
Chapter 6
Signal-Independent Array Processing

The process of combining signals acquired by a microphone array in order to ‘focus’
on a signal in a specific direction is known as beamforming or spatial filtering. We
present in this chapter a number of such beamforming methods that are specifically
controlled byweights dependent only on the direction of arrival (DOA) of the desired
source. They are otherwise signal-independent such that they do not depend on the
statistics of the desired or noise signals. We derive maximum directivity and maxi-
mum white noise gain beamformers that establish performance bounds for spherical
harmonic domain (SHD) beamformers. Because the weights of these beamformers
are given by simple expressions, they present the advantages of being straightforward
to implement and of having low computational complexity.

6.1 Signal Model

The sound pressure P captured at a position r = (r,Ω) = (r, θ,φ) (in spherical
coordinates,where θ denotes the inclination andφ denotes the azimuth) on a spherical
microphone array of radius r is commonly expressed as the sum of a desired signal
X and a noise signal V [12, 15]. In the spatial domain, the signal model is expressed
as

P(k, r) = X (k, r) + V (k, r), (6.1)
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94 6 Signal-Independent Array Processing

where k denotes the wavenumber.1 The desired signal X is assumed to be spatially
coherent, while the noise signal V models background noise or sensor noise, for
example, and may be spatially incoherent, coherent or partially coherent.

When using spherical microphone arrays, it is convenient to work in the SHD
[1, 17]. In this chapter, we assume error-free spatial sampling by Q microphones at
positions rq = (r,Ωq), q ∈ {1, . . . , Q}, and refer the reader to Chap.3 for informa-
tion on spatial sampling and aliasing. By applying the complex spherical harmonic
transform (SHT) to the signal model in (6.1), we obtain the SHD signal model

Plm(k) = Xlm(k) + Vlm(k), (6.2)

where Plm(k), Xlm(k) and Vlm(k) are respectively the spherical harmonic transforms
of the spatial domain signals P(k, rq), X (k, rq) and V (k, rq), as defined in (3.6),
and are referred to as eigenbeams to reflect the fact that the spherical harmonics are
eigensolutions of the wave equation in spherical coordinates [26]. The order and
degree of the spherical harmonics are respectively denoted as l and m.

By combining the eigenbeams Plm(k) in a particular way, the noise V can be
suppressed and the desired signal X can be extracted from the noisy mixture P . This
is accomplished using a spatio-temporal filter or beamformer. In the spatial domain,
the output of a beamformer is obtained as the weighted sum of the pressure signals
at each of the microphones [3, 4]; in the SHD, the beamformer output is given by a
weighted sum of the eigenbeams Plm(k) [14, 21]. The output of an Lth-order SHD
beamformer can thus be expressed as [21, Eq.12]2

Z(k) =
L∑

l=0

l∑

m=−l

W ∗
lm(k)Plm(k), (6.3)

where Wlm(k) denotes the beamformer weights and (·)∗ denotes the complex conju-
gate.

Beamformers can either be signal-independent (fixed) or signal-dependent; their
weights are chosen in order to achieve specific performance objectives. Signal-
independent beamformers apply a constraint to a specific steering direction and
optimize the beamformer weights with respect to array performance measures such
as thewhite noise gain (WNG) and directivity. They can also,more generally, attempt
to achieve a specific spatial response in all directions by minimizing the difference
between the beamformer’s spatial response and the desired spatial response, accord-
ing to some distance measure (see [6, Sects. 8.3 and 8.4] for examples). Signal-
dependent beamformers optimize the weights taking into account characteristics of

1The dependency on time is omitted for brevity. In practice, the signals acquired using a spherical
microphone array are usually processed in the short-time Fourier transform domain, as explained
in Sect. 3.1, where the discrete frequency index is denoted by ν.
2We use the complex conjugate weightsW ∗

lm rather than theweightsWlm ; this notational convention
originates in the spatial domain [30].

http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
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Fig. 6.1 Block diagram of a signal-independent beamformer

the desired signal and noise. In this chapter, we will discuss signal-independent
beamformers and later address signal-dependent beamformers in Chap.7.

A block diagram of a signal-independent beamformer is shown in Fig. 6.1.
We begin by capturing the sound pressure signals P(k, rq) at microphones q ∈
{1, . . . , Q}, and applying the SHT to obtain the SHD sound pressure signals, the
eigenbeams Plm(k), gathered together to form a vector p(k). The output Z(k) of the
beamformer is obtained by taking the weighted sum of these eigenbeams, where the
weights Wlm(k,Ωu) depend only on the steering direction Ωu and do not otherwise
depend on the sound pressure signals P .

The signal-independent beamformers presented in this chapter are designed
assuming anechoic conditions with a single active sound source, though these
assumptions are unlikely to be valid in practical use scenarios. Depending on the
distance between this source and the array, the desired signal is either assumed to
consist of a planewave or a sphericalwave.Under farfield conditions, the eigenbeams
of a unit amplitude plane wave incident from a direction Ωs are given by (3.22a).
The SHD sound pressure Xlm(k,Ωs) related to a plane wave with power Ppw(k) can
then be written as [18, 20, 26]

Xlm(k,Ωs) =
√
Ppw(k)bl(k)Y

∗
lm(Ωs), (6.4)

where Ylm(Ωs) denotes the complex spherical harmonic3 of order l and degree m
evaluated at an angle Ωs, as defined in (2.14), and the mode strength bl(k) captures
the eigenbeams’ dependence on the array properties, such as microphone type or
array configuration, and is discussed in more detail in Sect. 3.4.2.

All the beamformers designed in this chapter seek to suppress the noise while
maintaining a distortionless constraint on the signal originating from the steering
direction Ωu. This constraint is expressed as

3If the real SHT is applied instead of the complex SHT, the complex spherical harmonics Ylm used
throughout this chapter should be replaced with the real spherical harmonics Rlm , as defined in
Sect. 3.3.

http://dx.doi.org/10.1007/978-3-319-42211-4_7
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
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L∑

l=0

l∑

m=−l

W ∗
lm(k)bl(k)Y

∗
lm(Ωu) = 1. (6.5)

It is important to note that this distortionless constraint depends only on the
steering direction Ωu. It is different from the distortionless constraint imposed in
Chap.7, which takes into account the complex multipath propagation effects of a
reverberant environment. Using the constraint in (6.5) can be appealing, as it does
not require the estimation of the acoustic transfer functions (ATFs) or relative transfer
functions, however this comes at the expense of sensitivity to errors in the steering
direction and reduced robustness to reverberation.

For convenience, the SHD signal model in (6.2) can also be expressed in vector
form as

p(k) = x(k) + v(k) (6.6)

where the SHD signal vector p(k) of length (L + 1)2 is defined as

p(k) = [
P00(k) P1(−1)(k) P10(k) P11(k) P2(−2)(k) · · · PLL(k)

]T
,

and x(k) and v(k) are defined similarly to p(k). The beamformer output signal Z(k)
can be expressed as

Z(k) = wH(k)p(k), (6.7)

where the filter weights vector is defined as

w(k) = [
W00(k) W1(−1)(k) W10(k) W11(k) W2(−2)(k) · · · WLL(k)

]T
.

In matrix form the desired signal is written as

x(k,Ωs) =
√
Ppw(k)B(k)y∗(Ωs), (6.8)

where the vector of spherical harmonics y(Ωs) of length (L + 1)2 is defined as

y(Ωs) = [
Y00(Ωs) Y1(−1)(Ωs) Y10(Ωs) Y11(Ωs) · · · YLL(Ωs)

]T
, (6.9)

and the (L + 1)2 × (L + 1)2 matrix of mode strengths B(k) is defined as

B(k) = diag {b0(k), b1(k), b1(k), b1(k), b2(k), . . . , bL(k)} , (6.10)

therefore B(k) consists of 2l + 1 repetitions of bl(k) for l ∈ {0, . . . , L} along its
diagonal. Finally, the distortionless constraint is given by

wH(k)B(k)y∗(Ωu) = 1. (6.11)

http://dx.doi.org/10.1007/978-3-319-42211-4_7


6.2 Design Criteria 97

6.2 Design Criteria

In this section, we introduce a number of measures that can be used to design optimal
beamformers as in Sect. 6.3. It should be noted that these measures are defined with
respect to the signals with physical significance, namely the spatial domain signals,
and notwith respect to the eigenbeams.Nevertheless, thesemeasureswill still depend
on the eigenbeams as they form a part of the spherical harmonic expansion (SHE)
of the spatial domain signals.

6.2.1 Directivity

Directivity is a measure of a beamformer’s spatial selectivity and quantifies its ability
to suppress sound waves that do not originate from a specifically chosen steering
direction. It is defined as the ratio of the power of the beamformer output due to a
plane wave arriving from the steering direction Ωu to the power of the beamformer
output averaged over all directions [28]. The directivity D(k) is therefore written as

D(k) = |Z(k,Ωu)|2
1
4π

∫
Ω∈S2 |Z(k,Ω)|2 dΩ (6.12)

=
∣∣∣
∑L

l=0

∑l
m=−l W

∗
lm(k)Xlm(k,Ωu)

∣∣∣
2

1
4π

∫
Ω∈S2

∣∣∣
∑L

l=0

∑l
m=−l W

∗
lm(k)Xlm(k,Ω)

∣∣∣
2
dΩ

, (6.13)

where the notation
∫
Ω∈S2 dΩ is used to denote compactly the solid angle

∫ 2π
φ=0

∫ π

θ=0 sin
θdθdφ.Applying thedistortionless constraint (6.5), andby substituting the expression
for a plane wave (6.4) into (6.12), we find

D(k) = 4πPpw(k)
∫
Ω∈S2

∣∣∣
∑L

l=0

∑l
m=−l W

∗
lm(k)

√
Ppw(k)bl(k)Y ∗

lm(Ω)

∣∣∣
2
dΩ

= 4π
∫
Ω∈S2

∣∣∣
∑L

l=0

∑l
m=−l W

∗
lm(k)bl(k)Y ∗

lm(Ω)

∣∣∣
2
dΩ

. (6.14)

Using the orthonormality of the spherical harmonics (2.18), this can be simplified to4

D(k) = 4π

(
L∑

l=0

l∑

m=−l

∣∣W ∗
lm(k)bl(k)

∣∣2
)−1

, (6.15)

4It should be noted that this simplified expression is only valid for beamformers that satisfy the
distortionless constraint given in (6.5). It therefore does not apply to the plane-wave decomposition
beamformer presented in Sect. 6.3.1.1, which satisfies a scaled version of this constraint.

http://dx.doi.org/10.1007/978-3-319-42211-4_2
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or in vector form

D(k) = 4π
∣∣∣∣B(k)w∗(k)

∣∣∣∣−2
, (6.16)

where ||·|| denotes the 2-norm. The directivity is therefore a function of the array
properties, such as radius or microphone type, and the beamformer weights Wlm(k).

The directivity is frequently expressed in dB and is then referred to as the direc-
tivity index (DI),

DI(k) = 10 log10 D(k). (6.17)

6.2.2 Front-to-Back Ratio

The front-to-back ratio is another alternative measure of a beamformer’s spatial
selectivity and quantifies its ability to differentiate between sound waves that orig-
inate from the front and the back. It is defined as the ratio of the average power of
the beamformer output due to a plane waves arriving from the front to the average
power of the beamformer output due to plane waves arriving from the back. The
front-to-back ratio F(k) is therefore written as [7]

F(k) =
1
4π

∫
Ω∈S2

F

∣∣∣
∑L

l=0

∑l
m=−l W

∗
lm(k)Xlm(k,Ω)

∣∣∣
2
dΩ

1
4π

∫
Ω∈S2

B

∣∣∣
∑L

l=0

∑l
m=−l W

∗
lm(k)Xlm(k,Ω)

∣∣∣
2
dΩ

, (6.18)

where for a beamformer steered to (π/2,π/2) we have

∫

Ω∈S2
F

dΩ =
∫ π

φ=0

∫ π

θ=0
sin θdθdφ (6.19)

and ∫

Ω∈S2
B

dΩ =
∫ 2π

φ=π

∫ π

θ=0
sin θdθdφ. (6.20)

6.2.3 White Noise Gain

White noise gain (WNG) is a measure of a beamformer’s robustness against sensor
noise and errors in microphone placement and steering direction [10], and is defined
as the array gain in the presence of spatially incoherent noise [28], i.e., the ratio of
the signal-to-noise ratio (SNR) at the beamformer output (oSNR) to the SNR at the
beamformer input (iSNR).
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We now derive the WNG for a spherical microphone array employing a set of
microphones uniformly distributed on the sphere. The desired signal power is differ-
ent at each microphone, particularly for a rigid sphere where the scattering effects
depend on the angle of incidence [16].When calculating the iSNR, the desired signal
power is therefore averaged over the sphere.

Let us assume that the noise at each microphone has equal power σ2
v(k). The input

SNR is then given by

iSNRw(k) =
1
4π

∫
Ω∈S2 |X (k, r)|2 dΩ

σ2
v(k)

(6.21a)

=
1
4π

∫
Ω∈S2

∣∣∣
∑∞

l=0

∑l
m=−l Xlm(k)Ylm(Ω)

∣∣∣
2
dΩ

σ2
v(k)

, (6.21b)

where (6.21b) is obtained using the spherical harmonic decomposition of X (k, r).
Assuming plane-wave incidence fromadirectionΩs, by substituting (6.4) into (6.21),
we find

iSNRw(k) =
∫
Ω∈S2

∣∣∣
∑∞

l=0

∑l
m=−l

√
Ppw(k)bl(k)Y ∗

lm(Ωs)Ylm(Ω)

∣∣∣
2
dΩ

4πσ2
v(k)

. (6.22)

Using Unsöld’s theorem [29], a special case of the spherical harmonic addition
theorem (2.23), and the orthonormality of the spherical harmonics, we simplify
(6.22) to

iSNRw(k) =
∑∞

l=0

∑l
m=−l

∣∣√Ppw(k)bl(k)Y ∗
lm(Ωs)

∣∣2

4πσ2
v(k)

(6.23a)

= Ppw(k)
∑∞

l=0 |bl(k)|2 (2l + 1)

(4π)2σ2
v(k)

. (6.23b)

The input SNR is therefore a function of the plane wave power Ppw(k), the array
properties, via the mode strength bl(k), and the noise power σ2

v(k).
The output SNR is given by

oSNRw(k) =
∣∣∣
∑L

l=0

∑l
m=−l W

∗
lm(k)Xlm(k)

∣∣∣
2

E

{∣∣∣
∑L

l=0

∑l
m=−l W

∗
lm(k)Vlm(k)

∣∣∣
2
} . (6.24)

Applying the distortionless constraint (6.5), this reduces to

http://dx.doi.org/10.1007/978-3-319-42211-4_2
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oSNRw(k) = Ppw(k)

E

{∣∣∣
∑L

l=0

∑l
m=−l W

∗
lm(k)Vlm(k)

∣∣∣
2
} . (6.25)

With Q microphones uniformly distributed on the sphere, the cross power spectral
density of the noise is given by [31, Eq.7.31]

E
{
Vlm(k)V ∗

l ′m ′(k)
} = σ2

v(k)
4π

Q
δl,l ′δm,m ′ , (6.26)

where δ denotes the Kronecker delta, and oSNR simplifies to

oSNRw(k) = Ppw(k)

(
4π

Q
σ2

v(k)
L∑

l=0

l∑

m=−l

∣∣W ∗
lm(k)

∣∣2
)−1

. (6.27)

The output SNR is a function of the beamformer weights Wlm(k), the plane wave
power Ppw(k), the noise power σ2

v(k), and the beamformer order L . The beamformer
order can be increased by adding microphones, as discussed in Sect. 3.4.

Finally, the WNG can be expressed as

WNG(k) = oSNRw(k)

iSNRw(k)
(6.28a)

= 4πQ

||w(k)||2 ∑∞
l=0 |bl(k)|2 (2l + 1)

. (6.28b)

The WNG is a function of the beamformer weights Wlm(k), array order L and
the array properties. As expected, it is also an increasing function of the num-
ber of microphones Q. In the case of an open sphere, bl(k) = i l jl(kr), and since∑∞

l=0 | jl(kr)|2 (2l + 1) = 1 [2, 13], the WNG is given by the simple expression

WNG(k) = 4πQ

||w(k)||2 . (6.29)

6.2.4 Spatial Response

The output of the beamformer in the presence of a single unit amplitude plane wave
originating from a DOA Ω is given by

B(k,Ω) = wH(k)B(k)y∗(Ω), (6.30)

http://dx.doi.org/10.1007/978-3-319-42211-4_3
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Fig. 6.2 Illustrative example of the magnitude of a spatial response B(k,Θ) as a function of the
angle Θ between the steering direction and DOA

and is known as the spatial response of the beamformer. The square magnitude of the
spatial response B(k,Ω) is referred to as the beam pattern [4].5 The beam pattern
describes the beamformer’s ability to select signals originating from a direction
of interest, while suppressing signals that do not. Beam patterns typically exhibit
multiple peaks or lobes; the largest lobe, in the direction of interest, is referred to as
the main lobe, while the other lobes are referred to as sidelobes. Due to the effects
of spatial aliasing, some sidelobes may have an amplitude equal to that of the main
lobe, and they are then referred to as grating lobes [27].

Due to the spherical symmetry of the SHD, the beam pattern can also be expressed
as a function of the angle between the DOA Ω and the beamformer’s steering direc-
tion Ωu, denoted as Θ . Ideally, the response in the steering direction, B(k,Θ = 0),
should be as large as possible compared to the response in other directions, i.e.,
the sidelobe levels should be minimized. We refer to the width of the region that
has a higher response than the maximum sidelobe level as the main lobe width,6 as
illustrated in Fig. 6.2.

5Note that in some publications, such as [28], B(k,Ω) is referred to as the beam pattern, and its
square magnitude is referred to as the power pattern.
6The main lobe width is sometimes also defined as the width of the region where the beam pattern
is no less than half of its maximum value, or equivalently, no more than 3dB below its maximum
value.
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6.3 Signal-Independent Beamformers

Having established our signal model in Sect. 6.1, we now develop a number of signal-
independent beamformers based on the design criteria introduced in Sect. 6.2. The
beam patterns of all the beamformers presented in this section are rotationally sym-
metric about the steering direction.

6.3.1 Farfield Beamformers

In this section, we derive three beamformers suitable for use in farfield conditions:
a maximum directivity beamformer, a maximumWNG beamformer, and a multiply
constrained beamformer.

6.3.1.1 Maximum Directivity Beamformer

The beamformer that maximizes the directivity while imposing a distortionless con-
straint in the steering direction satisfies

max
w(k)

D(k) subject to wH(k)B(k)y∗(Ωu) = 1,

or equivalently,

min
w(k)

∣∣∣∣B(k)w∗(k)
∣∣∣∣2 subject to wH(k)B(k)y∗(Ωu) = 1,

where y(Ωu) is the vector of spherical harmonics defined in (6.9).
Following the approach proposed by Brandwood [5], if we use a Lagrange mul-

tiplier to adjoin the constraint to the cost function, the weights of the maximum
directivity beamformer are then given by

wmaxDI(k) = argmin
w(k)

L(w(k),λ), (6.31)

where L is the complex Lagrangian given by

L(w(k),λ) = [
B(k)w∗(k)

]H [
B(k)w∗(k)

]

+ λ
(
wH(k)B(k)y∗(Ωu) − 1

) + λ∗ (
yT(Ωu)B*(k)w(k) − 1

)

(6.32)

and λ is the Lagrangemultiplier. Setting the gradient ofL(wmaxDI(k),λ)with respect
to w∗

maxDI to zero yields
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∇w∗
maxDI

L(wmaxDI(k),λ) = 0N
B(k)B∗(k)wmaxDI(k) + λB(k)y∗(Ωu) = 0N , (6.33)

where 0N is a column vector of N zeros. Using the constraint in (6.31), we then find

wmaxDI(k) = [B∗(k)]−1 y∗(Ωu)

||y(Ωu)||2
. (6.34)

Using Unsöld’s theorem [29], this simplifies to

wmaxDI(k) = 4π

(L + 1)2
[
B∗(k)

]−1
y∗(Ωu), (6.35)

or in scalar form

WmaxDI
lm (k) = 4π

(L + 1)2
Y ∗
lm(Ωu)

b∗
l (k)

. (6.36)

Awell-known farfield SHD beamformer is the plane-wave decomposition (PWD)
beamformer, also sometimes known as a regular beamformer [24], whose weights
are given by [22]

wPWD(k) = [
B∗(k)

]−1
y∗(Ωu). (6.37)

As the (frequency-independent) scaling factor does not affect the directivity, the
PWD beamformer is also a maximum directivity beamformer. The reason for the
name PWD will become clear in the next paragraph.

Assuming a single unit amplitude plane wave is incident upon the array from a
direction Ωs, the output Z(k) of the PWD beamformer is given by

Z(k) = wH(k)B(k)y∗(Ωs) (6.38a)

= yT(Ωu)B−1(k)B(k)y∗(Ωs) (6.38b)

=
L∑

l=0

l∑

m=−l

Ylm(Ωu)Y
∗
lm(Ωs) (6.38c)

=

⎧
⎪⎪⎨

⎪⎪⎩

(L + 1)2

4π
if Ωs = Ωu,

(L + 1)

4π(cosΘ − 1)

[
PL+1(cosΘ) − PL(cosΘ)

]
otherwise,

(6.38d)

whereΘ is the angle betweenΩs andΩu andPL is the Legendre polynomial of order
L . TheChristoffel summation formula [11, Sect. 8.915] is used to obtain (6.38d) [20].
The beamformer output Z(k) reaches its maximumwhenΘ = 0, such that the steer-
ing direction Ωu is equal to the arrival direction Ωs, as desired. We normalize the
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Fig. 6.3 Normalized beamformer output as a function of the beamformer order L and Θ , the angle
between the beamformer steering direction and the DOA

beamformer output with respect to its value for Θ = 0, and plot it as a function of
Θ in Fig. 6.3. We see that as L increases, the distribution of Z(k) narrows around
Θ = 0, tending towards a delta function for L → ∞ [31, Eq.6.47].

The directivity of the maximum directivity beamformer is given by substituting
(6.35) into (6.16)7

D(k) = 4π

∣∣∣∣

∣∣∣∣
4π

(L + 1)2
B(k)B−1(k)y(Ωu)

∣∣∣∣

∣∣∣∣
−2

(6.39a)

= (L + 1)4

4π
||y(Ωu)||−2 (6.39b)

= (L + 1)2. (6.39c)

The directivity of the maximum directivity beamformer is therefore frequency-
independent and only depends on the beamformer order L .

Since at least (L + 1)2 microphones are required to sample a sound field up to
order L without spatial aliasing, the directivity is upper bounded by the number of
microphones Q. This is also themaximumdirectivity of a spatial domain beamformer
based on a standard linear array [28, Eq.2.160].

TheWNG of the maximum directivity beamformer is given by substituting (6.35)
into (6.28)

7This expression is identical to (12) in [22] if we substitute dn = 1.
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Fig. 6.4 WNG of the maximum directivity and maximum WNG beamformers of order L = 4 as
a function of kr , for open and rigid arrays

WNG(k) = Q(L + 1)4

4π
∑L

l=0

∑l
m=−l

∣∣∣ Ylm (Ωu)

bl (k)

∣∣∣
2 ∑∞

l=0 |bl(k)|2 (2l + 1)
(6.40a)

= Q(L + 1)4
∑L

l=0 |bl(k)|−2 (2l + 1)
∑∞

l=0 |bl(k)|2 (2l + 1)
. (6.40b)

In the open sphere case, this simplifies to8

WNG(k) = Q(L + 1)4
∑L

l=0 |bl(k)|−2 (2l + 1)
, (6.41)

or in matrix form

WNG(k) = Q(L + 1)4
∣∣∣∣B−1(k)

∣∣∣∣−2
. (6.42)

In Fig. 6.4, we plot the WNG of the maximum directivity beamformer of order
L = 4 as a function of the product of the wavenumber k and array radius r , kr ,
for an array of Q = 32 microphones. Assuming a speed of sound of 343m · s−1,

8This expression is identical to (11) in [22] if we substitute dn = 1, with the exception of the (4π)2

scaling factor, which is required due to the fact that in [22] a 4π scaling factor is included in the
definition of the mode strength.
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a kr value of 1 corresponds to a frequency of 1.1kHz for an array radius of r =
10cm, for example. It can be seen that the beamformer’s WNG is low except at
high frequencies or large array radii. When an open sphere is used, the maximum
directivity beamformer has particularly poor robustness at certain values of kr ; this
is due to the presence of zeros in the open sphere mode strength (see Sect. 3.4.2).
The rigid sphere does not present this issue, and in addition provides an increase in
WNG of approximately 3.7dB over the open sphere at low values of kr .

6.3.1.2 Maximum White Noise Gain Beamformer

The beamformer that maximizes theWNGwhile imposing a distortionless constraint
in the steering direction satisfies

max
w(k)

WNG(k) subject to wH(k)B(k)y∗(Ωu) = 1,

or equivalently,

min
w(k)

||w(k)||2 subject to wH(k)B(k)y∗(Ωu) = 1.

Proceeding in a similar way as for the analysis of the maximum directivity beam-
former, if we use a Lagrange multiplier to adjoin the constraint to the cost function,
the weights of the maximum directivity beamformer are then given by

wmaxWNG(k) = argmin
w(k)

L(w(k),λ), (6.43)

where L is the complex Lagrangian given by

L(w(k),λ) = [w(k)]H [w(k)]

+ λ
(
wH(k)B(k)y∗(Ωu) − 1

) + λ∗ (
yT(Ωu)B*(k)w(k) − 1

)

(6.44)

and λ is the Lagrange multiplier. Setting the gradient of L(wmaxWNG(k),λ) with
respect to w∗

maxWNG to zero yields

∇w∗
maxWNG

L(wmaxWNG(k),λ) = 0N
wmaxWNG(k) + λB(k)y∗(Ωu) = 0N , (6.45)

where 0N is a column vector of N zeros. Using the constraint in (6.43), we then find

wmaxWNG(k) = B(k)y∗(Ωu)

yT(Ωu)B∗(k)B(k)y∗(Ωu)
. (6.46)

http://dx.doi.org/10.1007/978-3-319-42211-4_3
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Using Unsöld’s theorem [29], this simplifies to

wmaxWNG(k) = 4π
B(k)y∗(Ωu)

||B(k)||2 , (6.47)

or in scalar form

WmaxWNG
lm (k) = 4π

Y ∗
lm(Ωu)bl(k)∑L

l=0 |bl(k)|2(2l + 1)
. (6.48)

Awell-known farfield SHDbeamformer is thedelay-and-sum beamformer,whose
weights are given by [22]

wDSB(k) = B(k)y∗(Ωu). (6.49)

In the case of an open sphere, bl(k) = i l jl(kr), and since
∑∞

l=0 | jl(kr)|2 (2l + 1) =
1 [2], the following relationship between the maximum WNG and delay-and-sum
beamformers is obtained:

lim
L→∞wmaxWNG(k) = 4πwDSB(k). (6.50)

When an open sphere is used, the delay-and-sum beamformer therefore approaches
a maximum WNG beamformer as L → ∞ (ignoring the 4π scaling factor, which
does not affect the WNG). For a finite L and/or if another microphone type or array
configuration is used (such as a rigid sphere), the delay-and-sum beamformer is
slightly suboptimal.

The delay-and-sum beamformer owes its name to the fact that for an open sphere
as L → ∞, its output converges to the output of the widely known spatial domain
delay-and-sum beamformer [22].

The directivity of the maximumWNG beamformer is given by substituting (6.47)
into (6.16)

D(k) = 4π

∣∣∣∣

∣∣∣∣
4π

||B(k)||2B(k)B∗(k)y(Ωu)

∣∣∣∣

∣∣∣∣
−2

(6.51a)

= 4π

(4π)2
||B(k)||4 ∣∣∣∣B(k)B∗(k)y(Ωu)

∣∣∣∣−2
(6.51b)

= ||B(k)||4 ∣∣∣∣B(k)B∗(k)
∣∣∣∣−2

. (6.51c)

TheWNG of the maximumWNG beamformer is given by substituting (6.47) into
(6.28)

WNG(k) = 4πQ ||B(k)||4
(4π)2 ||B(k)y∗(Ωu)||2 ∑∞

l=0 |bl(k)|2 (2l + 1)
(6.52a)
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Using Unsöld’s theorem [29], this simplifies to

WNG(k) = Q ||B(k)||2
∑∞

l=0 |bl(k)|2 (2l + 1)
(6.53)

In the open sphere case, the WNG approaches Q as L → ∞ (as in [22]), so it
can be seen that the maximum WNG beamformer achieves a constant WNG of Q
that is independent of frequency. This is also the highest achievable WNG for a
distortionless beamformer in the spatial domain [28].

In Fig. 6.5, we plot the DI of the maximum directivity and maximumWNG beam-
formers of order L = 4 as a function of kr for an array of Q = 32 microphones.
As expected, the maximum directivity beamformer provides the highest directivity;
while the maximumWNG beamformer has poor directivity at low values of kr (i.e.,
low frequencies or small array radii). Due to the effects of scattering introduced by the
rigid sphere (see Sect. 3.4.1), the maximumWNG beamformer has better directivity
with a rigid array than with an open array. The directivity of the maximum directivity
beamformer is independent of kr , while for the maximum WNG beamformer the
directivity decays as kr decreases, tending towards 0dB (i.e., no directivity).

TheWNGof themaximumWNGbeamformer of order L = 4 is shown in Fig. 6.4;
as expected, it provides the highest WNG. Using Figs. 6.4 and6.5, it can be observed
that there is a tradeoff between WNG and directivity. The maximum directivity and
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WNG beamformers provide performance bounds for SHD beamformers in terms of
directivity and WNG, and are attractive due to their low computational complexity.
However, in practice a compromise solution is desirable, such as the multiply con-
strained beamformer presented in Sect. 6.3.1.3, or the signal-dependent beamform-
ers in Chap.7, which adaptively control the tradeoff between these two objectives
depending on the nature of the noise to be suppressed.

6.3.1.3 Multiply Constrained Beamformer

Another approach to the design of a signal-independent beamformer is to minimize
its sidelobe levels for a given main lobe width, to ensure that interfering signals that
do not originate from the steering direction are effectively suppressed. However, in
order to obtain a beamformer that is robust to errors in sensor position and steer-
ing direction, and to sensor noise, it is desirable to introduce a constraint on the
beamformer’s WNG.

In [25], the authors propose a robust minimum sidelobe beamformer, which mini-
mizes themaximumsidelobe level, subject to a distortionless constraint in the steering
direction and a minimumWNG constraint. The objective can therefore be expressed
in the form of a minimax criterion as

min
w(k)

max
Θ>Δ/2

|B(k,Θ)| subject to

wH(k)B(k)y∗(Ωu) = 1, WNG(k) ≥ ζ(k), (6.54)

where B(k,Θ) is the spatial response of the beamformer, Θ denotes the angle
between the steering direction and the DOA, Δ denotes the main lobe width (as
defined in Sect. 6.2.4), and ζ is the minimum WNG. The sidelobe region is defined
as ΘSL = {Θ|Θ > Δ/2}.

As shown in [25], the problem in (6.54) can be reformulated as a convex optimiza-
tion problem, solvable using second-order cone programming. The sidelobe region
is approximated using a finite grid Θng ∈ ΘSL, ng ∈ {1, . . . , Ng}; the approximation
then improves as Ng increases.

Finding a solution to (6.54) can be computationally intensive. However, a signifi-
cant advantage of SHDbeamforming is that if the desired beam pattern is rotationally
symmetric about the steering directionΩu, the process of computing the beamformer
weights and steering of the beamformer can be decoupled. In this case, the beam-
formerweights are expressed asWlm(k) = Cl(k)Y ∗

lm(Ωu), and theweightsCl(k) then
become the quantities to be optimized. If the desired beam pattern is not rotationally
symmetric about the steering direction, the beam pattern can be rotated by multiply-
ing the SHD beamformer weights byWigner-D functions that depend on the rotation
angles, as proposed in [23].

http://dx.doi.org/10.1007/978-3-319-42211-4_7


110 6 Signal-Independent Array Processing

6.3.2 Nearfield Beamformers

In this chapter, we have until now assumed that the desired signal was due to a single
plane wave, i.e., farfield conditions. However, under nearfield conditions, the plane
wave assumptions cannot be considered valid. The SHD sound pressure due to a
spherical wave originating from a source at a position rs = (rs,Ωs) is given by

Xlm(k, rs) = Xsw(k)bnfl (k, rs)Y
∗
lm(Ωs), (6.55)

where Xsw(k) denotes the spherical wave amplitude and the nearfield mode strength
bnfl (k, rs) is given by

bnfl (k, rs) = −iki−l h(2)
l (krs)bl(k), (6.56)

and h(2)
l is the spherical Hankel function of the second kind and of order l.

Beamformers suitable for nearfield conditions [8, 9, 19] can be designed by
replacing the farfieldmode strength expression bl(k)with the nearfieldmode strength
bnfl (k, rs) in the beamformer weights. For example, the weights of a nearfield plane-
wave decomposition beamformer are given by

W PWD,nf
lm (k) = Y ∗

lm(Ωu)[
bnfl (k, rs)

]∗ , (6.57)

instead of (6.37). While this process is straightforward, it does require knowledge
of the source-array distance rs. If the source-array knowledge is not known, the
source-array distance rs becomes a controllable parameter, which is effectively a
look distance and enables radial discrimination [9].

An appropriate boundary between the farfield and nearfield regions can be deter-
mined by comparing the magnitudes of the farfield mode strength bl(k) and the
nearfield mode strength bnfl (k, rs), as proposed in [8]. Using this criterion, the cut-off
distance rnf is determined as

rnf(k) = L

k
. (6.58)

The extent of the nearfield region therefore decreases with frequency. An array with
good radial discrimination, i.e., a large nearfield region, can be realized either at low
frequencies (small k), or by oversampling the array (large N ) [9].

Example: At a frequency of 100Hz, assuming a speed of sound of 343m · s−1 and
an array order L = 4, the cut-off distance is rnf(k) = 2.2m, while at a frequency of
4kHz it is 5.5cm.
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6.4 Chapter Summary

An overview of beamforming in the SHD using signal-independent beamformers
has been presented. We introduced a number of performance measures, which were
then used to derive beamformers weights that are optimal with respect to these
measures. We also showed the relationship between these optimal beamformers and
two well-known SHD beamformers: the PWD and delay-and-sum beamformers.
Finally, where similarities existed, the performance bounds for SHD beamformers
were related to previously derived bounds for spatial domain beamformers.
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