
Chapter 8
Parametric Array Processing

The general principle of parametric array processing is to employ an efficient para-
metric representation of the sound field including typically one or a few reference
signals, and a small number of associated parameters. The advantage of such an
approach is that the number of parameters is significantly lower than in classical
array processing (see Chap.7). A block diagram of a parametric array processing
approach is shown in Fig. 8.1.

Examples of parametric representations of the sound field include Directional
Audio Coding (DirAC) [11], High Angular Resolution Planewave Expansion
(HARPEX) [1] and computational auditory scene analysis (CASA) [4]. These repre-
sentations can be used for spatial audio recording, coding and reproduction; source
separation, noise reduction and dereverberation; and acoustic scene analysis and
source localization. In this chapter, we will focus on parametric approaches to signal
enhancement using the DirAC representation.

The DirAC representation is based on two features that are relevant to the percep-
tion of spatial sound: the direction of arrival (DOA) and the diffuseness. Providing
these features are accurately reproduced, this representation ensures that the inter-
aural time differences (ITDs), interaural level differences (ILDs), and the interaural
coherence are correctly perceived [16]. The advantage of integrating DirAC with a
signal enhancement process is that any interference sources can be reproduced at their
original position [9] relative to the desired source, in addition to being attenuated,
thereby maintaining the naturalness of the listening experience but with increased
speech quality and intelligibility.

In this chapter, we first introduce a parametric model of the sound field. We then
review the parameters that describe this sound field and how they can be estimated,
and present filters that can be used to separate the two components of the sound
field. Finally, we explore two applications of parametric array processing, namely,
directional filtering and dereverberation.
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Fig. 8.1 Block diagram of a parametric array processing approach. In the analysis stage, a reference
signal is computed and a number of parameters are estimated. The reference signal and estimated
parameters are transmitted or stored. In the enhancement stage, a single-channel filter or time-
frequency mask is applied to the reference signal, optionally based on the estimated parameters, to
yield a processed output signal

8.1 Signal Model

In the short-time Fourier transform (STFT) domain, the sound pressure S at a posi-
tion r can be decomposed into a direct sound component Sdir and a diffuse sound
component Sdiff, such that

S(�, ν, r) = Sdir(�, ν, r) + Sdiff(�, ν, r), (8.1)

where � denotes the discrete time index and ν denotes the discrete frequency
index. The sound pressure signal X measured by Q microphones at positions
rq , q ∈ {1, . . . , Q} is then given by
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X (�, ν, rq) = S(�, ν, rq) + V (�, ν, rq) (8.2a)

= Sdir(�, ν, rq) + Sdiff(�, ν, rq) + V (�, ν, rq), (8.2b)

where V denotes a sensor noise signal.
We assume that the directional signal Sdir is sparse in the time-frequency

domain [12], such that in each time-frequency bin the directional signal is due to
a single plane wave. The diffuse signal is due to a theoretically infinite number of
independent plane waves with random phases, equal amplitudes and uniformly dis-
tributed DOAs [10]. We also assume that all three signals are mutually uncorrelated,
that is,

E
{
Sdir(�, ν, rq)S∗

diff(�, ν, rq)
} = 0 (8.3)

E
{
Sdir(�, ν, rq)V ∗(�, ν, rq)

} = 0, (8.4)

where E {·} denotes mathematical expectation, which can be computed using tem-
poral averaging.

In order to obtain the reference signal as indicated in Fig. 8.1, we must transform
the spatial domain signals to the spherical harmonic domain (SHD). In this chapter,
we assume error-free spatial sampling, and refer the reader to Chap. 3 for informa-
tion on spatial sampling and aliasing. By applying the complex spherical harmonic
transform (SHT) to the signal model in (8.2), we obtain the SHD signal model

Xlm(�, ν) = Slm(�, ν) + Vlm(�, ν) (8.5a)

= Sdirlm (�, ν) + Sdifflm (�, ν) + Vlm(�, ν), (8.5b)

where Xlm(�, ν), Slm(�, ν), Sdirlm (�, ν), Sdifflm (�, ν) and Vlm(�, ν) are respectively the
spherical harmonic transforms of the signals X (�, ν, rq), S(�, ν, rq), Sdir(�, ν, rq),
Sdiff(�, ν, rq) and V (�, ν, rq), as defined in (3.6), and are referred to as eigenbeams
to reflect the fact that the spherical harmonics are eigensolutions of thewave equation
in spherical coordinates [14]. The order and degree of the spherical harmonics are
respectively denoted as l and m.

We choose as a reference the signal that would bemeasured by an omnidirectional
microphone Mref placed at the centre of the spherical array, if the array were not
present. As shown in the Appendix of Chap.5, the sound pressure X̃(�, ν) at this
microphone can be obtained from the zero-order eigenbeam X00(�, ν) as

X̃(�, ν) = X00(�, ν)√
4πB0(ν)

(8.6a)

= S̃(�, ν) + Ṽ (�, ν) (8.6b)

= S̃dir(�, ν) + S̃diff(�, ν) + Ṽ (�, ν), (8.6c)

where the frequency-dependent mode strength Bl(ν) for spherical harmonic order
l, given by evaluating the wavenumber-dependent mode strength bl(k) at discrete
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values of the wavenumber k, captures the dependence of the l th order eigenbeams
on the array properties, and is discussed in Sect. 3.4.2. By dividing the eigenbeam
X00(�, ν) by the mode strength, we remove this dependence, such that the reference
signal is independent of the array properties. As noted in Sect. 7.2.2, assuming the
array’s Q microphones are uniformly distributed on the sphere, the power of the
sensor noise V is Q |B0(ν)|2 times smaller atMref than at the individualmicrophones
on the surface of the sphere.

The directional signal Sdirlm due to a plane wave incident from a direction Ωdir is
given by

Sdirlm (�, ν) = √
Pdir(�, ν)ϕdir(�, ν)4πBl(ν)Y ∗

lm [Ωdir(�, ν)] , (8.7)

where ϕdir(�, ν) is the phase factor of the plane wave, Pdir(�, ν) is the power of the
plane wave, and Ylm is the complex spherical harmonic,1 as defined in (2.14). The
diffuse signal Sdirlm can be expressed as

Sdifflm (�, ν) =
√

Pdiff(�, ν)

4π

∫

Ω∈S2
ϕdiff(�, ν,Ω)4πBl(ν)Y ∗

lm(Ω)dΩ, (8.8)

where ϕdiff(�, ν,Ω) denotes the phase factor of the plane wave incident from direc-
tion Ω and the notation

∫
Ω∈S2 dΩ is used to denote compactly the solid angle

∫ 2π
φ=0

∫ π

θ=0 sin θdθdφ.
As in Sect. 5.2.1, using the relationship (5.74) between the zero-order eigenbeam

X00(�, ν) and the reference signal X̃(�, ν), as well as the expressions for the direc-
tional and diffuse signals in (8.7) and (8.8), it can be verified that the powers of these
signals at Mref are respectively given by Pdir and Pdiff.

8.2 Parameter Estimation

In the parametricmodel, the sound field is described by two parameters for each time-
frequency bin: the DOA Ωdir(�, ν) of the plane wave that generates the directional
signal, and the diffuseness Ψ (�, ν), which determines the strength of the directional
signal with respect to the diffuse signal.

The diffuseness is defined as [5]

Ψ (�, ν) = 1

1 + Γ (�, ν)
, (8.9)

1If the real SHT is applied instead of the complex SHT, the complex spherical harmonics Ylm used
throughout this chapter should be replaced with the real spherical harmonics Rlm , as defined in
Sect. 3.3.
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where Γ (�, ν) denotes the signal-to-diffuse ratio (SDR) at Mref, given by

Γ (�, ν) = |S̃dir(�, ν)|2
E

{|S̃diff(�, ν)|2} (8.10a)

= |Sdir00 (�, ν)|2
E

{|Sdiff00 (�, ν)|2} (8.10b)

= Pdir(�, ν)

Pdiff(�, ν)
. (8.10c)

The diffuseness takes values between 0 and 1. In a purely directional field, a dif-
fuseness of 0 is obtained; in a purely directional field, a diffuseness of 1 is obtained;
and when the directional and diffuse signals have equal power, a diffuseness of 0.5
is obtained.

Time- and frequency-dependent DOA and SDR/diffuseness estimates can be
obtained using the methods presented in Chap.5. In order for the reproduction of the
sound field to be accurate, and to avoid distortion of the signals when enhancement is
performed, it is crucial that the parameter estimates have sufficiently high temporal
and spectral resolution, as well as sufficiently low variance.

8.3 Sound Pressure Estimation

In order to perform signal enhancement, we would like to estimate the directional
and diffuse components S̃dir(�, ν) and S̃diff(�, ν) of the reference signal X̃(�, ν). This
can be done by applying a square-root Wiener filter to X̃(�, ν), such that

Ŝdir(�, ν) = Wdir(�, ν)X̃(�, ν) (8.11)

Ŝdiff(�, ν) = Wdiff(�, ν)X̃(�, ν), (8.12)

where the directional filter weights are given by

Wdir(�, ν) =
√

Pdir(�, ν)

Pdir(�, ν) + Pdiff(�, ν) + E
{|Ṽ (�, ν)|2} (8.13a)

=
√

Γ (�, ν)

Γ (�, ν) + 1 + P−1
diff(�, ν)E

{|Ṽ (�, ν)|2} (8.13b)

and the diffuse filter weights are given by

http://dx.doi.org/10.1007/978-3-319-42211-4_5
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Wdiff(�, ν) =
√

Pdiff(�, ν)

Pdir(�, ν) + Pdiff(�, ν) + E
{|Ṽ (�, ν)|2} (8.14a)

=
√

1

Γ (�, ν) + 1 + P−1
diff(�, ν)E

{|Ṽ (�, ν)|2} . (8.14b)

Because the power of the spatially incoherent sensor noise is reduced when com-
bining the Q microphone signals, we can assume that the power of the sensor noise
Ṽ (�, ν) is negligible, and therefore E

{|Ṽ (�, ν)|2} = 0. In this case, the filter weights
can be simplified to

Wdir(�, ν) =
√

Γ (�, ν)

Γ (�, ν) + 1
(8.15a)

= √
1 − Ψ (�, ν) (8.15b)

and

Wdiff(�, ν) =
√

1

Γ (�, ν) + 1
(8.16a)

= √
Ψ (�, ν) (8.16b)

=
√
1 − W 2

dir(�, ν). (8.16c)

If the sensor noise power is not sufficiently low to be disregarded, the filter weights
can be computed using an estimate of the diffuse-to-noise ratio, obtained using the
method in [15], for example.

The advantage of using a square-root Wiener filter in this context is that the

power of the directional and diffuse signals is preserved, that is, E
{
|Ŝdir(�, ν)|2

}
=

Pdir(�, ν) and E
{
|Ŝdiff(�, ν)|2

}
= Pdiff(�, ν). In practice, a lower bound is some-

times applied to Wdir in order to avoid introducing audible artefacts such as
musical noise [2, 18]. In addition, if the diffuse filter weights are computed

using (8.16c), E
{
|Ŝdir(�, ν)|2

}
+ E

{
|Ŝdiff(�, ν)|2

}
= E

{|X̃(�, ν)|2}, even if a lower
bound is applied to Wdir.

8.4 Applications

In this section, we consider two applications of parametric array processing to signal
enhancement: directional filtering (Sect. 8.4.1) and dereverberation (Sect. 8.4.2). The
general principle in both of these applications is to apply a single-channel filter or
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time-frequencymask to the reference signal X̃(�, ν) or the estimated pressure signals
Ŝdir(�, ν) and Ŝdiff(�, ν). As well as enhancing the signal, this can unfortunately also
introduce speech distortion or musical noise, especially with filters that vary quickly
across time and frequency. However, this problem can be mitigated by establishing
a lower bound on the filter weights (as in Sect. 8.3), or by smoothing the weights
across time and frequency [3, 7].

8.4.1 Directional Filtering

As proposed byKallinger et al. in [8], a directional filter can be implemented bymod-
ifying the reference signal X̃(�, ν), the diffuseness Ψ (�, ν) and the DOA Ωdir(�, ν).
In this section, we apply two filters W filt

dir and W filt
diff directly to the estimated direct

and diffuse sound pressures, such that

Zdir(�, ν) = W filt
dir [Ω(�, ν)] Ŝdir(�, ν) (8.17)

Zdiff(�, ν) = W filt
diff Ŝdiff(�, ν). (8.18)

The filtered reference signal is then given by summing the filtered directional and
diffuse signals:

Z(�, ν) = Zdir(�, ν) + Zdiff(�, ν). (8.19)

We would like the filtered reference signal to correspond to the signal captured by
a directional microphone with a directional response D [Ω]. We additionally want
a directional response of unity in the microphone’s steering direction Ωu. Ideally,
we would be able to use a Dirac delta function in the steering direction. However,
in practice this is not possible because the DOA estimates are not error-free and the
directional sources are not point sources [8]. In practice, a beam width in the region
of 60◦ can be achieved without introducing significant audible artefacts [8].

We can choose, for example, a first-order microphone steered in a direction Ωu =
(θu,φu), whose directional response is given by [6]

D [Ω(�, ν)] = α + (1 − α)
{
sin [θ(�, ν)] sin θu cos [φ(�, ν) − φu]

+ cos [θ(�, ν)] cos θu
}
, (8.20)

where the term in curly brackets is the cosine of the angle between the DOA
Ω = (θ,φ) and steering direction Ωu, and α is a shape parameter for the first-order
microphone. In Table8.1, we list a number of commonly used directivity patterns
and the corresponding shape parameters.

The power of an ideal diffuse signal (with unit power at Mref) at the output of
such a microphone is given by [6, 17]
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Table 8.1 Commonly used first-order directivity patterns and corresponding shape parameter val-
ues

Directivity pattern Shape parameter α

Omnidirectional 1

Subcardioid 0.75

Cardioid 0.5

Hypercardioid 0.25

Bidirectional 0

PDdiff = 1

4π

∫

Ω∈S2
D2 [Ω(�, ν)] dΩ (8.21a)

= 4

3
α2 − 2

3
α + 1

3
. (8.21b)

The directional and diffuse filter weights are then given by

W filt
dir [Ω(�, ν)] = D [Ω(�, ν)] (8.22)

W filt
diff = √

PDdiff . (8.23)

This directional filtering technique can be likened to beamforming, and indeed
the objective is the same. However, this technique involves a single-channel filter,
while in beamforming we apply a filter to the pressure signals recorded at multiple
microphones, or to multiple eigenbeams.

8.4.2 Dereverberation

In [9], Kallinger et al. also proposed a method for dereverberation using a parametric
approach. The desired signal that contains less reverberation than the reference signal
X̃(�, ν) is given by

X̃dereverb(�, ν) = Sdir(�, ν) + β(�, ν)Sdiff(�, ν), (8.24)

where 0 ≤ β(�, ν) < 1 is a reverberation reduction factor.
A single-channel filter W (�, ν) can be applied to the reference signal X̃(�, ν) to

estimate the desired signal X̃dereverb(�, ν):

Z(�, ν) = W (�, ν)X̃(�, ν). (8.25)

The filter weights WMMSE(�, ν) that minimize the mean square error between the
filter output signal Z(�, ν) and the desired signal X̃dereverb(�, ν) are given by
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WMMSE(�, ν) = argmin
W (�,ν)

E
{∣
∣X̃dereverb(�, ν) − W (�, ν)X̃(�, ν)

∣
∣2

}
(8.26a)

= 1 − (1 − β)Ψ (�, ν) (8.26b)

= Γ (�, ν) + β(�, ν)

Γ (�, ν) + 1
. (8.26c)

This filter is attractive due to its simplicity, since the filter weights only depend on
the diffuseness and the desired reverberation reduction factor and do not depend on
the DOA. As previously mentioned, the filter weights must normally be smoothed
over time and frequency to avoid audible artefacts; the amount of smoothing that is
necessary will depend on how much smoothing has been applied to the diffuseness
estimates.

It should be noted that the filter described in this section can be used to suppress
any diffuse sound, whether it be reverberation, or isotropic noise such as car noise
or babble noise.

8.5 Chapter Summary

Parametric array processing relies on a simple yet powerful parametric model of the
sound field, which in this chapter was described using a single reference pressure
signal along with two parameters, the DOA and the diffuseness. These parameters
must be estimated accurately, and with high time and frequency resolution. We
presented two illustrative applications of this array processing approach: directional
filtering and dereverberation. These applications highlight a significant advantage
of parametric array processing techniques: they typically have low computational
complexity, especially if low-complexity parameter estimation methods are chosen
(see Chap.5).

Ongoing research challenges include formulating more sophisticated parametric
models to improve performance, and finding new ways to avoid audible artefacts
despite using filters whose weights vary quickly with time and frequency. Other
potential applications of parametric array processing include acoustic zoom [13, 19]
and source extraction using multiple microphone arrays.

References

1. Berge, S., Barrett, N.: High angular resolution planewave expansion. In: Proceedings of the
2nd International Symposium on Ambisonics and Spherical Acoustics (2010)

2. Berouti,M., Schwartz, R.,Makhoul, J.: Enhancement of speech corrupted by acoustic noise. In:
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), vol. 4, pp. 208–211 (1979)

3. Breithaupt, C., Gerkmann, T., Martin, R.: Cepstral smoothing of spectral filter gains for speech
enhancement without musical noise. IEEE Signal Process. Lett. 14(12), 1036–1039 (2007)

http://dx.doi.org/10.1007/978-3-319-42211-4_5


150 8 Parametric Array Processing

4. Brown, G.J., Cooke, M.: Computational auditory scene analysis. Comput. Speech Lang. 8,
297–336 (1994)

5. Del Galdo, G., Taseska, M., Thiergart, O., Ahonen, J., Pulkki, V.: The diffuse sound field in
energetic analysis. J. Acoust. Soc. Am. 131(3), 2141–2151 (2012)

6. Elko, G.W.: Spatial coherence functions for differential microphones in isotropic noise fields.
In: Brandstein, M., Ward, D. (eds.) Microphone Arrays: Signal Processing Techniques and
Applications, chap. 4, pp. 61–85. Springer, Heidelberg (2001)

7. Gustafsson, S., Nordholm, S., Claesson, I.: Spectral subtraction using reduced delay convolu-
tion and adaptive averaging. IEEE Trans. Speech Audio Process. 9(8), 799–807 (2001)

8. Kallinger, M., Ochsenfeld, H., Del Galdo, G., Kuech, F., Mahne, D., Schultz-Amling, R.,
Thiergart, O.: A spatial filtering approach for directional audio coding. In: Proceedings of the
Audio Engineering Society Convention. Munich, Germany (2009)

9. Kallinger, M., Del Galdo, G., Kuech, F., Thiergart, O.: Dereverberation in the spatial audio
coding domain. In: Proceedings of the Audio Engineering Society Convention. London, UK
(2011)

10. Kuttruff, H.: Room Acoustics, 4th edn. Taylor & Francis, London (2000)
11. Pulkki, V.: Spatial sound reproduction with directional audio coding. J. Audio Eng. Soc. 55(6),

503–516 (2007)
12. Rickard, S.,Yilmaz,Z.:On the approximateW-disjoint orthogonality of speech. In: Proceedings

of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
vol. 1, pp. 529–532 (2002)

13. Schultz-Amling, R., Kuech, F., Thiergart, O., Kallinger, M.: Acoustical zooming based on
a parametric sound field representation. In: Proceedings of the Audio Engineering Society
Convention (2010)

14. Teutsch, H.: Wavefield decomposition using microphone arrays and its application to acoustic
scene analysis. Ph.D. thesis, Friedrich-Alexander Universität Erlangen-Nürnberg (2005)

15. Thiergart, O., Habets, E.A.P.: An informed LCMV filter based on multiple instantaneous
direction-of-arrival estimates. In: Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 659–663 (2013)

16. Thiergart, O., Kallinger, M., Del Galdo, G., Kuech, F.: Parametric spatial sound processing
using linear microphone arrays. In: Heuberger, A., Elst, G., Hanke, R. (eds.) Microelectronic
Systems, pp. 313–321. Springer, Heidelberg (2011)

17. Thiergart, O., Del Galdo, G., Habets, E.A.P.: On the spatial coherence in mixed sound fields
and its application to signal-to-diffuse ratio estimation. J. Acoust. Soc. Am. 132(4), 2337–2346
(2012)

18. Thiergart, O.,DelGaldo,G., Taseska,M.,Habets, E.:Geometry-based spatial sound acquisition
using distributedmicrophone arrays. IEEETrans. Audio, Speech, Lang. Process. 21(12), 2583–
2594 (2013)

19. Thiergart, O., Kowalczyk, K., Habets, E.: An acoustical zoom based on informed spatial filter-
ing. In: Proceedings of the International Workshop Acoustic Signal Enhancement (IWAENC),
pp. 109–113. IEEE, Juan-les-Pins, France (2014). doi:10.1109/IWAENC.2014.6953348

http://dx.doi.org/10.1109/IWAENC.2014.6953348

	8 Parametric Array Processing
	8.1 Signal Model
	8.2 Parameter Estimation
	8.3 Sound Pressure Estimation
	8.4 Applications
	8.4.1 Directional Filtering
	8.4.2 Dereverberation

	8.5 Chapter Summary
	References


