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Preface

The topic of spherical microphone array signal processing has been gaining
importance since the publications of Meyer and Elko around 2002, and fuelled by
many others since.

Sound is unavoidably influenced by the space in which it is rendered, as we all
know from personal experience, and the capability of microphone arrays to capture
the spatial information is both fascinating and intriguing. The English physicist
Charles Wheatstone is credited with the first use of the term ‘microphone’.
However, it was not until the carbon microphone, invented by David Hughes and
demonstrated in 1877, that the concept of capturing sound as an electrical signal
became established. The invention by Gerhard Sessler and Jim West of the electret
microphone in 1962, and further developments of condenser microphone technol-
ogy in particular, led to a significant improvement in quality and reliability.

These early microphones were principally targeting the capture of acoustic
signals in a close-talking mode, less than around 10 cm from the talker’s or singer’s
lips. Would their inventors have considered that the spatial information associated
with the sound could be useful, exploited to localize sources of sound, discriminate
desired sounds from interferences, or even infer the geometry of an acoustic space
and navigate within it? We could only guess but certainly the potential to achieve
these goals has been always present. The catalyst for more recent developments has
been the happy marriage of high quality, synchronized multichannel
analogue-to-digital conversion with powerful digital signal processing hardware
and software, facilitating arrays with elements numbering from a handful to hun-
dreds, or even thousands. Given the availability of numerous sensors, many
alternative geometries can be considered, the spherical geometry being one such
with considerable merits. It is the algorithms to process the signals from these
numerous microphones that are the key focus of this book.

We offer the reader a view of the theoretical aspects of microphone array signal
processing for spherical geometries and some examples of applications of the
ensuing algorithms. Our intention is to present the methods in a general form
allowing the ideas to be further developed. It is a well known feeling that digging
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deeper into a subject only serves to reveal greater depths and further potential. We
hope, nevertheless, that this book will at the same time provide satisfaction to the
mind of the curious reader but also serve to equip the researchers of the future to
develop and exploit the great potential of spherical microphone arrays and their
associated signal processing.

We gratefully acknowledge the contributions of Sebastian Braun, Maja Taseska,
Oliver Thiergart and Mark Thomas to the work presented in this book. We would
also like to express our gratitude to Hamza Javed and Maja Taseska for their
attentive reading of our drafts, and to Sira Gonzalez and Felicia Lim for providing
helpful feedback and suggestions throughout the writing process.

London Daniel P. Jarrett
Erlangen Emanuël A.P. Habets
London Patrick A. Naylor
April 2016
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Chapter 1
Introduction

1.1 Background and Context

The motivation behind this book lies in the rapidly growing interest in spherical
microphone arrays over the last decade. Important applications for these arrays
include human-human and human-machine speech communication systems and spa-
tial sound recording. While human-human speech communication systems have a
long history, speech also plays an ever-growing part in human-machine communi-
cation. Indeed, while speech-based interfaces were once confined to the realms of
science fiction, they are now becoming an increasingly popular way of interacting
with devices such as smartphones, desktop and tablet computers, robots or televi-
sions. This trend has been fuelled by advances in speech recognition technology, as
well as the explosion in available computing power, particularly on mobile devices.
With the widespread availability of 3D sound cinema systems and virtual reality gear
with 3D binaural sound reproduction, the need to capture spatial sound is rapidly
growing. Spherical microphone arrays are particularly suitable for capturing all three
dimensions of the sound field, including both ambient sounds and sounds from par-
ticular directions.

Thefieldof acoustic signal processing seeks to solve anumber of problems relating
to these systems,which can broadly be divided into three categories: acoustic parame-
ter estimation, acoustic signal enhancement, and spatial audio recording. Acoustic
parameter estimation, addressed in Chap. 5, involves the estimation of parameters
such as the location or direction of arrival (DOA) of one ormore acoustic sources [20,
27, 30, 34, 51–53], the signal-to-diffuse energy ratio or diffuseness of the sound field
at a particular position [31, 32, 43, 54, 55], the number of sources present in a sound
field [53, 56, 57], or the reverberation time of an acoustic environment [14, 39, 40,
46, 49, 58].

Portions of this chapter were first published in [25], and are reproduced here with the author’s
permission.

© Springer International Publishing Switzerland 2017
D. Jarrett et al., Theory and Applications of Spherical Microphone
Array Processing, Springer Topics in Signal Processing 9,
DOI 10.1007/978-3-319-42211-4_1
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2 1 Introduction

In the aforementioned applications, the signal to be acquired originates from a
distant source, located at some significant distance from the microphone(s). While
in some applications, such as teleconferencing systems, a microphone located close
to the source may be available, this is not always a practical option. As a result, the
acquired signal is corrupted by the surrounding environment. One major cause for
this degradation is the presence of noise, where by noisewemean any acoustic signal
which is undesired, such as interfering speech signals or background noise [6, 9]. The
other is the presence of reflectors and obstacles to the propagation of sound waves, in
particular roomboundaries (walls, floors and ceiling), which cause reverberation [35,
42]. As the distance between the source andmicrophone(s) increases, the degradative
effects of noise and reverberation become increasingly significant.

In the case of speech signals, these effects not only degrade the quality of the
acquired signal, but in some cases also its intelligibility, making communication
difficult or even impossible [3]. The cognitive effort required to understand highly
noisy and reverberant speech can also contribute to listener fatigue. Acoustic signal
enhancement or speech enhancement techniques (considered in Chaps. 6–9) seek to
mitigate these effects, and extract the desired signal. The main problems of interest
within this field are noise reduction [4, 6, 22, 26, 28], echo cancellation [7, 33, 47]
and dereverberation [11, 18, 21, 23, 24, 29, 37, 38, 42]. Although the release of the
first speakerphone dates back to 1954 [15], these remain open problems and areas of
active research.

1.2 Microphone Array Signal Processing

Acoustic signal processing problems are commonly approached with microphone
arrays [5, 10, 17], which is an arrangement of microphones in a specific configura-
tion, thereby taking advantage of the spatial properties of the sound field (or spatial
diversity) in order to improve performance. Owing to the similarity of the problems
involved, many microphone array processing techniques are based on narrowband
antenna array processing techniques [12]; however, microphone array processing
faces its own unique challenges [5]. These include the broadband nature of speech
(which covers several octaves), the non-stationarity of speech, and the fact that the
desired and noise signals often have very similar spectral characteristics [5]. In addi-
tion, the placement and number of microphones is restricted, primarily by cost, aes-
thetics and available space. Considerations of space limit both the inter-microphone
spacing and total microphone array size, and are of particular importance for portable
devices, such as hearing aids [13].

A typical application scenario in microphone array signal processing is illustrated
in Fig. 1.1. A microphone array captures a mixture of signals with different spatial
characteristics, some of which may be desired, and others undesired. Acoustic para-
meter estimation algorithms seek to accurately estimate the parameters of interest
even in the presence of undesired signals that may adversely affect the estimation

http://dx.doi.org/10.1007/978-3-319-42211-4_6
http://dx.doi.org/10.1007/978-3-319-42211-4_9
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Desired source

Direct path

Directional noise source

Isotropic noise

Room boundary

Microphone array

Fig. 1.1 Schematic illustration of a typical application scenario inmicrophone array signal process-
ing. A microphone array captures a mixture of signals with different spatial characteristics in a
reverberant environment

process. Acoustic signal enhancement algorithms aim to extract only the desired
signals from the received mixture.

The spatial characteristics of the various captured signals are typically modeled
based on their spatial coherence. The microphone signals are corrupted by sensor
noise, which is spatially incoherent (or spatially white), that is, the sensor noise sig-
nals at each microphone are mutually uncorrelated. The desired signals, originating
from one or more desired sources, as well as any directional noise signals, origi-
nating from interfering speakers or air-conditioning units, for example, are spatially
coherent. Finally, partially coherent signals can be observed in spherically or cylin-
drically isotropic (or diffuse) sound fields, which can be used to model babble noise
or reverberation. The desired signal is normally chosen as either the anechoic signal
arriving from the desired source via the direct path, or the reverberant signal arriving
via the direct path and a number of reflected paths.

In theory, anymicrophone array configuration is possible; in practice, most micro-
phone arrays are linear or planar, and the microphones respectively lie on a straight
line or a flat, two-dimensional surface. Real sound fields are three-dimensional, how-
ever, and can only be fully analyzed with a three-dimensional array. The spherical
configuration is convenient due to its symmetry giving equal performance in all
directions. In addition, the captured sound field can be efficiently described in the
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spherical harmonic domain [41, 44], based on a formulation of the wave equation
in spherical coordinates (in Chap. 2). Spherical microphone arrays [1, 16, 19, 36,
45, 48, 50] are usually either open or rigid, that is, the microphones are either sus-
pended in free space or mounted on a rigid baffle (as discussed in Chap.3). They
have recently started to become commercially available, in the form of products such
as the acoustic camera by GFal, the Eigenmike by mh acoustics (Fig. 1.2), Brüel and
Kjær’s spherical array (Fig. 1.3), or the RealSpace Panoramic Audio Camera by
VisiSonics, yet to date there have been few signal processing algorithms designed
for these arrays. This motivates the work presented in this book.

Fig. 1.2 The em32 Eigenmike spherical microphone array. This rigid array of radius 4.2cm is
comprisedof 32 omnidirectionalmicrophones.Copyright c©EmanuëlHabets.Usedwith permission

http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_3


1.3 Organization of the Book 5

Fig. 1.3 The Brüel and Kjær spherical microphone array. This rigid array is comprised of 36 or 50
microphones and 12 video cameras. Copyright c©Brüel & Kjær. Used with permission

1.3 Organization of the Book

The content of this book is structured as follows:

• InChap.2, the fundamentals of acoustics are reviewed.We introduce the spherical
harmonics, which form a complete set of orthonormal functions. Their importance
rests in the fact that any arbitrary function on a sphere can be expanded in terms
of a these functions and a set of expansion coefficients.

• Chapter3 examines issues relating to spatial signal acquisition and transfor-
mation. We present the short-time Fourier transform and spherical harmonic
framework that allow us to efficiently process the signals captured by a spher-
ical microphone array. Common spatial sampling schemes are presented, which
determine the placement of microphones on the sphere such that spatial aliasing is

http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_3
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minimized. In addition, we discuss the advantages and disadvantages of two com-
mon array types: the open and rigid arrays with omnidirectional microphones.

• In order to comprehensively evaluate spherical array processing algorithms under
many different acoustic conditions, it is indispensable to use simulated acoustic
impulse responses (AIRs). The image method proposed by Allen and Berkley [2]
is a well-established way of doing this for point-to-point AIRs with sensors in free
space, however it does not account for the scattering introduced by a rigid sphere.
In Chap.4, we present a method for simulating the AIRs between a sound source
and microphones positioned on a rigid spherical array. In addition, three examples
are presented based on this method: an analysis of a diffuse reverberant sound
field, a study of binaural cues in the presence of reverberation, and an illustration
of the algorithm’s use as a mouth simulator.

• Chapter5 introduces methods for the estimation of two important acoustic para-
meters: the DOA of a sound source, and the signal-to-diffuse energy ratio at a
particular position in a sound field. Later in the book, it will be seen that these
quantities can be used for signal enhancement purposes.

• The process of combining signals acquired by a microphone array in order to iso-
late a signal of interest is known as beamforming or spatial filtering. Chapter6
considers the simplest type of beamformer: the signal-independent (fixed) beam-
former, whose weights only depend on the DOA of the source to be extracted, and
do not otherwise depend on the desired signal.

• In Chap.7, we derive signal-dependent beamformers, whose weights depend on
the second-order statistics of the desired signal and/or of the noise to be suppressed.
These beamformers adaptively seek to achieve optimal performance in terms of
noise reduction and speech distortion.

• Chapter8 takes a different approach to signal enhancement: a physically-
motivated parametric representation of the sound field is introduced. It is shown
that the sound field can be manipulated to achieve noise reduction or dereverbera-
tion by applying a time- and frequency-dependent gain to a reference signal. The
gain is a simple function of the sound field parameters, which can be estimated
using the methods presented in Chap.5.

• The concept of informed array processing is introduced in Chap.9. It involves
incorporating relevant spatial information about the specific problem into the
design of spatial filters, and into the estimation of the second-order statistics that
is required to implement the beamformers in Chap. 7. Informed array processing
techniques are developed for two signal enhancement problems: noise reduction
and dereverberation.

The structure of the book, and the relationship between each of the topics it
addresses, is illustrated in Fig. 1.4.

http://dx.doi.org/10.1007/978-3-319-42211-4_4
http://dx.doi.org/10.1007/978-3-319-42211-4_5
http://dx.doi.org/10.1007/978-3-319-42211-4_6
http://dx.doi.org/10.1007/978-3-319-42211-4_7
http://dx.doi.org/10.1007/978-3-319-42211-4_8
http://dx.doi.org/10.1007/978-3-319-42211-4_5
http://dx.doi.org/10.1007/978-3-319-42211-4_9
http://dx.doi.org/10.1007/978-3-319-42211-4_7
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Spatial Sampling and Signal Transformation (3)

Spherical Array Acoustic Impulse Response Simulation (4)

Acoustic Signal 
Enhancement Acoustic Parameter Estimation (5)

Signal-to-Diffuse 
Ratio Estimation

(5.2)

Direction-of-Arrival 
Estimation

(5.1)

Signal-Independent 
Array Processing (6)

Signal-Dependent 
Array Processing (7)

Parametric 
Array Processing (8)

Informed 
Array Processing (9)

Fig. 1.4 Structure of the book. The chapter/section relating to each topic is indicated in parentheses
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Chapter 2
Theoretical Preliminaries of Acoustics

In this chapter, we review some of the fundamentals of acoustics and introduce the
spherical harmonic expansion of a sound field, which is the basis for the spherical
harmonic processing framework used with spherical microphone arrays.

This chapter intends to introduce the key theory and equations required in the
rest of the book. For a more comprehensive introduction to acoustics, the reader is
referred to [2, 12], or [17, 20] for a thorough treatment of acoustics in spherical
coordinates.

2.1 Fundamentals of Acoustics

The propagation of acoustic waves through a material is described by a second-order
partial differential equation known as the wave equation. The homogeneous wave
equation describes the evolution of the sound pressure p as a function of time t and
position �r = (x, y, z) in a homogeneous, source-free medium.1 In three dimensions
it is given by [12, Eq. 1.5]

∇2p(�r, t) − 1

c2
∂2p(�r, t)

∂t2
= 0, (2.1)

where

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(2.2)

1In this section, vectors in Cartesian coordinates are denoted with a corner mark � to distinguish
them from vectors in spherical coordinates, which will be introduced in Sect. 2.2.
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is the Laplace operator in Cartesian coordinates (x, y, z) and c denotes the speed
of sound. The separation of variables method is used to simplify the analysis. The
time-harmonic solution to the wave equation can then be written in the form

p(�r, t) = P(�r, k)eiωt, (2.3)

where i = √−1, and P(�r, k), to be defined later in this section, is a function of
the position �r and the wavenumber k. The wavenumber is related to the angular
frequency ω, ordinary frequency

ffl
and speed of sound c via the dispersion relation

k = ω

c
= 2π

ffl

c
. (2.4)

The acoustic waves are assumed to be propagating in a non-dispersive medium,
such that the propagation speed c is independent of the wavenumber k. Throughout
this book, the speed of sound is assumed to be constant; when a numerical value is
required, we will use c = 343 m/s, obtained when the medium is air at a temperature
of approximately 19 ◦C [12, Eq. 1.1].

The function P(�r, k)eiωt in (2.3) can be represented in the complex plane by a
rotating vector or a phasor. The time-independent vector, represented by the complex
number P(�r, k), is the complex amplitude. The complex amplitude is multiplied by
the unit vector eiωt rotating anti-clockwise at speed ω (in rad · s−1), which is the
angular frequency of the harmonic function.

Warning:
Throughout this book, eiωt represents the time dependence of a positive-
frequency wave; a convention that is commonly adopted in electrical and
mechanical engineering. InSect. 2.3,wewill summarize the effect of the choice
of convention on the key equations of this chapter.

The Fourier transform of a time-domain signal f (t) is defined as

F {f (t)} =
ˆ ∞

−∞
f (t)e−iωtdt. (2.5)

As a consequence, the eiωt term in the time-harmonic solution to the wave equation
(2.3) is eliminated when applying the Fourier transform. Using (2.5), the frequency-
domain homogeneous wave equation, also known as the homogeneous Helmholtz
equation, is obtained [12, Eq. 3.1]:

∇2P(�r, k) + k2P(�r, k) = 0, (2.6)

where P(�r, k) = F {p(�r, t)} denotes the temporal Fourier transform of p(�r, t).
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The homogeneous wave equation and Helmholtz equation assume a source-free
medium. If waves are being produced by a harmonic disturbance, a source function
of the form s(�r, t) = S(�r, k)eiωt is added to the right-hand side of the homogeneous
wave equation (2.1) to obtain the inhomogeneous wave equation

∇2p(�r, t) − 1

c2
∂2p(�r, t)

∂t2
= −s(�r, t), (2.7)

and by taking the temporal Fourier transform F , we obtain the inhomogeneous
Helmholtz equation

∇2P(�r, k) + k2P(�r, k) = −S(�r, k). (2.8)

In the presence of a unit-amplitude harmonic point source at a position �rs, the
solution to the wave equation is known as the Green’s function and is denoted by
G(�r|�rs, k). Alternatively it is termed an acoustic transfer function (ATF) from the
point �rs to the point �r. The frequency-domain source function is then given by
S(�r, k) = δ3(�r − �rs), where δ3(·) denotes the three dimensional Dirac delta func-
tion, and the Green’s function can be found by solving the following equation:

∇2G(�r|�rs, k) + k2G(�r|�rs, k) = −δ3(�r − �rs). (2.9)

The Green’s function must also satisfy a boundary condition at infinity, the
Sommerfeld radiation condition, which ensures that sources radiate energy instead
of absorbing it. It is given by [20, Eq. 8.28]

lim||�r−�rs||→∞ ||�r − �rs||
(

∂G(�r|�rs, k)

∂||�r − �rs|| − ikG(�r|�rs, k)

)
= 0, (2.10)

where || · || denotes the 2-norm (Euclidean norm).
For a source at a position �rs and a receiver at a position �r, a solution to the

inhomogeneous Helmholtz equation satisfying the Sommerfeld radiation condition
is given by the free-space Green’s function, where free-space indicates that the only
boundary condition that applies is the Sommerfeld radiation condition, that is, the
waves are not propagating within an enclosure. The free-space Green’s function is
given by [20, Eq. 8.5]

G(�r|�rs, k) = e−ik||�r−�rs||
4π||�r − �rs|| . (2.11)

From (2.11) it is clear that G(�r|�rs, k) = G(�rs|�r, k). This equality represents one of
the most fundamental examples of the principle of acoustic reciprocity because the
pressure at a receiver point is unchanged when exchanging the source and receiver
positions.
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2.2 Sound Field Representation Using Spherical Harmonic
Expansion

To describe the sound field on the surface of a sphere, we need to find the solutions
of the Helmholtz differential equation, as described in the previous section, on the
surface of the sphere. In the following, we introduce spherical harmonics, which are
a series of special functions defined on the surface of a sphere and are commonly
used to solve such differential equations. After introducing the spherical harmonics,
we introduce a spherical harmonic expansion of the free-space Green’s function that
underpins the spherical harmonic domain (SHD) processing in this book.

We adopt the spherical coordinate system used in [5, 13, 18, 20], which is illus-
trated in Fig. 2.1. The spherical coordinates are related to Cartesian coordinates x, y,
z via the expressions [20, Eq. 2.47]

x = r sin θ cosφ, (2.12a)

y = r sin θ sin φ, (2.12b)

z = r cos θ, (2.12c)

where r, θ and φ respectively denote the radius, inclination and azimuth. Conversely,
the spherical coordinates may be obtained from the Cartesian coordinates using

Fig. 2.1 Spherical
coordinate system used in
this book, defined relative to
Cartesian coordinates. The
radial distance r is the
distance between the
observation point and the
origin of the coordinate
system. The inclination angle
θ (a.k.a. co-latitude, polar
angle, or normal angle) is
measured from the positive
z-axis, and the azimuth angle
φ is measured in the xy-plane
from the positive x-axis.
Copyright c©Daniel Jarrett.
Used with permission
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r =
√

x2 + y2 + z2, (2.13a)

θ = arccos
( z

r

)
, (2.13b)

z = arctan
(y

x

)
, (2.13c)

where arctan is the four-quadrant inverse tangent (implemented using the function
atan2() in many computational environments including, for example, MATLAB).

We express the vectors �r and �rs in spherical coordinates as r = (r,Ω) = (r, θ,φ)

and rs = (r,Ωs). It is hereafter assumed that when the addition, scalar product and
2-norm operators are applied to vectors in spherical coordinates, these operations
will in fact be performed in the Cartesian space by first performing a conversion
from spherical to Cartesian coordinates using (2.12).

The spherical harmonic of order l ≥ 0 and degree or mode m (satisfying |m| < l)
is denoted by Ylm and defined as

Ylm(Ω) = Ylm(θ,φ) =
√

(2l + 1)

4π

(l − m)!
(l + m)!Plm(cos θ)eimφ, (2.14)

where Plm denotes the associated Legendre function of order2 l and degree m.
The spherical harmonics, derived in [1, 20], represent the angular component of

the solutions to the Helmholtz equation in spherical coordinates, and are involved
in solving many problems in spherical coordinates. A number of zero-, first- and
second-order spherical harmonics are plotted for illustrative purposes in Fig. 2.2.

For positive degreesm, the associated Legendre functions are related to the Legen-
dre polynomials Pl(x) by the formula

Plm(x) = (−1)m (1 − x2)m/2 dm

d xm
Pl(x), (2.15)

where the factor (−1)m is known as the Condon-Shortley phase. For negative degrees
m, the associated Legendre functions can be obtained from

Pl(−m)(x) = (−1)m (l − m)!
(l + m)! Plm(x), (2.16)

2In this book, for consistency with spherical array processing literature, we refer to l as the order
and m as the degree of the spherical harmonics and associated Legendre functions (or polynomials).
However, it should be noted that in other fields, l is referred to as the degree, and m as the order.
This reflects the fact that the words degree and order are used interchangeably when referring to
polynomials.
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Fig. 2.2 Magnitude |Ylm(θ,φ)| of the complex spherical harmonics for {l ∈ Z|0 ≤ l ≤ 2}, {m ∈
Z|0 ≤ m ≤ l}. The plots for m < 0 are omitted as they are identical to those for m > 0. Copyright
c©Daniel Jarrett. Used with permission

where m > 0. From (2.16) it follows that the spherical harmonics for corresponding
negative degrees m can be computed using

Yl(−m)(Ω) = (−1)m Y∗
lm(Ω), (2.17)

where m > 0.
The spherical harmonics constitute an orthonormal set of solutions to the

Helmholtz equation in spherical coordinates, that is [20, Eq. 6.45]:
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ˆ

Ω∈S2
Ylm(Ω)Y∗

l′m′(Ω)dΩ = δl,l′δm,m′ , (2.18)

where the notation
´

Ω∈S2 dΩ is used to denote compactly the solid angle3
´ 2π

φ=0

´ π

θ=0
sin θdθdφ, and the Kronecker delta δi,j is defined as

δi,j =
{
1, if i = j;
0, if i = j.

(2.19)

In addition, they constitute a complete set of solutions, or equivalently they satisfy
the completeness relation [20, Eq. 6.47]

∞∑
l=0

l∑
m=−l

Ylm(θ,φ)Y∗
lm(θ′,φ′) = δ(cos θ − cos θ′)δ(φ − φ′), (2.20)

where δ denotes the Dirac delta function. As a result, any function on a sphere can
be represented using a spherical harmonic expansion (SHE).

In particular, the free-space Green’s function (2.11) can be expanded using the
following SHE [20, Eqs. 8.22 and 8.76]:

G(r|rs, k) = e−ik||r−rs||

4π||r − rs|| (2.21)

=
∞∑

l=0

l∑
m=−l

−i k jl(kr) h(2)
l (krs)Y

∗
lm(Ωs)︸ ︷︷ ︸

expansion coefficients

Ylm(Ω), (2.22)

where (·)∗ denotes the complex conjugate, jl is the spherical Bessel function of order
l, and h(2)

l is the spherical Hankel function of the second kind and of order l. The
spherical Bessel function forms the real part of the Hankel function, and the spherical
Neumann function forms its imaginary part. The spherical Hankel function of the first
kind h(1)

l , used in Sect. 2.3, is the complex conjugate of h(2)
l . The spherical Bessel and

Neumann functions represent the radial component of the solutions to the Helmholtz
equation in spherical coordinates.

In many cases it is convenient to remove the sum over all degrees m in (2.22)
using the spherical harmonic addition theorem [1], which states that

l∑
m=−l

Y∗
lm(Ωs)Ylm(Ω) = 2l + 1

4π
Pl

(
r · rs
rrs

)
(2.23a)

= 2l + 1

4π
Pl(cosΘ), (2.23b)

3The factor sin θ compensates for the denser sampling near the poles (θ = 0 and θ = π).
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where r · rs denotes the scalar product4 of the vectors r and rs, Pl is the Legendre
polynomial of order l and Θ is the angle between r and rs. Using (2.23), the SHE of
the free-space Green’s function (2.22) then becomes

G(r|rs, k) = − ik

4π

∞∑
l=0

jl(kr)h(2)
l (krs)(2l + 1)Pl (cosΘ) . (2.24)

Under farfield conditions, when rs → ∞, the spherical wave represented by the
free-space Green’s functions (2.21) and (2.24) can be approximated as a plane wave.
Although plane waves are only an approximation of spherical waves in the far field,
plane waves are actually of utmost importance, since any complex wavefield can be
represented as a superposition of plane waves [12, Chap.1].

To obtain a far-field approximation of the Green’s function given by (2.21), the
denominator ||r − rs|| is first approximated by rs. The phase term cannot be approx-
imated so simply since it oscillates with respect to ||r − rs||. Instead, this term is
approximated as [18, Eq. 2.29]

||r − rs|| ≈ rs − r · rs
rs

(2.25a)

≈ rs − r cosΘ. (2.25b)

Applying these approximations to (2.21) then yields

G(r|rs, k) = e−ik||r−rs||

4π||r − rs||
≈ e−ikrs

4πrs
e+ikr cosΘ. (2.26)

A farfield approximation for the SHE of the Green’s function given by (2.24) can
be obtained by making use of the large argument approximation of the spherical
Hankel function [20, Eqs. 6.68 and 6.58]:

h(2)
l (krs) ≈ il+1 e−ikrs

krs
for krs � 1 (2.27)

Applying this approximation to the free-space Green’s function (2.24), we obtain

G(r|rs, k) ≈ e−ikrs

4πrs

∞∑
l=0

iljl(kr)(2l + 1)Pl (cosΘ) . (2.28)

4As noted earlier in the chapter, the scalar product of vectors in spherical coordinates is applied
after these vectors have been converted to Cartesian coordinates using (2.12).
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The second term in (2.28) is equal to e+ikr cosΘ [20, Eq. 6.174], that is,

e+ikr cosΘ =
∞∑

l=0

iljl(kr)(2l + 1)Pl (cosΘ) . (2.29)

This is the expression for the pressuremeasured at a position r due to a unit-amplitude
plane wave incident from a direction Ωs, which we will use on multiple occasions
later in this book.

2.3 Sign Convention

As mentioned in Sect. 2.1 the way the time dependence of a positive-frequency wave
is defined affects many of the equations in this chapter, such as (2.3). In order to avoid
any confusion, we have listed the key equations under each convention in Table2.1.

Table 2.1 Keyequations under the two sign conventions: one common in the acoustics literature and
the other common in the engineering literature. The engineering convention is adopted in this book

Acoustics convention Engineering convention

Temporal Fourier transform

F {f (t)} =
ˆ ∞

−∞
f (t)e+iωtdt F {f (t)} =

ˆ ∞

−∞
f (t)e−iωtdt

Free-space Green’s function

G(r|rs, k) = e+ik||r−rs||

4π||r − rs|| G(r|rs, k) = e−ik||r−rs||

4π||r − rs||
Free-space Green’s function (expansion)

G(r|rs, k) = ik

4π

∞∑
l=0

jl(kr)h(1)
l (krs)

×(2l + 1)Pl(cosΘ)

G(r|rs, k) = −ik

4π

∞∑
l=0

jl(kr)h(2)
l (krs)

×(2l + 1)Pl(cosΘ)

Farfield approximation for the free-space Green’s function

G(r|rs, k) ≈ e+ikrs

4πrs
e−ikr cosΘ G(r|rs, k) ≈ e−ikrs

4πrs
e+ikr cosΘ

Farfield approximation for the free-space Green’s function (expansion)

G(r|rs, k) ≈ e+ikrs

4πrs

∞∑
l=0

(−i)l jl(kr)

×(2l + 1)Pl(cosΘ)

G(r|rs, k) ≈ e−ikrs

4πrs

∞∑
l=0

il jl(kr)

×(2l + 1)Pl(cosΘ)

Plane wave

e−ikr cosΘ =
∞∑

l=0

(−i)l jl(kr)(2l + 1)

×Pl(cosΘ)

e+ikr cosΘ =
∞∑

l=0

il jl(kr)(2l + 1)

×Pl(cosΘ)
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The engineering convention is adopted in this book. A more detailed discussion of
sign conventions in spherical microphone array processing and, in particular, the
effects of inconsistent use of sign conventions, can be found in [19].

2.4 Sound Intensity

In acoustic signal processing, the signals of interest are usually sound pressure sig-
nals, the sound pressure being the physical quantity that is perceived by the ear.
However, a sound field can also be analyzed in terms of the acoustic energy that
is radiated, transmitted and absorbed [4], allowing sound sources to be located and
their power to be determined.

The sound intensity vector describes the magnitude and direction of the flow of
acoustic energy per unit area, and has units of watts per square metre. The instanta-
neous sound intensity vector at a position r and time t is defined as [12, Eq. 1.26]

I(r, t) = p(r, t)v(r, t), (2.30)

where p(r, t) and v(r, t) respectively denote the sound pressure and particle velocity
vector at a position r.

The time-averaged intensity vector has been found to be of more practical signif-
icance [4], and is defined as [4, 20]

I(r) = 〈 p(r, t)v(r, t) 〉 , (2.31)

where 〈 · 〉 denotes the time-averaging operation. The time-average of the net flow
of energy out of a closed surface S is zero unless power is generated (or dissipated)
within this surface [4], in which case it is equal to the power Psrc of the sound source
enclosed, or equivalently [4, Eq. 5]

˛

S
I · dS = Psrc, (2.32)

where dS denotes the differential surface area vector normal to S.
For a simple harmonic sound field with constant angular frequency ω, the time-

averaged sound intensity vector can be expressed in complex notation as [4, 20]

I(r,ω) = 1

2
� {

p(r,ω)v∗(r,ω)
}
, (2.33)

where p(r,ω) and v(r,ω) are complex exponential quantities, and � {·} denotes the
real part of a complex number.

In general, there is no simple relationship between the intensity vector and sound
pressure [7]. Nevertheless, for a plane progressive wave, the sound pressure p is
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related to the particle velocity v via the relationship [14–16]

v(r, t) = −p(r, t)

ρ0 c
u(r, t), (2.34)

where ρ0 and c respectively denote the ambient density of the medium and speed of
sound, and u is a unit vector pointing from r towards the source. In this case, the
direction of arrival of a sound source can be determined as the direction opposite to
that of the intensity vector I .

Point sources produce spherical waves, but when sufficiently far from these
sources, in the farfield, these waves can be considered as plane waves so that p
and v are in phase. In contrast, in the nearfield, p and v are out of phase [4]. This
phase relationship can be described by next introducing the concept of active and
reactive sound fields. All time-stationary fields can be split into two components,
described by [6]:

• An active intensity vector, given by the product of the pressure p and the in-phase
component of the particle velocity vector v, which is the intensity vector we have
described thus far. The active intensity vector has a non-zero time average [8],
computed using (2.33).

• A reactive intensity vector, given by the product of the pressure p and the out-
of-phase component of the particle velocity vector v, which measures the energy
stored in a sound field. The time-average of the reactive intensity vector is zero;
to quote Fahy: there is “local oscillatory transport of energy” [6].

In the nearfield, the reactive field is stronger than the active field [4, 11]. In an
anechoic environment, where there are no reflections, the strength of the reactive
field decreases rapidly as the distance from the source increases [4, 11], such that in
the farfield the sound field is essentially an active field. In Chap. 5, we will also take
advantage of the fact that in a diffuse sound field, often used to model reverberation,
the time-averaged active intensity vector is zero [9].

In practice,measurement of the intensity vector is difficult: typically it ismeasured
with two closely-spaced matched pressure microphones using a finite-difference
approximation of the pressure gradient (the p–p method [10]), although this method
is very sensitive to mismatches in the phase response of the two microphones. The
alternative (the p-u method [10]) is to combine a pressure transducer and a particle
velocity transducer; this can be done using the Microflown [3]. In Sect. 5.1.3, we
will see that the intensity vector can also be measured using a spherical microphone
array.

2.5 Chapter Summary

The main aim of this chapter has been to introduce some of the relevant elements of
the fundamentals of acoustics. The chapter reviewed the key equations that govern
the propagation of sound waves in a medium, more specifically, the wave equation,

http://dx.doi.org/10.1007/978-3-319-42211-4_5
http://dx.doi.org/10.1007/978-3-319-42211-4_5
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Helmholtz equation, and free-space Green’s function. We also presented the SHE
of the Green’s function; the SHE forms the basis of a processing framework that
advantageously exploits the spherical symmetry of spherical microphone arrays.
Finally, we introduced the sound intensity vector, which describes the magnitude
and direction of the flow of acoustic energy. In Chap.5, it will be seen that the
intensity vector can be employed in the estimation of two acoustic parameters: the
direction of arrival (DOA) of a sound source, and the diffuseness of a sound field.
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Chapter 3
Spatial Sampling and Signal Transformation

Many publications that propose algorithms for parameter estimation or signal
enhancement purposes begin from the outset using signals in either or both of the
time-frequency and spherical harmonic domains. One aim of the current chapter is
to provide some of the algorithmic details necessary to process signals directly from
the microphones, which will then enable subsequent spherical harmonic domain
processing to be applied.

The steps required to acquire and process signals from spherical microphone
arrays are discussed in this chapter. As a first step, the sound field must be sampled
using a spherical array composed of microphones arranged in a particular configu-
ration. The acquired signals can then be transformed to the time-frequency domain,
and subsequently transformed to the spherical harmonic domain, where they can
be conveniently manipulated. As both transforms are linear, the order of the trans-
forms can be exchanged. In this chapter, we first review the short-time Fourier trans-
form and subsequently two alternative ways to obtain signals in the time-frequency
domain and in the spherical harmonic domain. Finally, a number of microphone
positioning schemes and array configurations are discussed.

3.1 Time-Frequency Domain Processing

In acoustic signal processing, it is common to analyze the acquired microphone sig-
nals using a time-frequency representation. This is appropriate because the signals
of interest usually have time-varying spectral characteristics. In addition, speech
signals are to some degree sparse in the time-frequency domain, that is, the majority

Portions of Sect. 3.4 were first published in [8], and are reproduced here with the author’s
permission.
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of the speech energy is contained in a small number of time-frequency bins; this
property is exploited in the presence of multiple speech sources, allowing us to
assume that only a single speaker is active in a single time-frequency bin [24].

The most common type of time-frequency analysis technique is the short-time
Fourier transform (STFT), which we will adopt for this book. With this technique,
the signal to be analyzed is divided into short, overlapping frames, an analysis win-
dow is applied to each of these frames, and the Fourier transform is applied.

The (forward) STFT [1] of a discrete-time signal p[n], with n denoting discrete
time, is given by the spectral coefficients

P(�, ν) =
K−1∑
n=0

p [n + �Nf]ψ[n]e−i 2πK νn, (3.1)

where � is the time index, 0 ≤ ν ≤ K − 1 is the frequency index, ψ[n] is the analy-
sis window of length K , and Nf is the number of samples between successive frames
and termed the frame step. The continuous frequency

ffl
is related to the frequency

index ν via the expression
ffl = ν

K

ffl
s, for 0 ≤ ν ≤ K/2, where

ffl
s is the sampling

frequency. Using the dispersion relation (2.4), the wavenumber k can be expressed
as

k = 2π
ffl

c
= 2πν

ffl
s

cK
, (3.2)

where c is the speed of sound. In practice, since the pressure signals to be analyzed
are real, their spectral coefficients are conjugate symmetric. The spectral coefficients
for ν = K/2 + 1, . . . , K − 1 are therefore obtained as P(�, ν) = P(�, K − ν)∗
using the coefficients for ν = 1, . . . , K/2 − 1.

The choice of analysis window, and in particular its length, determines the time
and frequency resolution of the STFT: a short window provides high resolution in
time, but low resolution in frequency, whereas a long window provides high resolu-
tion in frequency at the expense of low resolution in time.

In acoustic parameter estimation, only the forward STFT is typically used. In
acoustic signal enhancement, we wish to reconstruct the original time-domain sig-
nal with an inverse STFT. To achieve this objective, normally following speech
enhancement processing, the time-domain signal p[n] can be synthesized from its
spectral coefficients P(�, ν) as [25]

p[n] =
∑

�

K−1∑
ν=0

P(�, ν)ψ̃ [n − �Nf] e
+i 2πK ν(n−�Nf) (3.3)

where ψ̃[n] denotes the synthesis window. The equality in (3.3) is actually an
approximation in most cases. In order to achieve perfect reconstruction, the analysis
and synthesis windows must satisfy the completeness condition [25]

http://dx.doi.org/10.1007/978-3-319-42211-4_2
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∑
�

ψ[n − �Nf]ψ̃[n − �Nf] = 1,∀n ∈ Z. (3.4)

The reconstruction is only error-free, however, if the spectral coefficients are not
modified [25]. In practice, when performing acoustic signal enhancement, we wish
to filter the acquired signals by applying a gain to their spectral coefficients. In this
case, the objective is near perfect reconstruction. When no synthesis window is
applied, or equivalently, when a rectangular window ψ̃[n] = 1,∀n ∈ Z is applied,
the method described in (3.3) is referred to as overlap-add. However, the rectangular
window has high sidelobe levels, which cause large amounts of spectral leakage or
aliasing. The use of a synthesis window minimizes this effect; the method is then
referred to as weighted overlap-add (WOLA) [25].

The specific choice of the analysis and synthesis windows, along with the frame
step Nf, is beyond the scope of this book. The reader is referred to [25] for an exten-
sive discussion of these choices. A MATLAB implementation of WOLA is avail-
able in the VOICEBOX speech processing toolbox [5], in the form of two functions
enframe() and overlapadd().

3.2 Complex Spherical Harmonic Domain Processing

In Sect. 2.2, we showed that the spherical harmonics Ylm(Ω) can be used to rep-
resent the solutions to the wave equation. In fact, as the spherical harmonics
define a complete basis set on the sphere, any square-integrable function on a
sphere χ(Ω) = χ(θ,φ) can be represented using a spherical harmonic expansion
(SHE) [7]:

χ(θ,φ) =
∞∑
l=0

l∑
m=−l

χlmYlm(θ,φ), (3.5)

where l and m respectively denote the order and degree (or mode) of the spherical
harmonic expansion coefficients χlm . As the spherical harmonics are orthonormal,
as seen in (2.18), these coefficients can be computed as

χlm =
ˆ

Ω∈S2
χ(θ,φ)Y ∗

lm(Ω)dΩ, (3.6)

where the notation
´

Ω∈S2 dΩ is used to denote compactly the solid angle
´ 2π

φ=0

´ π

θ=0
sin θdθdφ.

The expansion in (3.5) is the spherical equivalent of the one-dimensional Fourier
series. It is referred to as an inverse complex spherical harmonic transform (SHT)
operation, while (3.6) is referred to as a forward complex SHT. This transform con-
verts spatial domain signals to the spherical harmonic domain (SHD).

http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_2
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Fig. 3.1 Processing
framework for spherical
microphone arrays. The
sound field is first sampled
using a discrete set of Q
microphones at positions
rq , q ∈ {1, . . . , Q}, and then
transformed to the
time-frequency domain and
to the spherical harmonic
domain

Spatial 
Sampling

Short-Time Fourier 
Transform (STFT)

Spherical Harmonic 
Transform (SHT)

time and spatial domains

time-frequency and spatial domains

time-frequency and 
spherical harmonic domains

Processing (e.g. 

Inverse Short-Time 
Fourier Transform

Z(�, ν)

Z[n]

In this book, where we are specifically interested in acoustic signals, we choose
to apply first the STFT to the signals captured using our spherical microphone array,
and then apply the SHT, as illustrated in Fig. 3.1. The complex SHT of an STFT
domain signal P(�, ν, r) captured at a position r = (r,Ω) is given by

Plm(�, ν) =
ˆ

Ω∈S2
P(�, ν, r)Y ∗

lm(Ω)dΩ, (3.7)

while the inverse complex SHT is given by

P(�, ν, r) =
∞∑
l=0

l∑
m=−l

Plm(�, ν)Ylm(Ω). (3.8)
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With an acoustic signal, the SHD coefficients Plm are often called eigenbeams to
reflect the fact that the spherical harmonics are eigensolutions of the wave equation
in spherical coordinates [26], or the fact that the eigenbeams characterize the sound
field in a similar way as eigenvectors characterize a matrix [13].

It is interesting to note that the eigenbeams used in SHD microphone array
processing can be viewed as single microphone signals in a classical microphone
array signal processing sense [26]. While the relationship between the eigenbeams
is different from the relationship between spatial domain microphone signals, and
each eigenbeam is actually computed based on all the microphones in the array,
many classical array processing algorithms can be adapted to the SHD, as we will
see in Chaps. 5 and 7, for example.

3.3 Real Spherical Harmonic Domain Processing

In Sect. 3.2, signals that are in the time-frequency domain and in the SHD were
obtained by first applying the STFT and then applying the SHT. However, the SHT
can alternatively be applied before the STFT. In this case, the processing framework
of Fig. 3.1 is replaced with the alternative processing framework of Fig. 3.2. This
alternative framework can be advantageous in terms of computational complexity,
as we will see in Sect. 3.4.

As the discrete time domain acoustic signals p[n] are real, we apply the real SHT
instead of the complex SHT. The real SHT of a discrete time domain signal p[n, r]
captured at a position r is given by

plm[n] =
ˆ

Ω∈S2
p[n, r]Rlm(Ω)dΩ, (3.9)

while the inverse real SHT is given by

p[n, r] =
∞∑
l=0

l∑
m=−l

plm[n]Rlm(Ω), (3.10)

where Rlm(Ω) denotes the real spherical harmonic of order l and degreem evaluated
at an angle Ω .

The real-valued spherical harmonics can be defined by mapping the sine portion
of the complex exponential eimφ = cos(m φ) + i sin(m φ) to negative degrees m,
the cosine portion to positive degrees m, and DC to m = 0, i.e.,

http://dx.doi.org/10.1007/978-3-319-42211-4_5
http://dx.doi.org/10.1007/978-3-319-42211-4_7
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Fig. 3.2 Alternative
processing framework for
spherical microphone arrays.
The sound field is first
sampled, and then
transformed to the SHD and
to the time-frequency
domain
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Rlm(Ω) = (−1)|m|
√
2l + 1

4π

(l − |m|)!
(l + |m|)!

× Pl|m|(cos θ)

⎧⎨
⎩

√
2 sin(|m| φ) m < 0

1 m = 0√
2 cos(m φ) m > 0

(3.11)

where | · | denotes the absolute value and Plm denotes the associated Legendre func-
tion of order l and degreem as defined in Sect. 2.2. Here the Condon–Shortley phase
factor (−1)m is required to cancel the factor that is present in the definition of the
associated Legendre functions. The real spherical harmonics as defined in (3.11) are
most commonly used in the context of Ambisonics, and have the same orthonormal-
ity property (2.18) as the complex spherical harmonics defined in Chap. 2. It should
be noted that, in principle, the cosine and sine portions can alternatively be mapped

http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_2
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the other way around. The advantage of this alternative mapping is that the cosine
is an even function and therefore the sign of m does not matter [9].

The real spherical harmonics Rlm(Ω) can equivalently be deduced from the com-
plex spherical harmonics Ylm(Ω) by extracting their real and imaginary parts and
renormalizing as follows:

Rlm(Ω) =
⎧⎨
⎩

√
2 (−1)m 	{Yl(−m)(Ω)} m < 0

Yl0(Ω) m = 0√
2 (−1)m 
{Ylm(Ω)} m > 0

(3.12)

where 
 {·} and 	 {·} respectively denote the real and imaginary parts of a complex
number. The real spherical harmonics can also be expressed in terms of the complex
spherical harmonics as follows

Rlm(Ω) =

⎧⎪⎨
⎪⎩

i√
2

(
Ylm(Ω) − (−1)m Yl(−m)(Ω)

)
m < 0

Yl0(Ω) m = 0
1√
2

(
Yl(−m)(Ω) + (−1)m Ylm(Ω)

)
m > 0

. (3.13)

Finally, the complex spherical harmonics can be expressed in terms of the real spher-
ical harmonics as follows

Ylm(Ω) =

⎧⎪⎨
⎪⎩

1√
2

(
Rl(−m)(Ω) − i Rlm(Ω)

)
m < 0

Yl0(Ω) m = 0
1√
2
(−1)m

(
Rlm(Ω) + i Rl(−m)(Ω)

)
m > 0

. (3.14)

Once the real SHT coefficients plm[n] have been computed, the STFT can be
applied to obtain time-frequency and spherical harmonic domain signals Plm(�, ν),
as explained in Sect. 3.1.

In the rest of this book, and in particular in Chaps. 5 to 9, the complex SHT will
be used. If instead the real SHT is used, it is important to replace the complex spher-
ical harmonics Ylm with the real spherical harmonics Rlm in expressions containing
spherical harmonics.

3.4 Spatial Sampling

In practice, a continuous spherical pressure sensor is not available and therefore the
sound field must be spatially sampled, such that the integral in (3.7) is replaced by
a sum over a discrete number of microphones Q at positions rq , q = 1, . . . , Q [15,
18, 22]:

http://dx.doi.org/10.1007/978-3-319-42211-4_5
http://dx.doi.org/10.1007/978-3-319-42211-4_9


30 3 Spatial Sampling and Signal Transformation

Plm(�, ν) ≈
Q∑

q=1

äq,lm P(�, ν, rq). (3.15)

In an approximation of a definite integral by a weighted sum, such as in (3.15), the
quadrature weights äq,lm are chosen such that the error involved in this approxi-
mation is minimized, and they are a function of the sampling configuration cho-
sen. Error-free sampling is achieved when the approximation in (3.15) becomes an
equality, or equivalently, when the orthonormality error [12] or aliasing error is
zero [18]:

Q∑
q=1

äq,lmYl ′m ′(Ωq) = δl,l ′δm,m ′ , (3.16)

where δ denotes the Kronecker delta defined in (2.19).
In the same way that a time domain signal must be temporally band-limited in

order to be fully reconstructed from a finite number of samples without temporal
aliasing, the SHD sound field must be order-limited (Plm = 0 for l > L f, where L f

is the order of the sound field) to be captured with a finite number of microphones
without spatial aliasing [18]. A sound field that is limited to an order L f is rep-
resented using a total of

∑L f
l=0

∑l
m=−l 1 = ∑L f

l=0(2l + 1) = (L f + 1)2 eigenbeams,
therefore all spatial sampling schemes require at least (L f + 1)2 microphones to
sample a sound field of order L f without aliasing.

Depending on the sampling scheme, the number of microphones required
Qreq(L f) may be larger than (L f + 1)2, as we will see in Sect. 3.4.1. It should be
noted that the use of more than (L f + 1)2 microphones is not necessarily ‘wasteful’,
since additional microphones will reduce the level of sensor noise in the eigen-
beams, even if they do not provide any additional spatial resolution.

Spatial aliasing occurs when high-order sound fields are captured using a spher-
ical array with an insufficient number of sensors resulting in the high-order eigen-
beams being aliased into the lower orders. A number of sampling schemes, three
of which are presented below in Sect. 3.4.1, are aliasing-free (or have negligible
aliasing) for order-limited functions. However, real sound fields are not actually
order-limited: they are represented by an infinite series of spherical harmonics [23],
and would therefore theoretically require an infinite number of microphones to be
captured completely without spatial aliasing.

Nevertheless, the eigenbeams possess a property that reduces the spatial alias-
ing that results from the use of a finite number of microphones. Let us assume that
we use a sampling scheme that is aliasing-free or has negligible aliasing for sound
fields that are limited to an order L . This scheme requires a number of microphones
Qreq(L), where Qreq(L) ≥ (L + 1)2 regardless of the sampling scheme. As we will
see in Sect. 3.4.2, the magnitude of the eigenbeams decays rapidly for l > kr . We
can therefore consider that when capturing a particular sound field, even if it is
not limited to an order L , the aliasing error obtained will be negligible if kr � L

http://dx.doi.org/10.1007/978-3-319-42211-4_2
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[18, 23], or equivalently, using the dispersion relation (2.4), if the operating fre-
quency

ffl
satisfies

ffl � Lc
2πr .

In this book, we will hereafter refer to L as the array order, and implicitly assume
that the array under consideration employs a sampling scheme with Qreq(L) micro-
phones. The higher the array order, the greater the number of eigenbeams that can be
acquired without (significant) spatial aliasing, and the higher the spatial resolution
of the array.

Example: In order to acquire eigenbeams of order L = 4 using an array of radius
r = 4.2 cm (the radius of the Eigenmike [16]) with negligible spatial aliasing, the
operating frequency must be smaller than

ffl = Lc
2πr = 5.2 kHz, and regardless of

the positioning of the microphones, at least (L + 1)2 = 25 microphones will be
required.

For higher operating frequencies, spatial anti-aliasing filters have been proposed
to reduce the aliasing errors [2, 23]. The requirement that kr � L implies that alias-
ing can also be avoided by increasing L with additional microphones or a more effi-
cient sampling scheme, or by decreasing the radius of the array r . However, we will
see in Sect. 3.4.2 that reducing the array radius leads to reduced robustness at low
frequencies, and the choice of radius is therefore a compromise [14].

Since the number of microphones Q is usually much higher than the number of
eigenbeams (L + 1)2, it can be advantageous to first transform the Q microphone
signals to the SHD using real spherical harmonics, and then transform the (L +
1)2 eigenbeams to the STFT domain, as explained in Sect. 3.3. The computational
complexity is reduced because the SHT is then real rather than complex, and only
(L + 1)2 rather than Q STFTs need to be computed. In this case, the integral in
(3.9) is replaced with the sum

plm[n] ≈
Q∑

q=1

äq,lm p[n, rq ]. (3.17)

The quadrature weights äq,lm are then computed in the same way as for the complex
SHT, except that the complex spherical harmonics Ylm must be replaced with the
real spherical harmonics Rlm .

In Sect. 3.4.1, we introduce various sampling schemes that can be used to sample
the sound field with a spherical microphone array, and in Sect. 3.4.2, we introduce
a number of commonly used spherical array configurations. Further discussion of
array configurations is given in [19].

http://dx.doi.org/10.1007/978-3-319-42211-4_2
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3.4.1 Sampling Schemes

The simplest sampling scheme is equi-angle sampling, where the inclination θ
and azimuth φ are uniformly sampled at 2(L + 1) angles given by θı = πı

2L+2 ,

ı = 0, . . . , 2L + 1 and φ j = 2π j
2L+2 , j = 0, . . . , 2L + 1 [6, 18]. The scheme there-

fore requires a total of Qreq(L) = 4(L + 1)2 microphones. The quadrature weights
are given by äq,lm = äı Y

∗
lm(θı ,φ j ) [6, 18], where q = j + ı(2L + 2) + 1, and the

term äı compensates for the denser sampling in θ near the poles [6, 18]. The advan-
tage of this scheme is the uniformity of the angle distributions, which can be use-
ful when samples are taken by a rotating microphone; however, this comes at the
expense of a relatively large number of required samples.

In Gaussian sampling, only half as many samples are needed: the azimuth is
still sampled at 2(L + 1) angles, whereas the inclination is sampled at only L + 1
angles, requiring a total of Qreq(L) = 2(L + 1)2 microphones. The azimuth angles
are the same as for equi-angle sampling, while the inclination angles must satisfy
PL+1(cos θı ) = 0, ı = 0, . . . , L [18], where PL+1 is the Legendre polynomial of
order L + 1. The quadrature weights are then given by äq,lm = äı Y

∗
lm(θı ,φ j ) [23],

where q = j + ı(2L + 2) + 1 and the weights äı are given in [3, 10]. The disadvan-
tage of this scheme is that the inclination distribution is no longer uniform, meaning
that if the microphones are mechanically rotated as in a scanning array [20], a fixed
step size cannot be used [18]; however, for a fixed array configuration this is not
likely to be a problem.

Finally, in (nearly) uniform sampling, the samples are (nearly) uniformly dis-
tributed on the sphere, in other words, the distance between each sample and its
neighbours is (nearly) constant. A limited number of distributions perfectly satisfy
this requirement, in which microphones are positioned at the centre of the faces
or the vertices of the so-called platonic solids (the tetrahedron, cube, octahedron,
dodecahedron, and icosahedron). However, there are nearly uniform distributions
with negligible orthonormality error; for example, 32 microphones can be posi-
tioned at the centre of the faces of a truncated icosahedron [14]. The quadrature
weights are given by äq,lm = 4π

Q Y ∗
lm(Ωq) for uniform sampling [7, 27]. This sam-

pling scheme requires a minimum of (L + 1)2 microphones; however, in contrast
to the two previous schemes, the required number of microphones Qreq(L) may be
larger than (L + 1)2, depending on the chosen polyhedron.

Regardless of the sampling scheme, the Q quadrature weights associated with
order l and degree m can be computed in the weighted least squares sense. First,
(3.16) is expressed in matrix form as

Y älm = elm, (3.18)

where Y is a matrix of size (L + 1)2 × Q that is defined as
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Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y00(Ω1) · · · Y00(ΩQ)

Y1(−1)(Ω1) · · · Y1(−1)(ΩQ)

Y10(Ω1) · · · Y10(ΩQ)

Y11(Ω1) · · · Y11(ΩQ)

Y2(−2)(Ω1) · · · Y2(−2)(ΩQ)
...

. . .
...

YLL(Ω1) · · · YLL(ΩQ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.19)

älm is a vector of length Q containing the quadrature weights that is defined as

älm = [ä1,lm, ä2,lm, · · · , äQ,lm]T, (3.20)

and elm is a vector of length (L + 1)2 where the ((l + 1) l + m + 1)th element is
one and the remaining elements are zero.

For Q ≥ (L + 1)2, the quadrature weights for order l and degreem are then given
in the weighted least squares sense by

äWLS
lm = (

YHWY
)−1

YHWelm, (3.21)

where (·)H denotes the Hermitian transpose, and W is a diagonal weighting matrix
of size (L + 1)2 × (L + 1)2. A common choice for the weighting matrix W is the
identity matrix. Regularization techniques can be used to limit the white noise gain,
and increase the robustness with respect to errors in the microphone positions.

In the rest of this book, uniform sampling will be employed, and it will be
assumed that this sampling is aliasing-free. This is a reasonable assumption for
arrays with a small radius (4–5 cm) and a few dozen microphones, operating at
frequencies up to 4 kHz, as is typical in applications involving narrowband speech
signals.

3.4.2 Array Configurations

The sound pressure captured by the microphones in a spherical array depends on the
array properties, e.g., radius, configuration (open, rigid, dual-sphere, etc.), or micro-
phone type. This dependence is captured by the frequency-dependent mode strength
bl(k), which determines the amplitude of the lth-order eigenbeam(s) Plm(�, ν)

(m = −l, . . . , l). For a unit amplitude plane wave incident from a direction Ωs,
the SHD sound pressure and the mode strength bl(k) are related via the expression
[14, 17, 26]
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Plm(�, ν) = bl(k)Y
∗
lm(Ωs) (3.22a)

= bl

(
2πν
ffl
s

cK

)
Y ∗
lm(Ωs), (3.22b)

where (3.2) is used to convert frequency indices ν to discrete values of the wavenum-
ber k.

The simplest array configuration is the open sphere composed of omnidirec-
tional microphones suspended in free space. It is assumed that the microphones and
associated cabling and mounting brackets are acoustically transparent, that is to say,
they have no effect on the measured sound field. In this case, the mode strength is
given by [17, 26]1

bl(k) = i l jl(kr), (3.23)

where jl(kr) is the spherical Bessel function of order l. This equation can be derived
by applying the SHT to the SHE of the expression for a plane wave in (2.29). The
open configuration is convenient for large array radii, where a rigid array would be
impractical, and for scanning arrays [20].

When processing the eigenbeams captured using the spherical array, it is nec-
essary to remove the dependence on the array properties by dividing the eigen-
beams by bl(k), thereby removing the frequency-dependence of the eigenbeams.
This process is often referred to as mode strength compensation. The open sphere
mode strength is plotted in Fig. 3.3 (dashed line); it can be seen that there are zeros
at certain frequencies (for certain values of kr ). As a result, the open array may
suffer from poor robustness at these frequencies, where measurement noise will be
significantly amplified. In addition, it can be seen that for l > 0, at low frequencies
the mode strength is very small; as a result, high-order eigenbeams are generally not
used at low frequencies [13].

The rigid sphere is a popular alternative to the open sphere. In this configuration,
omnidirectional microphones are mounted on a rigid spherical baffle, and the array
is therefore no longer acoustically transparent: the sound waves are scattered by
the sphere. An example of a rigid spherical array, the Eigenmike [16], is shown in
Fig. 1.2. The mode strength for a rigid sphere of radius ra is given by [14, 17]2

bl(kra, kr) = i l
(
jl(kr) − j ′l (kra)

h(2)′
l (kra)

h(2)
l (kr)

)
, (3.24)

1This equation assumes the sign convention used in engineering. If the acoustics convention is
used, this equation is given by bl (k) = (−i)l jl(kr). For more information on the effects of the
choice of sign convention, see Sect. 2.3.
2This equation assumes the sign convention used in engineering. If the acoustics convention is

used, this equation is given by bl (kra, kr) = (−i)l
(
jl(kr) − j ′l (kra)

h(1)′
l (kra)

h(1)
l (kr)

)
, where h(1)

l =(
h(2)
l

)∗
denotes the spherical Hankel function of the first kind. For more information on the effects

of the choice of sign convention, see Sect. 2.3.

http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_1
http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_2
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Fig. 3.3 Magnitude of the mode strength bl (k) for orders l ∈ {0, 1, 2, 3} as a function of kr .
The solid lines denote a rigid sphere, and the dashed lines denote an open sphere. Copyright c©
Daniel Jarrett. Used with permission

where j ′l and h
(2)′
l respectively denote the first derivatives of jl and h

(2)
l with respect

to the argument, and h(2)
l is the spherical Hankel function of the second kind. As

is also the case in the example of the Eigenmike, the microphones are normally
positioned on the surface of the rigid sphere (i.e., r = ra), therefore we define
bl(k) = bl(kr, kr). The second term in (3.24) compared to (3.23) accounts for the
effect of scattering.

From the plot of the rigid sphere mode strength in Fig. 3.3 (solid line), an advan-
tage of the rigid sphere can be observed: it does not suffer from zeros in its mode
strength at any frequency, unlike the open sphere. In addition, the scattering effects
of the rigid sphere can be calculated precisely and can be incorporated into the
eigenbeam processing framework. For a detailed discussion of the scattering effects
of the rigid sphere, the reader is referred to Sect. 4.2.3.

The rigid array configuration will be used for most of the work in this book. A
number of other configurations have been proposed, and will be mentioned briefly
in the following. The mode strength expressions for the following configurations
can be found in [21] and the references therein. The hemisphere [11] exploits the
symmetry of the sound field by mounting the array on a rigid surface. The open
dual-sphere [4], comprised of two spheres with different radii, and the open sphere
with cardioid microphones [4] both overcome the problem of zeros in the open
sphere mode strength, although cardioid microphones are not as readily available as
omnidirectional microphones. Finally, in the free sampling configuration the micro-
phones can be placed anywhere on the surface of a rigid sphere [12]; their positions
are then optimized to robustly achieve an optimal approximation of a desired beam

http://dx.doi.org/10.1007/978-3-319-42211-4_4
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pattern, or maximum directivity. The choice of array configuration is usually based
on the intended application; for example, in a conference room where the micro-
phone array is placed on a large table, the hemispherical configuration could be the
most appropriate.

3.5 Chapter Summary

This chapter addressed the preliminaries of array processing in the SHD. In particu-
lar, it introduced the two mathematical transforms that must be applied to the signals
acquired by a spherical array, namely, the STFT and the SHT. We then explained
how the SHT, which involves the integration of the sound pressure over a continu-
ous surface, can be approximated using a number of discrete microphones, and how
these microphones must be positioned in order to avoid spatial aliasing. Finally, we
discussed a number of array configurations, and explored the relative strengths of
the two most common configurations: the open and rigid spheres with omnidirec-
tional microphones.
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Chapter 4
Spherical Array Acoustic Impulse Response
Simulation

In general, the evaluation of acoustic signal processing algorithms, such as direction
of arrival (DOA) estimation (see Chap.5) and speech enhancement (see Chap.9)
algorithms, makes use of simulated acoustic transfer functions (ATFs). By using
simulated ATF it is possible to evaluate comprehensively an algorithm under many
acoustic conditions, such as a range of reverberation times, room dimensions and
source-array distances. Allen and Berkley’s image method [2] is a widely used ap-
proach to simulate ATFs between an omnidirectional sound source and one or more
microphones in a reverberant environment. In the last few decades, several extensions
have been proposed [21, 29].

In recent years the use of spherical microphone arrays has become prevalent.
These arrays are commonly of one of two types (discussed in Sect. 3.4.2): the open
array, where microphones are suspended in free space on an ‘open’ sphere, and the
rigid array, where microphones are mounted on a rigid baffle. As discussed in the
previous chapter, the rigid sphere is often preferred as it improves the numerical
stability of many processing algorithms [32] and its acoustic scattering effects are
can be calculated precisely [25].

Currently, many works relating to spherical array processing consider only free-
field responses; however, when a rigid array is used, the rigid baffle causes scattering
of the sound waves incident upon the array that the image method does not consider.
This scattering has an effect on the ATFs, especially at high frequencies and/or for
microphones situated on the occluded side of the array. Furthermore the reverberation
due to room boundaries such as walls, ceiling and floor must also be considered,
particularly in small rooms or rooms with strongly reflective surfaces.

Portions of this chapter were first published in the Journal of the Acoustical Society of America
[17], and are reproduced in accordance with the Acoustical Society of America’s Transfer of
Copyright Agreement. The content of [17] has been edited here for brevity and to standardize
the notation.
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While measured transfer functions include both these effects, they are both time-
consuming and expensive to acquire over a wide range of geometries and rooms. A
method for simulating ATFs in a reverberant room while accounting for scattering
is therefore essential, allowing for fast, comprehensive and repeatable testing. In
this chapter, we present the SMIR (Spherical Microphone array Impulse Response)
method that combines a model of the scattering in the spherical harmonic domain
(SHD) with a version of the image method that accounts for reverberation in a
computationally efficient way [16, 17].

The simulated ATFs include the direct path, reflections due to room reverberation,
scattering of the direct path and scattering of the reverberant reflections. Reflections
of the scattered sound and multiple interactions between the room boundaries and
the sphere are excluded as they do not contribute significantly to the sound field,
provided the distances between the room boundaries and the sphere are several times
the sphere’s radius [11], which is easily achieved in the case of a small scatterer [4].
Furthermore, we assume an empty rectangular shoebox room (with the exception
of the rigid sphere) and specular reflections, as was assumed in the conventional
image method [2]. Finally, the scattering model used assumes a perfectly rigid baffle,
without absorption.

In this chapter, we first briefly summarize Allen and Berkley’s image method and
then present the SMIR method in the SHD. Next, we discuss some implementation
aspects, namely the truncation of an infinite sum in the ATF expression and the
reduction of the method’s computational complexity, and then provide a pseudocode
description of the method. An open-source software implementation is available
online [14]. Finally, we show some example uses of the method and, where possible,
compare the simulated results obtained with theoretical models.

4.1 Allen and Berkley’s Image Method

The source-image or image method [2] is one of the most commonly used room
acoustics simulationmethods in the acoustic signal processing community. The prin-
ciple of the method is to model an ATF as the sum of a direct path component and
a number of discrete reflections, each of these components being represented in
the ATF by a free-space Green’s function. In this section, we review the free-space
Green’s function and the image method.

4.1.1 Green’s Function

As detailed in Sect. 2.1, for a source at a position �rs and a receiver at a position �r,1 the
free-space Green’s function, a solution to the inhomogeneous Helmholtz equation

1Vectors in Cartesian coordinates are denoted with a corner mark � to distinguish them from vectors
in spherical coordinates, which are used throughout this book and will be introduced later in the
chapter.

http://dx.doi.org/10.1007/978-3-319-42211-4_2
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applying the Sommerfeld radiation condition, is given by2

G(�r|�rs, k) = e−ik||�r−�rs||
4π ||�r − �rs|| , (4.1)

where ||·|| denotes the 2-norm and the wavenumber k is related to frequency
ffl
(in

Hz), angular frequency ω (in rad · s−1) and the speed of sound c (in m · s−1) via the
dispersion relation k = ω/c = 2π

ffl
/c.

In the time-domain, the Green’s function is given by

g(�r|�rs, t) = δ(t − ||�r−�rs||
c )

4π ||�r − �rs|| , (4.2)

where δ is the Dirac delta function and t is time. This corresponds to a pure impulse
at time t = ||�r−�rs||

c , the propagation time from �rs to �r.

4.1.2 Image Method

Consider a rectangular room with length Lx , width L y and height Lz . The reflection
coefficients of the four walls, floor and ceiling are βx1 , βx2 , βy1 , βy2 , βz1 and βz2 ,
where the a1 coefficients (a ∈ {x, y, z}) correspond to the boundaries at a = 0 and
the a2 coefficients correspond to the boundaries at a = La .

If the sound source is located at �rs = (xs, ys, zs) and the receiver is located at
�r = (x, y, z), the images obtained using the walls at x = 0, y = 0 and z = 0 can
be expressed as a vector �Rp:

�Rp = [xs − x + 2px x, ys − y + 2py y, zs − z + 2pzz], (4.3)

where each of the elements in p = (px , py, pz) can take values 0 or 1, thus resulting
in eight combinations that form a set P . To consider all reflections we also define a
vector �Rm which we add to �Rp:

�Rm = [2mx Lx , 2my L y, 2mz Lz], (4.4)

where each of the elements in m = (mx , my, mz) can take values between −Nm

and Nm , and Nm is used to limit computational complexity and circular convolution
errors, thus resulting in a set M of (2Nm + 1)3 combinations. The image positions
in the x and y dimensions are illustrated in Fig. 4.1.

2This expression assumes the sign convention commonly used in electrical engineering, whereby
the temporal Fourier transform is defined as F(ω) = ´∞

−∞ f (t)e−iωtdt . For more information on
this sign convention, the reader is referred to Sect. 2.3.

http://dx.doi.org/10.1007/978-3-319-42211-4_2
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Fig. 4.1 A slice through the image space showing the positions of the images in the x and y
dimensions, with a source S and receiver R. The full image space has three dimensions (x , y and
z). An example of a reflected path (first-order reflection about the x-axis) is also shown

The distance between an image and the receiver is given by
∣∣∣∣�Rp + �Rm

∣∣∣∣. Using
(4.1), the ATF H is then given by

H(�r|�rs, k) =
∑
p∈P

∑
m∈M

β|mx +px |
x1 β|mx |

x2 β
|my+py |
y1 β

|my |
y2 β|mz+pz |

z1 β|mz |
z2

× e−ik||�Rp+�Rm||
4π

∣∣∣∣�Rp + �Rm
∣∣∣∣ . (4.5)

Using (4.2), we obtain the acoustic impulse response (AIR)

h(�r|�rs, t) =
∑
p∈P

∑
m∈M

β|mx +px |
x1 β|mx |

x2 β
|my+py |
y1 β

|my |
y2 β|mz+pz |

z1 β|mz |
z2

×
δ
(

t − ||�Rp+�Rm||
c

)
4π

∣∣∣∣�Rp + �Rm
∣∣∣∣ . (4.6)

4.2 SMIR Method in the Spherical Harmonic Domain

There exists a compact analytical expression for the scattering due to the rigid sphere
in the SHD, therefore we first express the free-space Green’s function in this domain,
and then use this to form an expression for the ATF including scattering.
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4.2.1 Green’s Function

We define position vectors in spherical coordinates relative to the centre of our array.
Letting r be the array radius and Ω an inclination-azimuth pair, the microphone
position vector is defined as r � (r,Ω) where Ω = (θ,φ). Similarly, the source
position vector is given by rs � (rs,Ωs) where Ωs = (θs,φs). Consistent with
our approach in previous chapters, it is hereafter assumed that where the addition,
2-norm or scalar product operations are applied to spherical polar vectors, they have
previously been converted to Cartesian coordinates using (2.12). In addition, we
assume that the source is outside the array, i.e., rs > r .

The free-space Green’s function (4.1) can be expressed in the SHD using the
spherical harmonic expansion (SHE) in (2.22) [40]:

G(r|rs, k) = e−ik||r−rs||

4π ||r − rs||

= − ik
∞∑

l=0

l∑
m=−l

jl(kr)h(2)
l (krs)Y

∗
lm(Ωs)Ylm(Ω) (4.7)

where Ylm is the spherical harmonic function of order l and degree m, jl is the
spherical Bessel function of order l and h(2)

l is the spherical Hankel function of the
second kind and of order l. This decomposition is also known as a spherical Fourier
series expansion or spherical harmonic decomposition of the Green’s function.

Using the spherical harmonic addition theorem (2.23), which in many cases re-
duces the complexity of the implementation, we can simplify the Green’s function
in (4.7) to

G(r|rs, k)= −ik

4π

∞∑
l=0

jl(kr)h(2)
l (krs)(2l + 1)Pl(cosΘr,rs), (4.8)

where Pl is the Legendre polynomial of order l and Θr,rs is the angle between r and
rs. The cosine of the angle Θr,rs is obtained as the dot product of the two normalized
vectors r̂s = rs/rs and r̂ = r/r :

cosΘr,rs = r̂ · r̂s (4.9a)

= sin θ cosφ sin θs cosφs + sin θ sin φ sin θs sin φs

+ cos θ cos θs (4.9b)

= sin θ sin θs cos (φ − φs) + cos θ cos θs. (4.9c)

http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_2
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4.2.2 Neumann Green’s Function

The free-spaceGreen’s function describes the propagation of sound in free space only.
However, when a rigid sphere is present, a boundary condition must hold: the radial
velocitymust vanish on the surface of the sphere. The function GN(r|rs, k) satisfying
this boundary condition is called the Neumann Green’s function, and describes the
sound propagation between a point rs and a point r on the rigid sphere [40]:

GN(r|rs, k)= G(r|rs, k)− −ik

4π

∞∑
l=0

j ′
l (kr)h(2)

l (kr)

h(2)′
l (kr)

h(2)
l (krs)(2l + 1)Pl(cosΘr,rs)

= −ik

4π

∞∑
l=0

i−lbl(k)h(2)
l (krs)(2l + 1)Pl(cosΘr,rs), (4.10)

where (·)′ denotes the first derivative and the term

bl(k) = i l

(
jl(kr) − j ′

l (kr)

h(2)′
l (kr)

h(2)
l (kr)

)
(4.11)

is often called the (farfield) mode strength. The Wronskian relation [40, Eq.6.67]

jl(x)h(2)′
l (x) − j ′

l (x)h(2)
l (x) = − i

x2
(4.12)

allows us to simplify (4.11) to

bl(k) = −i l+1

h(2)′
l (kr) (kr)2

. (4.13)

For the open sphere, substituting bl(k) = i l jl(kr) into (4.10) yields the free-space
Green’s function G(r|rs, k).

4.2.3 Scattering Model

The rigid sphere scattering model3 used by the SMIR method has a long history in
the literature; it was first developed by Clebsch and Rayleigh in 1871–72 [23]. It is

3Some texts [9] refer to the scattering effect as diffraction, although Morse and Ingard note that
“When the scattering object is large compared with the wavelength of the scattered sound, we
usually say the sound is reflected and diffracted, rather than scattered” [28], therefore in the case of
spherical microphone arrays (particularly rigid ones which tend to be relatively small for practical
reasons), scattering is possibly the more appropriate term.
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presented in a number of acoustics texts [28, 36, 40], and is used in many theoretical
analyses for spherical microphone arrays [26, 33].

4.2.3.1 Theoretical Behaviour

The behaviour of the scattering model is illustrated in Fig. 4.2, which plots the mag-
nitude of the response between a source and a receiver on a rigid sphere of radius
5 cm for a source-array distance of 1 m, as a function of frequency and DOA. The
responsewas normalized using the free-field/open sphere response, therefore the plot
shows only the effect due to scattering. Due to rotational symmetry, we only looked
at the one-dimensional DOA, instead of looking at both azimuth and inclination, and
limited the DOA to the 0–180◦ range.

When the source is located on the same side of the sphere as the receiver and the
direction of arrival is 0◦, the rigid sphere response is greater than the open sphere
response due to constructive scattering, tending towards a 6 dB magnitude gain
compared to the open sphere at infinite frequency. The response on the back side of
the rigid sphere is generally lower than in the open sphere case and lower than on the
front side, as one would intuitively expect due to it being occluded. However, at the
very back of the sphere, when the DOA is 180◦, we observe a narrow bright spot:
the waves propagating around the sphere all arrive in phase at the 180◦ point and as
a result sum constructively.

The polar plot of the magnitude response is shown in Fig. 4.3 and illustrates both
the amplification on the front side of the sphere, and attenuation on the back side of
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Fig. 4.2 Magnitude of the response between a source and a receiver placed on a rigid sphere of
radius 5cm at a distance of 1 m, as a function of frequency and DOA. The response was normalized
with respect to the free-field response
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Fig. 4.3 Polar plot of the
magnitude of the response
between a source and a
receiver placed on a rigid
sphere of radius 5 cm, at a
distance of 1 m, for various
frequencies
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the sphere, which both increase with increasing frequency. It should be noted that
although the above results are for a fixed sphere radius, as the scattering model is a
function of kr , the effects of a change in radius are the same as a change in frequency;
indeed the relevant factor is the radius of the sphere relative to the wavelength.

These substantial differences between the open and rigid sphere responses confirm
the need for a simulation method which accounts for scattering, even for sphere radii
as small as 5 cm.

4.2.3.2 Experimental Validation

In addition to being widely used in theory, this model has also been experimentally
validated by Duda and Martens [9] using a single microphone inserted in a hole
drilled through a 10.9 cm radius bowling ball placed in an anechoic chamber. This is
a reasonable approximation to a spherical microphone array; indeed a bowling ball
was used by Li and Duraiswami to construct a hemispherical microphone array [22].

Duda andMartens’s experimental results broadly agreewith the theoreticalmodel.
In our case we are most interested in the results in their Fig. 12a where the source-
array distance is largest (20 times the array radius), as in typical spherical array usage
scenarios the source is unlikely to be much closer to the array than this. The only
notable difference between the theoretical and experimental results in this case is
for a direction of arrival of 180◦, where the high frequency response is found to be
lower than expected. The authors suggest this is due to small alignment errors, which
would indeed have an effect given the narrowness of the bright spot in the model
(see Fig. 4.3 for

ffl = 8 kHz). Given these results, we conclude that the use of this



4.2 SMIR Method in the Spherical Harmonic Domain 47

scattering model is sufficiently accurate for simulating a small rigid array, such as
the Eigenmike [27].

4.2.4 SMIR Method

We now present the SMIR method proposed in [16, 17], incorporating the SHE
presented in Sect. 4.2.1 and the scattering model introduced in Sect. 4.2.2.

Due to the differences between the SHDNeumann Green’s function in (4.10) and
the spatial domainGreen’s function in (4.1), as well as the directionality of the array’s
response, two changes must be made to the image position vectors �Rp and �Rm in
the SMIR method. Firstly, to compute the SHE in the Neumann Green’s function,
we require the distance between each image and the centre of the array [rs in (4.10)];
this is accomplished by computing the image position vectors using the position of
the centre of the array rather than the position of the receiver. Secondly, to compute
the SHE we require the angle between each image and the receiver with respect to
the centre of the array [Θr,rs in (4.10)]. In Allen and Berkley’s image method, the
direction of the vector �Rp + �Rm is not always the same: in some cases it points
from the receiver to the image and in others it points from the image to the receiver.
This is not an issue for the image method as only the norm of this vector is used.
Because we also require the angle of the images in the SMIR method, we modify
the definition of �Rp such that the vector �Rp + �Rm always points from the centre of
the array to the image.

We now incorporate these two changes into the definition of the image vectors
�Rp and �Rm. If the sound source is located at �rs = (xs, ys, zs) and the centre of the
sphere is located at �ra = (xa, ya, za), the images obtained using the walls at x = 0,
y = 0 and z = 0 are expressed as a vector �Rp:

�Rp = [xs − 2px xs − xa, ys − 2py ys − ya, zs − 2pzzs − za]. (4.14)

For brevitywe define �Rp,m � �Rp+�Rm, allowing us to express the distance between
an image and the centre of the sphere as ||�Rp,m|| and the angle between the image
and the receiver as Θr,Rp,m , computed in the same way as (4.9), where Rp,m denotes
the image positions in spherical coordinates. The image positions in the x dimension
are illustrated in Fig. 4.4. Finally, the ATF H(r|rs, k) is the weighted sum of the
individual responses GN(r|Rp,m, k) for each of the images4

H(r|rs, k) =
∑
p∈P

∑
m∈M

β|mx −px |
x1 β|mx |

x2 β
|my−py |
y1 β

|my |
y2 β|mz−pz |

z1 β|mz |
z2

× GN(r|Rp,m, k). (4.15)

4The sign in the powers of β is different from that in Allen and Berkley’s conventional image
method, due to the change in the definition of �Rp that is required for the SMIR method.
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Fig. 4.4 A slice through the image space showing the positions of the images in the x dimension,
with a source S and array A. The full image space has three dimensions (x , y and z). An example
of a reflected path is shown for the image with px = 1 and mx = 0

Since we are working in the wavenumber domain, we can allow for frequency
dependent boundary reflection coefficients in (4.15), if desired. The reflection co-
efficients would then be written as βx1(k), βx2(k) and so on. Chen and Maher [7]
provide some measured reflection coefficients for a wall, window, floor and ceiling.

4.3 Implementation

4.3.1 Truncation Error

To compute the expression for the ATF in (4.15), the sum over an infinite number
of orders l in the Neumann Green’s function GN must be approximated by a sum
ĜN over a finite order L . Choosing L too small will result in a large approximation
error, while choosing L too large will result in too high a computational complexity.
We now investigate the approximation error in order to provide some guidelines for
the choice of the order L . The results for an open sphere are provided for reference,
and were computed by using a truncated SHE of the Green’s function Ĝ instead of
a Neumann Green’s function.

For an open sphere, the error can be determined exactly because the Green’s func-
tion is a decomposition of the closed-formexpression in (4.1). For a rigid sphere, how-
ever, no closed-form expression exists since the scattering term can be expressed only
in the SHD. We therefore estimated the error by comparing the truncated Neumann
Green’s function ĜN to a high-order Neumann Green’s function. We can assume
the error involved in using a high-order Neumann Green’s function as a reference as
opposed to the untruncated Neumann Green’s function is small, due to the uniform
convergence of the SHE [12]. In practice, we cannot choose very large values of L
because of numerical difficulties involved in multiplying high order spherical Bessel
and Hankel functions. For typical sphere radii and source-array distances, this allows
us to reach L values of up to about 100 using SMIRgen, a MATLAB implementation
of the SMIR method [14].

We evaluated the truncated (Neumann) Green’s function at K = 1024 discrete
values of k (denoted by k̇), forming a setK corresponding to frequencies in the range
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Fig. 4.5 Magnitude and phase errors involved in the truncation of the SHE in the Green’s function
(open sphere) and the Neumann Green’s function (rigid sphere). The errors reduce rapidly beyond
L = kmaxr , where here kmax = 2π 8000

c ≈ 147 m−1

100 Hz–8 kHz,5 and then calculated the normalized root-mean-square magnitude
error εm and the root-mean-square phase error εp:

εm(r|rs, L) =

√√√√√ 1

K

∑
k̇∈K

(∣∣GN(r|rs, k̇)
∣∣ −

∣∣∣ĜN(r|rs, k̇, L)

∣∣∣)2

∣∣GN(r|rs, k̇)
∣∣2 , (4.16)

εp(r|rs, L) =
√√√√ 1

K

∑
k̇∈K

(
∠GN(r|rs, k̇) − ∠ĜN(r|rs, k̇, L)

)2
. (4.17)

We averaged themagnitude and phase errors over 32microphone positions uniformly
distributed on the array and 50 random source positions at a fixed distance from the
centre of the array.

The resulting average errors are given in Fig. 4.5, for both the open and rigid
sphere cases. Three different sphere radii were used: r = 4.2 cm (the radius of the
Eigenmike [24]), r = 10 cm and r = 15 cm. A source-array distance of 1 m was
used; results for 1–5m are omitted as they are essentially identical. It can be seen that

5Very low frequencies are omitted due to the fact that the spherical Hankel function hl (x) has a
singularity around x = 0.
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beyond a certain threshold, increases in L give only a very small reduction in error;
this is due to the fast convergence of the spherical harmonic decomposition [12]. From
Fig. 4.5, we can see that a sensible rule of thumb for choosing L is L > �1.1 kmaxr	
where kmax is the largest wavenumber of interest.

4.3.2 Computational Complexity

As the ATFs are made up of a sum over all orders l which includes spherical Hankel
functions hl and Legendre polynomials Pl , we can make use of recursion relations
over l to reduce the computational complexity of these functions. For the spherical
Hankel function, we make use of the following relation [40, Eq.6.69]

h(2)
m (x) = 2m − 1

x
h(2)

m−1(x) − h(2)
m−2(x), m ≥ 2 (4.18)

where

h(2)
0 (x) = −e−i x

i x
, h(2)

1 (x) = ie−i x

x2
− e−i x

x
. (4.19)

For the Legendre polynomial we use a similar recursion relation [1], known as
Bonnet’s recursion formula

Pm(x) = 2m − 1

m
xPm−1(x) − m − 1

m
Pm−2(x), m ≥ 2 (4.20)

where P0(x) = 1 and P1(x) = x .
While replacing the exponential in (4.1) with a SHE does lead to an increase in

computational complexity when computing the ATF for a single receiver (which is
unavoidable in the rigid sphere case), this can have an advantage when simulating
many receiver positions. For the conventional image method, we must compute
the image positions and resulting response separately for each individual receiver.
However, in the SMIR method the image positions are all computed with respect to
the centre of our array, and therefore only once for all of themicrophones in the array.

An alternative to (4.15) is obtained by changing the order of the summations in the
ATF and computing the sum over all images only once, instead of once per receiver:

H(r|rs, k) = −ik
∞∑

l=0

i−l
l∑

m=−l

Ylm(Ω)

×
∑
p∈P

∑
m∈M

β|mx −px |
x1 β|mx |

x2 β
|my−py |
y1 β

|my |
y2 β|mz−pz |

z1 β|mz |
z2

× bl(k)h(2)
l (k

∣∣∣∣Rp,m
∣∣∣∣)Y ∗

lm(∠Rp,m). (4.21)
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The expression in (4.21) requires O
(
(Ni + Q)(L + 1)2

)
operations per discrete

frequency, where L is the maximum spherical harmonic order, Ni is the number of
images and Q is the number of microphones, while the approach in (4.15) requires
O (NiQ(L + 1)) operations per discrete frequency. Since the number of images Ni

is typically very large, (Ni + Q)(L + 1)2 ≈ Ni(L + 1)2. Assuming the operations
in the two approaches are of similar complexity, it is therefore more efficient to use
the expression in (4.15) for Q < L + 1 and the expression in (4.21) for Q > L + 1.
Consequently the least computationally complex approach depends on the number
of microphones Q and array radius r . In the remainder of this chapter we use the
expression in (4.15); this is particularly appropriate in the applications in Sect. 4.4.2
where Q = 2 and in Sect. 4.4.3 where Q = 1.

4.3.3 Algorithm Summary

A summary of the SMIR method is presented in the form of pseudocode in Fig. 4.6.
The variable nsample denotes the number of samples in the AIR, No, the maximum
reflection order, and f s, the sampling frequency.

The number of computations has been reduced by processing only half of the
frequency spectrum because we know the AIR is real and the corresponding ATF is
conjugate symmetric. The pseudocode necessary to compute the Hankel functions
and Legendre polynomials is omitted here, since their computation is straightforward
using recursion relations (4.18) and (4.20).

SMIRgen, aMATLAB/C++ implementation of the method in the form of aMEX-
function, is available online [14].

4.4 Examples and Applications

In this section we give a number of examples that make use of the SMIR method.
Wherever possible we compare the simulated results to theoretical results obtained
using approximate models. These examples are given to illustrate and partially vali-
date the SMIR method.

4.4.1 Diffuse Sound Field Energy

In statistical room acoustics (SRA), reverberant sound fields are modelled as diffuse
sound fields, allowing for a statistical analysis of reverberation instead of computing
each of the individual reflections. In this subsection, we compare a theoretical pre-
diction of sound energy on the surface of a rigid sphere, based on a diffuse model of
reverberation, to simulated results obtained using the SMIR method.
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Fig. 4.6 Pseudocode for the
SMIR method
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A diffuse sound field is composed of plane waves incident from all directions
with equal probability and amplitude [20]. Using the scattering model previously
introduced, we can determine the cross-correlation between the sound pressure at
arbitrary positions r and r′ on the surface of a sphere, due to a unit amplitude plane
wave with a random uniformly distributed direction of arrival (see the Appendix for
derivation) [15]:

C(r, r′, k) =
∞∑

l=0

|bl(k)|2(2l + 1)Pl(cosΘr,r′), (4.22)

where Θr,r′ is the angle between r and r′. In the open sphere case, it is shown in the
Appendix that this simplifies to the well-known spatial domain expression [20, 31,
39] sinc(k

∣∣∣∣r − r′∣∣∣∣), where sinc denotes the unnormalized sinc function.
For the sound energy at a position r we substitute Θr,r′ = 0 and find C(r, r, k) =∑∞
l=0 |bl(k)|2(2l + 1). According to SRA theory [20, 39], for frequencies above the

Schroeder frequency [20] the energy of the reverberant sound field Hr is then given
by [39]

Es
{|Hr(r, k)|2} = 1 − ᾱ

πAᾱ
C(r, r, k)

= 1 − ᾱ

πAᾱ

∞∑
l=0

|bl(k)|2(2l + 1), (4.23)

where Es {·} denotes spatial expectation, ᾱ is the average wall absorption coefficient
and A is the total wall surface area.

The above theoretical expression for the average reverberant energy can be com-
pared to simulated results obtained using the SMIRmethod.We computed the spatial
expectation using an average over 200 source-array positions, using the approach in
Radlović et al. [31]: the array and source were kept in a fixed configuration (at a dis-
tance of 2 m from each other), which was then randomly rotated and translated. Both
sources and microphones were kept at least half a wavelength from the boundaries
of the room, helping to ensure the diffuseness of the reverberant sound field [20].
The reverberant component Hr of the ATFs was computed by subtracting the direct
path Hd from the simulated ATFs.

The room dimensions were chosen as 6.4 × 5 × 4 m, as in [31, 38], such
that the ratio of the dimensions was (1.6 : 1.25 : 1), as recommended in [18, 31]
to approximate a diffuse sound field. The reverberation time T60 was set to 500 ms,
giving an averagewall absorption coefficient of ᾱ = 0.2656.We simulatedAIRswith
a lengthof 4096 samples at a sampling frequencyof 8kHz.Weconsidered frequencies

from 300 Hz to 4 kHz, well above the Schroeder frequency of 2000
√

0.5
6.4×5×4 =

125 Hz, and the half-wavelength minimum distance is therefore 57 cm for a speed of
sound of 343 m/s. We averaged the results over the 200 source-array positions and
32 microphone positions uniformly distributed on the array.
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Fig. 4.7 Theoretical and simulated reverberant sound field energy on the surface of a rigid sphere, as
a function of frequency for two array radii. The simulated results are averaged over 200 source-array
positions, all at least half a wavelength from the room boundaries

In Fig. 4.7, we plot the theoretical and simulated energy of Hr as a function of
frequency, for two array radii (4.2 and 15 cm).Wenote that, except at low frequencies,
there is a good match between the theoretical diffuse field energy expression we
derived and the results obtained using the SMIR method. At lower frequencies, the
theoretical equation overestimates the energy; we hypothesize that this is due to the
reverberant sound field not being fully diffuse.

4.4.2 Binaural Interaural Time and Level Differences

The topic of binaural sound and in particular head-related transfer functions (HRTFs)
or head-related impulse responses (HRIRs) is of interest to researchers and engineers
working on surround sound reproduction, who for example aim to reproduce spatial
audio through a pair of stereo headphones. In addition, the psychoacoustic commu-
nity is interested in the ability of the human brain to localize sound sources using
only two ears.

Two binaural cues that contribute to sound source localization in humans are the
interaural time difference (ITD) and the interaural level difference (ILD) [34]. The
ITD measures the difference in arrival time of a sound at the two ears, and the ILD
measures the difference in level of the sound at the two ears. In this example, we
study the long-term cues assuming the source signal is spectrally white. Therefore,
we can compute the cues directly using the simulated ATFs.

We used the SMIR method to simulate a simple HRTF by considering micro-
phones placed at locations on a rigid sphere corresponding to ear positions on the
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human head. Although real HRTFs vary from individual to individual, depending on
many factors including the head, torso and pinnae, many of the main characteristics
of the HRTF are also exhibited by a simple rigid sphere ATF [9]. The representation
of HRTFs using spherical harmonics was studied in [3, 10].

Whereas HRTFs do not normally include the effects of reverberation, and as a
result typically sound artificial and provide poor cues for the perception of sound
source distance [37], the SMIRmethod also allows for the inclusion of reverberation
in HRIRs. In this case, they are then referred to as binaural room impulse responses
(BRIRs). BRIRs are important for the analysis of the effects of reverberation on au-
ditory perception, for example its impact on localization accuracy. Since rotational
symmetry no longer necessarily holds once the room reflections are taken into ac-
count, the measurement of BRIRs must be done for every source-head position and
orientation and is therefore very time-consuming. Simulating BRIRs allows us to
more easily study the effects of early and late reflections on the binaural cues.

We begin by looking at ITDs in an anechoic environment, in order to illustrate
the effect of the head in isolation. We compare simulated results to approximate
theoretical results provided by a ray-tracing formula attributed to Woodworth and
Schlosberg that looks at the distance travelled from the source to an observation point
on the sphere, either in free-space if the observation point is on the near side of the
sphere, or via a point of tangency if the observation point is on the far side [9].

The simulated results were obtained by using the SMIR method to generate
HRIRs at a sampling frequency of 32 kHz, with a sphere radius of 8.75 cm and
microphones placed at (θ,φ) = (90◦, 100◦) (corresponding to the left ear) and
(θ,φ) = (90◦, 260◦) (corresponding to the right ear). The HRIRs were then band-
pass filtered between 2.8 and 3.2 kHz.6 The DOA was varied by rotating the source
around the sphere at a fixed distance of 1 m and inclination of 90◦. The simu-
lated ITD was computed by determining the time delay that maximized the interau-
ral cross-correlation between the two simulated and band-pass filtered HRIRs. The
cross-correlationwas interpolated using a second-order polynomial in order to obtain
sub-sample delays.

In Fig. 4.8 we plot the ITDs as a function of direction of arrival, where 0◦ corre-
sponds to the median plane on the front side of the sphere and 180◦ corresponds to
the median plane on the back side of the sphere. As expected, as the DOA increases
from 0◦ to 80◦ and the source gets closer to the ipsilateral ear, the ITD increases
monotonically until it reaches its maximum at 80◦, at which point the source is fur-
thest from the contralateral ear. The ITD then decreases from 80◦ to 180◦ as the

6While the ray-tracing formula is frequency-independent, it has been shown [6] that ITDs actu-
ally exhibit some frequency dependence, and that because the ray-tracing concept applies to short
wavelengths, this model yields only the high frequency time delay. Kuhn provides a more compre-
hensive discussion of this model and the frequency-dependence of ITDs [19]. It should be noted
the simulation results in Fig. 4.8 are in broad agreement with Kuhn’s measured results at 3.0 kHz.
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Fig. 4.8 Comparison of ITDs as a function of source DOA, in simulation and using the theoretical
ray model approximation. The simulated ITDs are based on HRIRs computed using the SMIR
method in an anechoic environment

source nears the median plane and gets closer to the contralateral ear. The response
from 180◦ to 360◦ is not shown due to the symmetry about 180◦. As we expect, the
simulated results are reasonably close to the theoretical ray-tracing results [9], with
a difference of less than 70 µs.

Using the SMIR method, we analyzed the ILDs in a reverberant environment
under three scenarios: the sphere was either placed in the centre of the room with
a DOA of 0◦ (where the source is equidistant from the two ears), or at a distance
of approximately 0.5 m from one of the walls with DOAs of 0◦ and 100◦ (where
the source is aligned with the left ear). In all three cases the source was placed at a
distance of 1 m from the centre of the sphere. We chose a room size of 9 × 5 × 3 m
with a reverberation time T60 of 500 ms, and simulated BRIRs with a length of 4096
samples at a sampling frequency of 8 kHz.

In Figs. 4.9, 4.10 and 4.11 we plot the ILDs for the three above cases, as well
as the ILDs we would obtain in an anechoic environment, which are entirely due to
scattering. The ILDs were computed by taking the difference in magnitude between
the left ear response and the right ear response.Anegative ILD therefore indicates that
the magnitude of the ipsilateral ear response is lower than that of the contralateral
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Fig. 4.10 Comparison of ILDs in echoic and anechoic environments, with the sphere placed near
a room wall and a DOA of 0◦
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Fig. 4.11 Comparison of ILDs in echoic and anechoic environments, with the sphere placed near
a room wall and a DOA of 100◦

ear response. The smoothed echoic ILDs were obtained using a Savitzky-Golay
smoothing filter [35].

The main effect of reverberation we can observe is the introduction of random
frequency-to-frequency variations; these are particularly obvious when most of the
reverberant energy is diffuse, for example, when the sphere is placed in the centre
of the room (Fig. 4.9). Room reflections also increase the overall reverberant energy,
particularly in the contralateral ear which receives less direct path energy, thus re-
ducing the ILDs. This is especially noticeable when the contralateral ear is placed
near a wall: the contralateral ear receives more energy than in the anechoic case and
the ILD is therefore closer to zero (Fig. 4.11).

Placement of the sphere near a wall additionally introduces systematic distortions
in the ILDs associated with the prominent early reflection from this wall. This is
visible in Fig. 4.11 and most noticeably in Fig. 4.10.

All these effects have also been observed experimentally with a manikin by
Shinn-Cunningham et al. [37]. The SMIRmethod is therefore an inexpensive way of
predicting the effects of head movement and environmental changes (such as rever-
beration time) on HRTFs or BRIRs, without as much need for physical and acoustic
measurements to be performed.
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4.4.3 Mouth Simulator

The principle of reciprocity can often be advantageously used in room acoustics
measurements. The principle states that ATFs are symmetric in the coordinates of
the sound source and the observation point: “If we put the sound source at r, we
observe at point r0 the same sound pressure as we did before at r, when the sound
source was at r0” [20]. We can apply this principle to ATF simulations, and use the
SMIR method to generate the ATF between one or more sources on a sphere and a
single omnidirectional microphone placed away from the sphere.

A specific application of this is a mouth simulator: we model the head as a rigid
sphere (as in Sect. 4.4.2) of radius rh, and the mouth as an omnidirectional point
source placed on this rigid sphere. This is straightforwardly implemented in the
SMIR method by replacing the source position with the microphone position rmic,
the microphone position with the mouth position rmouth = (rh,Ωmouth), and the array
position with the head position:

H(rmic|rmouth, k) = H(r = rmouth|rs = rmic, k).

As a result we can simulate the ATF between a mouth on a head, and a single
microphone in free space.Repeated use of the algorithmallows formultiple receivers.

Although more accurate modelling of the head and mouth is possible using finite
element or boundary element methods [5, 30] for example, the SMIRmethod is valu-
able for application to this problem due its comparative simplicity and the fact that,
if desired, it can also take into account room reverberation. The SMIR method can,
for example, be used as a mouth simulator in the evaluation of a speech enhancement
algorithm [13], instead of the omnidirectional source model that is commonly used.
While the diameter of the mouth plays an important role in determining the filter
characteristic of the vocal tract [8], we assume for the purposes of the scattering
model that the mouth is a point source.

As an illustration of this application, Fig. 4.12 shows the energy of the ATF be-
tween the mouth and a microphone as a function of microphone position at frequen-
cies of 100 Hz and 3 kHz in an anechoic environment. The mouth was positioned
on a sphere of radius 8.75 cm. Only two dimensions, x and y, are shown for brevity
since the z dimension is identical to x and y. We observe that at 100 Hz there is no
scattering and the radiation pattern is omnidirectional so that the sphere has little
effect. At 3 kHz the effect of scattering starts to become more significant, and the
energy at the back of the sphere is reduced while the energy at the front is increased.
Finally the bright spot discussed in Sect. 4.2.3 is particularly apparent at the very
back of the sphere in the bottom plot.
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Fig. 4.12 Sound energy radiation pattern (in dB) at 100 Hz (top) and 3 kHz (bottom). The mouth
position is denoted by a black dot
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4.5 Chapter Summary and Conclusions

Spherical microphone arrays on a rigid baffle are of great interest, due to their numer-
ical robustness and precisely calculable scattering effects. In order to analyze, work
with and develop acoustic signal processing algorithms that make use of a spherical
microphone array, a simulator is needed that can take into account the effects of
the acoustic environment of the array as well as the scattering effects of the rigid
spherical baffle. Accordingly, in this chapter the SMIRmethod was presented for the
simulation of AIRs or ATFs for a rigid spherical microphone array in a reverberant
environment.

We presented a scattering model used to model the rigid sphere, justifying its use
with references to the literature, and provided an overview of the model’s behaviour.
We showed that the error with respect to the theoretical model can be controlled at
the expense of increased computational complexity. Finally we provided a number
of examples showing additional applications of this method.

Appendix: Spatial Correlation in a Diffuse Sound Field

The sound pressure at a position r = (r,Ω) due to a unit amplitude plane wave
incident from direction Ωs is given by [40]

P(r,Ωs, k) =
∞∑

l=0

l∑
m=−l

4πϕ(Ωs)bl(k)Y ∗
lm(Ωs)Ylm(Ω), (4.24)

where ϕ(Ωs) is a random phase term and |ϕ(Ωs)| = 1. Assuming a diffuse sound
field, the spatial cross-correlation between the sound pressure at two positions r =
(r,Ω) and r′ = (r,Ω ′) is given by:

C(r, r′, k) = 1

4π

ˆ

Ωs∈S2
P(r,Ωs, k)P∗(r′,Ωs, k)dΩs

= 1

4π

ˆ

Ωs∈S2

∞∑
l=0

l∑
m=−l

4πbl(k)Y ∗
lm(Ωs)Ylm(Ω)

×
∞∑

l ′=0

l ′∑
m ′=−l ′

4πb∗
l ′(kr)Yl ′m ′(Ωs)Y

∗
l ′m ′(Ω

′)dΩs.

Using the orthonormality property of the spherical harmonics in (2.18) and the ad-
dition theorem in (2.23), we eliminate the cross terms followed by the sum over m
and obtain

http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_2
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C(r, r′, k) = 1

4π

∞∑
l=0

l∑
m=−l

(4π)2|bl(k)|2Ylm(Ω)Y ∗
lm(Ω ′)

= 1

4π

∞∑
l=0

(4π)2|bl(k)|2 2l + 1

4π
Pl(cosΘr,r′)

=
∞∑

l=0

|bl(k)|2(2l + 1)Pl(cosΘr,r′), (4.25)

where Θr,r′ is the angle between r and r′.
In the open sphere case, we can derive a simplified expression for C(r, r′, k).

Firstly, we note that the expression in (4.25) is real, and therefore, for a reason which
will soon become clear, C(r, r′, k) can advantageously be expressed as

C(r, r′, k) = −�
{

−i
∞∑

l=0

|bl(k)|2(2l + 1)Pl(cosΘr,r′)

}
, (4.26)

where � denotes the imaginary part of a complex number. By substituting the open
sphere mode strength bl(k) = i l jl(kr) into (4.26), we obtain

C(r, r′, k) = −�
{

−i
∞∑

l=0

j2l (kr)(2l + 1)Pl(cosΘr,r′)

}
. (4.27)

Using �{h(2)
l (kr)} = jl(kr), where � denotes the real part of a complex number, we

can now write (4.27) as

C(r, r′, k) = −�
{
−i

∞∑
l=0

jl(kr)
[
h(2)

l (kr) − i�{h(2)
l (kr)}

]
(2l + 1)Pl(cosΘr,r′)

}

= −�
{

−i
∞∑

l=0

jl(kr)h(2)
l (kr)(2l + 1)Pl(cosΘr,r′)

}

+ �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
l=0

jl(kr)�{h(2)
l (kr)}(2l + 1)Pl(cosΘr,r′)

︸ ︷︷ ︸
�

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (4.28)

As the expression marked with a � is real, its imaginary part is zero and (4.28) can
be simplified to

C(r, r′, k) = −�
{

−i
∞∑

l=0

jl(kr)h(2)
l (kr)(2l + 1)Pl(cosΘr,r′)

}
. (4.29)
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Finally, using (4.7) and (4.8), we obtain the well-known spatial domain result for
two omnidirectional receivers in a diffuse sound field [20, 31, 39]:

C(r, r′, k) = −�
{

e−ik||r−r′||
k ||r − r′||

}

= sin(k
∣∣∣∣r − r′∣∣∣∣)

k ||r − r′|| . (4.30)
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Chapter 5
Acoustic Parameter Estimation

Acoustic parameter estimation, including the estimation of quantities that describe
the sound field, is a major field of research within acoustic signal processing. Con-
siderable research interest has focused on the estimation of parameters relating to
sound sources, such as the number of active sound sources and their direction of
arrival DOA. It can also be of use to estimate room acoustic parameters, such as
reverberation time, or parameters which relate to both the acoustic environment and
the sound source, such as the signal-to-diffuse energy ratio.

The estimated acoustic parameters canpotentially provide additional a priori infor-
mation to speech enhancement algorithms, thereby improving their performance. In
this chapter, we present methods for estimating two such parameters using spherical
microphone arrays: the DOA of one or more sources (Sect. 5.1) and the signal-to-
diffuse ratio (SDR) (Sect. 5.2).

5.1 Direction of Arrival Estimation

In this section, we address the problem of two-dimensional DOA estimation with
spherical microphone arrays. It should be noted that we refer to this problem as
two-dimensional to refer to estimation of azimuth and elevation but not range, so
that the source-array distance does not figure in our estimation. In this sense, DOA
estimation differs from source localization in which the source position is localized
in all three dimensions. As a consequence, we emphasize that referring to DOA as
a two-dimensional problem does not imply that the source position is confined to
a two-dimensional space. DOA estimates are most commonly used in conjunction
with a beamformer (see Chaps. 6 and 7), in order to determine the steering direction.

Portions of Sect. 5.1.5 and the Appendix were first published in [13], and are reproduced here
with the author’s permission.
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They can also be used to identify noise sources (for example, in a vehicle or aircraft
engine), or for automated camera steering.

One-dimensional DOA estimation (azimuth-only or elevation-only) with micro-
phone arrays has been extensively studied, often based on techniques originally
developed for antenna arrays. Notable approaches include time difference of arrival
(TDOA)–based methods such as GCC-PHAT [19], subspace-based methods such as
ESPRIT [33] or MUSIC [34], and steered response power (SRP) methods [10].

In this section, we will present a number of DOA estimation methods in the
spherical harmonic domain (SHD): an SRP approach, the pseudointensity vector
method, and two subspace-based approaches. We will also present a comparative
performance evaluation of the SRP and pseudointensity vector methods in noisy
reverberant environments. It should benoted thatTDOA–basedmethods are normally
unsuitable for spherical microphone arrays with small radii, due to the insufficient
spacing between individual microphones.

Other SHD DOA estimation methods have recently been proposed, but detailed
discussion of these is beyond the scope of this chapter. In [23, 25], the authors
proposed DOA estimation methods suitable for highly reverberant environments
based on a direct-path dominance test. In [15], a method for moving source tracking
was proposed. In [8], amethod ofDOAestimation in the presence ofmultiple sources
using a clustering approach was proposed. A method of DOA estimation in the
presence of two simultaneous plane waves was also proposed based on a B-format
microphone signal [44].

5.1.1 Problem Formulation

We consider the sound pressure P(k, rq) captured by an array of Q microphones
at positions rq , q ∈ {1, . . . , Q}, where k denotes the wavenumber.1 We assume
that I plane waves impinge upon the array with DOAs Ωı = (θı ,φı ) (where the
angle θı represents inclination, and the angle φı represents azimuth), ı ∈ {1, . . . , I };
these DOAs are the quantities we wish to estimate. The sound pressure P(k, rq) at
a position rq can then be expressed as

P(k, rq) =
I∑

ı=1

X (k, rq ,Ωı )Sı (k) + V (k, rq), (5.1)

where X (k, rq ,Ωı ) denotes the sound pressure at a position rq due to a unit amplitude
plane wave originating from a direction Ωı , Sı (k) denotes the amplitude of the ı th
plane wave, and V (k, rq) denotes a noise signal, used to model sensor noise and
(optionally) reverberation.

1The dependency on time is omitted for brevity. In practice, the signals acquired using a spherical
microphone array are usually processed in the short-time Fourier transform domain, as explained
in Sect. 3.1, where the discrete frequency index is denoted by ν.

http://dx.doi.org/10.1007/978-3-319-42211-4_3
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When using spherical microphone arrays, it is convenient to work in the SHD
[22, 30], instead of the spatial domain. We assume error-free spatial sampling, and
refer the reader to Chap.3 for information on spatial sampling and aliasing. By
applying the complex spherical harmonic transform (SHT) to the signal model in
(5.1), we obtain the SHD signal model

Plm(k) =
I∑

ı=1

Xlm(k,Ωı )Sı (k) + Vlm(k), (5.2)

where Plm(k), Xlm(k,Ωı ) and Vlm(k) are respectively the SHTs of the spatial domain
signals P(k, rq), X (k, rq ,Ωı ) and V (k, rq), as defined in (3.6), and are referred to as
eigenbeams to reflect the fact that the spherical harmonics are eigensolutions of the
wave equation in spherical coordinates [39]. The order and degree of the spherical
harmonics are respectively denoted as l and m.

The eigenbeams Plm(k), Xlm(k,Ωı ) and Vlm(k) are a function of the frequency-
dependent mode strength bl(k). The mode strength captures the dependence of the
eigenbeams on the array properties (radius, microphone type, configuration). Mode
strength expressions for two common types of arrays, the open and rigid arrays with
omnidirectional microphones, are given in Sect. 3.4.2. To cancel this dependence, we
divide the eigenbeams by the mode strength (as in [27]), thus giving mode strength
compensated eigenbeams, and the SHD signal model is then written as

P̃lm(k) =
[√

4πbl(k)
]−1

Plm(k) (5.3a)

=
I∑

ı=1

X̃lm(k,Ωı )Sı (k) + Ṽlm(k), (5.3b)

where P̃lm(k), X̃lm(k,Ωı ) and Ṽlm(k) respectively denote the eigenbeams Plm(k),
Xlm(k,Ωı ) and Vlm(k) after mode strength compensation. It should be noted that
the mode strength compensation can also be applied directly to the microphone
signals. The design of such equalization filters is beyond the scope of this book. The
eigenbeam X̃lm(k,Ωı ), which is due to a unit amplitude plane wave, is given by
dividing the expression in (3.22a) by the mode strength bl(k) to yield

X̃lm(Ωı ) = Y ∗
lm(Ωı ), (5.4)

where Ylm(Ωı ) denotes the complex spherical harmonic2 of order l and degree m
evaluated at an angleΩı , as defined in (2.14).Weobserve that X̃lm(Ωı ) is independent
of frequency due to the mode strength compensation process, and depends only on
the DOA Ωı .

2If the real SHT is applied instead of the complex SHT, the complex spherical harmonics Ylm used
throughout this chapter should be replaced with the real spherical harmonics Rlm , as defined in
Sect. 3.3.

http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_3


68 5 Acoustic Parameter Estimation

For convenience, we express (5.3b) in vector/matrix notation, where the SHD
vectors have length N = (L + 1)2, the total number of eigenbeams from order l = 0
to l = L:

p̃(k) = X̃(�) s(k) + ṽ(k), (5.5)

where

p̃(k) = [
P̃00(k), P̃1(−1)(k), P̃10(k), P̃11(k), P̃2(−2)(k), . . . , P̃LL(k)

]T
, (5.6)

ṽ(k) = [
Ṽ00(k), Ṽ1(−1)(k), Ṽ10(k), Ṽ11(k), Ṽ2(−2)(k), . . . , ṼLL(k)

]T
, (5.7)

s(k) = [S1(k), S2(k), . . . , SI (k)]
T , (5.8)

� = [Ω1, Ω2, . . . ,ΩI ]
T , (5.9)

X̃(�) is the array manifold matrix given by

X̃(�) = [
x̃(Ω1)

∣∣ x̃(Ω2)
∣∣ · · · ∣∣ x̃(ΩI )

]
(5.10)

and x̃(Ωı ) is the array manifold vector given by

x̃(Ωı ) = [
X̃00(Ωı ), X̃1(−1)(Ωı ), . . . , X̃ LL(Ωı )

]T
, ı ∈ {1, . . . , I }. (5.11)

The ordering of the orders and degrees in (5.11) is consistent with the ordering com-
monly used in Ambisonics. The Ambisonic channel number (ACN) corresponding
to order l and degree m is given by l(l + 1) + m [4].

5.1.2 Steered Response Power

A conventional DOA estimation method in the spatial domain involves computing a
map of the SRP, which is obtained by determining the output power of a beamformer
as a function of the steering direction. Assuming that only a single source is active
in each time-frequency bin (W-disjoint orthogonality [3, 29]), the DOA is given by
the direction with maximum power.

The output of an Lth-order SHD beamformer steered in a direction Ωu can be
expressed as [32, Eq.11.41]

Z(k,Ωu) =
L∑

l=0

l∑
m=−l

W ∗
lm(k,Ωu)Plm(k) (5.12)

whereWlm(k,Ωu) denotes the beamformer weights. The SRP method can be imple-
mented using any beamformer, such as the signal-dependent minimum variance
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distortionless response (MVDR) beamformer used in [37], or the signal-independent
plane-wave decomposition (PWD) beamformer used in [14]. The reader is referred
to Chaps. 6 and 7 for details of beamformers that could be suitable for this purpose.

A narrowband power map PSRP(k,Ω) at a wavenumber k is given by

PSRP(k,Ω) = |Z(k,Ω)|2 . (5.13)

If only a single source is active at a particular time instant, a smoothed broad-
band power map PSRP(Ω) can be obtained by averaging the power |Z(k,Ω)|2 over
wavenumbers3 from Ks to Ke:

PSRP(Ω) =
∫ Ke

Ks

βZ (k) |Z(k,Ω)|2dk, (5.14)

where βZ (k) is a frequency-dependent weighting function, such as an A-weighting
function [9]. The weighting function should usually be chosen based on the spec-
tral characteristics of the active source and noise. The power map can additionally
be smoothed over time; if the source is moving, this smoothing trades off DOA
estimation accuracy against time resolution.

A narrowband estimate Ω̂s(k) of the DOA is then given by the direction with
highest power:

Ω̂s(k) = argmax
Ω

PSRP(k,Ω). (5.15)

Alternatively, a broadband estimate Ω̂s is obtained from the smoothed broadband
power map as

Ω̂s = argmax
Ω

PSRP(Ω). (5.16)

Whenmultiple planewaves are present (I > 1), the DOAs are given by the I maxima
of the power map PSRP.

5.1.3 Intensity-Based Method

In acoustics, sound intensity is a measure of the flow of sound energy through a
unit area perpendicular to the direction of sound propagation per unit time [20]. The
(active) intensity vector I(r, k) at a position r, introduced in Sect. 2.4, indicates the
magnitude and direction of the transport of acoustical energy, and is related to the
(scalar) sound pressure P and the particle velocity vector v via (2.33) [6]

3In practice, since the processing is performed in the short-time Fourier transform domain, this
integral is approximated with a sum over discrete frequency indices ν.

http://dx.doi.org/10.1007/978-3-319-42211-4_6
http://dx.doi.org/10.1007/978-3-319-42211-4_7
http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_2
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I(r, k) = 1

2
� {

P(r, k) · v∗(r, k)
}
, (5.17)

where �{·} denotes the real part of a complex number.
We again assume that at each time-frequency instant, only a single plane wave is

present with DOA Ω1. The particle velocity vector is then given by (2.34) [5, p. 31]

v(r, k) = − P(r, k)
ρ0c

u(r, k), (5.18)

where c is the speed of sound in the medium, ρ0 is the ambient density, and u is a unit
vector pointing from r towards the acoustic source (in a direction Ω1). As a result,
the intensity vector points in the opposite direction to the vector u.

Various techniques for measuring the intensity vector are discussed in Sect. 2.4.
Estimating the intensity vector using a spherical microphone array composed of pres-
sure microphones is of practical interest, since the numerous pressure microphones
can then also be used for acoustic signal enhancement.

In [14], it was proposed to estimate the DOA based on the direction of the
pseudointensity vector, which is conceptually similar to the intensity vector, but
is calculated using the zero- and first-order eigenbeams Plm(k) (l = 0, 1). The
pseudointensity vector I(k) is defined as

I(k) = 1

2
�
⎧⎨
⎩P̃00(k)

⎡
⎣ P∗

x (k)
P∗
y (k)

P∗
z (k)

⎤
⎦
⎫⎬
⎭ , (5.19)

where the first term, P̃00(k), is equal (as shown in theAppendix) to the sound pressure
that would bemeasured were amicrophone to be placed at the centre of the array, and
the second term is a scaled estimate of the particle velocity vector. The components
Px (k), Py(k) and Pz(k) of this vector are dipole signals steered such that the dipoles
are aligned with the x , y and z axes. These dipole signals approximate the pressure
gradient, which is proportional to the particle velocity vector for a single plane
wave [21, 46].

The dipole signals Px (k), Py(k) and Pz(k) are obtained by forming a linear com-
bination of the rotated first-order eigenbeams:

Pa(k) =
1∑

m=−1

Y1m(Ωa)

b1(k)
P1m(k) (5.20a)

=
1∑

m=−1

Y1m(Ωa)P̃1m(k), a ∈ {x, y, z} , (5.20b)

http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_2
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where the division by b1(k) is required to make the beam patterns independent of
wavenumber, and the steering angles Ωa required to align the dipoles with the x , y
and z axes are given by

Ωx = (θx ,φx ) = (π/2,π), (5.21a)

Ωy = (θy,φy) = (π/2,−π/2), (5.21b)

Ωz = (θz,φz) = (π, 0), (5.21c)

in the spherical coordinate system introduced in Sect. 2.2.
A narrowband estimate û(k) of the unit vector pointing from the centre of the

array to the active source is then computed as

û(k) = − I(k)
||I(k)|| , (5.22)

where || · || denotes the 2-norm (Euclidian norm).
These estimates are suitable for applications where DOA estimates are required

for every time-frequency instant; for example, in beamforming (Sect. 9.1). If only a
single source is active at a particular time instant, a broadband estimate with reduced
variance is obtained using a pseudointensity vector I averaged across wavenumbers
from Ks to Ke:

I =
∫ Ke

Ks

βI (k)I(k)dk, (5.23)

where βI (k) is a weighting function similar to βZ (k) in (5.14). Note that even with
βI (k) = 1, ∀k, a higher weight is implicitly given to the pseudointensity vectors
with the highest norm, which are considered to be more reliable for DOA estimation.

The pseudointensity vectors can also be averaged over time, where the time aver-
aging interval will depend on whether multiple sources are present and whether they
are static ormoving. A relatedmethodwas proposed in [15] for single source tracking
using spherical microphone arrays, based on an adaptive principal component analy-
sis of particle velocity vector estimates. In addition, a pseudointensity vector–based
method for DOA estimation with multiple sources was proposed in [8].

The performance of the pseudointensity vector method presented abovemay dete-
riorate in the presence of strong coherent reflections. A pseudointensity vector–based
method that is more robust to such reflections was proposed in [23].

The pseudointensity vector method is related to previous intensity vector–based
DOA estimation approaches [2, 26]. However, the intensity vector was computed
using an acoustic vector sensor, or using the Ambisonic B-format signals in the field
of Directional Audio Coding (DirAC) [2]. The B-format signals are often measured
directly (using an omnidirectional microphone and three dipole microphones) or
with a three or four omnidirectional microphone grid. The eigenbeams used here for
DOA estimation are computed using all of the microphones in a spherical array, of

http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_9
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which there are typically a few dozen, thus providing more robustness to noise that
is incoherent in the SHD (either spatially incoherent noise, or diffuse noise).

5.1.4 Subspace Methods

In subspace-based DOA estimation methods, the vector space of the covariance
matrix of the noisy eigenbeams p̃(k) is decomposed into two orthogonal subspaces:
the signal subspace, and the noise subspace. The N × N covariance matrix � p̃(k)
of the noisy eigenbeams p̃(k) is given by

� p̃(k) = E
{
p̃(k) p̃H(k)

}
(5.24a)

= X̃(�)�s(k)X̃H(�) + �ṽ(k), (5.24b)

where E {·} denotes mathematical expectation, �s(k) = E
{
s(k)sH(k)

}
is the I × I

covariance matrix of the plane wave amplitudes s(k) and �ṽ(k) = E
{
ṽ(k )̃vH(k)

}
is

the N × N noise covariance matrix. The noise covariance matrix is assumed to be
diagonal, or equivalently, the noise is assumed to be spatially incoherent or spatially
diffuse. In practice, the expectation in (5.24) is computed using a temporal averaging
process.

We assume that the I plane waves are not mutually coherent; they may, however,
be partially coherent. As a result, the covariance matrix �s(k) has full rank, and the
covariance matrix � p̃(k) can be decomposed in terms of its N eigenvalues λ� p̃,j (k)
and eigenvectors ξj (k), j ∈ {1, . . . , N }:

� p̃(k) =
N∑

j=1

λ� p̃,j (k)ξj (k)ξ
H
j (k). (5.25)

The eigenvalues are assumed to be arranged in decreasing order. The eigenvec-
tors can then be separated into two orthogonal subspaces. The first I eigenvectors,
corresponding to the I largest eigenvalues, define a signal subspace

Us(k) = [
ξ1(k)

∣∣ ξ2(k)
∣∣ · · · ∣∣ ξ I (k)

]
, (5.26)

while the remaining eigenvectors, corresponding to the N − I smallest eigenvalues,
define a noise subspace

Uv(k) = [
ξ I+1(k)

∣∣ ξ I+2(k)
∣∣ · · · ∣∣ ξN (k)

]
. (5.27)

The signal subspace contains both a signal component and a noise component,
whereas the noise subspace does not contain any signal component [45]. We assume
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the number of plane waves I is known a priori; this quantity can be estimated using
the algorithm presented in [41], for example.

Subspace-based DOA estimation methods take advantage of the fact that the
eigenvectors ξj , j ∈ {1, . . . , I } are linear combinations of the arraymanifold vectors
x̃(Ωı ), ı ∈ {1, . . . , I } [39], that is,

span
{
Us(k)

} = span
{
X̃(�)

}
. (5.28)

On the other hand, any vector in the signal subspace is orthogonal to the noise
subspace.

If two or more of the I plane waves are mutually coherent, as they may be in a
reverberant environment where some of the plane waves correspond to reflections of
the directional signal(s), the covariance matrix �s(k) is rank deficient, that is,

rank {�s(k)} < I. (5.29)

In this case, the arraymanifold vectors x̃(Ωı ) no longer span the signal subspace, and
only the DOAs corresponding to the plane waves that are not mutually coherent can
be estimated. Spatial and frequency smoothing techniques to overcome this problem
with subspace-based methods are proposed in [17, 18, 37].

EB-MUSIC

The multiple signal classification (MUSIC) technique [35] is based on the fact that
the noise subspace is orthogonal to the array manifold vectors. Hence, the projection
of the vectors x̃(Ωı ), ı ∈ {1, . . . , I } onto the noise subspace is zero. In the SHD, the
EB-MUSIC pseudospectrum is defined as [32]

PMUSIC(k,Ω) = 1

x̃H(Ω)Uv(k)UH
v (k)x̃(Ω)

(5.30)

The Ω values corresponding to the I maxima of PMUSIC(k,Ω) are the DOAs we
wish to estimate. A sample plot of the EB-MUSIC pseudospectrum obtained using
eigenbeams up to order L = 3 is shown in Fig. 5.1 for plane waves at (135◦, 90◦)
and (45◦, 270◦).

This approach provides accurateDOAestimates, but requires an exhaustive search
of the two-dimensional solution space, making it computationally inefficient [32].

EB-ESPRIT

The estimation of signal parameters via rotational invariance techniques (ESPRIT)
was first proposed in the spatial domain in [33]. A similar technique, EB-ESPRIT
(eigenbeam-ESPRIT), was later proposed in the SHD in [40, 41].

In the spatial domain, ESPRIT takes advantage of a shift invariance property;
in a similar way, EB-ESPRIT is based on a recurrence relation for the associated
Legendre functions Plm :



74 5 Acoustic Parameter Estimation

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

160

180

In
cl

in
at

io
n 

θ 
(d

eg
re

es
)

Azimuth φ (degrees)

EB−MUSIC pseudospectrum in dB

0

5

10

15

20

25

Fig. 5.1 Sample plot of the EB-MUSIC pseudospectrum as a function of inclination and azimuth
for two plane waves. The two peaks correspond to the DOAs of the plane waves

2m cot (θ)Plm(cos θ) = (m − l − 1)(l +m)Pl(m−1)(cos θ)−Pl(m+1)(cos θ). (5.31)

In this section, we work only with eigenbeams of a single, fixed order L (L ≥ 2),
of which there are 2L+1. Accordingly, quantities that are based on these eigenbeams
are denoted with a subscript L . Let x̃L(Ω) denote the last 2L + 1 elements of the
array manifold vector x̃(Ω), or equivalently,

x̃L(Ω) = [
X̃ L(−L)(Ω), . . . , X̃ L(L−1)(Ω), X̃ LL(Ω)

]T
. (5.32)

We can now form three overlapping subarrays of length 2L − 1, as illustrated in
Fig. 5.2, with manifold vectors given by

x̃(il )
L (Ω) = �(il ) D0 x̃L(Ω), il ∈ {−1, 0, 1}, (5.33)

where the selection matrices �(−1), �(0) and �(1) extract the first, middle and last
2L − 1 elements from D0 x̃L(Ω), and

D0 = diag
{
(−1)L , (−1)L−1, . . . , (−1)0, 1, . . . , 1L−1, 1L

}
. (5.34)

The (2L − 1) × I subarray manifold matrices are given by

X̃(il )
L (�) =

[
x̃(il )
L (Ω1)

∣∣∣ · · ·
∣∣∣x̃(il )

L (ΩI )
]
, il ∈ {−1, 0, 1}. (5.35)

Using the recurrence relation for the associated Legendre functions (5.31), it can be
shown that the subarray manifold matrices are related via the recurrence relation [41]
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Fig. 5.2 Subarrays for EB-ESPRIT algorithm. The eigenbeams are all of order L; the numbers
shown indicate the degree of the eigenbeams

D1X̃
(0)
L (�) = D2X̃

(−1)
L (�)�(�) + D3X̃

(1)
L (�)�∗(�), (5.36)

where the I × I steering matrix �(�) is given by

�(�) = diag {μ(Ω1), . . . ,μ(ΩI )} , (5.37)

and

μ(Ωı ) = tan θı e
−iφı , ı ∈ {1, . . . , I }. (5.38)

The (2L − 1) × (2L − 1) matrices D1, D2 and D3 are defined as [41]

D1 = 2 diag

{ |m|
aLm

}
, (5.39a)

D2 = diag

{
(m − L − 1)(L + m)

aL(m−1)

}
, (5.39b)

D3 = diag

{
1

aL(−L+2)
,

1

aL(−L+1)
, . . . ,

1

aL0
,

−1

aL1
,

1

aL2
, . . . ,

1

aLL

}
, (5.39c)

with m ∈ {−(L − 1), . . . , L − 1} and where aLm is the angular-independent portion
of the spherical harmonics, i.e.,

aLm =
√
2L + 1

4π

(L − m)!
(L + m)! . (5.40)
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Let p̃L(k) denote the vector composed of the last 2L + 1 elements of the noisy
eigenbeams vector p̃(k). As in (5.25) and (5.26), the columns of the signal sub-
space matrix Us,L are formed from the eigenvectors corresponding to the I largest
eigenvalues of the covariance matrix

� p̃L (k) = E
{
p̃L(k) p̃

H
L (k)

}
. (5.41)

Since the columns of the array manifold matrix

X̃L(�) = [
x̃L(Ω1)

∣∣x̃L(Ω2)
∣∣ · · · ∣∣x̃L(ΩI )

]
(5.42)

span the signal subspace, X̃L is related to the signal subspace matrix Us,L via the
expression

Us,L(k) = X̃L(�)T(k), (5.43)

whereTmaybe any non-singular I× I matrix. The subarray signal subspacematrices
U(il )

s,L are then computed as

U(il )
s,L(k) = �(il ) Us,L(k), il ∈ {−1, 0, 1} (5.44a)

= �(il ) X̃L(�)T(k). (5.44b)

As a result, the array manifold matrix recurrence relation (5.36) can be expressed as

D1U
(0)
s,L(k) =

[
D2U

(−1)
s,L (k)

∣∣∣D3U
(1)
s,L(k)

]
︸ ︷︷ ︸

�

[
�T(k)
�H(k)

]
, (5.45)

where

�(k) = T−1�(k)T (5.46)

and the star (�) identifies a matrix for later cross-referencing.
Finally, by solving (5.45) in a least squares or total least squares sense, an estimate

of � can be obtained. As the eigenvalues of �, denoted as λ�,ı , are the elements of
�, an estimate of the azimuths φı and inclinations θı of the I plane waves is obtained
as

θı (k) = tan−1
[∣∣λ�,ı (k)

∣∣] , ı ∈ {1, . . . , I } (5.47a)

φı (k) = arg
[
λ�,ı (k)

]
. (5.47b)

From (5.47a) it is clear that a source with an inclination of θ = π/2 cannot
be localized. In [38], the authors propose to electronically rotate the eigenbeams
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using Wigner-D functions, thereby avoiding this issue, providing that some a priori
knowledge of the source inclination is available. EB-ESPRIT also suffers from a sign
ambiguity problem, since a particular eigenvalue λ�,ı can correspond to a source at
(θı ,φı ) or (π −θı ,π +φı ). This ambiguity can be resolved by computing the SRP in
both these directions, and choosing the direction with maximum power, as proposed
in [38], resulting in only a minimal increase in computational complexity.

EB-ESPRIT is able to resolve amaximum of L−1 planewaves, that is, we require
L ≥ I + 1, due to the dimensions of the starred matrix in (5.45). However, if instead
of considering only the eigenbeams of a single order L (of which there are 2L + 1),
we consider all eigenbeams of order l ∈ {1, . . . , L}, of which there are (L +1)2 −1,
the dimensions of this matrix can be significantly increased. As shown in [38], the
number of resolvable plane waves then increases from L − 1 to 	L2/2
, where 	·

denotes the floor operator.

EB-ESPRIT can also be applied to eigenbeams that have not been mode strength
compensated, that is, Plm(k) instead of P̃lm(k). This is due to the fact that, providing
EB-ESPRIT is applied to eigenbeams of a single order L (as we have done in this
section), the mode strength terms bL(k) cancel in the recurrence relation (5.36).

5.1.5 Results

It is interesting now to evaluate the performance of the algorithms presented in
Sects. 5.1.2 and 5.1.3, namely the SRP and pseudointensity vector methods. Their
performance can be quantified by calculating the angle ε between a unit vector
pointing in the correct direction u, and a unit vector û pointing in the direction
estimated by either of the two methods. The angular estimation error ε is then given
by

ε = cos−1(uTû). (5.48)

Experimental Setup

The performance of the algorithms was evaluated in a simulated environment, where
the true source positions were known precisely. Simulated impulse responses were
obtained using SMIRgen [12], an acoustic impulse response (AIR) simulator for
spherical microphone arrays based on the algorithm presented in Chap. 4.

For these simulations, a Q = 32 microphone array with radius 4.2cm was placed
near the centre of an acoustic space with dimensions 10×8×12m in which a single
source was present. The source signal consisted of a white Gaussian noise sequence.
Spatio-temporally white Gaussian noise was added to the individual microphone
signals in order to obtain an input signal-to-incoherent-noise ratio (iSINR) of 20dB at
the microphone closest to the source, that is, the microphone with the highest iSINR.
The signals were processed in the short-time Fourier transform (STFT) domain with
a sampling frequency of 8kHz and a frame length of 64ms with a 50% overlap
between successive frames.

http://dx.doi.org/10.1007/978-3-319-42211-4_4
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The SRP method was implemented using a PWD beamformer, as presented in
Sect. 6.3.1.1. The power map and pseudointensity vectors were averaged over 5 time
frames, i.e., 192ms of data. No weighting was applied in (5.14) and (5.23), that
is, βZ (k) = βI (k) = 1,∀k, and the average was computed over all frequencies
up to 4kHz. The same number of eigenbeams were used for the SRP as for the
pseudointensity vector method, such that the limit L = 1.

Discussion

Two simulations are now discussed. In the first simulation, the reverberation time T60

was varied between 0 (anechoic room) and 600ms while the source-array distance
was fixed at 2.5m. The room boundary reflection coefficients were computed from
the desired reverberation times using Sabin-Franklin’s formula [28]. With such a
configuration, reverberation times between 300 and 600ms corresponded to direct-
to-reverberant energy ratios between approximately 10 and 0dB. In the second sim-
ulation the source-array distance ranged between 1 and 3m while the reverberation
time was fixed at 450ms.

A statistical analysis of the results of these simulations is shown in Fig. 5.3, based
on Monte Carlo simulations with 100 runs. For each run a new DOA was randomly
selected from a uniform angular distribution around the sphere. The accuracy of the
pseudointensity vector method can be seen to be significantly higher than that of the
SRP method with a small number of beams (266). For a larger number of beams
(3962), the pseudointensity vector method still outperforms the SRP method, but by
a smaller margin. This is still the case even as the source-array distance increases
above 2m and the reverberation time increases above 450ms.

As expected, the accuracy of the pseudointensity vector method increases as the
source-array distance and reverberation time decrease, since both these changes lead
to an increase in the direct-to-reverberant energy ratio. In a purely diffuse sound
field, the average intensity vector is zero [11]. When the direct-to-reverberant energy
ratio is high, the reverberant field is mostly diffuse and causes little bias in the DOA
estimates once they have been averaged over frequency (and optionally over time).

The pseudointensity method requires the computation of the four zero- and first-
order eigenbeams P00(k), P1(−1)(k), P10(k) and P11(k), as well as three weighted
averages Zx (k), Zy(k) and Zz(k) of these eigenbeams. The SRPmethod, on the other
hand, requires computation of these eigenbeams (and potentially more eigenbeams if
L ≥ 2), and additionally as many weighted averages of these eigenbeams as required
to yield the desired power map resolution.

From a computational complexity point of view, the pseudointensity vector
method is therefore equivalent to the SRP method with three beams. However, as
we have seen, very many more beams are necessary for the SRP method to obtain
reasonable accuracy. We note that in practice, it is not efficient to steer hundreds or
thousands of beams indiscriminately in all directions: a coarse grid approach can be
taken at first, to determine the DOA within ±30◦, for example, and then a finer grid
can be applied to the area of interest, thus reducing the amount of unnecessary detail
in directions where the acoustic source cannot be located (based on the results of the
first search).

http://dx.doi.org/10.1007/978-3-319-42211-4_6
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(a)

(b)

Fig. 5.3 Median and standard deviation of the angular errors for the SRP and pseudointensity vector
methods, as a function of reverberation time (a) and source-array distance (b). In a the source-array
distance is 2.5m and in b the reverberation time is 450ms; both of these conditions ensure that
the direct-to-reverberant energy ratio remains above 0dB. Copyright c©Daniel Jarrett. Used with
permission
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5.2 Signal-to-Diffuse Ratio Estimation

The estimation of the SDR at a particular time, frequency and position in a sound
field is useful in a number of acoustic signal processing problems. For instance, when
performing dereverberation, an SDR estimate can be employed in an algorithm to
suppress diffuse energy, which is detrimental to speech intelligibility [24, 36], while
the direct sound and early reflections can be retained. Such an estimate can also be
used to improve the accuracy of DOA estimation algorithms, such as those presented
in Sect. 5.1, by discarding the inaccurate DOA estimates that are obtained when the
sound field is highly diffuse. Finally, the SDR is related to the diffuseness, which is a
key parameter in the description of spatial sound, for example in Directional Audio
Coding (DirAC) [29].

In the spatial domain, SDR estimation has previously been accomplished using
the coherence between a pair of omnidirectional microphones [43], or the coher-
ence between a pair of first-order microphones [42]. However, spherical microphone
arrays typically include significantly more than two microphones. We next present
two methods in the SHD that take advantage of the availability of these additional
microphone signals. We begin with a method based on the pseudointensity vectors
introduced in Sect. 5.1.3, followed by a method based on the coherence between the
eigenbeams.

5.2.1 Problem Formulation

Signal Models

Let the sound pressure X (k, r) measured at a position r be modelled as4 the sum of
a directional signal Xdir, a diffuse signal Xdiff and a sensor noise signal V :

X (k, r) = Xdir(k, r,Ωdir) + Xdiff(k, r) + V (k, r). (5.49)

In the following, we assume that the three signal components can be modelled by
mutually uncorrelated complex Gaussian random variables with zero mean. The
directional signal corresponds to the pressure due to a plane wave incident from
a direction Ωdir = (θdir,φdir), where θdir represents inclination and φdir represents
azimuth. The diffuse signal corresponds to the pressure due to an infinite number
of independent plane waves, equal powers and uniformly distributed DOAs [20].
The powers of the directional and diffuse signals at an omnidirectional reference
microphoneMref (see the Appendix) are respectively denoted as Pdir(k) and Pdiff(k).

When using spherical microphone arrays, it is convenient to work in the SHD [22,
30], instead of the spatial domain. We assume error-free spatial sampling, and refer
the reader to Chap.3 for information on spatial sampling and aliasing. By applying

4As in Sect. 5.1, the dependency on time is omitted for brevity.

http://dx.doi.org/10.1007/978-3-319-42211-4_3
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the complex SHT, the spatial domain signal model in (5.49) can be expressed in the
SHD as

Xlm(k) = Xdir
lm (k,Ωdir) + Xdiff

lm (k) + Vlm(k), (5.50)

where the eigenbeams Xlm(k), Xdir
lm (k), Xdiff

lm (k) and Vlm(k) respectively denote the
SHTs of X (k, r), Xdir(k, r), Xdiff(k, r) and V (k, r), as defined in (3.6).

In the SHD, the directional signal Xdir
lm is given by

Xdir
lm (k,Ωdir) = √

Pdir(k)Adir(k)4πbl(k)Y
∗
lm(Ωdir), (5.51)

where Adir(k) is a complex Gaussian random variable with zero mean and unit
variance such that E

{|Adir(k)|2
} = 1, ∀k, and Ylm(Ωdir) is the complex spherical

harmonic5 of order l and degreem evaluated at an angleΩdir, as defined in (2.14). The
frequency-dependentmode strengthbl(k) captures the dependence of the eigenbeams
on the array properties, and is discussed in Sect. 3.4.2.

The diffuse signal Xdiff
lm can be expressed as

Xdiff
lm (k) =

√
Pdiff(k)

4π

∫
Ω∈S2

Adiff(k,Ω)4πbl(k)Y
∗
lm(Ω)dΩ, (5.52)

where Adiff(k,Ω) are mutually uncorrelated complex Gaussian random variables
with zero mean and unit variance such that E

{|Adiff(k,Ω)|2} = 1, ∀k,Ω and

E
{
Adiff(k,Ω)A∗

diff(k,Ω
′)
} = δΩ,Ω ′ , (5.53)

δ denotes the Kronecker delta defined in (2.19), E{·} denotes mathematical expec-
tation, and the notation

∫
Ω∈S2 dΩ is used to denote compactly the solid angle∫ 2π

φ=0

∫ π

θ=0 sin θdθdφ.
Using the relationship (5.74) between the zero-order eigenbeam X00(k) and the

signal received at the reference microphoneMref, as well as the expressions for the
directional and diffuse signals in (5.51) and (5.52), it can be verified that the powers
of these signals at Mref are respectively given by Pdir and Pdiff.

Signal-to-Diffuse Ratio and Diffuseness

The SDR measures the ratio of the directional to diffuse signal power at a particular
position in the sound field. The SDR Γ at Mref is given by

Γ (k) = E
{|Xdir

00 (k,Ωdir)|2
}

E
{|Xdiff

00 (k)|2} = Pdir(k)

Pdiff(k)
. (5.54)

5As noted earlier in the chapter, if the real SHT is applied instead of the complex SHT, the complex
spherical harmonics Ylm used throughout this chapter should be replaced with the real spherical
harmonics Rlm , as defined in Sect. 3.3.

http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_3
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The diffusenessΨ of the soundfield atMref is defined as the ratio of the directional
signal power Pdir to the total signal power Pdir + Pdiff, i.e.,

Ψ (k) = Pdir(k)

Pdir(k) + Pdiff(k)
= 1

1 + Γ (k)
. (5.55)

The diffuseness takes values between 0 and 1; a value of 0 is obtained when
Γ (k) → ∞, corresponding to a purely directional field; a value of 1 is obtained
when Γ (k) = 0, corresponding to a purely directional field; and a value of 0.5 is
obtained when Γ (k) = 1, that is, when the directional and diffuse signals have equal
power.

In Sects. 5.2.2 and 5.2.3, we describe two methods for estimating the SDR or
diffuseness based on the eigenbeams Xlm(k).

5.2.2 Coefficient-of-Variation Method

The coefficient of variation (CV)method proposed byAhonen and Pulkki [1] exploits
the temporal variation of the active intensity vector I to estimate the diffuseness
Ψ (k). In particular,

• in a purely diffuse field [11],

||E {I(k)} || = 0; (5.56)

• in a purely directional field [7],

||E {I(k)} || = E {||I(k)||} , (5.57)

where || · || denotes the 2-norm (Euclidian norm).

The CV method then estimates the diffuseness as

ΨCV(k) =
√
1 − ‖E {I(k)} ‖

E {‖I(k)‖} . (5.58)

For a purely diffuse field, we have ΨCV = 1, while for a purely directional field,
we have ΨCV = √

1 − 1/1 = 0, as desired. The square root is applied in order to
approximate more accurately the diffuseness [7] defined in (5.55).

As discussed in Sect. 5.1.3, the intensity vector can be approximated (to within
a scaling factor) by the pseudointensity vector, which is computed using a linear
combination of zero- and first-order eigenbeams. The CVmethod can then be applied
to the pseudointensity vectors, and is then referred to as themodified CVmethod [16]
to distinguish it from the original method proposed by Ahonen & Pulkki. As noted in
Sect. 5.1.3, while the intensity vector can be measured directly using acoustic vector
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sensors, the pseudointensity vector is more robust to noise, due to the fact that it is
estimated using all available microphone signals.

5.2.3 Coherence-Based Method

The coherence-based method proposed in [16] exploits the fact that the coherence
between eigenbeams is an increasing function of the SDR. In this section, we derive
expressions for the coherence in both purely directional and purely diffuse fields,
and then derive a relationship between the SDR and the coherence in a mixed field.

The complex coherence γlm,l ′m ′(k) between the eigenbeams Xlm(k) and Xl ′m ′(k)
is defined as

γlm,l ′m ′(k) = Φlm,l ′m ′(k)√
Φlm,lm(k)

√
Φl ′m ′,l ′m ′(k)

, (5.59)

where the power spectral densities (PSDs) Φlm,l ′m ′ are given by

Φlm,l ′m ′(k) = E
{
Xlm(k)X∗

l ′m ′(k)
}
. (5.60)

In a purely directional field, using (5.60) and (5.51), and the fact that
E
{|Adir(k)|2

} = 1, the PSD Φdir
lm,l ′m ′(k) is expressed as

Φdir
lm,l ′m ′(k) = E

{
Xdir
lm (k)

(
Xdir
l ′m ′(k)

)∗}
(5.61a)

= Pdir(k)(4π)2bl(k)b
∗
l ′(k)Y

∗
lm(Ωdir)Yl ′m ′(Ωdir). (5.61b)

By substituting (5.61b) into (5.59), we obtain the directional field coherence γdir
lm,l ′m ′ :

γdir
lm,l ′m ′(k) = bl(k)b∗

l ′(k)Y
∗
lm(Ωdir)Yl ′m ′(Ωdir)

|bl(k)b∗
l ′(k)Y

∗
lm(Ωdir)Yl ′m ′(Ωdir)| . (5.62)

In a purely directional field, the coherence therefore has unit magnitude.
In a purely diffuse field, using (5.60) and (5.52), the PSDΦdiff

lm,l ′m ′(k) is expressed
as

Φdiff
lm,l ′m ′(k) = E

{
Xdiff
lm (k)

(
Xdiff
l ′m ′(k)

)∗}
(5.63a)

= Pdiff(k)4π E

{∫
Ω∈S2

Adiff(k,Ω)bl(k)Y
∗
lm(Ω)dΩ

×
∫

Ω ′∈S2
A∗
diff(k,Ω

′)b∗
l ′(k)Yl ′m ′(Ω ′)dΩ ′

}
. (5.63b)

Using (5.53), the orthonormality of the spherical harmonics (2.18), and the fact that
E
{|Adiff(k,Ω)|2} = 1, (5.63b) can be simplified to

http://dx.doi.org/10.1007/978-3-319-42211-4_2


84 5 Acoustic Parameter Estimation

Φdiff
lm,l ′m ′(k) = Pdiff(k)4π

∫
Ω∈S2

bl(k)b
∗
l ′(k)Y

∗
lm(Ω)Yl ′m ′(Ω)dΩ (5.64a)

= Pdiff(k)4πbl(k)b
∗
l ′(k)δl,l ′δm,m ′ . (5.64b)

By substituting (5.64b) into (5.59), we obtain the diffuse field coherence γdiff
lm,l ′m ′ :

γdiff
lm,l ′m ′(k) = bl(k)b∗

l ′(k)

|bl(k)bl ′(k)|δl,l ′δm,m ′ (5.65a)

=
{

bl (k)b∗
l′ (k)

|bl (k)bl′ (k)| , if (l,m) = (l ′,m ′),
0, otherwise.

(5.65b)

In a purely diffuse field, the coherence between a non-identical pair of eigenbeams
is therefore zero.

We assume the sensor noise V is spatially incoherent and has equal power PN(k)
at each of the Q microphones uniformly distributed on the sphere. The noise eigen-
beams Vlm(k) are therefore also incoherent across l andm, and the noise PSDΦN

lm,l ′m ′
is therefore given by [46, Eq.7.31]

ΦN
lm,l ′m ′(k) = E

{
Vlm(k)V ∗

l ′m ′(k)
}

(5.66a)

= PN(k)
4π

Q
δl,l ′δm,m ′ (5.66b)

=
{
PN(k) 4πQ , if (l,m) = (l ′,m ′),
0, otherwise.

(5.66c)

In a mixed sound field, the directional, diffuse and noise signals are all present.
We assume that they are mutually uncorrelated; hence, the PSD Φlm,l ′m ′ is equal to
the sum of the PSDs in (5.61b), (5.64b) and (5.66c):

Φlm,l ′m ′(k) = E
{
Xlm(k)X∗

l ′m ′(k)
}

(5.67a)

= Φdir
lm,l ′m ′(k) + Φdiff

lm,l ′m ′(k) + ΦN
lm,l ′m ′(k). (5.67b)

We define the noiseless coherence as

γ̊lm,l ′m ′(k) = Φ̊lm,l ′m ′(k)√
Φ̊lm,lm(k)

√
Φ̊l ′m ′,l ′m ′(k)

, (5.68)

where the noiseless PSD Φ̊lm,l ′m ′(k) is defined as Φ̊lm,l ′m ′(k) = Φdir
lm,l ′m ′(k) +

Φdiff
lm,l ′m ′(k). Using (5.61b) and (5.64b), the noiseless PSD can be expressed as

Φ̊lm,l ′m ′(k) = Pdir(k)(4π)2bl(k)b
∗
l ′(k)Y

∗
lm(Ωdir)Yl ′m ′(Ωdir)

+ Pdiff(k)4πbl(k)b
∗
l ′(k)δl,l ′δm,m ′ . (5.69)
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By substituting (5.69) in (5.68), and using (5.54), it can be shown that [16, 42]

γ̊lm,l ′m ′(k) = Γ (k)γdir
lm,l ′m ′(k)clmcl ′m ′√

Γ 2(k)c2lmc
2
l ′m ′ + Γ (k)(c2lm + c2l ′m ′) + 1

, (5.70)

where clm = √
4π|Ylm(Ωdir)|.

The noiseless PSD Φ̊lm,l ′m ′(k) cannot be directly observed; however, with suffi-
cient time averaging, the noise cross PSD ΦN

lm,l ′m ′ [(l,m) �= (l ′,m ′)] will average to
0. The noiseless auto PSD Φ̊lm,lm can be estimated using an estimate of the noise
power PN(k):

Φ̊lm,lm(k) = Φlm,lm(k) − ΦN
lm,lm(k) (5.71a)

= Φlm,lm(k) − PN(k)
4π

Q
. (5.71b)

The SDR is determined by solving for Γ (k) in (5.70), as in [42]:

Γ̂lm,l ′m ′(k) =
G(Ωdir) +

√
G2(Ωdir) + 4

(∣∣γ̊lm,l ′m ′(k)
∣∣−2 − 1

)

2clm(Ωdir)cl ′m ′(Ωdir)
(∣∣γ̊lm,l ′m ′(k)

∣∣−2 − 1
) , (5.72)

where we have defined

G(Ωdir) = clm(Ωdir)

cl ′m ′(Ωdir)
+ cl ′m ′(Ωdir)

clm(Ωdir)
. (5.73)

The DOA Ωdir must be estimated in order to compute the coefficients clm ; for this
purpose, one of the algorithms presented in Sect. 5.1 can be used.

The performance of this coherence-based method depends on which pair of non-
identical eigenbeams is chosen and on the DOA Ωdir. One way of improving the
performance is to compute the coherence between all pairs of non-identical eigen-
beams, instead of the coherence between a single pair of eigenbeams. An SDR
estimate with lower variance is then obtained by computing the weighted average of
the coherences, as in [16] where the weights are given by the geometric average of
the directional signal-to-noise ratio of the eigenbeams involved.

5.2.4 Results

In this section, we provide some illustrative results from themodifiedCVmethod and
the coherence-based method. The signals received by a rigid spherical microphone
array of radius r = 4.2cm were simulated directly in the SHD. The directional
signals consisted of complex white Gaussian noise, originating from a direction
(θdir,φdir) = (90◦, 0◦). The diffuse signals were generated using 1000 plane waves



86 5 Acoustic Parameter Estimation

with uniform DOAs and random phase. The power of the diffuse signals was set
according to the desired SDR. The noise signals consisted of complexwhiteGaussian
noise; its power was set such that a directional-signal-to-noise ratio of 25dB was
obtained at the arbitrarily chosen reference microphone Mref. The received signals
were processed in the STFT domain at a sampling frequency of 8kHz, with a frame
length of 16ms and a 50% overlap between successive frames.

Figure5.4 shows the azimuths of the pseudointensity vectors obtained at a fre-
quency of 1kHz in three sound fields with different SDRs. For clarity, only the
pseudointensity vectors corresponding to the first 100 time frames are shown.
As shown in Fig. 5.4a, in a purely directional field the pseudointensity vectors all
point in the opposite direction to the directional source, as expected (see Sect. 5.1.3).
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Fig. 5.4 Azimuths (in degrees) of the pseudointensity vectors obtained at a frequency of 1kHz
in three different sound fields with varying SDRs. The directional field was due to a plane wave
originating from an azimuth of 0◦; the pseudointensity vector points in the opposite direction to the
sound source. a Purely directional field (infinite SDR), b Purely diffuse field (SDR of 0), c Mixed
field (SDR of 1)
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Fig. 5.5 Absolute coherence |γ00,1(−1)(k)| obtained as a function of frequency in three different
sound fields with varying SDRs. The absolute coherence values were computed for each time-
frequency bin, and averaged over 5 s of data

As shown in Fig. 5.4b, in a purely diffuse field the direction of the pseudointensity
vectors is random, reflecting the fact that the diffuse field is composed of many
plane waves with different DOAs. Finally, as shown in Fig. 5.4c, in a mixed sound
field with an SDR of 0 dB at Mref most of the pseudointensity vectors point in the
opposite direction to the directional source, but there is more variance than in the
purely directional case. From these results, it is clear that the temporal variation of
the pseudointensity vectors can be exploited for SDR estimation.

The absolute coherence |γ00,1(−1)(k)| between the eigenbeams X00(k) and
X1(−1)(k) for these same three sound fields is shown in Fig. 5.5 as a function of
frequency. The absolute coherence values were averaged over 5 s of data. The coher-
ence was computed using (5.59); the expectations were approximated using moving
averages over 20 time frames. As expected, the coherence is highest in a purely
directional field, and lowest in a purely diffuse field. The non-zero coherence in a
purely diffuse field is due to the finite time averaging involved in computing the
expectations. The low coherence at low frequencies (below 250Hz) in directional
fields is due to the low directional signal-to-noise ratio at these frequencies. Further
illustrative results relating to coherence-based SDR estimation can be found in [16].
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5.3 Chapter Summary and Conclusions

The focus of this chapter lies in the estimation of acoustic parameters that can provide
a priori information that is potentially useful to subsequent acoustic signal enhance-
ment algorithms. In the first part of this chapter, algorithms for DOA estimation were
presented: the SRP method, the pseudointensity vector method, and two subspace
methods, EB-MUSIC and EB-ESPRIT. It was noted that the pseudointensity vector
method and EB-ESPRIT have a low computational cost, as they do not require an
exhaustive search of the solution space.

In the second part of the chapter, we introduced two methods for estimating
the SDR of a sound field. The CV method, which exploits the temporal variation
of the intensity vector, only uses zero- and first-order eigenbeams, and has low
computational complexity. The coherence-based method takes advantage of the fact
that the coherence between eigenbeams increases with the SDR. The coherence
can be computed using pairs of eigenbeams of any order; the complexity of the
coherence-based method can be adjusted by changing the number of coherences that
are computed. The best way of estimating the coherence using all of the available
eigenbeams in a computationally efficient way remains an open question at this time.

Appendix: Relationship Between the Zero-Order Eigenbeam
and the Omnidirectional Reference Microphone Signal

Property 5.1 Let Plm(k) denote the SHT, as defined in (3.6), of the spatial domain
sound pressure P(k, r), where r denotes the position (in spherical coordinates) with
respect to the centre of a spherical microphone array with mode strength bl(k). Let
PMref(k) denote the sound pressure which would be measured using an omnidirec-
tional microphone Mref at a position corresponding to the centre of the sphere,
i.e., at the origin of the spherical coordinate system; PMref(k) is then related to the
zero-order eigenbeam P00(k) via the relationship6

PMref(k) = P00(k)√
4π b0(k)

. (5.74)

Proof We assume, without loss of generality,7 that the sound field is composed of
a single unit amplitude spherical wave incident from a point source at a position
rs = (rs,Ωs).

6It should be noted that this relationship is dependent upon the chosen mode strength definition
(see Sect. 3.4.2). If a 4π factor is included in bl (k), as in [31], the relationship becomes PMref (k) =√
4π P00(k)

b0(k)
.

7The operations involved in the proof are linear, and the proof therefore holds for any number of
spherical waves.

http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
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In the absence of the sphere, the sound pressure measured at the origin of the
spherical coordinate system due to a single spherical wave incident from a point
source at a position rs = (rs,Ωs) is given by (4.7), i.e.,

PMref(k) = e−ik||rs||

4π ||rs|| (5.75a)

= e−ikrs

4πrs
. (5.75b)

In the spatial domain, the sound pressure P(k, r) at a position r due to the spherical
wave is given by (4.10), and can be written using (2.23) as

P(k, r) = −ik
∞∑
l=0

i−lbl(k)h
(2)
l (krs)

l∑
m=−l

Y ∗
lm(Ωs)Ylm(Ω), (5.76)

where h(2)
l is the spherical Hankel function of the second kind and of order l. From

the definition of the SHT (3.7), P00(k) is given by

P00(k) =
∫

Ω∈S2
P(k, r)Y ∗

00(Ω)dΩ. (5.77)

By substituting (5.76) into (5.77), we find

P00(k) =
∫

Ω∈S2
−ik

∞∑
l=0

i−lbl(k)h
(2)
l (krs)

l∑
m=−l

Y ∗
lm(Ωs)Ylm(Ω)Y ∗

00(Ω)dΩ. (5.78)

Using the orthonormality of the spherical harmonics (2.18) and the fact that Y00(·) =
1/

√
4π, we can simplify (5.78) to

P00(k) = −ikb0(k)h
(2)
0 (krs)Y

∗
00(Ωs) (5.79a)

= − ik√
4π

b0(k)h
(2)
0 (krs). (5.79b)

Finally, using the fact that h(2)
0 (x) = −e−i x

i x [46, Eq.6.62] and (5.75b), we can
simplify (5.79b) to

P00(k) = ik√
4π

b0(k)
e−ikrs

ikrs
(5.80a)

= √
4π b0(k)

e−ikrs

4πrs
(5.80b)

= √
4π b0(k) PMref(k), (5.80c)

and therefore Property 5.1 holds.

http://dx.doi.org/10.1007/978-3-319-42211-4_4
http://dx.doi.org/10.1007/978-3-319-42211-4_4
http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_2
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Chapter 6
Signal-Independent Array Processing

The process of combining signals acquired by a microphone array in order to ‘focus’
on a signal in a specific direction is known as beamforming or spatial filtering. We
present in this chapter a number of such beamforming methods that are specifically
controlled byweights dependent only on the direction of arrival (DOA) of the desired
source. They are otherwise signal-independent such that they do not depend on the
statistics of the desired or noise signals. We derive maximum directivity and maxi-
mum white noise gain beamformers that establish performance bounds for spherical
harmonic domain (SHD) beamformers. Because the weights of these beamformers
are given by simple expressions, they present the advantages of being straightforward
to implement and of having low computational complexity.

6.1 Signal Model

The sound pressure P captured at a position r = (r,Ω) = (r, θ,φ) (in spherical
coordinates,where θ denotes the inclination andφ denotes the azimuth) on a spherical
microphone array of radius r is commonly expressed as the sum of a desired signal
X and a noise signal V [12, 15]. In the spatial domain, the signal model is expressed
as

P(k, r) = X (k, r) + V (k, r), (6.1)

© Springer International Publishing Switzerland 2017
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94 6 Signal-Independent Array Processing

where k denotes the wavenumber.1 The desired signal X is assumed to be spatially
coherent, while the noise signal V models background noise or sensor noise, for
example, and may be spatially incoherent, coherent or partially coherent.

When using spherical microphone arrays, it is convenient to work in the SHD
[1, 17]. In this chapter, we assume error-free spatial sampling by Q microphones at
positions rq = (r,Ωq), q ∈ {1, . . . , Q}, and refer the reader to Chap.3 for informa-
tion on spatial sampling and aliasing. By applying the complex spherical harmonic
transform (SHT) to the signal model in (6.1), we obtain the SHD signal model

Plm(k) = Xlm(k) + Vlm(k), (6.2)

where Plm(k), Xlm(k) and Vlm(k) are respectively the spherical harmonic transforms
of the spatial domain signals P(k, rq), X (k, rq) and V (k, rq), as defined in (3.6),
and are referred to as eigenbeams to reflect the fact that the spherical harmonics are
eigensolutions of the wave equation in spherical coordinates [26]. The order and
degree of the spherical harmonics are respectively denoted as l and m.

By combining the eigenbeams Plm(k) in a particular way, the noise V can be
suppressed and the desired signal X can be extracted from the noisy mixture P . This
is accomplished using a spatio-temporal filter or beamformer. In the spatial domain,
the output of a beamformer is obtained as the weighted sum of the pressure signals
at each of the microphones [3, 4]; in the SHD, the beamformer output is given by a
weighted sum of the eigenbeams Plm(k) [14, 21]. The output of an Lth-order SHD
beamformer can thus be expressed as [21, Eq.12]2

Z(k) =
L∑

l=0

l∑
m=−l

W ∗
lm(k)Plm(k), (6.3)

where Wlm(k) denotes the beamformer weights and (·)∗ denotes the complex conju-
gate.

Beamformers can either be signal-independent (fixed) or signal-dependent; their
weights are chosen in order to achieve specific performance objectives. Signal-
independent beamformers apply a constraint to a specific steering direction and
optimize the beamformer weights with respect to array performance measures such
as thewhite noise gain (WNG) and directivity. They can also,more generally, attempt
to achieve a specific spatial response in all directions by minimizing the difference
between the beamformer’s spatial response and the desired spatial response, accord-
ing to some distance measure (see [6, Sects. 8.3 and 8.4] for examples). Signal-
dependent beamformers optimize the weights taking into account characteristics of

1The dependency on time is omitted for brevity. In practice, the signals acquired using a spherical
microphone array are usually processed in the short-time Fourier transform domain, as explained
in Sect. 3.1, where the discrete frequency index is denoted by ν.
2We use the complex conjugate weightsW ∗

lm rather than theweightsWlm ; this notational convention
originates in the spatial domain [30].

http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
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Fig. 6.1 Block diagram of a signal-independent beamformer

the desired signal and noise. In this chapter, we will discuss signal-independent
beamformers and later address signal-dependent beamformers in Chap.7.

A block diagram of a signal-independent beamformer is shown in Fig. 6.1.
We begin by capturing the sound pressure signals P(k, rq) at microphones q ∈
{1, . . . , Q}, and applying the SHT to obtain the SHD sound pressure signals, the
eigenbeams Plm(k), gathered together to form a vector p(k). The output Z(k) of the
beamformer is obtained by taking the weighted sum of these eigenbeams, where the
weights Wlm(k,Ωu) depend only on the steering direction Ωu and do not otherwise
depend on the sound pressure signals P .

The signal-independent beamformers presented in this chapter are designed
assuming anechoic conditions with a single active sound source, though these
assumptions are unlikely to be valid in practical use scenarios. Depending on the
distance between this source and the array, the desired signal is either assumed to
consist of a planewave or a sphericalwave.Under farfield conditions, the eigenbeams
of a unit amplitude plane wave incident from a direction Ωs are given by (3.22a).
The SHD sound pressure Xlm(k,Ωs) related to a plane wave with power Ppw(k) can
then be written as [18, 20, 26]

Xlm(k,Ωs) =
√
Ppw(k)bl(k)Y

∗
lm(Ωs), (6.4)

where Ylm(Ωs) denotes the complex spherical harmonic3 of order l and degree m
evaluated at an angle Ωs, as defined in (2.14), and the mode strength bl(k) captures
the eigenbeams’ dependence on the array properties, such as microphone type or
array configuration, and is discussed in more detail in Sect. 3.4.2.

All the beamformers designed in this chapter seek to suppress the noise while
maintaining a distortionless constraint on the signal originating from the steering
direction Ωu. This constraint is expressed as

3If the real SHT is applied instead of the complex SHT, the complex spherical harmonics Ylm used
throughout this chapter should be replaced with the real spherical harmonics Rlm , as defined in
Sect. 3.3.

http://dx.doi.org/10.1007/978-3-319-42211-4_7
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
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L∑
l=0

l∑
m=−l

W ∗
lm(k)bl(k)Y

∗
lm(Ωu) = 1. (6.5)

It is important to note that this distortionless constraint depends only on the
steering direction Ωu. It is different from the distortionless constraint imposed in
Chap.7, which takes into account the complex multipath propagation effects of a
reverberant environment. Using the constraint in (6.5) can be appealing, as it does
not require the estimation of the acoustic transfer functions (ATFs) or relative transfer
functions, however this comes at the expense of sensitivity to errors in the steering
direction and reduced robustness to reverberation.

For convenience, the SHD signal model in (6.2) can also be expressed in vector
form as

p(k) = x(k) + v(k) (6.6)

where the SHD signal vector p(k) of length (L + 1)2 is defined as

p(k) = [
P00(k) P1(−1)(k) P10(k) P11(k) P2(−2)(k) · · · PLL(k)

]T
,

and x(k) and v(k) are defined similarly to p(k). The beamformer output signal Z(k)
can be expressed as

Z(k) = wH(k)p(k), (6.7)

where the filter weights vector is defined as

w(k) = [
W00(k) W1(−1)(k) W10(k) W11(k) W2(−2)(k) · · · WLL(k)

]T
.

In matrix form the desired signal is written as

x(k,Ωs) =
√
Ppw(k)B(k)y∗(Ωs), (6.8)

where the vector of spherical harmonics y(Ωs) of length (L + 1)2 is defined as

y(Ωs) = [
Y00(Ωs) Y1(−1)(Ωs) Y10(Ωs) Y11(Ωs) · · · YLL(Ωs)

]T
, (6.9)

and the (L + 1)2 × (L + 1)2 matrix of mode strengths B(k) is defined as

B(k) = diag {b0(k), b1(k), b1(k), b1(k), b2(k), . . . , bL(k)} , (6.10)

therefore B(k) consists of 2l + 1 repetitions of bl(k) for l ∈ {0, . . . , L} along its
diagonal. Finally, the distortionless constraint is given by

wH(k)B(k)y∗(Ωu) = 1. (6.11)

http://dx.doi.org/10.1007/978-3-319-42211-4_7
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6.2 Design Criteria

In this section, we introduce a number of measures that can be used to design optimal
beamformers as in Sect. 6.3. It should be noted that these measures are defined with
respect to the signals with physical significance, namely the spatial domain signals,
and notwith respect to the eigenbeams.Nevertheless, thesemeasureswill still depend
on the eigenbeams as they form a part of the spherical harmonic expansion (SHE)
of the spatial domain signals.

6.2.1 Directivity

Directivity is a measure of a beamformer’s spatial selectivity and quantifies its ability
to suppress sound waves that do not originate from a specifically chosen steering
direction. It is defined as the ratio of the power of the beamformer output due to a
plane wave arriving from the steering direction Ωu to the power of the beamformer
output averaged over all directions [28]. The directivity D(k) is therefore written as

D(k) = |Z(k,Ωu)|2
1
4π

∫
Ω∈S2 |Z(k,Ω)|2 dΩ (6.12)

=
∣∣∣∑L

l=0

∑l
m=−l W

∗
lm(k)Xlm(k,Ωu)

∣∣∣2
1
4π

∫
Ω∈S2

∣∣∣∑L
l=0

∑l
m=−l W

∗
lm(k)Xlm(k,Ω)

∣∣∣2 dΩ
, (6.13)

where the notation
∫
Ω∈S2 dΩ is used to denote compactly the solid angle

∫ 2π
φ=0

∫ π

θ=0 sin
θdθdφ.Applying thedistortionless constraint (6.5), andby substituting the expression
for a plane wave (6.4) into (6.12), we find

D(k) = 4πPpw(k)∫
Ω∈S2

∣∣∣∑L
l=0

∑l
m=−l W

∗
lm(k)

√
Ppw(k)bl(k)Y ∗

lm(Ω)

∣∣∣2 dΩ
= 4π∫

Ω∈S2

∣∣∣∑L
l=0

∑l
m=−l W

∗
lm(k)bl(k)Y ∗

lm(Ω)

∣∣∣2 dΩ
. (6.14)

Using the orthonormality of the spherical harmonics (2.18), this can be simplified to4

D(k) = 4π

(
L∑

l=0

l∑
m=−l

∣∣W ∗
lm(k)bl(k)

∣∣2
)−1

, (6.15)

4It should be noted that this simplified expression is only valid for beamformers that satisfy the
distortionless constraint given in (6.5). It therefore does not apply to the plane-wave decomposition
beamformer presented in Sect. 6.3.1.1, which satisfies a scaled version of this constraint.

http://dx.doi.org/10.1007/978-3-319-42211-4_2
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or in vector form

D(k) = 4π
∣∣∣∣B(k)w∗(k)

∣∣∣∣−2
, (6.16)

where ||·|| denotes the 2-norm. The directivity is therefore a function of the array
properties, such as radius or microphone type, and the beamformer weights Wlm(k).

The directivity is frequently expressed in dB and is then referred to as the direc-
tivity index (DI),

DI(k) = 10 log10 D(k). (6.17)

6.2.2 Front-to-Back Ratio

The front-to-back ratio is another alternative measure of a beamformer’s spatial
selectivity and quantifies its ability to differentiate between sound waves that orig-
inate from the front and the back. It is defined as the ratio of the average power of
the beamformer output due to a plane waves arriving from the front to the average
power of the beamformer output due to plane waves arriving from the back. The
front-to-back ratio F(k) is therefore written as [7]

F(k) =
1
4π

∫
Ω∈S2

F

∣∣∣∑L
l=0

∑l
m=−l W

∗
lm(k)Xlm(k,Ω)

∣∣∣2 dΩ
1
4π

∫
Ω∈S2

B

∣∣∣∑L
l=0

∑l
m=−l W

∗
lm(k)Xlm(k,Ω)

∣∣∣2 dΩ
, (6.18)

where for a beamformer steered to (π/2,π/2) we have

∫
Ω∈S2

F

dΩ =
∫ π

φ=0

∫ π

θ=0
sin θdθdφ (6.19)

and ∫
Ω∈S2

B

dΩ =
∫ 2π

φ=π

∫ π

θ=0
sin θdθdφ. (6.20)

6.2.3 White Noise Gain

White noise gain (WNG) is a measure of a beamformer’s robustness against sensor
noise and errors in microphone placement and steering direction [10], and is defined
as the array gain in the presence of spatially incoherent noise [28], i.e., the ratio of
the signal-to-noise ratio (SNR) at the beamformer output (oSNR) to the SNR at the
beamformer input (iSNR).
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We now derive the WNG for a spherical microphone array employing a set of
microphones uniformly distributed on the sphere. The desired signal power is differ-
ent at each microphone, particularly for a rigid sphere where the scattering effects
depend on the angle of incidence [16].When calculating the iSNR, the desired signal
power is therefore averaged over the sphere.

Let us assume that the noise at each microphone has equal power σ2
v(k). The input

SNR is then given by

iSNRw(k) =
1
4π

∫
Ω∈S2 |X (k, r)|2 dΩ

σ2
v(k)

(6.21a)

=
1
4π

∫
Ω∈S2

∣∣∣∑∞
l=0

∑l
m=−l Xlm(k)Ylm(Ω)

∣∣∣2 dΩ
σ2

v(k)
, (6.21b)

where (6.21b) is obtained using the spherical harmonic decomposition of X (k, r).
Assuming plane-wave incidence fromadirectionΩs, by substituting (6.4) into (6.21),
we find

iSNRw(k) =
∫
Ω∈S2

∣∣∣∑∞
l=0

∑l
m=−l

√
Ppw(k)bl(k)Y ∗

lm(Ωs)Ylm(Ω)

∣∣∣2 dΩ
4πσ2

v(k)
. (6.22)

Using Unsöld’s theorem [29], a special case of the spherical harmonic addition
theorem (2.23), and the orthonormality of the spherical harmonics, we simplify
(6.22) to

iSNRw(k) =
∑∞

l=0

∑l
m=−l

∣∣√Ppw(k)bl(k)Y ∗
lm(Ωs)

∣∣2
4πσ2

v(k)
(6.23a)

= Ppw(k)
∑∞

l=0 |bl(k)|2 (2l + 1)

(4π)2σ2
v(k)

. (6.23b)

The input SNR is therefore a function of the plane wave power Ppw(k), the array
properties, via the mode strength bl(k), and the noise power σ2

v(k).
The output SNR is given by

oSNRw(k) =
∣∣∣∑L

l=0

∑l
m=−l W

∗
lm(k)Xlm(k)

∣∣∣2

E

{∣∣∣∑L
l=0

∑l
m=−l W

∗
lm(k)Vlm(k)

∣∣∣2
} . (6.24)

Applying the distortionless constraint (6.5), this reduces to

http://dx.doi.org/10.1007/978-3-319-42211-4_2
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oSNRw(k) = Ppw(k)

E

{∣∣∣∑L
l=0

∑l
m=−l W

∗
lm(k)Vlm(k)

∣∣∣2
} . (6.25)

With Q microphones uniformly distributed on the sphere, the cross power spectral
density of the noise is given by [31, Eq.7.31]

E
{
Vlm(k)V ∗

l ′m ′(k)
} = σ2

v(k)
4π

Q
δl,l ′δm,m ′ , (6.26)

where δ denotes the Kronecker delta, and oSNR simplifies to

oSNRw(k) = Ppw(k)

(
4π

Q
σ2

v(k)
L∑

l=0

l∑
m=−l

∣∣W ∗
lm(k)

∣∣2
)−1

. (6.27)

The output SNR is a function of the beamformer weights Wlm(k), the plane wave
power Ppw(k), the noise power σ2

v(k), and the beamformer order L . The beamformer
order can be increased by adding microphones, as discussed in Sect. 3.4.

Finally, the WNG can be expressed as

WNG(k) = oSNRw(k)

iSNRw(k)
(6.28a)

= 4πQ

||w(k)||2 ∑∞
l=0 |bl(k)|2 (2l + 1)

. (6.28b)

The WNG is a function of the beamformer weights Wlm(k), array order L and
the array properties. As expected, it is also an increasing function of the num-
ber of microphones Q. In the case of an open sphere, bl(k) = i l jl(kr), and since∑∞

l=0 | jl(kr)|2 (2l + 1) = 1 [2, 13], the WNG is given by the simple expression

WNG(k) = 4πQ

||w(k)||2 . (6.29)

6.2.4 Spatial Response

The output of the beamformer in the presence of a single unit amplitude plane wave
originating from a DOA Ω is given by

B(k,Ω) = wH(k)B(k)y∗(Ω), (6.30)

http://dx.doi.org/10.1007/978-3-319-42211-4_3
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Fig. 6.2 Illustrative example of the magnitude of a spatial response B(k,Θ) as a function of the
angle Θ between the steering direction and DOA

and is known as the spatial response of the beamformer. The square magnitude of the
spatial response B(k,Ω) is referred to as the beam pattern [4].5 The beam pattern
describes the beamformer’s ability to select signals originating from a direction
of interest, while suppressing signals that do not. Beam patterns typically exhibit
multiple peaks or lobes; the largest lobe, in the direction of interest, is referred to as
the main lobe, while the other lobes are referred to as sidelobes. Due to the effects
of spatial aliasing, some sidelobes may have an amplitude equal to that of the main
lobe, and they are then referred to as grating lobes [27].

Due to the spherical symmetry of the SHD, the beam pattern can also be expressed
as a function of the angle between the DOA Ω and the beamformer’s steering direc-
tion Ωu, denoted as Θ . Ideally, the response in the steering direction, B(k,Θ = 0),
should be as large as possible compared to the response in other directions, i.e.,
the sidelobe levels should be minimized. We refer to the width of the region that
has a higher response than the maximum sidelobe level as the main lobe width,6 as
illustrated in Fig. 6.2.

5Note that in some publications, such as [28], B(k,Ω) is referred to as the beam pattern, and its
square magnitude is referred to as the power pattern.
6The main lobe width is sometimes also defined as the width of the region where the beam pattern
is no less than half of its maximum value, or equivalently, no more than 3dB below its maximum
value.
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6.3 Signal-Independent Beamformers

Having established our signal model in Sect. 6.1, we now develop a number of signal-
independent beamformers based on the design criteria introduced in Sect. 6.2. The
beam patterns of all the beamformers presented in this section are rotationally sym-
metric about the steering direction.

6.3.1 Farfield Beamformers

In this section, we derive three beamformers suitable for use in farfield conditions:
a maximum directivity beamformer, a maximumWNG beamformer, and a multiply
constrained beamformer.

6.3.1.1 Maximum Directivity Beamformer

The beamformer that maximizes the directivity while imposing a distortionless con-
straint in the steering direction satisfies

max
w(k)

D(k) subject to wH(k)B(k)y∗(Ωu) = 1,

or equivalently,

min
w(k)

∣∣∣∣B(k)w∗(k)
∣∣∣∣2 subject to wH(k)B(k)y∗(Ωu) = 1,

where y(Ωu) is the vector of spherical harmonics defined in (6.9).
Following the approach proposed by Brandwood [5], if we use a Lagrange mul-

tiplier to adjoin the constraint to the cost function, the weights of the maximum
directivity beamformer are then given by

wmaxDI(k) = argmin
w(k)

L(w(k),λ), (6.31)

where L is the complex Lagrangian given by

L(w(k),λ) = [
B(k)w∗(k)

]H [
B(k)w∗(k)

]
+ λ

(
wH(k)B(k)y∗(Ωu) − 1

) + λ∗ (
yT(Ωu)B*(k)w(k) − 1

)
(6.32)

and λ is the Lagrangemultiplier. Setting the gradient ofL(wmaxDI(k),λ)with respect
to w∗

maxDI to zero yields
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∇w∗
maxDI

L(wmaxDI(k),λ) = 0N
B(k)B∗(k)wmaxDI(k) + λB(k)y∗(Ωu) = 0N , (6.33)

where 0N is a column vector of N zeros. Using the constraint in (6.31), we then find

wmaxDI(k) = [B∗(k)]−1 y∗(Ωu)

||y(Ωu)||2
. (6.34)

Using Unsöld’s theorem [29], this simplifies to

wmaxDI(k) = 4π

(L + 1)2
[
B∗(k)

]−1
y∗(Ωu), (6.35)

or in scalar form

WmaxDI
lm (k) = 4π

(L + 1)2
Y ∗
lm(Ωu)

b∗
l (k)

. (6.36)

Awell-known farfield SHD beamformer is the plane-wave decomposition (PWD)
beamformer, also sometimes known as a regular beamformer [24], whose weights
are given by [22]

wPWD(k) = [
B∗(k)

]−1
y∗(Ωu). (6.37)

As the (frequency-independent) scaling factor does not affect the directivity, the
PWD beamformer is also a maximum directivity beamformer. The reason for the
name PWD will become clear in the next paragraph.

Assuming a single unit amplitude plane wave is incident upon the array from a
direction Ωs, the output Z(k) of the PWD beamformer is given by

Z(k) = wH(k)B(k)y∗(Ωs) (6.38a)

= yT(Ωu)B−1(k)B(k)y∗(Ωs) (6.38b)

=
L∑

l=0

l∑
m=−l

Ylm(Ωu)Y
∗
lm(Ωs) (6.38c)

=

⎧⎪⎪⎨
⎪⎪⎩

(L + 1)2

4π
if Ωs = Ωu,

(L + 1)

4π(cosΘ − 1)

[
PL+1(cosΘ) − PL(cosΘ)

]
otherwise,

(6.38d)

whereΘ is the angle betweenΩs andΩu andPL is the Legendre polynomial of order
L . TheChristoffel summation formula [11, Sect. 8.915] is used to obtain (6.38d) [20].
The beamformer output Z(k) reaches its maximumwhenΘ = 0, such that the steer-
ing direction Ωu is equal to the arrival direction Ωs, as desired. We normalize the
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Fig. 6.3 Normalized beamformer output as a function of the beamformer order L and Θ , the angle
between the beamformer steering direction and the DOA

beamformer output with respect to its value for Θ = 0, and plot it as a function of
Θ in Fig. 6.3. We see that as L increases, the distribution of Z(k) narrows around
Θ = 0, tending towards a delta function for L → ∞ [31, Eq.6.47].

The directivity of the maximum directivity beamformer is given by substituting
(6.35) into (6.16)7

D(k) = 4π

∣∣∣∣
∣∣∣∣ 4π

(L + 1)2
B(k)B−1(k)y(Ωu)

∣∣∣∣
∣∣∣∣
−2

(6.39a)

= (L + 1)4

4π
||y(Ωu)||−2 (6.39b)

= (L + 1)2. (6.39c)

The directivity of the maximum directivity beamformer is therefore frequency-
independent and only depends on the beamformer order L .

Since at least (L + 1)2 microphones are required to sample a sound field up to
order L without spatial aliasing, the directivity is upper bounded by the number of
microphones Q. This is also themaximumdirectivity of a spatial domain beamformer
based on a standard linear array [28, Eq.2.160].

TheWNG of the maximum directivity beamformer is given by substituting (6.35)
into (6.28)

7This expression is identical to (12) in [22] if we substitute dn = 1.
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a function of kr , for open and rigid arrays

WNG(k) = Q(L + 1)4

4π
∑L

l=0

∑l
m=−l

∣∣∣ Ylm (Ωu)

bl (k)

∣∣∣2 ∑∞
l=0 |bl(k)|2 (2l + 1)

(6.40a)

= Q(L + 1)4∑L
l=0 |bl(k)|−2 (2l + 1)

∑∞
l=0 |bl(k)|2 (2l + 1)

. (6.40b)

In the open sphere case, this simplifies to8

WNG(k) = Q(L + 1)4∑L
l=0 |bl(k)|−2 (2l + 1)

, (6.41)

or in matrix form

WNG(k) = Q(L + 1)4
∣∣∣∣B−1(k)

∣∣∣∣−2
. (6.42)

In Fig. 6.4, we plot the WNG of the maximum directivity beamformer of order
L = 4 as a function of the product of the wavenumber k and array radius r , kr ,
for an array of Q = 32 microphones. Assuming a speed of sound of 343m · s−1,

8This expression is identical to (11) in [22] if we substitute dn = 1, with the exception of the (4π)2

scaling factor, which is required due to the fact that in [22] a 4π scaling factor is included in the
definition of the mode strength.
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a kr value of 1 corresponds to a frequency of 1.1kHz for an array radius of r =
10cm, for example. It can be seen that the beamformer’s WNG is low except at
high frequencies or large array radii. When an open sphere is used, the maximum
directivity beamformer has particularly poor robustness at certain values of kr ; this
is due to the presence of zeros in the open sphere mode strength (see Sect. 3.4.2).
The rigid sphere does not present this issue, and in addition provides an increase in
WNG of approximately 3.7dB over the open sphere at low values of kr .

6.3.1.2 Maximum White Noise Gain Beamformer

The beamformer that maximizes theWNGwhile imposing a distortionless constraint
in the steering direction satisfies

max
w(k)

WNG(k) subject to wH(k)B(k)y∗(Ωu) = 1,

or equivalently,

min
w(k)

||w(k)||2 subject to wH(k)B(k)y∗(Ωu) = 1.

Proceeding in a similar way as for the analysis of the maximum directivity beam-
former, if we use a Lagrange multiplier to adjoin the constraint to the cost function,
the weights of the maximum directivity beamformer are then given by

wmaxWNG(k) = argmin
w(k)

L(w(k),λ), (6.43)

where L is the complex Lagrangian given by

L(w(k),λ) = [w(k)]H [w(k)]

+ λ
(
wH(k)B(k)y∗(Ωu) − 1

) + λ∗ (
yT(Ωu)B*(k)w(k) − 1

)
(6.44)

and λ is the Lagrange multiplier. Setting the gradient of L(wmaxWNG(k),λ) with
respect to w∗

maxWNG to zero yields

∇w∗
maxWNG

L(wmaxWNG(k),λ) = 0N
wmaxWNG(k) + λB(k)y∗(Ωu) = 0N , (6.45)

where 0N is a column vector of N zeros. Using the constraint in (6.43), we then find

wmaxWNG(k) = B(k)y∗(Ωu)

yT(Ωu)B∗(k)B(k)y∗(Ωu)
. (6.46)

http://dx.doi.org/10.1007/978-3-319-42211-4_3
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Using Unsöld’s theorem [29], this simplifies to

wmaxWNG(k) = 4π
B(k)y∗(Ωu)

||B(k)||2 , (6.47)

or in scalar form

WmaxWNG
lm (k) = 4π

Y ∗
lm(Ωu)bl(k)∑L

l=0 |bl(k)|2(2l + 1)
. (6.48)

Awell-known farfield SHDbeamformer is thedelay-and-sum beamformer,whose
weights are given by [22]

wDSB(k) = B(k)y∗(Ωu). (6.49)

In the case of an open sphere, bl(k) = i l jl(kr), and since
∑∞

l=0 | jl(kr)|2 (2l + 1) =
1 [2], the following relationship between the maximum WNG and delay-and-sum
beamformers is obtained:

lim
L→∞wmaxWNG(k) = 4πwDSB(k). (6.50)

When an open sphere is used, the delay-and-sum beamformer therefore approaches
a maximum WNG beamformer as L → ∞ (ignoring the 4π scaling factor, which
does not affect the WNG). For a finite L and/or if another microphone type or array
configuration is used (such as a rigid sphere), the delay-and-sum beamformer is
slightly suboptimal.

The delay-and-sum beamformer owes its name to the fact that for an open sphere
as L → ∞, its output converges to the output of the widely known spatial domain
delay-and-sum beamformer [22].

The directivity of the maximumWNG beamformer is given by substituting (6.47)
into (6.16)

D(k) = 4π

∣∣∣∣
∣∣∣∣ 4π

||B(k)||2B(k)B∗(k)y(Ωu)

∣∣∣∣
∣∣∣∣
−2

(6.51a)

= 4π

(4π)2
||B(k)||4 ∣∣∣∣B(k)B∗(k)y(Ωu)

∣∣∣∣−2
(6.51b)

= ||B(k)||4 ∣∣∣∣B(k)B∗(k)
∣∣∣∣−2

. (6.51c)

TheWNG of the maximumWNG beamformer is given by substituting (6.47) into
(6.28)

WNG(k) = 4πQ ||B(k)||4
(4π)2 ||B(k)y∗(Ωu)||2 ∑∞

l=0 |bl(k)|2 (2l + 1)
(6.52a)
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Using Unsöld’s theorem [29], this simplifies to

WNG(k) = Q ||B(k)||2∑∞
l=0 |bl(k)|2 (2l + 1)

(6.53)

In the open sphere case, the WNG approaches Q as L → ∞ (as in [22]), so it
can be seen that the maximum WNG beamformer achieves a constant WNG of Q
that is independent of frequency. This is also the highest achievable WNG for a
distortionless beamformer in the spatial domain [28].

In Fig. 6.5, we plot the DI of the maximum directivity and maximumWNG beam-
formers of order L = 4 as a function of kr for an array of Q = 32 microphones.
As expected, the maximum directivity beamformer provides the highest directivity;
while the maximumWNG beamformer has poor directivity at low values of kr (i.e.,
low frequencies or small array radii). Due to the effects of scattering introduced by the
rigid sphere (see Sect. 3.4.1), the maximumWNG beamformer has better directivity
with a rigid array than with an open array. The directivity of the maximum directivity
beamformer is independent of kr , while for the maximum WNG beamformer the
directivity decays as kr decreases, tending towards 0dB (i.e., no directivity).

TheWNGof themaximumWNGbeamformer of order L = 4 is shown in Fig. 6.4;
as expected, it provides the highest WNG. Using Figs. 6.4 and6.5, it can be observed
that there is a tradeoff between WNG and directivity. The maximum directivity and

10
−2

10
−1

10
0

10
1

0

5

10

15

k r

D
ire

ct
iv

ity
 in

de
x 

(d
B

)

 

 

Maximum directivity beamformer

Maximum WNG beamformer (rigid sphere)

Maximum WNG beamformer (open sphere)

Fig. 6.5 Directivity of the maximum directivity and maximumWNG beamformers of order L = 4
as a function of kr
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WNG beamformers provide performance bounds for SHD beamformers in terms of
directivity and WNG, and are attractive due to their low computational complexity.
However, in practice a compromise solution is desirable, such as the multiply con-
strained beamformer presented in Sect. 6.3.1.3, or the signal-dependent beamform-
ers in Chap.7, which adaptively control the tradeoff between these two objectives
depending on the nature of the noise to be suppressed.

6.3.1.3 Multiply Constrained Beamformer

Another approach to the design of a signal-independent beamformer is to minimize
its sidelobe levels for a given main lobe width, to ensure that interfering signals that
do not originate from the steering direction are effectively suppressed. However, in
order to obtain a beamformer that is robust to errors in sensor position and steer-
ing direction, and to sensor noise, it is desirable to introduce a constraint on the
beamformer’s WNG.

In [25], the authors propose a robust minimum sidelobe beamformer, which mini-
mizes themaximumsidelobe level, subject to a distortionless constraint in the steering
direction and a minimumWNG constraint. The objective can therefore be expressed
in the form of a minimax criterion as

min
w(k)

max
Θ>Δ/2

|B(k,Θ)| subject to

wH(k)B(k)y∗(Ωu) = 1, WNG(k) ≥ ζ(k), (6.54)

where B(k,Θ) is the spatial response of the beamformer, Θ denotes the angle
between the steering direction and the DOA, Δ denotes the main lobe width (as
defined in Sect. 6.2.4), and ζ is the minimum WNG. The sidelobe region is defined
as ΘSL = {Θ|Θ > Δ/2}.

As shown in [25], the problem in (6.54) can be reformulated as a convex optimiza-
tion problem, solvable using second-order cone programming. The sidelobe region
is approximated using a finite grid Θng ∈ ΘSL, ng ∈ {1, . . . , Ng}; the approximation
then improves as Ng increases.

Finding a solution to (6.54) can be computationally intensive. However, a signifi-
cant advantage of SHDbeamforming is that if the desired beam pattern is rotationally
symmetric about the steering directionΩu, the process of computing the beamformer
weights and steering of the beamformer can be decoupled. In this case, the beam-
formerweights are expressed asWlm(k) = Cl(k)Y ∗

lm(Ωu), and theweightsCl(k) then
become the quantities to be optimized. If the desired beam pattern is not rotationally
symmetric about the steering direction, the beam pattern can be rotated by multiply-
ing the SHD beamformer weights byWigner-D functions that depend on the rotation
angles, as proposed in [23].

http://dx.doi.org/10.1007/978-3-319-42211-4_7
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6.3.2 Nearfield Beamformers

In this chapter, we have until now assumed that the desired signal was due to a single
plane wave, i.e., farfield conditions. However, under nearfield conditions, the plane
wave assumptions cannot be considered valid. The SHD sound pressure due to a
spherical wave originating from a source at a position rs = (rs,Ωs) is given by

Xlm(k, rs) = Xsw(k)bnfl (k, rs)Y
∗
lm(Ωs), (6.55)

where Xsw(k) denotes the spherical wave amplitude and the nearfield mode strength
bnfl (k, rs) is given by

bnfl (k, rs) = −iki−l h(2)
l (krs)bl(k), (6.56)

and h(2)
l is the spherical Hankel function of the second kind and of order l.

Beamformers suitable for nearfield conditions [8, 9, 19] can be designed by
replacing the farfieldmode strength expression bl(k)with the nearfieldmode strength
bnfl (k, rs) in the beamformer weights. For example, the weights of a nearfield plane-
wave decomposition beamformer are given by

W PWD,nf
lm (k) = Y ∗

lm(Ωu)[
bnfl (k, rs)

]∗ , (6.57)

instead of (6.37). While this process is straightforward, it does require knowledge
of the source-array distance rs. If the source-array knowledge is not known, the
source-array distance rs becomes a controllable parameter, which is effectively a
look distance and enables radial discrimination [9].

An appropriate boundary between the farfield and nearfield regions can be deter-
mined by comparing the magnitudes of the farfield mode strength bl(k) and the
nearfield mode strength bnfl (k, rs), as proposed in [8]. Using this criterion, the cut-off
distance rnf is determined as

rnf(k) = L

k
. (6.58)

The extent of the nearfield region therefore decreases with frequency. An array with
good radial discrimination, i.e., a large nearfield region, can be realized either at low
frequencies (small k), or by oversampling the array (large N ) [9].

Example: At a frequency of 100Hz, assuming a speed of sound of 343m · s−1 and
an array order L = 4, the cut-off distance is rnf(k) = 2.2m, while at a frequency of
4kHz it is 5.5cm.
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6.4 Chapter Summary

An overview of beamforming in the SHD using signal-independent beamformers
has been presented. We introduced a number of performance measures, which were
then used to derive beamformers weights that are optimal with respect to these
measures. We also showed the relationship between these optimal beamformers and
two well-known SHD beamformers: the PWD and delay-and-sum beamformers.
Finally, where similarities existed, the performance bounds for SHD beamformers
were related to previously derived bounds for spatial domain beamformers.
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Chapter 7
Signal-Dependent Array Processing

In the previous chapter, we presented a number of signal-independent beamformers
or filters,1 including maximum directivity and maximum white noise gain beam-
formers. However, in practice it is desirable to control the tradeoff between these
two performance objectives. In this chapter, we derive a number of signal-dependent
beamformers, which adaptively seek to achieve optimal performance in terms of
noise reduction and speech distortion, taking into account the statistics of the desired
signal and the noise.

7.1 Signal Model

We consider a conventional frequency domain signal model in which a spherical
microphone array captures a received source signal X originating from a source S,
and a noise signal V . The spatial domain signal received at Q microphone positions
rq = (r,Ωq) = (r, θq ,φq), q ∈ {1, . . . , Q} (in spherical coordinates, where θq
denotes the inclination and φq denotes the azimuth) for a wavenumber k can then be
expressed as2

P(k, rq) = H(k, rq)S(k) + V (k, rq) (7.1a)

= X (k, rq) + V (k, rq), (7.1b)

where H(k, rq) is the acoustic transfer function from the source S to the microphone
at position rq , and S(k) is the source signal. We assume that the received source

1Beamformers are spatial filters, therefore the terms beamformer and filter will be used interchange-
ably in this chapter.
2The dependency on time is omitted for brevity. In practice, the signals acquired using a spherical
microphone array are usually processed in the short-time Fourier transform domain, as explained
in Sect. 3.1, where the discrete frequency index is denoted by ν.
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signals X and noise signals V are mutually uncorrelated. The received source signals
X originate from a single source, and are therefore, by definition, coherent across
the array.

When using spherical microphone arrays, it is convenient to work in the spherical
harmonic domain (SHD) [28, 31], instead of the spatial domain. In this chapter, we
assume error-free spatial sampling, and refer the reader to Chap. 3 for information on
spatial sampling and aliasing. By applying the complex spherical harmonic transform
(SHT)3 to the signal model in (7.1), we obtain the SHD signal model

Plm(k) = Hlm(k)S(k) + Vlm(k) (7.2a)

= Xlm(k) + Vlm(k), (7.2b)

where Plm(k), Xlm(k), Hlm(k) and Vlm(k) are respectively the spherical harmonic
transforms of the signals P(k, rq), X (k, rq), H(k, rq) and V (k, rq), as defined in
(3.6), and are referred to as eigenbeams to reflect the fact that the spherical harmonics
are eigensolutions of the wave equation in spherical coordinates [34]. The order and
degree of the spherical harmonics are respectively denoted as l and m.

The eigenbeams Plm(k), Xlm(k),Hlm(k) andVlm(k) are functions of the frequency-
dependent mode strength bl(k), which is in turn a function of the array properties
such as radius, microphone type and configuration. Mode strength expressions for
two common types of arrays, the open and rigid arrays with omnidirectional micro-
phones, are given in Sect. 3.4.2. To remove the dependence of the eigenbeams on the
mode strength, we divide the eigenbeams by the mode strength (as in [30]), thus giv-
ing mode strength compensated eigenbeams, and the signal model is then written as

P̃lm(k) =
[√

4πbl(k)
]−1

Plm(k) (7.3a)

= H̃lm(k)S(k) + Ṽlm(k) (7.3b)

= X̃lm(k) + Ṽlm(k), (7.3c)

where P̃lm(k), H̃lm(k), X̃lm(k) and Ṽlm(k) respectively denote the eigenbeams Plm(k),
Hlm(k), Xlm(k) and Vlm(k) after mode strength compensation.

The design of a beamformer involves the choice of a desired signal, which the
beamformer will seek to estimate. The desired signal is commonly chosen as the
source component X (k, rref) of the signal P(k, rref) received at a particular refer-
ence microphone with position rref [2, 13, 17]. When working with linear arrays of
omnidirectional microphones, the choice of this reference microphone is not usually
very important, since the power of the desired signal is likely to be similar at all
microphones in a particular array. With spherical arrays, however, this is no longer
necessarily the case. In particular, with a rigid array, due to the scattering effects of

3If the real SHT is applied instead of the complex SHT, the complex spherical harmonics Ylm used
throughout this chapter should be replaced with the real spherical harmonics Rlm , as defined in
Sect. 3.3.

http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
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the sphere, the microphones have some added directionality, and the power on the
occluded side of the array could be lower.

For this reason, we choose as a reference a virtual omnidirectional microphone
Mref, placed at the centre of the sphere, which is also the origin of the spherical
coordinate system employed. The signal P̃00(k) is equal to the signal that would
be received by the reference microphone Mref, if the sphere were not present, as
shown in the Appendix of Chap.5. Our aim is then to estimate the received source
component X̃00(k) of this signal using a beamformer.

For convenience, we rewrite the signal model (7.3) in vector notation, where the
vectors all have length N = (L + 1)2, the total number of eigenbeams from order
l = 0 to l = L:

p̃(k) = h̃(k)S(k) + ṽ(k) (7.4a)

= x̃(k) + ṽ(k) (7.4b)

= d(k)X̃00(k) + ṽ(k), (7.4c)

where

p̃(k) = [
P̃00(k) P̃1(−1)(k) P̃10(k) P̃11(k) P̃2(−2)(k) · · · P̃LL(k)

]T
, (7.5)

h̃(k) = [
H̃00(k) H̃1(−1)(k) H̃10(k) H̃11(k) H̃2(−2)(k) · · · H̃LL(k)

]T
, (7.6)

d(k) =
[
1
H̃1(−1)(k)

H̃00(k)

H̃10(k)

H̃00(k)

H̃11(k)

H̃00(k)

H̃2(−2)(k)

H̃00(k)
· · · H̃LL(k)

H̃00(k)

]T

= [
D00(k) D1(−1)(k) D10(k) D11(k) D2(−2)(k) · · · DLL(k)

]T
, (7.7)

(·)T denotes the vector transpose, and x̃(k) and ṽ(k) are defined similarly to p̃(k).
The vector d is commonly referred to as the relative transfer function (RTF) or
propagation vector [12]. In the following, it is assumed that H00(k) �= 0 ∀k, such
that the RTF vector d(k) is always defined.

As X (k, rq) and V (k, rq) are mutually uncorrelated, and the SHT and division
by the mode strength are linear operations, X̃lm(k) and Ṽlm(k) are also mutually
uncorrelated. The power spectral density (PSD) matrix �p̃ of p̃ can therefore be
expressed as

�p̃(k) = E
{̃
p(k )̃pH(k)

}
= �x̃(k) + �ṽ(k), (7.8)

where

�x̃(k) = E
{̃
x(k )̃xH(k)

} = φX̃00
(k)d(k)dH(k) and

�ṽ(k) = E
{̃
v(k )̃vH(k)

}

http://dx.doi.org/10.1007/978-3-319-42211-4_5
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Signal-Dependent BeamformerFilter Weight 
Estimation

Spherical Harmonic 
Transform (SHT)

Mode Strength 
Compensation

Fig. 7.1 Block diagram of a signal-dependent beamformer

are respectively the PSD matrices of x̃(k) and ṽ(k), φX̃00
(k) = E

{∣∣X̃00(k)
∣∣2} is the

variance of X̃00(k), and (·)H denotes the Hermitian transpose.
As in Chap.6, the output Z(k) of our beamformer is obtained by applying a

complex weight to each eigenbeam, and summing over all eigenbeams (a filter-and-
sum operation)4:

Z(k) = wH(k )̃p(k)

= wH(k )̃x(k) + wH(k )̃v(k)

= X̃ f(k) + Ṽr(k), (7.9)

where X̃ f(k) = wH(k )̃x(k) = wH(k)d(k)X̃00(k) is the filtered desired signal and
Ṽr(k) = wH(k )̃v(k) is the residual noise. The filtered desired and residual noise
signals are mutually uncorrelated; therefore, the variance of Z(k) is given by the
sum of two variances

φZ (k) = wH(k)�p̃(k)w(k)

= φX̃ f
(k) + φṼr

(k), (7.10)

where φX̃ f
(k) = φX̃00

(k)
∣∣wH(k)d(k)

∣∣2 and φṼr
(k) = wH(k)�ṽ(k)w(k).

The beamforming process is illustrated in Fig. 7.1. It begins by capturing the
spatial domain sound pressure signals P(k, rq) at microphones q ∈ {1, . . . , Q}, and
applying the SHT to obtain a vector of SHD sound pressure signals or eigenbeams
p(k). We then divide the eigenbeams by the mode strength, yielding a vector p̃(k).
Finally, the eigenbeams p̃(k) are weighted and summed to obtain the beamformer
output Z(k). The weights w(k) of the signal-dependent beamformer, which are a
function of the eigenbeams p̃(k), are chosen in order to achieve certain performance
objectives, which will be defined in the following section.

4We use the complex conjugate weights wH rather than the weights wT; this notational convention
originates in the spatial domain [37].

http://dx.doi.org/10.1007/978-3-319-42211-4_6
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7.2 Performance Measures

In this section, we define a number of signal-dependent performance measures that
can be used to design and evaluate the beamformers to be presented in Sect. 7.3.

The performance measures that are defined in this section are computed for a
particular wavenumber k, and are therefore referred to as subband measures. In
contrast, full-band measures would be computed over all wavenumbers.

7.2.1 Speech Distortion Index

The filtering process that is intrinsic to beamforming may, in some cases, unfor-
tunately introduce distortion into the desired signal. The speech distortion index
vsd measures this distortion by computing the normalized mean square error in the
frequency domain between the filtered desired signal X̃ f(k) and the desired signal
X̃00(k) [4, 19], such that

vsd [w(k)] =
E
{∣∣X̃ f(k) − X̃00(k)

∣∣2}
φX̃00

(k)
(7.11a)

= ∣∣wH(k)d(k) − 1
∣∣2 . (7.11b)

It is clear that the weights of a beamformer that does not distort the desired signal, or
in other words, weights that give rise to a speech distortion index of 0, must satisfy
the distortionless constraint

wH(k)d(k) = 1,∀k, (7.12)

which we will make use of in the design of the minimum variance distortionless
response (MVDR) beamformer in Sect. 7.3.3.

The speech distortion index should be as low as possible for good quality speech
and is normally upper bounded by 1. A speech distortion index of around −20–
−10dB is considered to be low, while a high speech distortion index, typically in
the range −5–0dB, will normally result in obvious distortions. While in the single-
channel case any noise reduction comes at the expense of speech distortion [33], in
the multichannel case the distortion can in theory be eliminated entirely [3].

For the purposes of a performance evaluation, the speech distortion index is typ-
ically computed using short, 10–20 ms time frames [22], and then averaged over all
frames that contain speech; it is then referred to as the segmental speech distortion
index.
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7.2.2 Noise Reduction Factor

The noise reduction factor quantifies the reduction in noise power due to the beam-
former, defined as the ratio of the power of the noise at the beamformer input Ṽ00(k)
to the power of the residual noise at the beamformer output Ṽr(k) [2, 15]:

ξnr [w(k)] = φṼ00
(k)

φṼr
(k)

(7.13a)

= φṼ00
(k)

wH(k)�ṽ(k)w(k)
, (7.13b)

where φṼ00
(k) = E

{∣∣Ṽ00(k)
∣∣2} is the variance of Ṽ00(k).

This noise reduction factor is defined with respect to the reference microphone
Mref. It should however be noted that:

• The reference microphone Mref is omnidirectional. On the other hand, as noted in
Sect. 7.1, with a rigid array, the sphere provides the array’s microphones with some
directionality, even if the array is constructed of omnidirectional microphones.
Consequently, the power of spatially coherent noise may well be lower at one
of these microphones than at Mref. However, the microphone with the lowest
coherent noise level will vary, and it is therefore more convenient to use a single
(omnidirectional) reference microphone.

• Assuming the array’s Q microphones are uniformly distributed on the sphere, the
power of spatially incoherent noise (such as sensor noise) at Mref is reduced by a
factor of Q |b0(k)|2 with respect to its power at themicrophones [20]. The Q factor
is present because the reference microphone signal P̃00(k) is formed using all Q
individual microphone signals, and spatially incoherent noise sums destructively.
The mode strength compensation operation accounts for the |b0(k)|2 factor. For
an open or rigid array of omnidirectional microphones, at low frequencies where
b0(k) ≈ 1, the power of incoherent noise is Q times smaller at Mref than at the
microphones (for example, 15dB lower for Q = 32 microphones).

The noise reduction factor only provides useful performance information when
viewed alongside a performance measure that relates to the desired speech, such as
the speech distortion index, since a trivial filter w(k) = 0N (where 0N is a column
vector of N zeros) would achieve an infinite noise reduction factor, yet it would not
be of any practical use.

When evaluating the performance of a beamformer, this measure is typically
computed using short, 10–20 ms time frames, and then averaged in the logarithm
domain over all time frames; it is then referred to as the segmental noise reduction
factor.
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7.2.3 Array Gain

The array gain is the signal-to-noise ratio (SNR) improvement obtained using the
beamformer [35], that is, the ratio of the output SNR, oSNR, to the input SNR, iSNR,
given by

A [w(k)] = oSNR [w(k)]

iSNR(k)
= φX̃ f

(k)

φṼr
(k)

φṼ00
(k)

φX̃00
(k)

(7.14a)

= φṼ00
(k)
∣∣wH(k)d(k)

∣∣2
wH(k)�ṽ(k)w(k)

. (7.14b)

The array gain is also defined with respect to the reference microphone Mref; the
consequences of this definition are discussed in Sect. 7.2.2.

The performance of a beamformer is frequently evaluatedwith the segmental array
gain, which involves computing the array gain using short, 10–20 ms time frames,
and then averaging it in the logarithm domain over all frames that contain speech.
These active frames can be determined using ITU-T Rec. P.56 [18], for example.

7.2.4 Mean Square Error

Due to its simplicity, one of the most frequently used criteria for designing opti-
mal beamformers is the mean square error (MSE) criterion. The error between the
beamformer output signal Z(k) and the desired signal X̃00(k) is given by

E(k) = Z(k) − X̃00(k)

= wH(k )̃p(k) − X̃00(k)

= wH(k )̃x(k) − X̃00(k) + wH(k )̃v(k)

= [
wH(k)d(k) − 1

]
X̃00(k) + wH(k )̃v(k). (7.15)

The MSE is then

J [w(k)] = E
{|E(k)|2}

= φX̃00
(k)
∣∣wH(k)d(k) − 1

∣∣2 + φṼr
(k). (7.16)

Using (7.11b) and (7.13a), the MSE can be expressed as a function of two other
performance measures:

J [w(k)] = φX̃00
(k)vsd [w(k)] + φṼ00

(k)

ξnr [w(k)]
. (7.17)
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The MSE is an increasing function of the speech distortion index vsd, and a decreas-
ing function of the noise reduction factor ξnr. Minimizing the MSE, as we will do
in Sect. 7.3.2, is equivalent to minimizing jointly the speech distortion index and
maximizing the noise reduction factor.

7.3 Signal-Dependent Beamformers

In this section, we present a number of signal-dependent beamformers, designed
based on the performance measures in Sect. 7.2. They are similar to beamformers
commonly used in the spatial domain but are formulated in the SHDwith a reference
microphone Mref.

All the filters presented in this section, with the exception of the linearly con-
strainedminimumvariance (LCMV) filter, maximize the subband output SNR.How-
ever, depending on the design criteria, the full-band output SNR may be different.

7.3.1 Maximum SNR Filter

The SNR at the output of a beamformer with weights w(k) is given by

oSNR [w(k)] = φX̃ f
(k)

φṼr
(k)

(7.18a)

= φX̃00
(k)
∣∣wH(k)d(k)

∣∣2
wH(k)�ṽ(k)w(k)

. (7.18b)

The filter that maximizes the subband output SNR, referred to as a maximum SNR
filter, can then be determined as [2]

wmax(k) = argmax
w(k)

oSNR [w(k)]

= α(k)�−1
ṽ (k)d(k), (7.19)

where α(k) �= 0 is an arbitrary frequency-dependent scaling factor. The Wiener,
MVDR and parametric Wiener filters presented in the sections that follow are all
equal to the maximum SNR filter for a specific choice of this frequency-dependent
scaling factor.

In (7.18b), we recognize the generalized Rayleigh quotient. Since this quotient
is maximized by the maximum eigenvector (i.e., the eigenvector associated with
the largest eigenvalue) of the matrix �−1

ṽ (k)�x̃(k), this maximum eigenvector is
also a maximum SNR filter [2]. Alternatively, the filter is given by the generalized
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eigenvectors associated with the largest generalized eigenvalues of thematrix pencils
(�x̃(k),�ṽ(k)) and (�p̃(k),�ṽ(k)).

7.3.2 Wiener Filter

The Wiener filter [38] minimizes the MSE defined in (7.16):

wW(k) = argmin
w(k)

J [w(k)] . (7.20)

It can be derived by expressing the MSE as

J [w(k)] = E
{|E(k)|2}

= E
{(
wH(k )̃p(k) − X̃00(k)

) (
wH(k )̃p(k) − X̃00(k)

)H}

= wH(k)�p̃(k)w(k) + φX̃00
(k) − wH(k)E

{̃
p(k)X̃∗

00(k)
}

− E
{̃
pH(k)X̃00(k)

}
w(k). (7.21)

The Wiener filter weights wW(k) must then satisfy

∇w∗
W
J [wW(k)] = 0N

�p̃(k)wW(k) − E
{̃
p(k)X̃∗

00(k)
} = 0N

�p̃(k)wW(k) − E
{̃
x(k)X̃∗

00(k)
}− E

{̃
v(k)X̃∗

00(k)
} = 0N , (7.22)

where 0N is a column vector of N zeros and ∇w∗
W
J [wW(k)] is the complex gradient

vector of J [wW(k)] with respect to w∗
W, as defined in [7]. As X̃lm(k) and Ṽlm(k) are

mutually uncorrelated, E
{̃
v(k)X̃∗

00(k)
} = 0N , and hence we find

wW(k) = �−1
p̃ (k)E

{̃
x(k)X̃∗

00(k)
}

= φX̃00
(k)�−1

p̃ (k)d(k). (7.23)

Since �x̃(k) = φX̃00
(k)d(k)dH(k), the filter weights can also be expressed as [2]

wW(k) = �−1
p̃ (k)�x̃(k)iN (7.24a)

=
[
IN×N − �−1

p̃ (k)�ṽ(k)
]
iN , (7.24b)

where IN×N denotes an N × N identity matrix, and iN denotes its first column. In
(7.24b), the weights are only a function of the second-order statistics of the noise
and observation signals.
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It can also be shown [2] that (7.23) can be expressed as

wW(k) = φX̃00
(k)�−1

ṽ (k)d(k)

1 + φX̃00
(k)dH(k)�−1

ṽ (k)d(k)
. (7.25)

We then see that the Wiener filter is a special case of the maximum SNR filter in
(7.19) for the case where the weights of the maximum SNR filter are computed using
the scaling factor

α(k) = φX̃00
(k)

1 + φX̃00
(k)dH(k)�−1

ṽ (k)d(k)
. (7.26)

7.3.3 Minimum Variance Distortionless Response Filter

The MVDR beamformer or Capon beamformer [10] minimizes the residual noise
power (or equivalently, maximizes the noise reduction factor) while imposing a
distortionless constraint on the desired signal:

min
w(k)

φṼr
(k) subject to vsd [w(k)] = 0

min
w(k)

wH(k)�ṽ(k)w(k) subject to wH(k)d(k) = 1. (7.27)

Following the approach proposed by Brandwood [7], if we use a Lagrange mul-
tiplier to adjoin the constraint to the cost function, the MVDR filter is then given
by

wMVDR(k) = argmin
w(k)

L(w(k),λ), (7.28)

where L is the complex Lagrangian given by

L(w(k),λ) = wH(k)�ṽ(k)w(k) + λ
(
wH(k)d(k) − 1

)
+ λ∗ (dH(k)w(k) − 1

)
(7.29)

andλ is the Lagrangemultiplier. Setting the gradient ofL(wMVDR(k),λ)with respect
to w∗

MVDR to 0 yields

∇w∗
MVDR

L(wMVDR(k),λ) = 0N
�ṽ(k)wMVDR(k) + λd(k) = 0N . (7.30)
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Using the constraint in (7.27), we then find [2, 21]

wMVDR(k) = �−1
ṽ (k)d(k)

dH(k)�−1
ṽ (k)d(k)

. (7.31)

The MVDR filter is a special case of the maximum SNR filter in (7.19) for the
case where the weights of the maximum SNR filter are computed using the scaling
factor

α(k) = 1

dH(k)�−1
ṽ (k)d(k)

. (7.32)

Instead of minimizing the noise power φṼr
at the output of the beamformer, one

can minimize the total power of the beamformer’s output (i.e., desired speech plus
residual noise). This optimization problem can be written as

min
w(k)

wH(k)�p̃(k)w(k) subject to wH(k)d(k) = 1, (7.33)

and its solution is the minimum power distortionless response (MPDR) filter

wMPDR(k) = �−1
p̃ (k)d(k)

dH(k)�−1
p̃ (k)d(k)

. (7.34)

As we do not have access to the true RTF vector d(k), we need an estimate of
d(k) to compute the MVDR and MPDR filters. It can be shown that the MVDR and
MPDR filters are equivalent only when the estimated and true RTF vectors are equal.
The MPDR filter is, however, known to be sensitive to RTF estimation errors. When
the solution is obtained using an adaptive solution, severe signal cancellation can
occur.

Relationship to Signal-Independent Beamformers

Under specific assumptions about the spatial characteristics of the desired speech
and noise signals, the MVDR beamformer can be equivalent to beamformers intro-
duced in Chap.6. In this section, we derive two such equivalences. The two types
of noise field we deal with are the spherically isotropic noise field, where the noise
is spatially diffuse [24], and the spatially white noise field, where the noise is spa-
tially incoherent, that is, the noise signals V (k, rq) at each microphone are mutually
uncorrelated.

Property 7.1 In a spherically isotropic noise field, assuming an anechoic envi-
ronment and plane-wave incidence, the MVDR beamformer reduces to a signal-
independent maximum directivity beamformer, as introduced in Sect.6.3.1.1.

http://dx.doi.org/10.1007/978-3-319-42211-4_6
http://dx.doi.org/10.1007/978-3-319-42211-4_6
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Proof In a spherically isotropic noise field, the noise PSD matrix (after mode
strength compensation) is given by [8, 23, 40]

�ṽ(k) = σ2
v(k)IN×N . (7.35)

By substituting (7.35) into (7.31), we find

wMVDR(k) = σ−2
v (k)IN×Nd(k)

dH(k)σ−2
v (k)IN×Nd(k)

= d(k)

dH(k)d(k)
. (7.36)

In an anechoic environment, assuming plane-wave incidence from a direction
Ωs, the RTF vector d(k) is given by [8]

d(k) = y∗(Ωs)

Y ∗
00(Ωs)

, (7.37)

where Ylm(Ωs) denotes the complex spherical harmonic of order l and degree
m evaluated at an angle Ωs, as defined in (2.14), and

y(Ωs) = [
Y00(Ωs) Y1(−1)(Ωs) Y10(Ωs) Y11(Ωs) · · · YLL(Ωs)

]T
, (7.38)

and therefore, using Y00(·) = 1/
√
4π and the spherical harmonic addition

theorem [39], the beamformer weights simplify to

wMVDR(k) = y∗(Ωs)√
4π yT(Ωs)y∗(Ωs)

= y∗(Ωs)√
4π
∑L

l=0

∑l
m=−l

∣∣Y ∗
lm(Ωs)

∣∣2
= 4πy∗(Ωs)√

4π
∑L

l=0(2l + 1)

=
√
4π

(L + 1)2
y∗(Ωs). (7.39)

Finally the beamformer output is given by

Z(k) =
√
4π

N

L∑
l=0

l∑
m=−l

Ylm(Ωs)P̃lm(k)

= 1

N

L∑
l=0

l∑
m=−l

Ylm(Ωs)

bl(k)
Plm(k), (7.40)

http://dx.doi.org/10.1007/978-3-319-42211-4_2
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which is proportional to the output of a maximum directivity beamformer, as
defined in (6.36), and therefore Property 7.1 holds.

Property 7.2 In a spatially white noise field, assuming an anechoic environment
and plane-wave incidence, the MVDR beamformer reduces to a signal-independent
maximum white noise gain (WNG) beamformer, as introduced in Sect.6.3.1.2.

Proof In a spatially white noise field, the noise PSD matrix (after mode
strength compensation) is given by [20]

�ṽ(k) = σ2
v(k)�(k), (7.41)

where the coherence matrix

�(k) = diag (|b0(k)|, |b1(k)|, |b1(k)|, |b1(k)|, |b2(k)|, . . . , |bL(k)|)−2

(7.42)
is an N × N diagonal matrix. In an anechoic environment, assuming plane-
wave incidence from a direction Ωs, the RTF vector d(k) is given by (7.37).
By substituting (7.41) and (7.37) into (7.31), we find

wMVDR(k) = Y00(Ωs)�
−1(k)y∗(Ωs)

yT(Ωs)�−1(k)y∗(Ωs)
. (7.43)

Using Y00(·) = 1/
√
4π and the spherical harmonic addition theorem [39], the

beamformer weights simplify to

wMVDR(k) =
√
4π�−1(k)y∗(Ωs)∑L

l=0 |bl(k)|2 (2l + 1)
. (7.44)

The beamformer output is given by

Z(k) = √
4π

∑L
l=0

∑l
m=−l |bl(k)|2 Ylm(Ωs)P̃lm(k)∑L
l=0 |bl(k)|2 (2l + 1)

=
∑L

l=0

∑l
m=−l b

∗
l (k)Ylm(Ωs)Plm(k)∑L

l=0 |bl(k)|2 (2l + 1)
. (7.45)

which is proportional to the output of a maximum WNG beamformer, as
defined in (6.48), and therefore Property 7.2 holds.

http://dx.doi.org/10.1007/978-3-319-42211-4_6
http://dx.doi.org/10.1007/978-3-319-42211-4_6
http://dx.doi.org/10.1007/978-3-319-42211-4_6
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7.3.4 Parametric Wiener Filter

The parametric Wiener filter (or tradeoff filter) balances noise reduction against
speech distortion, and can be obtained by minimizing the cost function

JPWF,μ [w(k)] = E
{∣∣X̃ f(k) − X̃00(k)

∣∣2}+ μ(k)E
{∣∣Ṽr(k)

∣∣2} (7.46a)

= φX̃00
(k)
∣∣wH(k)d(k) − 1

∣∣2 + μ(k)wH(k)�ṽ(k)w(k). (7.46b)

The first term on the right hand side of (7.46) is related to the speech distortion and
the second term is equal to the residual noise power at the filter’s output. The balance
between speech distortion and noise reduction can be controlled using the parameter
μ(k) (μ ≥ 0), which is referred to as a tradeoff parameter. It can readily be seen that
for μ(k) = 1, the cost function (7.46) is equal to the MSE cost function (7.21) used
to derive the Wiener filter in Sect. 7.3.2.

For a given parameter μ(k), the parametric Wiener filter is then obtained using

wPWF,μ(k) = argmin
w(k)

JPWF,μ [w(k)] . (7.47)

The filter that minimizes the cost function JPWF,μ is computed as follows

∇w∗
PWF,μ

JPWF,μ

[
wPWF,μ(k)

] = 0N

φX̃00
(k)
[
d(k)dH(k)wPWF,μ(k) − d(k)

]+ μ(k)�ṽ(k)wPWF,μ(k) = 0N
�x̃(k)wPWF,μ(k) − φX̃00

(k)d(k) + μ(k)�ṽ(k)wPWF,μ(k) = 0N . (7.48)

Finally, we obtain the parametric Wiener filter [16, 33]:

wPWF,μ(k) = φX̃00
(k) [�x̃(k) + μ(k)�ṽ(k)]

−1 d(k). (7.49)

Using the Woodbury matrix identity we can express (7.49) as

wPWF,μ(k) = φX̃00
(k)�−1

ṽ (k)d(k)

μ(k) + φX̃00
(k)dH(k)�−1

ṽ (k)d(k)
(7.50a)

= �−1
ṽ (k)�p̃(k) − IN×N

μ(k) + tr
[
�−1

ṽ (k)�p̃(k)
]− N

iN . (7.50b)

The tradeoff parameter is often chosen in an ad-hoc way, keeping in mind that:

• μ(k) = 0 corresponds to the MVDR filter (7.31);
• μ(k) = 1 corresponds to the Wiener filter (7.25);
• μ > 1 results in low residual noise at the expense of high speech distortion when
compared to the Wiener filter [2]; and
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• μ < 1 results in high residual noise and low speech distortion compared to the
Wiener filter [2].

We can see that the parametric Wiener filter is a special case of the maximum
SNR filter in (7.19) for the case where the maximum SNR filter is computed using
the scaling factor

α(k) = φX̃00
(k)

μ(k) + φX̃00
(k)dH(k)�−1

ṽ (k)d(k)
. (7.51)

7.3.5 Linearly Constrained Minimum Variance Filter

TheMVDRfilter in Sect. 7.3.3 seeks to suppress the noise signal ṽ(k)whilemaintain-
ing a single distortionless constraint on the desired signal X̃00(k). The LCMV filter
is a generalization of the MVDR filter and is able to provide multiple distortionless
constraints.

Let us now consider a scenario with I ≤ N directional sources such that

P(k, rq) =
I∑

ı=1

H (ı)(k, rq) S(ı)(k) + V (k, rq) (7.52a)

=
I∑

ı=1

X (ı)(k, rq) + V (k, rq), (7.52b)

where ı is the source index, H (ı)(k, rq) is the acoustic transfer function from the ı th
source to themicrophone at position rq , S(ı)(k) is the ı th source signal, and X (ı)(k, rq)
is the ı th received source signal. In the SHD, after mode strength compensation, we
then have

P̃lm(k) =
I∑

ı=1

X̃ (ı)
lm (k) + Ṽlm(k) (7.53a)

=
I∑

ı=1

d(ı)(k)X̃ (ı)
00 (k) + Ṽlm(k), (7.53b)

where d(ı)(k) denotes the RTF of the ı th source. In vector notation, (7.53b) can be
written for all eigenbeams as

p̃(k) = D(k )̃x00(k) + ṽ(k), (7.54)

where
D(k) = [

d(1)(k)
∣∣ d(2)(k)

∣∣ . . .
∣∣d(I )(k)

]
(7.55)
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is an N × I matrix, and x̃00(k) = [X̃ (1)
00 (k), X̃ (2)

00 (k), . . . , X̃ (I )
00 (k)]T is a column vector

of length I .
The desired signal that we wish to estimate can be written as

Xd(k) =
I∑

ı=1

Q(ı)(k) X (ı)
00 (k), (7.56)

where Q(ı)(k) denotes the desired response for the ı th source. When only the first
source is desired, then Q(1)(k) = 1 and Q(ı)(k) = 0 for ı ∈ {2, 3, . . . , I }. Alterna-
tively, when Q(ı)(k) = 1 for all ı , all directional sources are extracted.

The LCMV filter can be used to obtain an estimate of the desired signal
Xd(k) by minimizing the residual noise at the output of the beamformer, given by
E{|wH(k)v(k)|2}, subject to the constraint

wH(k)D(k) = qT(k), (7.57)

where q(k) = [Q(1)(k), Q(2)(k), . . . , Q(I )(k)]T. Mathematically, this problem can
be formulated as

wLCMV(k) = argmin
w(k)

wH(k)�ṽ(k)w(k) subject to wH(k)D(k) = qT(k). (7.58)

The solution is the well-known LCMV filter given by

wLCMV(k) = �−1
ṽ (k)D(k)

[
DH(k)�−1

ṽ (k)D(k)
]−1

q∗(k). (7.59)

For this solution to exist, the noise PSD matrix �ṽ needs to have full rank and the
columns of the matrix D(k) need to be linearly independent [36].

The LCMV filter can be interpreted as a two stage spatial processor that first
computes I signals given by DH(k)�−1

ṽ (k )̃p(k). These signals are then combined

using qT
[
DH(k)�−1

ṽ (k)D(k)
]−1

to compute the output signal Z(k) of the LCMV
filter.

Instead of minimizing the noise power φṼr
at the output of the beamformer, one

can minimize the total power of the beamformer’s output (i.e., desired speech plus
residual noise). This optimization problem can be written as

min
w(k)

wH(k)�p̃(k)w(k) subject to wH(k)D(k) = qT(k), (7.60)

and its solution is the linearly constrained minimum power (LCMP) filter

wLCMP(k) = �−1
p̃ (k)D(k)

[
DH(k)�−1

p̃ (k)D(k)
]−1

q∗(k). (7.61)
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As we do not have access to the true RTF vectors D(k), we need an estimate of
D(k) to compute the LCMV and LCMP filters. It can be shown that the LCMV and
LCMP filters are equivalent only when the estimated and true RTF vectors are equal.
The LCMP filter is, however, known to be sensitive to RTF estimation errors [36].

7.3.6 Generalized Sidelobe Canceller Structure

Although in the previous sections we presented closed-form solutions to various con-
strained optimization problems, such as theMPDR and LCMP, in the past it was also
common to find the solution using adaptive algorithms. A major advantage of using
adaptive algorithms is that they do not require an estimate of the noise PSD matrix.
However, they can become cumbersome when dealing with constrained optimiza-
tion problems. The generalized sidelobe canceller (GSC), proposed by Griffiths and
Jim [14], is a filter structure that allows any of the previously considered constrained
optimization problems to be formulated as unconstrained optimization problems,
which significantly simplifies the adaptive algorithms. The MVDR, MPDR, LCMV,
and LCMP filters can all be implemented using the GSC structure. The performance
of the GSCwas analyzed by several researchers (e.g. [6, 11, 29]), and an extension of
the GSC taking into account the acoustic transfer functions (ATFs) was first proposed
by Gannot et al. in [12].

The weights of the filters corresponding to one of the constrained optimization
problems formulated in this chapter span an N = (L+1)2 dimensional space that can
be divided into two orthogonal subspaces: a constraint subspace and an orthogonal
subspace. The constraint subspace with rank I is defined by the column space D(k)
defined in (7.55), and the orthogonal subspace with rank N − I is defined by the
left null space of D(k). From this perspective, an alternative representation of, for
example, (7.59) is obtained by decomposing wLCMV(k) into one component wc(k)
that lies in the space spanned by D(k), and another component w⊥

c (k) that lies in the
left null space of D(k), i.e.,

wLCMV(k) = wc(k) + w⊥
c (k). (7.62)

In Fig. 7.2 the constrained minimization is illustrated for two eigenbeams and a
single directional source (i.e., I = 1). The axes represent the two filter weights. The
dashed contour lines represent the power of the residual noise (i.e.,wH(k)�ṽ(k)w(k)),
and the straight line represents the solutions for which the constraintwH(k)d(k) = 1
is satisfied. The vector wMVDR(k) represents the MVDR filter that minimizes the
residual noise and satisfies the constraint. The weights of the filter wc(k) satisfy the
constraint. Other than when �ṽ(k) is a scaled identity matrix, these solutions do not
minimize the residual noise power. Figure7.3 illustrates the structure of (7.62). The
filter wc(k) is part of the upper branch, while the filter w⊥

c (k) (not shown in Fig. 7.2)
is part of the lower branch.
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wH(k)d(k) = 1

wMVDR(k)

wc(k) =
d(k)

‖d(k)‖2

wH(k)Φṽ(k)w(k)

Fig. 7.2 Illustration of the constrained minimization for a single directional source (i.e., I = 1)

Adaptive Noise Canceller

Fixed Beamformer
+

Zc(k)

Zn(k)

Zc(k) = wH
c (k)p̃(k)

Zn(k) = −w⊥
c (k)p̃(k)

+

-

Fig. 7.3 Block diagram of a signal-dependent beamformer implemented using the structure of
(7.62)

In the context of the GSC, the filterwc(k) is also known as the quiescent filter, and
can be obtained by projecting the LCMV filter on the constraint subspace spanned
by the RTFs. Since the RTFs are not necessarily orthonormal, a suitable projection
matrix of size N × N is given by

Pc(k) = D(k)
[
DH(k)D(k)

]−1
DH(k), (7.63)
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such that

wc(k) = Pc(k)wLCMV(k) (7.64a)

= D(k)
[
DH(k)D(k)

]−1
DH(k)wLCMV(k) (7.64b)

= D(k)
[
DH(k)D(k)

]−1
q∗(k). (7.64c)

The filterw⊥
c (k) can be obtained by projecting the LCMV filter on the orthogonal

subspace using the projection matrix

Po(k) = Cn(k)
[
CH

n (k)Cn(k)
]−1

CH
n (k), (7.65)

where Cn(k) is a matrix of size N × (N − I ′) with 0 ≤ I ′ ≤ I that is chosen such
that

DH(k)Cn(k) = 0I×(N−I ′). (7.66)

The rank of the matrix Cn(k) is equal to N − I , i.e., the rank of the orthogonal
subspace. For I ′ < I , the columns of Cn(k) form an over-complete basis of the
orthogonal subspace. It should be noted that any vector that lies in the column space
of Cn(k), and hence in the left null space of D(k), lies in the orthogonal subspace.
The filter w⊥

c (k) is then given by [36, Sect. 6.7.3]

w⊥
c (k) = Po(k)wLCMV(k) (7.67a)

= −Cn(k)
[
CH

n (k)�ṽ(k)Cn(k)
]−1

CH
n (k)�ṽ(k)wc(k). (7.67b)

In the context of the GSC, the matrix Cn(k) is known as the blocking matrix. The
signals at the output of this blocking matrix are referred to as reference signals and
are given by

ũ(k) = CH
n (k )̃p(k). (7.68)

The number of reference signals depends on the dimensions of the blocking matrix.
If the blocking matrix is correctly constructed, then the reference signals are uncor-
related with the source signals S(1)(k), S(2)(k), . . . , S(I )(k).

By substituting (7.67b) into (7.62) we can represent the LCMV filter as

wLCMV(k) = wc(k) − Cn(k)wn(k), (7.69)

where
wn(k) = [CH

n (k)�ṽ(k)Cn(k)]−1CH
n (k)�ṽ(k)wc(k) (7.70)

is known as the noise cancellation filter. The structure of (7.69) is more commonly
known as the GSC structure and is illustrated in Fig. 7.4.

Following the above derivation, it is evident that the GSC is another implementa-
tion of the LCMV filter. However, when inspecting the filters, this equivalence might
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Adaptive Noise Canceller

Fixed Beamformer
++

-

Blocking Matrix

Zc(k)

ũ(k)

Zc(k) = wH
c (k)p̃(k)

ũ(k) = CH
n (k)p̃(k) Zn(k) = wH

n (k)ũ(k)

Fig. 7.4 Block diagram of a signal-dependent beamformer implemented using the GSC structure
of (7.69)

not be that evident. In [9], Breed and Strauss showed using a short and elegant proof
that both implementations are equivalent.

Finally, we must determine the blocking matrix Cn(k) that satisfies the condition
in (7.66). As a matter of fact, there are infinitely many blocking matrices that satisfy
this condition. A frequently used blocking matrix is known as the sparse blocking
matrix [12]. For I = 1, if we define X̃00(k) as the desired source signal, an example
of the sparse blocking matrix is given by

Cn(k) =

⎛
⎜⎜⎜⎜⎜⎝

−D∗
1(−1)(k) −D∗

10(k) · · · −D∗
LL(k)

1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

(7.71)

for which DH(k)Cn(k) = (
d(1)(k)

)H
Cn(k) = 01×N−1. An extension of the sparse

blocking matrix for multiple constraints was presented in [27]. Another popular
blocking matrix is the eigen-space blocking matrix that is given by

Cn(k) = IN×N − D(k)
[
DH(k)D(k)

]−1
DH(k). (7.72)

The signal leakage and the blocking ability of the sparse blocking matrix and of the
eigen-space blocking matrix were analyzed and compared in [27]. It was analytically
proven that the blocking abilities of both blocking matrices are equivalent, provided
that the estimate ofD(k), which in practice is required to computeCn(k), corresponds
to the true propagation vector. The dimensions of the sparse blocking matrix are
N × (N − I ), while the dimensions of the eigen-space blocking matrix are N × N ,
therefore the sparse blocking matrix can be smaller than the eigen-space blocking
matrix. Consequently, the length of the noise cancellation filter is also smaller when
employing the sparse blocking matrix. Hence, the overall complexity of the GSC is
smaller when using the sparse rather than the eigen-space blocking matrix.
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It is interesting to note that the noise cancellation filter in (7.70) is a multichannel
Wiener filter [5, 29]. Therefore, the filter can be obtained by minimizing

E
{∣∣wH

c (k )̃v(k) − wH
n (k)CH

n (k )̃v(k)
∣∣2} . (7.73)

While the closed-form solution is given by (7.70), a solution can also be obtained by
minimizing (7.73) adaptively. For example, the filter update equation corresponding
to a normalized least mean squares algorithm is given by [12]

wn(� + 1, k) ={
wn(�, k) − ϑs

tr{�ũ(�,k)} ũ(�, k)Z∗(�, k) if desired sources inactive
wn(�, k) otherwise

(7.74)

where �ũ(�, k) = E
{̃
u(�, k )̃uH(�, k)

}
, � is the time frame index, ϑs is the step size,

and
Z(�, k) = [wc(k) − Cn(k)wn(�, k)]

H p̃(�, k). (7.75)

7.4 Relative Transfer Function Estimation

The weights of many of the previously derived signal-dependent beamformers are
expressed in terms of the RTF vector d(k). In the context of SHD processing, the
RTF describes the linear relationship between the desired signal vector x̃(k) and a
reference signal. In Sect. 7.1, we used the received source component X̃00 of the
signal received at Mref as a reference signal, such that

x̃(k) = d(k)X̃00(k). (7.76)

It is important to note that the choice of the reference signal defines the desired
signal that the beamformer seeks to estimate. As a matter of fact, one could instead
use another eigenbeam, or even a linear combinations of eigenbeams as a reference
signal.

In an anechoic environment, assuming plane-wave incidence from a directionΩs,
the RTF vector d(k) is given by [8]

d(k) = y∗(Ωs)

Y ∗
00(Ωs)

, (7.77)

where Ωs denotes the direction of arrival (DOA) of the desired direct sound.
It should be noted that in a reverberant environment, and when the shorttime

Fourier transform (STFT) frame length is sufficiently long such that themultiplicative
transfer function approximation [1] holds, X̃00(k) contains the direct sound aswell as
early reflections and reverberation. The RTF vector, which is sometimes also referred
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to as the spatial prediction vector, thus depends on the position of the source and the
spherical microphone array as well as the room characteristics.

Since the performance of signal-dependent beamformers in reverberant environ-
ments strongly depends on the accuracy of the estimated RTF vector, many different
estimators have been developed. In the following subsections, we present some of
the most frequently used estimators, namely the covariance subtraction method [2],
the generalized eigenvector method [25], and the temporal averaging method. The
first twomethods require an estimate of the observed signal PSDmatrix and the noise
PSD matrix. A theoretical comparison between the covariance subtraction method
and the so-called covariance whitening method that is closely related to the gen-
eralized eigenvector method can be found in [26]. The third method, the temporal
averaging method, exploits the fact that the statistics of the desired signal change
more rapidly compared to the statistics of the noise, and only requires an estimate of
the observed signal PSD matrix.

7.4.1 Covariance Subtraction Method

The most straightforward approach is to estimate the RTF vector in the MSE sense,
i.e.,

d̂(k) = argmin
d(k)

E
{∥∥̃x(k) − d(k)X̃00(k)

∥∥2} . (7.78)

The solution is given by [2]

d̂(k) = E
{̃
x(k)X̃∗

00(k)
}

E
{∣∣X̃00(k)

∣∣2}

= �x̃(k)iN
iTN�x̃(k)iN

, (7.79)

where iN = [1 0 0 . . . 0]T is a column vector of length N .
Since the PSDmatrix�x̃(k) is unobservable in practice, it is commonly expressed

in terms of the PSD matrix of the noise �ṽ(k) and the PSD matrix of the observed
signals �p̃(k). Using (7.8) we can rewrite (7.79) as

d̂CV(k) =
[
�p̃(k) − �ṽ(k)

]
iN

iTN
[
�p̃(k) − �ṽ(k)

]
iN

. (7.80)

7.4.2 Generalized Eigenvector Method

The generalized eigenvector method proposed in [25] makes use of the fact that
the PSD matrix �x̃(k) is rank-one (i.e., only one desired source is present). If d(k)
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denotes the RTF of the desired source then the PSD matrix of the observed signal
after mode strength compensation can be expressed as

�p̃(k) = φX̃00
(k)d(k)dH(k) + �ṽ(k). (7.81)

The generalized eigenvalue decomposition of the matrix pencil (�p̃,�ṽ) can be
written as

�p̃u = λ�ṽu (7.82a)(
φX̃00

ddH + �ṽ
)
u = λ�ṽu (7.82b)(

φX̃00
ddH

)
u = (λ − 1)�ṽu, (7.82c)

whereλ and u denote an eigenvalue and corresponding eigenvector. The eigenvectors
corresponding to the eigenvalues with values other than one span the subspace of the
desired signal. Since there is only one desired source, there is only one eigenvalue
that is larger than one. It can be shown that the corresponding eigenvector, denoted
by umax, is equal to a scaled version of the desired source ATF [25].

Solving for d(k) leads to

d(k) = λ − 1

φX̃00
(k)dH(k)umax(k)︸ ︷︷ ︸

scalar

�ṽ(k)umax(k). (7.83)

Hence, the RTF vector is a scaled and rotated version of the eigenvector umax(k).
As the first element of d(k) is by definition equal to one, there is no need to

compute the scalar and the RTF can be obtained directly by dividing �ṽ(k)umax by
its first element, i.e.,

d(k) = �ṽ(k)umax(k)

iTN �ṽ(k)umax(k) iN
. (7.84)

As mentioned in Sect. 7.3.1, the vector umax(k) is also a maximum SNR filter. By
substituting umax(k) with wmax(k) = α(k)�−1

ṽ (k)d(k) in (7.84), it follows that the
right-hand-side is equal to d(k).

7.4.3 Temporal Averaging Method

When the desired signal is speech, we can assume that the statistics of the noise vary
slowly compared to the statistics of the desired signal [12]. The observed signal can
be expressed as

P̃lm(�, k) = Dlm(k)P̃00(�, k) + Ũlm(�, k), (7.85)

where � denotes the time frame index and
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Ũlm(�, k) = Ṽlm(�, k) − Dlm(k)Ṽ00(�, k). (7.86)

Multiplying both sides of (7.85) by P̃∗
00(�, k) and taking the expectation yields:

φ̂P̃lm P̃00(�, k) = Dlm(k)φ̂P̃00(�, k) + φŨlm P̃00(�, k) + εlm(�, k),

with
εlm(�, k) = φ̂Ũlm P̃00(�, k) − φŨlm P̃00(�, k), (7.87)

where φ̂P̃lm P̃00(�, k), φ̂P̃00(�, k), and φ̂Ũlm P̃00(�, k) are respectively estimates of

φP̃lm P̃00(�, k) = E
{
P̃lm(�, k)P̃∗

00(�, k)
}
,

φP̃00(�, k) = E
{|P̃00(�, k)|2} , and

φŨlm P̃00(�, k) = E
{
Ũlm(�, k)P̃∗

00(�, k)
}
.

Within a short time period of T time frames we can assume the noise is stationary
such that

φŨlm P̃00(�, k) = φŨlm P̃00(k). (7.88)

We can then combine the information obtained using T time frames and construct
the following overdetermined set of equations:

⎡
⎢⎢⎢⎣

φ̂P̃lm P̃00(�, k)
φ̂P̃lm P̃00(� − 1, k)

...

φ̂P̃lm P̃00(� − T + 1, k)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

φ̂P̃00(�, k) 1
φ̂P̃00(� − 1, k) 1

...

φ̂P̃00(� − T + 1, k) 1

⎤
⎥⎥⎥⎦
[

Dlm(k)
φŨlm P̃00(k)

]

+

⎡
⎢⎢⎢⎣

εlm(�, k)
εlm(� − 1, k)

...

εlm(� − T + 1, k)

⎤
⎥⎥⎥⎦ .

An unbiased estimate of Dlm(k) at time frame � can then be computed as [32]

D̂lm(�, k) =
〈
φ̂P̃00(�, k)φ̂P̃lm P̃00(�, k)

〉
−
〈
φ̂P̃00(�, k)

〉〈
φ̂P̃lm P̃00(�, k)

〉
〈
φ̂2
P̃00

(�, k)
〉
−
〈
φ̂P̃00(�, k)

〉2

where 〈·〉 denotes a time averaging operator defined as

〈A(�, k)〉 � 1

T

T−1∑
�′=0

A(� − �′, k).
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7.5 Chapter Summary

Signal-dependent beamformers adaptively achieve optimal performance in terms of
signal-dependent performance measures, such as the speech distortion index, noise
reduction factor or MSE. This chapter derived a number of beamformers based on
these measures: the maximum SNR filter, the Wiener filter, the MVDR filter, the
parametric Wiener filter and the LCMV filter. The weights of all these beamformers
depend on the second-order statistics of the desired and noise signals. Methods
for estimating these statistics remain a challenge and topic of active research; some
possible approaches will be explored in Chap.9. Finally, it was shown that for certain
specific noise fields, the MVDR beamformer is equivalent to the signal-independent
maximum directivity and maximum WNG beamformers introduced in Chap. 6.
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Chapter 8
Parametric Array Processing

The general principle of parametric array processing is to employ an efficient para-
metric representation of the sound field including typically one or a few reference
signals, and a small number of associated parameters. The advantage of such an
approach is that the number of parameters is significantly lower than in classical
array processing (see Chap.7). A block diagram of a parametric array processing
approach is shown in Fig. 8.1.

Examples of parametric representations of the sound field include Directional
Audio Coding (DirAC) [11], High Angular Resolution Planewave Expansion
(HARPEX) [1] and computational auditory scene analysis (CASA) [4]. These repre-
sentations can be used for spatial audio recording, coding and reproduction; source
separation, noise reduction and dereverberation; and acoustic scene analysis and
source localization. In this chapter, we will focus on parametric approaches to signal
enhancement using the DirAC representation.

The DirAC representation is based on two features that are relevant to the percep-
tion of spatial sound: the direction of arrival (DOA) and the diffuseness. Providing
these features are accurately reproduced, this representation ensures that the inter-
aural time differences (ITDs), interaural level differences (ILDs), and the interaural
coherence are correctly perceived [16]. The advantage of integrating DirAC with a
signal enhancement process is that any interference sources can be reproduced at their
original position [9] relative to the desired source, in addition to being attenuated,
thereby maintaining the naturalness of the listening experience but with increased
speech quality and intelligibility.

In this chapter, we first introduce a parametric model of the sound field. We then
review the parameters that describe this sound field and how they can be estimated,
and present filters that can be used to separate the two components of the sound
field. Finally, we explore two applications of parametric array processing, namely,
directional filtering and dereverberation.
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Fig. 8.1 Block diagram of a parametric array processing approach. In the analysis stage, a reference
signal is computed and a number of parameters are estimated. The reference signal and estimated
parameters are transmitted or stored. In the enhancement stage, a single-channel filter or time-
frequency mask is applied to the reference signal, optionally based on the estimated parameters, to
yield a processed output signal

8.1 Signal Model

In the short-time Fourier transform (STFT) domain, the sound pressure S at a posi-
tion r can be decomposed into a direct sound component Sdir and a diffuse sound
component Sdiff, such that

S(�, ν, r) = Sdir(�, ν, r) + Sdiff(�, ν, r), (8.1)

where � denotes the discrete time index and ν denotes the discrete frequency
index. The sound pressure signal X measured by Q microphones at positions
rq , q ∈ {1, . . . , Q} is then given by
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X (�, ν, rq) = S(�, ν, rq) + V (�, ν, rq) (8.2a)

= Sdir(�, ν, rq) + Sdiff(�, ν, rq) + V (�, ν, rq), (8.2b)

where V denotes a sensor noise signal.
We assume that the directional signal Sdir is sparse in the time-frequency

domain [12], such that in each time-frequency bin the directional signal is due to
a single plane wave. The diffuse signal is due to a theoretically infinite number of
independent plane waves with random phases, equal amplitudes and uniformly dis-
tributed DOAs [10]. We also assume that all three signals are mutually uncorrelated,
that is,

E
{
Sdir(�, ν, rq)S∗

diff(�, ν, rq)
} = 0 (8.3)

E
{
Sdir(�, ν, rq)V ∗(�, ν, rq)

} = 0, (8.4)

where E {·} denotes mathematical expectation, which can be computed using tem-
poral averaging.

In order to obtain the reference signal as indicated in Fig. 8.1, we must transform
the spatial domain signals to the spherical harmonic domain (SHD). In this chapter,
we assume error-free spatial sampling, and refer the reader to Chap. 3 for informa-
tion on spatial sampling and aliasing. By applying the complex spherical harmonic
transform (SHT) to the signal model in (8.2), we obtain the SHD signal model

Xlm(�, ν) = Slm(�, ν) + Vlm(�, ν) (8.5a)

= Sdirlm (�, ν) + Sdifflm (�, ν) + Vlm(�, ν), (8.5b)

where Xlm(�, ν), Slm(�, ν), Sdirlm (�, ν), Sdifflm (�, ν) and Vlm(�, ν) are respectively the
spherical harmonic transforms of the signals X (�, ν, rq), S(�, ν, rq), Sdir(�, ν, rq),
Sdiff(�, ν, rq) and V (�, ν, rq), as defined in (3.6), and are referred to as eigenbeams
to reflect the fact that the spherical harmonics are eigensolutions of thewave equation
in spherical coordinates [14]. The order and degree of the spherical harmonics are
respectively denoted as l and m.

We choose as a reference the signal that would bemeasured by an omnidirectional
microphone Mref placed at the centre of the spherical array, if the array were not
present. As shown in the Appendix of Chap.5, the sound pressure X̃(�, ν) at this
microphone can be obtained from the zero-order eigenbeam X00(�, ν) as

X̃(�, ν) = X00(�, ν)√
4πB0(ν)

(8.6a)

= S̃(�, ν) + Ṽ (�, ν) (8.6b)

= S̃dir(�, ν) + S̃diff(�, ν) + Ṽ (�, ν), (8.6c)

where the frequency-dependent mode strength Bl(ν) for spherical harmonic order
l, given by evaluating the wavenumber-dependent mode strength bl(k) at discrete

http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_5


144 8 Parametric Array Processing

values of the wavenumber k, captures the dependence of the l th order eigenbeams
on the array properties, and is discussed in Sect. 3.4.2. By dividing the eigenbeam
X00(�, ν) by the mode strength, we remove this dependence, such that the reference
signal is independent of the array properties. As noted in Sect. 7.2.2, assuming the
array’s Q microphones are uniformly distributed on the sphere, the power of the
sensor noise V is Q |B0(ν)|2 times smaller atMref than at the individualmicrophones
on the surface of the sphere.

The directional signal Sdirlm due to a plane wave incident from a direction Ωdir is
given by

Sdirlm (�, ν) = √
Pdir(�, ν)ϕdir(�, ν)4πBl(ν)Y ∗

lm [Ωdir(�, ν)] , (8.7)

where ϕdir(�, ν) is the phase factor of the plane wave, Pdir(�, ν) is the power of the
plane wave, and Ylm is the complex spherical harmonic,1 as defined in (2.14). The
diffuse signal Sdirlm can be expressed as

Sdifflm (�, ν) =
√

Pdiff(�, ν)

4π

∫
Ω∈S2

ϕdiff(�, ν,Ω)4πBl(ν)Y ∗
lm(Ω)dΩ, (8.8)

where ϕdiff(�, ν,Ω) denotes the phase factor of the plane wave incident from direc-
tion Ω and the notation

∫
Ω∈S2 dΩ is used to denote compactly the solid angle∫ 2π

φ=0

∫ π

θ=0 sin θdθdφ.
As in Sect. 5.2.1, using the relationship (5.74) between the zero-order eigenbeam

X00(�, ν) and the reference signal X̃(�, ν), as well as the expressions for the direc-
tional and diffuse signals in (8.7) and (8.8), it can be verified that the powers of these
signals at Mref are respectively given by Pdir and Pdiff.

8.2 Parameter Estimation

In the parametricmodel, the sound field is described by two parameters for each time-
frequency bin: the DOA Ωdir(�, ν) of the plane wave that generates the directional
signal, and the diffuseness Ψ (�, ν), which determines the strength of the directional
signal with respect to the diffuse signal.

The diffuseness is defined as [5]

Ψ (�, ν) = 1

1 + Γ (�, ν)
, (8.9)

1If the real SHT is applied instead of the complex SHT, the complex spherical harmonics Ylm used
throughout this chapter should be replaced with the real spherical harmonics Rlm , as defined in
Sect. 3.3.

http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_7
http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_5
http://dx.doi.org/10.1007/978-3-319-42211-4_5
http://dx.doi.org/10.1007/978-3-319-42211-4_3
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where Γ (�, ν) denotes the signal-to-diffuse ratio (SDR) at Mref, given by

Γ (�, ν) = |S̃dir(�, ν)|2
E

{|S̃diff(�, ν)|2} (8.10a)

= |Sdir00 (�, ν)|2
E

{|Sdiff00 (�, ν)|2} (8.10b)

= Pdir(�, ν)

Pdiff(�, ν)
. (8.10c)

The diffuseness takes values between 0 and 1. In a purely directional field, a dif-
fuseness of 0 is obtained; in a purely directional field, a diffuseness of 1 is obtained;
and when the directional and diffuse signals have equal power, a diffuseness of 0.5
is obtained.

Time- and frequency-dependent DOA and SDR/diffuseness estimates can be
obtained using the methods presented in Chap.5. In order for the reproduction of the
sound field to be accurate, and to avoid distortion of the signals when enhancement is
performed, it is crucial that the parameter estimates have sufficiently high temporal
and spectral resolution, as well as sufficiently low variance.

8.3 Sound Pressure Estimation

In order to perform signal enhancement, we would like to estimate the directional
and diffuse components S̃dir(�, ν) and S̃diff(�, ν) of the reference signal X̃(�, ν). This
can be done by applying a square-root Wiener filter to X̃(�, ν), such that

Ŝdir(�, ν) = Wdir(�, ν)X̃(�, ν) (8.11)

Ŝdiff(�, ν) = Wdiff(�, ν)X̃(�, ν), (8.12)

where the directional filter weights are given by

Wdir(�, ν) =
√

Pdir(�, ν)

Pdir(�, ν) + Pdiff(�, ν) + E
{|Ṽ (�, ν)|2} (8.13a)

=
√

Γ (�, ν)

Γ (�, ν) + 1 + P−1
diff(�, ν)E

{|Ṽ (�, ν)|2} (8.13b)

and the diffuse filter weights are given by

http://dx.doi.org/10.1007/978-3-319-42211-4_5
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Wdiff(�, ν) =
√

Pdiff(�, ν)

Pdir(�, ν) + Pdiff(�, ν) + E
{|Ṽ (�, ν)|2} (8.14a)

=
√

1

Γ (�, ν) + 1 + P−1
diff(�, ν)E

{|Ṽ (�, ν)|2} . (8.14b)

Because the power of the spatially incoherent sensor noise is reduced when com-
bining the Q microphone signals, we can assume that the power of the sensor noise
Ṽ (�, ν) is negligible, and therefore E

{|Ṽ (�, ν)|2} = 0. In this case, the filter weights
can be simplified to

Wdir(�, ν) =
√

Γ (�, ν)

Γ (�, ν) + 1
(8.15a)

= √
1 − Ψ (�, ν) (8.15b)

and

Wdiff(�, ν) =
√

1

Γ (�, ν) + 1
(8.16a)

= √
Ψ (�, ν) (8.16b)

=
√
1 − W 2

dir(�, ν). (8.16c)

If the sensor noise power is not sufficiently low to be disregarded, the filter weights
can be computed using an estimate of the diffuse-to-noise ratio, obtained using the
method in [15], for example.

The advantage of using a square-root Wiener filter in this context is that the

power of the directional and diffuse signals is preserved, that is, E
{
|Ŝdir(�, ν)|2

}
=

Pdir(�, ν) and E
{
|Ŝdiff(�, ν)|2

}
= Pdiff(�, ν). In practice, a lower bound is some-

times applied to Wdir in order to avoid introducing audible artefacts such as
musical noise [2, 18]. In addition, if the diffuse filter weights are computed

using (8.16c), E
{
|Ŝdir(�, ν)|2

}
+ E

{
|Ŝdiff(�, ν)|2

}
= E

{|X̃(�, ν)|2}, even if a lower
bound is applied to Wdir.

8.4 Applications

In this section, we consider two applications of parametric array processing to signal
enhancement: directional filtering (Sect. 8.4.1) and dereverberation (Sect. 8.4.2). The
general principle in both of these applications is to apply a single-channel filter or
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time-frequencymask to the reference signal X̃(�, ν) or the estimated pressure signals
Ŝdir(�, ν) and Ŝdiff(�, ν). As well as enhancing the signal, this can unfortunately also
introduce speech distortion or musical noise, especially with filters that vary quickly
across time and frequency. However, this problem can be mitigated by establishing
a lower bound on the filter weights (as in Sect. 8.3), or by smoothing the weights
across time and frequency [3, 7].

8.4.1 Directional Filtering

As proposed byKallinger et al. in [8], a directional filter can be implemented bymod-
ifying the reference signal X̃(�, ν), the diffuseness Ψ (�, ν) and the DOA Ωdir(�, ν).
In this section, we apply two filters W filt

dir and W filt
diff directly to the estimated direct

and diffuse sound pressures, such that

Zdir(�, ν) = W filt
dir [Ω(�, ν)] Ŝdir(�, ν) (8.17)

Zdiff(�, ν) = W filt
diff Ŝdiff(�, ν). (8.18)

The filtered reference signal is then given by summing the filtered directional and
diffuse signals:

Z(�, ν) = Zdir(�, ν) + Zdiff(�, ν). (8.19)

We would like the filtered reference signal to correspond to the signal captured by
a directional microphone with a directional response D [Ω]. We additionally want
a directional response of unity in the microphone’s steering direction Ωu. Ideally,
we would be able to use a Dirac delta function in the steering direction. However,
in practice this is not possible because the DOA estimates are not error-free and the
directional sources are not point sources [8]. In practice, a beam width in the region
of 60◦ can be achieved without introducing significant audible artefacts [8].

We can choose, for example, a first-order microphone steered in a direction Ωu =
(θu,φu), whose directional response is given by [6]

D [Ω(�, ν)] = α + (1 − α)
{
sin [θ(�, ν)] sin θu cos [φ(�, ν) − φu]

+ cos [θ(�, ν)] cos θu
}
, (8.20)

where the term in curly brackets is the cosine of the angle between the DOA
Ω = (θ,φ) and steering direction Ωu, and α is a shape parameter for the first-order
microphone. In Table8.1, we list a number of commonly used directivity patterns
and the corresponding shape parameters.

The power of an ideal diffuse signal (with unit power at Mref) at the output of
such a microphone is given by [6, 17]
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Table 8.1 Commonly used first-order directivity patterns and corresponding shape parameter val-
ues

Directivity pattern Shape parameter α

Omnidirectional 1

Subcardioid 0.75

Cardioid 0.5

Hypercardioid 0.25

Bidirectional 0

PDdiff = 1

4π

∫
Ω∈S2

D2 [Ω(�, ν)] dΩ (8.21a)

= 4

3
α2 − 2

3
α + 1

3
. (8.21b)

The directional and diffuse filter weights are then given by

W filt
dir [Ω(�, ν)] = D [Ω(�, ν)] (8.22)

W filt
diff = √

PDdiff . (8.23)

This directional filtering technique can be likened to beamforming, and indeed
the objective is the same. However, this technique involves a single-channel filter,
while in beamforming we apply a filter to the pressure signals recorded at multiple
microphones, or to multiple eigenbeams.

8.4.2 Dereverberation

In [9], Kallinger et al. also proposed a method for dereverberation using a parametric
approach. The desired signal that contains less reverberation than the reference signal
X̃(�, ν) is given by

X̃dereverb(�, ν) = Sdir(�, ν) + β(�, ν)Sdiff(�, ν), (8.24)

where 0 ≤ β(�, ν) < 1 is a reverberation reduction factor.
A single-channel filter W (�, ν) can be applied to the reference signal X̃(�, ν) to

estimate the desired signal X̃dereverb(�, ν):

Z(�, ν) = W (�, ν)X̃(�, ν). (8.25)

The filter weights WMMSE(�, ν) that minimize the mean square error between the
filter output signal Z(�, ν) and the desired signal X̃dereverb(�, ν) are given by
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WMMSE(�, ν) = argmin
W (�,ν)

E
{∣∣X̃dereverb(�, ν) − W (�, ν)X̃(�, ν)

∣∣2} (8.26a)

= 1 − (1 − β)Ψ (�, ν) (8.26b)

= Γ (�, ν) + β(�, ν)

Γ (�, ν) + 1
. (8.26c)

This filter is attractive due to its simplicity, since the filter weights only depend on
the diffuseness and the desired reverberation reduction factor and do not depend on
the DOA. As previously mentioned, the filter weights must normally be smoothed
over time and frequency to avoid audible artefacts; the amount of smoothing that is
necessary will depend on how much smoothing has been applied to the diffuseness
estimates.

It should be noted that the filter described in this section can be used to suppress
any diffuse sound, whether it be reverberation, or isotropic noise such as car noise
or babble noise.

8.5 Chapter Summary

Parametric array processing relies on a simple yet powerful parametric model of the
sound field, which in this chapter was described using a single reference pressure
signal along with two parameters, the DOA and the diffuseness. These parameters
must be estimated accurately, and with high time and frequency resolution. We
presented two illustrative applications of this array processing approach: directional
filtering and dereverberation. These applications highlight a significant advantage
of parametric array processing techniques: they typically have low computational
complexity, especially if low-complexity parameter estimation methods are chosen
(see Chap.5).

Ongoing research challenges include formulating more sophisticated parametric
models to improve performance, and finding new ways to avoid audible artefacts
despite using filters whose weights vary quickly with time and frequency. Other
potential applications of parametric array processing include acoustic zoom [13, 19]
and source extraction using multiple microphone arrays.
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Chapter 9
Informed Array Processing

Classical beamformers allow us to control the tradeoff between noise reduction and
speech distortion, but are not very robust to estimation errors and source position
changes and have a slow response time. In contrast, parametric spatial filtering tech-
niques have a fast response time and are relatively robust, but do not allow us to
control this tradeoff, can suffer from audible artefacts when the parametric model is
violated, and have relatively poor interference reduction.

Informed array processing aims to bridge the gap between these two approaches.
The conceptual aim of informed array processing is to incorporate relevant infor-
mation about the problem to be solved into the design of spatial filters and into the
estimation of the second-order statistics that are required to implement these filters.

The information that can be used to inform the design of the filter weights and
the statistical estimation includes time- and frequency-dependent

• signal-to-diffuse ratio (SDR) estimates (obtained using the algorithms in Sect. 5.2,
for example);

• direction of arrival (DOA) estimates (obtained using the algorithms in Sect. 5.1,
for example);

• interaural time difference (ITD) or interaural level difference (ILD) estimates; and
• position estimates (this typically requires multiple arrays).

The informed array processing approach is illustrated in the form of a block dia-
gram in Fig. 9.1, where an informed spatial filter is applied to the spherical harmonic
domain (SHD) pressure signals, the eigenbeams, to obtain an enhanced output sig-
nal. The eigenbeams are also used to estimate acoustic parameters, which are then
used to estimate second-order statistics and (optionally) compute the weights of the
informed spatial filter.
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Eigenbeams Informed Spatial Filter

Second-Order 
Statistics Estimation

Parameter Estimation
(direction-of-arrival, signal-

to-diffuse ratio, etc.)

Filter Output Signal

Fig. 9.1 Block diagram of an informed spatial filtering approach

This approach can be applied to problems such as noise reduction, dereverberation
or source extraction. In this chapter, we look at two application scenarios: coherent
and incoherent noise reduction (Sect. 9.1) using instantaneous DOA estimates, and
joint dereverberation and incoherent noise reduction using instantaneous SDR esti-
mates (Sect. 9.2).

9.1 Noise Reduction Using Narrowband DOA Estimates

The implementation of the SHD signal-dependent beamformers presented in Chap.7
requires the estimation of the second-order statistics of the desired and noise signals,
most importantly the power spectral density (PSD)matrix of the noise.Unfortunately,
in practice this is not a straightforward problem since the desired and noise signals
cannot be observed directly, and their statistics must instead be estimated from the
noisy signals.

In the spatial domain, the noise PSD matrix has previously been estimated based
on the speech presence probability (SPP) [13, 15, 40]. The noise PSD estimate is then
only updated in time-frequency bins where speech is likely to be absent, similarly to
single-channel approaches [4, 8]. Souden et al. proposed a Gaussian model–based
multichannel SPP estimator [39] that can detect spatially coherent sources regardless
of their DOA.

In order to perform coherent noise reduction, it can be desirable to distinguish
between desired coherent sources, located within a given region of interest, and
undesired coherent sources, which are considered as noise sources. This distinction
cannot be made using only the SPP and requires us to draw on additional spatial
information. In [24], the authors proposed to estimate the PSDmatrices of the desired
and noise signals using a desired speech presence probability (DSPP), given by the
product of Souden et al.’s multichannel SPP and a DOA-based probability. The latter
probability is based on DOA estimates for each time-frequency bin: using a priori

http://dx.doi.org/10.1007/978-3-319-42211-4_7
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information on the variance of the DOA estimates, the probability that the active
coherent source lies within the region of interest can be determined. It is assumed
that the bounds of the region of interest are known a priori; they can be chosen
manually, or estimated using visual information such as face tracking [45].

The second-order statistics thereby estimated can then be used to compute the
weights of a tradeoff beamformer, as introduced in Sect. 7.3.4, which seeks to balance
noise reduction against speech distortion based on a tradeoff parameter that can
optionally be DSPP-dependent. The tradeoff beamformer and second-order statistics
estimation method form a complete informed noise reduction algorithm.

9.1.1 Signal Models

Spatial Domain Signal Model

We consider a short-time Fourier transform (STFT) domain signal model in which
a Q-microphone spherical array of radius r captures the sound pressure P(�, ν, rq)
at positions rq = (r,Ωq) = (r, θq ,φq), q ∈ {1, . . . , Q} (in spherical coordinates,
where θq denotes the inclination and φq denotes the azimuth), where � denotes
the discrete time index1 and ν denotes the discrete frequency index.

The sound field is composed of a mixture of desired speech, originating from
a desired source S; spatially coherent noise arising from, for example, interfering
speech; and background noise. The background noise may consist of a mixture of
spatially incoherent noise, used to model sensor noise, and partially coherent noise,
used to model spherically or cylindrically isotropic noise. The reader is referred to
Sect. 1.2 for a discussion on the spatial characteristics of sound fields.

The signal model that corresponds to this scenario can be expressed in the STFT
domain as

P(ν, rq) = H(ν, rq)S(ν) + Vc(ν, rq) + Vnc(ν, rq)

= X (ν, rq) + Vc(ν, rq) + Vnc(ν, rq), (9.1)

where S is the source signal produced by the desired source S, X is the convolved
source signal originating from the source S, Vc is the coherent noise signal, Vnc is
the background noise signal, and H(ν, rq) is the acoustic transfer function (ATF)
between the source S and the microphone at position rq . The desired source S is
located inside a region of interestR, whereas the coherent noise source(s) are located
outside the region R.

We assume the reverberant speech signals X (ν, rq) and the noise signals Vc(ν, rq)
and Vnc(ν, rq) are mutually uncorrelated. As the reverberant speech signals X (ν, rq)
originate from a single source, they are, by definition, coherent at all microphones
in the array.

1For brevity, the dependency of all quantities on � is omitted throughout Sects. 9.1.1 and 9.1.2.

http://dx.doi.org/10.1007/978-3-319-42211-4_7
http://dx.doi.org/10.1007/978-3-319-42211-4_1
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Spherical Harmonic Domain Signal Model

Whenusing sphericalmicrophone arrays, it is convenient towork in theSHD[28, 36],
instead of the spatial domain. In this chapter, we assume error-free spatial sampling,
and refer the reader to Chap.3 for information on spatial sampling and aliasing. By
applying the complex spherical harmonic transform (SHT) to the signal model in
(9.1), we obtain the SHD signal model

Plm(ν) = Hlm(ν)S(ν) + Vlm,c(ν) + Vlm,nc(ν)

= Xlm(ν) + Vlm,c(ν) + Vlm,nc(ν), (9.2)

where Plm(ν), Hlm(ν), Xlm(ν), Vlm,c(ν) and Vlm,nc(ν) are respectively the spheri-
cal harmonic transforms of the signals P(ν, rq), H(ν, rq), X (ν, rq), Vc(ν, rq) and
Vnc(ν, rq), as defined in (3.6), and are referred to as eigenbeams to reflect the fact
that the spherical harmonics are eigensolutions of the wave equation in spherical
coordinates [44]. The order and degree of the spherical harmonics are respectively
denoted as l and m.

Mode Strength Compensation

The eigenbeams Plm , Hlm , Xlm , Vlm,c and Vlm,nc are a function of the mode strength
Bl(ν), which is in turn a function of the array properties (radius, microphone type,
configuration). The mode strength Bl(ν) is given by evaluating the mode strength
bl(k), as defined in Sect. 3.4.2, at discrete values of the wavenumber k corresponding
to the frequency indices ν.

To cancel this dependence, we divide the eigenbeams by the mode strength (as
in [21, 23, 34]), thus giving mode strength compensated eigenbeams, and the signal
model is then written as

P̃lm(ν) =
[√

4πBl(ν)
]−1

Plm(ν)

= H̃lm(ν)S(ν) + Ṽlm,c(ν) + Ṽlm,nc(ν)

= X̃lm(ν) + Ṽlm,c(ν) + Ṽlm,nc(ν), (9.3)

where P̃lm , H̃lm , X̃lm , Ṽlm,c and Ṽlm,nc respectively denote the eigenbeams Plm , Hlm ,
Xlm , Vlm,c and Vlm,nc after mode strength compensation.

As in Sect. 7.1, we choose as a reference a virtual omnidirectional microphone
Mref placed at the centre of the sphere, which is the origin of the spherical coordinate
system.The signal P̃00(ν) is equal to the signal thatwould be receivedby the reference
microphone [18, 21]Mref, if the sphere were not present, as shown in the Appendix
of Chap. 5. Our aim is then to estimate the convolved source component X̃00(k) of
this signal, which we will hereafter refer to as the desired signal, using a tradeoff
beamformer.

http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_7
http://dx.doi.org/10.1007/978-3-319-42211-4_5
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9.1.2 Tradeoff Beamformer

In this section,we present the tradeoff beamformer thatwe apply to the eigenbeams in
order to achieve noise reduction. The tradeoff beamformer, introduced in Sect. 7.3.4,
achieves a tradeoff between noise reduction and speech distortion. Theweights of this
beamformer are a function of second-order signal statistics, which can be estimated
using the method that will be presented in Sect. 9.1.3.

For convenience, we rewrite the signal model (9.3) in vector notation, where the
vectors all have length N = (L + 1)2, the total number of eigenbeams from order
l = 0 to l = L:

p̃(ν) = h̃(ν)S(ν) + ṽc(ν) + ṽnc(ν)

= x̃(ν) + ṽc(ν) + ṽnc(ν)

= d(ν)X̃00(ν) + ṽ(ν), (9.4)

where d denotes a propagation vector of relative transfer functions (RTFs) given by

d(ν) =
[
1

H̃1(−1)(ν)

H̃00(ν)

H̃10(ν)

H̃00(ν)

H̃11(ν)

H̃00(ν)
· · · H̃LL(ν)

H̃00(ν)

]T

,

(·)T denotes the vector transpose, the noisy signal vector p̃ is defined as

p̃(ν) = [
P̃00(ν) P̃1(−1)(ν) P̃10(ν) P̃11(ν) · · · P̃LL(ν)

]T
,

and x̃(ν), h̃(ν), ṽc(ν) and ṽnc(ν) are defined similarly to p̃(ν). The coherent plus
background noise signal vector ṽ is defined as ṽ(ν) = ṽc(ν) + ṽnc(ν). We assume
H00(ν) �= 0 ∀ν, such that d(ν) is always defined.

The signals X (ν, rq), Vc(ν, rq) and Vnc(ν, rq) are mutually uncorrelated, and
the SHT and division by the mode strength are linear operations, therefore X̃lm(ν),
Ṽlm,c(ν) and Ṽlm,nc(ν) are also mutually uncorrelated. The PSD matrix �p̃ of p̃ can
therefore be decomposed as

�p̃(ν) = E
{̃
p(ν )̃pH(ν)

}
= �x̃(ν) + �ṽ(ν)

= �x̃(ν) + �ṽc(ν) + �ṽnc(ν), (9.5)

where E {·} denotes mathematical expectation,

�x̃(ν) = E
{̃
x(ν )̃xH(ν)

} = φX̃00
(ν)d(ν)dH(ν),

�ṽ(ν) = E
{̃
v(ν )̃vH(ν)

} = �ṽc(ν) + �ṽnc(ν),

�ṽc(ν) = E
{̃
vc(ν )̃vHc (ν)

}
and

�ṽnc(ν) = E
{̃
vnc(ν )̃vHnc(ν)

}

http://dx.doi.org/10.1007/978-3-319-42211-4_7
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are respectively the PSD matrices of x̃(ν), ṽ(ν), ṽc(ν), and ṽnc(ν), φX̃00
(ν) =

E
{|X̃00(ν)|2} is the variance of X̃00(ν), and (·)H denotes the Hermitian transpose.
The output Z(k) of our beamformer is obtained by applying a complex weight to

each eigenbeam, and summing over all eigenbeams:

Z(ν) = wH(ν )̃p(ν)

= wH(ν )̃x(ν) + wH(ν )̃vc(ν) + wH(ν )̃vnc(ν)

= X̃ fd(ν) + Ṽrc(ν) + Ṽrnc(ν), (9.6)

where X̃ fd(ν) = wH(ν )̃x(ν) = wH(ν)d(ν)X̃00(ν) is thefiltered desired signal, Ṽrc(ν)

= wH(ν )̃vc(ν) is the residual coherent noise and Ṽrnc(ν) = wH(ν )̃vnc(ν) is the resid-
ual background noise.

The tradeoff beamformer, introduced in Sect. 7.3.4,maximizes the noise reduction
subject to a constraint on the speech distortion. Its weights are obtained by computing
(7.50a) in the STFT domain, i.e.,

wT,μ(ν) = φX̃00
(ν)�−1

ṽ (ν)d(ν)

μ(ν) + φX̃00
(ν)dH(ν)�−1

ṽ (ν)d(ν)
, (9.7)

where φṼ00
(ν) = E

{|Ṽ00,c(ν)|2} + E
{|Ṽ00,nc(ν)|2} is the variance of Ṽ00(ν), and

μ(ν) ≥ 0 is the tradeoff parameter.
The higher the tradeoff parameter μ(ν), the higher the noise reduction and the

higher the speech distortion. The special case of μ = 0 corresponds to a SHD mini-
mum variance distortionless response (MVDR) beamformer, and μ = 1 corresponds
to a SHD Wiener filter. This parameter can also be signal-dependent, such that the
tradeoff parameter is increased when only noise is present or likely to be present; for
example, [31] proposed to control μ(ν) using the SPP.

9.1.3 Signal Statistics Estimation

The computation of the tradeoff filter weights in (9.7) requires us to estimate both
the noise PSDmatrix�ṽ and the RTF vector d. The estimation of these second-order
statistics has been the topic of extensive research; a common approach in the spatial
domain has been to estimate them using the SPP [5, 6, 40, 43]. In this section, we
review a SHD method that was proposed in Jarrett et al. [24] for this purpose, which
is based on the DSPP.

Because speech is sparse in the STFT domain, a common assumption made by
noise reduction algorithms is that in a sound field where multiple speech sources
are present, only at most one of them is active in each time-frequency bin [1, 35].
This condition is known as (perfect) W-disjoint orthogonality. In [37], the authors
showed that this is a good approximation if the STFT window parameters are chosen
appropriately.

http://dx.doi.org/10.1007/978-3-319-42211-4_7
http://dx.doi.org/10.1007/978-3-319-42211-4_7
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Consequently, for the purposes of the estimation of the second-order statistics,
we adopt a model whereby at most one coherent source is active in each time-
frequency bin: either the desired source, or an interfering source. While this model
can break down in practice, for examplewhenmultiple interfering speakers are active
(as in Sect. 9.1.6.2), typically only the desired source or the interfering sources are
dominant in a single time-frequency bin, and the error in our model only causes a
small amount of distortion in the filter output (see Sect. 9.1.6.3). It should be noted
that this simplified model is only required for the statistics estimation; the tradeoff
filter itself does not assume W-disjoint orthogonality.

Based on this model, if we denote the DOA of the active coherent source as
Ω(�, ν), we can formulate three hypotheses regarding the presence of speech:

H0(�, ν) : p̃(�, ν) = ṽnc(�, ν)

indicating speech absence;

H1,R(�, ν) : p̃(�, ν) = ṽc(�, ν) + ṽnc(�, ν)

indicating interfering speech presence [Ω(�, ν) /∈ R];
H1,R(�, ν) : p̃(�, ν) = x̃(�, ν) + ṽnc(�, ν)

indicating desired speech presence [Ω(�, ν) ∈ R].

In addition, we define the hypothesis H1 = H1,R ∪ H1,R, which indicates speech
presence (desired or interfering). Under hypothesis H1,R, the coherent source is
located inside the region of interest R, while under hypothesis H1,R, the coherent
source is located outside R.

9.1.3.1 Noise PSD Matrix Estimation

Based on these hypotheses, we can formulate a minimummean square error estimate
of the noise PSD matrix as2

E
{̃
ṽvH |̃p} = Pr

[H0 ∪ H1,R |̃p]
E

{̃
ṽvH |̃p,H0 ∪ H1,R

}
+ Pr

[H1,R |̃p]
E

{̃
ṽvH |̃p,H1,R

}
, (9.8)

wherePr
[H1,R |̃p]

is the aposterioriDSPPandPr
[H0 ∪ H1,R |̃p] = 1− Pr

[H1,R |̃p]
is the a posteriori desired speech absence probability. The estimation of the DSPP
will be addressed in Sect. 9.1.4. Equation9.8 is commonly approximated by recur-
sively estimating the PSD matrix with an SPP-dependent smoothing factor [39, 43];
the PSD matrix estimate is then updated most rapidly in the absence of speech.

Close attention needs to be paid to the choice of the smoothing factor, which may
be a compromise between the two following objectives: the noise PSDmatrix should

2For brevity, the dependency of all quantities on the discrete time and frequency indices � and ν is
omitted where possible in the rest of Sect. 9.1.
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be updated sufficiently slowly to avoid desired speech leaking into the estimate when
the SPP is high, which would result in desired speech cancellation; the noise PSD
matrix must also be updated sufficiently quickly to suppress any non-stationary noise
present.

Because both the desired and coherent noise source signals consist of speech,
which is non-stationary and has a similar spectral distribution regardless of the
speaker (most of the energy is concentrated at low frequencies), we recursively
estimate the PSD as

�̂ṽ(�) = α′
v(�)�̂ṽ(� − 1) + [

1 − α′
v(�)

]
p̃(�)̃pH(�), (9.9)

where

α′
v =

{
αv, if Pr

[H1,R |̃p]
< Prth;

1, otherwise,
(9.10)

and αv is a smoothing factor between 0 and 1. As a result, the noise PSD matrix
estimate is only updated if the DSPP is below a threshold Prth, which reduces the
risk of desired speech cancellation, but also allows for rapid updates when speech is
very unlikely to be present.

9.1.3.2 Relative Transfer Function Vector Estimation

As shown in Sect. 7.4.1, a minimum mean square error estimate of the RTF vector d
is given by the first column of �x̃ divided by its first element, φX̃00

, i.e.,

d̂ = φ̂−1
X̃00

�̂x̃ iN , (9.11)

where iN = [1 0 · · · 0]T is a vector of length N , and �̂x̃ is an estimate of the PSD
matrix of the convolved source signal x̃.

Unfortunately the convolved source signal cannot be directly observed, since the
background noise is always present.We therefore first estimate the PSDmatrix �̂x̃+ṽnc
of the desired speech plus background noise:

�̂x̃+ṽnc(�) = α′
xvnc(�)̃p(�)̃pH(�) + [1 − α′

xvnc(�)]�̂x̃+ṽnc(� − 1), (9.12)

whereα′
xvnc = Pr

[H1,R |̃p]
(1 − αxvnc) andαxvnc is a smoothing factor between 0 and

1. The convolved source PSD matrix can then be estimated as

�̂x̃ = �̂x̃+ṽnc − �̂ṽnc . (9.13)

In contrast to the noise PSD matrix, the convolved source PSD matrix and RTF
vector estimates are most rapidly updated when the DSPP is high. An estimate �̂ṽnc

http://dx.doi.org/10.1007/978-3-319-42211-4_7
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of the background noise PSD matrix can be obtained during an initial period where
only background noise is present, assuming that the background noise is stationary.
Alternatively, if the background noise is non-stationary, we can recursively estimate
its PSD matrix using a smoothing factor that depends on Pr

[H0 |̃p
]
, which is equal

to 1 − Pr
[H1 |̃p

]
. The estimation of the a posteriori SPP Pr

[H1 |̃p
]
will be addressed

in Sect. 9.1.4.1.

9.1.4 Desired Speech Presence Probability Estimation

Based on our hypotheses in Sect. 9.1.3, H1,R ∩ H1 = H1,R; in other words, if de-
sired speech is present, then speech must be present. We can therefore express the a
posteriori DSPP Pr

[H1,R |̃p]
as

Pr
[H1,R |̃p] = Pr

[H1,R ∩ H1 |̃p
]

(9.14a)

= Pr
[H1,R|H1, p̃

] · Pr [H1 |̃p
]
. (9.14b)

An estimate of the a posteriori SPP Pr
[H1 |̃p

]
can be obtained using a Gaussian

model–based multichannel SPP estimator proposed in Souden et al. [39]. When
the noise signals contain coherent speech, the likelihood model in Souden et al. [39]
does not reliably distinguish between desired and interfering sources, due to the non-
stationarity of the signals and the inherent “chicken and egg” problem in the signal-
based SPP estimation. The combination of the a posteriori SPP with the probability
Pr

[H1,R|H1, p̃
]
enables us to differentiate between desired and interfering coherent

sources.
Instead of directly using the noisy signal vector p̃ for inferring the probability

Pr
[H1,R|H1, p̃

]
, in Jarrett et al. [24], the authors proposed to compute instantaneous,

narrowband DOA estimates Ω̂ from p̃, and to use these estimates to approximate
the probability Pr

[H1,R|H1, p̃
]
. The probability that is thereby computed is denoted

as Pr[H1,R|H1, Ω̂], and is referred to as a DOA-based probability. By using DOA
estimates instead of the noisy signal vector p̃, the dimensionality of the problem is
reduced. Furthermore, because the region of interest is defined in terms of DOAs, this
approximation enables the use of intuitive and relatively accurate likelihood models,
as will be seen in Sect. 9.1.4.2.

9.1.4.1 Multichannel Speech Presence Probability

The a posteriori SPP is estimated by assuming the desired speech, coherent noise
and background noise signals can be modelled as complex multivariate Gaussian
random variables. An estimate of the a posteriori multichannel SPP is then given by
[39]
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Pr
[H1 |̃p

] =
{
1 + 1 − �

�
(1 + ξ)e− β

1+ξ

}−1

, (9.15)

where � = Pr [H1] denotes the a priori SPP,

β = p̃H�̂
−1

ṽnc �̂r̃�̂
−1

ṽnc p̃, (9.16)

and
ξ = tr

(
�̂

−1

ṽnc �̂r̃

)
. (9.17)

The PSD matrix �̂r̃ of the convolved source plus coherent noise signals is given by

�̂r̃ = �̂p̃ − �̂ṽnc . (9.18)

The PSD matrix �p̃ of the noisy signal vector p̃ is recursively estimated as

�̂p̃(�) = αp�̂p̃(� − 1) + (1 − αp)̃p(�)̃pH(�), (9.19)

where αp is a smoothing factor between 0 and 1.

9.1.4.2 DOA-Based Probability

The DOA-based probability Pr[H1,R|H1, Ω̂] can be determined from the instanta-
neous narrowband DOA estimates and the probability distribution function (PDF)
f (Ω̂|H1,Ω) of the estimates Ω̂ obtained when a coherent source is present (hypoth-
esisH1) with DOA Ω = (θ,φ).

More specifically, the DOA-based probability Pr[H1,R|H1, Ω̂] is obtained by
integrating the PDF f (Ω|H1,Ω̂) over the region of interestR, i.e.,

Pr[H1,R|H1, Ω̂] = Pr[Ω ∈R|H1,Ω̂] (9.20a)

=
∫

Ω∈R
f (Ω|H1,Ω̂) dΩ (9.20b)

=
∫

Ω∈R
f (Ω̂|H1,Ω) f (Ω|H1)

f (Ω̂|H1)
dΩ, (9.20c)

where dΩ = sin θdθdφ. Bayes’ rule is used to obtain (9.20c) from (9.20b).
The marginal PDF f (Ω|H1) can be modelled using a priori knowledge of the

desired source position. We assume that all DOAs Ω are equally likely, i.e., that
f (Ω|H1) is uniform and hence equal to 1

4π for all values of Ω . The PDF f (Ω̂|H1)

can be computed by marginalizing over all possible DOAs Ω , i.e.,
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f (Ω̂|H1) =
∫

Ω∈S2
f (Ω̂|H1,Ω) f (Ω|H1) dΩ, (9.21)

where the notation
∫
Ω∈S2 dΩ is used to denote compactly the solid angle

∫ 2π
φ=0

∫ π

θ=0
sin θdθdφ.

The PDF f (Ω̂|H1,Ω) is determined using a training phase, during which es-
timated DOA observations Ω̂ are collected under a number of specific conditions
(such as the direct-to-reverberant ratio or signal-to-noise ratio). A parametric sta-
tistical model that fits the observations is then chosen, and its parameters can be
estimated for every combination of training conditions.

The DOA estimates can be obtained using any of the narrowband DOA estima-
tion algorithms presented in Sect. 5.1, as long as the training is performed with the
chosen algorithm. We choose the pseudointensity vector method [19], described in
Sect. 5.1.3. The unit vector that points in a direction Ω is denoted as u. An estimate
û of u is then given by

û(�, ν) = −
∑�

�′=�−τ+1 I(�
′, ν)

‖∑�
�′=�−τ+1 I(�′, ν)‖ , (9.22)

where I denotes the pseudointensity vector and ‖ · ‖ denotes the 2-norm. Themoving
average of the pseudointensity vectors over τ time frames gives the highest weight
to the vectors with the highest norm, which are likely to be more reliable. The
instantaneous, narrowband DOA estimate Ω̂(�, ν) is then given by the direction of
the unit vector û(�, ν).

We use the von Mises–Fisher distribution [11], a probability distribution on the
sphere,3 to represent the DOA estimates thereby obtained. This distribution is rota-
tionally symmetric about its mean direction; the deviation of the estimates from the
mean direction is described by the concentration parameter κ. Due to the spherical
symmetry of the microphone array, we can assume that the DOA estimates Ω̂ are
unbiased for all values of Ω and that the mean direction is therefore equal to the

true DOA Ω , i.e., E
{
Ω̂|H1,Ω

}
= Ω . For the same reason, we can assume that the

concentration parameter κ is independent of Ω , as long as the source and array are
not near the room boundaries. A method for estimating the concentration parameter
is set out in [41].

Using the vonMises–Fisher distribution to represent the DOA estimates obtained
using the pseudointensity vector method, the PDF f (Ω̂|H1,Ω;κ) is given by [11,
26]

f (Ω̂|H1,Ω;κ) = κ

4π sinh κ
eκ u(Ω)·û(Ω̂) (9.23a)

= κ

2π (eκ − e−κ)
eκ u(Ω)·û(Ω̂), (9.23b)

3When the sphere is a 2-sphere (i.e., an ordinary sphere), as it is here, the von Mises–Fisher
distribution is sometimes referred to simply as a Fisher distribution.

http://dx.doi.org/10.1007/978-3-319-42211-4_5
http://dx.doi.org/10.1007/978-3-319-42211-4_5


162 9 Informed Array Processing

where u(Ω) · û(Ω̂) denotes the scalar product of the vector u(Ω), which points in a
direction Ω , and the vector û(Ω̂), which points in a direction Ω̂ . This scalar product
is applied to the vectors in Cartesian coordinates, and is equal to the cosine of the
angle between the true and estimated DOAs Ω and Ω̂ . We refer to this angle as the
opening angle. As κ decreases, the distribution of the opening angles becomes less
concentrated around 0 and the distribution of the DOA estimates Ω̂ becomes less
concentrated around the true DOA Ω .

Aswehave chosen a vonMises–Fisher distribution to represent theDOAestimates
obtained using the pseudointensity vector method, and as we have assumed that
f (Ω|H1) is uniform, that the concentration parameterκ is independent ofΩ , and that
the DOA estimates Ω̂ are unbiased, the DOA-based probability can advantageously
be computed directly using (9.20b) rather than (9.20c). Indeed, using (9.21), the PDF
f (Ω̂|H1) can be computed as

f (Ω̂|H1) =
∫

Ω∈S2
f (Ω̂|H1,Ω) f (Ω|H1) dΩ (9.24a)

= 1

4π

∫
Ω∈S2

f (Ω̂|H1,Ω) dΩ (9.24b)

= 1

4π

∫
Ω∈S2

κ

2π (eκ − e−κ)
eκ u(Ω)·û(Ω̂)

︸ ︷︷ ︸
�

dΩ. (9.24c)

By noticing that the expression marked with a � is also equal to the PDF of a random
variable Ω that is distributed according to a von Mises–Fisher distribution with a
concentration parameter κ and a mean direction Ω̂ , we find that the integral of this
expression over the sphere is equal to 1, and we obtain

f (Ω̂|H1) = 1

4π
. (9.25)

The PDF f (Ω̂|H1) is therefore uniform. As a result, using Bayes’ rule, it follows that
f (Ω|H1,Ω̂;κ) = f (Ω̂|H1,Ω;κ), and f (Ω|H1,Ω̂;κ) can therefore be computed
directly from (9.23).

9.1.5 Algorithm Summary

The estimation of the noise PSD matrix �ṽ and RTF vector d can be summarized as
follows:

1. Estimate the DOA-based probability Pr[H1,R(�, ν)|H1(�, ν), Ω̂(�, ν)]:
a. Compute the pseudointensity vector I(�, ν) by applying the method of

Sect. 5.1.3 to the eigenbeams P̃lm(�, ν).

http://dx.doi.org/10.1007/978-3-319-42211-4_5
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b. Compute the unit vector û(�, ν) using the last τ pseudointensity vectors
I(� − τ+1, ν), . . . , I(� − 1, ν), I(�, ν) and (9.22).

c. Compute the PDF f (Ω̂|H1,Ω;κ) using û(�, ν), the concentration parame-
ter κ obtained from the training phase, and (9.23b).

d. Estimate Pr[H1,R(�, ν)|H1(�, ν), Ω̂(�, ν)] using f (Ω̂|H1,Ω;κ) and
(9.20b).

2. Update �̂p̃(�, ν) using (9.19).
3. Estimate �r̃(�, ν) as �̂r̃(�, ν) = �̂p̃(�, ν) − �̂ṽnc . The PSD matrix �̂ṽnc is esti-

mated during initial frames where only background noise is present.
4. Estimate the a posteriori multichannel SPP Pr

[H1(�, ν)|̃p(�, ν)
]
according to

(9.15), (9.16) and (9.17), using �̂r̃(�, ν) and �̂ṽnc .
5. Compute the a posteriori DSPP Pr

[H1,R(�, ν)|̃p(�, ν)
]
as the product of the

DOA-based probability Pr[H1,R(�, ν)|H1(�, ν), Ω̂(�, ν)] and the a posteriori
SPP Pr

[H1(�, ν)|̃p(�, ν)
]
.

6. Update �̂ṽ(�, ν) according to (9.9) using Pr
[H1,R(�, ν)|̃p(�, ν)

]
.

7. Update �̂x̃+ṽnc(�, ν) according to (9.12) using Pr
[H1,R(�, ν)|̃p(�, ν)

]
, and com-

pute d̂(�, ν) according to (9.11).

A block diagram of the complete informed noise reduction algorithm is shown in
Fig. 9.2. The steps in the algorithm summary above are included in the blocks in the
lower part of the figure.

9.1.6 Results

In this section, we provide some sample results to illustrate the performance of
the informed noise reduction algorithm. A complete performance evaluation can be
found in Jarrett et al. [24], where the performance is analysed in terms of the signal-
to-noise ratio improvement, speech distortion index, coherent noise reduction factor,
and background noise reduction factor.4

These results pertain to two aspects of the algorithm: the DSPP estimationmethod
described in Sect. 9.1.4, which is used to estimate the second-order statistics in
Sect. 9.1.3, and the tradeoff beamformer described in Sect. 9.1.2.

In previous work, an SPP-dependent tradeoff parameter μ has been used [31]. As
in Jarrett et al. [24], we make the tradeoff parameter DSPP-dependent, such that

μ(�, ν) = 1

η 1
μ′ + (1 − η)Pr

[H1,R(�, ν)|̃p(�, ν)
] , (9.26)

4A number of audio examples are also available at http://www.ee.ic.ac.uk/sap/sphdoa/.

http://www.ee.ic.ac.uk/sap/sphdoa/
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Fig. 9.2 Block diagram of the informed noise reduction algorithm, including the tradeoff beam-
former described in Sect. 9.1.2 and the DOA-based statistics estimation algorithm presented in
Sects. 9.1.3 and 9.1.4. The steps in the algorithm summary (Sect. 9.1.5) are included in the blocks
in the lower part of the figure
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where 0 ≤ η ≤ 1 and μ > 0. The smaller the value of η, the greater the influence of
the DSPP Pr

[H1,R(�, ν)|̃p(�, ν)
]
on the tradeoff parameter μ. For the special case

of η = 1, μ = μ′, and for η = 0, μ = Pr
[H1,R(�, ν)|̃p(�, ν)

]−1
, ∀μ′.

9.1.6.1 Experimental Setup

The results that follow were obtained by convolving clean speech signals with
acoustic impulse responses (AIRs) that were measured in one of the laboratories
at Fraunhofer IIS (Erlangen, Germany) [38]. The measurement room had a rever-
beration time T60 of approximately 330ms, and dimensions of 7.5 × 9.3 × 4.2m.
A rigid spherical array of radius 4.2cm compromising Q = 32 microphones was
placed approximately in the centre of the room. The desired source was placed at a
distance of 1.8m from the centre of an array, in a direction (95◦, 175◦) (inclination,
azimuth). The first and second interfering sources were respectively placed 2.3 and
3.0m away from the centre of the array, in directions (95◦, 115◦) and (40◦, 0◦).

The desired and interfering speech signals were taken from the EBU SQAM
dataset [9]. Four 5 s segments were used, where the following speech sources were
present: a desired source, a single interfering source, a desired source and a single in-
terfering source, and a desired source and two interfering sources. Spatio-temporally
white Gaussian noise was added to the pressure signals at each microphone such that
a constant input signal-to-incoherent-noise ratio (iSINR) of 25 dB was obtained at
Mref; as explained in Sect. 7.2.2, the incoherent noise power at Mref is Q|B0(ν)|2
times smaller than at themicrophones [18]. The coherent noise level was set such that
an input signal-to-coherent-noise ratio (iSCNR) of 0 dBwas obtained atMref, where
the signal powerwas computed using only frameswhere both interfering talkers were
active according to ITU-T Rec. P.56 [16]. Both the coherent and incoherent noise
levels were chosen based on active speech levels, which were computed according
to ITU-T Rec. P.56 [16].

The processing was performed at a sampling frequency of 8kHz, with an STFT
frame length of 512 samples (64ms) and a 50% overlap between frames. The STFT
frames were zero-padded to 1024 samples (128ms) before applying the fast Fourier
transform in order to avoid circular convolution errors. We applied the beamformer
to all eigenbeams up to order L = 3, but estimated the a posteriori SPP using only
zero- and first-order eigenbeams, in order to reduce the computational complexity.
We empirically chose the smoothing factors in (9.19), (9.10) and (9.12) as αp = 0.8,
αv = 0.7 (with Prth = 0.01) and αxvnc = 0.8. We fixed the a priori SPP � to 0.4,
although the performance is not very sensitive to the choice of a priori SPP. Finally,
we averaged the pseudointensity vectors over τ = 4 time frames.

http://dx.doi.org/10.1007/978-3-319-42211-4_7


166 9 Informed Array Processing

9.1.6.2 Desired Speech Presence Probability

The performance of the tradeoff beamformer is highly dependent on the accuracy of
the estimated second-order statistics, which in turn depends on the accuracy of the
DSPP estimation. We therefore first look at the DSPP estimation performance.

For the training phase required to estimate the concentration parameter κ of the
von Mises–Fisher distribution, we used AIRs simulated with SMIRgen [17], an
AIR simulator for spherical microphone arrays based on the algorithm presented in
Chap.4. We chose the same iSINR, reverberation time and source-array distance as
in Sect. 9.1.6.1, thus yielding training conditions that were similar to the conditions
where the tradeoff beamformer was applied. We numerically evaluated the integral
in (9.20b) over the region of interest R. The region of interest was centred around
the desired source’s true DOA:

Ω = (θ,φ) ∈ R if θ ∈ [80◦, 110◦] and φ ∈ [160◦, 190◦].

The narrowband DOA estimates can be biased by reverberation, especially when
strong early reflections are present. To reduce this bias, and estimate a concentration
parameter that is independent of the source-array position and DOA, we simulated
5 different source-array positions for each combination of the training parameters
(iSINR, reverberation time, and source-array distance). We combined the results of
these simulations to obtain a multimodal distribution, which we used to estimate
the concentration parameter. It should be noted that because the array’s directivity
is frequency-dependent, so too is the concentration parameter. This can be seen in
Fig. 9.3, where DOA estimates are shown for two frequencies; at low frequencies,
the array has low directivity, and the DOA estimates are therefore less concentrated
around the true DOA.

For illustration purposes, Fig. 9.4 shows some time-frequency plots of the opening
angles between the estimated DOAs and the true DOA of the desired source (a),
the DOA-based probability Pr[H1,R|H1, Ω̂] (b), the a posteriori multichannel SPP
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Fig. 9.3 DOA estimates obtained with 5 different source-array positions and a single true DOA
(marked with a white dot), at a 100Hz and b 2.2kHz

http://dx.doi.org/10.1007/978-3-319-42211-4_4
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Fig. 9.4 Illustrative plots of the a opening angles (in degrees), b DOA-based probability
Pr[H1,R|H1, Ω̂], c a posteriori multichannel SPP Pr[H1|p̃], and d a posteriori DSPP Pr[H1,R|p̃],
as a function of time and frequency
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Fig. 9.5 Spectrograms of the a desired speech signal X̃00, b received signal P̃00 = X̃00 + Ṽ00,c +
Ṽ00,nc, beamformer output Z for c η = 1,μ′ → 0 and d η = 0.25,μ′ = 3
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Pr
[H1 |̃p

]
(c), and the a posteriori DSPP Pr

[H1,R |̃p]
(d). We see that the DOA-

based probability efficiently distinguishes between desired and interfering sources;
in time-frequency bins where the desired source is not present, between 6 and 11 s for
instance, theDOA-basedprobability is low.Lowvalues of theDOA-basedprobability
result in a low a posteriori DSPP, which allows us to confidently update the noise PSD
matrix �ṽ without the risk of significant desired speech cancellation. As expected,
in isolation the a posteriori SPP in (c) only allows us to detect coherent sources,
whether they be desired or interfering.

9.1.6.3 Tradeoff Beamformer

In Fig. 9.5, we plot a number of sample spectrograms in order to show the effect of
the informed noise reduction algorithm. Figure9.5a, b respectively show the desired
speech signal X̃00(�, ν) and the noisy signal P̃00(�, ν) measured at the reference
microphone Mref. The effect of the sensor noise is most clearly seen when none of
the coherent sources are active, for example, between 0 and 1 s. The sensor noise has
higher power at high frequencies due to the fact that the signal P̃00(�, ν) is obtained
by dividing the zero-order eigenbeam P00(�, ν) by the mode strength B0(ν).

The spectrograms of the tradeoff beamformer output for two sets of tradeoff
parameters are shown in Fig. 9.5c, d. In Fig. 9.5c, μ′ → 0, and hence μ = 0; in
this case the tradeoff beamformer is equivalent to the SHD MVDR beamformer.
The interfering source has been efficiently suppressed, although a small amount
of interfering speech remains at low frequencies, where the interfering speech has
highest energy. By making the tradeoff parameter DSPP-dependent, as in Fig. 9.5d
where η = 0.25 and μ′ = 3 (resulting in a tradeoff parameter μ in the range 1.2–12),
a larger amount of noise reduction is achieved, at the expense of a slight increase in
speech distortion, visible at high frequencies between 5 and 6s, for example.

9.2 Dereverberation Using Signal-to-Diffuse Ratio
Estimates

Reverberation is the phenomenon whereby the sound waves produced by an acoustic
source in an enclosed space are reflected by the surrounding walls. Reverberation
is known to be potentially detrimental to speech communication [30]. In particular,
in the presence of high levels of reverberation, the intelligibility of speech may be
degraded. Dereverberation techniques seek to mitigate the effects of reverberation;
both single and multichannel techniques have been proposed for this purpose, de-
tailed in Habets [12], Naylor and Gaubitch [30] and the references therein. This is a
challenging problem, in large part because reverberation is highly time-varying and,
unlike noise, cannot be observed in periods where the desired sources are inactive.
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Dereverberation is the task of removing the effects of reverberation and is com-
monly approached using microphone arrays, where spatial filters are applied to the
signals captured by each of the array’s microphones to attenuate both the levels
of reverberation and of ambient noise. These spatial filters can broadly be divided
into two categories: signal-independent and signal-dependent filters, respectively ex-
plored in Chaps. 6 and 7. Reverberation is commonly modelled as spatially diffuse
noise; hence, the tradeoff between white noise gain (WNG) and directivity discussed
in Sect. 6.3 implies a tradeoff between WNG and dereverberation. In addition, it has
been shown that there is a tradeoff between the noise reduction and dereverberation
achieved using a MVDR filter [14]. A notable approach to multichannel dereverber-
ation combines a (signal-independent) MVDR filter with a single-channel Wiener
filter (a post-filter) [27].

While noise reduction in the SHD has received considerable attention, the topic
of dereverberation in the SHD [20, 32–34, 46] is only in its infancy. In [34], the
authors propose a method for noise reduction and dereverberation based on a linearly
constrained minimum variance (LCMV) with spatial nulls in the direction of the
reflections. However, in practice the DOAs of the reflections can be difficult to
estimate. In addition, the specular reflections whose DOA can be estimated are likely
to be early reflections, which contribute positively to intelligibility [2, 25], while the
reflections that reduce intelligibility are more likely to be diffuse [29, 42].

In this section, we apply the concept of informed array processing to the problem
of dereverberation in the SHD. We model the signal captured by a spherical micro-
phone array as the sum of a direct signal, a diffuse signal that models reverberation,
and a noise signal. All three signals are assumed to be mutually uncorrelated. We
present an approach proposed by Braun et al. [3], where an optimal filter is derived
that minimizes the mean square error (MSE) between the direct signal received at a
reference microphone and the estimated direct signal. The weights of the resulting
Wiener filter depend on the DOA of the direct signal and the PSDmatrix of the inter-
ference signal, which is composed of both the diffuse and noise signals. As these two
signals are uncorrelated, the PSDmatrix of the interference signal is given by the sum
of the PSD matrices of the diffuse and noise signals. The PSD matrix of the diffuse
signal depends only on the power of the diffuse signal at the reference microphone,
and can be estimated based on instantaneous SDR estimates (see Sect. 5.2). This
approach is informed in the sense that information about the SDR is incorporated
into the design of the spatial filter.

9.2.1 Problem Formulation

Signal Model

We consider a frequency domain signal model in which a spherical microphone
array captures a direct signal X , a diffuse signal F and a noise signal V . The spa-
tial domain signal received at Q microphone positions rq = (r,Ωq) = (r, θq ,φq),

http://dx.doi.org/10.1007/978-3-319-42211-4_6
http://dx.doi.org/10.1007/978-3-319-42211-4_7
http://dx.doi.org/10.1007/978-3-319-42211-4_6
http://dx.doi.org/10.1007/978-3-319-42211-4_5
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q ∈ {1, . . . , Q} (in spherical coordinates, where θ denotes the inclination and φ de-
notes the azimuth) can then be expressed as5

P(ν, rq) = X (ν, rq) + F(ν, rq) + V (ν, rq) (9.27)

We assume that the signals X , F and V are mutually uncorrelated. The diffuse signal
F models reverberation that we wish to suppress.

When using spherical microphone arrays, it is convenient to work in the SHD [28,
36], instead of the spatial domain. In this chapter, we assume error-free spatial sam-
pling, and refer the reader to Chap.3 for information on spatial sampling and aliasing.
By applying the complex SHT to the signal model in (7.1), we obtain the SHD signal
model

Plm(ν) = Xlm(ν) + Flm(ν) + Vlm(ν) (9.28)

where Plm(ν), Xlm(ν), Flm(ν) and Vlm(ν) are respectively the spherical harmonic
transforms of the signals P(ν, rq), X (ν, rq), F(ν, rq) and V (ν, rq), as defined in
(3.6), and are referred to as eigenbeams to reflect the fact that the spherical harmonics
are eigensolutions of the wave equation in spherical coordinates [44]. The order and
degree of the spherical harmonics are respectively denoted as l and m.

The eigenbeams Plm(ν), Xlm(ν), Flm(ν) and Vlm(ν) are a function of the
frequency-dependent mode strength bl(ν), which is in turn a function of the ar-
ray properties (radius, microphone type, configuration). Mode strength expressions
for two common types of arrays, the open and rigid arrays with omnidirectional mi-
crophones, are given in Sect. 3.4.2. To cancel this dependence, we divide the eigen-
beams by the mode strength (as in [34]), thus giving mode strength compensated
eigenbeams, and the signal model is then written as

P̃lm(ν) =
[√

4πbl(ν)
]−1

Plm(ν) (9.29a)

= X̃lm(ν) + F̃lm(ν) + Ṽlm(ν) (9.29b)

where P̃lm(ν), X̃lm(ν), F̃lm(ν) and Ṽlm(ν) respectively denote the eigenbeams
Plm(ν), Xlm(ν), Flm(ν) and Vlm(ν) after mode strength compensation.

Beamforming in the Spherical Harmonic Domain

As shown in the Appendix of Chap.5, the eigenbeam P̃00(ν) is equal to the signal
that would be received at an omnidirectional reference microphoneMref positioned
at the centre of the sphere, if the sphere were not present. Our objective is to derive
a spatial filter or beamformer to estimate the direct component of the eigenbeam
P̃00(ν), namely, X̃00(ν), which we refer to as the desired signal.

5The dependency on time is omitted for brevity. In practice, the signals acquired using a spherical
microphone array are usually processed in the short-time Fourier transform domain, as explained
in Sect. 3.1, where the discrete frequency index is denoted by ν.

http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_7
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_5
http://dx.doi.org/10.1007/978-3-319-42211-4_3
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For convenience, we rewrite the signal model (9.29) in vector notation, where the
vectors all have length N = (L + 1)2, the total number of eigenbeams from order
l = 0 to l = L:

p̃(ν) = x̃(ν) + f̃(ν) + ṽ(ν) (9.30)

where

p̃(ν) = [
P̃00(ν) P̃1(−1)(ν) P̃10(ν) P̃11(ν) P̃2(−2)(ν) · · · P̃LL(ν)

]T
, (9.31)

(·)T denotes the vector transpose, and x̃(ν), f̃(ν) and ṽ(ν) are defined similarly
to p̃(ν). We also define an interference signal vector ũ(ν) = f̃(ν) + ṽ(ν), which
contains the diffuse and noise signals that we wish to suppress.

Assuming that the direct signal x̃ is composed of a single plane wave with DOA
Ωdir, the signal vector x̃(ν) can be written in terms of the desired signal as

x̃(ν) = ddir(ν)X̃00(ν), (9.32)

where, using (3.22a), we find that

ddir(ν) =
[
1
Y ∗
1(−1)(Ωdir)

Y ∗
00(Ωdir)

Y ∗
10(Ωdir)

Y ∗
00(Ωdir)

Y ∗
11(Ωdir)

Y ∗
00(Ωdir)

· · · Y
∗
LL(Ωdir)

Y ∗
00(Ωdir)

]T

(9.33)

for all frequencies ν, where Ylm denotes the complex spherical harmonic6 of order
l and degree m, as defined in (2.14). The vector ddir(ν) is referred to as a steering
vector. As X (ν, rq), F(ν, rq) and V (ν, rq) are mutually uncorrelated, and the SHT
and division by the mode strength are linear operations, X̃lm(ν), F̃lm(ν) and Ṽlm(ν)

are also mutually uncorrelated. The PSD matrix �p̃ of p̃ can therefore be expressed
as

�p̃(ν) = E
{̃
p(ν )̃pH(ν)

}
= �x̃(ν) + �f̃(ν) + �ṽ(ν)

= �x̃(ν) + �ũ(ν), (9.34)

where E {·} denotes mathematical expectation and

�x̃(ν) = E
{̃
x(ν )̃xH(ν)

} = φX̃00
(ν)ddirdH

dir,

�f̃(ν) = E
{̃
f(ν )̃fH(ν)

}
and

�ṽ(ν) = E
{̃
v(ν )̃vH(ν)

}

6If the real SHT is applied instead of the complex SHT, the complex spherical harmonics Ylm used
throughout this chapter should be replaced with the real spherical harmonics Rlm , as defined in
Sect. 3.3.

http://dx.doi.org/10.1007/978-3-319-42211-4_3
http://dx.doi.org/10.1007/978-3-319-42211-4_2
http://dx.doi.org/10.1007/978-3-319-42211-4_3
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are respectively the PSD matrices of x̃(ν), f̃(ν) and ṽ(ν), (·)H denotes the Hermitian

transpose, and φX̃00
(ν) = E

{∣∣X̃00(ν)
∣∣2} is the variance of X̃00(ν).

As in Chap.7, the output Z(ν) of our beamformer is obtained by applying a
complex weight to each eigenbeam and summing over all eigenbeams:

Z(ν) = wH(ν )̃p(ν)

= wH(ν )̃x(ν) + wH(ν )̃f(ν) + wH(ν )̃v(ν)

= X̃ f(ν) + F̃r(ν) + Ṽr(ν), (9.35)

where X̃ f(ν) = wH(ν )̃x(ν) = wH(ν)ddir X̃00(ν) is thefiltered desired signal, F̃r(ν) =
wH(ν )̃f(ν) is the residual diffuse signal and Ṽr(ν) = wH(ν )̃v(ν) is the residual noise.

In the next section, we derive the weights of a spatial filter that estimates the
desired signal X̃00(ν).

9.2.2 Informed Filter for Dereverberation

Filter Weights

The MSE between the filter output Z(ν) and the desired signal X̃00(ν) is given by

J [w(ν)] = E
{∣∣Z(ν) − X̃00(ν)

∣∣2}

= E
{∣∣wH(ν)

[
ddir X̃00(ν) + ũ(ν)

] − X̃00(ν)
∣∣2} . (9.36)

The filter that minimizes the MSE is known as a multichannel Wiener filter, and
is presented in Sect. 7.3.2. Its weights are given by

wMWF(ν) = φX̃00
(ν)�−1

ũ (ν)ddir

1 + φX̃00
(ν)dH

dir�
−1
ũ (ν)ddir

. (9.37)

It can sometimes be advantageous to separate the weights in (9.37) into a MVDR
filter and a single-channel Wiener filter [3, 21]:

wMWF(ν) = �−1
ũ (ν)ddir

dH
dir�

−1
ũ (ν)ddir︸ ︷︷ ︸

wMVDR(ν)

· φX̃ f,MVDR
(ν)

φX̃ f,MVDR
(ν) + φŨr,MVDR

(ν)︸ ︷︷ ︸
WWF(ν)

, (9.38)

where

φX̃ f,MVDR
(ν) = E

{|wH
MVDR(ν )̃x(ν)|2}

= wH
MVDR(ν)�x̃(ν)wMVDR(ν) (9.39a)

= wH
MVDR(ν)

[
�p̃(ν) − �ũ(ν)

]
wMVDR(ν) (9.39b)

http://dx.doi.org/10.1007/978-3-319-42211-4_7
http://dx.doi.org/10.1007/978-3-319-42211-4_7
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denotes the variance of the direct signal component of the output of the MVDR
filter, and

φŨr,MVDR
(ν) = E

{|wH
MVDR(ν )̃u(ν)|2}

= wH
MVDR(ν)�ũ(ν)wMVDR(ν) (9.40)

= [
dH
dir�

−1
ũ (ν)ddir

]−1
(9.41)

denotes the variance of the residual interference at the output of the MVDR filter.
This form of the multichannel Wiener filter is advantageous as it provides better
control over the speech distortion.

It should be noted that the weights of the signal-dependent MVDR filter in (9.38)
depend on the statistics of both the diffuse and noise signals; the noise signal is not
required to be diffuse. In contrast, the MVDR filter in [27] is signal-independent: be-
cause a diffuse noise field is assumed, the filter weights only depend on the coherence
matrix of this field.

Signal Statistics Estimation

In order to compute the weights of the multichannel Wiener filterwMWF(ν), we must
estimate the PSD matrix �ũ(ν) of the interference signals

�ũ(ν) = �f̃(ν) + �ṽ(ν). (9.42)

We assume that the noise is stationary, and its PSD matrix �ṽ(ν) can therefore be
estimated when the direct and diffuse signals are inactive. On the other hand, the
diffuse signal used to model reverberation is highly non-stationary, and its PSD
matrix �f̃(ν) therefore must be continuously estimated.

The diffuse PSD matrix can be expressed as a function of the variance of F̃00(ν)

and the diffuse coherence matrix � f̃(ν) such that

�f̃(ν) = φF̃00(ν)� f̃(ν), (9.43)

where φF̃00(ν) = E
{∣∣F̃00(ν)

∣∣2}. As the diffuse signal is spherically isotropic, the

coherence matrix is given by [3, 22, 47]

� f̃(ν) = IN×N , (9.44)

where IN×N denotes the N × N identity matrix.
Our task then becomes the estimation of the variance of F̃00(ν). In [3],

Braun et al. proposed an informed spatial filtering approach to dereverberation,where
φF̃00(ν) was estimated using the SDR, introduced in Sect. 5.2. Indeed, the SDR is
given by

http://dx.doi.org/10.1007/978-3-319-42211-4_5
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SDR(ν) = φX̃00
(ν)

φF̃00(ν)
, (9.45)

allowing us to express φF̃00(ν) as

φF̃00(ν) = φX̃00
(ν)

SDR(ν)
(9.46a)

= φX̃00
(ν)

SDR(ν)

1 + SDR−1(ν)

1 + SDR−1(ν)
(9.46b)

= φX̃00
(ν) + φF̃00(ν)

SDR(ν) + 1
(9.46c)

= φP̃00(ν) − φṼ00
(ν)

SDR(ν) + 1
, (9.46d)

where φP̃00(ν) = E
{∣∣P̃00(ν)

∣∣2}, φṼ00
(ν) = E

{∣∣Ṽ00(ν)
∣∣2}, and (9.46d) is obtained

using the relation φP̃00(ν) = φX̃00
(ν) + φF̃00(ν) + φṼ00

(ν), which holds because the
three eigenbeams are mutually uncorrelated.

This informed spatial filtering approach to dereverberation is summarized in the
form of a block diagram in Fig. 9.6. The spatial domain sound pressure signals
P(ν, rq) are transformed to the SHD, and mode strength compensated using (9.29).
The SDR is estimated (see Sect. 5.2), and the interference PSD matrix �ũ(ν) is then
estimated using (9.42), (9.43) and (9.46d). Finally, the multichannel Wiener filter
weights are computed using Ωdir and the interference PSD matrix �ũ(ν), and the
filter is applied to the mode strength compensated eigenbeams to yield the filter
output Z(ν).

Spherical Harmonic 
Transform (SHT)

Mode Strength 
Compensation

Signal-to-Diffuse Ratio 
Estimation

Multichannel 
Wiener Filter

Diffuse PSD Matrix Estimation

Fig. 9.6 Block diagram of the informed spatial filtering approach to dereverberation

http://dx.doi.org/10.1007/978-3-319-42211-4_5
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9.2.3 Relation to Robust MVDR Filter

The robust MVDR filter [7] uses diagonal loading to improve the robustness of the
MVDR filter to errors in microphone placement and steering direction. The weights
of the robust MVDR filter are given by

wrMVDR(k, δr) =
[
�ṽ(ν) + δr(ν)IN×N

]−1
ddir

dH
dir

[
�ṽ(ν) + δr(ν)IN×N

]−1
ddir

, (9.47)

where the regularization parameter δr(ν) simulates the presence of additional spa-
tially white noise. Unlike the MVDR filter in (9.38), the robust MVDR filter does
not depend on the variance φF̃00(ν), and the regularization parameter is usually time-
and frequency-independent. If φF̃00(ν) is known and the regularization parameter is
chosen as δr(ν) = φF̃00(ν), the robust MVDR filter is equal to the MVDR filter in
(9.38), that is, wrMVDR(k,φF̃00(ν)) = wMVDR(ν).

When a fixed value of δr = 0 is chosen, the robust MVDR filter weights are
given by

wrMVDR(k, 0) = �−1
ṽ (ν)ddir

dH
dir�

−1
ṽ (ν)ddir

, (9.48)

and the robustMVDRfilter reduces to theMVDRfilter in (9.38)with�f̃(ν) = 0N×N ,
where 0N×N denotes an N × N matrix of zeros. On the other hand, when δr tends to
infinity, the robust MVDR filter weights are given by

lim
δ→∞

wrMVDR(k, δ) = ddir

dH
dirddir

, (9.49)

and the robustMVDRfilter reduces to theMVDRfilter in (9.38)with�ṽ(ν) = 0N×N .
This filter is a maximum directivity beamformer, as per Property 7.1. Neither of the
filters in (9.48) and (9.49) require knowledge of the variance φF̃00(ν); they will be
used for comparison purposes in Sect. 9.2.4.

9.2.4 Performance Evaluation

In this section, we evaluate the performance of the informed spatial filter presented
in Sect. 9.2.2, and compare it to the performance of the robustMVDR filter presented
in Sect. 9.2.3.

Experimental Setup

We computed the sound pressure signals measured by a rigid spherical microphone
array by simulating impulse responses with SMIRgen [17], an AIR simulator for

http://dx.doi.org/10.1007/978-3-319-42211-4_7
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spherical microphone arrays based on the algorithm presented in Chap. 4. The array
was composed of Q = 32 microphones, and had a radius of 4.2cm. The room di-
mensions were 5 × 7 × 4m and its reverberation time was 500ms. The signals were
processed in the STFT domain at a sampling frequency of 8kHz, with a frame length
of 32ms, a 50% overlap between successive frames, and a fast Fourier transform
length of 64ms in order to avoid circular convolution errors.

The source producing the direct and diffuse signals was placed at a distance of
1m from the centre of the array, and its DOA was assumed to be known for the
purposes of computing the steering vector ddir. The source signal consisted of 5 s of
male speech from the EBU SQAM dataset [9]. The noise signal consisted of spatio-
temporally white Gaussian noise with a signal-to-noise ratio (SNR) of 25dB at the
microphone closest to the source.

The beamformer was applied to eigenbeams of orders up to L = 3. The PSD
matrices were estimated recursively with a time constant of 30ms; the noise PSD
matrix was computed using only the first 50 frames of the eigenbeam P̃00, where
the direct and diffuse signals were not present. The SDR was estimated using the
coefficient of variation (CV)method, as presented in Sect. 5.2.2, and the expectations
in (5.58) were estimated using moving averages over 8 time frames.

Results

In order to illustrate the effect of the informed spatial filter, for one example in-
put signal we begin by plotting in Fig. 9.7 spectrograms of four signals: (a) the
desired, anechoic signal X̃00(ν); (b) the filter input signal including reverberation,
X̃00(ν) + F̃00(ν); (c) the noisy filter input signal including both sensor noise and
reverberation, P̃00(ν) = X̃00(ν) + F̃00(ν) + Ṽ00(ν); and (d) the filter output signal
Z(ν). By comparing (a) and (b), it can be seen that reverberation causes a temporal
smearing effect, blurring the boundaries between phonemes. In (d), the smearing
is reduced, and some of the sensor noise has also been suppressed; the filter has
performed both dereverberation and noise reduction, as desired.

The accurate estimation of the diffuse PSD φF̃00(ν) is crucial to the performance
of the informed spatial filterwMWF. In Fig. 9.8, we plot the ideal and estimated diffuse
PSDs. We see that the estimated diffuse PSD faithfully tracks changes in the ideal
diffuse PSD, and that the PSD values are also accurately estimated. The diffuse PSD
is, however, slightly overestimated due to the presence of sensor noise.

We analyzed the narrowband performance of the robust MVDR filter wrMVDR

and the MVDR filter wMVDR that forms part of the informed spatial filter wMWF in
(9.38), using two performance measures: the noise reduction factor (NRF) and the
directivity index (DI). The NRF was defined in the same way as in Chap.7, and is
given by

ξnr [w(ν)] = φṼ00
(ν)

wH(ν)�ṽ(ν)w(ν)
. (9.50)

http://dx.doi.org/10.1007/978-3-319-42211-4_4
http://dx.doi.org/10.1007/978-3-319-42211-4_5
http://dx.doi.org/10.1007/978-3-319-42211-4_5
http://dx.doi.org/10.1007/978-3-319-42211-4_7
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Fig. 9.7 Sample spectrograms of a anechoic desired signal X̃00(ν), b reverberant filter input signal
X̃00(ν) + F̃00(ν), c noisy and reverberant filter input signal P̃00(ν) = X̃00(ν) + F̃00(ν) + Ṽ00(ν)

and d filter output signal Z(ν)
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Fig. 9.8 a Ideal and b estimated diffuse PSD φF̃00 (ν)

The DI measure we used is similar to the DI defined in Chap.6, and is given by

DI(ν) = |wH(ν)ddir(ν)|2
wH(ν)� f̃(ν)w(ν)

. (9.51)

Since the MVDR and robust MVDR filters satisfy the distortionless constraint
wH(ν)ddir(ν) = 1, and the coherence matrix � f̃(ν) is an identity matrix, this can
be simplified to7

DI(ν) = 1

wH(ν)w(ν)
. (9.52)

7It should be noted that this simplified expression is only valid if the filter is applied tomode strength
compensated eigenbeams. As a result, it is different to the expression given in Chap. 6.

http://dx.doi.org/10.1007/978-3-319-42211-4_6
http://dx.doi.org/10.1007/978-3-319-42211-4_6


180 9 Informed Array Processing

−30

−20

−10

0

10

N
oi

se
 r

ed
uc

tio
n 

fa
ct

or
 (

dB
)

w
MVDR

 with speech

w
MVDR

 without speech

w
rMVDR

(0)

w
rMVDR

( )

0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

D
ire

ct
iv

ity
 in

de
x 

(d
B

)

Frequency (kHz)

Fig. 9.9 Average NRF and DI for three different filters: the MVDR filter wMVDR in the presence
and absence of speech, the robust MVDR filter wrMVDR(0) for δr = 0, and the robust MVDR filter
wrMVDR(∞) for δr → ∞.When δ = 0, the robustMVDRfilter maximizes the NRF; when δ → ∞,
the robust MVDR filter maximizes the DI

Figure9.9 plots these measures as a function of frequency and averaged over
time. In the case of the MVDR filter, whose weights depend on the interference
PSD matrix �ũ(ν), we computed the averages separately over time frames where
speech is present and where speech is absent. As expected, the robust MVDR filters
wrMVDR(k, 0) and wrMVDR(k,∞) set bounds for the performance of the MVDR
filter. In the absence of speech, the MVDR filter converges to the robust MVDR
filter wrMVDR(k, 0), achieving the highest NRF and the lowest DI. In the presence
of speech, the MVDR filter converges to the robust MVDR filter wrMVDR(k,∞),
achieving the lowest NRF and the highest DI. At high frequencies, the speech has
low energy, and the performance of the MVDR filter is therefore similar whether
speech is present or not. At some frequencies and for some filters, the NRF is below
1 (or equivalently, below 0 dB), indicating that the power of the noise at the output
of the filter is higher than at the reference microphone Mref. Nevertheless, as noted
in Sect. 7.2.2, the power of spatially incoherent noise (as used in this experimental
setup) is lower at Mref than at the individual microphones, because the reference
microphone signal P̃00(k) is formed using all Q individual microphone signals, and
spatially incoherent noise sums destructively.

Finally, in Table9.1, we present a number of broadband performance measures.
The improvement in the segmental signal-to-interference ratio between the reference
microphoneMref and the filter output is denoted as�segSIR. The segmental DI and

http://dx.doi.org/10.1007/978-3-319-42211-4_7
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Table 9.1 Performance of the informed spatial filter and the robust MVDR filters with and without
the diffuse PSD estimator

Wiener filters Robust MVDR filters

wMWF wMWF, V wrMVDR(φF̃00 ) wrMVDR(0) wrMVDR(∞)

�segSIR (dB) 9.2 6.8 8.8 6.7 7.7

segNRF (dB) 10.6 10.3 7.4 9.4 4.6

segDI (dB) 13.4 9.3 10.3 8.4 10.9

SRMR (dB) 6.0 3.2 5.6 3.2 5.8

segmental NRFwere respectively computed using (9.51) and (9.50), and are denoted
as segDI and segNRF. All segmental measures were computed over frequencies
from 100 to 4kHz. The speech-to-reverberation modulation energy ratio (SRMR),
proposed in Falk et al. [10], is a non-intrusive quality and intelligibility measure for
reverberant speech; low values of the SRMR are obtained when the speech is highly
reverberant. In order to ensure that the SRMR only evaluated the dereverberation
performance of the filters, it was computed based on noise-free versions of the filter
output signals.

In the first column of Table9.1, we see that the informed spatial filter wMWF

has the best performance across all measures. In the second column, we show the
performance of the informed spatial filter when it only seeks to suppress sensor
noise, and does not seek to suppress the diffuse signal; this is achieved by setting
�f̃(ν) = 0. The next three columns show the performance of theMVDRfilterwMVDR

in (9.38), which is equivalent to the robust MVDR filter with δr(ν) = φF̃00(ν); the
robust MVDR filter with δr = 0; and the robust MVDR filter with δr → ∞. The
performance of the MVDR filters is consistent with Fig. 9.9: δr = 0 yields the best
noise reduction performance and worst dereverberation performance; while δr → ∞
yields the worst noise reduction performance and best dereverberation performance.
The choice δr(ν) = φF̃00(ν) achieves a good tradeoff between noise reduction and
dereverberation, yielding the highest segSIR improvement of all the robust MVDR
filters. These results are in line with those of informal listening tests.8 The SRMR
values obtained at the output of the filters can be compared to the following reference
values, in order to evaluate the absolute dereverberation performance: the SRMR of
the signal P̃00(ν) at the reference microphone Mref was 2.9, and the SRMR of the
desired signal X̃00(ν) was 9.1.

8A number of audio examples can be accessed from https://www.audiolabs-erlangen.de/resources/
2013-ICASSP-RR.

https://www.audiolabs-erlangen.de/resources/2013-ICASSP-RR
https://www.audiolabs-erlangen.de/resources/2013-ICASSP-RR
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9.3 Chapter Summary and Conclusions

This chapter provided an introduction to the informed array processing approach and
showed its application to two problems: coherent and incoherent noise reduction, and
joint dereverberation and incoherent noise reduction. In the first problem, instanta-
neous narrowband DOA estimates were employed in order to distinguish between
desired and undesired spatially coherent sources. The DOA estimates were used to
estimate a DSPP, which was in turn used to estimate the second-order statistics of the
desired speech and noise. Finally, the estimated statistics were applied to a tradeoff
beamformer. It was shown that the informed noise reduction algorithm is able to
suppress high levels of coherent noise.

In the second problem, instantaneous narrowband SDR estimates were employed
to suppress diffuse sound. The SDR estimates were used to estimate the second-
order statistics of the diffuse sound, which were combined with the DOA of the
desired source to compute the weights of a multichannel Wiener filter. It was shown
that the informed dereverberationmethod achieves an optimal tradeoff between noise
reduction and dereverberation, with high values of the segmental NRF and segmental
DI.

The estimation of the second-order statistics in signal enhancement problems re-
mains a challenge and a topic of active research, both in the spatial domain and in
the SHD. Future research aims include the estimation of these statistics for noise
reduction purposes, in the presence of one or more diffuse sources and/or multi-
ple desired coherent sources, and for dereverberation purposes, in the presence of
multiple coherent sources.
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A
Acoustic impulse response, 39
Acoustic parameter estimation, 65
Acoustic signal enhancement, see signal en-

hancement
Ambisonics, 29, 68, 71
Array gain, 119
Array processing

informed, 151
parametric, 142
signal-dependent, 113
signal-independent, 93

Associated Legendre functions, 15

B
Beam pattern, 100
Beam width, 101
Beamforming, see array processing, see

spatio-temporal filters
Binaural sound, 54

C
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Condon-Shortley phase, 15
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Cartesian, 14, 41
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D
Delay-and-sum beamformer, see spatio-

temporal filters

Desired speech presence probability, 159
Diagonal loading, 176
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Diffuseness, see signal-to-diffuse ratio
Direction of arrival, 1, 153, 170

ESPRIT, 73
estimation, 65
MUSIC, 73
pseudointensity vector, 69
steered response power, 68
time difference of arrival, 66

Directional audio coding, 71, 80, 141
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E
Eigen-space

blocking matrix, 132
ESPRIT, see direction of arrival

F
Farfield, 18, 21
Fourier transform, 12, 24, 165, 177
Front-to-back ratio, 98
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Generalized sidelobe canceller, 129
Green’s function, 13, 41
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H
Helmholtz equation, 12

I
Image method, 40
Intelligibility, 80, 141, 170, 181
Intensity vector, see sound intensity
Interaural level difference, 54, 141
Interaural time difference, 54, 141
Isotropic field, see diffuse field

L
Lagrange multiplier, 102, 106, 122
LCMV filter, see spatio-temporal filters
Legendre polynomials, 15
Localization, see direction of arrival
Look direction, see steering direction

M
Maximum SNR filter, see spatio-temporal

filters
Mean-square error, 120
Mode strength, 34, 44, 67, 77, 110, 144, 154,

171
MUSIC, see direction of arrival
MVDR filter, see spatio-temporal filters

N
Nearfield, 21, 110
Neumann Green’s function, 44
Noise reduction factor, 118

O
Open sphere, see sphere

P
Parameter estimation, see acoustic parame-

ter estimation
Plane wave, 18, 19, 21, 33, 53, 61, 66, 69,

72, 95, 99, 100, 103, 123, 125, 143,
144, 172

Plane-wave decomposition, see spatio-
temporal filters

Power pattern, 101
Pseudointensity vector, see direction of ar-

rival

Q
Quadrature weights, 30

R
Reference microphone, 80, 88, 115, 118,

119, 143, 154, 171
Relative transfer function, 115, 123, 124,

129, 133, 158
Reverberation, 2, 39, 51, 73, 78, 96, 148, 165,

169
Rigid sphere, see sphere
Room impulse response, 39

S
Sampling, see spatial sampling
Scattering, 35, 45, 99, 108
Schroeder frequency, 53
Short-time Fourier transform, 24, 66, 77, 86
Sidelobe levels, 100
Signal enhancement, 1

dereverberation, 2, 148, 169
echo cancellation, 2
noise reduction, 2, 147, 152

Signal-to-diffuse ratio, 1, 80, 145, 174
SMIRgen, 48, 77, 166, 177
Sommerfeld radiation condition, 13
Sound intensity, 20, 69
Sparse

blocking matrix, 132
speech, 156

Spatial aliasing, 30
Spatial coherence, see coherence
Spatial sampling, 23

equi-angle, 32
Gaussian, 32
uniform, 32

Spatiallywhite field, 3, 77, 98, 123, 165, 176,
177

Spatio-temporal filters
delay-and-sum beamformer, 106
LCMV filter, 127
maximum SNR filter, 121
MVDR filter, 123
parametric Wiener filter, 127
plane-wave decomposition beamformer,
102

robust MVDR filter, 176
tradeoff filter, 127, 155
Wiener filter, 122, 173

Speech distortion index, 117
Speech presence probability, 159
Sphere
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open, 4, 34, 106
rigid, 4, 34, 44, 99, 106, 108, 165, 177

Spherical harmonic addition theorem, 17
Spherical harmonic expansion, 17, 43
Spherical harmonic transform, 25

real, 27
Spherical harmonics, 15, 19

real, 27
Spherical wave, 18, 21, 89, 110
Statistical room acoustics, 53
Steered response power, see direction of ar-

rival
Steering direction, 66, 95, 97, 101, 147, 172,

176

Subspace, 72

T
Tradeoff filter, see spatio-temporal filters

W
Wave equation, 11
Wavenumber, 12, 24, 154
White noise gain, 98, 125, 170
Wiener filter, see spatio-temporal filters
Wigner-D functions, 109
Wronskian relation, 44
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