and Discussion

19.3.1 Sensitivity Analysis

Table 19.2 shows the result of sensitivity analysis carried out using Taguchi-based design of experiments. The data of

27 experiments carried out according to L27 orthogonal array was used to get information about the sensitivity of output

towards individual parameters.

Table 19.2 Analysis of Variance (ANOVA) for different parameters

Source DF Adj SS Adj MS F-Value % Contribution

E 2 5597,885,401 2798,942,700 3630.33 11.20

Cs 2 16,004,929,654 8002,464,827 10,379.48 32.01

ms 2 22,166,899,947 11,083,449,973 14,375.63 44.34

Ct 2 6207,522,908 3103,761,454 4025.69 12.42

mt 2 14,961,103 7480,552 9.70 0.03

tε 2 92,652 46,326 0.06 0.00

Error 14 10,793,843 770,989

Total 26 50,003,085,508
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The ‘% Contribution’ data, which is a measure of variation contributed by individual parameters towards the output,

shows that except for tε all other parameters contributed towards the overall variation of output. However, the contribution

was significantly influenced by the ‘steady state’ parameters (Cs and ms).

19.3.2 Surrogate Model Training and Inverse Analysis

The findings from the sensitivity analysis was taken into account to revise the number of levels for each nonlinear Burgers

model parameter. As discussed, tε showed no influence over the output of the nanoindentation simulations. Thus, in order to

reduce computational expense, tε was given a constant value.

The two parameters that were the most influential of the remaining five, Cs and ms, were varied at four levels. Meanwhile,

moderately influential two parameters, E and Ct, were varied at three levels, while mt was varied in two levels.

Table 19.3 shows the corresponding levels for each parameters that were selected based on the sensitivity analysis. In a

full factorial basis, a total of 3 � 4 � 4 � 3 � 2 � 1 ¼ 288 finite element simulations were carried out in order to generate

the surrogate model for every single experimental conditions. In each of these simulations, 100 load–displacement data

points were used to represent the nanoindentation plot. Since there were four individual experimental conditions to

represent, a total of four surrogate models were developed. The snapshot matrix used to generate each of these surrogate

model had dimensions of 100�288.

After the POD model reduction process was carried out and the RBF coefficients were calculated, the POD–RBF

surrogate model was ready to approximate nanoindentation data within the specified parametric space (Table 19.1). An

objective function was written in MATLAB where each surrogate model’s output was compared against the corresponding

experimental data. This objective function was used within the MATLAB Global Optimization Toolbox to run multi-

objective genetic algorithm-based global optimization. The optimization algorithm was set to run in parallel mode until it

met the stopping criteria. Table 19.4 shows the result from the global optimization algorithm.

The optimized set of parameters were the numerical best fits depending on the objective function that produces the

numerical difference between the predicted and experimental data. Figure 19.2 shows the comparison of predicted and

experimental data for all four experimental cases. These were the experimental conditions that were closely followed in

creating finite element models and were used to train the predictive or surrogate model. From Fig. 19.2 it can be seen that all

four surrogate model outputs were very close to the corresponding experimental data. This demonstrated the fact that the

multi-objective genetic algorithm-based optimization procedure was successful in finding a common minima taking the

constraints in to consideration.

Although, the surrogate model prediction’s were mostly close with the experimental data few inconsistencies were

observed. For example, the final unloading portion data for the loading–unloading time t ¼ 30 s did not match very well.

Similar behavior was observed for t ¼ 45 s, even though qualitatively the difference between prediction and experiment

diminished. For higher loading–unloading time, e.g. t ¼ 60 s and 240 s, the difference was noticeably very small.

Table 19.5 shows quantitative variation between the various plots in Fig. 19.2. Variations between the plots has been

represented in terms of RMSE, R2, Avg. Error, and % Error. As it can be seen, quantitative discrepancies for different plots

Table 19.3 Parametric space of

nonlinear Burgers parameters for

surrogate training

Parameters No of points in space Parametric value space

E 3 3, 3.25, 3.5

Cs 4 0.02, 0.045, 0.07, 0.1

ms 4 0.35

Ct 3 0.15, 0.25, 0.35

mt 2 0.2, 0.8

tε 1 0.25

Table 19.4 Optimized nonlinear

Burgers model parameters
Parameters E ν Cs ms Ct mt tε

Optimized 3.28 0.34 0.09 0.20 0.24 0.47 0.25
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Fig. 19.2 Experiment vs. surrogate model for calibrated nonlinear Burgers model parameters. (a) Loading–unloading time ¼ 30 s, (b) loading–
unloading time ¼ 45 s, (c) loading–unloading time ¼ 60 s, (d) loading–unloading time ¼ 240 s

Table 19.5 Variation between different plots

Conditions RMSE R2 Avg. Err. (nm) % Error

Pmax ¼ 1. 0 mN t ¼ 30 s 13.23 0.9821 9.11 2.81

t ¼ 45 s 9.17 0.9867 7.11 2.34

t ¼ 60 s 6.72 0.9891 5.70 2.81

t ¼ 240 s 9.01 0.9893 7.07 2.33

Pmax ¼ maximum load, t ¼ loading–unloading time

148 S.U. Hamim and R.P. Singh



of Fig. 19.2 were found to be comparable with each other. Another observation that could be made was that Fig. 19.2b and d

both showed almost same quantitative variation. Although, Fig. 19.2d’s match looked slightly better than Fig. 19.2b if

perceived visually.

19.4 Conclusion

In this study, the model parameters for a nonlinear viscoelastic model has been identified using finite element based inverse

analysis. A genetic algorithm-based optimization procedure was utilized where the load–displacement data was

approximated using a surrogate model. A sensitivity analysis based on Taguchi method and ANOVA analysis was carried

out to reduce the number of training points for the surrogate model. The POD–RBF based surrogate model was capable of

producing good approximation for the nanoindentation experiment. The identified parameter set produced good match

between experimental and surrogate-based load–displacement data.

Ascertaining that the material model parameter set that has been extracted from the inverse analysis procedure is indeed

the global parameter set that would satisfy all possible material response is a challenge. In order to deal with this challenge,

material responses from other experiments, such as compression, tension, or flexural tests could be included in the process.

For some materials carrying out the aforementioned tests may not be feasible, e.g. thin films, coatings, biological cells. In

those cases improving the confidence in the optimized parameter set could be established by obtaining material response

data from multiple nanoindentation experiments, such as changing the cone angle for a pyramidal indenter tip, or using

spherical tips with different radii.

Another way of finding additional constraints for the numerical analysis would be use additional experimental data from

the same nanoindentation experiment. For example, if imprint geometry or residual depth profile data could be harnessed

from a nanoindentation experiment and used in the objective function, the probability of finding the unique model parameter

set increases.

An investigation is currently ongoing to validate the identified parameter set for different experimental conditions.
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