
Chapter 4
Spherical Array Acoustic Impulse Response
Simulation

In general, the evaluation of acoustic signal processing algorithms, such as direction
of arrival (DOA) estimation (see Chap.5) and speech enhancement (see Chap.9)
algorithms, makes use of simulated acoustic transfer functions (ATFs). By using
simulated ATF it is possible to evaluate comprehensively an algorithm under many
acoustic conditions, such as a range of reverberation times, room dimensions and
source-array distances. Allen and Berkley’s image method [2] is a widely used ap-
proach to simulate ATFs between an omnidirectional sound source and one or more
microphones in a reverberant environment. In the last few decades, several extensions
have been proposed [21, 29].

In recent years the use of spherical microphone arrays has become prevalent.
These arrays are commonly of one of two types (discussed in Sect. 3.4.2): the open
array, where microphones are suspended in free space on an ‘open’ sphere, and the
rigid array, where microphones are mounted on a rigid baffle. As discussed in the
previous chapter, the rigid sphere is often preferred as it improves the numerical
stability of many processing algorithms [32] and its acoustic scattering effects are
can be calculated precisely [25].

Currently, many works relating to spherical array processing consider only free-
field responses; however, when a rigid array is used, the rigid baffle causes scattering
of the sound waves incident upon the array that the image method does not consider.
This scattering has an effect on the ATFs, especially at high frequencies and/or for
microphones situated on the occluded side of the array. Furthermore the reverberation
due to room boundaries such as walls, ceiling and floor must also be considered,
particularly in small rooms or rooms with strongly reflective surfaces.

Portions of this chapter were first published in the Journal of the Acoustical Society of America
[17], and are reproduced in accordance with the Acoustical Society of America’s Transfer of
Copyright Agreement. The content of [17] has been edited here for brevity and to standardize
the notation.
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While measured transfer functions include both these effects, they are both time-
consuming and expensive to acquire over a wide range of geometries and rooms. A
method for simulating ATFs in a reverberant room while accounting for scattering
is therefore essential, allowing for fast, comprehensive and repeatable testing. In
this chapter, we present the SMIR (Spherical Microphone array Impulse Response)
method that combines a model of the scattering in the spherical harmonic domain
(SHD) with a version of the image method that accounts for reverberation in a
computationally efficient way [16, 17].

The simulated ATFs include the direct path, reflections due to room reverberation,
scattering of the direct path and scattering of the reverberant reflections. Reflections
of the scattered sound and multiple interactions between the room boundaries and
the sphere are excluded as they do not contribute significantly to the sound field,
provided the distances between the room boundaries and the sphere are several times
the sphere’s radius [11], which is easily achieved in the case of a small scatterer [4].
Furthermore, we assume an empty rectangular shoebox room (with the exception
of the rigid sphere) and specular reflections, as was assumed in the conventional
image method [2]. Finally, the scattering model used assumes a perfectly rigid baffle,
without absorption.

In this chapter, we first briefly summarize Allen and Berkley’s image method and
then present the SMIR method in the SHD. Next, we discuss some implementation
aspects, namely the truncation of an infinite sum in the ATF expression and the
reduction of the method’s computational complexity, and then provide a pseudocode
description of the method. An open-source software implementation is available
online [14]. Finally, we show some example uses of the method and, where possible,
compare the simulated results obtained with theoretical models.

4.1 Allen and Berkley’s Image Method

The source-image or image method [2] is one of the most commonly used room
acoustics simulationmethods in the acoustic signal processing community. The prin-
ciple of the method is to model an ATF as the sum of a direct path component and
a number of discrete reflections, each of these components being represented in
the ATF by a free-space Green’s function. In this section, we review the free-space
Green’s function and the image method.

4.1.1 Green’s Function

As detailed in Sect. 2.1, for a source at a position �rs and a receiver at a position �r,1 the
free-space Green’s function, a solution to the inhomogeneous Helmholtz equation

1Vectors in Cartesian coordinates are denoted with a corner mark � to distinguish them from vectors
in spherical coordinates, which are used throughout this book and will be introduced later in the
chapter.

http://dx.doi.org/10.1007/978-3-319-42211-4_2
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applying the Sommerfeld radiation condition, is given by2

G(�r|�rs, k) = e−ik||�r−�rs||
4π ||�r − �rs|| , (4.1)

where ||·|| denotes the 2-norm and the wavenumber k is related to frequency
ffl
(in

Hz), angular frequency ω (in rad · s−1) and the speed of sound c (in m · s−1) via the
dispersion relation k = ω/c = 2π

ffl
/c.

In the time-domain, the Green’s function is given by

g(�r|�rs, t) = δ(t − ||�r−�rs||
c )

4π ||�r − �rs|| , (4.2)

where δ is the Dirac delta function and t is time. This corresponds to a pure impulse
at time t = ||�r−�rs||

c , the propagation time from �rs to �r.

4.1.2 Image Method

Consider a rectangular room with length Lx , width L y and height Lz . The reflection
coefficients of the four walls, floor and ceiling are βx1 , βx2 , βy1 , βy2 , βz1 and βz2 ,
where the a1 coefficients (a ∈ {x, y, z}) correspond to the boundaries at a = 0 and
the a2 coefficients correspond to the boundaries at a = La .

If the sound source is located at �rs = (xs, ys, zs) and the receiver is located at
�r = (x, y, z), the images obtained using the walls at x = 0, y = 0 and z = 0 can
be expressed as a vector �Rp:

�Rp = [xs − x + 2px x, ys − y + 2py y, zs − z + 2pzz], (4.3)

where each of the elements in p = (px , py, pz) can take values 0 or 1, thus resulting
in eight combinations that form a set P . To consider all reflections we also define a
vector �Rm which we add to �Rp:

�Rm = [2mx Lx , 2my L y, 2mz Lz], (4.4)

where each of the elements in m = (mx , my, mz) can take values between −Nm

and Nm , and Nm is used to limit computational complexity and circular convolution
errors, thus resulting in a set M of (2Nm + 1)3 combinations. The image positions
in the x and y dimensions are illustrated in Fig. 4.1.

2This expression assumes the sign convention commonly used in electrical engineering, whereby
the temporal Fourier transform is defined as F(ω) = ´∞

−∞ f (t)e−iωtdt . For more information on
this sign convention, the reader is referred to Sect. 2.3.

http://dx.doi.org/10.1007/978-3-319-42211-4_2
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Fig. 4.1 A slice through the image space showing the positions of the images in the x and y
dimensions, with a source S and receiver R. The full image space has three dimensions (x , y and
z). An example of a reflected path (first-order reflection about the x-axis) is also shown

The distance between an image and the receiver is given by
∣
∣
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∣�Rp + �Rm

∣
∣
∣
∣. Using

(4.1), the ATF H is then given by

H(�r|�rs, k) =
∑

p∈P

∑

m∈M
β|mx +px |
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x2 β
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z1 β|mz |
z2

× e−ik||�Rp+�Rm||
4π

∣
∣
∣
∣�Rp + �Rm

∣
∣
∣
∣
. (4.5)

Using (4.2), we obtain the acoustic impulse response (AIR)

h(�r|�rs, t) =
∑

p∈P

∑

m∈M
β|mx +px |

x1 β|mx |
x2 β

|my+py |
y1 β

|my |
y2 β|mz+pz |

z1 β|mz |
z2

×
δ
(

t − ||�Rp+�Rm||
c

)

4π
∣
∣
∣
∣�Rp + �Rm

∣
∣
∣
∣

. (4.6)

4.2 SMIR Method in the Spherical Harmonic Domain

There exists a compact analytical expression for the scattering due to the rigid sphere
in the SHD, therefore we first express the free-space Green’s function in this domain,
and then use this to form an expression for the ATF including scattering.
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4.2.1 Green’s Function

We define position vectors in spherical coordinates relative to the centre of our array.
Letting r be the array radius and Ω an inclination-azimuth pair, the microphone
position vector is defined as r � (r,Ω) where Ω = (θ,φ). Similarly, the source
position vector is given by rs � (rs,Ωs) where Ωs = (θs,φs). Consistent with
our approach in previous chapters, it is hereafter assumed that where the addition,
2-norm or scalar product operations are applied to spherical polar vectors, they have
previously been converted to Cartesian coordinates using (2.12). In addition, we
assume that the source is outside the array, i.e., rs > r .

The free-space Green’s function (4.1) can be expressed in the SHD using the
spherical harmonic expansion (SHE) in (2.22) [40]:

G(r|rs, k) = e−ik||r−rs||

4π ||r − rs||

= − ik
∞

∑

l=0

l
∑

m=−l

jl(kr)h(2)
l (krs)Y

∗
lm(Ωs)Ylm(Ω) (4.7)

where Ylm is the spherical harmonic function of order l and degree m, jl is the
spherical Bessel function of order l and h(2)

l is the spherical Hankel function of the
second kind and of order l. This decomposition is also known as a spherical Fourier
series expansion or spherical harmonic decomposition of the Green’s function.

Using the spherical harmonic addition theorem (2.23), which in many cases re-
duces the complexity of the implementation, we can simplify the Green’s function
in (4.7) to

G(r|rs, k)= −ik

4π

∞
∑

l=0

jl(kr)h(2)
l (krs)(2l + 1)Pl(cosΘr,rs), (4.8)

where Pl is the Legendre polynomial of order l and Θr,rs is the angle between r and
rs. The cosine of the angle Θr,rs is obtained as the dot product of the two normalized
vectors r̂s = rs/rs and r̂ = r/r :

cosΘr,rs = r̂ · r̂s (4.9a)

= sin θ cosφ sin θs cosφs + sin θ sin φ sin θs sin φs

+ cos θ cos θs (4.9b)

= sin θ sin θs cos (φ − φs) + cos θ cos θs. (4.9c)

http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_2
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4.2.2 Neumann Green’s Function

The free-spaceGreen’s function describes the propagation of sound in free space only.
However, when a rigid sphere is present, a boundary condition must hold: the radial
velocitymust vanish on the surface of the sphere. The function GN(r|rs, k) satisfying
this boundary condition is called the Neumann Green’s function, and describes the
sound propagation between a point rs and a point r on the rigid sphere [40]:

GN(r|rs, k)= G(r|rs, k)− −ik

4π

∞
∑

l=0

j ′
l (kr)h(2)

l (kr)

h(2)′
l (kr)

h(2)
l (krs)(2l + 1)Pl(cosΘr,rs)

= −ik

4π

∞
∑

l=0

i−lbl(k)h(2)
l (krs)(2l + 1)Pl(cosΘr,rs), (4.10)

where (·)′ denotes the first derivative and the term

bl(k) = i l

(

jl(kr) − j ′
l (kr)

h(2)′
l (kr)

h(2)
l (kr)

)

(4.11)

is often called the (farfield) mode strength. The Wronskian relation [40, Eq.6.67]

jl(x)h(2)′
l (x) − j ′

l (x)h(2)
l (x) = − i

x2
(4.12)

allows us to simplify (4.11) to

bl(k) = −i l+1

h(2)′
l (kr) (kr)2

. (4.13)

For the open sphere, substituting bl(k) = i l jl(kr) into (4.10) yields the free-space
Green’s function G(r|rs, k).

4.2.3 Scattering Model

The rigid sphere scattering model3 used by the SMIR method has a long history in
the literature; it was first developed by Clebsch and Rayleigh in 1871–72 [23]. It is

3Some texts [9] refer to the scattering effect as diffraction, although Morse and Ingard note that
“When the scattering object is large compared with the wavelength of the scattered sound, we
usually say the sound is reflected and diffracted, rather than scattered” [28], therefore in the case of
spherical microphone arrays (particularly rigid ones which tend to be relatively small for practical
reasons), scattering is possibly the more appropriate term.
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presented in a number of acoustics texts [28, 36, 40], and is used in many theoretical
analyses for spherical microphone arrays [26, 33].

4.2.3.1 Theoretical Behaviour

The behaviour of the scattering model is illustrated in Fig. 4.2, which plots the mag-
nitude of the response between a source and a receiver on a rigid sphere of radius
5 cm for a source-array distance of 1 m, as a function of frequency and DOA. The
responsewas normalized using the free-field/open sphere response, therefore the plot
shows only the effect due to scattering. Due to rotational symmetry, we only looked
at the one-dimensional DOA, instead of looking at both azimuth and inclination, and
limited the DOA to the 0–180◦ range.

When the source is located on the same side of the sphere as the receiver and the
direction of arrival is 0◦, the rigid sphere response is greater than the open sphere
response due to constructive scattering, tending towards a 6 dB magnitude gain
compared to the open sphere at infinite frequency. The response on the back side of
the rigid sphere is generally lower than in the open sphere case and lower than on the
front side, as one would intuitively expect due to it being occluded. However, at the
very back of the sphere, when the DOA is 180◦, we observe a narrow bright spot:
the waves propagating around the sphere all arrive in phase at the 180◦ point and as
a result sum constructively.

The polar plot of the magnitude response is shown in Fig. 4.3 and illustrates both
the amplification on the front side of the sphere, and attenuation on the back side of

0
50

100
150

0

2

4

6

8

−15

−10

−5

0

5

10

DOA (degrees)Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

−10

−5

0

5

(dB)

Fig. 4.2 Magnitude of the response between a source and a receiver placed on a rigid sphere of
radius 5cm at a distance of 1 m, as a function of frequency and DOA. The response was normalized
with respect to the free-field response



46 4 Spherical Array Acoustic Impulse Response Simulation

Fig. 4.3 Polar plot of the
magnitude of the response
between a source and a
receiver placed on a rigid
sphere of radius 5 cm, at a
distance of 1 m, for various
frequencies
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the sphere, which both increase with increasing frequency. It should be noted that
although the above results are for a fixed sphere radius, as the scattering model is a
function of kr , the effects of a change in radius are the same as a change in frequency;
indeed the relevant factor is the radius of the sphere relative to the wavelength.

These substantial differences between the open and rigid sphere responses confirm
the need for a simulation method which accounts for scattering, even for sphere radii
as small as 5 cm.

4.2.3.2 Experimental Validation

In addition to being widely used in theory, this model has also been experimentally
validated by Duda and Martens [9] using a single microphone inserted in a hole
drilled through a 10.9 cm radius bowling ball placed in an anechoic chamber. This is
a reasonable approximation to a spherical microphone array; indeed a bowling ball
was used by Li and Duraiswami to construct a hemispherical microphone array [22].

Duda andMartens’s experimental results broadly agreewith the theoreticalmodel.
In our case we are most interested in the results in their Fig. 12a where the source-
array distance is largest (20 times the array radius), as in typical spherical array usage
scenarios the source is unlikely to be much closer to the array than this. The only
notable difference between the theoretical and experimental results in this case is
for a direction of arrival of 180◦, where the high frequency response is found to be
lower than expected. The authors suggest this is due to small alignment errors, which
would indeed have an effect given the narrowness of the bright spot in the model
(see Fig. 4.3 for

ffl = 8 kHz). Given these results, we conclude that the use of this



4.2 SMIR Method in the Spherical Harmonic Domain 47

scattering model is sufficiently accurate for simulating a small rigid array, such as
the Eigenmike [27].

4.2.4 SMIR Method

We now present the SMIR method proposed in [16, 17], incorporating the SHE
presented in Sect. 4.2.1 and the scattering model introduced in Sect. 4.2.2.

Due to the differences between the SHDNeumann Green’s function in (4.10) and
the spatial domainGreen’s function in (4.1), as well as the directionality of the array’s
response, two changes must be made to the image position vectors �Rp and �Rm in
the SMIR method. Firstly, to compute the SHE in the Neumann Green’s function,
we require the distance between each image and the centre of the array [rs in (4.10)];
this is accomplished by computing the image position vectors using the position of
the centre of the array rather than the position of the receiver. Secondly, to compute
the SHE we require the angle between each image and the receiver with respect to
the centre of the array [Θr,rs in (4.10)]. In Allen and Berkley’s image method, the
direction of the vector �Rp + �Rm is not always the same: in some cases it points
from the receiver to the image and in others it points from the image to the receiver.
This is not an issue for the image method as only the norm of this vector is used.
Because we also require the angle of the images in the SMIR method, we modify
the definition of �Rp such that the vector �Rp + �Rm always points from the centre of
the array to the image.

We now incorporate these two changes into the definition of the image vectors
�Rp and �Rm. If the sound source is located at �rs = (xs, ys, zs) and the centre of the
sphere is located at �ra = (xa, ya, za), the images obtained using the walls at x = 0,
y = 0 and z = 0 are expressed as a vector �Rp:

�Rp = [xs − 2px xs − xa, ys − 2py ys − ya, zs − 2pzzs − za]. (4.14)

For brevitywe define �Rp,m � �Rp+�Rm, allowing us to express the distance between
an image and the centre of the sphere as ||�Rp,m|| and the angle between the image
and the receiver as Θr,Rp,m , computed in the same way as (4.9), where Rp,m denotes
the image positions in spherical coordinates. The image positions in the x dimension
are illustrated in Fig. 4.4. Finally, the ATF H(r|rs, k) is the weighted sum of the
individual responses GN(r|Rp,m, k) for each of the images4

H(r|rs, k) =
∑

p∈P

∑

m∈M
β|mx −px |

x1 β|mx |
x2 β

|my−py |
y1 β

|my |
y2 β|mz−pz |

z1 β|mz |
z2

× GN(r|Rp,m, k). (4.15)

4The sign in the powers of β is different from that in Allen and Berkley’s conventional image
method, due to the change in the definition of �Rp that is required for the SMIR method.
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Fig. 4.4 A slice through the image space showing the positions of the images in the x dimension,
with a source S and array A. The full image space has three dimensions (x , y and z). An example
of a reflected path is shown for the image with px = 1 and mx = 0

Since we are working in the wavenumber domain, we can allow for frequency
dependent boundary reflection coefficients in (4.15), if desired. The reflection co-
efficients would then be written as βx1(k), βx2(k) and so on. Chen and Maher [7]
provide some measured reflection coefficients for a wall, window, floor and ceiling.

4.3 Implementation

4.3.1 Truncation Error

To compute the expression for the ATF in (4.15), the sum over an infinite number
of orders l in the Neumann Green’s function GN must be approximated by a sum
ĜN over a finite order L . Choosing L too small will result in a large approximation
error, while choosing L too large will result in too high a computational complexity.
We now investigate the approximation error in order to provide some guidelines for
the choice of the order L . The results for an open sphere are provided for reference,
and were computed by using a truncated SHE of the Green’s function Ĝ instead of
a Neumann Green’s function.

For an open sphere, the error can be determined exactly because the Green’s func-
tion is a decomposition of the closed-formexpression in (4.1). For a rigid sphere, how-
ever, no closed-form expression exists since the scattering term can be expressed only
in the SHD. We therefore estimated the error by comparing the truncated Neumann
Green’s function ĜN to a high-order Neumann Green’s function. We can assume
the error involved in using a high-order Neumann Green’s function as a reference as
opposed to the untruncated Neumann Green’s function is small, due to the uniform
convergence of the SHE [12]. In practice, we cannot choose very large values of L
because of numerical difficulties involved in multiplying high order spherical Bessel
and Hankel functions. For typical sphere radii and source-array distances, this allows
us to reach L values of up to about 100 using SMIRgen, a MATLAB implementation
of the SMIR method [14].

We evaluated the truncated (Neumann) Green’s function at K = 1024 discrete
values of k (denoted by k̇), forming a setK corresponding to frequencies in the range
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Fig. 4.5 Magnitude and phase errors involved in the truncation of the SHE in the Green’s function
(open sphere) and the Neumann Green’s function (rigid sphere). The errors reduce rapidly beyond
L = kmaxr , where here kmax = 2π 8000

c ≈ 147 m−1

100 Hz–8 kHz,5 and then calculated the normalized root-mean-square magnitude
error εm and the root-mean-square phase error εp:

εm(r|rs, L) =

√
√
√
√
√

1

K

∑

k̇∈K

(∣
∣GN(r|rs, k̇)

∣
∣ −

∣
∣
∣ĜN(r|rs, k̇, L)

∣
∣
∣

)2

∣
∣GN(r|rs, k̇)

∣
∣
2 , (4.16)

εp(r|rs, L) =
√
√
√
√

1

K

∑

k̇∈K

(

∠GN(r|rs, k̇) − ∠ĜN(r|rs, k̇, L)
)2

. (4.17)

We averaged themagnitude and phase errors over 32microphone positions uniformly
distributed on the array and 50 random source positions at a fixed distance from the
centre of the array.

The resulting average errors are given in Fig. 4.5, for both the open and rigid
sphere cases. Three different sphere radii were used: r = 4.2 cm (the radius of the
Eigenmike [24]), r = 10 cm and r = 15 cm. A source-array distance of 1 m was
used; results for 1–5m are omitted as they are essentially identical. It can be seen that

5Very low frequencies are omitted due to the fact that the spherical Hankel function hl (x) has a
singularity around x = 0.
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beyond a certain threshold, increases in L give only a very small reduction in error;
this is due to the fast convergence of the spherical harmonic decomposition [12]. From
Fig. 4.5, we can see that a sensible rule of thumb for choosing L is L > �1.1 kmaxr	
where kmax is the largest wavenumber of interest.

4.3.2 Computational Complexity

As the ATFs are made up of a sum over all orders l which includes spherical Hankel
functions hl and Legendre polynomials Pl , we can make use of recursion relations
over l to reduce the computational complexity of these functions. For the spherical
Hankel function, we make use of the following relation [40, Eq.6.69]

h(2)
m (x) = 2m − 1

x
h(2)

m−1(x) − h(2)
m−2(x), m ≥ 2 (4.18)

where

h(2)
0 (x) = −e−i x

i x
, h(2)

1 (x) = ie−i x

x2
− e−i x

x
. (4.19)

For the Legendre polynomial we use a similar recursion relation [1], known as
Bonnet’s recursion formula

Pm(x) = 2m − 1

m
xPm−1(x) − m − 1

m
Pm−2(x), m ≥ 2 (4.20)

where P0(x) = 1 and P1(x) = x .
While replacing the exponential in (4.1) with a SHE does lead to an increase in

computational complexity when computing the ATF for a single receiver (which is
unavoidable in the rigid sphere case), this can have an advantage when simulating
many receiver positions. For the conventional image method, we must compute
the image positions and resulting response separately for each individual receiver.
However, in the SMIR method the image positions are all computed with respect to
the centre of our array, and therefore only once for all of themicrophones in the array.

An alternative to (4.15) is obtained by changing the order of the summations in the
ATF and computing the sum over all images only once, instead of once per receiver:

H(r|rs, k) = −ik
∞

∑

l=0

i−l
l

∑

m=−l

Ylm(Ω)

×
∑

p∈P

∑

m∈M
β|mx −px |

x1 β|mx |
x2 β

|my−py |
y1 β

|my |
y2 β|mz−pz |

z1 β|mz |
z2

× bl(k)h(2)
l (k

∣
∣
∣
∣Rp,m

∣
∣
∣
∣)Y ∗

lm(∠Rp,m). (4.21)
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The expression in (4.21) requires O
(

(Ni + Q)(L + 1)2
)

operations per discrete
frequency, where L is the maximum spherical harmonic order, Ni is the number of
images and Q is the number of microphones, while the approach in (4.15) requires
O (NiQ(L + 1)) operations per discrete frequency. Since the number of images Ni

is typically very large, (Ni + Q)(L + 1)2 ≈ Ni(L + 1)2. Assuming the operations
in the two approaches are of similar complexity, it is therefore more efficient to use
the expression in (4.15) for Q < L + 1 and the expression in (4.21) for Q > L + 1.
Consequently the least computationally complex approach depends on the number
of microphones Q and array radius r . In the remainder of this chapter we use the
expression in (4.15); this is particularly appropriate in the applications in Sect. 4.4.2
where Q = 2 and in Sect. 4.4.3 where Q = 1.

4.3.3 Algorithm Summary

A summary of the SMIR method is presented in the form of pseudocode in Fig. 4.6.
The variable nsample denotes the number of samples in the AIR, No, the maximum
reflection order, and f s, the sampling frequency.

The number of computations has been reduced by processing only half of the
frequency spectrum because we know the AIR is real and the corresponding ATF is
conjugate symmetric. The pseudocode necessary to compute the Hankel functions
and Legendre polynomials is omitted here, since their computation is straightforward
using recursion relations (4.18) and (4.20).

SMIRgen, aMATLAB/C++ implementation of the method in the form of aMEX-
function, is available online [14].

4.4 Examples and Applications

In this section we give a number of examples that make use of the SMIR method.
Wherever possible we compare the simulated results to theoretical results obtained
using approximate models. These examples are given to illustrate and partially vali-
date the SMIR method.

4.4.1 Diffuse Sound Field Energy

In statistical room acoustics (SRA), reverberant sound fields are modelled as diffuse
sound fields, allowing for a statistical analysis of reverberation instead of computing
each of the individual reflections. In this subsection, we compare a theoretical pre-
diction of sound energy on the surface of a rigid sphere, based on a diffuse model of
reverberation, to simulated results obtained using the SMIR method.
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Fig. 4.6 Pseudocode for the
SMIR method
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A diffuse sound field is composed of plane waves incident from all directions
with equal probability and amplitude [20]. Using the scattering model previously
introduced, we can determine the cross-correlation between the sound pressure at
arbitrary positions r and r′ on the surface of a sphere, due to a unit amplitude plane
wave with a random uniformly distributed direction of arrival (see the Appendix for
derivation) [15]:

C(r, r′, k) =
∞

∑

l=0

|bl(k)|2(2l + 1)Pl(cosΘr,r′), (4.22)

where Θr,r′ is the angle between r and r′. In the open sphere case, it is shown in the
Appendix that this simplifies to the well-known spatial domain expression [20, 31,
39] sinc(k

∣
∣
∣
∣r − r′∣∣∣∣), where sinc denotes the unnormalized sinc function.

For the sound energy at a position r we substitute Θr,r′ = 0 and find C(r, r, k) =
∑∞

l=0 |bl(k)|2(2l + 1). According to SRA theory [20, 39], for frequencies above the
Schroeder frequency [20] the energy of the reverberant sound field Hr is then given
by [39]

Es
{|Hr(r, k)|2} = 1 − ᾱ

πAᾱ
C(r, r, k)

= 1 − ᾱ

πAᾱ

∞
∑

l=0

|bl(k)|2(2l + 1), (4.23)

where Es {·} denotes spatial expectation, ᾱ is the average wall absorption coefficient
and A is the total wall surface area.

The above theoretical expression for the average reverberant energy can be com-
pared to simulated results obtained using the SMIRmethod.We computed the spatial
expectation using an average over 200 source-array positions, using the approach in
Radlović et al. [31]: the array and source were kept in a fixed configuration (at a dis-
tance of 2 m from each other), which was then randomly rotated and translated. Both
sources and microphones were kept at least half a wavelength from the boundaries
of the room, helping to ensure the diffuseness of the reverberant sound field [20].
The reverberant component Hr of the ATFs was computed by subtracting the direct
path Hd from the simulated ATFs.

The room dimensions were chosen as 6.4 × 5 × 4 m, as in [31, 38], such
that the ratio of the dimensions was (1.6 : 1.25 : 1), as recommended in [18, 31]
to approximate a diffuse sound field. The reverberation time T60 was set to 500 ms,
giving an averagewall absorption coefficient of ᾱ = 0.2656.We simulatedAIRswith
a lengthof 4096 samples at a sampling frequencyof 8kHz.Weconsidered frequencies

from 300 Hz to 4 kHz, well above the Schroeder frequency of 2000
√

0.5
6.4×5×4 =

125 Hz, and the half-wavelength minimum distance is therefore 57 cm for a speed of
sound of 343 m/s. We averaged the results over the 200 source-array positions and
32 microphone positions uniformly distributed on the array.
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Fig. 4.7 Theoretical and simulated reverberant sound field energy on the surface of a rigid sphere, as
a function of frequency for two array radii. The simulated results are averaged over 200 source-array
positions, all at least half a wavelength from the room boundaries

In Fig. 4.7, we plot the theoretical and simulated energy of Hr as a function of
frequency, for two array radii (4.2 and 15 cm).Wenote that, except at low frequencies,
there is a good match between the theoretical diffuse field energy expression we
derived and the results obtained using the SMIR method. At lower frequencies, the
theoretical equation overestimates the energy; we hypothesize that this is due to the
reverberant sound field not being fully diffuse.

4.4.2 Binaural Interaural Time and Level Differences

The topic of binaural sound and in particular head-related transfer functions (HRTFs)
or head-related impulse responses (HRIRs) is of interest to researchers and engineers
working on surround sound reproduction, who for example aim to reproduce spatial
audio through a pair of stereo headphones. In addition, the psychoacoustic commu-
nity is interested in the ability of the human brain to localize sound sources using
only two ears.

Two binaural cues that contribute to sound source localization in humans are the
interaural time difference (ITD) and the interaural level difference (ILD) [34]. The
ITD measures the difference in arrival time of a sound at the two ears, and the ILD
measures the difference in level of the sound at the two ears. In this example, we
study the long-term cues assuming the source signal is spectrally white. Therefore,
we can compute the cues directly using the simulated ATFs.

We used the SMIR method to simulate a simple HRTF by considering micro-
phones placed at locations on a rigid sphere corresponding to ear positions on the
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human head. Although real HRTFs vary from individual to individual, depending on
many factors including the head, torso and pinnae, many of the main characteristics
of the HRTF are also exhibited by a simple rigid sphere ATF [9]. The representation
of HRTFs using spherical harmonics was studied in [3, 10].

Whereas HRTFs do not normally include the effects of reverberation, and as a
result typically sound artificial and provide poor cues for the perception of sound
source distance [37], the SMIRmethod also allows for the inclusion of reverberation
in HRIRs. In this case, they are then referred to as binaural room impulse responses
(BRIRs). BRIRs are important for the analysis of the effects of reverberation on au-
ditory perception, for example its impact on localization accuracy. Since rotational
symmetry no longer necessarily holds once the room reflections are taken into ac-
count, the measurement of BRIRs must be done for every source-head position and
orientation and is therefore very time-consuming. Simulating BRIRs allows us to
more easily study the effects of early and late reflections on the binaural cues.

We begin by looking at ITDs in an anechoic environment, in order to illustrate
the effect of the head in isolation. We compare simulated results to approximate
theoretical results provided by a ray-tracing formula attributed to Woodworth and
Schlosberg that looks at the distance travelled from the source to an observation point
on the sphere, either in free-space if the observation point is on the near side of the
sphere, or via a point of tangency if the observation point is on the far side [9].

The simulated results were obtained by using the SMIR method to generate
HRIRs at a sampling frequency of 32 kHz, with a sphere radius of 8.75 cm and
microphones placed at (θ,φ) = (90◦, 100◦) (corresponding to the left ear) and
(θ,φ) = (90◦, 260◦) (corresponding to the right ear). The HRIRs were then band-
pass filtered between 2.8 and 3.2 kHz.6 The DOA was varied by rotating the source
around the sphere at a fixed distance of 1 m and inclination of 90◦. The simu-
lated ITD was computed by determining the time delay that maximized the interau-
ral cross-correlation between the two simulated and band-pass filtered HRIRs. The
cross-correlationwas interpolated using a second-order polynomial in order to obtain
sub-sample delays.

In Fig. 4.8 we plot the ITDs as a function of direction of arrival, where 0◦ corre-
sponds to the median plane on the front side of the sphere and 180◦ corresponds to
the median plane on the back side of the sphere. As expected, as the DOA increases
from 0◦ to 80◦ and the source gets closer to the ipsilateral ear, the ITD increases
monotonically until it reaches its maximum at 80◦, at which point the source is fur-
thest from the contralateral ear. The ITD then decreases from 80◦ to 180◦ as the

6While the ray-tracing formula is frequency-independent, it has been shown [6] that ITDs actu-
ally exhibit some frequency dependence, and that because the ray-tracing concept applies to short
wavelengths, this model yields only the high frequency time delay. Kuhn provides a more compre-
hensive discussion of this model and the frequency-dependence of ITDs [19]. It should be noted
the simulation results in Fig. 4.8 are in broad agreement with Kuhn’s measured results at 3.0 kHz.
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Fig. 4.8 Comparison of ITDs as a function of source DOA, in simulation and using the theoretical
ray model approximation. The simulated ITDs are based on HRIRs computed using the SMIR
method in an anechoic environment

source nears the median plane and gets closer to the contralateral ear. The response
from 180◦ to 360◦ is not shown due to the symmetry about 180◦. As we expect, the
simulated results are reasonably close to the theoretical ray-tracing results [9], with
a difference of less than 70 µs.

Using the SMIR method, we analyzed the ILDs in a reverberant environment
under three scenarios: the sphere was either placed in the centre of the room with
a DOA of 0◦ (where the source is equidistant from the two ears), or at a distance
of approximately 0.5 m from one of the walls with DOAs of 0◦ and 100◦ (where
the source is aligned with the left ear). In all three cases the source was placed at a
distance of 1 m from the centre of the sphere. We chose a room size of 9 × 5 × 3 m
with a reverberation time T60 of 500 ms, and simulated BRIRs with a length of 4096
samples at a sampling frequency of 8 kHz.

In Figs. 4.9, 4.10 and 4.11 we plot the ILDs for the three above cases, as well
as the ILDs we would obtain in an anechoic environment, which are entirely due to
scattering. The ILDs were computed by taking the difference in magnitude between
the left ear response and the right ear response.Anegative ILD therefore indicates that
the magnitude of the ipsilateral ear response is lower than that of the contralateral
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Fig. 4.9 Comparison of ILDs in echoic and anechoic environments, with the sphere placed in the
centre of the room and a DOA of 0◦. The ILDs are based on HRTFs (anechoic) and BRIRs (echoic)
computed using the SMIR method
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Fig. 4.10 Comparison of ILDs in echoic and anechoic environments, with the sphere placed near
a room wall and a DOA of 0◦



58 4 Spherical Array Acoustic Impulse Response Simulation

0 500 1000 1500 2000 2500 3000 3500 4000
−30

−20

−10

0

10

20

30

Frequency (Hz)

IL
D

 (
dB

)

Echoic
Echoic (smoothed)
Anechoic

Fig. 4.11 Comparison of ILDs in echoic and anechoic environments, with the sphere placed near
a room wall and a DOA of 100◦

ear response. The smoothed echoic ILDs were obtained using a Savitzky-Golay
smoothing filter [35].

The main effect of reverberation we can observe is the introduction of random
frequency-to-frequency variations; these are particularly obvious when most of the
reverberant energy is diffuse, for example, when the sphere is placed in the centre
of the room (Fig. 4.9). Room reflections also increase the overall reverberant energy,
particularly in the contralateral ear which receives less direct path energy, thus re-
ducing the ILDs. This is especially noticeable when the contralateral ear is placed
near a wall: the contralateral ear receives more energy than in the anechoic case and
the ILD is therefore closer to zero (Fig. 4.11).

Placement of the sphere near a wall additionally introduces systematic distortions
in the ILDs associated with the prominent early reflection from this wall. This is
visible in Fig. 4.11 and most noticeably in Fig. 4.10.

All these effects have also been observed experimentally with a manikin by
Shinn-Cunningham et al. [37]. The SMIRmethod is therefore an inexpensive way of
predicting the effects of head movement and environmental changes (such as rever-
beration time) on HRTFs or BRIRs, without as much need for physical and acoustic
measurements to be performed.
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4.4.3 Mouth Simulator

The principle of reciprocity can often be advantageously used in room acoustics
measurements. The principle states that ATFs are symmetric in the coordinates of
the sound source and the observation point: “If we put the sound source at r, we
observe at point r0 the same sound pressure as we did before at r, when the sound
source was at r0” [20]. We can apply this principle to ATF simulations, and use the
SMIR method to generate the ATF between one or more sources on a sphere and a
single omnidirectional microphone placed away from the sphere.

A specific application of this is a mouth simulator: we model the head as a rigid
sphere (as in Sect. 4.4.2) of radius rh, and the mouth as an omnidirectional point
source placed on this rigid sphere. This is straightforwardly implemented in the
SMIR method by replacing the source position with the microphone position rmic,
the microphone position with the mouth position rmouth = (rh,Ωmouth), and the array
position with the head position:

H(rmic|rmouth, k) = H(r = rmouth|rs = rmic, k).

As a result we can simulate the ATF between a mouth on a head, and a single
microphone in free space.Repeated use of the algorithmallows formultiple receivers.

Although more accurate modelling of the head and mouth is possible using finite
element or boundary element methods [5, 30] for example, the SMIRmethod is valu-
able for application to this problem due its comparative simplicity and the fact that,
if desired, it can also take into account room reverberation. The SMIR method can,
for example, be used as a mouth simulator in the evaluation of a speech enhancement
algorithm [13], instead of the omnidirectional source model that is commonly used.
While the diameter of the mouth plays an important role in determining the filter
characteristic of the vocal tract [8], we assume for the purposes of the scattering
model that the mouth is a point source.

As an illustration of this application, Fig. 4.12 shows the energy of the ATF be-
tween the mouth and a microphone as a function of microphone position at frequen-
cies of 100 Hz and 3 kHz in an anechoic environment. The mouth was positioned
on a sphere of radius 8.75 cm. Only two dimensions, x and y, are shown for brevity
since the z dimension is identical to x and y. We observe that at 100 Hz there is no
scattering and the radiation pattern is omnidirectional so that the sphere has little
effect. At 3 kHz the effect of scattering starts to become more significant, and the
energy at the back of the sphere is reduced while the energy at the front is increased.
Finally the bright spot discussed in Sect. 4.2.3 is particularly apparent at the very
back of the sphere in the bottom plot.
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Fig. 4.12 Sound energy radiation pattern (in dB) at 100 Hz (top) and 3 kHz (bottom). The mouth
position is denoted by a black dot
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4.5 Chapter Summary and Conclusions

Spherical microphone arrays on a rigid baffle are of great interest, due to their numer-
ical robustness and precisely calculable scattering effects. In order to analyze, work
with and develop acoustic signal processing algorithms that make use of a spherical
microphone array, a simulator is needed that can take into account the effects of
the acoustic environment of the array as well as the scattering effects of the rigid
spherical baffle. Accordingly, in this chapter the SMIRmethod was presented for the
simulation of AIRs or ATFs for a rigid spherical microphone array in a reverberant
environment.

We presented a scattering model used to model the rigid sphere, justifying its use
with references to the literature, and provided an overview of the model’s behaviour.
We showed that the error with respect to the theoretical model can be controlled at
the expense of increased computational complexity. Finally we provided a number
of examples showing additional applications of this method.

Appendix: Spatial Correlation in a Diffuse Sound Field

The sound pressure at a position r = (r,Ω) due to a unit amplitude plane wave
incident from direction Ωs is given by [40]

P(r,Ωs, k) =
∞

∑

l=0

l
∑

m=−l

4πϕ(Ωs)bl(k)Y ∗
lm(Ωs)Ylm(Ω), (4.24)

where ϕ(Ωs) is a random phase term and |ϕ(Ωs)| = 1. Assuming a diffuse sound
field, the spatial cross-correlation between the sound pressure at two positions r =
(r,Ω) and r′ = (r,Ω ′) is given by:

C(r, r′, k) = 1

4π

ˆ

Ωs∈S2
P(r,Ωs, k)P∗(r′,Ωs, k)dΩs

= 1

4π

ˆ

Ωs∈S2

∞
∑

l=0

l
∑

m=−l

4πbl(k)Y ∗
lm(Ωs)Ylm(Ω)

×
∞

∑

l ′=0

l ′
∑

m ′=−l ′
4πb∗

l ′(kr)Yl ′m ′(Ωs)Y
∗
l ′m ′(Ω

′)dΩs.

Using the orthonormality property of the spherical harmonics in (2.18) and the ad-
dition theorem in (2.23), we eliminate the cross terms followed by the sum over m
and obtain

http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_2
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C(r, r′, k) = 1

4π

∞
∑

l=0

l
∑

m=−l

(4π)2|bl(k)|2Ylm(Ω)Y ∗
lm(Ω ′)

= 1

4π

∞
∑

l=0

(4π)2|bl(k)|2 2l + 1

4π
Pl(cosΘr,r′)

=
∞

∑

l=0

|bl(k)|2(2l + 1)Pl(cosΘr,r′), (4.25)

where Θr,r′ is the angle between r and r′.
In the open sphere case, we can derive a simplified expression for C(r, r′, k).

Firstly, we note that the expression in (4.25) is real, and therefore, for a reason which
will soon become clear, C(r, r′, k) can advantageously be expressed as

C(r, r′, k) = −�
{

−i
∞

∑

l=0

|bl(k)|2(2l + 1)Pl(cosΘr,r′)

}

, (4.26)

where � denotes the imaginary part of a complex number. By substituting the open
sphere mode strength bl(k) = i l jl(kr) into (4.26), we obtain

C(r, r′, k) = −�
{

−i
∞

∑

l=0

j2l (kr)(2l + 1)Pl(cosΘr,r′)

}

. (4.27)

Using �{h(2)
l (kr)} = jl(kr), where � denotes the real part of a complex number, we

can now write (4.27) as

C(r, r′, k) = −�
{

−i
∞

∑

l=0

jl(kr)
[

h(2)
l (kr) − i�{h(2)

l (kr)}
]

(2l + 1)Pl(cosΘr,r′)

}

= −�
{

−i
∞

∑

l=0

jl(kr)h(2)
l (kr)(2l + 1)Pl(cosΘr,r′)

}

+ �

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞
∑

l=0

jl(kr)�{h(2)
l (kr)}(2l + 1)Pl(cosΘr,r′)

︸ ︷︷ ︸

�

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (4.28)

As the expression marked with a � is real, its imaginary part is zero and (4.28) can
be simplified to

C(r, r′, k) = −�
{

−i
∞

∑

l=0

jl(kr)h(2)
l (kr)(2l + 1)Pl(cosΘr,r′)

}

. (4.29)
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Finally, using (4.7) and (4.8), we obtain the well-known spatial domain result for
two omnidirectional receivers in a diffuse sound field [20, 31, 39]:

C(r, r′, k) = −�
{

e−ik||r−r′||
k ||r − r′||

}

= sin(k
∣
∣
∣
∣r − r′∣∣∣∣)

k ||r − r′|| . (4.30)
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